NASA Astrophysics Data System (ADS)
Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih
2017-05-01
Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.
Feasibility of video codec algorithms for software-only playback
NASA Astrophysics Data System (ADS)
Rodriguez, Arturo A.; Morse, Ken
1994-05-01
Software-only video codecs can provide good playback performance in desktop computers with a 486 or 68040 CPU running at 33 MHz without special hardware assistance. Typically, playback of compressed video can be categorized into three tasks: the actual decoding of the video stream, color conversion, and the transfer of decoded video data from system RAM to video RAM. By current standards, good playback performance is the decoding and display of video streams of 320 by 240 (or larger) compressed frames at 15 (or greater) frames-per- second. Software-only video codecs have evolved by modifying and tailoring existing compression methodologies to suit video playback in desktop computers. In this paper we examine the characteristics used to evaluate software-only video codec algorithms, namely: image fidelity (i.e., image quality), bandwidth (i.e., compression) ease-of-decoding (i.e., playback performance), memory consumption, compression to decompression asymmetry, scalability, and delay. We discuss the tradeoffs among these variables and the compromises that can be made to achieve low numerical complexity for software-only playback. Frame- differencing approaches are described since software-only video codecs typically employ them to enhance playback performance. To complement other papers that appear in this session of the Proceedings, we review methods derived from binary pattern image coding since these methods are amenable for software-only playback. In particular, we introduce a novel approach called pixel distribution image coding.
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
Deployment of the RCA Satcom K-2 communications satellite
1985-11-28
61B-38-36W (28 Nov 1985) --- The 4,144-pound RCA Satcom K-2 communications satellite is photographed as it spins from the cargo bay of the Earth-orbiting Atlantis. A TV camera at right records the deployment for a later playback to Earth. This frame was photographed with a handheld Hasselblad camera inside the spacecraft.
Multi-spectrum-based enhanced synthetic vision system for aircraft DVE operations
NASA Astrophysics Data System (ADS)
Kashyap, Sudesh K.; Naidu, V. P. S.; Shanthakumar, N.
2016-04-01
This paper focus on R&D being carried out at CSIR-NAL on Enhanced Synthetic Vision System (ESVS) for Indian regional transport aircraft to enhance all weather operational capabilities with safety and pilot Situation Awareness (SA) improvements. Flight simulator has been developed to study ESVS related technologies and to develop ESVS operational concepts for all weather approach and landing and to provide quantitative and qualitative information that could be used to develop criteria for all-weather approach and landing at regional airports in India. Enhanced Vision System (EVS) hardware prototype with long wave Infrared sensor and low light CMOS camera is used to carry out few field trials on ground vehicle at airport runway at different visibility conditions. Data acquisition and playback system has been developed to capture EVS sensor data (image) in time synch with test vehicle inertial navigation data during EVS field experiments and to playback the experimental data on ESVS flight simulator for ESVS research and concept studies. Efforts are on to conduct EVS flight experiments on CSIR-NAL research aircraft HANSA in Degraded Visual Environment (DVE).
Development of a teaching system for an industrial robot using stereo vision
NASA Astrophysics Data System (ADS)
Ikezawa, Kazuya; Konishi, Yasuo; Ishigaki, Hiroyuki
1997-12-01
The teaching and playback method is mainly a teaching technique for industrial robots. However, this technique takes time and effort in order to teach. In this study, a new teaching algorithm using stereo vision based on human demonstrations in front of two cameras is proposed. In the proposed teaching algorithm, a robot is controlled repetitively according to angles determined by the fuzzy sets theory until it reaches an instructed teaching point, which is relayed through cameras by an operator. The angles are recorded and used later in playback. The major advantage of this algorithm is that no calibrations are needed. This is because the fuzzy sets theory, which is able to express qualitatively the control commands to the robot, is used instead of conventional kinematic equations. Thus, a simple and easy teaching operation is realized with this teaching algorithm. Simulations and experiments have been performed on the proposed teaching system, and data from testing has confirmed the usefulness of our design.
STS-100 Photo-op/Shut-up/Depart O&C/Launch Endeavour On Orbit/Landing/Crew Egress
NASA Technical Reports Server (NTRS)
2001-01-01
This video shows an overview of crew activities from STS-100. The crew of Space Shuttle Shuttle Endeavour includes: Commander Kent Rominger; Pilot Jeffrey Ashby; and Mission Specialists Chris Hadfield, John Phillips, Scott Parazynski, Umberto Guidoni, and Yuri Lonchakov. Sections of the video include: Photo-op; Suit-up; Depart O&C; Ingress; Launch with Playbacks; On-orbit; Landing with Playbacks; Crew Egress & Departure. Voiceover narration introduces the astronauts at their pre-flight meal, and continues during the video, except for the launch and landing sequences. Launch playback views include: NEXT; Beach Tracker; VAB; PAD-A; Tower-1; UCS-15; Grandstand; OTV-60; OTV-70; OTV-71; DOAMS; UCS-10 Tracker; UCS-23 Tracker; On-board Ascent Camera. The On-orbit section of the video shows preparations for an extravehicular activity (EVA) to install Canadarm 2 on the International Space Station (ISS). Preparation for docking with the ISS, and the docking of the orbiter and ISS are shown. The attachment of Canadarm 2 and the Raffaello Logistics Module, a resupply vehicle, are shown. The crew also undertakes some maintenance of the ISS. Landing playback views include: TV-1; TV-2; LRO-1; LRO-2; PPOV.
Photometric Calibration of Consumer Video Cameras
NASA Technical Reports Server (NTRS)
Suggs, Robert; Swift, Wesley, Jr.
2007-01-01
Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.
STS-102 Photo-op/Suit-up/Depart O&C/Launch Discovery On Orbit/Landing/Crew Egress
NASA Technical Reports Server (NTRS)
2001-01-01
The spacecrews of STS-102 and the Expedition 1 and 2 crews of the International Space Station (ISS) are seen in this video, which presents an overview of their activities. The crew consists of Commander Jim Wetherbee, Pilot James Kelly, and Mission Specialists Andrew Thomas, and Paul Richards. The sections of the video include: Photo-op, Suit-up, Depart O&C, Ingress, Launch with Playbacks, On-orbit, Landing with Playbacks, and Crew Egress & Departs. The prelaunch activities are explained by two narrators, and the crew members are assisted in the White Room just before boarding the Space Shuttle Discovery. Isolated views of the shuttle's launch include: VAB, PAD-B, DLTR-3, UCS-23 Tracker, PATRICK IGOR, UCS-10 Tracker, Grandstand, Tower-1, OTV-160, OTV-170, OTV-171, and On-board Camera. The video shows two extravehicular activities (EVAs) to perform work on the ISS, one by astronauts Helms and Voss from Expedition 2, and another by Richards and Thomas. The attachment of the Leonardo Multipurpose Logistics Module, a temporary resupply module, is shown in a series of still images. The on-orbit footage also includes a view of the Nile River, and a crew exhange ceremony between Expedition 1 (Commander Yuri Gidzenko, Flight Engineer Sergei Krikalev) and Expedition 2 (Commander Yury Usachev, Flight Engineers James Voss, Susan Helms). Isolated views of the landing at Kennedy Space Center include: North Runway Camera, VAB, Tower-1, Mid-field, Midfield IR, Tower-2, and UCS-12 IR. The Crew Transfer Vehicle (CTV) for unloading the astronauts is shown, administrators greet the crew upon landing, and Commander Wetherbee gives a briefing.
Playback system designed for X-Band SAR
NASA Astrophysics Data System (ADS)
Yuquan, Liu; Changyong, Dou
2014-03-01
SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.
An information gathering system for medical image inspection
NASA Astrophysics Data System (ADS)
Lee, Young-Jin; Bajcsy, Peter
2005-04-01
We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.
The influence of motion quality on responses towards video playback stimuli.
Ware, Emma; Saunders, Daniel R; Troje, Nikolaus F
2015-05-11
Visual motion, a critical cue in communication, can be manipulated and studied using video playback methods. A primary concern for the video playback researcher is the degree to which objects presented on video appear natural to the non-human subject. Here we argue that the quality of motion cues on video, as determined by the video's image presentation rate (IPR), are of particular importance in determining a subject's social response behaviour. We present an experiment testing the effect of variations in IPR on pigeon (Columbia livia) response behaviour towards video images of courting opposite sex partners. Male and female pigeons were presented with three video playback stimuli, each containing a different social partner. Each stimulus was then modified to appear at one of three IPRs: 15, 30 or 60 progressive (p) frames per second. The results showed that courtship behaviour became significantly longer in duration as IPR increased. This finding implies that the IPR significantly affects the perceived quality of motion cues impacting social behaviour. In males we found that the duration of courtship also depended on the social partner viewed and that this effect interacted with the effects of IPR on behaviour. Specifically, the effect of social partner reached statistical significance only when the stimuli were displayed at 60 p, demonstrating the potential for erroneous results when insufficient IPRs are used. In addition to demonstrating the importance of IPR in video playback experiments, these findings help to highlight and describe the role of visual motion processing in communication behaviour. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Walton, James S.; Hodgson, Peter; Hallamasek, Karen; Palmer, Jake
2003-07-01
4DVideo is creating a general purpose capability for capturing and analyzing kinematic data from video sequences in near real-time. The core element of this capability is a software package designed for the PC platform. The software ("4DCapture") is designed to capture and manipulate customized AVI files that can contain a variety of synchronized data streams -- including audio, video, centroid locations -- and signals acquired from more traditional sources (such as accelerometers and strain gauges.) The code includes simultaneous capture or playback of multiple video streams, and linear editing of the images (together with the ancilliary data embedded in the files). Corresponding landmarks seen from two or more views are matched automatically, and photogrammetric algorithms permit multiple landmarks to be tracked in two- and three-dimensions -- with or without lens calibrations. Trajectory data can be processed within the main application or they can be exported to a spreadsheet where they can be processed or passed along to a more sophisticated, stand-alone, data analysis application. Previous attempts to develop such applications for high-speed imaging have been limited in their scope, or by the complexity of the application itself. 4DVideo has devised a friendly ("FlowStack") user interface that assists the end-user to capture and treat image sequences in a natural progression. 4DCapture employs the AVI 2.0 standard and DirectX technology which effectively eliminates the file size limitations found in older applications. In early tests, 4DVideo has streamed three RS-170 video sources to disk for more than an hour without loss of data. At this time, the software can acquire video sequences in three ways: (1) directly, from up to three hard-wired cameras supplying RS-170 (monochrome) signals; (2) directly, from a single camera or video recorder supplying an NTSC (color) signal; and (3) by importing existing video streams in the AVI 1.0 or AVI 2.0 formats. The latter is particularly useful for high-speed applications where the raw images are often captured and stored by the camera before being downloaded. Provision has been made to synchronize data acquired from any combination of these video sources using audio and visual "tags." Additional "front-ends," designed for digital cameras, are anticipated.
Using video playbacks to study visual communication in a marine fish, Salaria pavo.
Gonçalves; Oliveira; Körner; Poschadel; Schlupp
2000-09-01
Video playbacks have been successfully applied to the study of visual communication in several groups of animals. However, this technique is controversial as video monitors are designed with the human visual system in mind. Differences between the visual capabilities of humans and other animals will lead to perceptually different interpretations of video images. We simultaneously presented males and females of the peacock blenny, Salaria pavo, with a live conspecific male and an online video image of the same individual. Video images failed to elicit appropriate responses. Males were aggressive towards the live male but not towards video images of the same male. Similarly, females courted only the live male and spent more time near this stimulus. In contrast, females of the gynogenetic poecilid Poecilia formosa showed an equal preference for a live and video image of a P. mexicana male, suggesting a response to live animals as strong as to video images. We discuss differences between the species that may explain their opposite reaction to video images. Copyright 2000 The Association for the Study of Animal Behaviour.
Developing a Musical Vocabulary to Communicate, Perceive and Analyze Space Physics Data
NASA Astrophysics Data System (ADS)
Quinn, M. S.
2008-12-01
"Light Runners" is a touring E/PO program that provides unprecedented access to STEREO space mission imagery data to the blind and visually handicapped, as well as sighted populations across the country. The program builds on the successful implementation of the innovative science museum exhibit "Walk on the Sun", developed under NASA Ideas Grant ID05-049. The exhibit uses advanced sonification methods to present image pixel data as highly differentiated music, and visually tracks the explorer's physical movements to select those pixels. Musical feedback is generated in real-time based on selections of subsets of the image by the explorer's hands, arms and body movements. Initial indications suggest people not only enjoy the musical effects produced as they explore the imagery using their body movements, spending an average of 2 minutes on the exhibit, but also use the feedback to analyze and compare subsequent images. Blind students, for example, who spent 1 ½ to 3 hours on the exhibit, have reported being able to scan images of the Sun, find its edges and hot spots and control the playback and rewind of movies of the images as they explore imagery from up to 8 cameras on board each spacecraft. Explorers have access to over a million images, comprising more than a years worth of data from the mission and kept up to date as new images are received. The musical sonification vocabulary for this project is compared to two other space physics sonification projects.
Simulated Birdwatchers’ Playback Affects the Behavior of Two Tropical Birds
Harris, J. Berton C.; Haskell, David G.
2013-01-01
Although recreational birdwatchers may benefit conservation by generating interest in birds, they may also have negative effects. One such potentially negative impact is the widespread use of recorded vocalizations, or “playback,” to attract birds of interest, including range-restricted and threatened species. Although playback has been widely used to test hypotheses about the evolution of behavior, no peer-reviewed study has examined the impacts of playback in a birdwatching context on avian behavior. We studied the effects of simulated birdwatchers’ playback on the vocal behavior of Plain-tailed Wrens Thryothorus euophrys and Rufous Antpittas Grallaria rufula in Ecuador. Study species’ vocal behavior was monitored for an hour after playing either a single bout of five minutes of song or a control treatment of background noise. We also studied the effects of daily five minute playback on five groups of wrens over 20 days. In single bout experiments, antpittas made more vocalizations of all types, except for trills, after playback compared to controls. Wrens sang more duets after playback, but did not produce more contact calls. In repeated playback experiments, wren responses were strong at first, but hardly detectable by day 12. During the study, one study group built a nest, apparently unperturbed, near a playback site. The playback-induced habituation and changes in vocal behavior we observed suggest that scientists should consider birdwatching activity when selecting research sites so that results are not biased by birdwatchers’ playback. Increased vocalizations after playback could be interpreted as a negative effect of playback if birds expend energy, become stressed, or divert time from other activities. In contrast, the habituation we documented suggests that frequent, regular birdwatchers’ playback may have minor effects on wren behavior. PMID:24147094
Simulated birdwatchers' playback affects the behavior of two tropical birds.
Harris, J Berton C; Haskell, David G
2013-01-01
Although recreational birdwatchers may benefit conservation by generating interest in birds, they may also have negative effects. One such potentially negative impact is the widespread use of recorded vocalizations, or "playback," to attract birds of interest, including range-restricted and threatened species. Although playback has been widely used to test hypotheses about the evolution of behavior, no peer-reviewed study has examined the impacts of playback in a birdwatching context on avian behavior. We studied the effects of simulated birdwatchers' playback on the vocal behavior of Plain-tailed Wrens Thryothorus euophrys and Rufous Antpittas Grallaria rufula in Ecuador. Study species' vocal behavior was monitored for an hour after playing either a single bout of five minutes of song or a control treatment of background noise. We also studied the effects of daily five minute playback on five groups of wrens over 20 days. In single bout experiments, antpittas made more vocalizations of all types, except for trills, after playback compared to controls. Wrens sang more duets after playback, but did not produce more contact calls. In repeated playback experiments, wren responses were strong at first, but hardly detectable by day 12. During the study, one study group built a nest, apparently unperturbed, near a playback site. The playback-induced habituation and changes in vocal behavior we observed suggest that scientists should consider birdwatching activity when selecting research sites so that results are not biased by birdwatchers' playback. Increased vocalizations after playback could be interpreted as a negative effect of playback if birds expend energy, become stressed, or divert time from other activities. In contrast, the habituation we documented suggests that frequent, regular birdwatchers' playback may have minor effects on wren behavior.
Spatial Hearing with Incongruent Visual or Auditory Room Cues
Gil-Carvajal, Juan C.; Cubick, Jens; Santurette, Sébastien; Dau, Torsten
2016-01-01
In day-to-day life, humans usually perceive the location of sound sources as outside their heads. This externalized auditory spatial perception can be reproduced through headphones by recreating the sound pressure generated by the source at the listener’s eardrums. This requires the acoustical features of the recording environment and listener’s anatomy to be recorded at the listener’s ear canals. Although the resulting auditory images can be indistinguishable from real-world sources, their externalization may be less robust when the playback and recording environments differ. Here we tested whether a mismatch between playback and recording room reduces perceived distance, azimuthal direction, and compactness of the auditory image, and whether this is mostly due to incongruent auditory cues or to expectations generated from the visual impression of the room. Perceived distance ratings decreased significantly when collected in a more reverberant environment than the recording room, whereas azimuthal direction and compactness remained room independent. Moreover, modifying visual room-related cues had no effect on these three attributes, while incongruent auditory room-related cues between the recording and playback room did affect distance perception. Consequently, the external perception of virtual sounds depends on the degree of congruency between the acoustical features of the environment and the stimuli. PMID:27853290
Darling, James D; Jones, Meagan E; Nicklin, Charles P
2012-11-01
The use of playback experiments to study humpback whale song was assessed. Singers clearly detected playback song while singing and with other singers in the distance. Singers approached or joined song similar to their own from as far as 800 m but did not do so for a different (foreign) song. In one compound trial, on the playback of different song, the singer moved away and continued singing; when the playback was changed to similar song, it stopped singing and joined the playback speaker. Song playback experiments on the breeding grounds are viable and may provide insight into song function.
Tagging and Playback Studies to Toothed Whales
2013-09-30
different deep-diving species, long-finned pilot whales (Globicephala melas ). b) Compare responses of beaked whales vs other odontocetes to playbacks of...deployments Playbacks Globicephala melas 1 0 Med10 Tag deployments Playbacks Globicephala melas 16 0 Ziphius cavirostris Two days of attempts 0 Med11...Tag deployments Playbacks Globicephala melas 19 8 (4 animals, KW + PRN) 3 RESULTS Over the past three years, we have developed a powerful
STS-53 Discovery, OV-103, DOD Hercules digital electronic imagery equipment
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Department of Defense (DOD) mission Hand-held Earth-oriented Real-time Cooperative, User-friendly, Location, targeting, and Environmental System (Hercules) spaceborne experiment equipment is documented in this table top view. HERCULES is a joint NAVY-NASA-ARMY payload designed to provide real-time high resolution digital electronic imagery and geolocation (latitude and longitude determination) of earth surface targets of interest. HERCULES system consists of (from left to right): a specially modified GRID Systems portable computer mounted atop NASA developed Playback-Downlink Unit (PDU) and the Naval Research Laboratory (NRL) developed HERCULES Attitude Processor (HAP); the NASA-developed Electronic Still Camera (ESC) Electronics Box (ESCEB) including removable imagery data storage disks and various connecting cables; the ESC (a NASA modified Nikon F-4 camera) mounted atop the NRL HERCULES Inertial Measurement Unit (HIMU) containing the three
STS-53 Discovery, OV-103, DOD Hercules digital electronic imagery equipment
1992-04-22
STS-53 Discovery, Orbiter Vehicle (OV) 103, Department of Defense (DOD) mission Hand-held Earth-oriented Real-time Cooperative, User-friendly, Location, targeting, and Environmental System (Hercules) spaceborne experiment equipment is documented in this table top view. HERCULES is a joint NAVY-NASA-ARMY payload designed to provide real-time high resolution digital electronic imagery and geolocation (latitude and longitude determination) of earth surface targets of interest. HERCULES system consists of (from left to right): a specially modified GRID Systems portable computer mounted atop NASA developed Playback-Downlink Unit (PDU) and the Naval Research Laboratory (NRL) developed HERCULES Attitude Processor (HAP); the NASA-developed Electronic Still Camera (ESC) Electronics Box (ESCEB) including removable imagery data storage disks and various connecting cables; the ESC (a NASA modified Nikon F-4 camera) mounted atop the NRL HERCULES Inertial Measurement Unit (HIMU) containing the three-axis ring-laser gyro.
Roberts, Louise; Pérez-Domínguez, Rafael; Elliott, Michael
2016-11-15
Free-ranging individual fish were observed using a baited remote underwater video (BRUV) system during sound playback experiments. This paper reports on test trials exploring BRUV design parameters, image analysis and practical experimental designs. Three marine species were exposed to playback noise, provided as examples of behavioural responses to impulsive sound at 163-171dB re 1μPa (peak-to-peak SPL) and continuous sound of 142.7dB re 1μPa (RMS, SPL), exhibiting directional changes and accelerations. The methods described here indicate the efficacy of BRUV to examine behaviour of free-ranging species to noise playback, rather than using confinement. Given the increasing concern about the effects of water-borne noise, for example its inclusion within the EU Marine Strategy Framework Directive, and the lack of empirical evidence in setting thresholds, this paper discusses the use of BRUV, and short term behavioural changes, in supporting population level marine noise management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blades, Brittany; Parks, Susan E.
2018-01-01
During the breeding season, male harbor seals (Phoca vitulina) make underwater acoustic displays using vocalizations known as roars. These roars have been shown to function in territory establishment in some breeding areas and have been hypothesized to be important for female choice, but the function of these sounds remains unresolved. This study consisted of a series of playback experiments in which captive female harbor seals were exposed to recordings of male roars to determine if females respond to recordings of male vocalizations and whether or not they respond differently to roars from categories with different acoustic characteristics. The categories included roars with characteristics of dominant males (longest duration, lowest frequency), subordinate males (shortest duration, highest frequency), combinations of call parameters from dominant and subordinate males (long duration, high frequency and short duration, low frequency), and control playbacks of water noise and water noise with tonal signals in the same frequency range as male signals. Results indicate that overall females have a significantly higher level of response to playbacks that imitate male vocalizations when compared to control playbacks of water noise. Specifically, there was a higher level of response to playbacks representing dominant male vocalization when compared to the control playbacks. For most individuals, there was a greater response to playbacks representing dominant male vocalizations compared to playbacks representing subordinate male vocalizations; however, there was no statistical difference between those two playback types. Additionally, there was no difference between the playbacks of call parameter combinations and the controls. Investigating female preference for male harbor seal vocalizations is a critical step in understanding the harbor seal mating system and further studies expanding on this captive study will help shed light on this important issue. PMID:29607261
Matthews, Leanna P; Blades, Brittany; Parks, Susan E
2018-01-01
During the breeding season, male harbor seals ( Phoca vitulina ) make underwater acoustic displays using vocalizations known as roars. These roars have been shown to function in territory establishment in some breeding areas and have been hypothesized to be important for female choice, but the function of these sounds remains unresolved. This study consisted of a series of playback experiments in which captive female harbor seals were exposed to recordings of male roars to determine if females respond to recordings of male vocalizations and whether or not they respond differently to roars from categories with different acoustic characteristics. The categories included roars with characteristics of dominant males (longest duration, lowest frequency), subordinate males (shortest duration, highest frequency), combinations of call parameters from dominant and subordinate males (long duration, high frequency and short duration, low frequency), and control playbacks of water noise and water noise with tonal signals in the same frequency range as male signals. Results indicate that overall females have a significantly higher level of response to playbacks that imitate male vocalizations when compared to control playbacks of water noise. Specifically, there was a higher level of response to playbacks representing dominant male vocalization when compared to the control playbacks. For most individuals, there was a greater response to playbacks representing dominant male vocalizations compared to playbacks representing subordinate male vocalizations; however, there was no statistical difference between those two playback types. Additionally, there was no difference between the playbacks of call parameter combinations and the controls. Investigating female preference for male harbor seal vocalizations is a critical step in understanding the harbor seal mating system and further studies expanding on this captive study will help shed light on this important issue.
2012-09-30
the playbacks to half the duration of the playbacks used in the Mediterranean , for a playback duration of 7.5 minutes. While we did not collect...Tíscar, S., Verborgh, P., Esteban-Pavo, R., Pérez, S., Minvielle-Sebastia, L. and Guinet, C. (2008b). Diet of the social groups of long-finned pilot
Probabilistic Methods for Image Generation and Encoding.
1993-10-15
video and graphics lab at Georgia Tech, linking together Silicon Graphics workstations, a laser video recorder, a Betacam video recorder, scanner...computer laboratory at Georgia Tech, based on two Silicon Graphics Personal Iris workstations, a SONY laser video recorder, a SONY Betacam SP video...laser disk in component RGB form, with variable speed playback. From the laser recorder the images can be dubbed to the Betacam or the VHS recorder in
Sensory-Motor Networks Involved in Speech Production and Motor Control: An fMRI Study
Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R.; Oya, Hiroyuki; Robin, Donald A.; Howard, Matthew A.; Greenlee, Jeremy D.W.
2015-01-01
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. PMID:25623499
The effectiveness of tape playbacks in estimating Black Rail densities
Legare, M.; Eddleman, W.R.; Buckley, P.A.; Kelly, C.
1999-01-01
Tape playback is often the only efficient technique to survey for secretive birds. We measured the vocal responses and movements of radio-tagged black rails (Laterallus jamaicensis; 26 M, 17 F) to playback of vocalizations at 2 sites in Florida during the breeding seasons of 1992-95. We used coefficients from logistic regression equations to model probability of a response conditional to the birds' sex. nesting status, distance to playback source, and time of survey. With a probability of 0.811, nonnesting male black rails were ))lost likely to respond to playback, while nesting females were the least likely to respond (probability = 0.189). We used linear regression to determine daily, monthly and annual variation in response from weekly playback surveys along a fixed route during the breeding seasons of 1993-95. Significant sources of variation in the regression model were month (F3.48 = 3.89, P = 0.014), year (F2.48 = 9.37, P < 0.001), temperature (F1.48 = 5.44, P = 0.024), and month X year (F5.48 = 2.69, P = 0.031). The model was highly significant (P < 0.001) and explained 54% of the variation of mean response per survey period (r2 = 0.54). We combined response probability data from radiotagged black rails with playback survey route data to provide a density estimate of 0.25 birds/ha for the St. Johns National Wildlife Refuge. The relation between the number of black rails heard during playback surveys to the actual number present was influenced by a number of variables. We recommend caution when making density estimates from tape playback surveys
ERIC Educational Resources Information Center
Bonilha, Heather Shaw; Deliyski, Dimitar D.; Whiteside, Joanna Piasecki; Gerlach, Terri Treman
2012-01-01
Purpose: To examine differences in vocal fold vibratory phase asymmetry judged from stroboscopy, high-speed videoendoscopy (HSV), and the HSV-derived playbacks of mucosal wave kymography, digital kymography, and a static medial digital kymography image of persons with hypofunctional and hyperfunctional voice disorders. Differences between the…
As time passes by: Observed motion-speed and psychological time during video playback.
Nyman, Thomas Jonathan; Karlsson, Eric Per Anders; Antfolk, Jan
2017-01-01
Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production.
As time passes by: Observed motion-speed and psychological time during video playback
Karlsson, Eric Per Anders; Antfolk, Jan
2017-01-01
Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production. PMID:28614353
NASA Astrophysics Data System (ADS)
Moore, C. A.; Gertman, V.; Olsoy, P.; Mitchell, J.; Glenn, N. F.; Joshi, A.; Norpchen, D.; Shrestha, R.; Pernice, M.; Spaete, L.; Grover, S.; Whiting, E.; Lee, R.
2011-12-01
Immersive virtual reality environments such as the IQ-Station or CAVE° (Cave Automated Virtual Environment) offer new and exciting ways to visualize and explore scientific data and are powerful research and educational tools. Combining remote sensing data from a range of sensor platforms in immersive 3D environments can enhance the spectral, textural, spatial, and temporal attributes of the data, which enables scientists to interact and analyze the data in ways never before possible. Visualization and analysis of large remote sensing datasets in immersive environments requires software customization for integrating LiDAR point cloud data with hyperspectral raster imagery, the generation of quantitative tools for multidimensional analysis, and the development of methods to capture 3D visualizations for stereographic playback. This study uses hyperspectral and LiDAR data acquired over the China Hat geologic study area near Soda Springs, Idaho, USA. The data are fused into a 3D image cube for interactive data exploration and several methods of recording and playback are investigated that include: 1) creating and implementing a Virtual Reality User Interface (VRUI) patch configuration file to enable recording and playback of VRUI interactive sessions within the CAVE and 2) using the LiDAR and hyperspectral remote sensing data and GIS data to create an ArcScene 3D animated flyover, where left- and right-eye visuals are captured from two independent monitors for playback in a stereoscopic player. These visualizations can be used as outreach tools to demonstrate how integrated data and geotechnology techniques can help scientists see, explore, and more adequately comprehend scientific phenomena, both real and abstract.
Sensory-motor networks involved in speech production and motor control: an fMRI study.
Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W
2015-04-01
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. Copyright © 2015 Elsevier Inc. All rights reserved.
Stabilized display of coronary x-ray image sequences
NASA Astrophysics Data System (ADS)
Close, Robert A.; Whiting, James S.; Da, Xiaolin; Eigler, Neal L.
2004-05-01
Display stabilization is a technique by which a feature of interest in a cine image sequence is tracked and then shifted to remain approximately stationary on the display device. Prior simulations indicate that display stabilization with high playback rates ( 30 f/s) can significantly improve detectability of low-contrast features in coronary angiograms. Display stabilization may also help to improve the accuracy of intra-coronary device placement. We validated our automated tracking algorithm by comparing the inter-frame difference (jitter) between manual and automated tracking of 150 coronary x-ray image sequences acquired on a digital cardiovascular X-ray imaging system with CsI/a-Si flat panel detector. We find that the median (50%) inter-frame jitter between manual and automatic tracking is 1.41 pixels or less, indicating a jump no further than an adjacent pixel. This small jitter implies that automated tracking and manual tracking should yield similar improvements in the performance of most visual tasks. We hypothesize that cardiologists would perceive a benefit in viewing the stabilized display as an addition to the standard playback of cine recordings. A benefit of display stabilization was identified in 87 of 101 sequences (86%). The most common tasks cited were evaluation of stenosis and determination of stent and balloon positions. We conclude that display stabilization offers perceptible improvements in the performance of visual tasks by cardiologists.
2014-09-30
collect high quality photo-ID images during eight Ziphius encounters and twelve animals were successfully photo-documented: five adult females, three...building a more clear understanding of Ziphius social and acoustic behavior. Recordings of two other species (striped dolphins and sperm whales) were also
Keeping up with the Technologically Savvy Student: Student Perceptions of Audio Books
ERIC Educational Resources Information Center
Gray, H. Joey; Davis, Phillip; Liu, Xiao
2012-01-01
The current generation of college students is so adapted to the digital world that they have been labeled the multi-tasking generation (Foehr, 2006; Wallis, 2006). College students routinely use digital playback devices in their lives for entertainment and communication to the point that students being "plugged in" is a ubiquitous image.…
User interface using a 3D model for video surveillance
NASA Astrophysics Data System (ADS)
Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru
1998-02-01
These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.
King, Stephanie L
2015-07-01
Over the years, playback experiments have helped further our understanding of the wonderful world of animal communication. They have provided fundamental insights into animal behaviour and the function of communicative signals in numerous taxa. As important as these experiments are, however, there is strong evidence to suggest that the information conveyed in a signal may only have value when presented interactively. By their very nature, signalling exchanges are interactive and therefore, an interactive playback design is a powerful tool for examining the function of such exchanges. While researchers working on frog and songbird vocal interactions have long championed interactive playback, it remains surprisingly underused across other taxa. The interactive playback approach is not limited to studies of acoustic signalling, but can be applied to other sensory modalities, including visual, chemical and electrical communication. Here, I discuss interactive playback as a potent yet underused technique in the field of animal behaviour. I present a concise review of studies that have used interactive playback thus far, describe how it can be applied, and discuss its limitations and challenges. My hope is that this review will result in more scientists applying this innovative technique to their own study subjects, as a means of furthering our understanding of the function of signalling interactions in animal communication systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Development and Evaluation of a Feedback Support System with Audio and Playback Strokes
ERIC Educational Resources Information Center
Li, Kai; Akahori, Kanji
2008-01-01
This paper describes the development and evaluation of a handwritten correction support system with audio and playback strokes used to teach Japanese writing. The study examined whether audio and playback strokes have a positive effect on students using honorific expressions in Japanese writing. The results showed that error feedback with audio…
Music behind Scores: Case Study of Learning Improvisation with "Playback Orchestra" Method
ERIC Educational Resources Information Center
Juntunen, P.; Ruokonen, I.; Ruismäki, H.
2015-01-01
For music students in the early stages of learning, the music may seem to be hidden behind the scores. To support home practising, Juntunen has created the "Playback Orchestra" method with which the students can practise with the support of the notation program playback of the full orchestra. The results of testing the method with…
Mariner 9 data storage subsystem flight performance summary
NASA Technical Reports Server (NTRS)
Thomas, N. E.; Larman, B. T.
1973-01-01
The performance is summarized of the Mariner 9 Data Storage Subsystem (DSS) throughout the primary and extended missions. Information presented is limited to reporting of anomalies which occurred during the playback sequences. Tables and figures describe the anomalies (dropouts, missing and added bits, in the imaging data) as a function of time (accumulated tape passes). The data results indicate that the performance of the DSS was satisfactory and within specification throughout the mission. The data presented is taken from the Spacecraft Team Incident/Surprise Anomaly Log recorded during the mission. Pertinent statistics concerning the tape transport performance are given. Also presented is a brief description of DSS operation, particularly that related to the recorded anomalies. This covers the video data encoding and how it is interpreted/decoded by ground data processing and the functional operation of the DSS in abnormal conditions such as loss of lock to the playback signal.
NASA Astrophysics Data System (ADS)
Urias, Adrian R.; Draghic, Nicole; Lui, Janet; Cho, Angie; Curtis, Calvin; Espinosa, Joseluis; Wottawa, Christopher; Wiesmann, William P.; Schwamm, Lee H.
2005-04-01
Stroke remains the third most frequent cause of death in the United States and the leading cause of disability in adults. Long-term effects of ischemic stroke can be mitigated by the opportune administration of Tissue Plasminogen Activator (t-PA); however, the decision regarding the appropriate use of this therapy is dependant on timely, effective neurological assessment by a trained specialist. The lack of available stroke expertise is a key barrier preventing frequent use of t-PA. We report here on the development of a prototype research system capable of performing a semi-automated neurological examination from an offsite location via the Internet and a Computed Tomography (CT) scanner to facilitate the diagnosis and treatment of acute stroke. The Video Stroke Assessment (VSA) System consists of a video camera, a camera mounting frame, and a computer with software and algorithms to collect, interpret, and store patient neurological responses to stimuli. The video camera is mounted on a mobility track in front of the patient; camera direction and zoom are remotely controlled on a graphical user interface (GUI) by the specialist. The VSA System also performs a partially-autonomous examination based on the NIH Stroke Scale (NIHSS). Various response data indicative of stroke are recorded, analyzed and transmitted in real time to the specialist. The VSA provides unbiased, quantitative results for most categories of the NIHSS along with video and audio playback to assist in accurate diagnosis. The system archives the complete exam and results.
Monitoring Boreal Forest Owls in Ontario using tape playback surveys with volunteers
Charles M. Francis; Michael S. W. Bradstreet
1997-01-01
Long Point Bird Observatory ran pilot surveys in 1995 and 1996 to monitor boreal forest owls in Ontario using roadside surveys with tape playback of calls. A minimum of 791 owls on 84 routes in 1995, and 392 owls on 88 routes in 1996; nine different species were detected. Playback improved the response rate for Barred (Strix varia), Boreal (...
ERIC Educational Resources Information Center
Jordaan, Odia; Coetzee, Marié-Heleen
2017-01-01
This article explores the ways in which playback theatre was used to interrogate the views of adolescents on their social context(s) and establish what the personal and dominant discourses operating in their views were. Playback theatre, with its focus on reframing personal stories to generate new perspectives on these stories, was an appropriate…
Rapid jamming avoidance in biosonar.
Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F
2007-03-07
The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming ('jamming avoidance response'; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with 'playback stimuli' consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, 'jumping' over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch-suggesting that rapid jamming avoidance is important for the bat.
2015-09-30
and vessel was an excellent achievement. Photo-ID - It was possible to collect high quality photo-ID images during eight Ziphius encounters and...Recordings of two other species (striped dolphins and sperm whales) were also made during the cruise. DTAG effort – The tag boat was launched on
Multimedia consultation session recording and playback using Java-based browser in global PACS
NASA Astrophysics Data System (ADS)
Martinez, Ralph; Shah, Pinkesh J.; Yu, Yuan-Pin
1998-07-01
The current version of the Global PACS software system uses a Java-based implementation of the Remote Consultation and Diagnosis (RCD) system. The Java RCD includes a multimedia consultation session between physicians that includes text, static image, image annotation, and audio data. The JAVA RCD allows 2-4 physicians to collaborate on a patient case. It allows physicians to join the session via WWW Java-enabled browsers or stand alone RCD application. The RCD system includes a distributed database archive system for archiving and retrieving patient and session data. The RCD system can be used for store and forward scenarios, case reviews, and interactive RCD multimedia sessions. The RCD system operates over the Internet, telephone lines, or in a private Intranet. A multimedia consultation session can be recorded, and then played back at a later time for review, comments, and education. A session can be played back using Java-enabled WWW browsers on any operating system platform. The JAVA RCD system shows that a case diagnosis can be captured digitally and played back with the original real-time temporal relationships between data streams. In this paper, we describe design and implementation of the RCD session playback.
Motorboat noise impacts parental behaviour and offspring survival in a reef fish.
Nedelec, Sophie L; Radford, Andrew N; Pearl, Leanne; Nedelec, Brendan; McCormick, Mark I; Meekan, Mark G; Simpson, Stephen D
2017-06-14
Anthropogenic noise is a pollutant of international concern, with mounting evidence of disturbance and impacts on animal behaviour and physiology. However, empirical studies measuring survival consequences are rare. We use a field experiment to investigate how repeated motorboat-noise playback affects parental behaviour and offspring survival in the spiny chromis ( Acanthochromis polyacanthus ), a brooding coral reef fish. Repeated observations were made for 12 days at 38 natural nests with broods of young. Exposure to motorboat-noise playback compared to ambient-sound playback increased defensive acts, and reduced both feeding and offspring interactions by brood-guarding males. Anthropogenic noise did not affect the growth of developing offspring, but reduced the likelihood of offspring survival; while offspring survived at all 19 nests exposed to ambient-sound playback, six of the 19 nests exposed to motorboat-noise playback suffered complete brood mortality. Our study, providing field-based experimental evidence of the consequences of anthropogenic noise, suggests potential fitness consequences of this global pollutant. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Coleman, Seth W.
2008-10-01
Distinct acoustic whistles are associated with the wing-beats of many doves, and are especially noticeable when doves ascend from the ground when startled. I thus hypothesized that these sounds may be used by flock-mates as cues of potential danger. To test this hypothesis, I compared the responses of mourning doves ( Zenaida macroura), northern cardinals ( Cardinalis cardinalis), and house sparrows ( Passer domesticus) to audio playbacks of dove ‘startle wing-whistles’, cardinal alarm calls, dove ‘nonstartle wing-whistles’, and sparrow ‘social chatter’. Following playbacks of startle wing-whistles and alarm calls, conspecifics and heterospecifics startled and increased vigilance more than after playbacks of other sounds. Also, the latency to return to feeding was greater following playbacks of startle wing-whistles and alarm calls than following playbacks of other sounds. These results suggest that both conspecifics and heterospecifics may attend to dove wing-whistles in decisions related to antipredator behaviors. Whether the sounds of dove wing-whistles are intentionally produced signals warrants further testing.
Boscolo, Danilo; Metzger, Jean Paul; Vielliard, Jacques M E
2006-12-01
Playback of bird songs is a useful technique for species detection; however, this method is usually not standardized. We tested playback efficiency for five Atlantic Forest birds (White-browed Warbler Basileuterus leucoblepharus, Giant Antshrike Batara cinerea, Swallow-tailed Manakin Chiroxiphia caudata, Whiteshouldered Fire-eye Pyriglena leucoptera and Surucua Trogon Trogon surrucura) for different time of the day, season of the year and species abundance at the Morro Grande Forest Reserve (South-eastern Brazil) and at thirteen forest fragments in a nearby landscape. Vocalizations were broadcasted monthly at sunrise, noon and sunset, during one year. For B. leucoblepharus, C. caudata and T. surrucura, sunrise and noon were more efficient than sunset. Batara cinerea presented higher efficiency from July to October. Playback expanded the favourable period for avifaunal surveys in tropical forest, usually restricted to early morning in the breeding season. The playback was efficient in detecting the presence of all species when the abundance was not too low. But only B. leucoblepharus and T. surrucura showed abundance values significantly related to this efficiency. The present study provided a precise indication of the best daily and seasonal periods and a confidence interval to maximize the efficiency of playback to detect the occurrence of these forest species.
Callback response of dugongs to conspecific chirp playbacks.
Ichikawa, Kotaro; Akamatsu, Tomonari; Shinke, Tomio; Adulyanukosol, Kanjana; Arai, Nobuaki
2011-06-01
Dugongs (Dugong dugon) produce bird-like calls such as chirps and trills. The vocal responses of dugongs to playbacks of several acoustic stimuli were investigated. Animals were exposed to four different playback stimuli: a recorded chirp from a wild dugong, a synthesized down-sweep sound, a synthesized constant-frequency sound, and silence. Wild dugongs vocalized more frequently after playback of broadcast chirps than that after constant-frequency sounds or silence. The down-sweep sound also elicited more vocal responses than did silence. No significant difference was found between the broadcast chirps and the down-sweep sound. The ratio of wild dugong chirps to all calls and the dominant frequencies of the wild dugong calls were significantly higher during playbacks of broadcast chirps, down-sweep sounds, and constant-frequency sounds than during those of silence. The source level and duration of dugong chirps increased significantly as signaling distance increased. No significant correlation was found between signaling distance and the source level of trills. These results show that dugongs vocalize to playbacks of frequency-modulated signals and suggest that the source level of dugong chirps may be manipulated to compensate for transmission loss between the source and receiver. This study provides the first behavioral observations revealing the function of dugong chirps. © 2011 Acoustical Society of America
Lendvai, Ádám Z; Akçay, Çağlar; Weiss, Talia; Haussmann, Mark F; Moore, Ignacio T; Bonier, Frances
2015-01-01
Playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events, such as performing a specific behavior, or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system and to test one of its possible applications, we tagged female and male tree swallows (Tachycineta bicolor) from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time focal females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. In addition, the set-up does not require programming knowledge, and it easily customized to many other applications, depending on the research questions. Here, we discuss the possible applications and limitations of the system. The low cost and the small learning curve of the RFID-Raspberry Pi system provides a powerful new tool to field biologists.
Akçay, Çağlar; Weiss, Talia; Haussmann, Mark F.; Moore, Ignacio T.; Bonier, Frances
2015-01-01
Playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events, such as performing a specific behavior, or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system and to test one of its possible applications, we tagged female and male tree swallows (Tachycineta bicolor) from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time focal females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. In addition, the set-up does not require programming knowledge, and it easily customized to many other applications, depending on the research questions. Here, we discuss the possible applications and limitations of the system. The low cost and the small learning curve of the RFID-Raspberry Pi system provides a powerful new tool to field biologists. PMID:25870771
Playback Station #2 for Cal Net and 5-day-recorder tapes
Eaton, Jerry P.
1978-01-01
A second system (Playback Station #2) has been set up to play back Cal Net 1" tapes and 5-day-recorder 1/2" tapes. As with the first playback system (Playback Station #1) the tapes are played back on a Bell and Howell VR3700B tape deck and the records are written out on a 16-channel direct-writing Siemens "0scillomink." Separate reproduce heads, tape guides, and tape tension sensor rollers are required for playing back 111 tapes and 1/2" tapes, but changing these tape deck components is a simple task that requires only a few minutes. The discriminators, patch panels, selector switches, filters, time code translators, and signal conditioning circuits for the time code translators and for the tape-speed-compensation signal are all mounted in an equipment rack that stands beside the playback tape deck. Changing playback speeds (15/16 ips or 3 3/4 ips) or changing from Cal Net tapes to 5-day-recorder tapes requires only flipping a few switches and/or changing a few patch cables on the patch panel (in addition to changing the reproduce heads, etc., to change from 1" tape to 1/2" tape). For the Cal Net tapes, the system provides for playback of 9 data channels (680 Hz thru 3060 Hz plus 400 Hz) and 3 time signals (IRIG-E, IRIG-C, and WWVB) at both 15/16 ips (x1 speed) and 3 3/4 ips (x4 speed). Available modes of compensation (using either a 4688 Hz reference or a 3125 Hz reference) are subtractive, capstan, capstan plus subtractive, or no compensation.
Aldinger, Kyle R.; Wood, Petra B.
2015-01-01
Detection probability during point counts and its associated variables are important considerations for bird population monitoring and have implications for conservation planning by influencing population estimates. During 2008–2009, we evaluated variables hypothesized to be associated with detection probability, detection latency, and behavioral responses of male Golden-winged Warblers in pastures in the Monongahela National Forest, West Virginia, USA. This is the first study of male Golden-winged Warbler detection probability, detection latency, or behavioral response based on point-count sampling with known territory locations and identities for all males. During 3-min passive point counts, detection probability decreased as distance to a male's territory and time since sunrise increased. During 3-min point counts with playback, detection probability decreased as distance to a male's territory increased, but remained constant as time since sunrise increased. Detection probability was greater when point counts included type 2 compared with type 1 song playback, particularly during the first 2 min of type 2 song playback. Golden-winged Warblers primarily use type 1 songs (often zee bee bee bee with a higher-pitched first note) in intersexual contexts and type 2 songs (strident, rapid stutter ending with a lower-pitched buzzy note) in intrasexual contexts. Distance to a male's territory, ordinal date, and song playback type were associated with the type of behavioral response to song playback. Overall, ~2 min of type 2 song playback may increase the efficacy of point counts for monitoring populations of Golden-winged Warblers by increasing the conspicuousness of males for visual identification and offsetting the consequences of surveying later in the morning. Because playback may interfere with the ability to detect distant males, it is important to follow playback with a period of passive listening. Our results indicate that even in relatively open pasture vegetation, detection probability of male Golden-winged Warblers is imperfect and highly variable.
3D Encoding of Musical Score Information and the Playback Method Used by the Cellular Phone
NASA Astrophysics Data System (ADS)
Kubo, Hitoshi; Sugiura, Akihiko
Recently, 3G cellular phone that can take a movie has spread by improving the digital camera function. And, 2Dcode has accurate readout and high operability. And it has spread as an information transmission means. However, the symbol is expanded and complicated when information of 2D codes increases. To solve these, 3D code was proposed. But it need the special equipment for readout, and specializes in the enhancing reality feeling technology. Therefore, it is difficult to apply it to the cellular phone. And so, we propose 3D code that can be recognized by the movie shooting function of the cellular phone. And, score information was encoded. We apply Gray Code to the property of music, and encode it. And the effectiveness was verified.
Lytro camera technology: theory, algorithms, performance analysis
NASA Astrophysics Data System (ADS)
Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio
2013-03-01
The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.
Image quality prediction - An aid to the Viking lander imaging investigation on Mars
NASA Technical Reports Server (NTRS)
Huck, F. O.; Wall, S. D.
1976-01-01
Image quality criteria and image quality predictions are formulated for the multispectral panoramic cameras carried by the Viking Mars landers. Image quality predictions are based on expected camera performance, Mars surface radiance, and lighting and viewing geometry (fields of view, Mars lander shadows, solar day-night alternation), and are needed in diagnosis of camera performance, in arriving at a preflight imaging strategy, and revision of that strategy should the need arise. Landing considerations, camera control instructions, camera control logic, aspects of the imaging process (spectral response, spatial response, sensitivity), and likely problems are discussed. Major concerns include: degradation of camera response by isotope radiation, uncertainties in lighting and viewing geometry and in landing site local topography, contamination of camera window by dust abrasion, and initial errors in assigning camera dynamic ranges (gains and offsets).
Vocalization behavior and response of black rails
Legare, M.L.; Eddleman, W.R.; Buckley, P.A.; Kelly, C.
1999-01-01
We measured the vocal responses and movements of radio-tagged black rails (Laterallus jamaicensis) (n = 43, 26 males, 17 females) to playback of vocalizations at 2 sites in Florida during the breeding seasons of 1992-95. We used regression coefficients from logistic regression equations to model the probability of a response conditional to the birds' sex, nesting status, distance to playback source, and the time of survey. With a probability of 0.811, non-nesting male black rails were most likely to respond to playback, while nesting females were the least likely to respond (probability = 0.189). Linear regression was used to determine daily, monthly, and annual variation in response from weekly playback surveys along a fixed route during the breeding seasons of 1993-95. Significant sources of variation in the linear regression model were month (F = 3.89, df = 3, p = 0.0140), year (F = 9.37, df = 2, p = 0.0003), temperature (F = 5.44, df=1, p = 0.0236), and month*year (F = 2.69, df = 5, p = 0.0311). The model was highly significant (p < 0.0001) and explained 53% of the variation of mean response per survey period (R2 = 0.5353). Response probability data obtained from the radio-tagged black rails and data from the weekly playback survey route were combined to provide a density estimate of 0.25 birds/ha for the St. Johns National Wildlife Refuge. Density estimates for black rails may be obtained from playback surveys, and fixed radius circular plots. Circular plots should be considered as having a radius of 80 m and be located so the plot centers are 150 m apart. Playback tapes should contain one series of Kic-kic-kerr and Growl vocalizations recorded within the same geographic region as the study area. Surveys should be conducted from 0-2 hours after sunrise or 0-2 hours before sunset, during the pre-nesting season, and when wind velocity is < 20 kph. Observers should listen for 3-4 minutes after playing the survey tape and record responses heard during that time. Observers should be trained to identify black rail vocalizations and should have acceptable hearing ability. Given the number of variables that may have large effects on the response behavior of black rails to tape playback, we recommend that future studies using playback surveys should be cautious when presenting estimates of 'absolute' density. Though results did account for variation in response behavior, we believe that additional variation in vocal response between sites, with breeding status, and bird density remains in question. Playback surveys along fixed routes providing a simple index of abundance would be useful to monitor populations over large geographic areas, and over time. Considering the limitations of most agency resources for webless waterbirds, index surveys may be more appropriate. Future telemetry studies of this type on other species and at other sites would be useful to calibrate information obtained from playback surveys whether reporting an index of abundance or density estimate.
EAARL coastal topography--Alligator Point, Louisiana, 2010
Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan; Barras, J.A.
2012-01-01
This project provides highly detailed and accurate datasets of a portion of Alligator Point, Louisiana, acquired on March 5 and 6, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.
Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography
NASA Astrophysics Data System (ADS)
Sasaki, Hisayuki; Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori
2014-02-01
In electronic holography, various methods have been considered for using multiple spatial light modulators (SLM) to increase the image size. In a previous work, we used a monochrome light source for a method that located an optical system containing lens arrays and other components in front of multiple SLMs. This paper proposes a colourization technique for that system based on time division multiplexing using laser light sources of three colours (red, green, and blue). The experimental device we constructed was able to perform video playback (20 fps) in colour of full parallax holographic three-dimensional (3D) images with an image size of 63 mm and a viewing-zone angle of 5.6 degrees without losing any part of the 3D image.
A 24-hour remote surveillance system for terrestrial wildlife studies
Sykes, P.W.; Ryman, W.E.; Kepler, C.B.; Hardy, J.W.
1995-01-01
The configuration, components, specifications and costs of a state-of-the-art closed-circuit television system with wide application for wildlife research and management are described. The principal system components consist of color CCTV camera with zoom lens, pan/tilt system, infrared illuminator, heavy duty tripod, coaxial cable, coaxitron system, half-duplex equalizing video/control amplifier, timelapse video cassette recorder, color video monitor, VHS video cassettes, portable generator, fuel tank and power cable. This system was developed and used in a study of Mississippi sandhiIl Crane (Grus canadensis pratensis) behaviors during incubation, hatching and fledging. The main advantages of the system are minimal downtime where a complete record of every event, its time of occurrence and duration, are permanently recorded and can be replayed as many times as necessary thereafter to retrieve the data. The system is particularly applicable for studies of behavior and predation, for counting individuals, or recording difficult to observe activities. The system can be run continuously for several weeks by two people, reducing personnel costs. This paper is intended to provide biologists who have litte knowledge of electronics with a system that might be useful to their specific needs. The disadvantages of this system are the initial costs (about $9800 basic, 1990-1991 U.S. dollars) and the time required to playback video cassette tapes for data retrieval, but the playback can be sped up when litte or no activity of interest is taking place. In our study, the positive aspects of the system far outweighed the negative.
Lion, ungulate, and visitor reactions to playbacks of lion roars at Zoo Atlanta.
Kelling, Angela S; Allard, Stephanie M; Kelling, Nicholas J; Sandhaus, Estelle A; Maple, Terry L
2012-01-01
Felids in captivity are often inactive and elusive in zoos, leading to a frustrating visitor experience. Eight roars were recorded from an adult male lion and played back over speakers as auditory enrichment to benefit the lions while simultaneously enhancing the zoo visitor experience. In addition, ungulates in an adjacent exhibit were observed to ensure that the novel location and increased frequency of roars did not lead to a stress or fear response. The male lion in this study roared more in the playback phase than in the baseline phases while not increasing any behaviors that would indicate compromised welfare. In addition, zoo visitors remained at the lion exhibit longer during playback. The nearby ungulates never exhibited any reactions stronger than orienting to playbacks, identical to their reactions to live roars. Therefore, naturalistic playbacks of lion roars are a potential form of auditory enrichment that leads to more instances of live lion roars and enhances the visitor experience without increasing the stress levels of nearby ungulates or the lion themselves, who might interpret the roar as that of an intruder.
Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry
NASA Technical Reports Server (NTRS)
Morris, Daniel Dale (Inventor); Chang, Hong (Inventor); Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Graf, Jodi Seaborn (Inventor)
2016-01-01
A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.
Application of Sensor Fusion to Improve Uav Image Classification
NASA Astrophysics Data System (ADS)
Jabari, S.; Fathollahi, F.; Zhang, Y.
2017-08-01
Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.
Forensic Analysis of the Sony Playstation Portable
NASA Astrophysics Data System (ADS)
Conrad, Scott; Rodriguez, Carlos; Marberry, Chris; Craiger, Philip
The Sony PlayStation Portable (PSP) is a popular portable gaming device with features such as wireless Internet access and image, music and movie playback. As with most systems built around a processor and storage, the PSP can be used for purposes other than it was originally intended - legal as well as illegal. This paper discusses the features of the PSP browser and suggests best practices for extracting digital evidence.
A Virtual Environment System for the Comparison of Dome and HMD Systems
NASA Technical Reports Server (NTRS)
Chen, Jian; Harm, Deboran L.; Loftin, R. Bowen; Lin, Ching-yao; Leiss, Ernst L.
2002-01-01
For effective astronaut training applications, choosing the right display devices to present images is crucial. In order to assess what devices are appropriate, it is important to design a successful virtual environment for a comparison study of the display devices. We present a comprehensive system for the comparison of Dome and head-mounted display (HMD) systems. In particular, we address interactions techniques and playback environments.
2013-09-30
cavirostris) to MFA sonar signals. Secondary goals included conducting a killer whale playback that has not been preceded by a sonar playback (as in Tyack...et al. 2011) and collecting more baseline data on Ziphius. OBJECTIVES This investigation set out to safely test responses of Ziphius to sonar ...signals and to determine the exposure level required to elicit a response in a site where strandings have been associated with sonar exercises and
2012-09-30
cavirostris) to MFA sonar signals. A secondary goal of conducting a killer whale playback that has not been preceded by a sonar playback (as in Tyack et al...2011) was also planned. OBJECTIVES This investigation set out to safely test responses of Ziphius to sonar signals and to determine the...exposure level required to elicit a response in a site where strandings have been associated with sonar exercises and where the whales seldom hear sonar
Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E
1997-12-30
Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.
Image Sensors Enhance Camera Technologies
NASA Technical Reports Server (NTRS)
2010-01-01
In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.
A comparison of select image-compression algorithms for an electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.
Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals.
Herbert-Read, James E; Kremer, Louise; Bruintjes, Rick; Radford, Andrew N; Ioannou, Christos C
2017-09-27
Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass ( Dicentrarchus labrax ) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of a group's collective behaviour. © 2017 The Authors.
Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals
Kremer, Louise; Bruintjes, Rick
2017-01-01
Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass (Dicentrarchus labrax) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of a group's collective behaviour. PMID:28954915
Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras
NASA Astrophysics Data System (ADS)
Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro
2018-03-01
Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.
Megapixel mythology and photospace: estimating photospace for camera phones from large image sets
NASA Astrophysics Data System (ADS)
Hultgren, Bror O.; Hertel, Dirk W.
2008-01-01
It is a myth that more pixels alone result in better images. The marketing of camera phones in particular has focused on their pixel numbers. However, their performance varies considerably according to the conditions of image capture. Camera phones are often used in low-light situations where the lack of a flash and limited exposure time will produce underexposed, noisy and blurred images. Camera utilization can be quantitatively described by photospace distributions, a statistical description of the frequency of pictures taken at varying light levels and camera-subject distances. If the photospace distribution is known, the user-experienced distribution of quality can be determined either directly by direct measurement of subjective quality, or by photospace-weighting of objective attributes. The population of a photospace distribution requires examining large numbers of images taken under typical camera phone usage conditions. ImagePhi was developed as a user-friendly software tool to interactively estimate the primary photospace variables, subject illumination and subject distance, from individual images. Additionally, subjective evaluations of image quality and failure modes for low quality images can be entered into ImagePhi. ImagePhi has been applied to sets of images taken by typical users with a selection of popular camera phones varying in resolution. The estimated photospace distribution of camera phone usage has been correlated with the distributions of failure modes. The subjective and objective data show that photospace conditions have a much bigger impact on image quality of a camera phone than the pixel count of its imager. The 'megapixel myth' is thus seen to be less a myth than an ill framed conditional assertion, whose conditions are to a large extent specified by the camera's operational state in photospace.
Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng
2017-06-20
The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.
Methods for identification of images acquired with digital cameras
NASA Astrophysics Data System (ADS)
Geradts, Zeno J.; Bijhold, Jurrien; Kieft, Martijn; Kurosawa, Kenji; Kuroki, Kenro; Saitoh, Naoki
2001-02-01
From the court we were asked whether it is possible to determine if an image has been made with a specific digital camera. This question has to be answered in child pornography cases, where evidence is needed that a certain picture has been made with a specific camera. We have looked into different methods of examining the cameras to determine if a specific image has been made with a camera: defects in CCDs, file formats that are used, noise introduced by the pixel arrays and watermarking in images used by the camera manufacturer.
Assessing the role of conspecific attraction in habitat restoration for Henslow's sparrows in Iowa
Vogel, Jennifer A.; Koford, Rolf R.; Otis, David L.
2011-01-01
The presence of conspecific individuals may provide important cues about habitat quality for territorial songbirds. We tested the ability of a conspecific song playback system to attract Henslow’s sparrows to previously unoccupied restored habitat. We successfully attracted Heslow’s sparrows to 3 of 7 treatment plots using conspecific song playbacks and we found no Henslow’s sparrows in control plots. The addition of social cues using playback systems in restored grassland habitats may aid conservation efforts of Henslow’s sparrows to available habitat.
Automatic calibration method for plenoptic camera
NASA Astrophysics Data System (ADS)
Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao
2016-04-01
An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.
Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted
2012-12-01
We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.
Digital camera with apparatus for authentication of images produced from an image file
NASA Technical Reports Server (NTRS)
Friedman, Gary L. (Inventor)
1993-01-01
A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.
Plenoptic camera image simulation for reconstruction algorithm verification
NASA Astrophysics Data System (ADS)
Schwiegerling, Jim
2014-09-01
Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. Two distinct camera forms have been proposed in the literature. The first has the camera image focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The second plenoptic form has the lenslet array relaying the image formed by the camera lens to the sensor. We have developed a raytracing package that can simulate images formed by a generalized version of the plenoptic camera. Several rays from each sensor pixel are traced backwards through the system to define a cone of rays emanating from the entrance pupil of the camera lens. Objects that lie within this cone are integrated to lead to a color and exposure level for that pixel. To speed processing three-dimensional objects are approximated as a series of planes at different depths. Repeating this process for each pixel in the sensor leads to a simulated plenoptic image on which different reconstruction algorithms can be tested.
Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio
2014-11-01
We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.
An evolution of image source camera attribution approaches.
Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul
2016-05-01
Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics researchers, are also critically analysed and further categorised into four different classes, namely, optical aberrations based, sensor camera fingerprints based, processing statistics based and processing regularities based, to present a classification. Furthermore, this paper aims to investigate the challenging problems, and the proposed strategies of such schemes based on the suggested taxonomy to plot an evolution of the source camera attribution approaches with respect to the subjective optimisation criteria over the last decade. The optimisation criteria were determined based on the strategies proposed to increase the detection accuracy, robustness and computational efficiency of source camera brand, model or device attribution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)
1991-01-01
A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.
Composite video and graphics display for camera viewing systems in robotics and teleoperation
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)
1993-01-01
A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.
Design of the first optical system for real-time tomographic holography (RTTH)
NASA Astrophysics Data System (ADS)
Galeotti, John M.; Siegel, Mel; Rallison, Richard D.; Stetten, George
2008-08-01
The design of the first Real-Time-Tomographic-Holography (RTTH) optical system for augmented-reality applications is presented. RTTH places a viewpoint-independent real-time (RT) virtual image (VI) of an object into its actual location, enabling natural hand-eye coordination to guide invasive procedures, without requiring tracking or a head-mounted device. The VI is viewed through a narrow-band Holographic Optical Element (HOE) with built-in power that generates the largest possible near-field, in-situ VI from a small display chip without noticeable parallax error or obscuring direct view of the physical world. Rigidly fixed upon a medical-ultrasound probe, RTTH could show the scan in its actual location inside the patient, because the VI would move with the probe. We designed the image source along with the system-optics, allowing us to ignore both planer geometric distortions and field curvature, respectively compensated by using RT pre-processing software and attaching a custom-surfaced fiber-optic-faceplate (FOFP) to our image source. Focus in our fast, non-axial system was achieved by placing correcting lenses near the FOFP and custom-optically-fabricating our volume-phase HOE using a recording beam that was specially shaped by extra lenses. By simultaneously simulating and optimizing the system's playback performance across variations in both the total playback and HOE-recording optical systems, we derived and built a design that projects a 104x112 mm planar VI 1 m from the HOE using a laser-illuminated 19x16 mm LCD+FOFP image-source. The VI appeared fixed in space and well focused. Viewpoint-induced location errors were <3 mm, and unexpected first-order astigmatism produced 3 cm (3% of 1 m) ambiguity in depth, typically unnoticed by human observers.
Digital Camera with Apparatus for Authentication of Images Produced from an Image File
NASA Technical Reports Server (NTRS)
Friedman, Gary L. (Inventor)
1996-01-01
A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.
Image Alignment for Multiple Camera High Dynamic Range Microscopy.
Eastwood, Brian S; Childs, Elisabeth C
2012-01-09
This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.
Image Alignment for Multiple Camera High Dynamic Range Microscopy
Eastwood, Brian S.; Childs, Elisabeth C.
2012-01-01
This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028
Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera
NASA Astrophysics Data System (ADS)
Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.
2016-04-01
The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.
Applying and extending ISO/TC42 digital camera resolution standards to mobile imaging products
NASA Astrophysics Data System (ADS)
Williams, Don; Burns, Peter D.
2007-01-01
There are no fundamental differences between today's mobile telephone cameras and consumer digital still cameras that suggest many existing ISO imaging performance standards do not apply. To the extent that they have lenses, color filter arrays, detectors, apertures, image processing, and are hand held, there really are no operational or architectural differences. Despite this, there are currently differences in the levels of imaging performance. These are driven by physical and economic constraints, and image-capture conditions. Several ISO standards for resolution, well established for digital consumer digital cameras, require care when applied to the current generation of cell phone cameras. In particular, accommodation of optical flare, shading non-uniformity and distortion are recommended. We offer proposals for the application of existing ISO imaging resolution performance standards to mobile imaging products, and suggestions for extending performance standards to the characteristic behavior of camera phones.
NV-CMOS HD camera for day/night imaging
NASA Astrophysics Data System (ADS)
Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.
2014-06-01
SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.
NASA Astrophysics Data System (ADS)
Holt, Marla M.; Insley, Stephen J.; Southall, Brandon L.; Schusterman, Ronald J.
2005-09-01
While attempting to gain access to receptive females, male northern elephant seals form dominance hierarchies through multiple dyadic interactions involving visual and acoustic signals. These signals are both highly stereotyped and directional. Previous behavioral observations suggested that males attend to the directional cues of these signals. We used in situ vocal playbacks to test whether males attend to directional cues of the acoustic components of a competitors calls (i.e., variation in call spectra and source levels). Here, we will focus on playback methodology. Playback calls were multiple exemplars of a marked dominant male from an isolated area, recorded with a directional microphone and DAT recorder and edited into a natural sequence that controlled call amplitude. Control calls were recordings of ambient rookery sounds with the male calls removed. Subjects were 20 marked males (10 adults and 10 subadults) all located at An~o Nuevo, CA. Playback presentations, calibrated for sound-pressure level, were broadcast at a distance of 7 m from each subject. Most responses were classified into the following categories: visual orientation, postural change, calling, movement toward or away from the loudspeaker, and re-directed aggression. We also investigated developmental, hierarchical, and ambient noise variables that were thought to influence male behavior.
Toward an image compression algorithm for the high-resolution electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
Taking pictures with a camera that uses a digital recording medium instead of film has the advantage of recording and transmitting images without the use of a darkroom or a courier. However, high-resolution images contain an enormous amount of information and strain data-storage systems. Image compression will allow multiple images to be stored in the High-Resolution Electronic Still Camera. The camera is under development at Johnson Space Center. Fidelity of the reproduced image and compression speed are of tantamount importance. Lossless compression algorithms are fast and faithfully reproduce the image, but their compression ratios will be unacceptably low due to noise in the front end of the camera. Future efforts will include exploring methods that will reduce the noise in the image and increase the compression ratio.
Object recognition through turbulence with a modified plenoptic camera
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Ko, Jonathan; Davis, Christopher
2015-03-01
Atmospheric turbulence adds accumulated distortion to images obtained by cameras and surveillance systems. When the turbulence grows stronger or when the object is further away from the observer, increasing the recording device resolution helps little to improve the quality of the image. Many sophisticated methods to correct the distorted images have been invented, such as using a known feature on or near the target object to perform a deconvolution process, or use of adaptive optics. However, most of the methods depend heavily on the object's location, and optical ray propagation through the turbulence is not directly considered. Alternatively, selecting a lucky image over many frames provides a feasible solution, but at the cost of time. In our work, we propose an innovative approach to improving image quality through turbulence by making use of a modified plenoptic camera. This type of camera adds a micro-lens array to a traditional high-resolution camera to form a semi-camera array that records duplicate copies of the object as well as "superimposed" turbulence at slightly different angles. By performing several steps of image reconstruction, turbulence effects will be suppressed to reveal more details of the object independently (without finding references near the object). Meanwhile, the redundant information obtained by the plenoptic camera raises the possibility of performing lucky image algorithmic analysis with fewer frames, which is more efficient. In our work, the details of our modified plenoptic cameras and image processing algorithms will be introduced. The proposed method can be applied to coherently illuminated object as well as incoherently illuminated objects. Our result shows that the turbulence effect can be effectively suppressed by the plenoptic camera in the hardware layer and a reconstructed "lucky image" can help the viewer identify the object even when a "lucky image" by ordinary cameras is not achievable.
Automatic source camera identification using the intrinsic lens radial distortion
NASA Astrophysics Data System (ADS)
Choi, Kai San; Lam, Edmund Y.; Wong, Kenneth K. Y.
2006-11-01
Source camera identification refers to the task of matching digital images with the cameras that are responsible for producing these images. This is an important task in image forensics, which in turn is a critical procedure in law enforcement. Unfortunately, few digital cameras are equipped with the capability of producing watermarks for this purpose. In this paper, we demonstrate that it is possible to achieve a high rate of accuracy in the identification by noting the intrinsic lens radial distortion of each camera. To reduce manufacturing cost, the majority of digital cameras are equipped with lenses having rather spherical surfaces, whose inherent radial distortions serve as unique fingerprints in the images. We extract, for each image, parameters from aberration measurements, which are then used to train and test a support vector machine classifier. We conduct extensive experiments to evaluate the success rate of a source camera identification with five cameras. The results show that this is a viable approach with high accuracy. Additionally, we also present results on how the error rates may change with images captured using various optical zoom levels, as zooming is commonly available in digital cameras.
Measuring Positions of Objects using Two or More Cameras
NASA Technical Reports Server (NTRS)
Klinko, Steve; Lane, John; Nelson, Christopher
2008-01-01
An improved method of computing positions of objects from digitized images acquired by two or more cameras (see figure) has been developed for use in tracking debris shed by a spacecraft during and shortly after launch. The method is also readily adaptable to such applications as (1) tracking moving and possibly interacting objects in other settings in order to determine causes of accidents and (2) measuring positions of stationary objects, as in surveying. Images acquired by cameras fixed to the ground and/or cameras mounted on tracking telescopes can be used in this method. In this method, processing of image data starts with creation of detailed computer- aided design (CAD) models of the objects to be tracked. By rotating, translating, resizing, and overlaying the models with digitized camera images, parameters that characterize the position and orientation of the camera can be determined. The final position error depends on how well the centroids of the objects in the images are measured; how accurately the centroids are interpolated for synchronization of cameras; and how effectively matches are made to determine rotation, scaling, and translation parameters. The method involves use of the perspective camera model (also denoted the point camera model), which is one of several mathematical models developed over the years to represent the relationships between external coordinates of objects and the coordinates of the objects as they appear on the image plane in a camera. The method also involves extensive use of the affine camera model, in which the distance from the camera to an object (or to a small feature on an object) is assumed to be much greater than the size of the object (or feature), resulting in a truly two-dimensional image. The affine camera model does not require advance knowledge of the positions and orientations of the cameras. This is because ultimately, positions and orientations of the cameras and of all objects are computed in a coordinate system attached to one object as defined in its CAD model.
Earth elevation map production and high resolution sensing camera imaging analysis
NASA Astrophysics Data System (ADS)
Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai
2010-11-01
The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.
NASA Astrophysics Data System (ADS)
Sampat, Nitin; Grim, John F.; O'Hara, James E.
1998-04-01
The digital camera market is growing at an explosive rate. At the same time, the quality of photographs printed on ink- jet printers continues to improve. Most of the consumer cameras are designed with the monitor as the target output device and ont the printer. When a user is printing his images from a camera, he/she needs to optimize the camera and printer combination in order to maximize image quality. We describe the details of one such method for improving image quality using a AGFA digital camera and an ink jet printer combination. Using Adobe PhotoShop, we generated optimum red, green and blue transfer curves that match the scene content to the printers output capabilities. Application of these curves to the original digital image resulted in a print with more shadow detail, no loss of highlight detail, a smoother tone scale, and more saturated colors. The image also exhibited an improved tonal scale and visually more pleasing images than those captured and printed without any 'correction'. While we report the results for one camera-printer combination we tested this technique on numbers digital cameras and printer combinations and in each case produced a better looking image. We also discuss the problems we encountered in implementing this technique.
Subjective video quality evaluation of different content types under different impairments
NASA Astrophysics Data System (ADS)
Pozueco, Laura; Álvarez, Alberto; García, Xabiel; García, Roberto; Melendi, David; Díaz, Gabriel
2017-01-01
Nowadays, access to multimedia content is one of the most demanded services on the Internet. However, the transmission of audio and video over these networks is not free of problems that negatively affect user experience. Factors such as low image quality, cuts during playback or losses of audio or video, among others, can occur and there is no clear idea about the level of distortion introduced in the perceived quality. For that reason, different impairments should be evaluated based on user opinions, with the aim of analyzing the impact in the perceived quality. In this work, we carried out a subjective evaluation of different types of impairments with different types of contents, including news, cartoons, sports and action movies. A total of 100 individuals, between the ages of 20 and 68, participated in the subjective study. Results show that short-term rebuffering events negatively affect the quality of experience and that desynchronization between audio and video is the least annoying impairment. Moreover, we found that the content type determines the subjective results according to the impairment present during the playback.
Design considerations for computationally constrained two-way real-time video communication
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar M.; Saunders, Steven E.; Ralston, John D.
2009-08-01
Today's video codecs have evolved primarily to meet the requirements of the motion picture and broadcast industries, where high-complexity studio encoding can be utilized to create highly-compressed master copies that are then broadcast one-way for playback using less-expensive, lower-complexity consumer devices for decoding and playback. Related standards activities have largely ignored the computational complexity and bandwidth constraints of wireless or Internet based real-time video communications using devices such as cell phones or webcams. Telecommunications industry efforts to develop and standardize video codecs for applications such as video telephony and video conferencing have not yielded image size, quality, and frame-rate performance that match today's consumer expectations and market requirements for Internet and mobile video services. This paper reviews the constraints and the corresponding video codec requirements imposed by real-time, 2-way mobile video applications. Several promising elements of a new mobile video codec architecture are identified, and more comprehensive computational complexity metrics and video quality metrics are proposed in order to support the design, testing, and standardization of these new mobile video codecs.
Sounds scary? Lack of habituation following the presentation of novel sounds.
Biedenweg, Tine A; Parsons, Michael H; Fleming, Patricia A; Blumstein, Daniel T
2011-01-18
Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. We investigated responses by western grey kangaroos (Macropus fulignosus) towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides) calls) and artificial sounds (faux snake hiss and bull whip crack). We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area) accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area) accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively) discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%). Additionally, 24% of individuals took flight and moved out of area (50 m radius) in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%). Increasing rate of presentation (12x/min ×2 min) caused 71% of animals to move out of the area. The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that 'more is not always better'. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced.
Event-Driven Random-Access-Windowing CCD Imaging System
NASA Technical Reports Server (NTRS)
Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William
2004-01-01
A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).
You are here: Earth as seen from Mars
2004-03-11
This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. The inset shows a combination of four panoramic camera images zoomed in on Earth. The arrow points to Earth. Earth was too faint to be detected in images taken with the panoramic camera's color filters. http://photojournal.jpl.nasa.gov/catalog/PIA05547
The sequence measurement system of the IR camera
NASA Astrophysics Data System (ADS)
Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo
2011-08-01
Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.
NASA Technical Reports Server (NTRS)
2000-01-01
[figure removed for brevity, see original site]
The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) orbits the red planet twelve times each day. The number of pictures that MOC can take varies from orbit to orbit, depending upon whether the data are being stored in MGS's onboard tape recorder for playback at a later time, or whether the data are being sent directly back to Earth via a real-time radio link. More data can be acquired during orbits with real-time downlink.During real-time orbits, the MOC team often will take a few random or semi-random pictures in between the carefully-selected, hand-targeted images. On rare occasions, one of these random pictures will surprise the MOC team. The picture shown here is an excellent example, because the high resolution view (top) is centered so nicely on a trough and an adjacent, shallow crater that it is as if someone very carefully selected the target for MOC. The high-resolution view covers an area only 1.1 km (0.7 mi) wide by 2.3 km (1.4 mi) long. Hitting a target such as this with such a small image is very difficult to do, on purpose, because there are small uncertainties in the predicted orbit, the maps used to select targets, and the minor adjustments of spacecraft pointing at any given moment. Nevertheless, a very impressive image was received.The high resolution view crosses one of the troughs of the Sirenum Fossae near 31.2oS, 152.3oW. The context image (above) was acquired at the same time as the high resolution view on July 23, 2000. The small white box shows the location of the high resolution picture. The lines running diagonally across the context image from upper right toward lower left are the Sirenum Fossae troughs, formed by faults that are radial to the volcanic region of Tharsis. Both pictures are illuminated from the upper left. The scene shows part of the martian southern hemisphere nearly autumn.Narrative Power: Playback Theatre as Cultural Resistance in Occupied Palestine
ERIC Educational Resources Information Center
Rivers, Ben
2015-01-01
This paper describes The Freedom Theatre's Freedom Bus initiative and its use of Playback Theatre for community mobilisation and cultural activism within Occupied Palestine. Utilising a conflict transformation perspective, conventional dialogue-oriented initiatives are contrasted against interventions that pursue concientisation and alliance…
Mars Descent Imager for Curiosity
2010-07-19
A pocketknife provides scale for this image of the Mars Descent Imager camera; the camera will fly on the Curiosity rover of NASA Mars Science Laboratory mission. Malin Space Science Systems, San Diego, Calif., supplied the camera for the mission.
New generation of meteorology cameras
NASA Astrophysics Data System (ADS)
Janout, Petr; Blažek, Martin; Páta, Petr
2017-12-01
A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.
Real-time dual-band haptic music player for mobile devices.
Hwang, Inwook; Lee, Hyeseon; Choi, Seungmoon
2013-01-01
We introduce a novel dual-band haptic music player for real-time simultaneous vibrotactile playback with music in mobile devices. Our haptic music player features a new miniature dual-mode actuator that can produce vibrations consisting of two principal frequencies and a real-time vibration generation algorithm that can extract vibration commands from a music file for dual-band playback (bass and treble). The algorithm uses a "haptic equalizer" and provides plausible sound-to-touch modality conversion based on human perceptual data. In addition, we present a user study carried out to evaluate the subjective performance (precision, harmony, fun, and preference) of the haptic music player, in comparison with the current practice of bass-band-only vibrotactile playback via a single-frequency voice-coil actuator. The evaluation results indicated that the new dual-band playback outperforms the bass-only rendering, also providing several insights for further improvements. The developed system and experimental findings have implications for improving the multimedia experience with mobile devices.
NASA Astrophysics Data System (ADS)
Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.
2014-07-01
Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.
A review of video security training and assessment-systems and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cellucci, J.; Hall, R.J.
1991-01-01
This paper reports that during the last 10 years computer-aided video data collection and playback systems have been used as nuclear facility security training and assessment tools with varying degrees of success. These mobile systems have been used by trained security personnel for response force training, vulnerability assessment, force-on-force exercises and crisis management. Typically, synchronous recordings from multiple video cameras, communications audio, and digital sensor inputs; are played back to the exercise participants and then edited for training and briefing. Factors that have influence user acceptance include: frequency of use, the demands placed on security personnel, fear of punishment, usermore » training requirements and equipment cost. The introduction of S-VHS video and new software for scenario planning, video editing and data reduction; should bring about a wider range of security applications and supply the opportunity for significant cost sharing with other user groups.« less
Phenology cameras observing boreal ecosystems of Finland
NASA Astrophysics Data System (ADS)
Peltoniemi, Mikko; Böttcher, Kristin; Aurela, Mika; Kolari, Pasi; Tanis, Cemal Melih; Linkosalmi, Maiju; Loehr, John; Metsämäki, Sari; Nadir Arslan, Ali
2016-04-01
Cameras have become useful tools for monitoring seasonality of ecosystems. Low-cost cameras facilitate validation of other measurements and allow extracting some key ecological features and moments from image time series. We installed a network of phenology cameras at selected ecosystem research sites in Finland. Cameras were installed above, on the level, or/and below the canopies. Current network hosts cameras taking time lapse images in coniferous and deciduous forests as well as at open wetlands offering thus possibilities to monitor various phenological and time-associated events and elements. In this poster, we present our camera network and give examples of image series use for research. We will show results about the stability of camera derived color signals, and based on that discuss about the applicability of cameras in monitoring time-dependent phenomena. We will also present results from comparisons between camera-derived color signal time series and daily satellite-derived time series (NVDI, NDWI, and fractional snow cover) from the Moderate Resolution Imaging Spectrometer (MODIS) at selected spruce and pine forests and in a wetland. We will discuss the applicability of cameras in supporting phenological observations derived from satellites, by considering the possibility of cameras to monitor both above and below canopy phenology and snow.
Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications
NASA Technical Reports Server (NTRS)
Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1997-01-01
A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
Conspecific attraction in a grassland bird, the Baird's Sparrow
Ahlering, M.A.; Johnson, D.H.; Faaborg, John
2006-01-01
Territorial songbirds generally use song to defend territories and attract mates, but conspecific song may also serve as a cue to attract other male songbirds to a breeding site. Although known to occur in some colonial and forest-associated species, only recently have investigators examined conspecific attraction in grassland species. We used a playback experiment to examine the possible role of conspecific attraction for males searching for potentially suitable breeding habitat in a grassland specialist, the Baird's Sparrow (Ammodramus bairdii). Experimental playback plots and control plots with similar landscape and vegetation characteristics were established at two sites in North Dakota. Baird's Sparrows colonized three of six experimental plots and none of six control plots. Males on experimental plots established territories adjacent to the playback stations and were sometimes observed counter-singing with the playback of conspecific songs. Vegetation characteristics were similar on all study plots, and did not explain differences in bird density on our treatment plots. Although we found that playback of conspecific songs attracted male Baird's Sparrows to previously unoccupied, potentially suitable habitat, further experiments are needed to examine the importance of conspecific attraction relative to other cues that birds may use, such as vegetation features. The conservation and management implications of conspecific attraction are not completely understood, but the presence of conspecifics should be considered as a potential cue in habitat selection by all species of birds.
Geometric rectification of camera-captured document images.
Liang, Jian; DeMenthon, Daniel; Doermann, David
2008-04-01
Compared to typical scanners, handheld cameras offer convenient, flexible, portable, and non-contact image capture, which enables many new applications and breathes new life into existing ones. However, camera-captured documents may suffer from distortions caused by non-planar document shape and perspective projection, which lead to failure of current OCR technologies. We present a geometric rectification framework for restoring the frontal-flat view of a document from a single camera-captured image. Our approach estimates 3D document shape from texture flow information obtained directly from the image without requiring additional 3D/metric data or prior camera calibration. Our framework provides a unified solution for both planar and curved documents and can be applied in many, especially mobile, camera-based document analysis applications. Experiments show that our method produces results that are significantly more OCR compatible than the original images.
SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "
NASA Astrophysics Data System (ADS)
Morison, Ian
2017-02-01
1. Imaging star trails; 2. Imaging a constellation with a DSLR and tripod; 3. Imaging the Milky Way with a DSLR and tracking mount; 4. Imaging the Moon with a compact camera or smartphone; 5. Imaging the Moon with a DSLR; 6. Imaging the Pleiades Cluster with a DSLR and small refractor; 7. Imaging the Orion Nebula, M42, with a modified Canon DSLR; 8. Telescopes and their accessories for use in astroimaging; 9. Towards stellar excellence; 10. Cooling a DSLR camera to reduce sensor noise; 11. Imaging the North American and Pelican Nebulae; 12. Combating light pollution - the bane of astrophotographers; 13. Imaging planets with an astronomical video camera or Canon DSLR; 14. Video imaging the Moon with a webcam or DSLR; 15. Imaging the Sun in white light; 16. Imaging the Sun in the light of its H-alpha emission; 17. Imaging meteors; 18. Imaging comets; 19. Using a cooled 'one shot colour' camera; 20. Using a cooled monochrome CCD camera; 21. LRGB colour imaging; 22. Narrow band colour imaging; Appendix A. Telescopes for imaging; Appendix B. Telescope mounts; Appendix C. The effects of the atmosphere; Appendix D. Auto guiding; Appendix E. Image calibration; Appendix F. Practical aspects of astroimaging.
Comparison and evaluation of datasets for off-angle iris recognition
NASA Astrophysics Data System (ADS)
Kurtuncu, Osman M.; Cerme, Gamze N.; Karakaya, Mahmut
2016-05-01
In this paper, we investigated the publicly available iris recognition datasets and their data capture procedures in order to determine if they are suitable for the stand-off iris recognition research. Majority of the iris recognition datasets include only frontal iris images. Even if a few datasets include off-angle iris images, the frontal and off-angle iris images are not captured at the same time. The comparison of the frontal and off-angle iris images shows not only differences in the gaze angle but also change in pupil dilation and accommodation as well. In order to isolate the effect of the gaze angle from other challenging issues including dilation and accommodation, the frontal and off-angle iris images are supposed to be captured at the same time by using two different cameras. Therefore, we developed an iris image acquisition platform by using two cameras in this work where one camera captures frontal iris image and the other one captures iris images from off-angle. Based on the comparison of Hamming distance between frontal and off-angle iris images captured with the two-camera- setup and one-camera-setup, we observed that Hamming distance in two-camera-setup is less than one-camera-setup ranging from 0.05 to 0.001. These results show that in order to have accurate results in the off-angle iris recognition research, two-camera-setup is necessary in order to distinguish the challenging issues from each other.
Sub-Camera Calibration of a Penta-Camera
NASA Astrophysics Data System (ADS)
Jacobsen, K.; Gerke, M.
2016-03-01
Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding cameras of both blocks have the same trend, but as usual for block adjustments with self calibration, they still show significant differences. Based on the very high number of image points the remaining image residuals can be safely determined by overlaying and averaging the image residuals corresponding to their image coordinates. The size of the systematic image errors, not covered by the used additional parameters, is in the range of a square mean of 0.1 pixels corresponding to 0.6μm. They are not the same for both blocks, but show some similarities for corresponding cameras. In general the bundle block adjustment with a satisfying set of additional parameters, checked by remaining systematic errors, is required for use of the whole geometric potential of the penta camera. Especially for object points on facades, often only in two images and taken with a limited base length, the correct handling of systematic image errors is important. At least in the analyzed data sets the self calibration of sub-cameras by bundle block adjustment suffers from the correlation of the inner to the exterior calibration due to missing crossing flight directions. As usual, the systematic image errors differ from block to block even without the influence of the correlation to the exterior orientation.
Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera
NASA Astrophysics Data System (ADS)
He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning
2017-12-01
This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.
New opportunities for quality enhancing of images captured by passive THz camera
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2014-10-01
As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.
How Many Pixels Does It Take to Make a Good 4"×6" Print? Pixel Count Wars Revisited
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
Digital still cameras emerged following the introduction of the Sony Mavica analog prototype camera in 1981. These early cameras produced poor image quality and did not challenge film cameras for overall quality. By 1995 digital still cameras in expensive SLR formats had 6 mega-pixels and produced high quality images (with significant image processing). In 2005 significant improvement in image quality was apparent and lower prices for digital still cameras (DSCs) started a rapid decline in film usage and film camera sells. By 2010 film usage was mostly limited to professionals and the motion picture industry. The rise of DSCs was marked by a “pixel war” where the driving feature of the cameras was the pixel count where even moderate cost, ˜120, DSCs would have 14 mega-pixels. The improvement of CMOS technology pushed this trend of lower prices and higher pixel counts. Only the single lens reflex cameras had large sensors and large pixels. The drive for smaller pixels hurt the quality aspects of the final image (sharpness, noise, speed, and exposure latitude). Only today are camera manufactures starting to reverse their course and producing DSCs with larger sensors and pixels. This paper will explore why larger pixels and sensors are key to the future of DSCs.
Light field rendering with omni-directional camera
NASA Astrophysics Data System (ADS)
Todoroki, Hiroshi; Saito, Hideo
2003-06-01
This paper presents an approach to capture visual appearance of a real environment such as an interior of a room. We propose the method for generating arbitrary viewpoint images by building light field with the omni-directional camera, which can capture the wide circumferences. Omni-directional camera used in this technique is a special camera with the hyperbolic mirror in the upper part of a camera, so that we can capture luminosity in the environment in the range of 360 degree of circumferences in one image. We apply the light field method, which is one technique of Image-Based-Rendering(IBR), for generating the arbitrary viewpoint images. The light field is a kind of the database that records the luminosity information in the object space. We employ the omni-directional camera for constructing the light field, so that we can collect many view direction images in the light field. Thus our method allows the user to explore the wide scene, that can acheive realistic representation of virtual enviroment. For demonstating the proposed method, we capture image sequence in our lab's interior environment with an omni-directional camera, and succesfully generate arbitray viewpoint images for virual tour of the environment.
A telephoto camera system with shooting direction control by gaze detection
NASA Astrophysics Data System (ADS)
Teraya, Daiki; Hachisu, Takumi; Yendo, Tomohiro
2015-05-01
For safe driving, it is important for driver to check traffic conditions such as traffic lights, or traffic signs as early as soon. If on-vehicle camera takes image of important objects to understand traffic conditions from long distance and shows these to driver, driver can understand traffic conditions earlier. To take image of long distance objects clearly, the focal length of camera must be long. When the focal length is long, on-vehicle camera doesn't have enough field of view to check traffic conditions. Therefore, in order to get necessary images from long distance, camera must have long-focal length and controllability of shooting direction. In previous study, driver indicates shooting direction on displayed image taken by a wide-angle camera, a direction controllable camera takes telescopic image, and displays these to driver. However, driver uses a touch panel to indicate the shooting direction in previous study. It is cause of disturb driving. So, we propose a telephoto camera system for driving support whose shooting direction is controlled by driver's gaze to avoid disturbing drive. This proposed system is composed of a gaze detector and an active telephoto camera whose shooting direction is controlled. We adopt non-wear detecting method to avoid hindrance to drive. The gaze detector measures driver's gaze by image processing. The shooting direction of the active telephoto camera is controlled by galvanometer scanners and the direction can be switched within a few milliseconds. We confirmed that the proposed system takes images of gazing straight ahead of subject by experiments.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
NASA Astrophysics Data System (ADS)
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery. PMID:28943703
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Collaborative Control of Media Playbacks in SCDNs
ERIC Educational Resources Information Center
Fortino, Giancarlo; Russo, Wilma; Palau, Carlos E.
2006-01-01
In this paper we present a CDN-based system, namely the COMODIN system, which is a media on-demand platform for synchronous cooperative work which supports an explicitly-formed cooperative group of distributed users with the following integrated functionalities: request of an archived multimedia session, sharing of its playback, and collaboration…
Effect of Videotape Playback and Teacher Comment on Anxiety During Subsequent Task Performance.
ERIC Educational Resources Information Center
Breen, Myles P.; Diehl, Roderick
Feedback by teacher comment, by television playback, and by self-analysis, singly, or together, reduced anxiety in subsequent performance as measured by nonfluencies in speech. Nonfluencies were counted in eight categories: the sounds, "ah,""um," or "uh;" correction; sentence incompletion; repetition; stutter; intruding incoherent sound; tongue…
EAARL Coastal Topography - Northeast Barrier Islands 2007: Bare Earth
Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography - Natchez Trace Parkway 2007: First Surface
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Natchez Trace Parkway in Mississippi, acquired on September 14, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography - Vicksburg National Military Park 2008: Bare Earth
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on March 6, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface
Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography-Vicksburg National Military Park 2007: First Surface
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.
2011-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography - Sandy Hook 2007
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Gateway National Recreation Area's Sandy Hook Unit in New Jersey, acquired on May 16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
Depth estimation and camera calibration of a focused plenoptic camera for visual odometry
NASA Astrophysics Data System (ADS)
Zeller, Niclas; Quint, Franz; Stilla, Uwe
2016-08-01
This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.
High-Resolution Mars Camera Test Image of Moon Infrared
2005-09-13
This crescent view of Earth Moon in infrared wavelengths comes from a camera test by NASA Mars Reconnaissance Orbiter spacecraft on its way to Mars. This image was taken by taken by the High Resolution Imaging Science Experiment camera Sept. 8, 2005.
2016-06-25
The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was
Heterogeneous Vision Data Fusion for Independently Moving Cameras
2010-03-01
target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY
Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface
NASA Technical Reports Server (NTRS)
Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken
2005-01-01
This slide presentation details the Mars Exploration Rover (MER) imaging system. Over 144,000 images have been gathered from all Mars Missions, with 83.5% of them being gathered by MER. Each Rover has 9 cameras (Navcam, front and rear Hazcam, Pancam, Microscopic Image, Descent Camera, Engineering Camera, Science Camera) and produces 1024 x 1024 (1 Megapixel) images in the same format. All onboard image processing code is implemented in flight software and includes extensive processing capabilities such as autoexposure, flat field correction, image orientation, thumbnail generation, subframing, and image compression. Ground image processing is done at the Jet Propulsion Laboratory's Multimission Image Processing Laboratory using Video Image Communication and Retrieval (VICAR) while stereo processing (left/right pairs) is provided for raw image, radiometric correction; solar energy maps,triangulation (Cartesian 3-spaces) and slope maps.
Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M
2006-02-01
Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2017-08-01
Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.
Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira
2013-01-01
Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.
NASA Astrophysics Data System (ADS)
Bechis, K.; Pitruzzello, A.
2014-09-01
This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera operation is that the target must be within the near-field (Fraunhofer distance) of the collecting optics. For example, in visible light the near-field of a 1-m telescope extends out to about 3,500 km, while the near-field of the AEOS telescope extends out over 46,000 km. For our initial proof of concept, we have integrated our light field camera with a 14-inch Meade LX600 advanced coma-free telescope, to image various surrogate ground targets at up to tens of kilometers range. Our experiments with the 14-inch telescope have assessed factors and requirements that are traceable and scalable to a larger-aperture system that would have the near-field distance needed to obtain 3D images of LEO objects. The next step would be to integrate a light field camera with a 1-m or larger telescope and evaluate its 3D imaging capability against LEO objects. 3D imaging of LEO space objects with light field camera technology can potentially provide a valuable new tool for space situational awareness, especially for those situations where laser or radar illumination of the target objects is not feasible.
An image compression algorithm for a high-resolution digital still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
The Electronic Still Camera (ESC) project will provide for the capture and transmission of high-quality images without the use of film. The image quality will be superior to video and will approach the quality of 35mm film. The camera, which will have the same general shape and handling as a 35mm camera, will be able to send images to earth in near real-time. Images will be stored in computer memory (RAM) in removable cartridges readable by a computer. To save storage space, the image will be compressed and reconstructed at the time of viewing. Both lossless and loss-y image compression algorithms are studied, described, and compared.
NASA Astrophysics Data System (ADS)
Hanel, A.; Stilla, U.
2017-05-01
Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.
The effect of microchannel plate gain depression on PAPA photon counting cameras
NASA Astrophysics Data System (ADS)
Sams, Bruce J., III
1991-03-01
PAPA (precision analog photon address) cameras are photon counting imagers which employ microchannel plates (MCPs) for image intensification. They have been used extensively in astronomical speckle imaging. The PAPA camera can produce artifacts when light incident on its MCP is highly concentrated. The effect is exacerbated by adjusting the strobe detection level too low, so that the camera accepts very small MCP pulses. The artifacts can occur even at low total count rates if the image has highly a concentrated bright spot. This paper describes how to optimize PAPA camera electronics, and describes six techniques which can avoid or minimize addressing errors.
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
Space-variant restoration of images degraded by camera motion blur.
Sorel, Michal; Flusser, Jan
2008-02-01
We examine the problem of restoration from multiple images degraded by camera motion blur. We consider scenes with significant depth variations resulting in space-variant blur. The proposed algorithm can be applied if the camera moves along an arbitrary curve parallel to the image plane, without any rotations. The knowledge of camera trajectory and camera parameters is not necessary. At the input, the user selects a region where depth variations are negligible. The algorithm belongs to the group of variational methods that estimate simultaneously a sharp image and a depth map, based on the minimization of a cost functional. To initialize the minimization, it uses an auxiliary window-based depth estimation algorithm. Feasibility of the algorithm is demonstrated by three experiments with real images.
Method used to test the imaging consistency of binocular camera's left-right optical system
NASA Astrophysics Data System (ADS)
Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui
2016-09-01
To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.
From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth
2015-08-05
This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).
Imaging of breast cancer with mid- and long-wave infrared camera.
Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R
2008-01-01
In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory.
The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.
The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.
NASA Astrophysics Data System (ADS)
Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Linkosalmi, Maiju; Melih Tanis, Cemal; Tuovinen, Juha-Pekka; Nadir Arslan, Ali
2018-01-01
In recent years, monitoring of the status of ecosystems using low-cost web (IP) or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/). Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862). Additionally, we present an example of a colour index time series derived from images from two contrasting sites.
The imaging system design of three-line LMCCD mapping camera
NASA Astrophysics Data System (ADS)
Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da
2011-08-01
In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.
Desai, Nandini J.; Gupta, B. D.; Patel, Pratik Narendrabhai
2014-01-01
Introduction: Obtaining images of slides viewed by a microscope can be invaluable for both diagnosis and teaching.They can be transferred among technologically-advanced hospitals for further consultation and evaluation. But a standard microscopic photography camera unit (MPCU)(MIPS-Microscopic Image projection System) is costly and not available in resource poor settings. The aim of our endeavour was to find a comparable and cheaper alternative method for photomicrography. Materials and Methods: We used a NIKON Coolpix S6150 camera (box type digital camera) with Olympus CH20i microscope and a fluorescent microscope for the purpose of this study. Results: We got comparable results for capturing images of light microscopy, but the results were not as satisfactory for fluorescent microscopy. Conclusion: A box type digital camera is a comparable, less expensive and convenient alternative to microscopic photography camera unit. PMID:25478350
Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System
NASA Astrophysics Data System (ADS)
Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki
In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.
Li, Jin; Liu, Zilong
2017-07-24
Remote sensing cameras in the visible/near infrared range are essential tools in Earth-observation, deep-space exploration, and celestial navigation. Their imaging performance, i.e. image quality here, directly determines the target-observation performance of a spacecraft, and even the successful completion of a space mission. Unfortunately, the camera itself, such as a optical system, a image sensor, and a electronic system, limits the on-orbit imaging performance. Here, we demonstrate an on-orbit high-resolution imaging method based on the invariable modulation transfer function (IMTF) of cameras. The IMTF, which is stable and invariable to the changing of ground targets, atmosphere, and environment on orbit or on the ground, depending on the camera itself, is extracted using a pixel optical focal-plane (PFP). The PFP produces multiple spatial frequency targets, which are used to calculate the IMTF at different frequencies. The resulting IMTF in combination with a constrained least-squares filter compensates for the IMTF, which represents the removal of the imaging effects limited by the camera itself. This method is experimentally confirmed. Experiments on an on-orbit panchromatic camera indicate that the proposed method increases 6.5 times of the average gradient, 3.3 times of the edge intensity, and 1.56 times of the MTF value compared to the case when IMTF is not used. This opens a door to push the limitation of a camera itself, enabling high-resolution on-orbit optical imaging.
Rapid assessment of forest canopy and light regime using smartphone hemispherical photography.
Bianchi, Simone; Cahalan, Christine; Hale, Sophie; Gibbons, James Michael
2017-12-01
Hemispherical photography (HP), implemented with cameras equipped with "fisheye" lenses, is a widely used method for describing forest canopies and light regimes. A promising technological advance is the availability of low-cost fisheye lenses for smartphone cameras. However, smartphone camera sensors cannot record a full hemisphere. We investigate whether smartphone HP is a cheaper and faster but still adequate operational alternative to traditional cameras for describing forest canopies and light regimes. We collected hemispherical pictures with both smartphone and traditional cameras in 223 forest sample points, across different overstory species and canopy densities. The smartphone image acquisition followed a faster and simpler protocol than that for the traditional camera. We automatically thresholded all images. We processed the traditional camera images for Canopy Openness (CO) and Site Factor estimation. For smartphone images, we took two pictures with different orientations per point and used two processing protocols: (i) we estimated and averaged total canopy gap from the two single pictures, and (ii) merging the two pictures together, we formed images closer to full hemispheres and estimated from them CO and Site Factors. We compared the same parameters obtained from different cameras and estimated generalized linear mixed models (GLMMs) between them. Total canopy gap estimated from the first processing protocol for smartphone pictures was on average significantly higher than CO estimated from traditional camera images, although with a consistent bias. Canopy Openness and Site Factors estimated from merged smartphone pictures of the second processing protocol were on average significantly higher than those from traditional cameras images, although with relatively little absolute differences and scatter. Smartphone HP is an acceptable alternative to HP using traditional cameras, providing similar results with a faster and cheaper methodology. Smartphone outputs can be directly used as they are for ecological studies, or converted with specific models for a better comparison to traditional cameras.
Video auto stitching in multicamera surveillance system
NASA Astrophysics Data System (ADS)
He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang
2012-01-01
This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.
Video auto stitching in multicamera surveillance system
NASA Astrophysics Data System (ADS)
He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang
2011-12-01
This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.
NASA Astrophysics Data System (ADS)
Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo
2015-04-01
Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image quality.
Engineering design criteria for an image intensifier/image converter camera
NASA Technical Reports Server (NTRS)
Sharpsteen, J. T.; Lund, D. L.; Stoap, L. J.; Solheim, C. D.
1976-01-01
The design, display, and evaluation of an image intensifier/image converter camera which can be utilized in various requirements of spaceshuttle experiments are described. An image intensifier tube was utilized in combination with two brassboards as power supply and used for evaluation of night photography in the field. Pictures were obtained showing field details which would have been undistinguishable to the naked eye or to an ordinary camera.
Ultra-fast framing camera tube
Kalibjian, Ralph
1981-01-01
An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.
Immersive video for virtual tourism
NASA Astrophysics Data System (ADS)
Hernandez, Luis A.; Taibo, Javier; Seoane, Antonio J.
2001-11-01
This paper describes a new panoramic, 360 degree(s) video system and its use in a real application for virtual tourism. The development of this system has required to design new hardware for multi-camera recording, and software for video processing in order to elaborate the panorama frames and to playback the resulting high resolution video footage on a regular PC. The system makes use of new VR display hardware, such as WindowVR, in order to make the view dependent on the viewer's spatial orientation and so enhance immersiveness. There are very few examples of similar technologies and the existing ones are extremely expensive and/or impossible to be implemented on personal computers with acceptable quality. The idea of the system starts from the concept of Panorama picture, developed in technologies such as QuickTimeVR. This idea is extended to the concept of panorama frame that leads to panorama video. However, many problems are to be solved to implement this simple scheme. Data acquisition involves simultaneously footage recording in every direction, and latter processing to convert every set of frames in a single high resolution panorama frame. Since there is no common hardware capable of 4096x512 video playback at 25 fps rate, it must be stripped in smaller pieces which the system must manage to get the right frames of the right parts as the user movement demands it. As the system must be immersive, the physical interface to watch the 360 degree(s) video is a WindowVR, that is, a flat screen with an orientation tracker that the user holds in his hands, moving it like if it were a virtual window through which the city and its activity is being shown.
a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.
2017-08-01
Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.
Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan
2018-06-13
To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.
Alternative Models of Service, Centralized Machine Operations. Phase II Report. Volume II.
ERIC Educational Resources Information Center
Technology Management Corp., Alexandria, VA.
A study was conducted to determine if the centralization of playback machine operations for the national free library program would be feasible, economical, and desirable. An alternative model of playback machine services was constructed and compared with existing network operations considering both cost and service. The alternative model was…
Selecting a digital camera for telemedicine.
Patricoski, Chris; Ferguson, A Stewart
2009-06-01
The digital camera is an essential component of store-and-forward telemedicine (electronic consultation). There are numerous makes and models of digital cameras on the market, and selecting a suitable consumer-grade camera can be complicated. Evaluation of digital cameras includes investigating the features and analyzing image quality. Important features include the camera settings, ease of use, macro capabilities, method of image transfer, and power recharging. Consideration needs to be given to image quality, especially as it relates to color (skin tones) and detail. It is important to know the level of the photographer and the intended application. The goal is to match the characteristics of the camera with the telemedicine program requirements. In the end, selecting a digital camera is a combination of qualitative (subjective) and quantitative (objective) analysis. For the telemedicine program in Alaska in 2008, the camera evaluation and decision process resulted in a specific selection based on the criteria developed for our environment.
Sky camera geometric calibration using solar observations
Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan
2016-09-05
A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. Themore » performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. In conclusion, calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.« less
DOT National Transportation Integrated Search
2004-10-01
The parking assistance system evaluated consisted of four outward facing cameras whose images could be presented on a monitor on the center console. The images presented varied in the location of the virtual eye point of the camera (the height above ...
Camera artifacts in IUE spectra
NASA Technical Reports Server (NTRS)
Bruegman, O. W.; Crenshaw, D. M.
1994-01-01
This study of emission line mimicking features in the IUE cameras has produced an atlas of artifiacts in high-dispersion images with an accompanying table of prominent artifacts and a table of prominent artifacts in the raw images along with a medium image of the sky background for each IUE camera.
A low-cost dual-camera imaging system for aerial applicators
USDA-ARS?s Scientific Manuscript database
Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...
Left Panorama of Spirit's Landing Site
NASA Technical Reports Server (NTRS)
2004-01-01
Left Panorama of Spirit's Landing Site
This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.Generating Stereoscopic Television Images With One Camera
NASA Technical Reports Server (NTRS)
Coan, Paul P.
1996-01-01
Straightforward technique for generating stereoscopic television images involves use of single television camera translated laterally between left- and right-eye positions. Camera acquires one of images (left- or right-eye image), and video signal from image delayed while camera translated to position where it acquires other image. Length of delay chosen so both images displayed simultaneously or as nearly simultaneously as necessary to obtain stereoscopic effect. Technique amenable to zooming in on small areas within broad scenes. Potential applications include three-dimensional viewing of geological features and meteorological events from spacecraft and aircraft, inspection of workpieces moving along conveyor belts, and aiding ground and water search-and-rescue operations. Also used to generate and display imagery for public education and general information, and possible for medical purposes.
Male song sparrows have elevated testosterone in response to neighbors versus strangers.
Moser-Purdy, Christopher; MacDougall-Shackleton, Scott A; Bonier, Frances; Graham, Brendan A; Boyer, Andrea C; Mennill, Daniel J
2017-07-01
Upon hearing a conspecific signal, animals must assess their relationship with the signaller and respond appropriately. Territorial animals usually respond more aggressively to strangers than neighbors in a phenomenon known as the "dear enemy effect". This phenomenon likely evolved because strangers represent a threat to an animal's territory tenure and parentage, whereas neighbors only represent a threat to an animal's parentage because they already possess a territory (providing territory boundaries are established and stable). Although the dear enemy effect has been widely documented using behavioral response variables, little research has been conducted on the physiological responses of animals to neighbors versus strangers. We sought to investigate whether the dear enemy effect is observed physiologically by exposing territorial male song sparrows (Melospiza melodia) to playback simulating a neighbor or a stranger, and then collecting blood samples to measure plasma testosterone levels. We predicted that song sparrows would exhibit increased testosterone levels after exposure to stranger playback compared to neighbor playback, due to the role testosterone plays in regulating aggression. Contrary to our prediction, we found that song sparrows had higher testosterone levels after exposure to neighbor playback compared to stranger playback. We discuss several explanations for our result, notably that corticosterone may regulate the dear enemy effect in male song sparrows and this may inhibit plasma testosterone. Future studies will benefit from examining corticosterone in addition to testosterone, to better understand the hormonal underpinnings of the dear enemy effect. Copyright © 2017 Elsevier Inc. All rights reserved.
Song matching, overlapping, and switching in the banded wren: the sender’s perspective
Vehrencamp, Sandra L.; Hall, Michelle L.; Bohman, Erin R.; Depeine, Catherine D.; Dalziell, Anastasia H.
2008-01-01
Interpreting receiver responses to on-territory playback of aggressive signals is problematic. One solution is to combine such receiver-perspective experiments with a sender-perspective experiment that allows subjects to demonstrate how their choice of singing strategies is associated with their approach behavior. Here we report the results of a sender-perspective study on the banded wren (Thryothorus pleurostictus), and combine information on context and results of previous receiver-perspective experiments to clarify function. Territorial males were presented with a 5-min playback consisting of song types present in their repertoire. We assessed the degree to which the subjects’ song matching rate, overlapping rate, and song-type versatility were correlated with their approach latency, closeness of approach, latency to first retreat, and time spent close to the speaker. Male age, breeding stage, and features of the playback stimuli were also considered. Song matching was associated with rapid and close approach, consistent with the receiver-perspective interpretation of type matching as a conventional signal of aggressive motivation. Overlapping was associated with earlier retreat, and together with the aversive receiver response to our previous overlapping playback experiment suggests that overlapping is a defensive withdrawal signal. High versatility was associated with slower first retreat from the speaker and high levels of reciprocal matching between subject and playback. Males with fledglings sang with particularly low versatility and approached the speaker aggressively, whereas males with nestlings overlapped more and retreated quickly. Finally, older males matched more but overlapped less. PMID:18392112
The function of duetting in magpie-larks: conflict, cooperation, or commitment?
Hall
2000-11-01
Avian duetting is a poorly understood phenomenon despite many hypotheses as to its function. Contrary to the recent view that duetting functions for mate guarding and is a result of conflict between the sexes, Australian magpie-larks, Grallina cyanoleuca, do not use duetting as a paternity guard. I used a playback experiment to investigate the role of antiphonal duetting in territorial defence and pair bond maintenance, two traditional hypotheses about the function of duetting. The experiment showed that, like many nonduetting species, magpie-larks recognize neighbours on the basis of song. It also provided evidence of functional differences between duetting and solo singing which indicate that temporal coordination of song between partners is used to maintain the territory and pair bond. Duets were more threatening territorial signals than solo songs: males initiated more vocalizations in response to playback of duets than playback of solos. Simulated intrusion also caused males and females to approach the speaker together and coordinate more of their vocalizations to form duets. Females did not engage in sex-specific territorial defence, responding equally strongly to playback of male and female song, and maintaining both territory and pair bond by attempting to exclude intruders of either sex. Males initiated more vocalizations in response to playback of male than female song, and their likelihood of duetting appeared to be related more to threats to the pair bond, in particular desertion by their partner. Copyright 2000 The Association for the Study of Animal Behaviour.
UCXp camera imaging principle and key technologies of data post-processing
NASA Astrophysics Data System (ADS)
Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao
2014-03-01
The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.
Emmering, Quinn C; Schmidt, Kenneth A
2011-11-01
1. Information benefits organisms living in a heterogeneous world by reducing uncertainty associated with decision making. For breeding passerines, information reliably associated with nest failure, such as predator activity, can be used to adjust breeding decisions leading to higher reproductive success. 2. Predator vocalizations may provide a source of current information for songbirds to assess spatial heterogeneity in risk that enables them to make appropriate nest-site and territory placement decisions. 3. To determine whether ground-nesting passerines eavesdrop on a common nest predator, the eastern chipmunk (Tamias striatus), we conducted a playback experiment to create spatial heterogeneity in perceived predation risk. We established three types of playback plots broadcasting: (i) chipmunk vocalizations (increased risk), (ii) frog calls (procedural control) and (iii) no playback (silent control). We conducted point counts from plot centres to compare bird activity among treatments and measured the distance of two ground-nesting species' nests, ovenbird (Seiurus aurocapilla) and veery (Catharus fuscescens), from playback stations. 4. Ground-nesting birds significantly reduced their activities up to 30 m from plot centres in response to playbacks of chipmunk calls suggesting an adjustment of territory placement or a reduction of overt behaviours (e.g. singing frequency). In contrast, less vulnerable canopy-nesting species showed no effect across experimental plots. Correspondingly, veeries and ovenbirds nested significantly further from chipmunk playback stations relative to control stations. Interestingly, the magnitude of this response was more than twice as high in ovenbirds than in veeries. 5. Our findings indicate that some breeding passerines may eavesdrop on predator communication, providing an explanation for how some birds assess spatial heterogeneity in predation risk to make breeding site decisions. Thus, heterospecific eavesdropping may be a common feature of predator-prey interactions that allows birds to avoid nest predators in space and provide greater stability to predator-prey dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Sounds Scary? Lack of Habituation following the Presentation of Novel Sounds
Biedenweg, Tine A.; Parsons, Michael H.; Fleming, Patricia A.; Blumstein, Daniel T.
2011-01-01
Background Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. Methodology We investigated responses by western grey kangaroos (Macropus fulignosus) towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides) calls) and artificial sounds (faux snake hiss and bull whip crack). We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. Principal Findings Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area) accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area) accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively) discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%). Additionally, 24% of individuals took flight and moved out of area (50 m radius) in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%). Increasing rate of presentation (12x/min ×2 min) caused 71% of animals to move out of the area. Conclusions/Significance The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that ‘more is not always better’. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced. PMID:21267451
Cai, Fuhong; Lu, Wen; Shi, Wuxiong; He, Sailing
2017-11-15
Spatially-explicit data are essential for remote sensing of ecological phenomena. Lately, recent innovations in mobile device platforms have led to an upsurge in on-site rapid detection. For instance, CMOS chips in smart phones and digital cameras serve as excellent sensors for scientific research. In this paper, a mobile device-based imaging spectrometer module (weighing about 99 g) is developed and equipped on a Single Lens Reflex camera. Utilizing this lightweight module, as well as commonly used photographic equipment, we demonstrate its utility through a series of on-site multispectral imaging, including ocean (or lake) water-color sensing and plant reflectance measurement. Based on the experiments we obtain 3D spectral image cubes, which can be further analyzed for environmental monitoring. Moreover, our system can be applied to many kinds of cameras, e.g., aerial camera and underwater camera. Therefore, any camera can be upgraded to an imaging spectrometer with the help of our miniaturized module. We believe it has the potential to become a versatile tool for on-site investigation into many applications.
Single-snapshot 2D color measurement by plenoptic imaging system
NASA Astrophysics Data System (ADS)
Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana
2014-03-01
Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.
Camera-Model Identification Using Markovian Transition Probability Matrix
NASA Astrophysics Data System (ADS)
Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei
Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.
Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.
2013-01-01
This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.
Plenoptic Image Motion Deblurring.
Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo
2018-04-01
We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.
Dense depth maps from correspondences derived from perceived motion
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2017-01-01
Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.
Relating transverse ray error and light fields in plenoptic camera images
NASA Astrophysics Data System (ADS)
Schwiegerling, Jim; Tyo, J. Scott
2013-09-01
Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. The camera image is focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The resultant image is an array of circular exit pupil images, each corresponding to the overlying lenslet. The position of the lenslet encodes the spatial information of the scene, whereas as the sensor pixels encode the angular information for light incident on the lenslet. The 4D light field is therefore described by the 2D spatial information and 2D angular information captured by the plenoptic camera. In aberration theory, the transverse ray error relates the pupil coordinates of a given ray to its deviation from the ideal image point in the image plane and is consequently a 4D function as well. We demonstrate a technique for modifying the traditional transverse ray error equations to recover the 4D light field of a general scene. In the case of a well corrected optical system, this light field is easily related to the depth of various objects in the scene. Finally, the effects of sampling with both the lenslet array and the camera sensor on the 4D light field data are analyzed to illustrate the limitations of such systems.
NASA Astrophysics Data System (ADS)
Soliz, Peter; Nemeth, Sheila C.; Barriga, E. Simon; Harding, Simon P.; Lewallen, Susan; Taylor, Terrie E.; MacCormick, Ian J.; Joshi, Vinayak S.
2016-03-01
The purpose of this study was to test the suitability of three available camera technologies (desktop, portable, and iphone based) for imaging comatose children who presented with clinical symptoms of malaria. Ultimately, the results of the project would form the basis for a design of a future camera to screen for malaria retinopathy (MR) in a resource challenged environment. The desktop, portable, and i-phone based cameras were represented by the Topcon, Pictor Plus, and Peek cameras, respectively. These cameras were tested on N=23 children presenting with symptoms of cerebral malaria (CM) at a malaria clinic, Queen Elizabeth Teaching Hospital in Malawi, Africa. Each patient was dilated for binocular indirect ophthalmoscopy (BIO) exam by an ophthalmologist followed by imaging with all three cameras. Each of the cases was graded according to an internationally established protocol and compared to the BIO as the clinical ground truth. The reader used three principal retinal lesions as markers for MR: hemorrhages, retinal whitening, and vessel discoloration. The study found that the mid-priced Pictor Plus hand-held camera performed considerably better than the lower price mobile phone-based camera, and slightly the higher priced table top camera. When comparing the readings of digital images against the clinical reference standard (BIO), the Pictor Plus camera had sensitivity and specificity for MR of 100% and 87%, respectively. This compares to a sensitivity and specificity of 87% and 75% for the i-phone based camera and 100% and 75% for the desktop camera. The drawback of all the cameras were their limited field of view which did not allow complete view of the periphery where vessel discoloration occurs most frequently. The consequence was that vessel discoloration was not addressed in this study. None of the cameras offered real-time image quality assessment to ensure high quality images to afford the best possible opportunity for reading by a remotely located specialist.
NASA Technical Reports Server (NTRS)
1992-01-01
This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.
NASA Astrophysics Data System (ADS)
Mi, Yuhe; Huang, Yifan; Li, Lin
2015-08-01
Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.
Ranging Apparatus and Method Implementing Stereo Vision System
NASA Technical Reports Server (NTRS)
Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1997-01-01
A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.
ERIC Educational Resources Information Center
Dennis, Rea
2007-01-01
Community-based performance often facilitates participation through story-based processes and in this way could be seen as enacting a form of inclusive democracy. This paper examines a playback theater performance with a refugee and asylum seeker audience and questions whether inclusive, democratic participation can be fostered. It presents a…
A 3D photographic capsule endoscope system with full field of view
NASA Astrophysics Data System (ADS)
Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng
2013-09-01
Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.
A detailed comparison of single-camera light-field PIV and tomographic PIV
NASA Astrophysics Data System (ADS)
Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.
2018-03-01
This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.
High dynamic range image acquisition based on multiplex cameras
NASA Astrophysics Data System (ADS)
Zeng, Hairui; Sun, Huayan; Zhang, Tinghua
2018-03-01
High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-03-23
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-01-01
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works. PMID:29570690
SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darne, C; Robertson, D; Alsanea, F
2016-06-15
Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm{sup 3}) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirectmore » scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.« less
Poland, Michael P.; Dzurisin, Daniel; LaHusen, Richard G.; Major, John J.; Lapcewich, Dennis; Endo, Elliot T.; Gooding, Daniel J.; Schilling, Steve P.; Janda, Christine G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Images from a Web-based camera (Webcam) located 8 km north of Mount St. Helens and a network of remote, telemetered digital cameras were used to observe eruptive activity at the volcano between October 2004 and February 2006. The cameras offered the advantages of low cost, low power, flexibility in deployment, and high spatial and temporal resolution. Images obtained from the cameras provided important insights into several aspects of dome extrusion, including rockfalls, lava extrusion rates, and explosive activity. Images from the remote, telemetered digital cameras were assembled into time-lapse animations of dome extrusion that supported monitoring, research, and outreach efforts. The wide-ranging utility of remote camera imagery should motivate additional work, especially to develop the three-dimensional quantitative capabilities of terrestrial camera networks.
Overview of Digital Forensics Algorithms in Dslr Cameras
NASA Astrophysics Data System (ADS)
Aminova, E.; Trapeznikov, I.; Priorov, A.
2017-05-01
The widespread usage of the mobile technologies and the improvement of the digital photo devices getting has led to more frequent cases of falsification of images including in the judicial practice. Consequently, the actual task for up-to-date digital image processing tools is the development of algorithms for determining the source and model of the DSLR (Digital Single Lens Reflex) camera and improve image formation algorithms. Most research in this area based on the mention that the extraction of unique sensor trace of DSLR camera could be possible on the certain stage of the imaging process into the camera. It is considered that the study focuses on the problem of determination of unique feature of DSLR cameras based on optical subsystem artifacts and sensor noises.
Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing
NASA Astrophysics Data System (ADS)
Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.
2018-01-01
Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.
Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns
NASA Astrophysics Data System (ADS)
Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.
2012-07-01
Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.
A Reconfigurable Real-Time Compressive-Sampling Camera for Biological Applications
Fu, Bo; Pitter, Mark C.; Russell, Noah A.
2011-01-01
Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps. PMID:22028852
Image quality assessment for selfies with and without super resolution
NASA Astrophysics Data System (ADS)
Kubota, Aya; Gohshi, Seiichi
2018-04-01
With the advent of cellphone cameras, in particular, on smartphones, many people now take photos of themselves alone and with others in the frame; such photos are popularly known as "selfies". Most smartphones are equipped with two cameras: the front-facing and rear cameras. The camera located on the back of the smartphone is referred to as the "out-camera," whereas the one located on the front of the smartphone is called the "in-camera." In-cameras are mainly used for selfies. Some smartphones feature high-resolution cameras. However, the original image quality cannot be obtained because smartphone cameras often have low-performance lenses. Super resolution (SR) is one of the recent technological advancements that has increased image resolution. We developed a new SR technology that can be processed on smartphones. Smartphones with new SR technology are currently available in the market have already registered sales. However, the effective use of new SR technology has not yet been verified. Comparing the image quality with and without SR on smartphone display is necessary to confirm the usefulness of this new technology. Methods that are based on objective and subjective assessments are required to quantitatively measure image quality. It is known that the typical object assessment value, such as Peak Signal to Noise Ratio (PSNR), does not go together with how we feel when we assess image/video. When digital broadcast started, the standard was determined using subjective assessment. Although subjective assessment usually comes at high cost because of personnel expenses for observers, the results are highly reproducible when they are conducted under right conditions and statistical analysis. In this study, the subjective assessment results for selfie images are reported.
An efficient multiple exposure image fusion in JPEG domain
NASA Astrophysics Data System (ADS)
Hebbalaguppe, Ramya; Kakarala, Ramakrishna
2012-01-01
In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.
Thermal Effects on Camera Focal Length in Messenger Star Calibration and Orbital Imaging
NASA Astrophysics Data System (ADS)
Burmeister, S.; Elgner, S.; Preusker, F.; Stark, A.; Oberst, J.
2018-04-01
We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft for the camera's thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS). Within the several hundreds of images of star fields, the Wide Angle Camera (WAC) typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T) = A0 + A1 T. Next, we use images from MESSENGER's orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM). We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera - as well as the camera's focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC). This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in the photogrammetric analysis, specifically these may be responsible for erroneous longwavelength trends in topographic models.
Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid
2016-06-13
Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.
Color reproduction software for a digital still camera
NASA Astrophysics Data System (ADS)
Lee, Bong S.; Park, Du-Sik; Nam, Byung D.
1998-04-01
We have developed a color reproduction software for a digital still camera. The image taken by the camera was colorimetrically reproduced on the monitor after characterizing the camera and the monitor, and color matching between two devices. The reproduction was performed at three levels; level processing, gamma correction, and color transformation. The image contrast was increased after the level processing adjusting the level of dark and bright portions of the image. The relationship between the level processed digital values and the measured luminance values of test gray samples was calculated, and the gamma of the camera was obtained. The method for getting the unknown monitor gamma was proposed. As a result, the level processed values were adjusted by the look-up table created by the camera and the monitor gamma correction. For a color transformation matrix for the camera, 3 by 3 or 3 by 4 matrix was used, which was calculated by the regression between the gamma corrected values and the measured tristimulus values of each test color samples the various reproduced images were displayed on the dialogue box implemented in our software, which were generated according to four illuminations for the camera and three color temperatures for the monitor. An user can easily choose he best reproduced image comparing each others.
Blur spot limitations in distal endoscope sensors
NASA Astrophysics Data System (ADS)
Yaron, Avi; Shechterman, Mark; Horesh, Nadav
2006-02-01
In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.
Automatic Orientation of Large Blocks of Oblique Images
NASA Astrophysics Data System (ADS)
Rupnik, E.; Nex, F.; Remondino, F.
2013-05-01
Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III) with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right) by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.
Error modeling and analysis of star cameras for a class of 1U spacecraft
NASA Astrophysics Data System (ADS)
Fowler, David M.
As spacecraft today become increasingly smaller, the demand for smaller components and sensors rises as well. The smartphone, a cutting edge consumer technology, has impressive collections of both sensors and processing capabilities and may have the potential to fill this demand in the spacecraft market. If the technologies of a smartphone can be used in space, the cost of building miniature satellites would drop significantly and give a boost to the aerospace and scientific communities. Concentrating on the problem of spacecraft orientation, this study sets ground to determine the capabilities of a smartphone camera when acting as a star camera. Orientations determined from star images taken from a smartphone camera are compared to those of higher quality cameras in order to determine the associated accuracies. The results of the study reveal the abilities of low-cost off-the-shelf imagers in space and give a starting point for future research in the field. The study began with a complete geometric calibration of each analyzed imager such that all comparisons start from the same base. After the cameras were calibrated, image processing techniques were introduced to correct for atmospheric, lens, and image sensor effects. Orientations for each test image are calculated through methods of identifying the stars exposed on each image. Analyses of these orientations allow the overall errors of each camera to be defined and provide insight into the abilities of low-cost imagers.
NASA Technical Reports Server (NTRS)
1996-01-01
PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.
Center for Coastline Security Technology, Year 3
2008-05-01
Polarization control for 3D Imaging with the Sony SRX-R105 Digital Cinema Projectors 3.4 HDMAX Camera and Sony SRX-R105 Projector Configuration for 3D...HDMAX Camera Pair Figure 3.2 Sony SRX-R105 Digital Cinema Projector Figure 3.3 Effect of camera rotation on projected overlay image. Figure 3.4...system that combines a pair of FAU’s HD-MAX video cameras with a pair of Sony SRX-R105 digital cinema projectors for stereo imaging and projection
NASA Astrophysics Data System (ADS)
Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu
2015-04-01
For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.
The Effect of Camera Angle and Image Size on Source Credibility and Interpersonal Attraction.
ERIC Educational Resources Information Center
McCain, Thomas A.; Wakshlag, Jacob J.
The purpose of this study was to examine the effects of two nonverbal visual variables (camera angle and image size) on variables developed in a nonmediated context (source credibility and interpersonal attraction). Camera angle and image size were manipulated in eight video taped television newscasts which were subsequently presented to eight…
Development of a piecewise linear omnidirectional 3D image registration method
NASA Astrophysics Data System (ADS)
Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo
2016-12-01
This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.
SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications
NASA Astrophysics Data System (ADS)
Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.
2005-08-01
A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.
A combined microphone and camera calibration technique with application to acoustic imaging.
Legg, Mathew; Bradley, Stuart
2013-10-01
We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.
High Speed Digital Camera Technology Review
NASA Technical Reports Server (NTRS)
Clements, Sandra D.
2009-01-01
A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.
Memory-dependent adjustment of vocal response latencies in a territorial songbird.
Geberzahn, Nicole; Hultsch, Henrike; Todt, Dietmar
2013-06-01
Vocal interactions in songbirds can be used as a model system to investigate the interplay of intrinsic singing programmes (e.g. influences from vocal memories) and external variables (e.g. social factors). When characterizing vocal interactions between territorial rivals two aspects are important: (1) the timing of songs in relation to the conspecific's singing and (2) the use of a song pattern that matches the rival's song. Responses in both domains can be used to address a territorial rival. This study is the first to investigate the relation of the timing of vocal responses to (1) the vocal memory of a responding subject and (2) the selection of the song pattern that the subject uses as a response. To this end, we conducted interactive playback experiments with adult nightingales (Luscinia megarhynchos) that had been hand-reared and tutored in the laboratory. We analysed the subjects' vocal response latencies towards broadcast playback stimuli that they either had in their own vocal repertoire (songs shared with playback) or that they had not heard before (unknown songs). Likewise, we compared vocal response latencies between responses that matched the stimulus song and those that did not. Our findings showed that the latency of singing in response to the playback was shorter for shared versus unknown song stimuli when subjects overlapped the playback stimuli with their own song. Moreover birds tended to overlap faster when vocally matching the stimulus song rather than when replying with a non-matching song type. We conclude that memory of song patterns influenced response latencies and discuss possible mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Caselli, Christini B; Mennill, Daniel J; Gestich, Carla C; Setz, Eleonore Z F; Bicca-Marques, Júlio César
2015-11-01
Many birds and primates use loud vocalizations to mediate agonistic interactions with conspecifics, either as solos by males or females, or as coordinated duets. The extensive variation in duet complexity, the contribution of each sex, and the context in which duets are produced suggest that duets may serve several functions, including territory and mate defense. Titi monkeys (Callicebus spp.) are believed to defend their home range via solo loud calls or coordinated duets. Yet there are remarkably few experimental studies assessing the function of these calls. Observations of interactions between wild established groups and solitary individuals are rare and, therefore, controlled experiments are required to simulate such situations and evaluate the mate and joint territorial defense hypotheses. We conducted playback experiments with three free-ranging groups of habituated black-fronted titi monkeys (Callicebus nigrifrons) to test these hypotheses. We found that titi monkeys responded to the three conspecific playback treatments (duets, female solos, and male solos) and did not respond to the heterospecific control treatment. The monkeys did not show sex-specific responses to solos (N = 12 trials). Partners started to duet together in 79% of their responses to playback-simulated rivals (N = 14 calls in response to playback). Males started to approach the loudspeaker before females regardless of the type of stimulus. The strength of the response of mated pairs to all three conspecific treatments was similar. Overall, our results are consistent with the idea that black-fronted titi monkeys use their loud calls in intergroup communication as a mechanism of joint territorial defense. © 2015 Wiley Periodicals, Inc.
Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum.
Yasuma, Fumihito; Mitsunaga, Tomoo; Iso, Daisuke; Nayar, Shree K
2010-09-01
We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://www1.cs.columbia.edu/CAVE/projects/gap_camera/ for use by the research community.
Handheld hyperspectral imager system for chemical/biological and environmental applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Piatek, Bob
2004-08-01
A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.
Hand-held hyperspectral imager for chemical/biological and environmental applications
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Piatek, Bob
2004-03-01
A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.
Image dynamic range test and evaluation of Gaofen-2 dual cameras
NASA Astrophysics Data System (ADS)
Zhang, Zhenhua; Gan, Fuping; Wei, Dandan
2015-12-01
In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua
2017-05-01
In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.
The Limited Duty/Chief Warrant Officer Professional Guidebook
1985-01-01
subsurface imaging . They plan and manage the operation of imaging commands and activities, combat camera groups and aerial reconnaissance imaging...picture and video systems used in aerial, surface and subsurface imaging . They supervise the operation of imaging commands and activities, combat camera
Using tape playback of the staccato song to document Boreal Owl (Aegolius funereus) reproduction
Dale W. Stahlecker
1997-01-01
Tape playback of the staccato song of the Boreal Owl (Aegolius funereus richardsoni) proved useful in attracting fledglings of both North American Aegolius species. No Boreal Owl nests were found in 8 hours of daytime searches. However, six Boreal Owls, including three to four fledglings at two locations, one Northern Saw-whet Owl (A....
Test Image of Earth Rocks by Mars Camera Stereo
2010-11-16
This stereo view of terrestrial rocks combines two images taken by a testing twin of the Mars Hand Lens Imager MAHLI camera on NASA Mars Science Laboratory. 3D glasses are necessary to view this image.
Wind- and Rain-Induced Vibrations Impose Different Selection Pressures on Multimodal Signaling.
Halfwerk, Wouter; Ryan, Michael J; Wilson, Preston S
2016-09-01
The world is a noisy place, and animals have evolved a myriad of strategies to communicate in it. Animal communication signals are, however, often multimodal; their components can be processed by multiple sensory systems, and noise can thus affect signal components across different modalities. We studied the effect of environmental noise on multimodal communication in the túngara frog (Physalaemus pustulosus). Males communicate with rivals using airborne sounds combined with call-induced water ripples. We tested males under control as well as noisy conditions in which we mimicked rain- and wind-induced vibrations on the water surface. Males responded more strongly to a multimodal playback in which sound and ripples were combined, compared to a unimodal sound-only playback, but only in the absence of rain and wind. Under windy conditions, males decreased their response to the multimodal playback, suggesting that wind noise interferes with the detection of rival ripples. Under rainy conditions, males increased their response, irrespective of signal playback, suggesting that different noise sources can have different impacts on communication. Our findings show that noise in an additional sensory channel can affect multimodal signal perception and thereby drive signal evolution, but not always in the expected direction.
High-frame rate multiport CCD imager and camera
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.
1993-01-01
A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.
The advantages of using a Lucky Imaging camera for observations of microlensing events
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus
2016-05-01
In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.
Li, Jin; Liu, Zilong; Liu, Si
2017-02-20
In on-board photographing processes of satellite cameras, the platform vibration can generate image motion, distortion, and smear, which seriously affect the image quality and image positioning. In this paper, we create a mathematical model of a vibrating modulate transfer function (VMTF) for a remote-sensing camera. The total MTF of a camera is reduced by the VMTF, which means the image quality is degraded. In order to avoid the degeneration of the total MTF caused by vibrations, we use an Mn-20Cu-5Ni-2Fe (M2052) manganese copper alloy material to fabricate a vibration-isolation mechanism (VIM). The VIM can transform platform vibration energy into irreversible thermal energy with its internal twin crystals structure. Our experiment shows the M2052 manganese copper alloy material is good enough to suppress image motion below 125 Hz, which is the vibration frequency of satellite platforms. The camera optical system has a higher MTF after suppressing the vibration of the M2052 material than before.
Neubauer, Aljoscha S; Rothschuh, Antje; Ulbig, Michael W; Blum, Marcus
2008-03-01
Grading diabetic retinopathy in clinical trials is frequently based on 7-field stereo photography of the fundus in diagnostic mydriasis. In terms of image quality, the FF450(plus) camera (Carl Zeiss Meditec AG, Jena, Germany) defines a high-quality reference. The aim of the study was to investigate if the fully digital fundus camera Visucam(PRO NM) could serve as an alternative in clinical trials requiring 7-field stereo photography. A total of 128 eyes of diabetes patients were enrolled in the randomized, controlled, prospective trial. Seven-field stereo photography was performed with the Visucam(PRO NM) and the FF450(plus) camera, in random order, both in diagnostic mydriasis. The resulting 256 image sets from the two camera systems were graded for retinopathy levels and image quality (on a scale of 1-5); both were anonymized and blinded to the image source. On FF450(plus) stereoscopic imaging, 20% of the patients had no or mild diabetic retinopathy (ETDRS level < or = 20) and 29% had no macular oedema. No patient had to be excluded as a result of image quality. Retinopathy level did not influence the quality of grading or of images. Excellent overall correspondence was obtained between the two fundus cameras regarding retinopathy levels (kappa 0.87) and macular oedema (kappa 0.80). In diagnostic mydriasis the image quality of the Visucam was graded slightly as better than that of the FF450(plus) (2.20 versus 2.41; p < 0.001), especially for pupils < 7 mm in mydriasis. The non-mydriatic Visucam(PRO NM) offers good image quality and is suitable as a more cost-efficient and easy-to-operate camera for applications and clinical trials requiring 7-field stereo photography.
NASA Astrophysics Data System (ADS)
Feng, Zhixin
2018-02-01
Projector calibration is crucial for a camera-projector three-dimensional (3-D) structured light measurement system, which has one camera and one projector. In this paper, a novel projector calibration method is proposed based on digital image correlation. In the method, the projector is viewed as an inverse camera, and a plane calibration board with feature points is used to calibrate the projector. During the calibration processing, a random speckle pattern is projected onto the calibration board with different orientations to establish the correspondences between projector images and camera images. Thereby, dataset for projector calibration are generated. Then the projector can be calibrated using a well-established camera calibration algorithm. The experiment results confirm that the proposed method is accurate and reliable for projector calibration.
Volunteers Help Decide Where to Point Mars Camera
2015-07-22
This series of images from NASA's Mars Reconnaissance Orbiter successively zooms into "spider" features -- or channels carved in the surface in radial patterns -- in the south polar region of Mars. In a new citizen-science project, volunteers will identify features like these using wide-scale images from the orbiter. Their input will then help mission planners decide where to point the orbiter's high-resolution camera for more detailed views of interesting terrain. Volunteers will start with images from the orbiter's Context Camera (CTX), which provides wide views of the Red Planet. The first two images in this series are from CTX; the top right image zooms into a portion of the image at left. The top right image highlights the geological spider features, which are carved into the terrain in the Martian spring when dry ice turns to gas. By identifying unusual features like these, volunteers will help the mission team choose targets for the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera, which can reveal more detail than any other camera ever put into orbit around Mars. The final image is this series (bottom right) shows a HiRISE close-up of one of the spider features. http://photojournal.jpl.nasa.gov/catalog/PIA19823
Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System
Lu, Yu; Wang, Keyi; Fan, Gongshu
2016-01-01
A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857
Multispectral image dissector camera flight test
NASA Technical Reports Server (NTRS)
Johnson, B. L.
1973-01-01
It was demonstrated that the multispectral image dissector camera is able to provide composite pictures of the earth surface from high altitude overflights. An electronic deflection feature was used to inject the gyro error signal into the camera for correction of aircraft motion.
On the accuracy potential of focused plenoptic camera range determination in long distance operation
NASA Astrophysics Data System (ADS)
Sardemann, Hannes; Maas, Hans-Gerd
2016-04-01
Plenoptic cameras have found increasing interest in optical 3D measurement techniques in recent years. While their basic principle is 100 years old, the development in digital photography, micro-lens fabrication technology and computer hardware has boosted the development and lead to several commercially available ready-to-use cameras. Beyond their popular option of a posteriori image focusing or total focus image generation, their basic ability of generating 3D information from single camera imagery depicts a very beneficial option for certain applications. The paper will first present some fundamentals on the design and history of plenoptic cameras and will describe depth determination from plenoptic camera image data. It will then present an analysis of the depth determination accuracy potential of plenoptic cameras. While most research on plenoptic camera accuracy so far has focused on close range applications, we will focus on mid and long ranges of up to 100 m. This range is especially relevant, if plenoptic cameras are discussed as potential mono-sensorial range imaging devices in (semi-)autonomous cars or in mobile robotics. The results show the expected deterioration of depth measurement accuracy with depth. At depths of 30-100 m, which may be considered typical in autonomous driving, depth errors in the order of 3% (with peaks up to 10-13 m) were obtained from processing small point clusters on an imaged target. Outliers much higher than these values were observed in single point analysis, stressing the necessity of spatial or spatio-temporal filtering of the plenoptic camera depth measurements. Despite these obviously large errors, a plenoptic camera may nevertheless be considered a valid option for the application fields of real-time robotics like autonomous driving or unmanned aerial and underwater vehicles, where the accuracy requirements decrease with distance.
2011-07-01
cameras were installed around the test pan and an underwater GoPro ® video camera recorded the fire from below the layer of fuel. 3.2.2. Camera Images...Distribution A: Approved for public release; distribution unlimited. 3.2.3. Video Images A GoPro video camera with a wide angle lens recorded the tests...camera and the GoPro ® video camera were not used for fire suppression experiments. 3.3.2. Test Pans Two ¼-in thick stainless steel test pans were
Imagers for digital still photography
NASA Astrophysics Data System (ADS)
Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge
2006-04-01
This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.
NASA Astrophysics Data System (ADS)
Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.
2012-05-01
Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.
Person re-identification over camera networks using multi-task distance metric learning.
Ma, Lianyang; Yang, Xiaokang; Tao, Dacheng
2014-08-01
Person reidentification in a camera network is a valuable yet challenging problem to solve. Existing methods learn a common Mahalanobis distance metric by using the data collected from different cameras and then exploit the learned metric for identifying people in the images. However, the cameras in a camera network have different settings and the recorded images are seriously affected by variability in illumination conditions, camera viewing angles, and background clutter. Using a common metric to conduct person reidentification tasks on different camera pairs overlooks the differences in camera settings; however, it is very time-consuming to label people manually in images from surveillance videos. For example, in most existing person reidentification data sets, only one image of a person is collected from each of only two cameras; therefore, directly learning a unique Mahalanobis distance metric for each camera pair is susceptible to over-fitting by using insufficiently labeled data. In this paper, we reformulate person reidentification in a camera network as a multitask distance metric learning problem. The proposed method designs multiple Mahalanobis distance metrics to cope with the complicated conditions that exist in typical camera networks. We address the fact that these Mahalanobis distance metrics are different but related, and learned by adding joint regularization to alleviate over-fitting. Furthermore, by extending, we present a novel multitask maximally collapsing metric learning (MtMCML) model for person reidentification in a camera network. Experimental results demonstrate that formulating person reidentification over camera networks as multitask distance metric learning problem can improve performance, and our proposed MtMCML works substantially better than other current state-of-the-art person reidentification methods.
Chen, Brian R; Poon, Emily; Alam, Murad
2017-08-01
Photographs are an essential tool for the documentation and sharing of findings in dermatologic surgery, and various camera types are available. To evaluate the currently available camera types in view of the special functional needs of procedural dermatologists. Mobile phone, point and shoot, digital single-lens reflex (DSLR), digital medium format, and 3-dimensional cameras were compared in terms of their usefulness for dermatologic surgeons. For each camera type, the image quality, as well as the other practical benefits and limitations, were evaluated with reference to a set of ideal camera characteristics. Based on these assessments, recommendations were made regarding the specific clinical circumstances in which each camera type would likely be most useful. Mobile photography may be adequate when ease of use, availability, and accessibility are prioritized. Point and shoot cameras and DSLR cameras provide sufficient resolution for a range of clinical circumstances, while providing the added benefit of portability. Digital medium format cameras offer the highest image quality, with accurate color rendition and greater color depth. Three-dimensional imaging may be optimal for the definition of skin contour. The selection of an optimal camera depends on the context in which it will be used.
Depth measurements through controlled aberrations of projected patterns.
Birch, Gabriel C; Tyo, J Scott; Schwiegerling, Jim
2012-03-12
Three-dimensional displays have become increasingly present in consumer markets. However, the ability to capture three-dimensional images in space confined environments and without major modifications to current cameras is uncommon. Our goal is to create a simple modification to a conventional camera that allows for three dimensional reconstruction. We require such an imaging system have imaging and illumination paths coincident. Furthermore, we require that any three-dimensional modification to a camera also permits full resolution 2D image capture.Here we present a method of extracting depth information with a single camera and aberrated projected pattern. A commercial digital camera is used in conjunction with a projector system with astigmatic focus to capture images of a scene. By using an astigmatic projected pattern we can create two different focus depths for horizontal and vertical features of a projected pattern, thereby encoding depth. By designing an aberrated projected pattern, we are able to exploit this differential focus in post-processing designed to exploit the projected pattern and optical system. We are able to correlate the distance of an object at a particular transverse position from the camera to ratios of particular wavelet coefficients.We present our information regarding construction, calibration, and images produced by this system. The nature of linking a projected pattern design and image processing algorithms will be discussed.
An Example-Based Super-Resolution Algorithm for Selfie Images
William, Jino Hans; Venkateswaran, N.; Narayanan, Srinath; Ramachandran, Sandeep
2016-01-01
A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500
Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System
NASA Astrophysics Data System (ADS)
Stebner, K.; Wieden, A.
2014-03-01
Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.
Cano-García, Angel E.; Lazaro, José Luis; Infante, Arturo; Fernández, Pedro; Pompa-Chacón, Yamilet; Espinoza, Felipe
2012-01-01
In this study, a camera to infrared diode (IRED) distance estimation problem was analyzed. The main objective was to define an alternative to measures depth only using the information extracted from pixel grey levels of the IRED image to estimate the distance between the camera and the IRED. In this paper, the standard deviation of the pixel grey level in the region of interest containing the IRED image is proposed as an empirical parameter to define a model for estimating camera to emitter distance. This model includes the camera exposure time, IRED radiant intensity and the distance between the camera and the IRED. An expression for the standard deviation model related to these magnitudes was also derived and calibrated using different images taken under different conditions. From this analysis, we determined the optimum parameters to ensure the best accuracy provided by this alternative. Once the model calibration had been carried out, a differential method to estimate the distance between the camera and the IRED was defined and applied, considering that the camera was aligned with the IRED. The results indicate that this method represents a useful alternative for determining the depth information. PMID:22778608
Cano-García, Angel E; Lazaro, José Luis; Infante, Arturo; Fernández, Pedro; Pompa-Chacón, Yamilet; Espinoza, Felipe
2012-01-01
In this study, a camera to infrared diode (IRED) distance estimation problem was analyzed. The main objective was to define an alternative to measures depth only using the information extracted from pixel grey levels of the IRED image to estimate the distance between the camera and the IRED. In this paper, the standard deviation of the pixel grey level in the region of interest containing the IRED image is proposed as an empirical parameter to define a model for estimating camera to emitter distance. This model includes the camera exposure time, IRED radiant intensity and the distance between the camera and the IRED. An expression for the standard deviation model related to these magnitudes was also derived and calibrated using different images taken under different conditions. From this analysis, we determined the optimum parameters to ensure the best accuracy provided by this alternative. Once the model calibration had been carried out, a differential method to estimate the distance between the camera and the IRED was defined and applied, considering that the camera was aligned with the IRED. The results indicate that this method represents a useful alternative for determining the depth information.
Autocalibration of a projector-camera system.
Okatani, Takayuki; Deguchi, Koichiro
2005-12-01
This paper presents a method for calibrating a projector-camera system that consists of multiple projectors (or multiple poses of a single projector), a camera, and a planar screen. We consider the problem of estimating the homography between the screen and the image plane of the camera or the screen-camera homography, in the case where there is no prior knowledge regarding the screen surface that enables the direct computation of the homography. It is assumed that the pose of each projector is unknown while its internal geometry is known. Subsequently, it is shown that the screen-camera homography can be determined from only the images projected by the projectors and then obtained by the camera, up to a transformation with four degrees of freedom. This transformation corresponds to arbitrariness in choosing a two-dimensional coordinate system on the screen surface and when this coordinate system is chosen in some manner, the screen-camera homography as well as the unknown poses of the projectors can be uniquely determined. A noniterative algorithm is presented, which computes the homography from three or more images. Several experimental results on synthetic as well as real images are shown to demonstrate the effectiveness of the method.
Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine
NASA Astrophysics Data System (ADS)
Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.
2017-01-01
Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.
A method and results of color calibration for the Chang'e-3 terrain camera and panoramic camera
NASA Astrophysics Data System (ADS)
Ren, Xin; Li, Chun-Lai; Liu, Jian-Jun; Wang, Fen-Fei; Yang, Jian-Feng; Liu, En-Hai; Xue, Bin; Zhao, Ru-Jin
2014-12-01
The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission respectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image quality has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncorrected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively.
Semi-autonomous wheelchair system using stereoscopic cameras.
Nguyen, Jordan S; Nguyen, Thanh H; Nguyen, Hung T
2009-01-01
This paper is concerned with the design and development of a semi-autonomous wheelchair system using stereoscopic cameras to assist hands-free control technologies for severely disabled people. The stereoscopic cameras capture an image from both the left and right cameras, which are then processed with a Sum of Absolute Differences (SAD) correlation algorithm to establish correspondence between image features in the different views of the scene. This is used to produce a stereo disparity image containing information about the depth of objects away from the camera in the image. A geometric projection algorithm is then used to generate a 3-Dimensional (3D) point map, placing pixels of the disparity image in 3D space. This is then converted to a 2-Dimensional (2D) depth map allowing objects in the scene to be viewed and a safe travel path for the wheelchair to be planned and followed based on the user's commands. This assistive technology utilising stereoscopic cameras has the purpose of automated obstacle detection, path planning and following, and collision avoidance during navigation. Experimental results obtained in an indoor environment displayed the effectiveness of this assistive technology.
Accuracy evaluation of optical distortion calibration by digital image correlation
NASA Astrophysics Data System (ADS)
Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan
2017-11-01
Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.
The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Malin, M. C.; Bell, J. F.; Cameron, J.; Dietrich, W. E.; Edgett, K. S.; Hallet, B.; Herkenhoff, K. E.; Lemmon, M. T.; Parker, T. J.; Sullivan, R. J.
2005-01-01
Based on operational experience gained during the Mars Exploration Rover (MER) mission, we proposed and were selected to conduct two related imaging experiments: (1) an investigation of the geology and short-term atmospheric vertical wind profile local to the Mars Science Laboratory (MSL) landing site using descent imaging, and (2) a broadly-based scientific investigation of the MSL locale employing visible and very near infra-red imaging techniques from a pair of mast-mounted, high resolution cameras. Both instruments share a common electronics design, a design also employed for the MSL Mars Hand Lens Imager (MAHLI) [1]. The primary differences between the cameras are in the nature and number of mechanisms and specific optics tailored to each camera s requirements.
Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors
NASA Astrophysics Data System (ADS)
Han, Ling
Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.
Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.
1998-07-01
This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).
Volumetric particle image velocimetry with a single plenoptic camera
NASA Astrophysics Data System (ADS)
Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.
2015-11-01
A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera plenoptic PIV is shown to be a viable 3D/3C velocimetry technique.
Performance evaluation and clinical applications of 3D plenoptic cameras
NASA Astrophysics Data System (ADS)
Decker, Ryan; Shademan, Azad; Opfermann, Justin; Leonard, Simon; Kim, Peter C. W.; Krieger, Axel
2015-06-01
The observation and 3D quantification of arbitrary scenes using optical imaging systems is challenging, but increasingly necessary in many fields. This paper provides a technical basis for the application of plenoptic cameras in medical and medical robotics applications, and rigorously evaluates camera integration and performance in the clinical setting. It discusses plenoptic camera calibration and setup, assesses plenoptic imaging in a clinically relevant context, and in the context of other quantitative imaging technologies. We report the methods used for camera calibration, precision and accuracy results in an ideal and simulated surgical setting. Afterwards, we report performance during a surgical task. Test results showed the average precision of the plenoptic camera to be 0.90mm, increasing to 1.37mm for tissue across the calibrated FOV. The ideal accuracy was 1.14mm. The camera showed submillimeter error during a simulated surgical task.
Micro-Imagers for Spaceborne Cell-Growth Experiments
NASA Technical Reports Server (NTRS)
Behar, Alberto; Matthews, Janet; SaintAnge, Beverly; Tanabe, Helen
2006-01-01
A document discusses selected aspects of a continuing effort to develop five micro-imagers for both still and video monitoring of cell cultures to be grown aboard the International Space Station. The approach taken in this effort is to modify and augment pre-existing electronic micro-cameras. Each such camera includes an image-detector integrated-circuit chip, signal-conditioning and image-compression circuitry, and connections for receiving power from, and exchanging data with, external electronic equipment. Four white and four multicolor light-emitting diodes are to be added to each camera for illuminating the specimens to be monitored. The lens used in the original version of each camera is to be replaced with a shorter-focal-length, more-compact singlet lens to make it possible to fit the camera into the limited space allocated to it. Initially, the lenses in the five cameras are to have different focal lengths: the focal lengths are to be 1, 1.5, 2, 2.5, and 3 cm. Once one of the focal lengths is determined to be the most nearly optimum, the remaining four cameras are to be fitted with lenses of that focal length.
High-performance camera module for fast quality inspection in industrial printing applications
NASA Astrophysics Data System (ADS)
Fürtler, Johannes; Bodenstorfer, Ernst; Mayer, Konrad J.; Brodersen, Jörg; Heiss, Dorothea; Penz, Harald; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Today, printing products which must meet highest quality standards, e.g., banknotes, stamps, or vouchers, are automatically checked by optical inspection systems. Typically, the examination of fine details of the print or security features demands images taken from various perspectives, with different spectral sensitivity (visible, infrared, ultraviolet), and with high resolution. Consequently, the inspection system is equipped with several cameras and has to cope with an enormous data rate to be processed in real-time. Hence, it is desirable to move image processing tasks into the camera to reduce the amount of data which has to be transferred to the (central) image processing system. The idea is to transfer relevant information only, i.e., features of the image instead of the raw image data from the sensor. These features are then further processed. In this paper a color line-scan camera for line rates up to 100 kHz is presented. The camera is based on a commercial CMOS (complementary metal oxide semiconductor) area image sensor and a field programmable gate array (FPGA). It implements extraction of image features which are well suited to detect print flaws like blotches of ink, color smears, splashes, spots and scratches. The camera design and several image processing methods implemented on the FPGA are described, including flat field correction, compensation of geometric distortions, color transformation, as well as decimation and neighborhood operations.
Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.
Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio
2009-01-01
3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.
Real-time vehicle matching for multi-camera tunnel surveillance
NASA Astrophysics Data System (ADS)
Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried
2011-03-01
Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.
Wheat, J S; Clarkson, S; Flint, S W; Simpson, C; Broom, D R
2018-05-21
Three dimensional (3D) surface imaging is a viable alternative to traditional body morphology measures, but the feasibility of using this technique with people with obesity has not been fully established. Therefore, the aim of this study was to investigate the validity, repeatability and acceptability of a consumer depth camera 3D surface imaging system in imaging people with obesity. The concurrent validity of the depth camera based system was investigated by comparing measures of mid-trunk volume to a gold-standard. The repeatability and acceptability of the depth camera system was assessed in people with obesity at a clinic. There was evidence of a fixed systematic difference between the depth camera system and the gold standard but excellent correlation between volume estimates (r 2 =0.997), with little evidence of proportional bias. The depth camera system was highly repeatable - low typical error (0.192L), high intraclass correlation coefficient (>0.999) and low technical error of measurement (0.64%). Depth camera based 3D surface imaging was also acceptable to people with obesity. It is feasible (valid, repeatable and acceptable) to use a low cost, flexible 3D surface imaging system to monitor the body size and shape of people with obesity in a clinical setting. Copyright © 2018 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test.
Lebourgeois, Valentine; Bégué, Agnès; Labbé, Sylvain; Mallavan, Benjamin; Prévot, Laurent; Roux, Bruno
2008-11-17
The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR) cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1) the use of unprocessed image data did not improve the results of image analyses; 2) vignetting had a significant effect, especially for the modified camera, and 3) normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces.
iPhone 4s and iPhone 5s Imaging of the Eye.
Jalil, Maaz; Ferenczy, Sandor R; Shields, Carol L
2017-01-01
To evaluate the technical feasibility of a consumer-grade cellular iPhone camera as an ocular imaging device compared to existing ophthalmic imaging equipment for documentation purposes. A comparison of iPhone 4s and 5s images was made with external facial images (macrophotography) using Nikon cameras, slit-lamp images (microphotography) using Zeiss photo slit-lamp camera, and fundus images (fundus photography) using RetCam II. In an analysis of six consecutive patients with ophthalmic conditions, both iPhones achieved documentation of external findings (macrophotography) using standard camera modality, tap to focus, and built-in flash. Both iPhones achieved documentation of anterior segment findings (microphotography) during slit-lamp examination through oculars. Both iPhones achieved fundus imaging using standard video modality with continuous iPhone illumination through an ophthalmic lens. Comparison to standard ophthalmic cameras, macrophotography and microphotography were excellent. In comparison to RetCam fundus photography, iPhone fundus photography revealed smaller field and was technically more difficult to obtain, but the quality was nearly similar to RetCam. iPhone versions 4s and 5s can provide excellent ophthalmic macrophotography and microphotography and adequate fundus photography. We believe that iPhone imaging could be most useful in settings where expensive, complicated, and cumbersome imaging equipment is unavailable.
A time-resolved image sensor for tubeless streak cameras
NASA Astrophysics Data System (ADS)
Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji
2014-03-01
This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .
Plenoptic Imager for Automated Surface Navigation
NASA Technical Reports Server (NTRS)
Zollar, Byron; Milder, Andrew; Milder, Andrew; Mayo, Michael
2010-01-01
An electro-optical imaging device is capable of autonomously determining the range to objects in a scene without the use of active emitters or multiple apertures. The novel, automated, low-power imaging system is based on a plenoptic camera design that was constructed as a breadboard system. Nanohmics proved feasibility of the concept by designing an optical system for a prototype plenoptic camera, developing simulated plenoptic images and range-calculation algorithms, constructing a breadboard prototype plenoptic camera, and processing images (including range calculations) from the prototype system. The breadboard demonstration included an optical subsystem comprised of a main aperture lens, a mechanical structure that holds an array of micro lenses at the focal distance from the main lens, and a structure that mates a CMOS imaging sensor the correct distance from the micro lenses. The demonstrator also featured embedded electronics for camera readout, and a post-processor executing image-processing algorithms to provide ranging information.
Babcock, Hazen P
2018-01-29
This work explores the use of industrial grade CMOS cameras for single molecule localization microscopy (SMLM). We show that industrial grade CMOS cameras approach the performance of scientific grade CMOS cameras at a fraction of the cost. This makes it more economically feasible to construct high-performance imaging systems with multiple cameras that are capable of a diversity of applications. In particular we demonstrate the use of industrial CMOS cameras for biplane, multiplane and spectrally resolved SMLM. We also provide open-source software for simultaneous control of multiple CMOS cameras and for the reduction of the movies that are acquired to super-resolution images.
Space-based infrared sensors of space target imaging effect analysis
NASA Astrophysics Data System (ADS)
Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang
2018-02-01
Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.
Correction And Use Of Jitter In Television Images
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.
1989-01-01
Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.
NASA Astrophysics Data System (ADS)
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
Fluorescent image tracking velocimeter
Shaffer, Franklin D.
1994-01-01
A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.
ERIC Educational Resources Information Center
ManTech Technical Services Corp., Fairfax, VA.
This report presents the results of a management study of audio playback equipment operations conducted by the National Library Service, Library of Congress, its associated network of state and local machine lending agencies (MLA), and other parties that play a role in current operations. The objectives were to document current operations,…
Tagging and Playback Studies to Toothed Whales
2012-09-30
More playbacks of sonar have been conducted to pilot whales (Globicephala sp.), which are large pelagic delphinids, than to any other genus of cetacean...the group across different spatial scales. In particular, results showing how pilot whales use repeated, stereotyped calls (Sayigh et al. 2012) to re...establish contact with their social group following separations may prove valuable for testing whether monitoring for stereotyped calls might
Design of digital voice storage and playback system
NASA Astrophysics Data System (ADS)
Tang, Chao
2018-03-01
Based on STC89C52 chip, this paper presents a single chip microcomputer minimum system, which is used to realize the logic control of digital speech storage and playback system. Compared with the traditional tape voice recording system, the system has advantages of small size, low power consumption, The effective solution of traditional voice recording system is limited in the use of electronic and information processing.
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
Investigation into the use of photoanthropometry in facial image comparison.
Moreton, Reuben; Morley, Johanna
2011-10-10
Photoanthropometry is a metric based facial image comparison technique. Measurements of the face are taken from an image using predetermined facial landmarks. Measurements are then converted to proportionality indices (PIs) and compared to PIs from another facial image. Photoanthropometry has been presented as a facial image comparison technique in UK courts for over 15 years. It is generally accepted that extrinsic factors (e.g. orientation of the head, camera angle and distance from the camera) can cause discrepancies in anthropometric measurements of the face from photographs. However there has been limited empirical research into quantifying the influence of such variables. The aim of this study was to determine the reliability of photoanthropometric measurements between different images of the same individual taken with different angulations of the camera. The study examined the facial measurements of 25 individuals from high resolution photographs, taken at different horizontal and vertical camera angles in a controlled environment. Results show that the degree of variability in facial measurements of the same individual due to variations in camera angle can be as great as the variability of facial measurements between different individuals. Results suggest that photoanthropometric facial comparison, as it is currently practiced, is unsuitable for elimination purposes. Preliminary investigations into the effects of distance from camera and image resolution in poor quality images suggest that such images are not an accurate representation of an individuals face, however further work is required. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Joint estimation of high resolution images and depth maps from light field cameras
NASA Astrophysics Data System (ADS)
Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki
2014-03-01
Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.
A novel super-resolution camera model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli
2015-05-01
Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.
Mitigation of Atmospheric Effects on Imaging Systems
2004-03-31
focal length. The imaging system had two cameras: an Electrim camera sensitive in the visible (0.6 µ m) waveband and an Amber QWIP infrared camera...sensitive in the 9–micron region. The Amber QWIP infrared camera had 256x256 pixels, pixel pitch 38 mµ , focal length of 1.8 m, FOV of 5.4 x5.4 mr...each day. Unfortunately, signals from the different read ports of the Electrim camera picked up noise on their way to the digitizer, and this resulted
Imaging Emission Spectra with Handheld and Cellphone Cameras
NASA Astrophysics Data System (ADS)
Sitar, David
2012-12-01
As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboralory setting on a shoestring budget and get immediale results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon point-and-shoot auto focusing camera and two different cellphone cameras: one at 6.1 MP and the other at 5.1 MP.
Use of a Digital Camera To Document Student Observations in a Microbiology Laboratory Class.
ERIC Educational Resources Information Center
Mills, David A.; Kelley, Kevin; Jones, Michael
2001-01-01
Points out the lack of microscopic images of wine-related microbes. Uses a digital camera during a wine microbiology laboratory to capture student-generated microscope images. Discusses the advantages of using a digital camera in a teaching lab. (YDS)
Lincoln Penny on Mars in Camera Calibration Target
2012-09-10
The penny in this image is part of a camera calibration target on NASA Mars rover Curiosity. The MAHLI camera on the rover took this image of the MAHLI calibration target during the 34th Martian day of Curiosity work on Mars, Sept. 9, 2012.
Cheetah: A high frame rate, high resolution SWIR image camera
NASA Astrophysics Data System (ADS)
Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob
2008-10-01
A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.
Design and fabrication of a CCD camera for use with relay optics in solar X-ray astronomy
NASA Technical Reports Server (NTRS)
1984-01-01
Configured as a subsystem of a sounding rocket experiment, a camera system was designed to record and transmit an X-ray image focused on a charge coupled device. The camera consists of a X-ray sensitive detector and the electronics for processing and transmitting image data. The design and operation of the camera are described. Schematics are included.
An image-tube camera for cometary spectrography
NASA Astrophysics Data System (ADS)
Mamadov, O.
The paper discusses the mounting of an image tube camera. The cathode is of antimony, sodium, potassium, and cesium. The parts used for mounting are of acrylic plastic and a fabric-based laminate. A mounting design that does not include cooling is presented. The aperture ratio of the camera is 1:27. Also discussed is the way that the camera is joined to the spectrograph.
Camera Trajectory fromWide Baseline Images
NASA Astrophysics Data System (ADS)
Havlena, M.; Torii, A.; Pajdla, T.
2008-09-01
Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the angle θ of its corresponding rays w.r.t. the optical axis as θ = ar 1+br2 . After a successful calibration, we know the correspondence of the image points to the 3D optical rays in the coordinate system of the camera. The following steps aim at finding the transformation between the camera and the world coordinate systems, i.e. the pose of the camera in the 3D world, using 2D image matches. For computing 3D structure, we construct a set of tentative matches detecting different affine covariant feature regions including MSER, Harris Affine, and Hessian Affine in acquired images. These features are alternative to popular SIFT features and work comparably in our situation. Parameters of the detectors are chosen to limit the number of regions to 1-2 thousands per image. The detected regions are assigned local affine frames (LAF) and transformed into standard positions w.r.t. their LAFs. Discrete Cosine Descriptors are computed for each region in the standard position. Finally, mutual distances of all regions in one image and all regions in the other image are computed as the Euclidean distances of their descriptors and tentative matches are constructed by selecting the mutually closest pairs. Opposed to the methods using short baseline images, simpler image features which are not affine covariant cannot be used because the view point can change a lot between consecutive frames. Furthermore, feature matching has to be performed on the whole frame because no assumptions on the proximity of the consecutive projections can be made for wide baseline images. This is making the feature detection, description, and matching much more time-consuming than it is for short baseline images and limits the usage to low frame rate sequences when operating in real-time. Robust 3D structure can be computed by RANSAC which searches for the largest subset of the set of tentative matches which is, within a predefined threshold ", consistent with an epipolar geometry. We use ordered sampling as suggested in to draw 5-tuples from the list of tentative matches ordered ascendingly by the distance of their descriptors which may help to reduce the number of samples in RANSAC. From each 5-tuple, relative orientation is computed by solving the 5-point minimal relative orientation problem for calibrated cameras. Often, there are more models which are supported by a large number of matches. Thus the chance that the correct model, even if it has the largest support, will be found by running a single RANSAC is small. Work suggested to generate models by randomized sampling as in RANSAC but to use soft (kernel) voting for a parameter instead of looking for the maximal support. The best model is then selected as the one with the parameter closest to the maximum in the accumulator space. In our case, we vote in a two-dimensional accumulator for the estimated camera motion direction. However, unlike in, we do not cast votes directly by each sampled epipolar geometry but by the best epipolar geometries recovered by ordered sampling of RANSAC. With our technique, we could go up to the 98.5 % contamination of mismatches with comparable effort as simple RANSAC does for the contamination by 84 %. The relative camera orientation with the motion direction closest to the maximum in the voting space is finally selected. As already mentioned in the first paragraph, the use of camera trajectory estimates is quite wide. In we have introduced a technique for measuring the size of camera translation relatively to the observed scene which uses the dominant apical angle computed at the reconstructed scene points and is robust against mismatches. The experiments demonstrated that the measure can be used to improve the robustness of camera path computation and object recognition for methods which use a geometric, e.g. the ground plane, constraint such as does for the detection of pedestrians. Using the camera trajectories, perspective cutouts with stabilized horizon are constructed and an arbitrary object recognition routine designed to work with images acquired by perspective cameras can be used without any further modifications.
Spacecraft camera image registration
NASA Technical Reports Server (NTRS)
Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)
1987-01-01
A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).
Bio-Inspired Sensing and Imaging of Polarization Information in Nature
2008-05-04
polarization imaging,” Appl. Opt. 36, 150–155 (1997). 5. L. B. Wolff, “Polarization camera for computer vision with a beam splitter ,” J. Opt. Soc. Am. A...vision with a beam splitter ,” J. Opt. Soc. Am. A 11, 2935–2945 (1994). 2. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comput...group we have been developing various man-made, non -invasive imaging methodologies, sensing schemes, camera systems, and visualization and display
A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA
NASA Astrophysics Data System (ADS)
Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred
2016-08-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.
NASA Astrophysics Data System (ADS)
Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith
2017-02-01
The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
Pro-social ultrasonic communication in rats: insights from playback studies.
Seffer, Dominik; Schwarting, Rainer K W; Wöhr, Markus
2014-08-30
Rodent ultrasonic vocalizations (USV) serve as situation-dependent affective signals and convey important communicative functions. In the rat, three major USV types exist: (I) 40-kHz USV, which are emitted by pups during social isolation; (II) 22-kHz USV, which are produced by juvenile and adult rats in aversive situations, including social defeat; and (III) 50-kHz USV, which are uttered by juvenile and adult rats in appetitive situations, including rough-and-tumble play. Here, evidence for a communicative function of 50-kHz USV is reviewed, focusing on findings obtained in the recently developed 50-kHz USV radial maze playback paradigm. Up to now, the following five acoustic stimuli were tested in this paradigm: (A) natural 50-kHz USV, (B) natural 22-kHz USV, (C) artificial 50-kHz sine wave tones, (D) artificial time- and amplitude-matched white noise, and (E) background noise. All studies using the 50-kHz USV radial maze playback paradigm indicate that 50-kHz USV serve a pro-social affiliative function as social contact calls. While playback of the different kinds of acoustic stimuli used so far elicited distinct behavioral response patterns, 50-kHz USV consistently led to social approach behavior in the recipient, indicating that pro-social ultrasonic communication can be studied in a reliable and highly standardized manner by means of the 50-kHz USV radial maze playback paradigm. This appears to be particularly relevant for rodent models of neurodevelopmental disorders, as there is a tremendous need for reliable behavioral assays with face validity to social communication deficits seen in autism and schizophrenia in order to study underlying genetic and neurobiological alterations. Copyright © 2014 Elsevier B.V. All rights reserved.
Anthropogenic noise disrupts use of vocal information about predation risk.
Kern, Julie M; Radford, Andrew N
2016-11-01
Anthropogenic noise is rapidly becoming a universal environmental feature. While the impacts of such additional noise on avian sexual signals are well documented, our understanding of its effect in other terrestrial taxa, on other vocalisations, and on receivers is more limited. Little is known, for example, about the influence of anthropogenic noise on responses to vocalisations relating to predation risk, despite the potential fitness consequences. We use playback experiments to investigate the impact of traffic noise on the responses of foraging dwarf mongooses (Helogale parvula) to surveillance calls produced by sentinels, individuals scanning for danger from a raised position whose presence usually results in reduced vigilance by foragers. Foragers exhibited a lessened response to surveillance calls in traffic-noise compared to ambient-sound playback, increasing personal vigilance. A second playback experiment, using noise playbacks without surveillance calls, suggests that the increased vigilance could arise in part from the direct influence of additional noise as there was an increase in response to traffic-noise playback alone. Acoustic masking could also play a role. Foragers maintained the ability to distinguish between sentinels of different dominance class, increasing personal vigilance when presented with subordinate surveillance calls compared to calls of a dominant groupmate in both noise treatments, suggesting complete masking was not occurring. However, an acoustic-transmission experiment showed that while surveillance calls were potentially audible during approaching traffic noise, they were probably inaudible during peak traffic intensity noise. While recent work has demonstrated detrimental effects of anthropogenic noise on defensive responses to actual predatory attacks, which are relatively rare, our results provide evidence of a potentially more widespread influence since animals should constantly assess background risk to optimise the foraging-vigilance trade-off. Copyright © 2016 Elsevier Ltd. All rights reserved.
An HDR imaging method with DTDI technology for push-broom cameras
NASA Astrophysics Data System (ADS)
Sun, Wu; Han, Chengshan; Xue, Xucheng; Lv, Hengyi; Shi, Junxia; Hu, Changhong; Li, Xiangzhi; Fu, Yao; Jiang, Xiaonan; Huang, Liang; Han, Hongyin
2018-03-01
Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02 dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.
Super-resolved refocusing with a plenoptic camera
NASA Astrophysics Data System (ADS)
Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu
2011-03-01
This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).
Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung
2017-07-08
A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.
Novel computer-based endoscopic camera
NASA Astrophysics Data System (ADS)
Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia
1995-05-01
We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.
Software for Acquiring Image Data for PIV
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Cheung, H. M.; Kressler, Brian
2003-01-01
PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.
A digital ISO expansion technique for digital cameras
NASA Astrophysics Data System (ADS)
Yoo, Youngjin; Lee, Kangeui; Choe, Wonhee; Park, SungChan; Lee, Seong-Deok; Kim, Chang-Yong
2010-01-01
Market's demands of digital cameras for higher sensitivity capability under low-light conditions are remarkably increasing nowadays. The digital camera market is now a tough race for providing higher ISO capability. In this paper, we explore an approach for increasing maximum ISO capability of digital cameras without changing any structure of an image sensor or CFA. Our method is directly applied to the raw Bayer pattern CFA image to avoid non-linearity characteristics and noise amplification which are usually deteriorated after ISP (Image Signal Processor) of digital cameras. The proposed method fuses multiple short exposed images which are noisy, but less blurred. Our approach is designed to avoid the ghost artifact caused by hand-shaking and object motion. In order to achieve a desired ISO image quality, both low frequency chromatic noise and fine-grain noise that usually appear in high ISO images are removed and then we modify the different layers which are created by a two-scale non-linear decomposition of an image. Once our approach is performed on an input Bayer pattern CFA image, the resultant Bayer image is further processed by ISP to obtain a fully processed RGB image. The performance of our proposed approach is evaluated by comparing SNR (Signal to Noise Ratio), MTF50 (Modulation Transfer Function), color error ~E*ab and visual quality with reference images whose exposure times are properly extended into a variety of target sensitivity.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1989-01-01
A method and apparatus is developed for obtaining a stereo image with reduced depth distortion and optimum depth resolution. Static and dynamic depth distortion and depth resolution tradeoff is provided. Cameras obtaining the images for a stereo view are converged at a convergence point behind the object to be presented in the image, and the collection-surface-to-object distance, the camera separation distance, and the focal lengths of zoom lenses for the cameras are all increased. Doubling the distances cuts the static depth distortion in half while maintaining image size and depth resolution. Dynamic depth distortion is minimized by panning a stereo view-collecting camera system about a circle which passes through the convergence point and the camera's first nodal points. Horizontal field shifting of the television fields on a television monitor brings both the monitor and the stereo views within the viewer's limit of binocular fusion.
Chung, Krystal Shu Yi; Lee, Eleena Shi Lynn; Tan, Jia Qi; Teo, Dylan Jin Hao; Lee, Chris Ban Loong; Ee, Sharifah Rose; Sim, Sam Kim Yang; Chee, Chew Sim
2018-03-01
This study investigated the effects of Playback Theatre on older adults' cognitive function and well-being, specifically in the Singapore context. Eighteen healthy older adults, older than 50 years of age, participated in the study. Due to practical limitations, a single-group pre-post study design was adopted. Participants completed the outcome measures before and after the training program. There were six weekly sessions in total (about 1.5 hours, once weekly). Participants experienced a significant improvement in their emotional well-being after training. However, there were no significant changes in participants' cognitive function or health-related quality of life. Our results suggest that Playback Theatre as a community program has potential to improve the mental and emotional well-being of older people. © 2018 AJA Inc.
NASA Astrophysics Data System (ADS)
Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.
2017-02-01
In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.
Design, demonstration and testing of low F-number LWIR panoramic imaging relay optics
NASA Astrophysics Data System (ADS)
Furxhi, Orges; Frascati, Joe; Driggers, Ronald
2018-04-01
Panoramic imaging is inherently wide field of view. High sensitivity uncooled Long Wave Infrared (LWIR) imaging requires low F-number optics. These two requirements result in short back working distance designs that, in addition to being costly, are challenging to integrate with commercially available uncooled LWIR cameras and cores. Common challenges include the relocation of the shutter flag, custom calibration of the camera dynamic range and NUC tables, focusing, and athermalization. Solutions to these challenges add to the system cost and make panoramic uncooled LWIR cameras commercially unattractive. In this paper, we present the design of Panoramic Imaging Relay Optics (PIRO) and show imagery and test results with one of the first prototypes. PIRO designs use several reflective surfaces (generally two) to relay a panoramic scene onto a real, donut-shaped image. The PIRO donut is imaged on the focal plane of the camera using a commercially-off-the-shelf (COTS) low F-number lens. This approach results in low component cost and effortless integration with pre-calibrated commercially available cameras and lenses.
NPS assessment of color medical image displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-10-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired
Object tracking using multiple camera video streams
NASA Astrophysics Data System (ADS)
Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford
2010-05-01
Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.
NASA Astrophysics Data System (ADS)
Pani, R.; Pellegrini, R.; Betti, M.; De Vincentis, G.; Cinti, M. N.; Bennati, P.; Vittorini, F.; Casali, V.; Mattioli, M.; Orsolini Cencelli, V.; Navarria, F.; Bollini, D.; Moschini, G.; Iurlaro, G.; Montani, L.; de Notaristefani, F.
2007-02-01
The principal limiting factor in the clinical acceptance of scintimammography is certainly its low sensitivity for cancers sized <1 cm, mainly due to the lack of equipment specifically designed for breast imaging. The National Institute of Nuclear Physics (INFN) has been developing a new scintillation camera based on Lanthanum tri-Bromide Cerium-doped crystal (LaBr 3:Ce), that demonstrating superior imaging performances with respect to the dedicated scintillation γ-camera that was previously developed. The proposed detector consists of continuous LaBr 3:Ce scintillator crystal coupled to a Hamamatsu H8500 Flat Panel PMT. One centimeter thick crystal has been chosen to increase crystal detection efficiency. In this paper, we propose a comparison and evaluation between lanthanum γ-camera and a Multi PSPMT camera, NaI(Tl) discrete pixel based, previously developed under "IMI" Italian project for technological transfer of INFN. A phantom study has been developed to test both the cameras before introducing them in clinical trials. High resolution scans produced by LaBr 3:Ce camera showed higher tumor contrast with a detailed imaging of uptake area than pixellated NaI(Tl) dedicated camera. Furthermore, with the lanthanum camera, the Signal-to-Noise Ratio ( SNR) value was increased for a lesion as small as 5 mm, with a consequent strong improvement in detectability.
Photogrammetric Modeling and Image-Based Rendering for Rapid Virtual Environment Creation
2004-12-01
area and different methods have been proposed. Pertinent methods include: Camera Calibration , Structure from Motion, Stereo Correspondence, and Image...Based Rendering 1.1.1 Camera Calibration Determining the 3D structure of a model from multiple views becomes simpler if the intrinsic (or internal...can introduce significant nonlinearities into the image. We have found that camera calibration is a straightforward process which can simplify the
Research on inosculation between master of ceremonies or players and virtual scene in virtual studio
NASA Astrophysics Data System (ADS)
Li, Zili; Zhu, Guangxi; Zhu, Yaoting
2003-04-01
A technical principle about construction of virtual studio has been proposed where orientation tracker and telemeter has been used for improving conventional BETACAM pickup camera and connecting with the software module of the host. A model of virtual camera named Camera & Post-camera Coupling Pair has been put forward, which is different from the common model in computer graphics and has been bound to real BETACAM pickup camera for shooting. The formula has been educed to compute the foreground frame buffer image and the background frame buffer image of the virtual scene whose boundary is based on the depth information of target point of the real BETACAM pickup camera's projective ray. The effect of real-time consistency has been achieved between the video image sequences of the master of ceremonies or players and the CG video image sequences for the virtual scene in spatial position, perspective relationship and image object masking. The experimental result has shown that the technological scheme of construction of virtual studio submitted in this paper is feasible and more applicative and more effective than the existing technology to establish a virtual studio based on color-key and image synthesis with background using non-linear video editing technique.
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth
2015-08-05
This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth
2017-12-08
This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Introducing the depth transfer curve for 3D capture system characterization
NASA Astrophysics Data System (ADS)
Goma, Sergio R.; Atanassov, Kalin; Ramachandra, Vikas
2011-03-01
3D technology has recently made a transition from movie theaters to consumer electronic devices such as 3D cameras and camcorders. In addition to what 2D imaging conveys, 3D content also contains information regarding the scene depth. Scene depth is simulated through the strongest brain depth cue, namely retinal disparity. This can be achieved by capturing an image by horizontally separated cameras. Objects at different depths will be projected with different horizontal displacement on the left and right camera images. These images, when fed separately to either eye, leads to retinal disparity. Since the perception of depth is the single most important 3D imaging capability, an evaluation procedure is needed to quantify the depth capture characteristics. Evaluating depth capture characteristics subjectively is a very difficult task since the intended and/or unintended side effects from 3D image fusion (depth interpretation) by the brain are not immediately perceived by the observer, nor do such effects lend themselves easily to objective quantification. Objective evaluation of 3D camera depth characteristics is an important tool that can be used for "black box" characterization of 3D cameras. In this paper we propose a methodology to evaluate the 3D cameras' depth capture capabilities.
Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization
NASA Technical Reports Server (NTRS)
Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.
2012-01-01
The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.
Using DSLR cameras in digital holography
NASA Astrophysics Data System (ADS)
Hincapié-Zuluaga, Diego; Herrera-Ramírez, Jorge; García-Sucerquia, Jorge
2017-08-01
In Digital Holography (DH), the size of the bidimensional image sensor to record the digital hologram, plays a key role on the performance of this imaging technique; the larger the size of the camera sensor, the better the quality of the final reconstructed image. Scientific cameras with large formats are offered in the market, but their cost and availability limit their use as a first option when implementing DH. Nowadays, DSLR cameras provide an easy-access alternative that is worthwhile to be explored. The DSLR cameras are a wide, commercial, and available option that in comparison with traditional scientific cameras, offer a much lower cost per effective pixel over a large sensing area. However, in the DSLR cameras, with their RGB pixel distribution, the sampling of information is different to the sampling in monochrome cameras usually employed in DH. This fact has implications in their performance. In this work, we discuss why DSLR cameras are not extensively used for DH, taking into account the problem reported by different authors of object replication. Simulations of DH using monochromatic and DSLR cameras are presented and a theoretical deduction for the replication problem using the Fourier theory is also shown. Experimental results of DH implementation using a DSLR camera show the replication problem.
Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm
NASA Astrophysics Data System (ADS)
Lahamy, H.; Lichti, D.
2011-09-01
Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.
Quigley, Elizabeth A; Tokay, Barbara A; Jewell, Sarah T; Marchetti, Michael A; Halpern, Allan C
2015-08-01
Photographs are invaluable dermatologic diagnostic, management, research, teaching, and documentation tools. Digital Imaging and Communications in Medicine (DICOM) standards exist for many types of digital medical images, but there are no DICOM standards for camera-acquired dermatologic images to date. To identify and describe existing or proposed technology and technique standards for camera-acquired dermatologic images in the scientific literature. Systematic searches of the PubMed, EMBASE, and Cochrane databases were performed in January 2013 using photography and digital imaging, standardization, and medical specialty and medical illustration search terms and augmented by a gray literature search of 14 websites using Google. Two reviewers independently screened titles of 7371 unique publications, followed by 3 sequential full-text reviews, leading to the selection of 49 publications with the most recent (1985-2013) or detailed description of technology or technique standards related to the acquisition or use of images of skin disease (or related conditions). No universally accepted existing technology or technique standards for camera-based digital images in dermatology were identified. Recommendations are summarized for technology imaging standards, including spatial resolution, color resolution, reproduction (magnification) ratios, postacquisition image processing, color calibration, compression, output, archiving and storage, and security during storage and transmission. Recommendations are also summarized for technique imaging standards, including environmental conditions (lighting, background, and camera position), patient pose and standard view sets, and patient consent, privacy, and confidentiality. Proposed standards for specific-use cases in total body photography, teledermatology, and dermoscopy are described. The literature is replete with descriptions of obtaining photographs of skin disease, but universal imaging standards have not been developed, validated, and adopted to date. Dermatologic imaging is evolving without defined standards for camera-acquired images, leading to variable image quality and limited exchangeability. The development and adoption of universal technology and technique standards may first emerge in scenarios when image use is most associated with a defined clinical benefit.
Super-resolved all-refocused image with a plenoptic camera
NASA Astrophysics Data System (ADS)
Wang, Xiang; Li, Lin; Hou, Guangqi
2015-12-01
This paper proposes an approach to produce the super-resolution all-refocused images with the plenoptic camera. The plenoptic camera can be produced by putting a micro-lens array between the lens and the sensor in a conventional camera. This kind of camera captures both the angular and spatial information of the scene in one single shot. A sequence of digital refocused images, which are refocused at different depth, can be produced after processing the 4D light field captured by the plenoptic camera. The number of the pixels in the refocused image is the same as that of the micro-lens in the micro-lens array. Limited number of the micro-lens will result in poor low resolution refocused images. Therefore, not enough details will exist in these images. Such lost details, which are often high frequency information, are important for the in-focus part in the refocused image. We decide to super-resolve these in-focus parts. The result of image segmentation method based on random walks, which works on the depth map produced from the 4D light field data, is used to separate the foreground and background in the refocused image. And focusing evaluation function is employed to determine which refocused image owns the clearest foreground part and which one owns the clearest background part. Subsequently, we employ single image super-resolution method based on sparse signal representation to process the focusing parts in these selected refocused images. Eventually, we can obtain the super-resolved all-focus image through merging the focusing background part and the focusing foreground part in the way of digital signal processing. And more spatial details will be kept in these output images. Our method will enhance the resolution of the refocused image, and just the refocused images owning the clearest foreground and background need to be super-resolved.
A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum. PMID:23112656
Development of an Ultra-Violet Digital Camera for Volcanic Sulfur Dioxide Imaging
NASA Astrophysics Data System (ADS)
Bluth, G. J.; Shannon, J. M.; Watson, I. M.; Prata, F. J.; Realmuto, V. J.
2006-12-01
In an effort to improve monitoring of passive volcano degassing, we have constructed and tested a digital camera for quantifying the sulfur dioxide (SO2) content of volcanic plumes. The camera utilizes a bandpass filter to collect photons in the ultra-violet (UV) region where SO2 selectively absorbs UV light. SO2 is quantified by imaging calibration cells of known SO2 concentrations. Images of volcanic SO2 plumes were collected at four active volcanoes with persistent passive degassing: Villarrica, located in Chile, and Santiaguito, Fuego, and Pacaya, located in Guatemala. Images were collected from distances ranging between 4 and 28 km away, with crisp detection up to approximately 16 km. Camera set-up time in the field ranges from 5-10 minutes and images can be recorded in as rapidly as 10-second intervals. Variable in-plume concentrations can be observed and accurate plume speeds (or rise rates) can readily be determined by tracing individual portions of the plume within sequential images. Initial fluxes computed from camera images require a correction for the effects of environmental light scattered into the field of view. At Fuego volcano, simultaneous measurements of corrected SO2 fluxes with the camera and a Correlation Spectrometer (COSPEC) agreed within 25 percent. Experiments at the other sites were equally encouraging, and demonstrated the camera's ability to detect SO2 under demanding meteorological conditions. This early work has shown great success in imaging SO2 plumes and offers promise for volcano monitoring due to its rapid deployment and data processing capabilities, relatively low cost, and improved interpretation afforded by synoptic plume coverage from a range of distances.
A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements
NASA Astrophysics Data System (ADS)
Suzuki, S.; Shiokawa, K.
2016-12-01
Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.
Voellmy, Irene K; Purser, Julia; Simpson, Stephen D; Radford, Andrew N
2014-01-01
Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.
Voellmy, Irene K.; Purser, Julia; Simpson, Stephen D.; Radford, Andrew N.
2014-01-01
Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator−prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences. PMID:25058618
Digital Camera Control for Faster Inspection
NASA Technical Reports Server (NTRS)
Brown, Katharine; Siekierski, James D.; Mangieri, Mark L.; Dekome, Kent; Cobarruvias, John; Piplani, Perry J.; Busa, Joel
2009-01-01
Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency.
Brute Force Matching Between Camera Shots and Synthetic Images from Point Clouds
NASA Astrophysics Data System (ADS)
Boerner, R.; Kröhnert, M.
2016-06-01
3D point clouds, acquired by state-of-the-art terrestrial laser scanning techniques (TLS), provide spatial information about accuracies up to several millimetres. Unfortunately, common TLS data has no spectral information about the covered scene. However, the matching of TLS data with images is important for monoplotting purposes and point cloud colouration. Well-established methods solve this issue by matching of close range images and point cloud data by fitting optical camera systems on top of laser scanners or rather using ground control points. The approach addressed in this paper aims for the matching of 2D image and 3D point cloud data from a freely moving camera within an environment covered by a large 3D point cloud, e.g. a 3D city model. The key advantage of the free movement affects augmented reality applications or real time measurements. Therefore, a so-called real image, captured by a smartphone camera, has to be matched with a so-called synthetic image which consists of reverse projected 3D point cloud data to a synthetic projection centre whose exterior orientation parameters match the parameters of the image, assuming an ideal distortion free camera.
Dense Region of Impact Craters
2011-09-23
NASA Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on Aug. 14 2011. This image was taken through the camera clear filter. The image has a resolution of about 260 meters per pixel.
Low-cost printing of computerised tomography (CT) images where there is no dedicated CT camera.
Tabari, Abdulkadir M
2007-01-01
Many developing countries still rely on conventional hard copy images to transfer information among physicians. We have developed a low-cost alternative method of printing computerised tomography (CT) scan images where there is no dedicated camera. A digital camera is used to photograph images from the CT scan screen monitor. The images are then transferred to a PC via a USB port, before being printed on glossy paper using an inkjet printer. The method can be applied to other imaging modalities like ultrasound and MRI and appears worthy of emulation elsewhere in the developing world where resources and technical expertise are scarce.
A small field of view camera for hybrid gamma and optical imaging
NASA Astrophysics Data System (ADS)
Lees, J. E.; Bugby, S. L.; Bhatia, B. S.; Jambi, L. K.; Alqahtani, M. S.; McKnight, W. R.; Ng, A. H.; Perkins, A. C.
2014-12-01
The development of compact low profile gamma-ray detectors has allowed the production of small field of view, hand held imaging devices for use at the patient bedside and in operating theatres. The combination of an optical and a gamma camera, in a co-aligned configuration, offers high spatial resolution multi-modal imaging giving a superimposed scintigraphic and optical image. This innovative introduction of hybrid imaging offers new possibilities for assisting surgeons in localising the site of uptake in procedures such as sentinel node detection. Recent improvements to the camera system along with results of phantom and clinical imaging are reported.
Sensor noise camera identification: countering counter-forensics
NASA Astrophysics Data System (ADS)
Goljan, Miroslav; Fridrich, Jessica; Chen, Mo
2010-01-01
In camera identification using sensor noise, the camera that took a given image can be determined with high certainty by establishing the presence of the camera's sensor fingerprint in the image. In this paper, we develop methods to reveal counter-forensic activities in which an attacker estimates the camera fingerprint from a set of images and pastes it onto an image from a different camera with the intent to introduce a false alarm and, in doing so, frame an innocent victim. We start by classifying different scenarios based on the sophistication of the attacker's activity and the means available to her and to the victim, who wishes to defend herself. The key observation is that at least some of the images that were used by the attacker to estimate the fake fingerprint will likely be available to the victim as well. We describe the socalled "triangle test" that helps the victim reveal attacker's malicious activity with high certainty under a wide range of conditions. This test is then extended to the case when none of the images that the attacker used to create the fake fingerprint are available to the victim but the victim has at least two forged images to analyze. We demonstrate the test's performance experimentally and investigate its limitations. The conclusion that can be made from this study is that planting a sensor fingerprint in an image without leaving a trace is significantly more difficult than previously thought.
NASA Astrophysics Data System (ADS)
Al-Durgham, K.; Lichti, D. D.; Detchev, I.; Kuntze, G.; Ronsky, J. L.
2018-05-01
A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system's calibration parameters. This is essential to validate the repeatability of the parameters' estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system - for a single camera analysis - was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors' best knowledge that this work is the first to address the topic of DF stability analysis.
A survey of camera error sources in machine vision systems
NASA Astrophysics Data System (ADS)
Jatko, W. B.
In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.
NASA Astrophysics Data System (ADS)
Gelderblom, Erik C.; Vos, Hendrik J.; Mastik, Frits; Faez, Telli; Luan, Ying; Kokhuis, Tom J. A.; van der Steen, Antonius F. W.; Lohse, Detlef; de Jong, Nico; Versluis, Michel
2012-10-01
The Brandaris 128 ultra-high-speed imaging facility has been updated over the last 10 years through modifications made to the camera's hardware and software. At its introduction the camera was able to record 6 sequences of 128 images (500 × 292 pixels) at a maximum frame rate of 25 Mfps. The segmented mode of the camera was revised to allow for subdivision of the 128 image sensors into arbitrary segments (1-128) with an inter-segment time of 17 μs. Furthermore, a region of interest can be selected to increase the number of recordings within a single run of the camera from 6 up to 125. By extending the imaging system with a laser-induced fluorescence setup, time-resolved ultra-high-speed fluorescence imaging of microscopic objects has been enabled. Minor updates to the system are also reported here.
NASA Technical Reports Server (NTRS)
Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)
1998-01-01
A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2016-12-01
A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.
Development of Automated Tracking System with Active Cameras for Figure Skating
NASA Astrophysics Data System (ADS)
Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi
This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.
NASA Astrophysics Data System (ADS)
Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David
2012-06-01
Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.
Calibration of Action Cameras for Photogrammetric Purposes
Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo
2014-01-01
The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898
Calibration of action cameras for photogrammetric purposes.
Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo
2014-09-18
The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test
Lebourgeois, Valentine; Bégué, Agnès; Labbé, Sylvain; Mallavan, Benjamin; Prévot, Laurent; Roux, Bruno
2008-01-01
The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR) cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1) the use of unprocessed image data did not improve the results of image analyses; 2) vignetting had a significant effect, especially for the modified camera, and 3) normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces. PMID:27873930
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
2004-03-13
This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560
Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.
2007-09-01
We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.
Baum, S.; Sillem, M.; Ney, J. T.; Baum, A.; Friedrich, M.; Radosa, J.; Kramer, K. M.; Gronwald, B.; Gottschling, S.; Solomayer, E. F.; Rody, A.; Joukhadar, R.
2017-01-01
Introduction Minimally invasive operative techniques are being used increasingly in gynaecological surgery. The expansion of the laparoscopic operation spectrum is in part the result of improved imaging. This study investigates the practical advantages of using 3D cameras in routine surgical practice. Materials and Methods Two different 3-dimensional camera systems were compared with a 2-dimensional HD system; the operating surgeonʼs experiences were documented immediately postoperatively using a questionnaire. Results Significant advantages were reported for suturing and cutting of anatomical structures when using the 3D compared to 2D camera systems. There was only a slight advantage for coagulating. The use of 3D cameras significantly improved the general operative visibility and in particular the representation of spacial depth compared to 2-dimensional images. There was not a significant advantage for image width. Depiction of adhesions and retroperitoneal neural structures was significantly improved by the stereoscopic cameras, though this did not apply to blood vessels, ureter, uterus or ovaries. Conclusion 3-dimensional cameras were particularly advantageous for the depiction of fine anatomical structures due to improved spacial depth representation compared to 2D systems. 3D cameras provide the operating surgeon with a monitor image that more closely resembles actual anatomy, thus simplifying laparoscopic procedures. PMID:28190888
Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.
Donné, Simon; Goossens, Bart; Philips, Wilfried
2017-08-23
Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.
NASA Astrophysics Data System (ADS)
Trokielewicz, Mateusz; Bartuzi, Ewelina; Michowska, Katarzyna; Andrzejewska, Antonina; Selegrat, Monika
2015-09-01
In the age of modern, hyperconnected society that increasingly relies on mobile devices and solutions, implementing a reliable and accurate biometric system employing iris recognition presents new challenges. Typical biometric systems employing iris analysis require expensive and complicated hardware. We therefore explore an alternative way using visible spectrum iris imaging. This paper aims at answering several questions related to applying iris biometrics for images obtained in the visible spectrum using smartphone camera. Can irides be successfully and effortlessly imaged using a smartphone's built-in camera? Can existing iris recognition methods perform well when presented with such images? The main advantage of using near-infrared (NIR) illumination in dedicated iris recognition cameras is good performance almost independent of the iris color and pigmentation. Are the images obtained from smartphone's camera of sufficient quality even for the dark irides? We present experiments incorporating simple image preprocessing to find the best visibility of iris texture, followed by a performance study to assess whether iris recognition methods originally aimed at NIR iris images perform well with visible light images. To our best knowledge this is the first comprehensive analysis of iris recognition performance using a database of high-quality images collected in visible light using the smartphones flashlight together with the application of commercial off-the-shelf (COTS) iris recognition methods.
Semi-automated camera trap image processing for the detection of ungulate fence crossing events.
Janzen, Michael; Visser, Kaitlyn; Visscher, Darcy; MacLeod, Ian; Vujnovic, Dragomir; Vujnovic, Ksenija
2017-09-27
Remote cameras are an increasingly important tool for ecological research. While remote camera traps collect field data with minimal human attention, the images they collect require post-processing and characterization before it can be ecologically and statistically analyzed, requiring the input of substantial time and money from researchers. The need for post-processing is due, in part, to a high incidence of non-target images. We developed a stand-alone semi-automated computer program to aid in image processing, categorization, and data reduction by employing background subtraction and histogram rules. Unlike previous work that uses video as input, our program uses still camera trap images. The program was developed for an ungulate fence crossing project and tested against an image dataset which had been previously processed by a human operator. Our program placed images into categories representing the confidence of a particular sequence of images containing a fence crossing event. This resulted in a reduction of 54.8% of images that required further human operator characterization while retaining 72.6% of the known fence crossing events. This program can provide researchers using remote camera data the ability to reduce the time and cost required for image post-processing and characterization. Further, we discuss how this procedure might be generalized to situations not specifically related to animal use of linear features.
iPhone 4s and iPhone 5s Imaging of the Eye
Jalil, Maaz; Ferenczy, Sandor R.; Shields, Carol L.
2017-01-01
Background/Aims To evaluate the technical feasibility of a consumer-grade cellular iPhone camera as an ocular imaging device compared to existing ophthalmic imaging equipment for documentation purposes. Methods A comparison of iPhone 4s and 5s images was made with external facial images (macrophotography) using Nikon cameras, slit-lamp images (microphotography) using Zeiss photo slit-lamp camera, and fundus images (fundus photography) using RetCam II. Results In an analysis of six consecutive patients with ophthalmic conditions, both iPhones achieved documentation of external findings (macrophotography) using standard camera modality, tap to focus, and built-in flash. Both iPhones achieved documentation of anterior segment findings (microphotography) during slit-lamp examination through oculars. Both iPhones achieved fundus imaging using standard video modality with continuous iPhone illumination through an ophthalmic lens. Comparison to standard ophthalmic cameras, macrophotography and microphotography were excellent. In comparison to RetCam fundus photography, iPhone fundus photography revealed smaller field and was technically more difficult to obtain, but the quality was nearly similar to RetCam. Conclusions iPhone versions 4s and 5s can provide excellent ophthalmic macrophotography and microphotography and adequate fundus photography. We believe that iPhone imaging could be most useful in settings where expensive, complicated, and cumbersome imaging equipment is unavailable. PMID:28275604
Portable, low-priced retinal imager for eye disease screening
NASA Astrophysics Data System (ADS)
Soliz, Peter; Nemeth, Sheila; VanNess, Richard; Barriga, E. S.; Zamora, Gilberto
2014-02-01
The objective of this project was to develop and demonstrate a portable, low-priced, easy to use non-mydriatic retinal camera for eye disease screening in underserved urban and rural locations. Existing portable retinal imagers do not meet the requirements of a low-cost camera with sufficient technical capabilities (field of view, image quality, portability, battery power, and ease-of-use) to be distributed widely to low volume clinics, such as the offices of single primary care physicians serving rural communities or other economically stressed healthcare facilities. Our approach for Smart i-Rx is based primarily on a significant departure from current generations of desktop and hand-held commercial retinal cameras as well as those under development. Our techniques include: 1) Exclusive use of off-the-shelf components; 2) Integration of retinal imaging device into low-cost, high utility camera mount and chin rest; 3) Unique optical and illumination designed for small form factor; and 4) Exploitation of autofocus technology built into present digital SLR recreational cameras; and 5) Integration of a polarization technique to avoid the corneal reflex. In a prospective study, 41 out of 44 diabetics were imaged successfully. No imaging was attempted on three of the subjects due to noticeably small pupils (less than 2mm). The images were of sufficient quality to detect abnormalities related to diabetic retinopathy, such as microaneurysms and exudates. These images were compared with ones taken non-mydriatically with a Canon CR-1 Mark II camera. No cases identified as having DR by expert retinal graders were missed in the Smart i-Rx images.
Optical Transient Monitor (OTM) for BOOTES Project
NASA Astrophysics Data System (ADS)
Páta, P.; Bernas, M.; Castro-Tirado, A. J.; Hudec, R.
2003-04-01
The Optical Transient Monitor (OTM) is a software for control of three wide and ultra-wide filed cameras of BOOTES (Burst Observer and Optical Transient Exploring System) station. The OTM is a PC based and it is powerful tool for taking images from two SBIG CCD cameras in same time or from one camera only. The control program for BOOTES cameras is Windows 98 or MSDOS based. Now the version for Windows 2000 is prepared. There are five main supported modes of work. The OTM program could control cameras and evaluate image data without human interaction.
Noise and sensitivity of x-ray framing cameras at Nike (abstract)
NASA Astrophysics Data System (ADS)
Pawley, C. J.; Deniz, A. V.; Lehecka, T.
1999-01-01
X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.
Recognizable-image selection for fingerprint recognition with a mobile-device camera.
Lee, Dongjae; Choi, Kyoungtaek; Choi, Heeseung; Kim, Jaihie
2008-02-01
This paper proposes a recognizable-image selection algorithm for fingerprint-verification systems that use a camera embedded in a mobile device. A recognizable image is defined as the fingerprint image which includes the characteristics that are sufficiently discriminating an individual from other people. While general camera systems obtain focused images by using various gradient measures to estimate high-frequency components, mobile cameras cannot acquire recognizable images in the same way because the obtained images may not be adequate for fingerprint recognition, even if they are properly focused. A recognizable image has to meet the following two conditions: First, valid region in the recognizable image should be large enough compared with other nonrecognizable images. Here, a valid region is a well-focused part, and ridges in the region are clearly distinguishable from valleys. In order to select valid regions, this paper proposes a new focus-measurement algorithm using the secondary partial derivatives and a quality estimation utilizing the coherence and symmetry of gradient distribution. Second, rolling and pitching degrees of a finger measured from the camera plane should be within some limit for a recognizable image. The position of a core point and the contour of a finger are used to estimate the degrees of rolling and pitching. Experimental results show that our proposed method selects valid regions and estimates the degrees of rolling and pitching properly. In addition, fingerprint-verification performance is improved by detecting the recognizable images.
NPS assessment of color medical displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-02-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired.
Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask
NASA Astrophysics Data System (ADS)
Morel, Sébastien
2004-09-01
A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.
High-speed imaging using 3CCD camera and multi-color LED flashes
NASA Astrophysics Data System (ADS)
Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis
2017-11-01
This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.
A position and attitude vision measurement system for wind tunnel slender model
NASA Astrophysics Data System (ADS)
Cheng, Lei; Yang, Yinong; Xue, Bindang; Zhou, Fugen; Bai, Xiangzhi
2014-11-01
A position and attitude vision measurement system for drop test slender model in wind tunnel is designed and developed. The system used two high speed cameras, one is put to the side of the model and another is put to the position where the camera can look up the model. Simple symbols are set on the model. The main idea of the system is based on image matching technique between the 3D-digital model projection image and the image captured by the camera. At first, we evaluate the pitch angles, the roll angles and the position of the centroid of a model through recognizing symbols in the images captured by the side camera. And then, based on the evaluated attitude info, giving a series of yaw angles, a series of projection images of the 3D-digital model are obtained. Finally, these projection images are matched with the image which captured by the looking up camera, and the best match's projection images corresponds to the yaw angle is the very yaw angle of the model. Simulation experiments are conducted and the results show that the maximal error of attitude measurement is less than 0.05°, which can meet the demand of test in wind tunnel.
Applying image quality in cell phone cameras: lens distortion
NASA Astrophysics Data System (ADS)
Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje
2009-01-01
This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.
Embedded processor extensions for image processing
NASA Astrophysics Data System (ADS)
Thevenin, Mathieu; Paindavoine, Michel; Letellier, Laurent; Heyrman, Barthélémy
2008-04-01
The advent of camera phones marks a new phase in embedded camera sales. By late 2009, the total number of camera phones will exceed that of both conventional and digital cameras shipped since the invention of photography. Use in mobile phones of applications like visiophony, matrix code readers and biometrics requires a high degree of component flexibility that image processors (IPs) have not, to date, been able to provide. For all these reasons, programmable processor solutions have become essential. This paper presents several techniques geared to speeding up image processors. It demonstrates that a gain of twice is possible for the complete image acquisition chain and the enhancement pipeline downstream of the video sensor. Such results confirm the potential of these computing systems for supporting future applications.
EAARL Topography - George Washington Birthplace National Monument 2008
Brock, John C.; Nayegandhi, Amar; Wright, C. Wayne; Stevens, Sara; Yates, Xan
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) and first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the George Washington Birthplace National Monument in Virginia, acquired on March 26, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First Surface
Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) elevation data were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The project provides highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography-Pearl River Delta 2008: First Surface
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography - Jean Lafitte National Historical Park and Preserve 2006
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) and bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Jean Lafitte National Historical Park and Preserve in Louisiana, acquired on September 22, 2006. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth
Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Submerged Topography - U.S. Virgin Islands 2003
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived submerged topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), South Florida-Caribbean Network, Miami, FL; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate bathymetric datasets of a portion of the U.S. Virgin Islands, acquired on April 21, 23, and 30, May 2, and June 14 and 17, 2003. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Stevens, Sara
2011-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, acquired post-Nor'Ida (November 2009 nor'easter) on November 27 and 29 and December 1, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL coastal topography and imagery–Western Louisiana, post-Hurricane Rita, 2005: First surface
Bonisteel-Cormier, Jamie M.; Wright, Wayne C.; Fredericks, Alexandra M.; Klipp, Emily S.; Nagle, Doug B.; Sallenger, Asbury H.; Brock, John C.
2013-01-01
These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, Virginia. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beachface, acquired post-Hurricane Rita on September 27-28 and October 2, 2005. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Website.
EAARL Coastal Topography-Maryland and Delaware, Post-Nor'Ida, 2009
Bonisteel-Cormier, J.M.; Vivekanandan, Saisudha; Nayegandhi, Amar; Sallenger, A.H.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Maryland and Delaware coastline beachface, acquired post-Nor'Ida (November 2009 nor'easter) on November 28 and 30, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Louisiana barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 6 and 7, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, acquired post-Nor'Ida (November 2009 nor'easter) on November 27 and 29 and December 1, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
EAARL Coastal Topography-Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Segura, Martha
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Mississippi and Alabama barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 8, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Stevens, Sara
2010-01-01
These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Assateague Island National Seashore in Maryland and Virginia, acquired post-Nor'Ida (November 2009 nor'easter) on November 28 and 30, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar(EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
EAARL Coastal Topography-Fire Island National Seashore, New York, Post-Nor'Ida, 2009
Nayegandhi, Amar; Vivekanandan, Saisudha; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Bonisteel-Cormier, J.M.; Fredericks, Xan; Stevens, Sara
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Fire Island National Seashore in New York, acquired post-Nor'Ida (November 2009 nor'easter) on December 4, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
EAARL coastal topography and imagery-Fire Island National Seashore, New York, 2009
Vivekanandan, Saisudha; Klipp, E.S.; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara
2010-01-01
These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Fire Island National Seashore in New York, acquired on July 9 and August 3, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
EAARL Coastal Topography-Chandeleur Islands, Louisiana, 2010: Bare Earth
Nayegandhi, Amar; Bonisteel-Cormier, Jamie M.; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Nagle, David B.; Vivekanandan, Saisudha; Yates, Xan; Klipp, Emily S.
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and submerged topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Chandeleur Islands, acquired March 3, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
EAARL Coastal Topography-Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface
Fredericks, Xan; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Klipp, E.S.; Nagle, D.B.
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired post-Hurricane Jeanne (September 2004 hurricane) on October 1, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
Nayegandhi, Amar; Vivekanandan, Saisudha; Brock, J.C.; Wright, C.W.; Bonisteel-Cormier, J.M.; Nagle, D.B.; Klipp, E.S.; Stevens, Sara
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the Sandy Hook Unit of Gateway National Recreation Area in New Jersey, acquired post-Nor'Ida (November 2009 nor'easter) on December 4, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha
2010-01-01
These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) topography, first-surface (FS) topography, and canopy-height (CH) datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore, acquired June 30, 2007. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.
EAARL Coastal Topography - Fire Island National Seashore 2007
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) and bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Fire Island National Seashore in New York, acquired on April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography-Assateague Island National Seashore, 2008: Bare Earth
Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography-Assateague Island National Seashore, 2008: First Surface
Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
A new compact, high sensitivity neutron imaging systema)
NASA Astrophysics Data System (ADS)
Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.
2012-10-01
We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (109-1010 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 1010. The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.
Enhancement of low light level images using color-plus-mono dual camera.
Jung, Yong Ju
2017-05-15
In digital photography, the improvement of imaging quality in low light shooting is one of the users' needs. Unfortunately, conventional smartphone cameras that use a single, small image sensor cannot provide satisfactory quality in low light level images. A color-plus-mono dual camera that consists of two horizontally separate image sensors, which simultaneously captures both a color and mono image pair of the same scene, could be useful for improving the quality of low light level images. However, an incorrect image fusion between the color and mono image pair could also have negative effects, such as the introduction of severe visual artifacts in the fused images. This paper proposes a selective image fusion technique that applies an adaptive guided filter-based denoising and selective detail transfer to only those pixels deemed reliable with respect to binocular image fusion. We employ a dissimilarity measure and binocular just-noticeable-difference (BJND) analysis to identify unreliable pixels that are likely to cause visual artifacts during image fusion via joint color image denoising and detail transfer from the mono image. By constructing an experimental system of color-plus-mono camera, we demonstrate that the BJND-aware denoising and selective detail transfer is helpful in improving the image quality during low light shooting.
Novel Robotic Tools for Piping Inspection and Repair, Phase 1
2014-02-13
35 Figure 57 - Accowle ODVS cross section and reflective path ......................................... 36 Figure 58 - Leopard Imaging HD...mounted to iPhone ............................................................................. 39 Figure 63 - Kogeto mounted to Leopard Imaging HD...40 Figure 65 - Leopard Imaging HD camera pipe test (letters) ............................................. 40 Figure 66 - Leopard Imaging HD camera
A multipurpose camera system for monitoring Kīlauea Volcano, Hawai'i
Patrick, Matthew R.; Orr, Tim R.; Lee, Lopaka; Moniz, Cyril J.
2015-01-01
We describe a low-cost, compact multipurpose camera system designed for field deployment at active volcanoes that can be used either as a webcam (transmitting images back to an observatory in real-time) or as a time-lapse camera system (storing images onto the camera system for periodic retrieval during field visits). The system also has the capability to acquire high-definition video. The camera system uses a Raspberry Pi single-board computer and a 5-megapixel low-light (near-infrared sensitive) camera, as well as a small Global Positioning System (GPS) module to ensure accurate time-stamping of images. Custom Python scripts control the webcam and GPS unit and handle data management. The inexpensive nature of the system allows it to be installed at hazardous sites where it might be lost. Another major advantage of this camera system is that it provides accurate internal timing (independent of network connection) and, because a full Linux operating system and the Python programming language are available on the camera system itself, it has the versatility to be configured for the specific needs of the user. We describe example deployments of the camera at Kīlauea Volcano, Hawai‘i, to monitor ongoing summit lava lake activity.
Two-Camera Acquisition and Tracking of a Flying Target
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Assad, Christopher; Kovalik, Joseph M.; Pain, Bedabrata; Wrigley, Chris J.; Twiss, Peter
2008-01-01
A method and apparatus have been developed to solve the problem of automated acquisition and tracking, from a location on the ground, of a luminous moving target in the sky. The method involves the use of two electronic cameras: (1) a stationary camera having a wide field of view, positioned and oriented to image the entire sky; and (2) a camera that has a much narrower field of view (a few degrees wide) and is mounted on a two-axis gimbal. The wide-field-of-view stationary camera is used to initially identify the target against the background sky. So that the approximate position of the target can be determined, pixel locations on the image-detector plane in the stationary camera are calibrated with respect to azimuth and elevation. The approximate target position is used to initially aim the gimballed narrow-field-of-view camera in the approximate direction of the target. Next, the narrow-field-of view camera locks onto the target image, and thereafter the gimbals are actuated as needed to maintain lock and thereby track the target with precision greater than that attainable by use of the stationary camera.
NASA Technical Reports Server (NTRS)
Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)
1985-01-01
Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.
Design and realization of an AEC&AGC system for the CCD aerial camera
NASA Astrophysics Data System (ADS)
Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun
2015-08-01
An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.
NGEE Arctic Zero Power Warming PhenoCamera Images, Barrow, Alaska, 2016
Shawn Serbin; Andrew McMahon; Keith Lewin; Kim Ely; Alistair Rogers
2016-11-14
StarDot NetCam SC pheno camera images collected from the top of the Barrow, BEO Sled Shed. The camera was installed to monitor the BNL TEST group's prototype ZPW (Zero Power Warming) chambers during the growing season of 2016 (including early spring and late fall). Images were uploaded to the BNL FTP server every 10 minutes and renamed with the date and time of the image. See associated data "Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016" http://dx.doi.org/10.5440/1343066.
Low-cost laser speckle contrast imaging of blood flow using a webcam.
Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion.
Low-cost laser speckle contrast imaging of blood flow using a webcam
Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082
HIGH SPEED KERR CELL FRAMING CAMERA
Goss, W.C.; Gilley, L.F.
1964-01-01
The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)
Design of a high-numerical-aperture digital micromirror device camera with high dynamic range.
Qiao, Yang; Xu, Xiping; Liu, Tao; Pan, Yue
2015-01-01
A high-NA imaging system with high dynamic range is presented based on a digital micromirror device (DMD). The DMD camera consists of an objective imaging system and a relay imaging system, connected by a DMD chip. With the introduction of a total internal reflection prism system, the objective imaging system is designed with a working F/# of 1.97, breaking through the F/2.45 limitation of conventional DMD projection lenses. As for the relay imaging system, an off-axis design that could correct off-axis aberrations of the tilt relay imaging system is developed. This structure has the advantage of increasing the NA of the imaging system while maintaining a compact size. Investigation revealed that the dynamic range of a DMD camera could be greatly increased, by 2.41 times. We built one prototype DMD camera with a working F/# of 1.23, and the field experiments proved the validity and reliability our work.
Performance benefits and limitations of a camera network
NASA Astrophysics Data System (ADS)
Carr, Peter; Thomas, Paul J.; Hornsey, Richard
2005-06-01
Visual information is of vital significance to both animals and artificial systems. The majority of mammals rely on two images, each with a resolution of 107-108 'pixels' per image. At the other extreme are insect eyes where the field of view is segmented into 103-105 images, each comprising effectively one pixel/image. The great majority of artificial imaging systems lie nearer to the mammalian characteristics in this parameter space, although electronic compound eyes have been developed in this laboratory and elsewhere. If the definition of a vision system is expanded to include networks or swarms of sensor elements, then schools of fish, flocks of birds and ant or termite colonies occupy a region where the number of images and the pixels/image may be comparable. A useful system might then have 105 imagers, each with about 104-105 pixels. Artificial analogs to these situations include sensor webs, smart dust and co-ordinated robot clusters. As an extreme example, we might consider the collective vision system represented by the imminent existence of ~109 cellular telephones, each with a one-megapixel camera. Unoccupied regions in this resolution-segmentation parameter space suggest opportunities for innovative artificial sensor network systems. Essential for the full exploitation of these opportunities is the availability of custom CMOS image sensor chips whose characteristics can be tailored to the application. Key attributes of such a chip set might include integrated image processing and control, low cost, and low power. This paper compares selected experimentally determined system specifications for an inward-looking array of 12 cameras with the aid of a camera-network model developed to explore the tradeoff between camera resolution and the number of cameras.
Developments in mercuric iodide gamma ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Beyerle, A.G.; Dolin, R.C.
A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.
Seeing the Light: A Classroom-Sized Pinhole Camera Demonstration for Teaching Vision
ERIC Educational Resources Information Center
Prull, Matthew W.; Banks, William P.
2005-01-01
We describe a classroom-sized pinhole camera demonstration (camera obscura) designed to enhance students' learning of the visual system. The demonstration consists of a suspended rear-projection screen onto which the outside environment projects images through a small hole in a classroom window. Students can observe these images in a darkened…
USDA-ARS?s Scientific Manuscript database
This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...
Completely optical orientation determination for an unstabilized aerial three-line camera
NASA Astrophysics Data System (ADS)
Wohlfeil, Jürgen
2010-10-01
Aerial line cameras allow the fast acquisition of high-resolution images at low costs. Unfortunately the measurement of the camera's orientation with the necessary rate and precision is related with large effort, unless extensive camera stabilization is used. But also stabilization implicates high costs, weight, and power consumption. This contribution shows that it is possible to completely derive the absolute exterior orientation of an unstabilized line camera from its images and global position measurements. The presented approach is based on previous work on the determination of the relative orientation of subsequent lines using optical information from the remote sensing system. The relative orientation is used to pre-correct the line images, in which homologous points can reliably be determined using the SURF operator. Together with the position measurements these points are used to determine the absolute orientation from the relative orientations via bundle adjustment of a block of overlapping line images. The approach was tested at a flight with the DLR's RGB three-line camera MFC. To evaluate the precision of the resulting orientation the measurements of a high-end navigation system and ground control points are used.
2012-03-08
to-Use 3-D Camera For Measurements in Turbulent Flow Fields B Thurow, Auburn Near Mid Far Conventional imaging Plenoptic imaging Conventional 2...depth-of-field and blur Reduced aperture (restricted angular information) leads to low signal levels Lightfield Imaging Plenoptic camera records
Tenth Anniversary Image from Camera on NASA Mars Orbiter
2012-02-29
NASA Mars Odyssey spacecraft captured this image on Feb. 19, 2012, 10 years to the day after the camera recorded its first view of Mars. This image covers an area in the Nepenthes Mensae region north of the Martian equator.
Full-Frame Reference for Test Photo of Moon
NASA Technical Reports Server (NTRS)
2005-01-01
This pair of views shows how little of the full image frame was taken up by the Moon in test images taken Sept. 8, 2005, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The Mars-bound camera imaged Earth's Moon from a distance of about 10 million kilometers (6 million miles) away -- 26 times the distance between Earth and the Moon -- as part of an activity to test and calibrate the camera. The images are very significant because they show that the Mars Reconnaissance Orbiter spacecraft and this camera can properly operate together to collect very high-resolution images of Mars. The target must move through the camera's telescope view in just the right direction and speed to acquire a proper image. The day's test images also demonstrate that the focus mechanism works properly with the telescope to produce sharp images. Out of the 20,000-pixel-by-6,000-pixel full frame, the Moon's diameter is about 340 pixels, if the full Moon could be seen. The illuminated crescent is about 60 pixels wide, and the resolution is about 10 kilometers (6 miles) per pixel. At Mars, the entire image region will be filled with high-resolution information. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across. The Mars Reconnaissance Orbiter mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, prime contractor for the project, built the spacecraft. Ball Aerospace & Technologies Corp., Boulder, Colo., built the High Resolution Imaging Science Experiment instrument for the University of Arizona, Tucson, to provide to the mission. The HiRISE Operations Center at the University of Arizona processes images from the camera.Electronic cameras for low-light microscopy.
Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith
2013-01-01
This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.
Plume propagation direction determination with SO2 cameras
NASA Astrophysics Data System (ADS)
Klein, Angelika; Lübcke, Peter; Bobrowski, Nicole; Kuhn, Jonas; Platt, Ulrich
2017-03-01
SO2 cameras are becoming an established tool for measuring sulfur dioxide (SO2) fluxes in volcanic plumes with good precision and high temporal resolution. The primary result of SO2 camera measurements are time series of two-dimensional SO2 column density distributions (i.e. SO2 column density images). However, it is frequently overlooked that, in order to determine the correct SO2 fluxes, not only the SO2 column density, but also the distance between the camera and the volcanic plume, has to be precisely known. This is because cameras only measure angular extents of objects while flux measurements require knowledge of the spatial plume extent. The distance to the plume may vary within the image array (i.e. the field of view of the SO2 camera) since the plume propagation direction (i.e. the wind direction) might not be parallel to the image plane of the SO2 camera. If the wind direction and thus the camera-plume distance are not well known, this error propagates into the determined SO2 fluxes and can cause errors exceeding 50 %. This is a source of error which is independent of the frequently quoted (approximate) compensation of apparently higher SO2 column densities and apparently lower plume propagation velocities at non-perpendicular plume observation angles.Here, we propose a new method to estimate the propagation direction of the volcanic plume directly from SO2 camera image time series by analysing apparent flux gradients along the image plane. From the plume propagation direction and the known location of the SO2 source (i.e. volcanic vent) and camera position, the camera-plume distance can be determined. Besides being able to determine the plume propagation direction and thus the wind direction in the plume region directly from SO2 camera images, we additionally found that it is possible to detect changes of the propagation direction at a time resolution of the order of minutes. In addition to theoretical studies we applied our method to SO2 flux measurements at Mt Etna and demonstrate that we obtain considerably more precise (up to a factor of 2 error reduction) SO2 fluxes. We conclude that studies on SO2 flux variability become more reliable by excluding the possible influences of propagation direction variations.
Can we Use Low-Cost 360 Degree Cameras to Create Accurate 3d Models?
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Previtali, M.; Roncoroni, F.
2018-05-01
360 degree cameras capture the whole scene around a photographer in a single shot. Cheap 360 cameras are a new paradigm in photogrammetry. The camera can be pointed to any direction, and the large field of view reduces the number of photographs. This paper aims to show that accurate metric reconstructions can be achieved with affordable sensors (less than 300 euro). The camera used in this work is the Xiaomi Mijia Mi Sphere 360, which has a cost of about 300 USD (January 2018). Experiments demonstrate that millimeter-level accuracy can be obtained during the image orientation and surface reconstruction steps, in which the solution from 360° images was compared to check points measured with a total station and laser scanning point clouds. The paper will summarize some practical rules for image acquisition as well as the importance of ground control points to remove possible deformations of the network during bundle adjustment, especially for long sequences with unfavorable geometry. The generation of orthophotos from images having a 360° field of view (that captures the entire scene around the camera) is discussed. Finally, the paper illustrates some case studies where the use of a 360° camera could be a better choice than a project based on central perspective cameras. Basically, 360° cameras become very useful in the survey of long and narrow spaces, as well as interior areas like small rooms.
Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung
2017-02-01
A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.
Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras
NASA Technical Reports Server (NTRS)
Amer, Tahani R.; Goad, William K.
2005-01-01
Wing-Viewer is a computer program for acquisition and reduction of image data acquired by any of five different scientificgrade commercial electronic cameras used at Langley Research center to observe wind-tunnel models coated with pressure or temperature-sensitive paints (PSP/TSP). Wing-Viewer provides full automation of camera operation and acquisition of image data, and has limited data-preprocessing capability for quick viewing of the results of PSP/TSP test images. Wing- Viewer satisfies a requirement for a standard interface between all the cameras and a single personal computer: Written by use of Microsoft Visual C++ and the Microsoft Foundation Class Library as a framework, Wing-Viewer has the ability to communicate with the C/C++ software libraries that run on the controller circuit cards of all five cameras.
Integration of USB and firewire cameras in machine vision applications
NASA Astrophysics Data System (ADS)
Smith, Timothy E.; Britton, Douglas F.; Daley, Wayne D.; Carey, Richard
1999-08-01
Digital cameras have been around for many years, but a new breed of consumer market cameras is hitting the main stream. By using these devices, system designers and integrators will be well posited to take advantage of technological advances developed to support multimedia and imaging applications on the PC platform. Having these new cameras on the consumer market means lower cost, but it does not necessarily guarantee ease of integration. There are many issues that need to be accounted for like image quality, maintainable frame rates, image size and resolution, supported operating system, and ease of software integration. This paper will describe briefly a couple of the consumer digital standards, and then discuss some of the advantages and pitfalls of integrating both USB and Firewire cameras into computer/machine vision applications.
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Shaojun; Xu, Xiping
2015-10-01
The 360-degree and all round looking camera, as its characteristics of suitable for automatic analysis and judgment on the ambient environment of the carrier by image recognition algorithm, is usually applied to opto-electronic radar of robots and smart cars. In order to ensure the stability and consistency of image processing results of mass production, it is necessary to make sure the centers of image planes of different cameras are coincident, which requires to calibrate the position of the image plane's center. The traditional mechanical calibration method and electronic adjusting mode of inputting the offsets manually, both exist the problem of relying on human eyes, inefficiency and large range of error distribution. In this paper, an approach of auto- calibration of the image plane of this camera is presented. The imaging of the 360-degree and all round looking camera is a ring-shaped image consisting of two concentric circles, the center of the image is a smaller circle and the outside is a bigger circle. The realization of the technology is just to exploit the above characteristics. Recognizing the two circles through HOUGH TRANSFORM algorithm and calculating the center position, we can get the accurate center of image, that the deviation of the central location of the optic axis and image sensor. The program will set up the image sensor chip through I2C bus automatically, we can adjusting the center of the image plane automatically and accurately. The technique has been applied to practice, promotes productivity and guarantees the consistent quality of products.
Performance evaluation of a two detector camera for real-time video.
Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo
2016-12-20
Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.
Use of a color CMOS camera as a colorimeter
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Redford, Gary R.
2006-08-01
In radiology diagnosis, film is being quickly replaced by computer monitors as the display medium for all imaging modalities. Increasingly, these monitors are color instead of monochrome. It is important to have instruments available to characterize the display devices in order to guarantee reproducible presentation of image material. We are developing an imaging colorimeter based on a commercially available color digital camera. The camera uses a sensor that has co-located pixels in all three primary colors.
Demonstration of the CDMA-mode CAOS smart camera.
Riza, Nabeel A; Mazhar, Mohsin A
2017-12-11
Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.
Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.
Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S
2001-04-01
Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.
High-resolution ophthalmic imaging system
Olivier, Scot S.; Carrano, Carmen J.
2007-12-04
A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.
Blood pulsation measurement using cameras operating in visible light: limitations.
Koprowski, Robert
2016-10-03
The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).
NASA Astrophysics Data System (ADS)
Breitfelder, Stefan; Reichel, Frank R.; Gaertner, Ernst; Hacker, Erich J.; Cappellaro, Markus; Rudolf, Peter; Voelk, Ute
1998-04-01
Digital cameras are of increasing significance for professional applications in photo studios where fashion, portrait, product and catalog photographs or advertising photos of high quality have to be taken. The eyelike is a digital camera system which has been developed for such applications. It is capable of working online with high frame rates and images of full sensor size and it provides a resolution that can be varied between 2048 by 2048 and 6144 by 6144 pixel at a RGB color depth of 12 Bit per channel with an also variable exposure time of 1/60s to 1s. With an exposure time of 100 ms digitization takes approx. 2 seconds for an image of 2048 by 2048 pixels (12 Mbyte), 8 seconds for the image of 4096 by 4096 pixels (48 Mbyte) and 40 seconds for the image of 6144 by 6144 pixels (108 MByte). The eyelike can be used in various configurations. Used as a camera body most commercial lenses can be connected to the camera via existing lens adaptors. On the other hand the eyelike can be used as a back to most commercial 4' by 5' view cameras. This paper describes the eyelike camera concept with the essential system components. The article finishes with a description of the software, which is needed to bring the high quality of the camera to the user.
Rover mast calibration, exact camera pointing, and camara handoff for visual target tracking
NASA Technical Reports Server (NTRS)
Kim, Won S.; Ansar, Adnan I.; Steele, Robert D.
2005-01-01
This paper presents three technical elements that we have developed to improve the accuracy of the visual target tracking for single-sol approach-and-instrument placement in future Mars rover missions. An accurate, straightforward method of rover mast calibration is achieved by using a total station, a camera calibration target, and four prism targets mounted on the rover. The method was applied to Rocky8 rover mast calibration and yielded a 1.1-pixel rms residual error. Camera pointing requires inverse kinematic solutions for mast pan and tilt angles such that the target image appears right at the center of the camera image. Two issues were raised. Mast camera frames are in general not parallel to the masthead base frame. Further, the optical axis of the camera model in general does not pass through the center of the image. Despite these issues, we managed to derive non-iterative closed-form exact solutions, which were verified with Matlab routines. Actual camera pointing experiments aver 50 random target image paints yielded less than 1.3-pixel rms pointing error. Finally, a purely geometric method for camera handoff using stereo views of the target has been developed. Experimental test runs show less than 2.5 pixels error on high-resolution Navcam for Pancam-to-Navcam handoff, and less than 4 pixels error on lower-resolution Hazcam for Navcam-to-Hazcam handoff.
Thermographic measurements of high-speed metal cutting
NASA Astrophysics Data System (ADS)
Mueller, Bernhard; Renz, Ulrich
2002-03-01
Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
Thermal feature extraction of servers in a datacenter using thermal image registration
NASA Astrophysics Data System (ADS)
Liu, Hang; Ran, Jian; Xie, Ting; Gao, Shan
2017-09-01
Thermal cameras provide fine-grained thermal information that enhances monitoring and enables automatic thermal management in large datacenters. Recent approaches employing mobile robots or thermal camera networks can already identify the physical locations of hot spots. Other distribution information used to optimize datacenter management can also be obtained automatically using pattern recognition technology. However, most of the features extracted from thermal images, such as shape and gradient, may be affected by changes in the position and direction of the thermal camera. This paper presents a method for extracting the thermal features of a hot spot or a server in a container datacenter. First, thermal and visual images are registered based on textural characteristics extracted from images acquired in datacenters. Then, the thermal distribution of each server is standardized. The features of a hot spot or server extracted from the standard distribution can reduce the impact of camera position and direction. The results of experiments show that image registration is efficient for aligning the corresponding visual and thermal images in the datacenter, and the standardization procedure reduces the impacts of camera position and direction on hot spot or server features.
In vitro near-infrared imaging of occlusal dental caries using a germanium-enhanced CMOS camera
NASA Astrophysics Data System (ADS)
Lee, Chulsung; Darling, Cynthia L.; Fried, Daniel
2010-02-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.
In vitro near-infrared imaging of occlusal dental caries using germanium enhanced CMOS camera.
Lee, Chulsung; Darling, Cynthia L; Fried, Daniel
2010-03-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.
An optimal algorithm for reconstructing images from binary measurements
NASA Astrophysics Data System (ADS)
Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin
2010-01-01
We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.
Recent technology and usage of plastic lenses in image taking objectives
NASA Astrophysics Data System (ADS)
Yamaguchi, Susumu; Sato, Hiroshi; Mori, Nobuyoshi; Kiriki, Toshihiko
2005-09-01
Recently, plastic lenses produced by injection molding are widely used in image taking objectives for digital cameras, camcorders, and mobile phone cameras, because of their suitability for volume production and ease of obtaining an advantage of aspherical surfaces. For digital camera and camcorder objectives, it is desirable that there is no image point variation with the temperature change in spite of employing several plastic lenses. At the same time, due to the shrinking pixel size of solid-state image sensor, there is now a requirement to assemble lenses with high accuracy. In order to satisfy these requirements, we have developed 16 times compact zoom objective for camcorder and 3 times class folded zoom objectives for digital camera, incorporating cemented plastic doublet consisting of a positive lens and a negative lens. Over the last few years, production volumes of camera-equipped mobile phones have increased substantially. Therefore, for mobile phone cameras, the consideration of productivity is more important than ever. For this application, we have developed a 1.3-mega pixels compact camera module with macro function utilizing the advantage of a plastic lens that can be given mechanically functional shape to outer flange part. Its objective consists of three plastic lenses and all critical dimensions related to optical performance can be determined by high precise optical elements. Therefore this camera module is manufactured without optical adjustment in automatic assembling line, and achieves both high productivity and high performance. Reported here are the constructions and the technical topics of image taking objectives described above.
Curiosity ChemCam Removes Dust
2013-04-08
This pair of images taken a few minutes apart show how laser firing by NASA Mars rover Curiosity removes dust from the surface of a rock. The images were taken by the remote micro-imager camera in the laser-firing Chemistry and Camera ChemCam.
ERIC Educational Resources Information Center
Zetie, K. P.
2017-01-01
In basic physics, often in their first year of study of the subject, students meet the concept of an image, for example when using pinhole cameras and finding the position of an image in a mirror. They are also familiar with the term in photography and design, through software which allows image manipulation, even "in-camera" on most…
Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.
2010-01-01
Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475
Capturing the plenoptic function in a swipe
NASA Astrophysics Data System (ADS)
Lawson, Michael; Brookes, Mike; Dragotti, Pier Luigi
2016-09-01
Blur in images, caused by camera motion, is typically thought of as a problem. The approach described in this paper shows instead that it is possible to use the blur caused by the integration of light rays at different positions along a moving camera trajectory to extract information about the light rays present within the scene. Retrieving the light rays of a scene from different viewpoints is equivalent to retrieving the plenoptic function of the scene. In this paper, we focus on a specific case in which the blurred image of a scene, containing a flat plane with a texture signal that is a sum of sine waves, is analysed to recreate the plenoptic function. The image is captured by a single lens camera with shutter open, moving in a straight line between two points, resulting in a swiped image. It is shown that finite rate of innovation sampling theory can be used to recover the scene geometry and therefore the epipolar plane image from the single swiped image. This epipolar plane image can be used to generate unblurred images for a given camera location.
... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...
... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...
Presence capture cameras - a new challenge to the image quality
NASA Astrophysics Data System (ADS)
Peltoketo, Veli-Tapani
2016-04-01
Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Jorge, Jorge M.
1998-01-01
The early evaluation of the visual status of human infants is of a critical importance. It is of utmost importance to the development of the child's visual system that she perceives clear, focused, retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur. Photorefraction is a non-invasive clinical tool rather convenient for application to this kind of population. A qualitative or semi-quantitative information about refractive errors, accommodation, strabismus, amblyogenic factors and some pathologies (cataracts) can the easily obtained. The photorefraction experimental setup we established using new technological breakthroughs on the fields of imaging devices, image processing and fiber optics, allows the implementation of both the isotropic and eccentric photorefraction approaches. Essentially both methods consist on delivering a light beam into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The system is formed by one CCD color camera and a light source. A beam splitter in front of the camera's objective allows coaxial illumination and observation. An optomechanical system also allows eccentric illumination. The light source is a flash type one and is synchronized with the camera's image acquisition. The camera's image is digitized displayed in real time. Image processing routines are applied for image's enhancement and feature extraction.
NASA Astrophysics Data System (ADS)
Costa, Manuel F.; Jorge, Jorge M.
1997-12-01
The early evaluation of the visual status of human infants is of a critical importance. It is of utmost importance to the development of the child's visual system that she perceives clear, focused, retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur. Photorefraction is a non-invasive clinical tool rather convenient for application to this kind of population. A qualitative or semi-quantitative information about refractive errors, accommodation, strabismus, amblyogenic factors and some pathologies (cataracts) can the easily obtained. The photorefraction experimental setup we established using new technological breakthroughs on the fields of imaging devices, image processing and fiber optics, allows the implementation of both the isotropic and eccentric photorefraction approaches. Essentially both methods consist on delivering a light beam into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The system is formed by one CCD color camera and a light source. A beam splitter in front of the camera's objective allows coaxial illumination and observation. An optomechanical system also allows eccentric illumination. The light source is a flash type one and is synchronized with the camera's image acquisition. The camera's image is digitized displayed in real time. Image processing routines are applied for image's enhancement and feature extraction.
NASA Astrophysics Data System (ADS)
Zhang, Rumin; Liu, Peng; Liu, Dijun; Su, Guobin
2015-12-01
In this paper, we establish a forward simulation model of plenoptic camera which is implemented by inserting a micro-lens array in a conventional camera. The simulation model is used to emulate how the space objects at different depths are imaged by the main lens then remapped by the micro-lens and finally captured on the 2D sensor. We can easily modify the parameters of the simulation model such as the focal lengths and diameters of the main lens and micro-lens and the number of micro-lens. Employing the spatial integration, the refocused images and all-in-focus images are rendered based on the plenoptic images produced by the model. The forward simulation model can be used to determine the trade-offs between different configurations and to test any new researches related to plenoptic camera without the need of prototype.
Depth profile measurement with lenslet images of the plenoptic camera
NASA Astrophysics Data System (ADS)
Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei
2018-03-01
An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.
Efficient color correction method for smartphone camera-based health monitoring application.
Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong
2017-07-01
Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.
NASA Astrophysics Data System (ADS)
Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.
2015-05-01
How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.
Handheld ultrasound array imaging device
NASA Astrophysics Data System (ADS)
Hwang, Juin-Jet; Quistgaard, Jens
1999-06-01
A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.
Portal imaging with flat-panel detector and CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.
1997-07-01
This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.
Radiometric calibration of wide-field camera system with an application in astronomy
NASA Astrophysics Data System (ADS)
Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika
2017-09-01
Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.
Prediction of Viking lander camera image quality
NASA Technical Reports Server (NTRS)
Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.
1976-01-01
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun
2016-09-01
Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.
Using Engineering Cameras on Mars Landers and Rovers to Retrieve Atmospheric Dust Loading
NASA Astrophysics Data System (ADS)
Wolfe, C. A.; Lemmon, M. T.
2014-12-01
Dust in the Martian atmosphere influences energy deposition, dynamics, and the viability of solar powered exploration vehicles. The Viking, Pathfinder, Spirit, Opportunity, Phoenix, and Curiosity landers and rovers each included the ability to image the Sun with a science camera that included a neutral density filter. Direct images of the Sun provide the ability to measure extinction by dust and ice in the atmosphere. These observations have been used to characterize dust storms, to provide ground truth sites for orbiter-based global measurements of dust loading, and to help monitor solar panel performance. In the cost-constrained environment of Mars exploration, future missions may omit such cameras, as the solar-powered InSight mission has. We seek to provide a robust capability of determining atmospheric opacity from sky images taken with cameras that have not been designed for solar imaging, such as lander and rover engineering cameras. Operational use requires the ability to retrieve optical depth on a timescale useful to mission planning, and with an accuracy and precision sufficient to support both mission planning and validating orbital measurements. We will present a simulation-based assessment of imaging strategies and their error budgets, as well as a validation based on archival engineering camera data.
Imaging Emission Spectra with Handheld and Cellphone Cameras
ERIC Educational Resources Information Center
Sitar, David
2012-01-01
As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboratory setting on a shoestring budget and get immediate results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon…
Automated camera-phone experience with the frequency of imaging necessary to capture diet.
Arab, Lenore; Winter, Ashley
2010-08-01
Camera-enabled cell phones provide an opportunity to strengthen dietary recall through automated imaging of foods eaten during a specified period. To explore the frequency of imaging needed to capture all foods eaten, we examined the number of images of individual foods consumed in a pilot study of automated imaging using camera phones set to an image-capture frequency of one snapshot every 10 seconds. Food images were tallied from 10 young adult subjects who wore the phone continuously during the work day and consented to share their images. Based on the number of images received for each eating experience, the pilot data suggest that automated capturing of images at a frequency of once every 10 seconds is adequate for recording foods consumed during regular meals, whereas a greater frequency of imaging is necessary to capture snacks and beverages eaten quickly. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Beach Observations using Quadcopter Imagery
NASA Astrophysics Data System (ADS)
Yang, Yi-Chung; Wang, Hsing-Yu; Fang, Hui-Ming; Hsiao, Sung-Shan; Tsai, Cheng-Han
2017-04-01
Beaches are the places where the interaction of the land and sea takes place, and it is under the influence of many environmental factors, including meteorological and oceanic ones. To understand the evolution or changes of beaches, it may require constant monitoring. One way to monitor the beach changes is to use optical cameras. With careful placements of ground control points, land-based optical cameras, which are inexpensive compared to other remote sensing apparatuses, can be used to survey a relatively large area in a short time. For example, we have used terrestrial optical cameras incorporated with ground control points to monitor beaches. The images from the cameras were calibrated by applying the direct linear transformation, projective transformation, and Sobel edge detector to locate the shoreline. The terrestrial optical cameras can record the beach images continuous, and the shorelines can be satisfactorily identified. However, the terrestrial cameras have some limitations. First, the camera system set a sufficiently high level so that the camera can cover the whole area that is of interest; such a location may not be available. The second limitation is that objects in the image have a different resolution, depending on the distance of objects from the cameras. To overcome these limitations, the present study tested a quadcopter equipped with a down-looking camera to record video and still images of a beach. The quadcopter can be controlled to hover at one location. However, the hovering of the quadcopter can be affected by the wind, since it is not positively anchored to a structure. Although the quadcopter has a gimbal mechanism to damp out tiny shakings of the copter, it will not completely counter movements due to the wind. In our preliminary tests, we have flown the quadcopter up to 500 m high to record 10-minnte video. We then took a 10-minute average of the video data. The averaged image of the coast was blurred because of the time duration of the video and the small movement caused by the quadcopter trying to return to its original position, which is caused by the wind. To solve this problem, the feature detection technique of Speeded Up Robust Features (SURF) method was used on the image of the video, and the resulting image was much sharper than that original image. Next, we extracted the maximum and minimum of RGB value of each pixel, respectively, of the 10-minutes videos. The beach breaker zone showed up in the maximum RGB image as white color areas. Moreover, we were also able to remove the breaker from the images and see the breaker zone bottom features using minimum RGB value of the images. From this test, we also identified the location of the coastline. It was found that the correlation coefficient between the coastline identified by the copter image and that by the ground survey was as high as 0.98. By repeating this copter flight at different times, we could measure the evolution of the coastline.
Image quality evaluation of color displays using a Fovean color camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Dallas, William J.; Fan, Jiahua; Krupinski, Elizabeth A.; Redford, Gary R.; Yoneda, Takahiro
2007-03-01
This paper presents preliminary data on the use of a color camera for the evaluation of Quality Control (QC) and Quality Analysis (QA) of a color LCD in comparison with that of a monochrome LCD. The color camera is a C-MOS camera with a pixel size of 9 µm and a pixel matrix of 2268 × 1512 × 3. The camera uses a sensor that has co-located pixels for all three primary colors. The imaging geometry used mostly was 12 × 12 camera pixels per display pixel even though it appears that an imaging geometry of 17.6 might provide results which are more accurate. The color camera is used as an imaging colorimeter, where each camera pixel is calibrated to serve as a colorimeter. This capability permits the camera to determine chromaticity of the color LCD at different sections of the display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. Modulation Transfer Function (MTF) as well as Noise in terms of the Noise Power Spectrum (NPS) of both LCDs were evaluated. The horizontal MTFs of both displays have a larger negative slope than the vertical MTFs, indicating that the horizontal MTFs are poorer than the vertical MTFs. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. These results contradict simulations regarding MTFs in the vertical direction. The spatial noise of the color display in both directions are larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.
WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research.
Nazir, Sajid; Newey, Scott; Irvine, R Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; Wal, René van der
2017-01-01
The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named 'WiseEye', designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management.
Development of two-framing camera with large format and ultrahigh speed
NASA Astrophysics Data System (ADS)
Jiang, Xiaoguo; Wang, Yuan; Wang, Yi
2012-10-01
High-speed imaging facility is important and necessary for the formation of time-resolved measurement system with multi-framing capability. The framing camera which satisfies the demands of both high speed and large format needs to be specially developed in the ultrahigh speed research field. A two-framing camera system with high sensitivity and time-resolution has been developed and used for the diagnosis of electron beam parameters of Dragon-I linear induction accelerator (LIA). The camera system, which adopts the principle of light beam splitting in the image space behind the lens with long focus length, mainly consists of lens-coupled gated image intensifier, CCD camera and high-speed shutter trigger device based on the programmable integrated circuit. The fastest gating time is about 3 ns, and the interval time between the two frames can be adjusted discretely at the step of 0.5 ns. Both the gating time and the interval time can be tuned to the maximum value of about 1 s independently. Two images with the size of 1024×1024 for each can be captured simultaneously in our developed camera. Besides, this camera system possesses a good linearity, uniform spatial response and an equivalent background illumination as low as 5 electrons/pix/sec, which fully meets the measurement requirements of Dragon-I LIA.
WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research
Nazir, Sajid; Newey, Scott; Irvine, R. Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; van der Wal, René
2017-01-01
The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named ‘WiseEye’, designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management. PMID:28076444
Introduction of A New Toolbox for Processing Digital Images From Multiple Camera Networks: FMIPROT
NASA Astrophysics Data System (ADS)
Melih Tanis, Cemal; Nadir Arslan, Ali
2017-04-01
Webcam networks intended for scientific monitoring of ecosystems is providing digital images and other environmental data for various studies. Also, other types of camera networks can also be used for scientific purposes, e.g. usage of traffic webcams for phenological studies, camera networks for ski tracks and avalanche monitoring over mountains for hydrological studies. To efficiently harness the potential of these camera networks, easy to use software which can obtain and handle images from different networks having different protocols and standards is necessary. For the analyses of the images from webcam networks, numerous software packages are freely available. These software packages have different strong features not only for analyzing but also post processing digital images. But specifically for the ease of use, applicability and scalability, a different set of features could be added. Thus, a more customized approach would be of high value, not only for analyzing images of comprehensive camera networks, but also considering the possibility to create operational data extraction and processing with an easy to use toolbox. At this paper, we introduce a new toolbox, entitled; Finnish Meteorological Institute Image PROcessing Tool (FMIPROT) which a customized approach is followed. FMIPROT has currently following features: • straightforward installation, • no software dependencies that require as extra installations, • communication with multiple camera networks, • automatic downloading and handling images, • user friendly and simple user interface, • data filtering, • visualizing results on customizable plots, • plugins; allows users to add their own algorithms. Current image analyses in FMIPROT include "Color Fraction Extraction" and "Vegetation Indices". The analysis of color fraction extraction is calculating the fractions of the colors in a region of interest, for red, green and blue colors along with brightness and luminance parameters. The analysis of vegetation indices is a collection of indices used in vegetation phenology and includes "Green Fraction" (green chromatic coordinate), "Green-Red Vegetation Index" and "Green Excess Index". "Snow cover fraction" analysis which detects snow covered pixels in the images and georeference them on a geospatial plane to calculate the snow cover fraction is being implemented at the moment. FMIPROT is being developed during the EU Life+ MONIMET project. Altogether we mounted 28 cameras at 14 different sites in Finland as MONIMET camera network. In this paper, we will present details of FMIPROT and analysis results from MONIMET camera network. We will also discuss on future planned developments of FMIPROT.
Low-cost conversion of the Polaroid MD-4 land camera to a digital gel documentation system.
Porch, Timothy G; Erpelding, John E
2006-04-30
A simple, inexpensive design is presented for the rapid conversion of the popular MD-4 Polaroid land camera to a high quality digital gel documentation system. Images of ethidium bromide stained DNA gels captured using the digital system were compared to images captured on Polaroid instant film. Resolution and sensitivity were enhanced using the digital system. In addition to the low cost and superior image quality of the digital system, there is also the added convenience of real-time image viewing through the swivel LCD of the digital camera, wide flexibility of gel sizes, accurate automatic focusing, variable image resolution, and consistent ease of use and quality. Images can be directly imported to a computer by using the USB port on the digital camera, further enhancing the potential of the digital system for documentation, analysis, and archiving. The system is appropriate for use as a start-up gel documentation system and for routine gel analysis.
Fisheye image rectification using spherical and digital distortion models
NASA Astrophysics Data System (ADS)
Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang
2018-02-01
Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.
Fly-through viewpoint video system for multi-view soccer movie using viewpoint interpolation
NASA Astrophysics Data System (ADS)
Inamoto, Naho; Saito, Hideo
2003-06-01
This paper presents a novel method for virtual view generation that allows viewers to fly through in a real soccer scene. A soccer match is captured by multiple cameras at a stadium and images of arbitrary viewpoints are synthesized by view-interpolation of two real camera images near the given viewpoint. In the proposed method, cameras do not need to be strongly calibrated, but epipolar geometry between the cameras is sufficient for the view-interpolation. Therefore, it can easily be applied to a dynamic event even in a large space, because the efforts for camera calibration can be reduced. A soccer scene is classified into several regions and virtual view images are generated based on the epipolar geometry in each region. Superimposition of the images completes virtual views for the whole soccer scene. An application for fly-through observation of a soccer match is introduced as well as the algorithm of the view-synthesis and experimental results..
NASA Astrophysics Data System (ADS)
Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo
2018-02-01
We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.
A four-lens based plenoptic camera for depth measurements
NASA Astrophysics Data System (ADS)
Riou, Cécile; Deng, Zhiyuan; Colicchio, Bruno; Lauffenburger, Jean-Philippe; Kohler, Sophie; Haeberlé, Olivier; Cudel, Christophe
2015-04-01
In previous works, we have extended the principles of "variable homography", defined by Zhang and Greenspan, for measuring height of emergent fibers on glass and non-woven fabrics. This method has been defined for working with fabric samples progressing on a conveyor belt. Triggered acquisition of two successive images was needed to perform the 3D measurement. In this work, we have retained advantages of homography variable for measurements along Z axis, but we have reduced acquisitions number to a single one, by developing an acquisition device characterized by 4 lenses placed in front of a single image sensor. The idea is then to obtain four projected sub-images on a single CCD sensor. The device becomes a plenoptic or light field camera, capturing multiple views on the same image sensor. We have adapted the variable homography formulation for this device and we propose a new formulation to calculate a depth with plenoptic cameras. With these results, we have transformed our plenoptic camera in a depth camera and first results given are very promising.
NASA Astrophysics Data System (ADS)
Jaanimagi, Paul A.
1992-01-01
This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.
Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi
2012-02-01
By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.
Unconventional techniques of fundus imaging: A review
Shanmugam, Mahesh P; Mishra, Divyansh Kailash Chandra; Rajesh, R; Madhukumar, R
2015-01-01
The methods of fundus examination include direct and indirect ophthalmoscopy and imaging with a fundus camera are an essential part of ophthalmic practice. The usage of unconventional equipment such as a hand-held video camera, smartphone, and a nasal endoscope allows one to image the fundus with advantages and some disadvantages. The advantages of these instruments are the cost-effectiveness, ultra portability and ability to obtain images in a remote setting and share the same electronically. These instruments, however, are unlikely to replace the fundus camera but then would always be an additional arsenal in an ophthalmologist's armamentarium. PMID:26458475
Obstacle Detection and Avoidance of a Mobile Robotic Platform Using Active Depth Sensing
2014-06-01
price of nearly one tenth of a laser range finder, the Xbox Kinect uses an infrared projector and camera to capture images of its environment in three...inception. At the price of nearly one tenth of a laser range finder, the Xbox Kinect uses an infrared projector and camera to capture images of its...cropped between 280 and 480 pixels. ........11 Figure 9. RGB image captured by the camera on the Xbox Kinect. ...............................12 Figure
Tagging and Playback Studies to Toothed Whales
2010-09-30
using two lasers collimated at a separation of 10 cm (Webster et al. 2010). Finally, we tested low-amplitude playbacks of a high- frequency chirp that...Journal of Animal Ecology 77:936– 947 Webster T, Dawson S, Slooten E. 2010. A simple laser photogrammetry technique for measuring Hector’s... dolphins (Cephalorhynchus hectori) in the field Marine Mammal Science, 26(2): 296–308 (April 2010) DOI: 10.1111/j.1748-7692.2009.00326.x 7 8
NASA Astrophysics Data System (ADS)
Kerr, Andrew D.
Determining optimal imaging settings and best practices related to the capture of aerial imagery using consumer-grade digital single lens reflex (DSLR) cameras, should enable remote sensing scientists to generate consistent, high quality, and low cost image data sets. Radiometric optimization, image fidelity, image capture consistency and repeatability were evaluated in the context of detailed image-based change detection. The impetus for this research is in part, a dearth of relevant, contemporary literature, on the utilization of consumer grade DSLR cameras for remote sensing, and the best practices associated with their use. The main radiometric control settings on a DSLR camera, EV (Exposure Value), WB (White Balance), light metering, ISO, and aperture (f-stop), are variables that were altered and controlled over the course of several image capture missions. These variables were compared for their effects on dynamic range, intra-frame brightness variation, visual acuity, temporal consistency, and the detectability of simulated cracks placed in the images. This testing was conducted from a terrestrial, rather than an airborne collection platform, due to the large number of images per collection, and the desire to minimize inter-image misregistration. The results point to a range of slightly underexposed image exposure values as preferable for change detection and noise minimization fidelity. The makeup of the scene, the sensor, and aerial platform, influence the selection of the aperture and shutter speed which along with other variables, allow for estimation of the apparent image motion (AIM) motion blur in the resulting images. The importance of the image edges in the image application, will in part dictate the lowest usable f-stop, and allow the user to select a more optimal shutter speed and ISO. The single most important camera capture variable is exposure bias (EV), with a full dynamic range, wide distribution of DN values, and high visual contrast and acuity occurring around -0.7 to -0.3EV exposure bias. The ideal values for sensor gain, was found to be ISO 100, with ISO 200 a less desirable. This study offers researchers a better understanding of the effects of camera capture settings on RSI pairs and their influence on image-based change detection.
Learning speed is affected by personality and reproductive investment in a songbird.
Rivera-Gutierrez, Hector Fabio; Martens, Tine; Pinxten, Rianne; Eens, Marcel
2017-01-01
Individuals from different taxa, including songbirds, differ consistently in behaviour and personality when facing different situations. Although our understanding of animal behaviour has increased, knowledge about between-individual differences in cognitive abilities is still limited. By using an experimental approach and a free-living songbird (Parus major) as a model, we attempted to understand between-individual differences in habituation to playbacks (as a proxy of learning speed), by investigating the role of personality, age and reproductive investment (clutch size). Pre-breeding males were tested for exploration (a proxy of personality) in standardized conditions. In addition, the same individuals were exposed to three playbacks in the field during incubation. Birds significantly moved less, stayed further away and overlapped less the playback with successive playback stimulation. While a decrease in the locomotor behaviour can be explained by personality, differences in habituation of overlapping were predicted by both reproductive investment and personality. Fast explorers habituated less. Moreover, males paired to females with larger clutches did not vary the intensity of overlapping. Since habituation requires information for recognition of non-threatening signals, personality may bias information gathering. While fast explorers may collect less information from the environment, slow explorers (reactive birds) seem to pay attention to environmental clues and collect detailed information. We provided evidence that the rate of habituation of behavioural responses, a proxy of cognitive abilities, may be affected by different factors and in a complex way.
... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...
Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W
2016-09-01
Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69.
Geometric Calibration and Validation of Ultracam Aerial Sensors
NASA Astrophysics Data System (ADS)
Gruber, Michael; Schachinger, Bernhard; Muick, Marc; Neuner, Christian; Tschemmernegg, Helfried
2016-03-01
We present details of the calibration and validation procedure of UltraCam Aerial Camera systems. Results from the laboratory calibration and from validation flights are presented for both, the large format nadir cameras and the oblique cameras as well. Thus in this contribution we show results from the UltraCam Eagle and the UltraCam Falcon, both nadir mapping cameras, and the UltraCam Osprey, our oblique camera system. This sensor offers a mapping grade nadir component together with the four oblique camera heads. The geometric processing after the flight mission is being covered by the UltraMap software product. Thus we present details about the workflow as well. The first part consists of the initial post-processing which combines image information as well as camera parameters derived from the laboratory calibration. The second part, the traditional automated aerial triangulation (AAT) is the step from single images to blocks and enables an additional optimization process. We also present some special features of our software, which are designed to better support the operator to analyze large blocks of aerial images and to judge the quality of the photogrammetric set-up.
High-Resolution Mars Camera Test Image of Moon (Infrared)
NASA Technical Reports Server (NTRS)
2005-01-01
This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.NASA Astrophysics Data System (ADS)
Sato, M.; Takahashi, Y.; Kudo, T.; Yanagi, Y.; Kobayashi, N.; Yamada, T.; Project, N.; Stenbaek-Nielsen, H. C.; McHarg, M. G.; Haaland, R. K.; Kammae, T.; Cummer, S. A.; Yair, Y.; Lyons, W. A.; Ahrns, J.; Yukman, P.; Warner, T. A.; Sonnenfeld, R. G.; Li, J.; Lu, G.
2011-12-01
The time evolution and spatial distributions of transient luminous events (TLEs) are the key parameters to identify the relationship between TLEs and parent lightning discharges, roles of electromagnetic pulses (EMPs) emitted by horizontal and vertical lightning currents in the formation of TLEs, and the occurrence condition and mechanisms of TLEs. Since the time scales of TLEs is typically less than a few milliseconds, new imaging technique that enable us to capture images with a high time resolution of < 1ms is awaited. By courtesy of "Cosmic Shore" Project conducted by Japan Broadcasting Corporation (NHK), we have carried out optical observations using a high-speed Image-Intensified (II) CMOS camera and a high-vision three-CCD camera from a jet aircraft on November 28 and December 3, 2010 in winter Japan. Using the high-speed II-CMOS camera, it is possible to capture images with 8,300 frames per second (fps), which corresponds to the time resolution of 120 us. Using the high-vision three-CCD camera, it is possible to capture high quality, true color images of TLEs with a 1920x1080 pixel size and with a frame rate of 30 fps. During the two observation flights, we have succeeded to detect 28 sprite events, and 3 elves events totally. In response to this success, we have conducted a combined aircraft and ground-based campaign of TLE observations at the High Plains in summer US. We have installed same NHK high-speed and high-vision cameras in a jet aircraft. In the period from June 27 and July 10, 2011, we have operated aircraft observations in 8 nights, and we have succeeded to capture TLE images for over a hundred events by the high-vision camera and succeeded to acquire over 40 high-speed images simultaneously. At the presentation, we will introduce the outlines of the two aircraft campaigns, and will introduce the characteristics of the time evolution and spatial distributions of TLEs observed in winter Japan, and will show the initial results of high-speed image data analysis of TLEs in summer US.
Automatic Camera Calibration for Cultural Heritage Applications Using Unstructured Planar Objects
NASA Astrophysics Data System (ADS)
Adam, K.; Kalisperakis, I.; Grammatikopoulos, L.; Karras, G.; Petsa, E.
2013-07-01
As a rule, image-based documentation of cultural heritage relies today on ordinary digital cameras and commercial software. As such projects often involve researchers not familiar with photogrammetry, the question of camera calibration is important. Freely available open-source user-friendly software for automatic camera calibration, often based on simple 2D chess-board patterns, are an answer to the demand for simplicity and automation. However, such tools cannot respond to all requirements met in cultural heritage conservation regarding possible imaging distances and focal lengths. Here we investigate the practical possibility of camera calibration from unknown planar objects, i.e. any planar surface with adequate texture; we have focused on the example of urban walls covered with graffiti. Images are connected pair-wise with inter-image homographies, which are estimated automatically through a RANSAC-based approach after extracting and matching interest points with the SIFT operator. All valid points are identified on all images on which they appear. Provided that the image set includes a "fronto-parallel" view, inter-image homographies with this image are regarded as emulations of image-to-world homographies and allow computing initial estimates for the interior and exterior orientation elements. Following this initialization step, the estimates are introduced into a final self-calibrating bundle adjustment. Measures are taken to discard unsuitable images and verify object planarity. Results from practical experimentation indicate that this method may produce satisfactory results. The authors intend to incorporate the described approach into their freely available user-friendly software tool, which relies on chess-boards, to assist non-experts in their projects with image-based approaches.
High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.
2000-01-01
As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
Clementine Images of Earth and Moon
NASA Technical Reports Server (NTRS)
1997-01-01
During its flight and lunar orbit, the Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth.
The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the missionImage Intensifier Modules For Use With Commercially Available Solid State Cameras
NASA Astrophysics Data System (ADS)
Murphy, Howard; Tyler, Al; Lake, Donald W.
1989-04-01
A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.
Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Csorba, Illes P.
Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokurei, Shogo, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp; Morishita, Junji, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp
Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signalsmore » for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors’ method based on the use of a commercially available color camera is useful to evaluate and understand the display performances of both monochrome and color LCDs in radiology departments.« less
The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.
2003-01-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.
Extreme Faint Flux Imaging with an EMCCD
NASA Astrophysics Data System (ADS)
Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien
2009-08-01
An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.
The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector
Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...
2014-06-11
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1991-01-01
Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes.
Flight Calibration of the LROC Narrow Angle Camera
NASA Astrophysics Data System (ADS)
Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.
2016-04-01
Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DN<600. A predictive model of detector temperature and dark level was developed to command dark level offset. This avoids images with a cutoff at DN=0 and minimizes quantization error in companding. Absolute radiometric calibration is derived from comparison of NAC images with ground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.
Skeletal Scintigraphy (Bone Scan)
... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...
Development of high-speed video cameras
NASA Astrophysics Data System (ADS)
Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk
2001-04-01
Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.
Chrominance watermark for mobile applications
NASA Astrophysics Data System (ADS)
Reed, Alastair; Rogers, Eliot; James, Dan
2010-01-01
Creating an imperceptible watermark which can be read by a broad range of cell phone cameras is a difficult problem. The problems are caused by the inherently low resolution and noise levels of typical cell phone cameras. The quality limitations of these devices compared to a typical digital camera are caused by the small size of the cell phone and cost trade-offs made by the manufacturer. In order to achieve this, a low resolution watermark is required which can be resolved by a typical cell phone camera. The visibility of a traditional luminance watermark was too great at this lower resolution, so a chrominance watermark was developed. The chrominance watermark takes advantage of the relatively low sensitivity of the human visual system to chrominance changes. This enables a chrominance watermark to be inserted into an image which is imperceptible to the human eye but can be read using a typical cell phone camera. Sample images will be presented showing images with a very low visibility which can be easily read by a typical cell phone camera.
Coincidence ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen
2014-12-01
A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.
Stereo Cameras for Clouds (STEREOCAM) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romps, David; Oktem, Rusen
2017-10-31
The three pairs of stereo camera setups aim to provide synchronized and stereo calibrated time series of images that can be used for 3D cloud mask reconstruction. Each camera pair is positioned at approximately 120 degrees from the other pair, with a 17o-19o pitch angle from the ground, and at 5-6 km distance from the U.S. Department of Energy (DOE) Central Facility at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) observatory to cover the region from northeast, northwest, and southern views. Images from both cameras of the same stereo setup can be paired together tomore » obtain 3D reconstruction by triangulation. 3D reconstructions from the ring of three stereo pairs can be combined together to generate a 3D mask from surrounding views. This handbook delivers all stereo reconstruction parameters of the cameras necessary to make 3D reconstructions from the stereo camera images.« less
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
General Model of Photon-Pair Detection with an Image Sensor
NASA Astrophysics Data System (ADS)
Defienne, Hugo; Reichert, Matthew; Fleischer, Jason W.
2018-05-01
We develop an analytic model that relates intensity correlation measurements performed by an image sensor to the properties of photon pairs illuminating it. Experiments using an effective single-photon counting camera, a linear electron-multiplying charge-coupled device camera, and a standard CCD camera confirm the model. The results open the field of quantum optical sensing using conventional detectors.
Visible camera imaging of plasmas in Proto-MPEX
NASA Astrophysics Data System (ADS)
Mosby, R.; Skeen, C.; Biewer, T. M.; Renfro, R.; Ray, H.; Shaw, G. C.
2015-11-01
The prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device being developed at Oak Ridge National Laboratory (ORNL). This machine plans to study plasma-material interaction (PMI) physics relevant to future fusion reactors. Measurements of plasma light emission will be made on Proto-MPEX using fast, visible framing cameras. The cameras utilize a global shutter, which allows a full frame image of the plasma to be captured and compared at multiple times during the plasma discharge. Typical exposure times are ~10-100 microseconds. The cameras are capable of capturing images at up to 18,000 frames per second (fps). However, the frame rate is strongly dependent on the size of the ``region of interest'' that is sampled. The maximum ROI corresponds to the full detector area, of ~1000x1000 pixels. The cameras have an internal gain, which controls the sensitivity of the 10-bit detector. The detector includes a Bayer filter, for ``true-color'' imaging of the plasma emission. This presentation will exmine the optimized camera settings for use on Proto-MPEX. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.