Sample records for camera narrow angle

  1. Reconditioning of Cassini Narrow-Angle Camera

    NASA Image and Video Library

    2002-07-23

    These five images of single stars, taken at different times with the narrow-angle camera on NASA Cassini spacecraft, show the effects of haze collecting on the camera optics, then successful removal of the haze by warming treatments.

  2. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.

    2003-01-01

    The Mars Orbiter Camera (MOC) has been operating on board of the Mars Global Surveyor (MGS) spacecraft since 1998. It consists of three cameras - Red and Blue Wide Angle cameras (FOV=140 deg.) and Narrow Angle camera (FOV=0.44 deg.). The Wide Angle camera allows surface resolution down to 230 m/pixel and the Narrow Angle camera - down to 1.5 m/pixel. This work is a continuation of the project, which we have reported previously. Since then we have refined and improved our stereo correlation algorithm and have processed many more stereo pairs. We will discuss results of our stereo pair analysis located in the Mars Exploration rovers (MER) landing sites and address feasibility of recovering topography from stereo pairs (especially in the polar regions), taken during MGS 'Relay-16' mode.

  3. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    USGS Publications Warehouse

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  4. Voyager spacecraft images of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.

    1982-01-01

    The Voyager imaging system is described, noting that it is made up of a narrow-angle and a wide-angle TV camera, each in turn consisting of optics, a filter wheel and shutter assembly, a vidicon tube, and an electronics subsystem. The narrow-angle camera has a focal length of 1500 mm; its field of view is 0.42 deg and its focal ratio is f/8.5. For the wide-angle camera, the focal length is 200 mm, the field of view 3.2 deg, and the focal ratio of f/3.5. Images are exposed by each camera through one of eight filters in the filter wheel on the photoconductive surface of a magnetically focused and deflected vidicon having a diameter of 25 mm. The vidicon storage surface (target) is a selenium-sulfur film having an active area of 11.14 x 11.14 mm; it holds a frame consisting of 800 lines with 800 picture elements per line. Pictures of Jupiter, Saturn, and their moons are presented, with short descriptions given of the area being viewed.

  5. Miranda

    NASA Image and Video Library

    1999-08-24

    One wide-angle and eight narrow-angle camera images of Miranda, taken by NASA Voyager 2, were combined in this view. The controlled mosaic was transformed to an orthographic view centered on the south pole.

  6. Flight Calibration of the LROC Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.

    2016-04-01

    Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DN<600. A predictive model of detector temperature and dark level was developed to command dark level offset. This avoids images with a cutoff at DN=0 and minimizes quantization error in companding. Absolute radiometric calibration is derived from comparison of NAC images with ground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.

  7. The Wide Angle Camera of the ROSETTA Mission

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Fornasier, S.; Verani, S.; Bertini, I.; Lazzarin, M.; Rampazzi, F.; Cremonese, G.; Ragazzoni, R.; Marzari, F.; Angrilli, F.; Bianchini, G. A.; Debei, S.; Dececco, M.; Guizzo, G.; Parzianello, G.; Ramous, P.; Saggin, B.; Zaccariotto, M.; Da Deppo, V.; Naletto, G.; Nicolosi, G.; Pelizzo, M. G.; Tondello, G.; Brunello, P.; Peron, F.

    This paper aims to give a brief description of the Wide Angle Camera (WAC), built by the Centro Servizi e AttivitàSpaziali (CISAS) of the University of Padova for the ESA ROSETTA Mission to comet 46P/Wirtanen and asteroids 4979 Otawara and 140 Siwa. The WAC is part of the OSIRIS imaging system, which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front cover mechanism for the NAC. The flight model of the WAC was delivered in December 2001, and has been already integrated on ROSETTA.

  8. ARC-1990-AC79-7127

    NASA Image and Video Library

    1990-02-14

    Range : 4 billion miles from Earth, at 32 degrees to the ecliptic. P-36057C This color image of the Sun, Earth, and Venus is one of the first, and maybe, only images that show are solar system from such a vantage point. The image is a portion of a wide angle image containing the sun and the region of space where the Earth and Venus were at the time, with narrow angle cameras centered on each planet. The wide angle was taken with the cameras darkest filter, a methane absorption band, and the shortest possible exposure, one two-hundredth of a second, to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky, as seen from Voyager's perpective at the edge of the solar system. Yet, it is still 8xs brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics of the camera. The rays around th sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. the 2 narrow angle frames containing the images of the Earth and Venus have been digitally mosaicked into the wide angle image at the appropriate scale. These images were taken through three color filters and recombined to produce the color image. The violet, green, and blue filters used , as well as exposure times of .72,.48, and .72 for Earth, and .36, .24, and .36 for Venus.The images also show long linear streaks resulting from scatering of sulight off parts of the camera and its shade.

  9. Solar System Portrait - View of the Sun, Earth and Venus

    NASA Image and Video Library

    1996-09-13

    This color image of the sun, Earth and Venus was taken by the Voyager 1 spacecraft Feb. 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The "rays" around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resulting from the scattering of sunlight off parts of the camera and its sun shade. From Voyager's great distance both Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. Detailed analysis also suggests that Voyager detected the moon as well, but it is too faint to be seen without special processing. Venus was only 0.11 pixel in diameter. The faint colored structure in both planetary frames results from sunlight scattered in the optics. http://photojournal.jpl.nasa.gov/catalog/PIA00450

  10. Solar System Portrait - View of the Sun, Earth and Venus

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the sun, Earth and Venus was taken by the Voyager 1 spacecraft Feb. 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The 'rays' around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resulting from the scattering of sunlight off parts of the camera and its sun shade. From Voyager's great distance both Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. Detailed analysis also suggests that Voyager detected the moon as well, but it is too faint to be seen without special processing. Venus was only 0.11 pixel in diameter. The faint colored structure in both planetary frames results from sunlight scattered in the optics.

  11. Saturnian Snowman

    NASA Image and Video Library

    2015-10-15

    NASA's Cassini spacecraft spied this tight trio of craters as it approached Saturn's icy moon Enceladus for a close flyby on Oct. 14, 2015. The craters, located at high northern latitudes, are sliced through by thin fractures -- part of a network of similar cracks that wrap around the snow-white moon. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Oct. 14, 2015 at a distance of approximately 6,000 miles (10,000 kilometers) from Enceladus. Image scale is 197 feet (60 meters) per pixel. The image was taken with the Cassini spacecraft narrow-angle camera on Oct. 14, 2015 using a spectral filter which preferentially admits wavelengths of ultraviolet light centered at 338 nanometers. http://photojournal.jpl.nasa.gov/catalog/PIA20011

  12. Solar System Portrait - 60 Frame Mosaic

    NASA Image and Video Library

    1996-09-13

    The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever portrait of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. http://photojournal.jpl.nasa.gov/catalog/PIA00451

  13. Solar System Portrait - 60 Frame Mosaic

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever 'portrait' of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun.

  14. ARC-1986-A86-7011

    NASA Image and Video Library

    1986-01-14

    Range : 2.52 million miles (1.56 million miles) P-29481B/W Voyager 2 returned this photograph with all nine known Uranus rings visible from a 15 sec. exposure through the narrow angle camera. The rings are quite dark and very narrow. The most prominent and outermost of the nine, Epsilon, is seen at top. The next three in toward Uranus, called Delta, Gamma, and Eta, are much fainter and more narrow than Epsilon ring. Then come Beta and Alpha rings, and finally, the innermost grouping, known simply as the 4,5, & 6 rings. The last three are very faint and are at the limit of detection for the Voyager camera. Uranus' rings range in width from about 100 km. (60 mi.) at the widest part of the Epsilon ring, to only a few kilometers for most of the others. this iamge was processed to enhance narrow features; the bright dots are imperfections on the camera detector. The resolution scale is about 50 km. (30 mi.)

  15. MESSENGER Departs Mercury

    NASA Image and Video Library

    2008-01-30

    After NASA MESSENGER spacecraft completed its successful flyby of Mercury, the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS, took these images of the receding planet. This is a frame from an animation.

  16. Telescope and mirrors development for the monolithic silicon carbide instrument of the osiris narrow angle camera

    NASA Astrophysics Data System (ADS)

    Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel

    2017-11-01

    The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.

  17. Neptune Great Dark Spot in High Resolution

    NASA Image and Video Library

    1999-08-30

    This photograph shows the last face on view of the Great Dark Spot that Voyager will make with the narrow angle camera. The image was shuttered 45 hours before closest approach at a distance of 2.8 million kilometers (1.7 million miles). The smallest structures that can be seen are of an order of 50 kilometers (31 miles). The image shows feathery white clouds that overlie the boundary of the dark and light blue regions. The pinwheel (spiral) structure of both the dark boundary and the white cirrus suggest a storm system rotating counterclockwise. Periodic small scale patterns in the white cloud, possibly waves, are short lived and do not persist from one Neptunian rotation to the next. This color composite was made from the clear and green filters of the narrow-angle camera. http://photojournal.jpl.nasa.gov/catalog/PIA00052

  18. MESSENGER Reveals Mercury in New Detail

    NASA Image and Video Library

    2008-01-16

    As NASA MESSENGER approached Mercury on January 14, 2008, the spacecraft Narrow-Angle Camera on the Mercury Dual Imaging System MDIS instrument captured this view of the planet rugged, cratered landscape illuminated obliquely by the Sun.

  19. Still from Red Spot Movie

    NASA Image and Video Library

    2000-11-21

    This image is one of seven from the narrow-angle camera on NASA Cassini spacecraft assembled as a brief movie of cloud movements on Jupiter. The smallest features visible are about 500 kilometers about 300 miles across.

  20. ARC-1986-A86-7024

    NASA Image and Video Library

    1986-01-24

    P-29508BW Range: 1.12 million kilometers (690,000 miles) This clear-filter view of the Uranian rings delta, gamma, eta, beta and alpha (from top) was taken with Voyager 2's narrow-angle camera and clearly illustrates the broad outer component and narrow inner component of the eta ring, which orbits Uranus at a radius of some 47,000 km (29,000 mi). The broad component is considerably more transparent than the dense, narrow inner eta component, as well as the other narrow rings shown. Resolution here is about 10 km (6 mi).

  1. Wide-Field Optic for Autonomous Acquisition of Laser Link

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to reduce the incident angle down to only a few degrees. In the presented embodiment, the filter diameter is more than ten times larger than the entrance aperture. Specifically, the filter has a clear aperture of about 51 mm. The optical design is refractive, and is comprised of nine custom refractive elements and an interference filter. The restricted maximum angle through the narrow-band filter ensures the efficient use of a 2-nm noise equivalent bandwidth spectral width optical filter at low elevation angles (where the range is longest), at the expense of less efficiency for high elevations, which can be tolerated because the range at high elevation angles is shorter. The image circle is 12 mm in diameter, mapped to 80 x 360 of sky, centered on the zenith.

  2. Ridges and Cliffs on Mercury Surface

    NASA Image and Video Library

    2008-01-20

    A complex history of geological evolution is recorded in this frame from the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS instrument, taken during NASA MESSENGER close flyby of Mercury on January 14, 2008.

  3. Reflecting on Icy Rhea

    NASA Image and Video Library

    2009-11-03

    Bright sunlight on Rhea shows off the cratered surface of Saturn second largest moon in this image captured by NASA Cassini Orbiter. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Sept. 21, 2009.

  4. Automatic helmet-wearing detection for law enforcement using CCTV cameras

    NASA Astrophysics Data System (ADS)

    Wonghabut, P.; Kumphong, J.; Satiennam, T.; Ung-arunyawee, R.; Leelapatra, W.

    2018-04-01

    The objective of this research is to develop an application for enforcing helmet wearing using CCTV cameras. The developed application aims to help law enforcement by police, and eventually resulting in changing risk behaviours and consequently reducing the number of accidents and its severity. Conceptually, the application software implemented using C++ language and OpenCV library uses two different angle of view CCTV cameras. Video frames recorded by the wide-angle CCTV camera are used to detect motorcyclists. If any motorcyclist without helmet is found, then the zoomed (narrow-angle) CCTV is activated to capture image of the violating motorcyclist and the motorcycle license plate in real time. Captured images are managed by database implemented using MySQL for ticket issuing. The results show that the developed program is able to detect 81% of motorcyclists on various motorcycle types during daytime and night-time. The validation results reveal that the program achieves 74% accuracy in detecting the motorcyclist without helmet.

  5. Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Humm, D. C.; Robinson, M. S.; Boyd, A. K.; Stelling, R.; Sato, H.; Denevi, B. W.; Braden, S. E.; Bowman-Cisneros, E.; Brylow, S. M.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) has acquired more than 250,000 images of the illuminated lunar surface and over 190,000 observations of space and non-illuminated Moon since 1 January 2010. These images, along with images from the Narrow Angle Camera (NAC) and other Lunar Reconnaissance Orbiter instrument datasets are enabling new discoveries about the morphology, composition, and geologic/geochemical evolution of the Moon. Characterizing the inflight WAC system performance is crucial to scientific and exploration results. Pre-launch calibration of the WAC provided a baseline characterization that was critical for early targeting and analysis. Here we present an analysis of WAC performance from the inflight data. In the course of our analysis we compare and contrast with the pre-launch performance wherever possible and quantify the uncertainty related to various components of the calibration process. We document the absolute and relative radiometric calibration, point spread function, and scattered light sources and provide estimates of sources of uncertainty for spectral reflectance measurements of the Moon across a range of imaging conditions.

  6. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  7. Neptune

    NASA Image and Video Library

    1999-07-25

    This image of Neptune was taken through the clear filter of the narrow-angle camera on July 16, 1989 by NASA Voyager 2 spacecraft. The image was processed by computer to show the newly resolved dark oval feature embedded in the middle of the dusky south

  8. Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography

    NASA Astrophysics Data System (ADS)

    Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.

    2012-05-01

    Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.

  9. Alpha and Omega

    NASA Image and Video Library

    2017-11-27

    These two images illustrate just how far Cassini traveled to get to Saturn. On the left is one of the earliest images Cassini took of the ringed planet, captured during the long voyage from the inner solar system. On the right is one of Cassini's final images of Saturn, showing the site where the spacecraft would enter the atmosphere on the following day. In the left image, taken in 2001, about six months after the spacecraft passed Jupiter for a gravity assist flyby, the best view of Saturn using the spacecraft's high-resolution (narrow-angle) camera was on the order of what could be seen using the Earth-orbiting Hubble Space Telescope. At the end of the mission (at right), from close to Saturn, even the lower resolution (wide-angle) camera could capture just a tiny part of the planet. The left image looks toward Saturn from 20 degrees below the ring plane and was taken on July 13, 2001 in wavelengths of infrared light centered at 727 nanometers using the Cassini spacecraft narrow-angle camera. The view at right is centered on a point 6 degrees north of the equator and was taken in visible light using the wide-angle camera on Sept. 14, 2017. The view on the left was acquired at a distance of approximately 317 million miles (510 million kilometers) from Saturn. Image scale is about 1,900 miles (3,100 kilometers) per pixel. The view at right was acquired at a distance of approximately 360,000 miles (579,000 kilometers) from Saturn. Image scale is 22 miles (35 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21353

  10. The Tactile Vision Substitution System: Applications in Education and Employment

    ERIC Educational Resources Information Center

    Scadden, Lawrence A.

    1974-01-01

    The Tactile Vision Substitution System converts the visual image from a narrow-angle television camera to a tactual image on a 5-inch square, 100-point display of vibrators placed against the abdomen of the blind person. (Author)

  11. Neptune Through a Clear Filter

    NASA Image and Video Library

    1999-07-25

    On July 23, 1989, NASA Voyager 2 spacecraft took this picture of Neptune through a clear filter on its narrow-angle camera. The image on the right has a latitude and longitude grid added for reference. Neptune Great Dark Spot is visible on the left.

  12. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  13. Still from Processed Movie of Zonal Jets

    NASA Image and Video Library

    2000-11-21

    This image is one frame from a movie clip of cloud motions on Jupiter, from the side of the planet opposite to the Great Red Spot. It was taken in the first week of October 2000 by the narrow-angle camera on NASA Cassini spacecraft,

  14. Visual imaging control systems of the Mariner to Jupiter and Saturn spacecraft

    NASA Technical Reports Server (NTRS)

    Larks, L.

    1979-01-01

    Design and fabrication of optical systems for the Mariner Jupiter Saturn (Voyager) mission is described. Because of the long distances of these planets from the sun, the spacecraft was designed without solar panels with the electricity generated on-board by radio-isotope thermal generators (RTG). The presence of RTG's and Jupiter radiation environment required that the optical systems be fabricated out of radiation stabilized materials. A narrow angle and a wide angle camera are located on the spacecraft scan platform, with the narrow angle lens a modification of the Mariner 10 lens. The optical system is described, noting that the lens was modified by moving the aperture correctors forward and placing a spider mounted secondary mirror in the original back surface of the second aperture corrector. The wide angle lens was made out of cerium doped, radiation stabilized optical glass with greatest blue transmittance, which would be resistant to RTG and Jupiter radiation.

  15. First Results from the Wide Angle Camera of the ROSETTA Mission .

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Fornasier, S.; Bertini, I.; Angrilli, F.; Bianchini, G. A.; Debei, S.; De Cecco, M.; Parzianello, G.; Zaccariotto, M.; Da Deppo, V.; Naletto, G.

    This paper gives a brief description of the Wide Angle Camera (WAC), built by the Center of Studies and Activities for Space (CISAS) of the University of Padova for the ESA ROSETTA Mission, of data we have obtained about the new mission targets, and of the first results achieved after the launch in March 2004. The WAC is part of the OSIRIS imaging system, built under the PI-ship of Dr. U. Keller (Max-Planck-Institute for Solar System Studies) which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front door mechanism for the NAC. The images show the excellent optical quality of the WAC, exceeding the specifications both in term of encircled energy (80% in one pixel over a FoV of 12×12 sq degree), limiting magnitude (fainter than the 13th in 30s exposure time through a wideband red filter) and amount of distortions.

  16. Reconditioning of Cassini Narrow-Angle Camera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These five images of single stars, taken at different times with the narrow-angle camera on NASA's Cassini spacecraft, show the effects of haze collecting on the camera's optics, then successful removal of the haze by warming treatments.

    The image on the left was taken on May 25, 2001, before the haze problem occurred. It shows a star named HD339457.

    The second image from left, taken May 30, 2001, shows the effect of haze that collected on the optics when the camera cooled back down after a routine-maintenance heating to 30 degrees Celsius (86 degrees Fahrenheit). The star is Maia, one of the Pleiades.

    The third image was taken on October 26, 2001, after a weeklong decontamination treatment at minus 7 C (19 F). The star is Spica.

    The fourth image was taken of Spica January 30, 2002, after a weeklong decontamination treatment at 4 C (39 F).

    The final image, also of Spica, was taken July 9, 2002, following three additional decontamination treatments at 4 C (39 F) for two months, one month, then another month.

    Cassini, on its way toward arrival at Saturn in 2004, is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  17. Surface compositional variation on the comet 67P/Churyumov-Gerasimenko by OSIRIS data

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Fornasier, S.; Feller, C.; Perna, D.; Hasselmann, H.; Deshapriya, J. D. P.; Fulchignoni, M.; Besse, S.; Sierks, H.; Forgia, F.; Lazzarin, M.; Pommerol, A.; Oklay, N.; Lara, L.; Scholten, F.; Preusker, F.; Leyrat, C.; Pajola, M.; Osiris-Rosetta Team

    2015-10-01

    Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on July 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System, [1]) NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) acquiring a huge quantity of surface's images at different wavelength bands, under variable illumination conditions and spatial resolution, and producing the most detailed maps at the highest spatial resolution of a comet nucleus surface.67/P C-G's nucleus shows an irregular bi-lobed shape of complex morphology with terrains showing intricate features [2, 3] and a heterogeneity surface at different scales.

  18. Modelling of the outburst on July 29th , 2015 observed with OSIRIS in the southern hemisphere of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, Adeline; Vincent, Jean-Baptiste; Sierks, Holger; Rose, Martin; Agarwal, Jessica; Deller, Jakob; Guettler, Carsten; Hoefner, Sebastian; Hofmann, Marc; Hu, Xuanyu; Kovacs, Gabor; Oklay Vincent, Nilda; Shi, Xian; Tubiana, Cecilia; Barbieri, Cesare; Lamy, Phylippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; OSIRIS Team

    2016-10-01

    Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov- Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras system since March 2014 using both the wide angle camera (WAC) and the narrow angle camera (NAC). We are using the NAC camera to study the bright outburst observed on July 29th, 2015 in the southern hemisphere. The NAC camera's wavelength ranges between 250-1000 nm with a combination of 12 filters. The high spatial resolution is needed to localize the source point of the outburst on the surface of the nucleus. At the time of the observations, the heliocentric distance was 1.25AU and the distance between the spacecraft and the comet was 126 km. We aim to understand the physics leading to such outgassing: Is the jet associated to the outbursts controlled by the micro-topography? Or by ice suddenly exposed? We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The goal of the DSMC code is to reproduce the opening angle of the jet, and constrain the outgassing ratio between outburst source and local region. The results of this model will be compared to the images obtained with the NAC camera.

  19. Rosetta/OSIRIS - Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafael; Koschny, Detlef

    2015-04-01

    ESA's Rosetta mission arrived on August 6, 2014, at target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations. OSIRIS imaged the nucleus and coma of the comet from the arrival throughout the mapping phase, PHILAE landing, early escort phase and close fly-by. The overview paper will discuss the surface morpholo-gy and activity of the nucleus as seen in gas, dust, and local jets as well as small scale structures in the local topography.

  20. Faint F Ring and Prometheus

    NASA Image and Video Library

    2016-11-21

    Surface features are visible on Saturn's moon Prometheus in this view from NASA's Cassini spacecraft. Most of Cassini's images of Prometheus are too distant to resolve individual craters, making views like this a rare treat. Saturn's narrow F ring, which makes a diagonal line beginning at top center, appears bright and bold in some Cassini views, but not here. Since the sun is nearly behind Cassini in this image, most of the light hitting the F ring is being scattered away from the camera, making it appear dim. Light-scattering behavior like this is typical of rings comprised of small particles, such as the F ring. This view looks toward the unilluminated side of the rings from about 14 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 226,000 miles (364,000 kilometers) from Prometheus and at a sun-Prometheus-spacecraft, or phase, angle of 51 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20508

  1. Up Close to Mimas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    This image is a narrow angle clear-filter image which was processed to enhance the contrast in brightness and sharpness of visible features.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of this image.

    This image was obtained when the Cassini spacecraft was above 25 degrees south, 134 degrees west latitude and longitude. The Sun-Mimas-spacecraft angle was 45 degrees and north is at the top.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  2. Spectral methods to detect cometary minerals with OSIRIS on board Rosetta

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.

    2013-09-01

    Comet 67P/Churyumov-Gerasimenko is going to be observed by the OSIRIS scientific imager (Keller et al. 2007) on board ESA's spacecraft Rosetta in the wavelength range of 250-1000 nm with a combination of 12 filters for the narrow angle camera (NAC) and 14 combination of 12 filters for the narrow angle camera (NAC) and 14 filters in the wavelength range of 240-720 nm for the wide angle camera (WAC). NAC filters are suitable to surface composition studies, while WAC filters are designed for gas and radical emission studies. In order to investigate the composition of the comet surface from the observed images, we need to understand how to detect different minerals and which compositional information can be derived from the NAC filters. Therefore, the most common cometary silicates e.g. enstatite, forsterite are investigated with two hydrated silicates (serpentine and smectite) for the determina- tion of the spectral methods. Laboratory data of those selected minerals are collected from RELAB database (http://www.planetary.brown.edu/relabdocs/relab.htm) and absolute spectra of the minerals observed by OSIRIS NAC filters are calculated. Due to the limited spectral range of the laboratory data, Far-UV and Neutral density filters of NAC are excluded from this analysis. Considered NAC filters in this study are represented in Table 1 and the number of collected laboratory data are presented in Table 2. Detection and separation of the minerals will not only allow us to study the surface composition but also to study observed composition changes due to the cometary activity during the mission.

  3. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  4. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    USGS Publications Warehouse

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  5. Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, V.; Naletto, G.; Nicolosi, P.; Zambolin, P.; De Cecco, M.; Debei, S.; Parzianello, G.; Ramous, P.; Zaccariotto, M.; Fornasier, S.; Verani, S.; Thomas, N.; Barthol, P.; Hviid, S. F.; Sebastian, I.; Meller, R.; Sierks, H.; Keller, H. U.; Barbieri, C.; Angrilli, F.; Lamy, P.; Rodrigo, R.; Rickman, H.; Wenzel, K. P.

    2017-11-01

    Rosetta is one of the cornerstone missions of the European Space Agency for having a rendezvous with the comet 67P/Churyumov-Gerasimenko in 2014. The imaging instrument on board the satellite is OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System), a cooperation among several European institutes, which consists of two cameras: a Narrow (NAC) and a Wide Angle Camera (WAC). The WAC optical design is an innovative one: it adopts an all reflecting, unvignetted and unobstructed two mirror configuration which allows to cover a 12° × 12° field of view with an F/5.6 aperture and gives a nominal contrast ratio of about 10-4. The flight model of this camera has been successfully integrated and tested in our laboratories, and finally has been integrated on the satellite which is now waiting to be launched in February 2004. In this paper we are going to describe the optical characteristics of the camera, and to summarize the results so far obtained with the preliminary calibration data. The analysis of the optical performance of this model shows a good agreement between theoretical performance and experimental results.

  6. Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.

  7. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    NASA Astrophysics Data System (ADS)

    Percoco, Gianluca; Sánchez Salmerón, Antonio J.

    2015-09-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques.

  8. Schiaparelli Crater Rim and Interior Deposits

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A portion of the rim and interior of the large impact crater Schiaparelli is seen at different resolutions in images acquired October 18, 1997 by the Mars Global Surveyor Orbiter Camera (MOC) and by the Viking Orbiter 1 twenty years earlier. The left image is a MOC wide angle camera 'context' image showing much of the eastern portion of the crater at roughly 1 km (0.6 mi) per picture element. The image is about 390 by 730 km (240 X 450 miles). Shown within the wide angle image is the outline of a portion of the best Viking image (center, 371S53), acquired at a resolution of about 240 m/pixel (790 feet). The area covered is 144 X 144 km (89 X 89 miles). The right image is the high resolution narrow angle camera view. The area covered is very small--3.9 X 10.2 km (2.4 X 6.33 mi)--but is seen at 63 times higher resolution than the Viking image. The subdued relief and bright surface are attributed to blanketing by dust; many small craters have been completely filled in, and only the most recent (and very small) craters appear sharp and bowl-shaped. Some of the small craters are only 10-12 m (30-35 feet) across. Occasional dark streaks on steeper slopes are small debris slides that have probably occurred in the past few decades. The two prominent, narrow ridges in the center of the image may be related to the adjustment of the crater floor to age or the weight of the material filling the basin.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason

    2016-07-01

    NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km-wide swath, generating DTMs with 32-m spatial scale and 4-m vertical precision. These data also support characterization of surface clutter for interpretation of radar deep and shallow sounding modes. Detectors: The cameras have identical rapid-readout, radiation-hard 4k x 2k CMOS detectors and can image in both pushbroom and framing modes. Color observations are acquired by pushbroom imaging using six broadband filters (~300-1050 nm), allowing mapping of surface units for correlation with geologic structures, topography, and compositional units from other instruments.

  10. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  11. A Fractured Pole

    NASA Image and Video Library

    2015-10-15

    NASA's Cassini spacecraft zoomed by Saturn's icy moon Enceladus on Oct. 14, 2015, capturing this stunning image of the moon's north pole. A companion view from the wide-angle camera (PIA20010) shows a zoomed out view of the same region for context. Scientists expected the north polar region of Enceladus to be heavily cratered, based on low-resolution images from the Voyager mission, but high-resolution Cassini images show a landscape of stark contrasts. Thin cracks cross over the pole -- the northernmost extent of a global system of such fractures. Before this Cassini flyby, scientists did not know if the fractures extended so far north on Enceladus. North on Enceladus is up. The image was taken in visible green light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 4,000 miles (6,000 kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of 9 degrees. Image scale is 115 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19660

  12. Faint Object Camera imaging and spectroscopy of NGC 4151

    NASA Technical Reports Server (NTRS)

    Boksenberg, A.; Catchpole, R. M.; Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.

    1995-01-01

    We describe ultraviolet and optical imaging and spectroscopy within the central few arcseconds of the Seyfert galaxy NGC 4151, obtained with the Faint Object Camera on the Hubble Space Telescope. A narrowband image including (O III) lambda(5007) shows a bright nucleus centered on a complex biconical structure having apparent opening angle approximately 65 deg and axis at a position angle along 65 deg-245 deg; images in bands including Lyman-alpha and C IV lambda(1550) and in the optical continuum near 5500 A, show only the bright nucleus. In an off-nuclear optical long-slit spectrum we find a high and a low radial velocity component within the narrow emission lines. We identify the low-velocity component with the bright, extended, knotty structure within the cones, and the high-velocity component with more confined diffuse emission. Also present are strong continuum emission and broad Balmer emission line components, which we attribute to the extended point spread function arising from the intense nuclear emission. Adopting the geometry pointed out by Pedlar et al. (1993) to explain the observed misalignment of the radio jets and the main optical structure we model an ionizing radiation bicone, originating within a galactic disk, with apex at the active nucleus and axis centered on the extended radio jets. We confirm that through density bounding the gross spatial structure of the emission line region can be reproduced with a wide opening angle that includes the line of sight, consistent with the presence of a simple opaque torus allowing direct view of the nucleus. In particular, our modelling reproduces the observed decrease in position angle with distance from the nucleus, progressing initially from the direction of the extended radio jet, through our optical structure, and on to the extended narrow-line region. We explore the kinematics of the narrow-line low- and high-velocity components on the basis of our spectroscopy and adopted model structure.

  13. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA s Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (approx.185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. There are four major systems or spheres of Earth. They are: Atmosphere, Biosphere, Hydrosphe, and Litho/Geosphere.

  14. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  15. First NAC Image Obtained in Mercury Orbit

    NASA Image and Video Library

    2017-12-08

    NASA image acquired: March 29, 2011 This is the first image of Mercury taken from orbit with MESSENGER’s Narrow Angle Camera (NAC). MESSENGER’s camera system, the Mercury Dual Imaging System (MDIS), has two cameras: the Narrow Angle Camera and the Wide Angle Camera (WAC). Comparison of this image with MESSENGER’s first WAC image of the same region shows the substantial difference between the fields of view of the two cameras. At 1.5°, the field of view of the NAC is seven times smaller than the 10.5° field of view of the WAC. This image was taken using MDIS’s pivot. MDIS is mounted on a pivoting platform and is the only instrument in MESSENGER’s payload capable of movement independent of the spacecraft. The other instruments are fixed in place, and most point down the spacecraft’s boresight at all times, relying solely on the guidance and control system for pointing. The 90° range of motion of the pivot gives MDIS a much-needed extra degree of freedom, allowing MDIS to image the planet’s surface at times when spacecraft geometry would normally prevent it from doing so. The pivot also gives MDIS additional imaging opportunities by allowing it to view more of the surface than that at which the boresight-aligned instruments are pointed at any given time. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in the commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. Mars Image Collection Mosaic Builder

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian; Hare, Trent

    2008-01-01

    A computer program assembles images from the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) collection to generate a uniform-high-resolution, georeferenced, uncontrolled mosaic image of the Martian surface. At the time of reporting the information for this article, the mosaic covered 7 percent of the Martian surface and contained data from more than 50,000 source images acquired under various light conditions at various resolutions.

  17. Cartography of the Luna-21 landing site and Lunokhod-2 traverse area based on Lunar Reconnaissance Orbiter Camera images and surface archive TV-panoramas

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Kozlova, N. A.; Kokhanov, A. A.; Zubarev, A. E.; Nadezhdina, I. E.; Patratiy, V. D.; Konopikhin, A. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Oberst, J.; Haase, I.; Jolliff, B. L.; Plescia, J. B.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) system consists of a Wide Angle Camera (WAC) and Narrow Angle Camera (NAC). NAC images (∼0.5 to 1.7 m/pixel) reveal details of the Luna-21 landing site and Lunokhod-2 traverse area. We derived a Digital Elevation Model (DEM) and an orthomosaic for the study region using photogrammetric stereo processing techniques with NAC images. The DEM and mosaic allowed us to analyze the topography and morphology of the landing site area and to map the Lunokhod-2 rover route. The total range of topographic elevation along the traverse was found to be less than 144 m; and the rover encountered slopes of up to 20°. With the orthomosaic tied to the lunar reference frame, we derived coordinates of the Lunokhod-2 landing module and overnight stop points. We identified the exact rover route by following its tracks and determined its total length as 39.16 km, more than was estimated during the mission (37 km), which until recently was a distance record for planetary robotic rovers held for more than 40 years.

  18. Rhea and Her Craters

    NASA Image and Video Library

    2005-01-17

    This Cassini image shows predominantly the impact-scarred leading hemisphere of Saturn's icy moon Rhea (1,528 kilometers, or 949 miles across). The image was taken in visible light with the Cassini spacecraft narrow angle camera on Dec. 12, 2004, at a distance of 2 million kilometers (1.2 million miles) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of 30 degrees. The image scale is about 12 kilometers (7.5 miles) per pixel. The image has been magnified by a factor of two and contrast enhanced to aid visibility. http://photojournal.jpl.nasa.gov/catalog/PIA06564

  19. Lonely Moon

    NASA Image and Video Library

    2016-10-17

    Pandora is seen here, in isolation beside Saturn's kinked and constantly changing F ring. Pandora (near upper right) is 50 miles (81 kilometers) wide. The moon has an elongated, potato-like shape (see PIA07632). Two faint ringlets are visible within the Encke Gap, near lower left. The gap is about 202 miles (325 kilometers) wide. The much narrower Keeler Gap, which lies outside the Encke Gap, is maintained by the diminutive moon Daphnis (not seen here). This view looks toward the sunlit side of the rings from about 23 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Aug. 12, 2016. The view was acquired at a distance of approximately 907,000 miles (1.46 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 113 degrees. Image scale is 6 miles (9 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20504

  20. Neptune - full ring system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This pair of Voyager 2 images (FDS 11446.21 and 11448.10), two 591-s exposures obtained through the clear filter of the wide angle camera, show the full ring system with the highest sensitivity. Visible in this figure are the bright, narrow N53 and N63 rings, the diffuse N42 ring, and (faintly) the plateau outside of the N53 ring (with its slight brightening near 57,500 km).

  1. Olympus Mons in Color

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sections of MOC images P024_01 and P024_02, shown here in color composite form, were acquired with the low resolution red and blue wide angle cameras over a 5 minute period starting when Mars Global Surveyor was at its closest point to the planet at the beginning of its 24th orbit (around 4:00 AM PDT on October 20, 1997). To make this image, a third component (green) was synthesized from the red and blue images. During the imaging period, the camera was pointed straight down towards the martian surface, 176 km (109 miles) below the spacecraft. During the time it took to acquire the image, the spacecraft rose to an altitude of 310 km (193 miles). Owing to data camera scanning rate and data volume constraints, the image was acquired at a resolution of roughly 1 km (0.609 mile) per pixel. The image shown here covers an area from 12o to 26o N latitude and 126o N to 138o W longitude. The image is oriented with north to the top.

    As has been noted in other MOC releases, Olympus Mons is the largest of the major Tharsis volcanoes, rising 25 km (15.5 miles) and stretching over nearly 550 km (340 miles) east-west. The summit caldera, a composite of as many as seven roughly circular collapse depressions, is 66 by 83 km (41 by 52 miles) across. Also seen in this image are water-ice clouds that accumulate around and above the volcano during the late afternoon (at the time the image was acquired, the summit was at 5:30 PM local solar time). To understand the value of orbital observations, compare this image with the two taken during approach (PIA00929 and PIA00936), that are representative of the best resolution from Earth.

    Through Monday, October 28, the MOC had acquired a total of 132 images, most of which were at low sun elevation angles. Of these images, 74 were taken with the high resolution narrow angle camera and 58 with the low resolution wide angle cameras. Twenty-eight narrow angle and 24 wide angle images were taken after the suspension of aerobraking. These images, including the one shown above, are among the best returned so far.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and is scheduled to resume in mid-November. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. The Activity of Comet 67P/Churyumov-Gerasimenko as Seen by Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Rickman, H.; Koschny, D.

    2015-12-01

    The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. OSIRIS consists of a Narrow Angle Camera (NAC) for the nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field gas and dust coma investigations. OSIRIS observed the coma and the nucleus of comet 67P/C-G during approach, arrival, and landing of PHILAE. OSIRIS continued comet monitoring and mapping of surface and activity in 2015 with close fly-bys with high resolution and remote, wide angle observations. The scientific results reveal a nucleus with two lobes and varied morphology. Active regions are located at steep cliffs and collapsed pits which form collimated gas jets. Dust is accelerated by the gas, forming bright jet filaments and the large scale, diffuse coma of the comet. We will present activity and surface changes observed in the Northern and Southern hemisphere and around perihelion passage.

  3. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M.

    2003-01-01

    We analyzed narrow-angle Mars Orbiter Camera (MOC-NA) images to produce high-resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars-orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3-pixel (typically 10 m) horizontal resolution, vertical precision consistent with ???0.22 pixel matching errors (typically a few meters), and slope errors of 1-3??. These DEMs are controlled to the Mars Orbiter Laser Altimeter (MOLA) global data set and consistent with it at the limits of resolution. Photoclinometry yields DEMs with single-pixel (typically ???3 m) horizontal resolution and submeter vertical precision. Where the surface albedo is uniform, the dominant error is 10-20% relative uncertainty in the amplitude of topography and slopes after "calibrating" photoclinometry against a stereo DEM to account for the influence of atmospheric haze. We mapped portions of seven candidate MER sites and the Mars Pathfinder site. Safety of the final four sites (Elysium, Gusev, Isidis, and Meridiani) was assessed by mission engineers by simulating landings on our DEMs of "hazard units" mapped in the sites, with results weighted by the probability of landing on those units; summary slope statistics show that most hazard units are smooth, with only small areas of etched terrain in Gusev crater posing a slope hazard.

  4. Solar System Portrait - Views of 6 Planets

    NASA Image and Video Library

    1996-09-13

    These six narrow-angle color images were made from the first ever portrait of the solar system taken by NASA’s Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). http://photojournal.jpl.nasa.gov/catalog/PIA00453

  5. Developing a Low-Cost System for 3d Data Acquisition

    NASA Astrophysics Data System (ADS)

    Kossieris, S.; Kourounioti, O.; Agrafiotis, P.; Georgopoulos, A.

    2017-11-01

    In this paper, a developed low-cost system is described, which aims to facilitate 3D documentation fast and reliably by acquiring the necessary data in outdoor environment for the 3D documentation of façades especially in the case of very narrow streets. In particular, it provides a viable solution for buildings up to 8-10m high and streets as narrow as 2m or even less. In cases like that, it is practically impossible or highly time-consuming to acquire images in a conventional way. This practice would lead to a huge number of images and long processing times. The developed system was tested in the narrow streets of a medieval village on the Greek island of Chios. There, in order to by-pass the problem of short taking distances, it was thought to use high definition action cameras together with a 360˚ camera, which are usually provided with very wide-angle lenses and are capable of acquiring images, of high definition, are rather cheap and, most importantly, extremely light. Results suggest that the system can perform fast 3D data acquisition adequate for deliverables of high quality.

  6. PIA01492

    NASA Image and Video Library

    1998-10-30

    This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on NASA's Voyager 2 narrow angle camera. The images were taken at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach. The picture shows the Great Dark Spot and its companion bright smudge; on the west limb the fast moving bright feature called Scooter and the little dark spot are visible. These clouds were seen to persist for as long as Voyager's cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen. http://photojournal.jpl.nasa.gov/catalog/PIA01492

  7. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    NASA Astrophysics Data System (ADS)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  8. ARC-1989-A89-7004

    NASA Image and Video Library

    1989-08-19

    Range : 8.6 million kilometers (5.3 million miles) The Voyager took this 61 second exposure through the clear filter with the narrow angle camera of Neptune. The Voyager cameras were programmed to make a systematic search for faint ring arcs and new satellites. The bright upper corner of the image is due to a residual image from a previous long exposure of the planet. The portion of the arc visible here is approximately 35 degrees in longitudinal extent, making it approximately 38,000 kilometers (24,000 miles) in length, and is broken up into three segments separated from each other by approximately 5 degrees. The trailing edge is at the upper right and has an abrupt end while the leading edge seems to fade into the background more gradually. This arc orbits very close to one of the newly discovered Neptune satellites, 1989N4. Close-up studies of this ring arc will be carried out in the coming days which will give higher spatial resolution at different lighting angles. (JPL Ref: P-34617)

  9. Solar System Portrait - Earth as Pale Blue Dot

    NASA Image and Video Library

    1996-09-12

    This narrow-angle color image of the Earth, dubbed Pale Blue Dot, is a part of the first ever 'portrait' of the solar system taken by NASA’s Voyager 1. The spacecraft acquired a total of 60 frames for a mosaic of the solar system from a distance of more than 4 billion miles from Earth and about 32 degrees above the ecliptic. From Voyager's great distance Earth is a mere point of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. This blown-up image of the Earth was taken through three color filters -- violet, blue and green -- and recombined to produce the color image. The background features in the image are artifacts resulting from the magnification. http://photojournal.jpl.nasa.gov/catalog/PIA00452

  10. Single Still Image

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This narrow angle image taken by Cassini's camera system of the Moon is one of the best of a sequence of narrow angle frames taken as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The 80 millisecond exposure was taken through a spectral filter centered at 0.33 microns; the filter bandpass was 85 Angstroms wide. The spatial scale of the image is about 1.4 miles per pixel (about 2.3 kilometers). The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  11. Dust mass distribution around comet 67P/Churyumov-Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras

    NASA Astrophysics Data System (ADS)

    Ott, T.; Drolshagen, E.; Koschny, D.; Güttler, C.; Tubiana, C.; Frattin, E.; Agarwal, J.; Sierks, H.; Bertini, I.; Barbieri, C.; Lamy, P. I.; Rodrigo, R.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Feller, C.; Fornasier, S.; Fulle, M.; Geiger, B.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lin, Z.-Y.; López-Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Shi, X.; Thomas, N.; Vincent, J.-B.; Poppe, B.

    2017-07-01

    The OSIRIS (optical, spectroscopic and infrared remote imaging system) instrument on board the ESA Rosetta spacecraft collected data of 67P/Churyumov-Gerasimenko for over 2 yr. OSIRIS consists of two cameras, a Narrow Angle Camera and a Wide Angle Camera. For specific imaging sequences related to the observation of dust aggregates in 67P's coma, the two cameras were operating simultaneously. The two cameras are mounted 0.7 m apart from each other, as a result this baseline yields a parallax shift of the apparent particle trails on the analysed images directly proportional to their distance. Thanks to such shifts, the distance between observed dust aggregates and the spacecraft was determined. This method works for particles closer than 6000 m to the spacecraft and requires very few assumptions. We found over 250 particles in a suitable distance range with sizes of some centimetres, masses in the range of 10-6-102 kg and a mean velocity of about 2.4 m s-1 relative to the nucleus. Furthermore, the spectral slope was analysed showing a decrease in the median spectral slope of the particles with time. The further a particle is from the spacecraft the fainter is its signal. For this reason, this was counterbalanced by a debiasing. Moreover, the dust mass-loss rate of the nucleus could be computed as well as the Afρ of the comet around perihelion. The summed-up dust mass-loss rate for the mass bins 10-4-102 kg is almost 8300 kg s-1.

  12. Imminent Approach to Dione

    NASA Image and Video Library

    2015-08-20

    This view from NASA Cassini spacecraft looks toward Saturn icy moon Dione, with giant Saturn and its rings in the background, just prior to the mission final close approach to the moon on August 17, 2015. At lower right is the large, multi-ringed impact basin named Evander, which is about 220 miles (350 kilometers) wide. The canyons of Padua Chasma, features that form part of Dione's bright, wispy terrain, reach into the darkness at left. Imaging scientists combined nine visible light (clear spectral filter) images to create this mosaic view: eight from the narrow-angle camera and one from the wide-angle camera, which fills in an area at lower left. The scene is an orthographic projection centered on terrain at 0.2 degrees north latitude, 179 degrees west longitude on Dione. An orthographic view is most like the view seen by a distant observer looking through a telescope. North on Dione is up. The view was acquired at distances ranging from approximately 106,000 miles (170,000 kilometers) to 39,000 miles (63,000 kilometers) from Dione and at a sun-Dione-spacecraft, or phase, angle of 35 degrees. Image scale is about 1,500 feet (450 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19650

  13. 1997 Leonid Shower From Space

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Nugent, David; Murthy, Jayant; Tedesco, Ed; DeVincenzi, Donal L. (Technical Monitor)

    2000-01-01

    In November 1997, the Midcourse Space Experiment satellite (MSX) was deployed to observe the Leonid shower from space. The shower lived up to expectations, with abundant bright fireballs. Twenty-nine meteors were detected by a wide-angle, visible wavelength, camera near the limb of the Earth in a 48-minute interval, and three meteors by the narrow field camera. This amounts to a meteoroid influx of 5.5 +/- 0.6 10(exp -5)/sq km hr for masses greater than 0.3 gram. The limiting magnitude for limb observations of Leonid meteors was measured at M(sub v) = -1.5 magn The Leonid shower magnitude population index was 1.6 +/- 0.2 down to M(sub v) = -7 magn., with no sign of an upper mass cut-off.

  14. Mimas Looks On

    NASA Image and Video Library

    2004-09-07

    Lonely Mimas swings around Saturn, seeming to gaze down at the planet's splendid rings. The outermost, narrow F ring is visible here and exhibits some clumpy structure near the bottom of the frame. The shadow of Saturn's southern hemisphere stretches almost entirely across the rings. Mimas is 398 kilometers (247 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera on August 15, 2004, at a distance of 8.8 million kilometers (5.5 million miles) from Saturn, through a filter sensitive to visible red light. The image scale is 53 kilometers (33 miles) per pixel. Contrast was slightly enhanced to aid visibility.almost entirely across the rings. Mimas is 398 kilometers (247 miles) wide. http://photojournal.jpl.nasa.gov/catalog/PIA06471

  15. A Dark Bend

    NASA Image and Video Library

    2016-09-05

    Saturn's rings appear to bend as they pass behind the planet's darkened limb due to refraction by Saturn's upper atmosphere. The effect is the same as that seen in an earlier Cassini view (see PIA20491), except this view looks toward the unlit face of the rings, while the earlier image viewed the rings' sunlit side. The difference in illumination brings out some noticeable differences. The A ring is much darker here, on the rings' unlit face, since its larger particles primarily reflect light back toward the sun (and away from Cassini's cameras in this view). The narrow F ring (at bottom), which was faint in the earlier image, appears brighter than all of the other rings here, thanks to the microscopic dust that is prevalent within that ring. Small dust tends to scatter light forward (meaning close to its original direction of travel), making it appear bright when backlit. (A similar effect has plagued many a driver with a dusty windshield when driving toward the sun.) This view looks toward the unilluminated side of the rings from about 19 degrees below the ring plane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on July 24, 2016. The view was acquired at a distance of approximately 527,000 miles (848,000 kilometers) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 169 degrees. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20497

  16. Extracting accurate and precise topography from LROC narrow angle camera stereo observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Burns, K. N.; Seymour, P.; Speyerer, E. J.; Deran, A.; Boyd, A. K.; Howington-Kraus, E.; Rosiek, M. R.; Archinal, B. A.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that each provide 0.5 to 2.0 m scale images of the lunar surface. Although not designed as a stereo system, LROC can acquire NAC stereo observations over two or more orbits using at least one off-nadir slew. Digital terrain models (DTMs) are generated from sets of stereo images and registered to profiles from the Lunar Orbiter Laser Altimeter (LOLA) to improve absolute accuracy. With current processing methods, DTMs have absolute accuracies better than the uncertainties of the LOLA profiles and relative vertical and horizontal precisions less than the pixel scale of the DTMs (2-5 m). We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. For a baseline of 15 m the highland mean slope parameters are: median = 9.1°, mean = 11.0°, standard deviation = 7.0°. For the mare the mean slope parameters are: median = 3.5°, mean = 4.9°, standard deviation = 4.5°. The slope values for the highland terrain are steeper than previously reported, likely due to a bias in targeting of the NAC DTMs toward higher relief features in the highland terrain. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics that enable detailed characterization of large geomorphic features. From one DTM mosaic we mapped a large viscous flow related to the Orientale basin ejecta and estimated its thickness and volume to exceed 300 m and 500 km3, respectively. Despite its ∼3.8 billion year age the flow still exhibits unconfined margin slopes above 30°, in some cases exceeding the angle of repose, consistent with deposition of material rich in impact melt. We show that the NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. At this date about 2% of the lunar surface is imaged in high-resolution stereo, and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur across all of the terrestrial planets.

  17. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust fault scarps. In this presentation we review the geologic characteristics and context of these newly-identified, potentially tectonic landforms. The lengths and relief of some of these linear and curvilinear features are consistent with previously identified lobate scarps. Most of these features are in the highlands, though a few occur along the edges of mare and/or crater ejecta deposits. In many cases the resolution of the Metric Camera frames (~10 m/pix) is not adequate to unequivocally determine the origin of these features. Thus, to assess if the newly identified features have tectonic or other origins, we are examining them in higher-resolution Panoramic Camera (currently being scanned) and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images [Watters et al., this meeting, 2009].

  18. In-Flight performance of MESSENGER's Mercury dual imaging system

    USGS Publications Warehouse

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  19. Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.

    2015-01-01

    Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840

  20. Associations between narrow angle and adult anthropometry: the Liwan Eye Study.

    PubMed

    Jiang, Yuzhen; He, Mingguang; Friedman, David S; Khawaja, Anthony P; Lee, Pak Sang; Nolan, Winifred P; Yin, Qiuxia; Foster, Paul J

    2014-06-01

    To assess the associations between narrow angle and adult anthropometry. Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p < 0.001; vs height p < 0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women.

  1. Aspects of Voyager photogrammetry

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Schafer, Francis J.; Jordan, Raymond; Howington, Annie-Elpis

    1987-01-01

    In January 1986, Voyager 2 took a series of pictures of Uranus and its satellites with the Imaging Science System (ISS) on board the spacecraft. Based on six stereo images from the ISS narrow-angle camera, a topographic map was compiled of the Southern Hemisphere of Miranda, one of Uranus' moons. Assuming a spherical figure, a 20-km surface relief is shown on the map. With three additional images from the ISS wide-angle camera, a control network of Miranda's Southern Hemisphere was established by analytical photogrammetry, producing 88 ground points for the control of multiple-model compilation on the AS-11AM analytical stereoplotter. Digital terrain data from the topographic map of Miranda have also been produced. By combining these data and the image data from the Voyager 2 mission, perspective views or even a movie of the mapped area can be made. The application of these newly developed techniques to Voyager 1 imagery, which includes a few overlapping pictures of Io and Ganymede, permits the compilation of contour maps or topographic profiles of these bodies on the analytical stereoplotters.

  2. Contrasting Crescents

    NASA Image and Video Library

    2018-02-05

    In this view, Saturn's icy moon Rhea passes in front of Titan as seen by NASA's Cassini spacecraft. Some of the differences between the two large moons are readily apparent. While Rhea is a heavily-cratered, airless world, Titan's nitrogen-rich atmosphere is even thicker than Earth's. This natural color image was taken in visible light with the Cassini narrow-angle camera on Nov. 19, 2009, at a distance of approximately 713,300 miles (1,148,000 kilometers) from Rhea. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21904

  3. Spatial Variations of Spectral Properties of (21) Lutetia as Observed by OSIRIS/Rosetta

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Sierks, H.; Barbieri, C.; Barucci, A.; Da Deppo, V.; De Leon, J.; Fulchignoni, M.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Jorda, L.; Keller, H. U.; La Forgia, F.; Lara, L.; Lazzarin, M.; Magrin, S.; Marchi, S.; Thomas, N.; Schroder, S. E.; OSIRIS Team

    2010-10-01

    On July 10, 2010, the Rosetta ESA/NASA spacecraft successfully flew by the asteroid (21) Lutetia, which becomes the largest asteroid observed by a space probe. The closest approach occurred at 15H45 UTC at a relative speed of 15km/s and a relative distance of 3160 km. The Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) of the OSIRIS instrument onboard Rosetta acquired images at different phase angles ranging from almost zero to more than 150 degrees. The best spatial resolution (60 m/pixel) allowed to reveal a very complex topography with several features and different crater's surface densities. Spectrophotometric analysis of the data could suggest spatial variations of the albedo and spectral properties at the surface of the asteroid, at least in the northern hemisphere. Numerous sets of data have been obtained at different wavelengths from 270nm to 980nm. We will first present a color-color analysis of data in order to locate landscapes where surface variegation is present. We will also present a more accurate study of spectral properties using the shape model and different statistical methods. Possible variations of the surface spectral properties with the slope of the ground and the gravity field orientation will be discussed as well.

  4. Tomorrow

    NASA Image and Video Library

    2015-04-29

    This image from MESSENGER spacecraft covers a small area located about 115 km south of the center of Mansart crater. The smallest craters visible in the image are about the size of the 16-meter (52-feet) crater that will be made by the impact of the MESSENGER spacecraft. The impact will take place tomorrow, April 30, 2015. Just left of center is a crater that is about 80 meters in diameter. The bright area on its right wall may be an outcrop of hollows material. Date acquired: April 28, 2015 Image Mission Elapsed Time (MET): 72505530 Image ID: 8408666 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 69.8° N Center Longitude: 303.7° E Resolution: 2.0 meters/pixel Scale: The scene is about 1 km (0.6 miles) wide. This image has not been map projected. Incidence Angle: 79.0° Emission Angle: 11.0° Phase Angle: 90.0° http://photojournal.jpl.nasa.gov/catalog/PIA19442

  5. MESSENGER Final Image

    NASA Image and Video Library

    2015-04-30

    Today, the MESSENGER spacecraft sent its final image. Originally planned to orbit Mercury for one year, the mission exceeded all expectations, lasting for over four years and acquiring extensive datasets with its seven scientific instruments and radio science investigation. This afternoon, the spacecraft succumbed to the pull of solar gravity and impacted Mercury's surface. The image shown here is the last one acquired and transmitted back to Earth by the mission. The image is located within the floor of the 93-kilometer-diameter crater Jokai. The spacecraft struck the planet just north of Shakespeare basin. Date acquired: April 30, 2015 Image Mission Elapsed Time (MET): 72716050 Image ID: 8422953 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 72.0° Center Longitude: 223.8° E Resolution: 2.1 meters/pixel Scale: This image is about 1 kilometers (0.6 miles) across Incidence Angle: 57.9° Emission Angle: 56.5° Phase Angle: 40.7° http://photojournal.jpl.nasa.gov/catalog/PIA19448

  6. Sunlit Terraces

    NASA Image and Video Library

    2015-02-09

    The exterior of this unnamed crater is in shadow, while the inner wall and terraces bask in the sunshine. Terraces form just after the crater has been excavated, when oversteepened slopes slump back down. This image was acquired as part of the MDIS low-altitude imaging campaign. During MESSENGER's second extended mission, the spacecraft makes a progressively closer approach to Mercury's surface than at any previous point in the mission, enabling the acquisition of high-spatial-resolution data. For spacecraft altitudes below 350 kilometers, NAC images are acquired with pixel scales ranging from 20 meters to as little as 2 meters. Date acquired: January 23, 2015 Image Mission Elapsed Time (MET): 64352478 Image ID: 7849599 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 31.48° Center Longitude: 81.89° E Resolution: 6 meters/pixel Scale: This scene is approximately 6.3 km (3.9 miles) from top to bottom Incidence Angle: 82.6° Emission Angle: 0.1° Phase Angle: 82.7° http://photojournal.jpl.nasa.gov/catalog/PIA19196

  7. Coordinates of anthropogenic features on the Moon

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E.

    2017-02-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates (<12 m) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  8. Coordinates of Anthropogenic Features on the Moon

    NASA Technical Reports Server (NTRS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer , E. J.; Mazarico, E.

    2016-01-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates ( less than 12 meters) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  9. Tethys the Spy

    NASA Image and Video Library

    2014-12-15

    Tethys appears to be peeking out from behind Rhea, watching the watcher. Scientists believe that Tethys' surprisingly high albedo is due to the water ice jets emerging from its neighbor, Enceladus. The fresh water ice becomes the E ring and can eventually arrive at Tethys, giving it a fresh surface layer of clean ice. Lit terrain seen here is on the anti-Saturn side of Rhea. North on Rhea is up. The image was taken in red light with the Cassini spacecraft narrow-angle camera on April 20, 2012. The view was obtained at a distance of approximately 1.1 million miles (1.8 million kilometers) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of 59 degrees. Image scale is 7 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18293

  10. Dreamy Swirls on Saturn

    NASA Image and Video Library

    2017-09-12

    NASA's Cassini spacecraft gazed toward the northern hemisphere of Saturn to spy subtle, multi-hued bands in the clouds there. This view looks toward the terminator -- the dividing line between night and day -- at lower left. The sun shines at low angles along this boundary, in places highlighting vertical structure in the clouds. Some vertical relief is apparent in this view, with higher clouds casting shadows over those at lower altitude. Images taken with the Cassini spacecraft narrow-angle camera using red, green and blue spectral filters were combined to create this natural-color view. The images were acquired on Aug. 31, 2017, at a distance of approximately 700,000 miles (1.1 million kilometers) from Saturn. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21888

  11. A Glimpse of Atlas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's little moon Atlas orbits Saturn between the outer edge of the A ring and the fascinating, twisted F ring. This image just barely resolves the disk of Atlas, and also shows some of the knotted structure for which the F ring is known. Atlas is 32 kilometers (20 miles) across.

    The bright outer edge of the A ring is overexposed here, but farther down the image several bright ring features can be seen.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 25, 2005, at a distance of approximately 2.4 million kilometers (1.5 million miles) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 60 degrees. Resolution in the original image was 14 kilometers (9 miles) per pixel.

  12. Mechanism controller system for the optical spectroscopic and infrared remote imaging system instrument on board the Rosetta space mission

    NASA Astrophysics Data System (ADS)

    Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.

    2001-05-01

    The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.

  13. Navigation of a care and welfare robot

    NASA Astrophysics Data System (ADS)

    Yukawa, Toshihiro; Hosoya, Osamu; Saito, Naoki; Okano, Hideharu

    2005-12-01

    In this paper, we propose the development of a robot that can perform nursing tasks in a hospital. In a narrow environment such as a sickroom or a hallway, the robot must be able to move freely in arbitrary directions. Therefore, the robot needs to have high controllability and the capability to make precise movements. Our robot can recognize a line by using cameras, and can be controlled in the reference directions by means of comparison with original cell map information; furthermore, it moves safely on the basis of an original center-line established permanently in the building. Correspondence between the robot and a centralized control center enables the robot's autonomous movement in the hospital. Through a navigation system using cell map information, the robot is able to perform nursing tasks smoothly by changing the camera angle.

  14. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    NASA Astrophysics Data System (ADS)

    Shokouhi, S.; Metzler, S. D.; Wilson, D. W.; Peterson, T. E.

    2009-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

  15. Wide Angle Movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  16. Stellar Occultations in the Coma of Comet 67/P Chuyumov-Gerasimenko Observed by the OSIRIS Camera System

    NASA Astrophysics Data System (ADS)

    Moissl, Richard; Kueppers, Michael

    2016-10-01

    In this paper we present the results of an analysis on a large part of the existing Image data from the OSIRIS camera system onboard the Rosetta Spacecraft, in which stars of sufficient brightness (down to a limiting magnitude of 6) have been observed through the coma of Comet 67/P Churyumov-Gerasimenko ("C-G"). Over the course of the Rosetta main mission the Coma of the comet underwent large changes in density and structure, owed to the changing insolation along the orbit of C-G. We report on the changes of the stellar signals in the wavelength ranges, covered by the filters of the OSIRIS Narrow-Angle (NAC) and Wide-Angle (WAC) cameras.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.

  17. Morphology and Dynamics of Jets of Comet 67P Churyumov-Gerasimenko: Early Phase Development

    NASA Astrophysics Data System (ADS)

    Lin, Zhong-Yi; Ip, Wing-Huen; Lai, Ian-Lin; Lee, Jui-Chi; Pajola, Maurizio; Lara, Luisa; Gutierrez, Pedro; Rodrigo, Rafael; Bodewits, Dennis; A'Hearn, Mike; Vincent, Jean-Baptiste; Agarwal, Jessica; Keller, Uwe; Mottola, Stefano; Bertini, Ivano; Lowry, Stephen; Rozek, Agata; Liao, Ying; Rosetta Osiris Coi Team

    2015-04-01

    The scientific camera, OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), onboard the Rosetta spacecraft comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field of dust and gas coma investigations. The dynamical behavior of jets in the dust coma continuously monitored by using dust filters from the arrival at the comet (August 2014) throughout the mapping phase (Oct. 2014) is described here. The analysis will cover the study of the time variability of jets, the source regions of these jets, the excess brightness of jets relative to the averaged coma brightness, and the brightness distribution of dust jets along the projected distance. The jets detected between August and September originated mostly from the neck region (Hapi). Morphological changes appeared over a time scale of several days in September. The brightness slope of the dust jets is much steeper than the background coma. This might be related to the sublimation or fragmentation of the emitted dust grains. Inter-comparison with results from other experiments will be necessary to understand the difference between the dust emitted from Hapi and those from the head and the body of the nucleus surface. The physical properties of the Hapi jets will be compared to dust jets (and their source regions) to emerge as comet 67P moves around the perihelion.

  18. Thermal Effects on Camera Focal Length in Messenger Star Calibration and Orbital Imaging

    NASA Astrophysics Data System (ADS)

    Burmeister, S.; Elgner, S.; Preusker, F.; Stark, A.; Oberst, J.

    2018-04-01

    We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft for the camera's thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS). Within the several hundreds of images of star fields, the Wide Angle Camera (WAC) typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T) = A0 + A1 T. Next, we use images from MESSENGER's orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM). We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera - as well as the camera's focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC). This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in the photogrammetric analysis, specifically these may be responsible for erroneous longwavelength trends in topographic models.

  19. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    PubMed

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  20. Public-Requested Mars Image: Crater on Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-481, 12 September 2003

    This image is in the first pair obtained in the Public Target Request program, which accepts suggestions for sites to photograph with the Mars Orbiter Camera on NASA's Mars Global Surveyor spacecraft.

    It is a narrow-angle (high-resolution) view of a portion of the lower wall and floor of the caldera at the top of a martian volcano named Pavonis Mons. A companion picture is a wide-angle context image, taken at the same time as the high-resolution view. The white box in the context frame shows the location of the high-resolution picture.

    [figure removed for brevity, see original site]

    Pavonis Mons is a broad shield volcano. Its summit region is about 14 kilometers (8.7 miles) above the martian datum (zero-elevation reference level). The caldera is about 4.6 kilometers (2.8 miles) deep. The caldera formed by collapse--long ago--as molten rock withdrew to greater depths within the volcano. The high-resolution picture shows that today the floor and walls of this caldera are covered by a thick, textured mantle of dust, perhaps more than 1 meter (1 yard) deep. Larger boulders and rock outcroppings poke out from within this dust mantle. They are seen as small, dark dots and mounds on the lower slopes of the wall in the high-resolution image.

    The narrow-angle Mars Orbiter Camera image has a resolution of 1.5 meters (about 5 feet) per pixel and covers an area 1.5 kilometers (0.9 mile) wide by 9 kilometers (5.6 miles) long. The context image, covering much of the summit region of Pavonis Mons, is about 115 kilometers (72 miles) wide. Sunlight illuminates both images from the lower left; north is toward the upper right; east to the right. The high-resolution view is located near 0.4 degrees north latitude, 112.8 degrees west longitude.

  1. Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on board Rosetta

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Agarwal, J.; A'Hearn, M. F.; Bertini, I.; Bodewits, D.; Sierks, H.; Lin, Z.-Y.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; Deller, J.; De Cecco, M.; Frattin, E.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marquez, P.; Güttler, C.; Höfner, S.; Hofmann, M.; Hu, X.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Lowry, S.; Marzari, F.; Masoumzadeh, N.; Massironi, M.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-11-01

    Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this paper was that through the sublimation of the aggregates of dirty grains (radius a between 5 and 50 μm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data, we needed to inject a number of aggregates between 8.5 × 1013 and 8.5 × 1010 for a = 5 and 50 μm, respectively, or an initial mass of H2O ice around 22 kg.

  2. Assessment of narrow angles by gonioscopy, Van Herick method and anterior segment optical coherence tomography.

    PubMed

    Park, Seong Bae; Sung, Kyung Rim; Kang, Sung Yung; Jo, Jung Woo; Lee, Kyoung Sub; Kook, Michael S

    2011-07-01

    To evaluate anterior chamber (AC) angles using gonioscopy, Van Herick technique and anterior segment optical coherence tomography (AS-OCT). One hundred forty-eight consecutive subjects were enrolled. The agreement between any two of three diagnostic methods, gonioscopy, AS-OCT and Van Herick, was calculated in narrow-angle patients. The area under receiver-operating characteristic curves (AUC) for discriminating between narrow and open angles determined by gonioscopy was calculated in all participants for AS-OCT parameter angle opening distance (AOD), angle recess area, trabecular iris surface area and anterior chamber depth (ACD). As a subgroup analysis, capability of AS-OCT parameters for detecting angle closure defined by AS-OCT was assessed in narrow-angle patients. The agreement between the Van Herick method and gonioscopy in detecting angle closure was excellent in narrow angles (κ = 0.80, temporal; κ = 0.82, nasal). However, agreement between gonioscopy and AS-OCT and between the Van Herick method and AS-OCT was poor (κ = 0.11-0.16). Discrimination capability of AS-OCT parameters between open and narrow angles determined by gonioscopy was excellent for all AS-OCT parameters (AUC, temporal: AOD500 = 0.96, nasal: AOD500 = 0.99). The AUCs for detecting angle closure defined by AS-OCT image in narrow angle subjects was good for all AS-OCT parameters (AUC, 0.80-0.94) except for ACD (temporal: ACD = 0.70, nasal: ACD = 0.63). Assessment of narrow angles by gonioscopy and the Van Herick technique showed good agreement, but both measurements revealed poor agreement with AS-OCT. The angle closure detection capability of AS-OCT parameters was excellent; however, it was slightly lower in ACD.

  3. Non-contact measurement of rotation angle with solo camera

    NASA Astrophysics Data System (ADS)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  4. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  5. Northern Summer on Titan

    NASA Image and Video Library

    2017-06-14

    NASA's Cassini spacecraft sees bright methane clouds drifting in the summer skies of Saturn's moon Titan, along with dark hydrocarbon lakes and seas clustered around the north pole. Compared to earlier in Cassini's mission, most of the surface in the moon's northern high latitudes is now illuminated by the sun. The image was taken with the Cassini spacecraft narrow-angle camera on June 9, 2017, using a spectral filter that preferentially admits wavelengths of near-infrared light centered at 938 nanometers. Cassini obtained the view at a distance of about 315,000 miles (507,000 kilometers) from Titan. https://photojournal.jpl.nasa.gov/catalog/PIA21615

  6. Ultraviolet Enceladus

    NASA Image and Video Library

    2004-09-23

    Looking beyond Saturn's south pole, this was the Cassini spacecraft's view of the distant, icy moon Enceladus on July 28, 2004. The planet itself shows few obvious features at these ultraviolet wavelengths, due to scattering of light by molecules of the gases high in the atmosphere. Enceladus is 499 kilometers (310 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera at a distance of 7.4 million kilometers (4.6 million miles) from Saturn through a filter sensitive to ultraviolet wavelengths of light. The image scale is 44 kilometers (27 miles) per pixel of Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA06483

  7. Comparison and evaluation of datasets for off-angle iris recognition

    NASA Astrophysics Data System (ADS)

    Kurtuncu, Osman M.; Cerme, Gamze N.; Karakaya, Mahmut

    2016-05-01

    In this paper, we investigated the publicly available iris recognition datasets and their data capture procedures in order to determine if they are suitable for the stand-off iris recognition research. Majority of the iris recognition datasets include only frontal iris images. Even if a few datasets include off-angle iris images, the frontal and off-angle iris images are not captured at the same time. The comparison of the frontal and off-angle iris images shows not only differences in the gaze angle but also change in pupil dilation and accommodation as well. In order to isolate the effect of the gaze angle from other challenging issues including dilation and accommodation, the frontal and off-angle iris images are supposed to be captured at the same time by using two different cameras. Therefore, we developed an iris image acquisition platform by using two cameras in this work where one camera captures frontal iris image and the other one captures iris images from off-angle. Based on the comparison of Hamming distance between frontal and off-angle iris images captured with the two-camera- setup and one-camera-setup, we observed that Hamming distance in two-camera-setup is less than one-camera-setup ranging from 0.05 to 0.001. These results show that in order to have accurate results in the off-angle iris recognition research, two-camera-setup is necessary in order to distinguish the challenging issues from each other.

  8. Visual cueing considerations in Nap-of-the-Earth helicopter flight head-slaved helmet-mounted displays

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kohn, Silvia

    1993-01-01

    The pilot's ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays, commonly used in Apache and Cobra helicopter night operations, originates from a relatively narrow field-of-view Forward Looking Infrared Radiation Camera, gimbal-mounted at the nose of the aircraft and slaved to the pilot's line-of-sight, in order to obtain a wide-angle field-of-regard. Pilots have encountered considerable difficulties in controlling the aircraft by these devices. Experimental simulator results presented here indicate that part of these difficulties can be attributed to head/camera slaving system phase lags and errors. In the presence of voluntary head rotation, these slaving system imperfections are shown to impair the Control-Oriented Visual Field Information vital in vehicular control, such as the perception of the anticipated flight path or the vehicle yaw rate. Since, in the presence of slaving system imperfections, the pilot will tend to minimize head rotation, the full wide-angle field-of-regard of the line-of-sight slaved Helmet-Mounted Display, is not always fully utilized.

  9. Interdisciplinary scientist participation in the Phobos mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Data was acquired from VSK (2 wide-angle visible-NIR TV cameras at 0.4 to 0.6 micrometers and 0.8 to 1.1 micrometers, and a narrow-angle TV camera), KRFM (10-band UV-visible spectrometer at 0.3 to 0.6 micrometers and a 6-band radiometer at 5-50 micrometers), and ISM (a 128-channel NIR imaging spectrometer at 0.8 to 3 micrometers). These data provided improved mapping coverage of Phobos; improved mass, shape, and volume determinations, with the density shown to be lower than that of all known meteorites, suggesting a porous interior; evidence for a physically, spectrally and possibly compositionally heterogeneous surface; and proof that the spectral properties do not closely resemble those of unaltered carbonaceous chondrites, but show more resemblance to the spectra of altered mafic material. For Mars, the data show that the underlying rock type can be distinguished through the global dust cover; that the spectral properties and possibly composition vary laterally between and within the geologic provinces; that the surface physical properties vary laterally, and in many cases, the boundaries coincide with those of the geologic units; and the acquired data also demonstrate the value of reflectance spectroscopy and radiometry to the study of Martian geology.

  10. Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Da Deppo, V.; Lazzarin, M.; Bertini, I.; Ferri, F.; Pajola, M.; Barbieri, M.; Naletto, G.; Barbieri, C.; Tubiana, C.; Küppers, M.; Fornasier, S.; Jorda, L.; Sierks, H.

    2015-02-01

    Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims: A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods: The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results: We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions: The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics.

  11. High prevalence of narrow angles among Chinese-American glaucoma and glaucoma suspect patients.

    PubMed

    Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C

    2009-01-01

    To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data were collected for sex, age, race (self-declared), refraction (spherical equivalent), intraocular pressure, gonioscopy, and vertical cup-to-disk ratio. Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade < or = 2 in 3 or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the 2 groups did not differ in terms of sex, refraction, intraocular pressure, or cup-to-disk ratio (all, P > or = 0.071). In a multivariate model including age, sex, and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of sex or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed.

  12. Two-Camera Acquisition and Tracking of a Flying Target

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Assad, Christopher; Kovalik, Joseph M.; Pain, Bedabrata; Wrigley, Chris J.; Twiss, Peter

    2008-01-01

    A method and apparatus have been developed to solve the problem of automated acquisition and tracking, from a location on the ground, of a luminous moving target in the sky. The method involves the use of two electronic cameras: (1) a stationary camera having a wide field of view, positioned and oriented to image the entire sky; and (2) a camera that has a much narrower field of view (a few degrees wide) and is mounted on a two-axis gimbal. The wide-field-of-view stationary camera is used to initially identify the target against the background sky. So that the approximate position of the target can be determined, pixel locations on the image-detector plane in the stationary camera are calibrated with respect to azimuth and elevation. The approximate target position is used to initially aim the gimballed narrow-field-of-view camera in the approximate direction of the target. Next, the narrow-field-of view camera locks onto the target image, and thereafter the gimbals are actuated as needed to maintain lock and thereby track the target with precision greater than that attainable by use of the stationary camera.

  13. Crescent Mimas

    NASA Image and Video Library

    2014-09-15

    A thin sliver of Mimas is illuminated, the long shadows showing off its many craters, indicators of the moon's violent history. The most famous evidence of a collision on Mimas (246 miles, or 396 kilometers across) is the crater Herschel that gives Mimas its Death Star-like appearance. See PIA12568 for more on Herschel. This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 40 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on May 20, 2013. The view was acquired at a distance of approximately 100,000 miles (200,000 kilometers) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 130 degrees. Image scale is 4,000 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18285

  14. Up Close and Personal

    NASA Image and Video Library

    2014-05-08

    This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370

  15. Still from High-Clouds Jupiter Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is one of seven from the narrow-angle camera on NASA's Cassini spacecraft assembled as a brief movie of high-altitude cloud movements on Jupiter. It was taken in early October 2000.

    The images were taken at a wavelength that is absorbed by methane, one chemical in Jupiter's lower clouds. So, dark areas are relatively free of high clouds, and the camera sees through to the methane in a lower level. Bright areas are places with high, thick clouds that shield the methane below.

    The area shown covers latitudes from 50 degrees north to 50 degrees south and a 100-degree sweep of longitude.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A. S., E-mail: alastair.moore@physics.org; Ahmed, M. F.; Soufli, R.

    A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features inmore » the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.« less

  17. Colorful Saturn, Getting Closer

    NASA Image and Video Library

    2004-06-03

    As Cassini coasts into the final month of its nearly seven-year trek, the serene majesty of its destination looms ahead. The spacecraft's cameras are functioning beautifully and continue to return stunning views from Cassini's position, 1.2 billion kilometers (750 million miles) from Earth and now 15.7 million kilometers (9.8 million miles) from Saturn. In this narrow angle camera image from May 21, 2004, the ringed planet displays subtle, multi-hued atmospheric bands, colored by yet undetermined compounds. Cassini mission scientists hope to determine the exact composition of this material. This image also offers a preview of the detailed survey Cassini will conduct on the planet's dazzling rings. Slight differences in color denote both differences in ring particle composition and light scattering properties. Images taken through blue, green and red filters were combined to create this natural color view. The image scale is 132 kilometers (82 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA06060

  18. Epimetheus Above the Rings

    NASA Image and Video Library

    2015-11-09

    Although Epimetheus appears to be lurking above the rings here, it's actually just an illusion resulting from the viewing angle. In reality, Epimetheus and the rings both orbit in Saturn's equatorial plane. Inner moons and rings orbit very near the equatorial plane of each of the four giant planets in our solar system, but more distant moons can have orbits wildly out of the equatorial plane. It has been theorized that the highly inclined orbits of the outer, distant moons are remnants of the random directions from which they approached the planets they orbit. This view looks toward the unilluminated side of the rings from about -0.3 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2015. The view was obtained at a distance of approximately 500,000 miles (800,000 kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 62 degrees. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18342

  19. ARC-1986-A86-7022

    NASA Image and Video Library

    1986-01-25

    P-29506BW Range: 1.12 million kilometers (690,000 miles) This high-resolution image of the epsilon ring of Uranus is a clear-filter picture from Voyager's narrow-angle camera and has a resolution of about 10 km (6 mi). The epsilon ring, approx. 100 km (60 mi) wide at this location, clearly shows a structural variation. Visible here are a broad, bright outer component about 40 km (25 mi) wide; a darker, middle region of comparable width; and a narrow, bright inner strip about 15 km (9 mi) wide. The epsilon-ring structure seen by Voyager is similiar to that observed from the ground with stellar-occultation techniques. This frame represents the first Voyager image that resolves these features within the epsilon ring. The occasional fuzzy splotches on the outer and innerparts of the ring are artifacts left by the removal of reseau marks (used for making measurements on the image).

  20. High Prevalence of Narrow Angles among Chinese-American Glaucoma and Glaucoma Suspect Patients

    PubMed Central

    Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C

    2009-01-01

    Purpose To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Patients and Methods Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data was collected for gender, age, race (self-declared), refraction (spherical equivalent), intraocular pressure (IOP), gonioscopy and vertical cup-to-disk ratio (CDR). Results Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade ≤2 in three or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the two groups did not differ in terms of gender, refraction, IOP or CDR (all, P≥0.071). In a multivariate model including age, gender and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). Conclusions A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of gender or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed. PMID:19826385

  1. Study on airflow characteristics in the semi-closed irregular narrow flow channel

    NASA Astrophysics Data System (ADS)

    Jin, Yuzhen; Hu, Xiaodong; Zhu, Linhang; Hu, Xudong; Jin, Yingzi

    2016-04-01

    The air-jet loom is widely used in the textile industry. The interaction mechanism of airflow and yarn is not clear in such a narrow flow channel, the gas consumption is relatively large, the yarn motion is unstable and the weft insertion is often interrupted during the operation. In order to study the characteristics of the semi-closed flow field in profiled dents, the momentum conservation equation is modified and the model parameters and boundary conditions are set. Compared with the different r, the ratio of profiled dent's thickness and gap, the results show that the smaller the r is, the smaller the velocity fluctuations of the airflow is. When the angle of profiled dents α is close to zero, the diffusion of the airflow will be less. The experiment is also conducted to verify the result of the simulation with a high-speed camera and pressure sensor in profiled dents. The airflow characteristics in the semi-closed irregular narrow flow channel in the paper would provide the theoretical basis for optimizing the weft insertion process of the air-jet loom.

  2. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  3. 13. 22'X34' original vellum, VariableAngle Launcher, 'SIDEVIEW CAMERA CAR TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. 22'X34' original vellum, Variable-Angle Launcher, 'SIDEVIEW CAMERA CAR TRACK DETAILS' drawn at 1/4'=1'-0' (BUORD Sketch # 208078, PAPW 908). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. 10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  5. ARC-1986-A86-7010

    NASA Image and Video Library

    1986-01-22

    Range : 2.52 million miles (1.56 million miles) Resolution : 47km. ( 29 mi.) Closest Approach: 127,000 km. (79,000 mi.) P-29479B/W This Voyager 2 image of the brightest Uranian satellite of the five largest, Ariel, was shot through a clear filter with the narrow angle camera. Ariel is about 1,300 km. ( 800 mi. )in diameter. This image shows several distinct bright areas that reflect nearly 45 % of the incident sunlight. On average, the satellite displays reflectivity of about 25-30 %. The bright areas are probably fresh water ice, perhaps excavated by impacts. the south pole of Ariel is slightly off center of the disk in this view.

  6. Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutiérrez, P.

    We compute the distribution of velocities of the particles ejected by the impact of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 on the successive 20 h following the collision. This is performed by the development and use of an ill-conditioned inverse problem approach, whose main ingredients are a set of observations taken by the Narrow Angle Camera (NAC) of OSIRIS onboard the Rosetta spacecraft, and a set of simple models of the expansion of the dust ejecta plume for different velocities. Terminal velocities are derived using a maximum likelihood estimator.

  7. Mixing Paints

    NASA Image and Video Library

    2014-11-17

    Nature is an artist, and this time she seems to have let her paints swirl together a bit. What the viewer might perceive to be Saturn's surface is really just the tops of its uppermost cloud layers. Everything we see is the result of fluid dynamics. Astronomers study Saturn's cloud dynamics in part to test and improve our understanding of fluid flows. Hopefully, what we learn will be useful for understanding our own atmosphere and that of other planetary bodies. This view looks toward the sunlit side of the rings from about 25 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Aug. 23, 2014. The view was obtained at a distance of approximately 1.1 million miles (1.7 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 23 degrees. Image scale is 63 miles (102 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18290

  8. The Eye of Saturn

    NASA Image and Video Library

    2014-08-04

    Like a giant eye for the giant planet, Saturn great vortex at its north pole appears to stare back at Cassini as NASA Cassini spacecraft stares at it. Measurements have sized the "eye" at a staggering 1,240 miles (2,000 kilometers) across with cloud speeds as fast as 330 miles per hour (150 meters per second). For color views of the eye and the surrounding region, see PIA14946 and PIA14944. The image was taken with the Cassini spacecraft narrow-angle camera on April 2, 2014 using a combination of spectral filters which preferentially admit wavelengths of near-infrared light centered at 748 nanometers. The view was obtained at a distance of approximately 1.4 million miles (2.2 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 43 degrees. Image scale is 8 miles (13 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18273

  9. Mimas Against the Rings

    NASA Image and Video Library

    2005-08-05

    During its close flyby of Saturn's moon Mimas on Aug. 2, 2005, Cassini caught a glimpse of Mimas against the broad expanse of Saturn's rings. The Keeler Gap in the outer A ring, in which Cassini spied a never-before-seen small moon (see PIA06237), is at the upper right. The ancient, almost asteroid-like surface of Mimas is evident in its crater-upon-crater appearance. Even the material which has slumped down into the bottom of some of its craters bears the marks of later impacts. This image was taken through the clear filter of the Cassini spacecraft narrow-angle camera at a distance of 68,000 kilometers (42,500 miles) from Mimas and very near closest approach. The smallest features seen on the moon are about 400 meters wide (440 yards); the Sun-Mimas-Cassini angle is 44 degrees. http://photojournal.jpl.nasa.gov/catalog/PIA06412

  10. Plateaus Up Close

    NASA Image and Video Library

    2017-04-10

    Saturn's C ring isn't uniformly bright. Instead, about a dozen regions of the ring stand out as noticeably brighter than the rest of the ring, while about half a dozen regions are devoid of ring material. Scientists call the bright regions "plateaus" and the devoid regions "gaps." Scientists have determined that the plateaus are relatively bright because they have higher particle density and reflect more light, but researchers haven't solved the trickier puzzle of how the plateaus are created and maintained. This view looks toward the sunlit side of the rings from about 62 degrees above the ring plane. The image was taken Jan. 9, 2017 in green light with the Cassini spacecraft's narrow-angle camera. Cassini obtained the image while approximately 194,000 miles (312,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 67 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA20529

  11. Janus Stands Alone

    NASA Image and Video Library

    2015-05-18

    Although Janus should be the least lonely of all moons -- sharing its orbit with Epimetheus -- it still spends most of its orbit far from other moons, alone in the vastness of space. Janus (111 miles or 179 kilometers across) and Epimetheus have the same average distance from Saturn, but they take turns being a little closer or a little farther from Saturn, swapping positions approximately every 4 years. See PIA08348 for more. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 4, 2015. The view was acquired at a distance of approximately 1.6 million miles (2.5 million kilometers) from Janus and at a Sun-Janus-spacecraft, or phase, angle of 91 degrees. Image scale is 9 miles (15 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18315

  12. Two Titans

    NASA Image and Video Library

    2017-08-11

    These two views of Saturn's moon Titan exemplify how NASA's Cassini spacecraft has revealed the surface of this fascinating world. Cassini carried several instruments to pierce the veil of hydrocarbon haze that enshrouds Titan. The mission's imaging cameras also have several spectral filters sensitive to specific wavelengths of infrared light that are able to make it through the haze to the surface and back into space. These "spectral windows" have enable the imaging cameras to map nearly the entire surface of Titan. In addition to Titan's surface, images from both the imaging cameras and VIMS have provided windows into the moon's ever-changing atmosphere, chronicling the appearance and movement of hazes and clouds over the years. A large, bright and feathery band of summer clouds can be seen arcing across high northern latitudes in the view at right. These views were obtained with the Cassini spacecraft narrow-angle camera on March 21, 2017. Images taken using red, green and blue spectral filters were combined to create the natural-color view at left. The false-color view at right was made by substituting an infrared image (centered at 938 nanometers) for the red color channel. The views were acquired at a distance of approximately 613,000 miles (986,000 kilometers) from Titan. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21624

  13. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  14. Visual field information in Nap-of-the-Earth flight by teleoperated Helmet-Mounted displays

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kohn, S.; Merhav, S. J.

    1991-01-01

    The human ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays originates from a Forward Looking Infrared Radiation Camera, gimbal-mounted at the front of the aircraft and slaved to the pilot's line-of-sight, to obtain wide-angle visual coverage. Although these displays are proved to be effective in Apache and Cobra helicopter night operations, they demand very high pilot proficiency and work load. Experimental work presented in the paper has shown that part of the difficulties encountered in vehicular control by means of these displays can be attributed to the narrow viewing aperture and head/camera slaving system phase lags. Both these shortcomings will impair visuo-vestibular coordination, when voluntary head rotation is present. This might result in errors in estimating the Control-Oriented Visual Field Information vital in vehicular control, such as the vehicle yaw rate or the anticipated flight path, or might even lead to visuo-vestibular conflicts (motion sickness). Since, under these conditions, the pilot will tend to minimize head rotation, the full wide-angle coverage of the Helmet-Mounted Display, provided by the line-of-sight slaving system, is not always fully utilized.

  15. Dunelands of Titan

    NASA Image and Video Library

    2015-11-02

    Saturn's frigid moon Titan has some characteristics that are oddly similar to Earth, but still slightly alien. It has clouds, rain and lakes (made of methane and ethane), a solid surface (made of water ice), and vast dune fields (filled with hydrocarbon sands). The dark, H-shaped area seen here contains two of the dune-filled regions, Fensal (in the north) and Aztlan (to the south). Cassini's cameras have frequently monitored the surface of Titan (3200 miles or 5150 kilometers across) to look for changes in its features over the course of the mission. Any changes would help scientists better understand different phenomena like winds and dune formation on this strangely earth-like moon. For a closer view of Fensal-Aztlan, see PIA07732 . This view looks toward the leading side of Titan. North on Titan is up. The image was taken with the Cassini spacecraft narrow-angle camera on July 25, 2015 using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 450,000 miles (730,000 kilometers) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 32 degrees. Image scale is 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18341

  16. Geomorphological Mapping on the Southern Hemisphere of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lee, Jui-Chi; Massironi, Matteo; Giacomini, Lorenza; Ip, Wing-Huen; El-Maarry, Mohamed R.

    2016-04-01

    Since its rendezvous with comet 67P/Churyumov-Gerasimenko on the sixth of August, 2014, the Rosetta spacecraft has carried out close-up observations of the nucleus and coma of this Jupiter family comet. The OSIRIS, the Scientific Imaging Camera System onboard the Rosetta spacecraft, which consists of a narrow-angle and wide-angle camera (NAC and WAC), has made detailed investigations of the physical properties and surface morphology of the comet. From May 2015, the southern hemisphere of the comet became visible and the adaptical resolution was high enough for us to do a detailed analysis of the surface. Previous work shows that the fine particle deposits are the most extensive geomorphological unit in the northern hemisphere. On the contrary, southern hemisphere is dominated by rocky-like stratified terrain. The southern hemisphere of the nucleus surface reveals quite different morphologies from the northern hemisphere. This could be linked to the different insolation condition between northern and southern hemisphere. As a result, surface geological processes could operate with a diverse intensity on the different sides of the comet nucleus. In this work, we provide the geomorphological maps of the southern hemisphere with linear features and geological units identified. The geomorphological maps described in this study allow us to understand the processes and the origin of the comet.

  17. Saskatchewan and Manitoba

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Surface brightness contrasts accentuated by a thin layer of snow enable a network of rivers, roads, and farmland boundaries to stand out clearly in these MISR images of southeastern Saskatchewan and southwestern Manitoba. The lefthand image is a multi-spectral false-color view made from the near-infrared, red, and green bands of MISR's vertical-viewing (nadir) camera. The righthand image is a multi-angle false-color view made from the red band data of the 60-degree aftward camera, the nadir camera, and the 60-degree forward camera. In each image, the selected channels are displayed as red, green, and blue, respectively. The data were acquired April 17, 2001 during Terra orbit 7083, and cover an area measuring about 285 kilometers x 400 kilometers. North is at the top.

    The junction of the Assiniboine and Qu'Apelle Rivers in the bottom part of the images is just east of the Saskatchewan-Manitoba border. During the growing season, the rich, fertile soils in this area support numerous fields of wheat, canola, barley, flaxseed, and rye. Beef cattle are raised in fenced pastures. To the north, the terrain becomes more rocky and forested. Many frozen lakes are visible as white patches in the top right. The narrow linear, north-south trending patterns about a third of the way down from the upper right corner are snow-filled depressions alternating with vegetated ridges, most probably carved by glacial flow.

    In the lefthand image, vegetation appears in shades of red, owing to its high near-infrared reflectivity. In the righthand image, several forested regions are clearly visible in green hues. Since this is a multi-angle composite, the green arises not from the color of the leaves but from the architecture of the surface cover. Progressing southeastward along the Manitoba Escarpment, the forested areas include the Pasquia Hills, the Porcupine Hills, Duck Mountain Provincial Park, and Riding Mountain National Park. The forests are brighter in the nadir than at the oblique angles, probably because more of the snow-covered surface is visible in the gaps between the trees. In contrast, the valley between the Pasquia and Porcupine Hills near the top of the images appears bright red in the lefthand image (indicating high vegetation abundance) but shows a mauve color in the multi-angle view. This means that it is darker in the nadir than at the oblique angles. Examination of imagery acquired after the snow has melted should establish whether this difference is related to the amount of snow on the surface or is indicative of a different type of vegetation structure.

    Saskatchewan and Manitoba are believed to derive their names from the Cree words for the winding and swift-flowing waters of the Saskatchewan River and for a narrows on Lake Manitoba where the roaring sound of wind and water evoked the voice of the Great Spirit. They are two of Canada's Prairie Provinces; Alberta is the third.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. The Effect of Camera Angle and Image Size on Source Credibility and Interpersonal Attraction.

    ERIC Educational Resources Information Center

    McCain, Thomas A.; Wakshlag, Jacob J.

    The purpose of this study was to examine the effects of two nonverbal visual variables (camera angle and image size) on variables developed in a nonmediated context (source credibility and interpersonal attraction). Camera angle and image size were manipulated in eight video taped television newscasts which were subsequently presented to eight…

  19. The Days Dwindle Down to a Precious Few

    NASA Image and Video Library

    2015-04-27

    This image is located just inside the southern rim of Chong Chol crater and was obtained on April 25, 2015, the day following NASA MESSENGER final orbital correction maneuver. The spacecraft fuel tanks are now completely empty, and there is no means to prevent the Sun's gravity from pulling MESSENGER's orbit closer and closer to the surface of Mercury. Impact is expected to occur on April 30, 2015. The image is located just inside the southern rim of Chong Chol crater, named for a Korean poet of the 1500s. It is challenging to obtain good images when the spacecraft is very low above the planet, because of the high speed at which the camera's field of view is moving across the surface. Very short exposure times are used to limit smear, and this image was binned from its original size of 1024 x 1024 pixels to 512 x 512 to improve the image quality. The title of today's image is a line from "September Song" (composed by Kurt Weill, with lyrics by Maxwell Anderson. The song was subsequently covered by artists including Ian McCulloch of Echo & the Bunnymen, Lou Reed, and Bryan Ferry). Date acquired: April 25, 2015 Image Mission Elapsed Time (MET): 72264694 Image ID: 8392292 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 45.43° N Center Longitude: 298.62° E Resolution: 2.1 meters/pixel Scale: The scene is about 2.1 km (1.3 miles) across. This image has not been map projected. Incidence Angle: 69.9° Emission Angle: 20.1° Phase Angle: 90.0° http://photojournal.jpl.nasa.gov/catalog/PIA19436

  20. Surveillance Using Multiple Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-03-01

    BATCAM wingspan was 21” vs Jodeh’s 9.1 ft, the BATCAM’s propulsion was electric vs. Jodeh’s gas engine, cameras were body fixed vs. gimballed, and...3.1: BATCAM Camera FOV Angles Angle Front Camera Side Camera Depression Angle 49◦ 39◦ horizontal FOV 48◦ 48◦ vertical FOV 40◦ 40◦ by a quiet electric ...motor. The batteries can be recharged with a car cigarette lighter in less than an hour. Assembly of the wing airframe takes less than a minute, and

  1. Multi-Angle Snowflake Camera Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Martin; Bailey, J.

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASCmore » cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.« less

  2. Craters 'Twixt Day and Night

    NASA Image and Video Library

    2004-12-20

    Three sizeable impact craters, including one with a marked central peak, lie along the line that divides day and night on the Saturnian moon, Dione (dee-OH-nee), which is 1,118 kilometers, or 695 miles across. The low angle of the Sun along the terminator, as this dividing line is called, brings details like these craters into sharp relief. This view shows principally the leading hemisphere of Dione. Some of this moon's bright, wispy streaks can be seen curling around its eastern limb. Cassini imaged the wispy terrain at high resolution during its first Dione flyby on Dec. 14, 2004. This image was taken in visible light with the Cassini spacecraft narrow angle camera on Nov. 1, 2004, at a distance of 2.4 million kilometers (1.5 million miles) from Dione and at a Sun-Dione-spacecraft, or phase, angle of 106 degrees. North is up. The image scale is 14 kilometers (8.7 miles) per pixel. The image has been magnified by a factor of two and contrast-enhanced to aid visibility of surface features. http://photojournal.jpl.nasa.gov/catalog/PIA06542

  3. Daphnis Up Close

    NASA Image and Video Library

    2017-01-18

    The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini's viewing angle causes the gap to appear narrower than it actually is, due to foreshortening. The little moon's gravity raises waves in the edges of the gap in both the horizontal and vertical directions. Cassini was able to observe the vertical structures in 2009, around the time of Saturn's equinox (see PIA11654). Like a couple of Saturn's other small ring moons, Atlas and Pan, Daphnis appears to have a narrow ridge around its equator and a fairly smooth mantle of material on its surface -- likely an accumulation of fine particles from the rings. A few craters are obvious at this resolution. An additional ridge can be seen further north that runs parallel to the equatorial band. Fine details in the rings are also on display in this image. In particular, a grainy texture is seen in several wide lanes which hints at structures where particles are clumping together. In comparison to the otherwise sharp edges of the Keeler Gap, the wave peak in the gap edge at left has a softened appearance. This is possibly due to the movement of fine ring particles being spread out into the gap following Daphnis' last close approach to that edge on a previous orbit. A faint, narrow tendril of ring material follows just behind Daphnis (to its left). This may have resulted from a moment when Daphnis drew a packet of material out of the ring, and now that packet is spreading itself out. The image was taken in visible (green) light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21056

  4. Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography.

    PubMed

    Wu, Ren-Yi; Nongpiur, Monisha E; He, Ming-Guang; Sakata, Lisandro M; Friedman, David S; Chan, Yiong-Huak; Lavanya, Raghavan; Wong, Tien-Yin; Aung, Tin

    2011-05-01

    To describe the measurement of anterior chamber area and anterior chamber volume by anterior-segment optical coherence tomography and to investigate the association of these parameters with the presence of narrow angles. This was a cross-sectional study of subjects aged at least 50 years without ophthalmic symptoms recruited from a community clinic. All participants underwent standardized ocular examination and anterior-segment optical coherence tomography. Customized software was used to measure anterior chamber area (cross-sectional area bounded by the corneal endothelium, anterior surface of iris, and lens within the pupil) and anterior chamber volume (calculated by rotating the anterior chamber area 360° around a vertical axis through the midpoint of the anterior chamber area). An eye was considered to have narrow angles if the posterior pigmented trabecular meshwork was not visible for at least 180° on gonioscopy with the eye in the primary position. A total of 1922 subjects were included in the final analyses, 317 (16.5%) of whom had narrow angles. Mean anterior chamber area (15.6 vs 21.1 mm(2); P < .001) and anterior chamber volume (97.6 vs 142.1 mm(3); P < .001) were smaller in eyes with narrow angles compared with those in eyes without narrow angles. After adjusting for age, sex, anterior chamber depth, axial length, and pupil size, smaller anterior chamber area (odds ratio, 53.2; 95% confidence interval, 27.1-104.5) and anterior chamber volume (odds ratio, 40.2; 95% confidence interval, 21.5-75.2) were significantly associated with the presence of narrow angles. Smaller anterior chamber area and anterior chamber volume were independently associated with narrow angles in Singaporeans, even after controlling for other known ocular risk factors.

  5. Predictors of Intraocular Pressure After Phacoemulsification in Primary Open-Angle Glaucoma Eyes with Wide Versus Narrower Angles (An American Ophthalmological Society Thesis)

    PubMed Central

    Lin, Shan C.; Masis, Marisse; Porco, Travis C.; Pasquale, Louis R.

    2017-01-01

    Purpose To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. Methods This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. Results We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P<.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P<.001) in the wide-angle group (P=.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P<.001) reduction vs 2.5±3 mm Hg (16%, P<.001) in the wide-angle group (P=.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year (P<.05 for all). Conclusions In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option. PMID:29147104

  6. Predictors of Intraocular Pressure After Phacoemulsification in Primary Open-Angle Glaucoma Eyes with Wide Versus Narrower Angles (An American Ophthalmological Society Thesis).

    PubMed

    Lin, Shan C; Masis, Marisse; Porco, Travis C; Pasquale, Louis R

    2017-08-01

    To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P <.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P <.001) in the wide-angle group ( P =.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P <.001) reduction vs 2.5±3 mm Hg (16%, P <.001) in the wide-angle group ( P =.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year ( P <.05 for all). In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option.

  7. Dramatic Dione

    NASA Image and Video Library

    2018-03-12

    Cassini captured this striking view of Saturn's moon Dione on July 23, 2012. Dione is about 698 miles (1,123 kilometers) across. Its density suggests that about a third of the moon is made up of a dense core (probably silicate rock) with the remainder of its material being water ice. At Dione's average temperature of -304 degrees Fahrenheit (-186 degrees Celsius), ice is so hard it behaves like rock. The image was taken with Cassini's narrow-angle camera at a distance of approximately 260,000 miles (418,000 kilometers) from Dione, through a polarized filter and a spectral filter sensitive to green light. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA17197

  8. Mars Global Surveyor: 7 Years in Orbit!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 September 2004 Today, 12 September 2004, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) team celebrates 7 Earth years orbiting Mars. MGS first reached the red planet and performed its critical orbit insertion burn on 12 September 1997. Over the past 7 years, MOC has returned over 170,000 images; its narrow angle camera has covered about 4.5% of the surface, and its wide angle cameras have viewed 100% of the planet nearly everyday.

    At this time, MOC is not acquiring data because Mars is on the other side of the Sun relative to Earth. This period, known as Solar Conjunction, occurs about once every 26 months. During Solar Conjunction, no radio communications from spacecraft that are orbiting or have landed on Mars can be received. MOC was turned off on 7 September and is expected to resume operations on 25 September 2004, when Mars re-emerges from behind the Sun.

    The rotating color image of Mars shown here was compiled from MOC red and blue wide angle daily global images acquired exactly 1 Mars year ago on 26 October 2002 (Ls 86.4o). In other words, Mars today (12 September 2004) should look about the same as the view provided here. Presently, Mars is in very late northern spring, and the north polar cap has retreated almost to its summer configuration. Water ice clouds form each afternoon at this time of year over the large volcanoes in the Tharsis and Elysium regions. A discontinuous belt of clouds forms over the martian equator; it is most prominent north of the Valles Marineris trough system. In the southern hemisphere, it is late autumn and the giant Hellas Basin floor is nearly white with seasonal frost cover. The south polar cap is not visible, it is enveloped in seasonal darkness. The northern summer and southern winter seasons will begin on 20 September 2004.

  9. ARC-1985-A86-7001

    NASA Image and Video Library

    1985-11-28

    Range: 72.3 million km. ( 44.9 million miles ) P-29314B/W This Voyager 2 photograph of Uranus shows the planets outermost, or epsilon, ring. This is a computerized summation of six images shot by the narrow angle camera. It is the first photo to show the epsilon ring unblurred by Earth's atmosphere. The Epsilon ring, some 51,200 km. ( 31,800 miles ) from the planets center, is the most prominent of Uranus' nine known rings. Ground based observations of stellar occulations by the rings have determined that the Epsilon ring is eccentric, or elliptical, with its widest portion about 100 km. ( 60 miles ) wide and its narrowest portion about 20 km. (12 miles ). Estimates of the rings brightness suggest that it is also very dark, with a reflectance of only 1 or 2 percent and a probable composition of carbonaceous material similiar to that on dark asteroids and the dark side of Saturn's moon Lapetus. Because the ring is so narrow and dark, at this range, the Voyager camera could not resolve even the widest part, resulting in long exposure times so obtain a good image. six exposures of 11 or 15 second duration were added together by computer to produce this image. In this image, the central portion is greatly overexposed. Various artifacts due to electronic effects and image proccessing can be seen in the central portion of the frame, including the dark image just above the planets image, the diffuse brightening below it and the small, bright projection from the edge of the planet in the upper left. The ring is distinctly less prominent in the lower left portion and more prominent in the upper right. This is in agreement with the predicted locations of the narrow and wide portions of the ring, respectively.

  10. Determinants of lens vault and association with narrow angles in patients from Singapore.

    PubMed

    Tan, Gavin S; He, Mingguang; Zhao, Wanting; Sakata, Lisandro M; Li, Jialiang; Nongpiur, Monisha E; Lavanya, Raghavan; Friedman, David S; Aung, Tin

    2012-07-01

    To describe the distribution and determinants of lens vault and to investigate the association of lens vault with narrow angles. Prospective cross-sectional study. Phakic subjects 50 years and older were evaluated at a primary healthcare clinic with gonioscopy, partial laser interferometry, and anterior segment optical coherence tomography (AS-OCT). Narrow angles were defined as posterior trabecular meshwork not visible for ≥2 quadrants on non-indentation gonioscopy. Lens vault was defined as the perpendicular distance between the anterior pole of the crystalline lens and the horizontal line joining the 2 scleral spurs on horizontal AS-OCT scans. Analysis of covariance, multivariate logistic regression, and area under the receiver operating characteristic curves (AUC) were performed. Of the 2047 subjects recruited, 582 were excluded because of poor image quality or inability to locate scleral spurs, leaving 1465 subjects for analysis. Eyes with narrow angles had greater lens vault compared to eyes with open angles (775.6 µm vs 386.5 µm, P < .0001). Women had significantly greater lens vault than men (497.28 µm vs 438.56 µm, P < .001), and lens vault increased significantly with age (P for trend <.001). Adjusted for age and sex, significant associations with greater lens vault were shorter axial length, shallower anterior chamber depth(ACD), higher intraocular pressure, and more hyperopic spherical equivalent (all P < .001). On multivariate analysis, subjects with lens vault >667.6 µm were more likely to have narrow angles (OR 2.201, 95% CI: 1.070-4.526) compared to those with lens vault ≤462.7 µm. The AUC for lens vault (0.816) and ACD (0.822) for detecting narrow angles were similar (P = .582). Lens vault was independently associated with narrow angles and may be useful in screening to detect eyes with narrow angles. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Hong's grading for evaluating anterior chamber angle width.

    PubMed

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  12. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  13. A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Magnone, Lee J.; Huntsberger, Terrance; Aghazarian, Hrand; Padgett, Curtis W.; Trotz, David C.; Garrett, Michael S.

    2009-01-01

    The need for autonomous navigation and intelligent control of unmanned sea surface vehicles requires a mechanically robust sensing architecture that is watertight, durable, and insensitive to vibration and shock loading. The sensing system developed here comprises four black and white cameras and a single color camera. The cameras are rigidly mounted to a camera bar that can be reconfigured to mount multiple vehicles, and act as both navigational cameras and application cameras. The cameras are housed in watertight casings to protect them and their electronics from moisture and wave splashes. Two of the black and white cameras are positioned to provide lateral vision. They are angled away from the front of the vehicle at horizontal angles to provide ideal fields of view for mapping and autonomous navigation. The other two black and white cameras are positioned at an angle into the color camera's field of view to support vehicle applications. These two cameras provide an overlap, as well as a backup to the front camera. The color camera is positioned directly in the middle of the bar, aimed straight ahead. This system is applicable to any sea-going vehicle, both on Earth and in space.

  14. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    PubMed Central

    Nguyen, Donna; Minnal, Vandana R.

    2016-01-01

    Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300

  15. Relationship between relative lens position and appositional closure in eyes with narrow angles.

    PubMed

    Otori, Yasumasa; Tomita, Yuki; Hamamoto, Ayumi; Fukui, Kanae; Usui, Shinichi; Tatebayashi, Misako

    2011-03-01

    To investigate the relationship between relative lens position (RLP) and appositional closure in eyes with narrow angles. Ultrasound biomicroscopy (UBM) was used to measure anterior chamber depth (ACD) and lens thickness (LT), and the IOLMaster to measure axial length (AL). The number of quadrants with appositional closure was assessed by UBM under dark conditions. The RLP was calculated thus: RLP = 10 × (ACD + 0.5 LT) /AL. This study comprised 30 consecutive patients (30 eyes) with narrow-angle eyes defined as Shaffer grade 2 or lower and without peripheral anterior synechiae (24 women, 6 men; mean age ± SD, 67.3 ± 10.4 years; range, 42-87 years). Under dark conditions, 66.7% of the eyes with narrow angles showed appositional closure in at least one quadrant. Of the various ocular biometric parameters, only the RLP significantly decreased with appositional closure in at least one quadrant (P = 0.005). A decrease in the RLP can be predictive of appositional closure for narrow-angle eyes under dark conditions.

  16. A wide-angle camera module for disposable endoscopy

    NASA Astrophysics Data System (ADS)

    Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee

    2016-08-01

    A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.

  17. Application of classification methods for mapping Mercury's surface composition: analysis on Rudaki's Area

    NASA Astrophysics Data System (ADS)

    Zambon, F.; De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammanito, E.; Friggeri, A.

    2011-10-01

    During the first two MESSENGER flybys (14th January 2008 and 6th October 2008) the Mercury Dual Imaging System (MDIS) has extended the coverage of the Mercury surface, obtained by Mariner 10 and now we have images of about 90% of the Mercury surface [1]. MDIS is equipped with a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC). The NAC uses an off-axis reflective design with a 1.5° field of view (FOV) centered at 747 nm. The WAC has a re- fractive design with a 10.5° FOV and 12-position filters that cover a 395-1040 nm spectral range [2]. The color images can be used to infer information on the surface composition and classification meth- ods are an interesting technique for multispectral image analysis which can be applied to the study of the planetary surfaces. Classification methods are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback, and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class [3]. Here we will describe the classification in different compositional units of the region near the Rudaki Crater on Mercury.

  18. 67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Bertini, I.; Mottola, S.; Vincent, J.-B.; Lara, L.; Fornasier, S.; Knollenberg, J.; Thomas, N.; Fulle, M.; Agarwal, J.; Bodewits, D.; Ferri, F.; Güttler, C.; Gutierrez, P. J.; La Forgia, F.; Lowry, S.; Magrin, S.; Oklay, N.; Pajola, M.; Rodrigo, R.; Sierks, H.; A'Hearn, M. F.; Angrilli, F.; Barbieri, C.; Barucci, M. A.; Bertaux, J.-L.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Groussin, O.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Koschny, D.; Kramm, R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lamy, P. L.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Rickman, H.; Sabau, L.; Wenzel, K.-P.

    2015-01-01

    Aims: 67P/Churyumov-Gerasimenko is the target comet of the ESA's Rosetta mission. After commissioning at the end of March 2014, the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard Rosetta, started imaging the comet and its dust environment to investigate how they change and evolve while approaching the Sun. Methods: We focused our work on Narrow Angle Camera (NAC) orange images and Wide Angle Camera (WAC) red and visible-610 images acquired between 2014 March 23 and June 24 when the nucleus of 67P was unresolved and moving from approximately 4.3 AU to 3.8 AU inbound. During this period the 67P - Rosetta distance decreased from 5 million to 120 thousand km. Results: Through aperture photometry, we investigated how the comet brightness varies with heliocentric distance. 67P was likely already weakly active at the end of March 2014, with excess flux above that expected for the nucleus. The comet's brightness was mostly constant during the three months of approach observations, apart from one outburst that occurred around April 30 and a second increase in flux after June 20. Coma was resolved in the profiles from mid-April. Analysis of the coma morphology suggests that most of the activity comes from a source towards the celestial north pole of the comet, but the outburst that occurred on April 30 released material in a different direction.

  19. Mimas Showing False Colors #1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    False color images of Saturn's moon, Mimas, reveal variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    The image at the left is a narrow angle clear-filter image, which was separately processed to enhance the contrast in brightness and sharpness of visible features. The image at the right is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined into a single black and white picture that isolates and maps regional color differences. This 'color map' was then superimposed over the clear-filter image at the left.

    The combination of color map and brightness image shows how the color differences across the Mimas surface materials are tied to geological features. Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of each image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil.

    The images were obtained when the Cassini spacecraft was above 25 degrees south, 134 degrees west latitude and longitude. The Sun-Mimas-spacecraft angle was 45 degrees and north is at the top.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  20. Two Tiny Moons

    NASA Image and Video Library

    2016-10-03

    Two tiny moons of Saturn, almost lost amid the planet's enormous rings, are seen orbiting in this image. Pan, visible within the Encke Gap near lower-right, is in the process of overtaking the slower Atlas, visible at upper-left. All orbiting bodies, large and small, follow the same basic rules. In this case, Pan (17 miles or 28 kilometers across) orbits closer to Saturn than Atlas (19 miles or 30 kilometers across). According to the rules of planetary motion deduced by Johannes Kepler over 400 years ago, Pan orbits the planet faster than Atlas does. This view looks toward the sunlit side of the rings from about 39 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 9, 2016. The view was acquired at a distance of approximately 3.4 million miles (5.5 million kilometers) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 71 degrees. Image scale is 21 miles (33 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20501

  1. Highlighting Titan's Hazes

    NASA Image and Video Library

    2017-08-11

    NASA's Cassini spacecraft looks toward the night side of Saturn's moon Titan in a view that highlights the extended, hazy nature of the moon's atmosphere. During its long mission at Saturn, Cassini has frequently observed Titan at viewing angles like this, where the atmosphere is backlit by the Sun, in order to make visible the structure of the hazes. Titan's high-altitude haze layer appears blue here, whereas the main atmospheric haze is orange. The difference in color could be due to particle sizes in the haze. The blue haze likely consists of smaller particles than the orange haze. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on May 29, 2017. The view was acquired at a distance of approximately 1.2 million miles (2 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21625

  2. Wish Upon a Star

    NASA Image and Video Library

    2015-01-05

    What's that bright point of light in the outer A ring? It's a star, bright enough to be visible through the ring! Quick, make a wish! This star -- seen in the lower right quadrant of the image -- was not captured by coincidence, it was part of a stellar occultation. By monitoring the brightness of stars as they pass behind the rings, scientists using this powerful observation technique can inspect detailed structures within the rings and how they vary with location. This view looks toward the sunlit side of the rings from about 44 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Oct. 8, 2013. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from the rings and at a Sun-Rings-Spacecraft, or phase, angle of 96 degrees. Image scale is 6.8 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18297

  3. Zoom-in on Epimetheus

    NASA Image and Video Library

    2017-07-03

    This zoomed-in view of Epimetheus, one of the highest resolution ever taken, shows a surface covered in craters, vivid reminders of the hazards of space. Epimetheus (70 miles or 113 kilometers across) is too small for its gravity to hold onto an atmosphere. It is also too small to be geologically active. There is therefore no way to erase the scars from meteor impacts, except for the generation of new impact craters on top of old ones. This view looks toward anti-Saturn side of Epimetheus. North on Epimetheus is up and rotated 32 degrees to the right. The image was taken with the Cassini spacecraft narrow-angle camera on Feb. 21, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was acquired at a distance of approximately 9,300 miles (15,000 kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 71 degrees. Image scale is 290 feet (89 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21335

  4. Detail on Dione False color

    NASA Image and Video Library

    2006-01-27

    The leading hemisphere of Dione displays subtle variations in color across its surface in this false color view. To create this view, ultraviolet, green and infrared images were combined into a single black and white picture that isolates and maps regional color differences. This "color map" was then superposed over a clear-filter image. The origin of the color differences is not yet understood, but may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil. Terrain visible here is on the moon's leading hemisphere. North on Dione (1,126 kilometers, or 700 miles across) is up and rotated 17 degrees to the right. All images were acquired with the Cassini spacecraft narrow-angle camera on Dec. 24, 2005 at a distance of approximately 597,000 kilometers (371,000 miles) from Dione and at a Sun-Dione-spacecraft, or phase, angle of 21 degrees. Image scale is 4 kilometers (2 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07688

  5. Titan Accent Mark

    NASA Image and Video Library

    2015-10-05

    A coincidence of viewing angle makes Pandora appear to be hovering over Titan, almost like an accent mark. Little Pandora is much closer to Cassini than hazy Titan in this view. (Titan is nearly three times farther away.) Even so, Titan (3,200 miles or 5,150 kilometers across) dwarfs Pandora (50 miles or 81 kilometers across). This gives us some sense of the diversity in sizes, and shapes, of Saturn's many moons. North on Titan is up and rotated 19 degrees to the right. The image was taken in visible green light with the Cassini spacecraft narrow-angle camera on July 4, 2015. The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Titan. Image scale is 7 miles (12 kilometers) per pixel on Titan. Pandora is at a distance of 436,000 miles (698,000 kilometers) away from the spacecraft. The scale on Pandora is about 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18338

  6. Co-registration of Laser Altimeter Tracks with Digital Terrain Models and Applications in Planetary Science

    NASA Technical Reports Server (NTRS)

    Glaeser, P.; Haase, I.; Oberst, J.; Neumann, G. A.

    2013-01-01

    We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool.

  7. Memoris, A Wide Angle Camera For Bepicolombo

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Memoris Team

    In order to answer to the Announcement of Opportunity of ESA for the BepiColombo payload, we are working on a wide angle camera concept named MEMORIS (MEr- cury MOderate Resolution Imaging System). MEMORIS will performe stereoscopic images of the whole Mercury surface using two different channels at +/- 20 degrees from the nadir point. It will achieve a spatial resolution of 50m per pixel at 400 km from the surface (peri-Herm), corresponding to a vertical resolution of about 75m with the stereo performances. The scientific objectives will be addressed by MEMORIS may be identified as follows: Estimate of surface age based on crater counting Crater morphology and degrada- tion Stratigraphic sequence of geological units Identification of volcanic features and related deposits Origin of plain units from morphological observations Distribution and type of the tectonic structures Determination of relative age among the structures based on cross-cutting relationships 3D Tectonics Global mineralogical mapping of main geological units Identification of weathering products The last two items will come from the multispectral capabilities of the camera utilizing 8 to 12 (TBD) broad band filters. MEMORIS will be equipped by a further channel devoted to the observations of the tenuous exosphere. It will look at the limb on a given arc of the BepiColombo orbit, in so doing it will observe the exosphere above a surface latitude range of 25-75 degrees in the northern emisphere. The exosphere images will be obtained above the surface just observed by the other two channels, trying to find possible relantionship, as ground-based observations suggest. The exospheric channel will have four narrow-band filters centered on the sodium and potassium emissions and the adjacent continua.

  8. Moon Convention

    NASA Image and Video Library

    2015-03-23

    People with similar jobs or interests hold conventions and meetings, so why shouldn't moons? Pandora, Prometheus, and Pan -- seen here, from right to left -- also appear to be holding some sort of convention in this image. Some moons control the structure of nearby rings via gravitational "tugs." The cumulative effect of the moon's tugs on the ring particles can keep the rings' edges from spreading out as they are naturally inclined to do, much like shepherds control their flock. Pan is a prototypical shepherding moon, shaping and controlling the locations of the inner and outer edges of the Encke gap through a mechanism suggested in 1978 to explain the narrow Uranian rings. However, though Prometheus and Pandora have historically been called "the F ring shepherd moons" due to their close proximity to the ring, it has long been known that the standard shepherding mechanism that works so well for Pan does not apply to these two moons. The mechanism for keeping the F ring narrow, and the roles played -- if at all -- by Prometheus and Pandora in the F ring's configuration are not well understood. This is an ongoing topic for study by Cassini scientists. This view looks toward the sunlit side of the rings from about 29 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 2, 2015. The view was obtained at a distance of approximately 1.6 million miles (2.6 million kilometers) from the rings and at a Sun-ring-spacecraft, or phase, angle of 86 degrees. Image scale is 10 miles (15 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18306

  9. Moon Zoo: Making the public part of a crater survey algorithm

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Brown, S.; Huang, D.; Daus, C.; Lehan, C.; Robbins, S.

    2011-10-01

    The Moon Zoo citizen science website launched in May 2010 and invited the public to annotate images from the Lunar Reconnaissance Orbiter's Narrow Angle Camera (NAC). Tasks included marking the edges of craters with an ellipse tool, indicating where linear features (e.g. scarps) and special types of craters (e.g. dark haloed) are located with a box, and rating the number of boulders in an image. The goal of this project is to create crater and feature catalogues for large areas of the moon. In addition to doing science, Moon Zoo also seeks to educate its audience through educational content, to engage them through social media, and to understand them through research into their motivations and behaviors.

  10. Postcard from the Ring Plane

    NASA Image and Video Library

    2018-05-07

    On March 13, 2006 Cassini's narrow-angle camera captured this look at Saturn and its rings, seen here nearly edge on. The frame also features Mimas and tiny Janus (above the rings), and Tethys (below the rings). "Above" and "below" the rings is mostly a matter of perspective here. All three moons and the rings orbit Saturn in roughly the same plane. The night side of Mimas is gently illuminated by "Saturnshine," sunlight reflected from the planet's cloud tops. Images taken using red, green and blue spectral filters were combined to create this natural color view, taken at a distance of approximately 1.7 million miles (2.7 million kilometers) from Saturn. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA18323

  11. Regarding Rhea

    NASA Image and Video Library

    2016-08-01

    Rhea, like many moons in the outer solar system, appears dazzlingly bright in full sunlight. This is the signature of the water ice that forms most of the moon's surface. Rhea (949 miles or 1,527 kilometers across) is Saturn's second largest moon after Titan. Its ancient surface is one of the most heavily cratered of all of Saturn's moons. Subtle albedo variations across the disk of Rhea hint at past geologic activity. This view looks toward the anti-Saturn hemisphere of Rhea. North on Rhea is up and rotated 36 degrees to the right. The image was taken with the Cassini spacecraft narrow-angle camera on June 3, 2016 using a spectral filter which preferentially admits wavelengths of ultraviolet light centered at 338 nanometers. http://photojournal.jpl.nasa.gov/catalog/PIA20495

  12. Gravity's Rainbow

    NASA Image and Video Library

    2018-04-23

    Saturn's rings display their subtle colors in this view captured on Aug. 22, 2009, by NASA's Cassini spacecraft. The particles that make up the rings range in size from smaller than a grain of sand to as large as mountains, and are mostly made of water ice. The exact nature of the material responsible for bestowing color on the rings remains a matter of intense debate among scientists. Images taken using red, green and blue spectral filters were combined to create this natural color view. Cassini's narrow-angle camera took the images at a distance of approximately 1.27 million miles (2.05 million kilometers) from the center of the rings. The Cassini spacecraft ended its mission on Sept. 15, 2017 https://photojournal.jpl.nasa.gov/catalog/PIA22418

  13. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    NASA Astrophysics Data System (ADS)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  15. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  16. Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Tschimmel, M.; Robinson, M. S.; Humm, D. C.; Denevi, B. W.; Lawrence, S. J.; Brylow, S.; Ravine, M.; Ghaemi, T.

    2008-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) onboard the NASA Lunar Reconnaissance Orbiter (LRO) spacecraft consists of three cameras: the Wide-Angle Camera (WAC) and two identical Narrow Angle Cameras (NAC-L, NAC-R). The WAC is push-frame imager with 5 visible wavelength filters (415 to 680 nm) at a spatial resolution of 100 m/pixel and 2 UV filters (315 and 360 nm) with a resolution of 400 m/pixel. In addition to the multicolor imaging the WAC can operate in monochrome mode to provide a global large- incidence angle basemap and a time-lapse movie of the illumination conditions at both poles. The WAC has a highly linear response, a read noise of 72 e- and a full well capacity of 47,200 e-. The signal-to-noise ratio in each band is 140 in the worst case. There are no out-of-band leaks and the spectral response of each filter is well characterized. Each NAC is a monochrome pushbroom scanner, providing images with a resolution of 50 cm/pixel from a 50-km orbit. A single NAC image has a swath width of 2.5 km and a length of up to 26 km. The NACs are mounted to acquire side-by-side imaging for a combined swath width of 5 km. The NAC is designed to fully characterize future human and robotic landing sites in terms of topography and hazard risks. The North and South poles will be mapped on a 1-meter-scale poleward of 85.5° latitude. Stereo coverage can be provided by pointing the NACs off-nadir. The NACs are also highly linear. Read noise is 71 e- for NAC-L and 74 e- for NAC-R and the full well capacity is 248,500 e- for NAC-L and 262,500 e- for NAC- R. The focal lengths are 699.6 mm for NAC-L and 701.6 mm for NAC-R; the system MTF is 28% for NAC-L and 26% for NAC-R. The signal-to-noise ratio is at least 46 (terminator scene) and can be higher than 200 (high sun scene). Both NACs exhibit a straylight feature, which is caused by out-of-field sources and is of a magnitude of 1-3%. However, as this feature is well understood it can be greatly reduced during ground processing. All three cameras were calibrated in the laboratory under ambient conditions. Future thermal vacuum tests will characterize critical behaviors across the full range of lunar operating temperatures. In-flight tests will check for changes in response after launch and provide key data for meeting the requirements of 1% relative and 10% absolute radiometric calibration.

  17. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  19. Contemporary Approach to the Diagnosis and Management of Primary Angle-Closure Disease.

    PubMed

    Razeghinejad, M Reza; Myers, Jonathan S

    2018-05-16

    Primary angle closure disease spectrum varies from a narrow angle to advanced glaucoma. A variety of imaging technologies may assist the clinician in determining the pathophysiology and diagnosis of primary angle closure, but gonioscopy remains a mainstay of clinical evaluation. Laser iridotomy effectively eliminates the pupillary block component of angle closure; however, studies show that in many patients the iridocorneal angle remains narrow from underlying anatomic issues, and increasing lens size often leads to further narrowing over time. Recent studies have further characterized the role of the lens in angle closure disease, and cataract or clear lens extraction is increasingly used earlier in its management. As a first surgical step in angle closure glaucoma, lens extraction alone often effectively controls the pressure with less risk of complications than concurrent or stand alone glaucoma surgery, but may not be sufficient in more advanced or severe disease. We provide a comprehensive review on the primary angle-closure disease nomenclature, imaging, and current laser and surgical management. Copyright © 2018. Published by Elsevier Inc.

  20. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  1. ARC-1989-AC89-7001

    NASA Image and Video Library

    1989-08-21

    Photo by Voyager 2 (JPL) During August 16 and 17, 1989, the Voyager 2 narrow-angle camera was used to photograph Neptune almost continuously, recording approximately two and one-half rotations of the planet. These images represent the most complete set of full disk Neptune images that the spacecraft will acquire. This picture from the sequence shows two of the four cloud features which have been tracked by the Voyager cameras during the past two months. The large dark oval near the western limb (the left edge) is at a latitude of 22 degrees south and circuits Neptune every 18.3 hours. The bright clouds immediately to the south and east of this oval are seen to substantially change their appearances in periods as short as four hours. The second dark spot, at 54 degrees south latitude near the terminator (lower right edge), circuits Neptune every 16.1 hours. This image has been processed to enchance the visibility of small features, at some sacrifice of color fidelity. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications. (JPL Ref: A-34611 Voyager 2-N29)

  2. Lakes Through the Haze

    NASA Image and Video Library

    2013-12-23

    Using a special spectral filter, the high-resolution camera aboard NASA's Cassini spacecraft was able to peer through the hazy atmosphere of Saturn's moon Titan. It captured this image, which features the largest seas and some of the many hydrocarbon lakes that are present on Titan's surface. Titan is the only place in the solar system, other than Earth, that has stable liquids on its surface. In this case, the liquid consists of ethane and methane rather than water. This view looks towards the side of Titan (3,200 miles or 5,150 kilometers across) that leads in its orbit around Saturn. North on Titan is up and rotated 36 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft narrow-angle camera on Oct. 7, 2013. The view was acquired at a distance of approximately 809,000 miles (1.303 million kilometers) from Titan. Image scale is 5 miles (8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17179

  3. Glaucoma

    MedlinePlus

    Open-angle glaucoma; Chronic glaucoma; Chronic open-angle glaucoma; Primary open-angle glaucoma; Closed-angle glaucoma; Narrow-angle glaucoma; Angle-closure glaucoma; Acute glaucoma; Secondary glaucoma; Congenital glaucoma; Vision ...

  4. The MESSENGER Earth Flyby: Results from the Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Murchie, S. L.; Hawkins, S. E.; Robinson, M. S.; Shelton, R. G.; Vaughan, R. M.; Solomon, S. C.

    2005-12-01

    The MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft was launched from Cape Canaveral Air Force Station, Fla., on 3 August 2004. It returned to Earth for a gravity assist on 2 August 2005, providing an exceptional opportunity for the Science Team to perform instrument calibrations and to test some of the data acquisition sequences that will be used to meet Mercury science goals. The Mercury Dual Imaging System (MDIS), one of seven science instruments on MESSENGER, consists of a wide-angle and a narrow-angle imager that together can map landforms, track variations in surface color, and carry out stereogrammetry. The two imagers are mounted on a pivot platform that enables the instrument to point in a different direction from the spacecraft boresight, allowing great flexibility and increased imaging coverage. During the week prior to the closest approach to Earth, MDIS acquired a number of images of the Moon for radiometric calibration and to test optical navigation sequences that will be used to target planetary flybys. Twenty-four hours before closest approach, images of the Earth were acquired with 11 filters of the wide-angle camera. After MDIS flew over the nightside of the Earth, additional color images centered on South America were obtained at sufficiently high resolution to discriminate small-scale features such as the Amazon River and Lake Titicaca. During its departure from Earth, MDIS acquired a sequence of images taken in three filters every 4 minutes over a period of 24 hours. These images have been assembled into a movie of a crescent Earth that begins as South America slides across the terminator into darkness and continues for one full Earth rotation. This movie and the other images have provided a successful test of the sequences that will be used during the MESSENGER Mercury flybys in 2008 and 2009 and have demonstrated the high quality of the MDIS wide-angle camera.

  5. Cassini Camera Contamination Anomaly: Experiences and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Haemmerle, Vance R.; Gerhard, James H.

    2006-01-01

    We discuss the contamination 'Haze' anomaly for the Cassini Narrow Angle Camera (NAC), one of two optical telescopes that comprise the Imaging Science Subsystem (ISS). Cassini is a Saturn Orbiter with a 4-year nominal mission. The incident occurred in 2001, five months after Jupiter encounter during the Cruise phase and ironically at the resumption of planned maintenance decontamination cycles. The degraded optical performance was first identified by the Instrument Operations Team with the first ISS Saturn imaging six weeks later. A distinct haze of varying size from image to image marred the images of Saturn. A photometric star calibration of the Pleiades, 4 days after the incident, showed stars with halos. Analysis showed that while the halo's intensity was only 1 - 2% of the intensity of the central peak of a star, the halo contained 30 - 70% of its integrated flux. This condition would impact science return. In a review of our experiences, we examine the contamination control plan, discuss the analysis of the limited data available and describe the one-year campaign to remove the haze from the camera. After several long conservative heating activities and interim analysis of their results, the contamination problem as measured by the camera's point spread function was essentially back to preanomaly size and at a point where there would be more risk to continue. We stress the importance of the flexibility of operations and instrument design, the need to do early infight instrument calibration and continual monitoring of instrument performance.

  6. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.

    PubMed

    Qian, Shuo; Sheng, Yang

    2011-11-01

    Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.

  7. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. High prevalence of narrow angles among Filipino-American patients.

    PubMed

    Seider, Michael I; Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Porco, Travis C; Weinreb, Robert N; Lin, Shan C

    2011-03-01

    To determine the prevalence of gonioscopically narrow anterior chamber angles in a Filipino-American clinic population. The records of 122 consecutive, new, self-declared Filipino-American patients examined in a comprehensive ophthalmology clinic in Vallejo, California were reviewed retrospectively. After exclusion, 222 eyes from 112 patients remained for analysis. Data were collected for anterior chamber angle grade as determined by gonioscopy (Shaffer system), age, sex, manifest refraction (spherical equivalent), intraocular pressure, and cup-to-disk ratio. Data from both eyes of patients were included and modeled using standard linear mixed-effects regression. As a comparison, data were also collected from a group of 30 consecutive White patients from the same clinic. After exclusion, 50 eyes from 25 White patients remained for comparison. At least 1 eye of 24% of Filipino-American patients had a narrow anterior chamber angle (Shaffer grade ≤ 2). Filipino-American angle grade significantly decreased with increasingly hyperopic refraction (P=0.007) and larger cup-to-disk ratio (P=0.038). Filipino-American women had significantly decreased angle grades compared with men (P=0.028), but angle grade did not vary by intraocular pressure or age (all, P≥ 0.059). Narrow anterior chamber angles are highly prevalent in Filipino-American patients in our clinic population.

  10. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    PubMed

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  11. Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region

    NASA Astrophysics Data System (ADS)

    Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.

    2016-03-01

    (21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. In addition, we compared the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) and Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy) parameters with laboratory samples and other small Solar System bodies visited by space missions.

  12. Preliminary status of POLICAN: A near-infrared imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.

    2015-10-01

    POLICAN is a near-infrared (J, H, K) imaging polarimeter developed for the Cananea near infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. The camera has a 1024 x 1024 HgCdTe detector (HAWAII array) with a plate scale of 0.32 arcsec/pixel providing a field of view of 5.5 x 5.5 arcmin. POLICAN is mounted externally to CANICA for narrow-field (f/12) linear polarimetric observations. It consists of a rotating super achromatic (1-2.7μm) half waveplate and a fixed wire-grid polarizer as the analyzer. The light is modulated by setting the half waveplate at different angles (0°, 22.5°, 45°, 67.5°) and linear combinations of the Stokes parameters (I, Q and U) are obtained. Image reduction and removal of instrumental polarization consist of dark noise subtraction, polarimetric flat fielding and background sky subtraction. Polarimetric calibration is performed by observing polarization standards available in the literature. The astrometry correction is performed by matching common stars with the Two Micron All Sky Survey. POLICAN's bright and limiting magnitudes are approximately 6th and 16th magnitude, which correspond to saturation and photon noise, respectively. POLICAN currently achieves a polarimetric accuracy about 3.0% and polarization angle uncertainties within 3°. Preliminary observations of star forming regions are being carried out in order to study their magnetic field properties.

  13. Hurricane Matthew over Haiti seen by NASA MISR

    NASA Image and Video Library

    2016-10-04

    On the morning of October 4, 2016, Hurricane Matthew passed over the island nation of Haiti. A Category 4 storm, it made landfall around 7 a.m. local time (5 a.m. PDT/8 a.m. EDT) with sustained winds over 145 mph. This is the strongest hurricane to hit Haiti in over 50 years. On October 4, at 10:30 a.m. local time (8:30 a.m. PDT/11:30 a.m. EDT), the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over Hurricane Matthew. This animation was made from images taken by MISR's downward-pointing (nadir) camera is 235 miles (378 kilometers) across, which is much narrower than the massive diameter of Matthew, so only the hurricane's eye and a portion of the storm's right side are visible. Haiti is completely obscured by Matthew's clouds, but part of the Bahamas is visible to the north. Several hot towers are visible within the central part of the storm, and another at the top right of the image. Hot towers are enormous thunderheads that punch through the tropopause (the boundary between the lowest layer of the atmosphere, the troposphere, and the next level, the stratosphere). The rugged topography of Haiti causes uplift within the storm, generating these hot towers and fueling even more rain than Matthew would otherwise dump on the country. MISR has nine cameras fixed at different angles, which capture images of the same point on the ground within about seven minutes. This animation was created by blending images from these nine cameras. The change in angle between the images causes a much larger motion from south to north than actually exists, but the rotation of the storm is real motion. From this animation, you can get an idea of the incredible height of the hot towers, especially the one to the upper right. The counter-clockwise rotation of Matthew around its closed (cloudy) eye is also visible. These data were acquired during Terra orbit 89345. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21070

  14. So Long, C Ring

    NASA Image and Video Library

    2017-11-13

    Saturn's C ring is home to a surprisingly rich array of structures and textures. Much of the structure seen in the outer portions of Saturn's rings is the result of gravitational perturbations on ring particles by moons of Saturn. Such interactions are called resonances. However, scientists are not clear as to the origin of the structures seen in this image which has captured an inner ring region sparsely populated with particles, making interactions between ring particles rare, and with few satellite resonances. In this image, a bright and narrow ringlet located toward the outer edge of the C ring is flanked by two broader features called plateaus, each about 100 miles (160 kilometers) wide. Plateaus are unique to the C ring. Cassini data indicates that the plateaus do not necessarily contain more ring material than the C ring at large, but the ring particles in the plateaus may be smaller, enhancing their brightness. This view looks toward the sunlit side of the rings from about 53 degrees above the ring plane. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Aug. 14, 2017. The view was acquired at a distance of approximately 117,000 miles (189,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 74 degrees. Image scale is 3,000 feet (1 kilometer) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21356

  15. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  16. Miranda - 'Chevron' Grooves

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This image of Miranda, obtained by Voyager 2 on approach, shows an unusual 'chevron' figure and regions of distinctly differing terrain on the Uranian moon. Voyager was 42,000 kilometers (26,000 miles) away when its narrow-angle camera acquired this clear-filter view. Grooved areas baring light and dark bands, distinct from other areas of mottled terrain, are visible at this resolution of about 600 meters (2,000 feet). The bright V-shaped feature in the grooved areas is the 'chevron' observed in earlier, lower-resolution images. Cutting across the bands are sinuous scarps, probably faults. Superimposed on both types of terrain are many bowl-shaped impact craters less than 5 km (3 mi) wide. The entire picture spans an area about 220 km (140 mi) across. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  17. Path to the Dark Side

    NASA Image and Video Library

    2015-03-09

    The moon Iapetus, like the "force" in Star Wars, has both a light side and a dark side. Scientists think that Iapetus' (914 miles or 1471 kilometers across) dark/light asymmetry was actually created by material migrating away from the dark side. For a simulation of how scientists think the asymmetry formed, see Thermal Runaway Model . Lit terrain seen here is on the Saturn-facing hemisphere of Iapetus. North on Iapetus is up and rotated 43 degrees to the right. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Jan. 4, 2015. The view was acquired at a distance of approximately 2.5 million miles (4 million kilometers) from Iapetus. Image scale is 15 miles (24 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18307

  18. Neptune's Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This photograph of Neptune's southern hemisphere was taken by the narrow-angle camera on NASA's Voyager 2 when the spacecraft was 4.2 million km (2.6 million miles) from the planet. The smallest features that can be seen are 38 km (24 miles) across. The almond-shaped structure at the left is a large cloud system that has been seen for several weeks. Internal details in the feature have become increasingly apparent as Voyager 2 has approached. Systems with similar shapes in Jupiter's atmosphere rotate about their centers, rolling in the local winds that increase toward the south. However, the wispy nature of the white central clouds in this Neptunian feature make confirmation of the system's rotation difficult. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  19. Neptune's small dark spot (D2)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the V-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  20. Small Wonders

    NASA Image and Video Library

    2017-06-28

    This montage of views from NASA's Cassini spacecraft shows three of Saturn's small ring moons: Atlas, Daphnis and Pan at the same scale for ease of comparison. Two differences between Atlas and Pan are obvious in this montage. Pan's equatorial band is much thinner and more sharply defined, and the central mass of Atlas (the part underneath the smooth equatorial band) appears to be smaller than that of Pan. Images of Atlas and Pan taken using infrared, green and ultraviolet spectral filters were combined to create enhanced-color views, which highlight subtle color differences across the moons' surfaces at wavelengths not visible to human eyes. (The Daphnis image was colored using the same green filter image for all three color channels, adjusted to have a realistic appearance next to the other two moons.) All of these images were taken using the Cassini spacecraft narrow-angle camera. The images of Atlas were acquired on April 12, 2017, at a distance of 10,000 miles (16,000 kilometers) and at a sun-moon-spacecraft angle (or phase angle) of 37 degrees. The images of Pan were taken on March 7, 2017, at a distance of 16,000 miles (26,000 kilometers) and a phase angle of 21 degrees. The Daphnis image was obtained on Jan. 16, 2017, at a distance of 17,000 miles (28,000 kilometers) and at a phase angle of 71 degrees. All images are oriented so that north is up. A monochrome version is available at https://photojournal.jpl.nasa.gov/catalog/PIA21449

  1. A position and attitude vision measurement system for wind tunnel slender model

    NASA Astrophysics Data System (ADS)

    Cheng, Lei; Yang, Yinong; Xue, Bindang; Zhou, Fugen; Bai, Xiangzhi

    2014-11-01

    A position and attitude vision measurement system for drop test slender model in wind tunnel is designed and developed. The system used two high speed cameras, one is put to the side of the model and another is put to the position where the camera can look up the model. Simple symbols are set on the model. The main idea of the system is based on image matching technique between the 3D-digital model projection image and the image captured by the camera. At first, we evaluate the pitch angles, the roll angles and the position of the centroid of a model through recognizing symbols in the images captured by the side camera. And then, based on the evaluated attitude info, giving a series of yaw angles, a series of projection images of the 3D-digital model are obtained. Finally, these projection images are matched with the image which captured by the looking up camera, and the best match's projection images corresponds to the yaw angle is the very yaw angle of the model. Simulation experiments are conducted and the results show that the maximal error of attitude measurement is less than 0.05°, which can meet the demand of test in wind tunnel.

  2. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles.

    PubMed

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-05-01

    To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898-0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm(3), ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4-10.0) and 0.11 (95% CI=0.03-0.4), respectively. ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles.

  3. Auto-converging stereo cameras for 3D robotic tele-operation

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  4. Study in Scarlet

    NASA Image and Video Library

    2015-02-09

    If your eyes could only see the color red, this is how Saturn's rings would look. Many Cassini color images, like this one, are taken in red light so scientists can study the often subtle color variations of Saturn's rings. These variations may reveal clues about the chemical composition and physical nature of the rings. For example, the longer a surface is exposed to the harsh environment in space, the redder it becomes. Putting together many clues derived from such images, scientists are coming to a deeper understanding of the rings without ever actually visiting a single ring particle. This view looks toward the sunlit side of the rings from about 11 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Dec. 6, 2014. The view was acquired at a distance of approximately 870,000 miles (1.4 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 27 degrees. Image scale is 5 miles (8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18301

  5. Phantom Limb

    NASA Image and Video Library

    2017-09-25

    The brightly lit limb of a crescent Enceladus looks ethereal against the blackness of space. The rest of the moon, lit by light reflected from Saturn, presents a ghostly appearance. Enceladus (313 miles or 504 kilometers across) is back-lit in this image, as is apparent by the thin crescent. However, the Sun-Enceladus-spacecraft (or phase) angle, at 141 degrees, is too low to make the moon's famous plumes easily visible. This view looks toward the Saturn-facing hemisphere of Enceladus. North on Enceladus is up. The above image is a composite of images taken with the Cassini spacecraft narrow-angle camera on March 29, 2017 using filters that allow infrared, green, and ultraviolet light. The image filter centered on 930 nm (IR) was is red in this image, the image filter centered on the green is green, and the image filter centered on 338 nm (UV) is blue. The view was obtained at a distance of approximately 110,000 miles (180,000 kilometers) from Enceladus. Image scale is 0.6 miles (1 kilometer) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21346

  6. A Closer Look at Telesto False-Color

    NASA Image and Video Library

    2006-02-08

    These views show surface features and color variation on the Trojan moon Telesto. The smooth surface of this moon suggests that, like Pandora, it is covered with a mantle of fine, dust-sized icy material. The monochrome image was taken in visible light (see PIA07696). To create the false-color view, ultraviolet, green and infrared images were combined into a single black and white picture that isolates and maps regional color differences. This "color map" was then superposed over a clear-filter image. The origin of the color differences is not yet understood, but may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil. Tiny Telesto is a mere 24 kilometers (15 miles) wide. The image was acquired with the Cassini spacecraft narrow-angle camera on Dec. 25, 2005 at a distance of approximately 20,000 kilometers (12,000 miles) from Telesto and at a Sun-Telesto-spacecraft, or phase, angle of 58 degrees. Image scale is 118 meters (387 feet) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07697

  7. Mimas Mountain

    NASA Image and Video Library

    2017-01-09

    Shadows cast across Mimas' defining feature, Herschel Crater, provide an indication of the size of the crater's towering walls and central peak. Named after the icy moon's discoverer, astronomer William Herschel, the crater stretches 86 miles (139 kilometers) wide -- almost one-third of the diameter of Mimas (246 miles or 396 kilometers) itself. Large impact craters often have peaks in their center -- see Tethys' large crater Odysseus in PIA08400. Herschel's peak stands nearly as tall as Mount Everest on Earth. This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 21 degrees to the left. The image was taken with the Cassini spacecraft narrow-angle camera on Oct. 22, 2016 using a combination of spectral filters which preferentially admits wavelengths of ultraviolet light centered at 338 nanometers. The view was acquired at a distance of approximately 115,000 miles (185,000 kilometers) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 20 degrees. Image scale is 3,300 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20515

  8. Departing Dione

    NASA Image and Video Library

    2015-08-20

    NASA Cassini spacecraft captured this parting view showing the rough and icy crescent of Saturn moon Dione following the spacecraft last close flyby of the moon on Aug. 17, 2015. Cassini obtained a similar crescent view in 2005 (see PIA07745). The earlier view has an image scale about four times higher, but does not show the moon's full crescent as this view does. Five visible light (clear spectral filter), narrow-angle camera images were combined to create this mosaic view. The scene is an orthographic projection centered on terrain at 0.4 degrees north latitude, 30.6 degrees west longitude on Dione. An orthographic view is most like the view seen by a distant observer looking through a telescope. The view was acquired at distances ranging from approximately 37,000 miles (59,000 kilometers) to 47,000 miles (75,000 kilometers) from Dione and at a sun-Dione-spacecraft, or phase, angle of 145 degrees. Image scale is about 1,300 feet (400 meters) per pixel. North on Dione is up and rotated 34 degrees to the right. http://photojournal.jpl.nasa.gov/catalog/PIA19649

  9. Dione Before the Rings

    NASA Image and Video Library

    2015-11-23

    Saturn's rings are so expansive that they often sneak into Cassini's pictures of other bodies. Here, they appear with the planet in a picture taken during a close flyby of Dione. The flyby of Dione (698 miles or 1123 kilometers across) during which this image was taken was the last close encounter with this moon during Cassini's mission. The main goal of the flyby was to use the spacecraft as a probe to measure Dione's gravity field. However, scientists also managed to take some very close images of the surface. All of the data will be helpful to understand the interior structure and geological history of this distant, icy world. This view is centered on terrain at 7 degrees south latitude, 122 degrees west longitude. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Aug. 17, 2015. The view was obtained at a distance of approximately 48,000 miles (77,000 kilometers) from Dione and at a Sun-Dione-spacecraft, or phase angle of 35 degrees. Image scale is 1,520 feet (464 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18344

  10. Waving Goodbye

    NASA Image and Video Library

    2017-05-30

    Before NASA's Cassini entered its Grand Finale orbits, it acquired unprecedented views of the outer edges of the main ring system. For example, this close-up view of the Keeler Gap, which is near the outer edge of Saturn's main rings, shows in great detail just how much the moon Daphnis affects the edges of the gap. Daphnis creates waves in the edges of the gap through its gravitational influence. Some clumping of ring particles can be seen in the perturbed edge, similar to what was seen on the edges of the Encke Gap back when Cassini arrived at Saturn in 2004. This view looks toward the sunlit side of the rings from about 3 degrees above the ring plane. The view was acquired at a distance of approximately 18,000 miles (30,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 69 degrees. Image scale is 581 feet (177 meters) per pixel. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 16, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21329

  11. Crash Course

    NASA Image and Video Library

    2016-12-19

    It may look as though Saturn's moon Mimas is crashing through the rings in this image taken by NASA's Cassini spacecraft, but Mimas is actually 28,000 miles (45,000 kilometers) away from the rings. There is a strong connection between the icy moon and Saturn's rings, though. Gravity links them together and shapes the way they both move. The gravitational pull of Mimas (246 miles or 396 kilometers across) creates waves in Saturn's rings that are visible in some Cassini images. Mimas' gravity also helps create the Cassini Division (not pictured here), which separates the A and B rings. This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 15 degrees to the right. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Oct. 23, 2016. The view was acquired at a distance of approximately 114,000 miles (183,000 kilometers) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 29 degrees. Image scale is 3,300 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20510

  12. Where the Small Moon Rules

    NASA Image and Video Library

    2016-09-19

    Pan may be small as satellites go, but like many of Saturn's ring moons, it has a has a very visible effect on the rings. Pan (17 miles or 28 kilometers across, left of center) holds open the Encke gap and shapes the ever-changing ringlets within the gap (some of which can be seen here). In addition to raising waves in the A and B rings, other moons help shape the F ring, the outer edge of the A ring and open the Keeler gap. This view looks toward the sunlit side of the rings from about 8 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 2, 2016. The view was acquired at a distance of approximately 840,000 miles (1.4 million kilometers) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 128 degrees. Image scale is 5 miles (8 kilometers) per pixel. Pan has been brightened by a factor of two to enhance its visibility. http://photojournal.jpl.nasa.gov/catalog/PIA20499

  13. 8. VAL CAMERA CAR, CLOSEUP VIEW OF 'FLARE' OR TRAJECTORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VAL CAMERA CAR, CLOSE-UP VIEW OF 'FLARE' OR TRAJECTORY CAMERA ON SLIDING MOUNT. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%.

  15. Enabling High Fidelity Measurements of Energy and Pitch Angle for Escaping Energetic Ions with a Fast Ion Loss Detector

    NASA Astrophysics Data System (ADS)

    Chaban, R.; Pace, D. C.; Marcy, G. R.; Taussig, D.

    2016-10-01

    Energetic ion losses must be minimized in burning plasmas to maintain fusion power, and existing tokamaks provide access to energetic ion parameter regimes that are relevant to burning machines. A new Fast Ion Loss Detector (FILD) probe on the DIII-D tokamak has been optimized to resolve beam ion losses across a range of 30 - 90 keV in energy and 40° to 80° in pitch angle, thereby providing valuable measurements during many different experiments. The FILD is a magnetic spectrometer; once inserted into the tokamak, the magnetic field allows energetic ions to pass through a collimating aperture and strike a scintillator plate that is imaged by a wide view camera and narrow view photomultiplier tubes (PMTs). The design involves calculating scintillator strike patterns while varying probe geometry. Calculated scintillator patterns are then used to design an optical system that allows adjustment of the focus regions for the 1 MS/s resolved PMTs. A synthetic diagnostic will be used to determine the energy and pitch angle resolution that can be attained in DIII-D experiments. Work supported in part by US DOE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  16. Lunar Reconnaissance Orbiter Data Enable Science and Terrain Analysis of Potential Landing Sites in South Pole-Aitken Basin

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.

    2017-12-01

    Exploring the South Pole-Aitken basin (SPA), one of the key unsampled geologic terranes on the Moon, is a high priority for Solar System science. As the largest and oldest recognizable impact basin on the Moon, it anchors the heavy bombardment chronology. It is thus a key target for sample return to better understand the impact flux in the Solar System between formation of the Moon and 3.9 Ga when Imbrium, one of the last of the great lunar impact basins, formed. Exploration of SPA has implications for understanding early habitable environments on the terrestrial planets. Global mineralogical and compositional data exist from the Clementine UV-VIS camera, the Lunar Prospector Gamma Ray Spectrometer, the Moon Mineralogy Mapper (M3) on Chandrayaan-1, the Chang'E-1 Imaging Interferometer, the spectral suite on SELENE, and the Lunar Reconnaissance Orbiter Cameras (LROC) Wide Angle Camera (WAC) and Diviner thermal radiometer. Integration of data sets enables synergistic assessment of geology and distribution of units across multiple spatial scales. Mineralogical assessment using hyperspectral data indicates spatial relationships with mineralogical signatures, e.g., central peaks of complex craters, consistent with inferred SPA basin structure and melt differentiation (Moriarty & Pieters, 2015, JGR-P 118). Delineation of mare, cryptomare, and nonmare surfaces is key to interpreting compositional mixing in the formation of SPA regolith to interpret remotely sensed data, and for scientific assessment of landing sites. LROC Narrow Angle Camera (NAC) images show the location and distribution of >0.5 m boulders and fresh craters that constitute the main threats to automated landers and thus provide critical information for landing site assessment and planning. NAC images suitable for geometric stereo derivation and digital terrain models so derived, controlled with Lunar Orbiter Laser Altimeter (LOLA) data, and oblique NAC images made with large slews of the spacecraft, are crucial to both scientific and landing-site assessments. These images, however, require favorable illumination and significant spacecraft resources. Thus they make up only a small percentage of all of the images taken. It is essential for future exploration to support LRO continued operation for these critical datasets.

  17. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  18. Outer planets mission television subsystem optics study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An optics study was performed to establish a candidate optical system design for the proposed NASA Mariner Jupiter/Saturn 77 mission. The study was performed over the 6-month period from January through June 1972. The candidate optical system contains both a wide angle (A) and a narrow angle (B) lens. An additional feature is a transfer mirror mechanism that allows image transfer from the B lens to the vidicon initially used for the A lens. This feature adds an operational redundancy to the optical system in allowing for narrow angle viewing if the narrow angle vidicon were to fail. In this failure mode, photography in the wide angle mode would be discontinued. The structure of the candidate system consists mainly of aluminum with substructures of Invar for athermalization. The total optical system weighs (excluding vidicons) approximately 30 pounds and has overall dimensions of 26.6 by 19.5 by 12.3 inches.

  19. A New Approach to Micro-arcsecond Astrometry with SIM Allowing Early Mission Narrow Angle Measurements of Compelling Astronomical Targets

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart; Pan, Xiaopei

    2004-01-01

    The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will give the analysts important experience in the proper use and calibration of SIM.

  20. Phase angle, frailty and mortality in older adults.

    PubMed

    Wilhelm-Leen, Emilee R; Hall, Yoshio N; Horwitz, Ralph I; Chertow, Glenn M

    2014-01-01

    Frailty is a multidimensional phenotype that describes declining physical function and a vulnerability to adverse outcomes in the setting of physical stress such as illness or hospitalization. Phase angle is a composite measure of tissue resistance and reactance measured via bioelectrical impedance analysis (BIA). Whether phase angle is associated with frailty and mortality in the general population is unknown. To evaluate associations among phase angle, frailty and mortality. Population-based survey. Third National Health and Nutritional Examination Survey (1988-1994). In all, 4,667 persons aged 60 and older. Frailty was defined according to a set of criteria derived from a definition previously described and validated. Narrow phase angle (the lowest quintile) was associated with a four-fold higher odds of frailty among women and a three-fold higher odds of frailty among men, adjusted for age, sex, race-ethnicity and comorbidity. Over a 12-year follow-up period, the adjusted relative hazard for mortality associated with narrow phase angle was 2.4 (95 % confidence interval [95 % CI] 1.8 to 3.1) in women and 2.2 (95 % CI 1.7 to 2.9) in men. Narrow phase angle was significantly associated with mortality even among participants with little or no comorbidity. Analyses of BIA and frailty were cross-sectional; BIA was not measured serially and incident frailty during follow-up was not assessed. Participants examined at home were excluded from analysis because they did not undergo BIA. Narrow phase angle is associated with frailty and mortality independent of age and comorbidity.

  1. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles

    PubMed Central

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-01-01

    Purpose To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. Methods In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Results Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898–0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm3, ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4–10.0) and 0.11 (95% CI=0.03–0.4), respectively. Conclusions ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles. PMID:21336254

  2. Spray Above Enceladus

    NASA Image and Video Library

    2005-11-28

    A fine spray of small, icy particles emanating from the warm, geologically unique province surrounding the south pole of Saturn’s moon Enceladus was observed in a Cassini narrow-angle camera image of the crescent moon taken on Jan. 16, 2005. Taken from a high-phase angle of 148 degrees -- a viewing geometry in which small particles become much easier to see -- the plume of material becomes more apparent in images processed to enhance faint signals. Imaging scientists have measured the light scattered by the plume's particles to determine their abundance and fall-off with height. Though the measurements of particle abundance are more certain within 100 kilometers (60 miles) of the surface, the values measured there are roughly consistent with the abundance of water ice particles measured by other Cassini instruments (reported in September, 2005) at altitudes as high as 400 kilometers (250 miles) above the surface. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). The image at the left was taken in visible green light. A dark mask was applied to the moon's bright limb in order to make the plume feature easier to see. The image at the right has been color-coded to make faint signals in the plume more apparent. Images of other satellites (such as Tethys and Mimas) taken in the last 10 months from similar lighting and viewing geometries, and with identical camera parameters as this one, were closely examined to demonstrate that the plume towering above Enceladus' south pole is real and not a camera artifact. The images were acquired at a distance of about 209,400 kilometers (130,100 miles) from Enceladus. Image scale is about 1 kilometer (0.6 mile) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07760

  3. LROC Targeted Observations for the Next Generation of Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.

    2015-12-01

    Imaging of the Moon at high spatial resolution (0.5 to 2 mpp) by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NAC) plus topographic data derived from LROC NAC and WAC (Wide Angle Camera) and LOLA (Lunar Orbiting Laser Altimeter), coupled with recently obtained hyperspectral NIR and thermal data, permit studies of composition, mineralogy, and geologic context at essentially an outcrop scale. Such studies pave the way for future landed and sample return missions for high science priority targets. Among such targets are (1) the youngest volcanic rocks on the Moon, including mare basalts formed as recently as ~1 Ga, and irregular mare patches (IMPs) that appear to be even younger [1]; (2) volcanic rocks and complexes with compositions more silica-rich than mare basalts [2-4]; (3) differentiated impact-melt deposits [5,6], ancient volcanics, and compositional anomalies within the South Pole-Aitken basin; (4) exposures of recently discovered key crustal rock types in uplifted structures such as essentially pure anorthosite [7] and spinel-rich rocks [8]; and (5) frozen volatile-element-rich deposits in polar areas [9]. Important data sets include feature sequences of paired NAC images obtained under similar illumination conditions, NAC geometric stereo, from which high-resolution DTMs can be made, and photometric sequences useful for assessing composition in areas of mature cover soils. Examples of each of these target types will be discussed in context of potential future missions. References: [1] Braden et al. (2014) Nat. Geo. 7, 787-791. [2] Glotch et al. (2010) Science, 329, 1510-1513. [3] Greenhagen et al. (2010) Science, 329, 1507-1509. [4] Jolliff et al. (2011) Nat. Geo. 4, 566-571. [5] Vaughan et al (2013) PSS 91, 101-106. [6] Hurwitz and Kring (2014) J. Geophys. Res. 119, 1110-1133 [7] Ohtake et al. (2009) Nature, 461, 236-241 [8] Pieters et al. (2014) Am. Min. 99, 1893-1910. [9] Colaprete et al. (2010) Science 330, 463-468.

  4. Morphologic Analysis of Lunar Craters in the Simple-to-Complex Transition

    NASA Astrophysics Data System (ADS)

    Chandnani, M.; Herrick, R. R.; Kramer, G. Y.

    2015-12-01

    The diameter range of 15 km to 20 km on the Moon is within the transition from simple to complex impact craters. We examined 207 well preserved craters in this diameter range distributed across the moon using high resolution Lunar Reconnaissance Orbiter Camera Wide Angle Camera Mosaic (WAC) and Narrow Angle Camera (NAC) data. A map of the distribution of the 207 craters on the Moon using the global LROC WAC mosaic has been attahced with the abstract. By examining craters of similar diameter, impact energy is nearly constant, so differences in shape and morphology must be due to either target (e.g., porosity, density, coherence, layering) or impactor (e.g., velocity, density) properties. On the basis of the crater morphology, topographic profiles and depth-diameter ratio, the craters were classified into simple, craters with slumped walls, craters with both slumping and terracing, those containing a central uplift only, those with a central uplift and slumping, and the craters with a central uplift accompanied by both slumping and terracing, as shown in the image. It was observed that simple craters and craters with slumped walls occur predominately on the lunar highlands. The majority of the craters with terraced walls and all classes of central uplifts were observed predominately on the mare. In short, in this size range craters in the highlands were generally simple craters with occasionally some slumped material in the center, and the more developed features (terracing, central peak) were associated with mare craters. This is somewhat counterintuitive, as we expect the highlands to be generally weaker and less consolidated than the mare. We hypothesize that the presence of rheologic layering in the mare may be the cause of the more complex features that we observe. Relatively weak layers in the mare could develop through regolith formation between individual flows, or perhaps by variations within or between the flows themselves.

  5. Cassini First-Look Images of Jupiter

    NASA Image and Video Library

    2000-10-05

    This image of Jupiter was taken by the Cassini Imaging Science narrow angle camera through the blue filter (centered at 445 nanometers) on October 1, 2000, 15:26 UTC at a distance of 84.1million km from Jupiter. The smallest features that can be seen are 500 kilometers across. The contrast between bright and dark features in this region of the spectrum is determined by the different light absorbing properties of the particles composing Jupiter's clouds. Ammonia ice particles are white, reflecting all light that falls on them. But some particles are red, and absorb mostly blue light. The composition of these red particles and the processes which determine their distribution are two of the long-standing mysteries of Jovian meteorology and chemistry. Note that the Great Red Spot contains a dark core of absorbing particles. http://photojournal.jpl.nasa.gov/catalog/PIA02666

  6. Now You See Me ...

    NASA Image and Video Library

    2006-05-18

    Enceladus briefly passes behind the crescent of Rhea in these images, which are part of a "mutual event" sequence taken by Cassini. These sequences help scientists refine our understanding of the orbits of Saturn's moons. The images were taken one minute apart as smaller Enceladus (505 kilometers, or 314 miles across) darted behind Rhea (1,528 kilometers, or 949 miles across) as seen from the Cassini spacecraft's point of view. The images were taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2006, at a distance of approximately 3.4 million kilometers (2.1 million miles) from Rhea and 4.1 million kilometers (2.5 million miles) from Enceladus. The image scale is 20 kilometers (13 miles) per pixel on Rhea and 24 kilometers (15 miles) per pixel on Enceladus. http://photojournal.jpl.nasa.gov/catalog/PIA08180

  7. Frozen Paradise

    NASA Image and Video Library

    2015-03-02

    Named after a Japanese paradise, the Senkyo region of Titan (the dark area below and to the right of center) is a bit less welcoming than its namesake. With a very inhospitable average temperature of approximately 290 degrees below zero Fahrenheit (-180 degrees Celsius), water on Titan (3,200 miles or 5,150 kilometers across) freezes hard enough to be essentially considered rock. This view looks toward the Saturn-facing side of Titan. North on Titan is up and rotated 33 degrees to the right. The image was taken with the Cassini spacecraft narrow-angle camera on Jan. 8, 2015 using a near-infrared filter which is centered at 938 nanometers. The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Titan. Image scale is 7 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18309

  8. Uranus' largest moon Oberon

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Uranus' outermost and largest moon, Oberon, is seen in this Voyager 2 image, obtained Jan. 22, 1986, from a distance of 2.77 million kilometers (1.72 million miles). The clear-filter image, shuttered by Voyager's narrow-angle camera, shows that Oberon displays several distinct highly reflective (high-albedo) patches with low-albedo centers. Some of the bright patches are suggestive of radial patterns that could represent impact craters excavated from an icy surface. On average, Oberon reflects about 20 percent of the incident sunlight. The moon is about 1,600 km (1,000 mi) in diameter; resolution of this image is 51 km (32 mi). It was taken two days before Voyager's closest approach to Oberon, at which point the spacecraft will be about 471,000 km (293,000 mi) away. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  9. DETECTION OF REMNANT DUST CLOUD ASSOCIATED WITH THE 2007 OUTBURST OF 17P/HOLMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Masateru; Kim, Yoonyoung; Kwon, Yuna G.

    2016-01-20

    This article reports a new optical observation of 17P/Holmes one orbital period after the historical outburst event in 2007. We detected not only a common dust tail near the nucleus but also a long narrow structure that extended along the position angle 274.°6 ± 0.°1 beyond the field of view (FOV) of the Kiso Wide Field Camera, i.e., >0.°2 eastward and >2.°0 westward from the nuclear position. The width of the structure decreased westward with increasing distance from the nucleus. We obtained the total cross section of the long extended structure in the FOV, C{sub FOV} = (2.3 ± 0.5) × 10{sup 10} m{sup 2}. From themore » position angle, morphology, and mass, we concluded that the long narrow structure consists of materials ejected during the 2007 outburst. On the basis of the dynamical behavior of dust grains in the solar radiation field, we estimated that the long narrow structure would be composed of 1 mm–1 cm grains having an ejection velocity of >50 m s{sup −1}. The velocity was more than one order of magnitude faster than that of millimeter–centimeter grains from typical comets around a heliocentric distance r{sub h} of 2.5 AU. We considered that sudden sublimation of a large amount of water-ice (≈10{sup 30} mol s{sup −1}) would be responsible for the high ejection velocity. We finally estimated a total mass of M{sub TOT} = (4–8) × 10{sup 11} kg and a total kinetic energy of E{sub TOT} = (1–6) × 10{sup 15} J for the 2007 outburst ejecta, which are consistent with those of previous studies that were conducted soon after the outburst.« less

  10. The emplacement of long lava flows in Mare Imbrium, the Moon

    NASA Astrophysics Data System (ADS)

    Garry, W. B.

    2012-12-01

    Lava flow margins are scarce on the lunar surface. The best developed lava flows on the Moon occur in Mare Imbrium where flow margins are traceable nearly their entire flow length. The flow field originates in the southwest part of the basin from a fissure or series of fissures and cones located in the vicinity of Euler crater and erupted in three phases (Phases I, II, III) over a period of 0.5 Billion years (3.0 - 2.5 Ga). The flow field was originally mapped with Apollo and Lunar Orbiter data by Schaber (1973) and shows the flow field extends 200 to 1200 km from the presumed source area and covers an area of 2.0 x 10^5 km^2 with an estimated eruptive volume of 4 x 10^4 km^3. Phase I flows extend 1200 km and have the largest flow volume, but interestingly do not exhibit visible topography and are instead defined by difference in color from the surrounding mare flows. Phases II and III flows have well-defined flow margins (10 - 65 m thick) and channels (0.4 - 2.0 km wide, 40 - 70 m deep), but shorter flow lengths, 600 km and 400 km respectively. Recent missions, including Lunar Reconnaissance Orbiter (LRO), Kaguya (Selene), and Clementine, provide high resolution data sets of these lava flows. Using a combination of data sets including images from LRO Wide-Angle-Camera (WAC)(50-100 m/pixel) and Narrow-Angle-Camera (NAC) (up to 0.5m/pixel), Kaguya Terrain Camera (TC) (10 m/pixel), and topography from LRO Lunar Orbiter Laser Altimeter (LOLA), the morphology has been remapped and topographic measurements of the flow features have been made in an effort to reevaluate the emplacement of the flow field. Morphologic mapping reveals a different flow path for Phase I compared to the original mapping completed by Schaber (1973). The boundaries of the Phase I flow field have been revised based on Moon Mineralogy Mapper color ratio images (Staid et al., 2011). This has implications for the area covered and volume erupted during this stage, as well as, the age of Phase I. Flow features and margins have been identified in the Phase I flow within the LROC WAC mosaic and in Narrow Angle Camera (NAC) images. These areas have a mottled appearance. LOLA profiles over the more prominent flow lobes in Phase I reveal these margins are less 10 m thick. Phase II and III morphology maps are similar to previous flow maps. Phase III lobes near Euler are 10-12 km wide and 20-30 m thick based on measurements of the LOLA 1024ppd Elevation Digital Terrain Model (DTM) in JMoon. One of the longer Phase III lobes varies between 15 to 50 km wide and 25 to 60 m thick, with the thickest section at the distal end of the lobe. The Phase II lobe is 15 to 25 m thick and up to 35 km wide. The eruptive volume of the Mare Imbrium lava flows has been compared to terrestrial flood basalts. The morphology of the lobes in Phase II and III, which includes levees, thick flow fronts, and lobate margins suggests these could be similar to terrestrial aa-style flows. The Phase I flows might be more representative of sheet flows, pahoehoe-style flows, or inflated flows. Morphologic comparisons will be made with terrestrial flows at Askja volcano in Iceland, a potential analog to compare different styles of emplacement for the flows in Mare Imbrium.

  11. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters

    NASA Astrophysics Data System (ADS)

    Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi

    2014-08-01

    High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.

  12. Blue Orb on the Horizon

    NASA Image and Video Library

    2014-05-01

    This view from NASA's Cassini spacecraft features a blue planet, imaged by Cassini for the first time. Uranus is a pale blue in this natural color image because its visible atmosphere contains methane gas and few aerosols or clouds. Methane on Uranus -- and its sapphire-colored sibling, Neptune -- absorbs red wavelengths of incoming sunlight, but allows blue wavelengths to escape back into space, resulting in the predominantly bluish color seen here. Cassini imaging scientists combined red, green and blue spectral filter images to create a final image that represents what human eyes might see from the vantage point of the spacecraft. Uranus has been brightened by a factor of 4.5 to make it more easily visible. The outer portion of Saturn's A ring, seen at bottom right, has been brightened by a factor of two. The bright ring cutting across the image center is Saturn's narrow F ring. Uranus was approximately 28.6 astronomical units from Cassini and Saturn when this view was obtained. An astronomical unit is the average distance from Earth to the sun, equal to 93,000,000 miles (150,000,000 kilometers). This view was acquired by the Cassini narrow-angle camera at a distance of approximately 614,300 miles (988,600 kilometers) from Saturn on April 11, 2014. Image scale at Uranus is approximately 16,000 miles (25,700 kilometers) per pixel. Image scale at Saturn's rings is approximately 4 miles (6 kilometers) per pixel. In the image, the disk of Uranus is just barely resolved. The solar phase angle at Uranus, seen from Cassini, is 11.9 degrees. http://photojournal.jpl.nasa.gov/catalog/PIA17178

  13. Mimas Showing False Colors #2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false color image of Saturn's moon Mimas reveals variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    This image is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined with a single black and white picture that isolates and maps regional color differences to create the final product.

    Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of the image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil.

    This image was obtained when the Cassini spacecraft was above 25 degrees south, 134 degrees west latitude and longitude. The Sun-Mimas-spacecraft angle was 45 degrees and north is at the top.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  14. Effect of primary iris and ciliary body cyst on anterior chamber angle in patients with shallow anterior chamber*

    PubMed Central

    Wang, Bing-hong; Yao, Yu-feng

    2012-01-01

    Objective: To evaluate the prevalence of primary iris and/or ciliary body cysts in eyes with shallow anterior chamber and their effect on the narrowing of the anterior chamber angle. Methods: Among the general physical check-up population, subjects with shallow anterior chambers, as judged by van Herick technique, were recruited for further investigation. Ultrasound biomicroscope (UBM) was used to detect and measure the cysts located in the iris and/or ciliary body, the anterior chamber depth (ACD), the angle opening distance at 500 μm (AOD500), and the trabecular-iris angle (TIA). A-scan ultrasonography was used to measure the ocular biometry, including lens thickness, axial length, lens/axial length factor (LAF), and relative lens position (RLP). The effect of the cyst on narrowing the corresponding anterior chamber angle and the entire angle was evaluated by the UBM images, ocular biometry, and gonioscopic grading. The eye with unilateral cyst was compared with the eye without the cyst for further analysis. Results: Among the 727 subjects with shallow anterior chamber, primary iris and ciliary body cysts were detected in 250 (34.4%) patients; among them 96 (38.4%) patients showed unilateral single cyst, 21 (8.4%) patients had unilateral double cysts, and 42 (16.8%) patients manifested unilateral multiple and multi-quadrants cysts. Plateau iris configuration was found in 140 of 361 (38.8%) eyes with cysts. The mean size of total cysts was (0.6547±0.2319) mm. In evaluation of the effect of the cyst size and location on narrowing the corresponding angle to their position, the proportion of the cysts causing corresponding angle narrowing or closure among the cysts larger than 0.8 mm (113/121, 93.4%) was found to be significantly higher than that of the cysts smaller than 0.8 mm (373/801, 46.6%), and a significant higher proportion was also found in the cysts located at iridociliary sulcus (354/437, 81.0%) than in that at the pars plicata (131/484, 27.1%). In evaluating the effect of the cyst on the entire anterior chamber angle, the eyes with multiple and multi-quadrants cysts manifested significant narrowing of the entire anterior chamber angle as compared with the eyes without cysts, based on the data analysis in comparison of TIA, AOD500, and gonioscopic grading evaluation. The unilateral single or double cysts in the eyes had no significant effect on narrowing of anterior chamber angle as compared with eyes without cysts. The iris and/or ciliary body cysts did not seem to affect the axial length, ACD, lens thickness, RLP, LAF. Conclusions: The prevalence of primary iris and ciliary body cyst was 34.4% in the subjects with shallow anterior chamber. The cysts larger than 0.8 mm, locating at iridociliary sulcus, or multiple and extensive cysts were inclined to cause the angle narrowing or closure. PMID:22949363

  15. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable differences: Because the wide-angle lens introduces considerable distortion, the image data must be processed to effectively unwarp the images (see Figure 2). The computer executes special software that includes an unwarping algorithm that takes explicit account of the cylindrical pipe geometry. To reduce the processing time needed for unwarping, parameters of the geometric mapping between the circular view of a fisheye lens and pipe wall are determined in advance from calibration images and compiled into an electronic lookup table. The software incorporates the assumption that the optical axis of the camera is parallel (rather than perpendicular) to the direction of motion of the camera. The software also compensates for the decrease in illumination with distance from the ring of LEDs.

  16. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.

    PubMed

    Song, Kai-Tai; Tai, Jen-Chao

    2006-10-01

    Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.

  17. The Day the Earth Smiled: Sneak Preview

    NASA Image and Video Library

    2013-07-22

    In this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and our planet Earth and its moon in the same frame. It is only one footprint in a mosaic of 33 footprints covering the entire Saturn ring system (including Saturn itself). At each footprint, images were taken in different spectral filters for a total of 323 images: some were taken for scientific purposes and some to produce a natural color mosaic. This is the only wide-angle footprint that has the Earth-moon system in it. The dark side of Saturn, its bright limb, the main rings, the F ring, and the G and E rings are clearly seen; the limb of Saturn and the F ring are overexposed. The "breaks" in the brightness of Saturn's limb are due to the shadows of the rings on the globe of Saturn, preventing sunlight from shining through the atmosphere in those regions. The E and G rings have been brightened for better visibility. Earth, which is 898 million miles (1.44 billion kilometers) away in this image, appears as a blue dot at center right; the moon can be seen as a fainter protrusion off its right side. An arrow indicates their location in the annotated version. (The two are clearly seen as separate objects in the accompanying composite image PIA14949.) The other bright dots nearby are stars. This is only the third time ever that Earth has been imaged from the outer solar system. The acquisition of this image, along with the accompanying composite narrow- and wide-angle image of Earth and the moon and the full mosaic from which both are taken, marked the first time that inhabitants of Earth knew in advance that their planet was being imaged. That opportunity allowed people around the world to join together in social events to celebrate the occasion. This view looks toward the unilluminated side of the rings from about 20 degrees below the ring plane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were obtained with the Cassini spacecraft wide-angle camera on July 19, 2013 at a distance of approximately 753,000 miles (1.212 million kilometers) from Saturn, and approximately 898.414 million miles (1.445858 billion kilometers) from Earth. Image scale on Saturn is 43 miles (69 kilometers) per pixel; image scale on the Earth is 53,820 miles (86,620 kilometers) per pixel. The illuminated areas of neither Earth nor the Moon are resolved here. Consequently, the size of each "dot" is the same size that a point of light of comparable brightness would have in the wide-angle camera. http://photojournal.jpl.nasa.gov/catalog/PIA17171

  18. Pinhole Cameras: For Science, Art, and Fun!

    ERIC Educational Resources Information Center

    Button, Clare

    2007-01-01

    A pinhole camera is a camera without a lens. A tiny hole replaces the lens, and light is allowed to come in for short amount of time by means of a hand-operated shutter. The pinhole allows only a very narrow beam of light to enter, which reduces confusion due to scattered light on the film. This results in an image that is focused, reversed, and…

  19. Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit

    NASA Astrophysics Data System (ADS)

    Bruegge, Carol J.; Val, Sebastian; Diner, David J.; Jovanovic, Veljko; Gray, Ellyn; Di Girolamo, Larry; Zhao, Guangyu

    2014-09-01

    The Multi-angle Imaging SpectroRadiometer (MISR) has successfully operated on the EOS/ Terra spacecraft since 1999. It consists of nine cameras pointing from nadir to 70.5° view angle with four spectral channels per camera. Specifications call for a radiometric uncertainty of 3% absolute and 1% relative to the other cameras. To accomplish this, MISR utilizes an on-board calibrator (OBC) to measure camera response changes. Once every two months the two Spectralon panels are deployed to direct solar-light into the cameras. Six photodiode sets measure the illumination level that are compared to MISR raw digital numbers, thus determining the radiometric gain coefficients used in Level 1 data processing. Although panel stability is not required, there has been little detectable change in panel reflectance, attributed to careful preflight handling techniques. The cameras themselves have degraded in radiometric response by 10% since launch, but calibration updates using the detector-based scheme has compensated for these drifts and allowed the radiance products to meet accuracy requirements. Validation using Sahara desert observations show that there has been a drift of ~1% in the reported nadir-view radiance over a decade, common to all spectral bands.

  20. Evaluation of the anterior chamber angle in Asian Indian eyes by ultrasound biomicroscopy and gonioscopy.

    PubMed

    Kaushik, Sushmita; Jain, Rajeev; Pandav, Surinder Singh; Gupta, Amod

    2006-09-01

    To compare the ultrasound biomicroscopic measurement of the anterior chamber angle in Asian Indian eyes, with the angle width estimated by gonioscopy. Patients with open and closed angles attending a glaucoma clinic were recruited for the study. Temporal quadrants of the angles of patients were categorized by gonioscopy as Grade 0 to Grade 4, using Shaffer's classification. These angles were quantified by ultrasound biomicroscopy (UBM) using the following biometric characteristics: Angle opening distance at 250 micro (AOD 250) and 500 micro (AOD 500) from the scleral spur and trabecular meshwork-ciliary process distance (TCPD). The angles were further segregated as "narrow angles" (Schaffer's Grade 2 or less) and "open angles" (Schaffer's Grade 3 and 4). The UBM measurements were computed in each case and analyzed in relation to the gonioscopic angle evaluation. One hundred and sixty three eyes of 163 patients were analyzed. One hundred and six eyes had "narrow angles" and 57 eyes had "open angles" on gonioscopy. There was a significant difference among the mean UBM measurements of each angle grade estimated by gonioscopy (P < 0.001). The Pearson correlation coefficient between all UBM parameters and gonioscopy grades was significant at the 0.01 level. The mean AOD 250, AOD 500 and TCPD in narrow angles were 58+/-49 micro, 102+/-84 micro and 653+/-124 respectively, while it was 176+/-47 micro, 291+/-62 micro and 883+/-94 micro in eyes with open angles (P < 0.001) respectively. The angle width estimated by gonioscopy correlated significantly with the angle dimensions measured by UBM. Gonioscopy, though a subjective test, is a reliable method for estimation of the angle width.

  1. A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept.

    PubMed

    Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung

    2017-02-01

    A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.

  2. Reductions in injury crashes associated with red light camera enforcement in oxnard, california.

    PubMed

    Retting, Richard A; Kyrychenko, Sergey Y

    2002-11-01

    This study estimated the impact of red light camera enforcement on motor vehicle crashes in one of the first US communities to employ such cameras-Oxnard, California. Crash data were analyzed for Oxnard and for 3 comparison cities. Changes in crash frequencies were compared for Oxnard and control cities and for signalized and nonsignalized intersections by means of a generalized linear regression model. Overall, crashes at signalized intersections throughout Oxnard were reduced by 7% and injury crashes were reduced by 29%. Right-angle crashes, those most associated with red light violations, were reduced by 32%; right-angle crashes involving injuries were reduced by 68%. Because red light cameras can be a permanent component of the transportation infrastructure, crash reductions attributed to camera enforcement should be sustainable.

  3. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2016-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  4. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  5. Gonioscopy in adult Chinese: the Liwan Eye Study.

    PubMed

    He, Mingguang; Foster, Paul J; Ge, Jian; Huang, Wenyong; Wang, Dandan; Friedman, David S; Khaw, Peng T

    2006-11-01

    To assess gonioscopic characteristics of the drainage angle in adult Chinese in an urban area of southern China. Clustered random sampling was used to select adults aged 50 years and older in Liwan District, Guangzhou. Gonioscopy was performed on all the subjects. The geometric angle width was graded in the superior and inferior quadrants, according to the Spaeth system. In addition, apparent and true iris insertion was classified in four quadrants with static and dynamic gonioscopy. The peripheral iris profile was described as steep, regular, concave, and plateau. Data are presented for all phakic right eyes. Secondary or iatrogenic cases were excluded in the analysis of peripheral anterior synechiae (PAS). Among 1405 participants in the study, data from 1330 (95%) right eyes were available for analysis. Iridotrabecular angles (ITA) < or =20 degrees were present in 36.9% (95% CI: 34.3%-40.0%) of eyes superiorly and in 27.9% (95% CI: 25.5%-30.4%) inferiorly. Narrower ITAs were more common in the older people (sex-adjusted odds ratio [OR] = 1.1 per year of life; P < 0.001) and the women (age-adjusted OR = 2.5, P < 0.001). Apparent iris insertion of grade A or B (with pigmented trabecular meshwork not visible) by quadrant was observed in 27.2% superiorly, 12.0% nasally, 7.7% inferiorly, and 14.2% temporally. Narrow angles (in which pigmented trabecular meshwork was not visible in three or more quadrants) were identified in 11.0% (95% CI: 9.3%-12.7%) of right eyes. Overall, 33.3% of eyes had a steep iris profile, 54.2% were normal, 2.7% were concave, and 10.1% were graded plateau. PAS were seen in 30 of 146 (20.5%) eyes with narrow angles and in 7 (0.6%) of 1184 eyes with angles that did not meet criteria for narrow angles. PAS were more likely with narrower angles, with 0%, 0.3%, and 1.9% of eyes with a mean ITA of 40 degrees, 30 degrees, and 20 degrees, respectively, having PAS as opposed to 12.6% and 27.5% for those with ITA 10 degrees and 0 degrees , respectively. Ten percent of this population of southern Chinese persons 50 years of age and older had narrow angles. PAS were present in one fifth of these people. From these cross-sectional data, it is unclear which of these individuals are at highest risk of the development of primary angle-closure (PAC) glaucoma. Longitudinal studies are necessary to determine appropriate strategies for preventing this potentially blinding outcome.

  6. Fisheye Multi-Camera System Calibration for Surveying Narrow and Complex Architectures

    NASA Astrophysics Data System (ADS)

    Perfetti, L.; Polari, C.; Fassi, F.

    2018-05-01

    Narrow spaces and passages are not a rare encounter in cultural heritage, the shape and extension of those areas place a serious challenge on any techniques one may choose to survey their 3D geometry. Especially on techniques that make use of stationary instrumentation like terrestrial laser scanning. The ratio between space extension and cross section width of many corridors and staircases can easily lead to distortions/drift of the 3D reconstruction because of the problem of propagation of uncertainty. This paper investigates the use of fisheye photogrammetry to produce the 3D reconstruction of such spaces and presents some tests to contain the degree of freedom of the photogrammetric network, thereby containing the drift of long data set as well. The idea is that of employing a multi-camera system composed of several fisheye cameras and to implement distances and relative orientation constraints, as well as the pre-calibration of the internal parameters for each camera, within the bundle adjustment. For the beginning of this investigation, we used the NCTech iSTAR panoramic camera as a rigid multi-camera system. The case study of the Amedeo Spire of the Milan Cathedral, that encloses a spiral staircase, is the stage for all the tests. Comparisons have been made between the results obtained with the multi-camera configuration, the auto-stitched equirectangular images and a data set obtained with a monocular fisheye configuration using a full frame DSLR. Results show improved accuracy, down to millimetres, using a rigidly constrained multi-camera.

  7. Propeller Belts of Saturn

    NASA Image and Video Library

    2017-05-10

    This view from NASA's Cassini spacecraft is the sharpest ever taken of belts of the features called propellers in the middle part of Saturn's A ring. The propellers are the small, bright features that look like double dashes, visible on both sides of the wave pattern that crosses the image diagonally from top to bottom. The original discovery of propellers in this region in Saturn's rings was made using several images taken from very close to the rings during Cassini's 2004 arrival at Saturn. Those discovery images were of low resolution and were difficult to interpret, and there were few clues as to how the small propellers seen in those images were related to the larger propellers Cassini observed later in the mission. This image, for the first time, shows swarms of propellers of a wide range of sizes, putting the ones Cassini observed in its Saturn arrival images in context. Scientists will use this information to derive a "particle size distribution" for propeller moons, which is an important clue to their origins. The image was taken using the Cassini spacecraft's narrow-angle camera on April 19. The view was has an image scale of 0.24 mile (385 meters) per pixel, and was taken at a sun-ring-spacecraft angle, or phase angle, of 108 degrees. The view looks toward a point approximately 80,000 miles (129,000 kilometers) from Saturn's center. https://photojournal.jpl.nasa.gov/catalog/PIA21448

  8. 5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF BRIDGE AND ENGINE CAR ON TRACKS, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. The Effect of Mediated Camera Angle on Receiver Evaluations of Source Credibility, Dominance, Attraction and Homophily.

    ERIC Educational Resources Information Center

    Beverly, Robert E.; Young, Thomas J.

    Two hundred forty college undergraduates participated in a study of the effect of camera angle on an audience's perceptual judgments of source credibility, dominance, attraction, and homophily. The subjects were divided into four groups and each group was shown a videotape presentation in which sources had been videotaped according to one of four…

  10. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  11. 3D bubble reconstruction using multiple cameras and space carving method

    NASA Astrophysics Data System (ADS)

    Fu, Yucheng; Liu, Yang

    2018-07-01

    An accurate measurement of bubble shape and size has a significant value in understanding the behavior of bubbles that exist in many engineering applications. Past studies usually use one or two cameras to estimate bubble volume, surface area, among other parameters. The 3D bubble shape and rotation angle are generally not available in these studies. To overcome this challenge and obtain more detailed information of individual bubbles, a 3D imaging system consisting of four high-speed cameras is developed in this paper, and the space carving method is used to reconstruct the 3D bubble shape based on the recorded high-speed images from different view angles. The proposed method can reconstruct the bubble surface with minimal assumptions. A benchmarking test is performed in a 3 cm  ×  1 cm rectangular channel with stagnant water. The results show that the newly proposed method can measure the bubble volume with an error of less than 2% compared with the syringe reading. The conventional two-camera system has an error around 10%. The one-camera system has an error greater than 25%. The visualization of a 3D bubble rising demonstrates the wall influence on bubble rotation angle and aspect ratio. This also explains the large error that exists in the single camera measurement.

  12. The Halo

    NASA Image and Video Library

    2013-12-23

    NASA's Cassini spacecraft looks towards the dark side of Saturn's largest moon, Titan, capturing the blue halo caused by a haze layer that hovers high in the moon's atmosphere. The haze that permeates Titan's atmosphere scatters sunlight and produces the orange color seen here. More on Titan's orange and blue hazes can be found at PIA14913. This view looks towards the side of Titan (3,200 miles or 5,150 kilometers across) that leads in its orbit around Saturn. North on Titan is up and rotated 40 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft narrow-angle camera on Nov. 3, 2013. The view was acquired at a distance of approximately 2.421 million miles (3.896 million kilometers) from Titan. Image scale is 14 miles (23 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17180

  13. Dusk in the South

    NASA Image and Video Library

    2013-12-23

    Slipping into shadow, the south polar vortex at Saturn's moon Titan still stands out against the orange and blue haze layers that are characteristic of Titan's atmosphere. Images like this, from NASA's Cassini spacecraft, lead scientists to conclude that the polar vortex clouds form at a much higher altitude -- where sunlight can still reach -- than the lower-altitude surrounding haze. This view looks towards the trailing hemisphere of Titan (3,200 miles or 5,150 kilometers across). North on Titan is up and rotated 17 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on July 30, 2013. The view was acquired at a distance of approximately 895,000 miles (1.441 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17177

  14. Distant Moons

    NASA Image and Video Library

    2016-08-15

    Saturn's moons Tethys and Hyperion appear to be near neighbors in this Cassini view, even though they are actually 930,000 miles (1.5 million kilometers) apart here. Tethys is the larger body on the left. These two icy moons of Saturn are very different worlds. To learn more about Hyperion (170 miles or 270 kilometers across). This view looks toward the trailing side of Tethys. North on Tethys is up and rotated 1 degree to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Aug. 15, 2015. The view was acquired at a distance of approximately 750,000 miles (1.2 million kilometers) from Tethys. Image scale is 4.4 miles (7.0 kilometers) per pixel. The distance to Hyperion was 1.7 million miles (2.7 million kilometers) with an image scale of 10 mile (16 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20493

  15. Dichotomy

    NASA Image and Video Library

    2017-03-06

    Enceladus is a world divided. To the north, we see copious amounts of craters and evidence of the many impacts the moon has suffered in its history. However, to the south we see a smoother body with wrinkles due to geologic activity. Most solar system bodies lacking an atmosphere are heavily cratered like Enceladus' (313 miles or 504 kilometers across) northern region. However, the geologic activity in the south, including the famous plume above the moon's south pole, can erase craters and leave a younger, smoother-looking surface. This view looks toward the anti-Saturn hemisphere of Enceladus. North on Enceladus is up and rotated 4 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 27, 2016. The view was obtained at a distance of approximately 41,000 miles (66,000 kilometers) from Enceladus. Image scale is 1,310 feet (398 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20524

  16. ARC-1986-AC86-7018

    NASA Image and Video Library

    1986-01-25

    P-29502C Range: 1.04 million kilometers (650,000 miles) This color photo of Umbriel, the darkest of Uranus' five large moons was synthesized from frames exposed with the Voyager narrow-angle camera's violet and clear filters and has a resolution of 19 km (12 mi.). Umbriel is characterized by the darkest surface and smallest brightness variations of any of the large satellites of Uranus. As seen here, the surface is also generally gray and colorless. Nevertheless, at this resolution, considerable topographic detail is revealed, showing that Umbriel's surface is covered by impact craters. The brightest spot (shown at top near the equator at approxiamately 270 ° longitude) appears as a bright ring. Its geological significance is not yet understood. Umbriel has a diameter of about 1,200 km (750 miles) and orbits 267,000 km (166,000 mi) from Uranus' center. The satellite's name, from Alexander Pope's 'Rape of the Lock,' means 'dark angel'.

  17. Enceladus Stetting Behind Saturn (Image & Movie)

    NASA Image and Video Library

    2017-09-15

    Saturn's active, ocean-bearing moon Enceladus sinks behind the giant planet in a farewell portrait from NASA's Cassini spacecraft. This view of Enceladus was taken by NASA's Cassini spacecraft on Sept. 13, 2017. It is among the last images Cassini sent back. The view is part of a movie sequence of images taken over a period of 40 minutes as the icy moon passed behind Saturn from the spacecraft's point of view. Images taken using red, green and blue spectral filters were assembled to create the natural color view. (A monochrome version of the image, taken using a clear spectral filter, is also available.) The images were taken using Cassini's narrow-angle camera at a distance of 810,000 million miles (1.3 million kilometers) from Enceladus and about 620,000 miles (1 million kilometers) from Saturn. Image scale on Enceladus is 5 miles (8 kilometers) per pixel. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA21889

  18. COmet Nucleus Dust and Organics Return (CONDOR): a New Frontiers 4 Mission Proposal

    NASA Astrophysics Data System (ADS)

    Choukroun, M.; Raymond, C.; Wadhwa, M.

    2017-09-01

    CONDOR would collect and return a ≥ 50 g sample from the surface of 67P/Churyumov-Gerasimenko for detailed analysis in terrestrial laboratories. It would carry a simple payload comprising a narrow-angle camera and mm-wave radiometer to select a sampling site, and perform a gravity science investigation to survey changes of 67P since Rosetta. The proposed sampling system uses the BiBlade tool to acquire a sample down to 15 cm depth in a Touch-and-Go event. The Stardust-based sample return capsule is augmented with cooling and purge systems to maintain sample integrity during landing and until delivery to JSC's Astromaterials Curation Facility. Analysis of rock-forming minerals, organics, water and noble gases would probe the origin of these materials, and their evolution from the primordial molecular cloud to the 67P environment.

  19. ARC-1986-AC86-7012

    NASA Image and Video Library

    1986-01-12

    Range : 2.77 million miles (1.72 million miles) resolution : 51 km. (32 mi.) P-29495C This Voyager 2 photograph of the outermost Uranian satellite, Oberon is a computer reconstruction of three frames , exposed through the narrow angle camera's blue, green, and orange filters. the grayness or apparent lack of strong color is a distinctive characteristic of the satellites and the rings of Uranus and can serve as one indicator of the possible composition of the satellites' surfaces. Oberon has a diameter of about 1,600 km. (1,000 mi.) and orbits the planet at a radial distance of 586,000 km. (364,000 mi.). Oberon's surface displays areas of lighter and darker material, probably associated in part with impact craters formed during its long exposure to bombardment by cosmic debris. Thr resolution of this particular image is not sufficient, however, to reveal with confidece the nature of these features.

  20. Use of a microscope-mounted wide-angle point of view camera to record optimal hand position in ocular surgery.

    PubMed

    Gooi, Patrick; Ahmed, Yusuf; Ahmed, Iqbal Ike K

    2014-07-01

    We describe the use of a microscope-mounted wide-angle point-of-view camera to record optimal hand positions in ocular surgery. The camera is mounted close to the objective lens beneath the surgeon's oculars and faces the same direction as the surgeon, providing a surgeon's view. A wide-angle lens enables viewing of both hands simultaneously and does not require repositioning the camera during the case. Proper hand positioning and instrument placement through microincisions are critical for effective and atraumatic handling of tissue within the eye. Our technique has potential in the assessment and training of optimal hand position for surgeons performing intraocular surgery. It is an innovative way to routinely record instrument and operating hand positions in ophthalmic surgery and has minimal requirements in terms of cost, personnel, and operating-room space. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    USGS Publications Warehouse

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  2. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    PubMed

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  3. Polarimetric Thermal Imaging

    DTIC Science & Technology

    2007-03-01

    front of a large area blackbody as background. The viewing angle , defined as the angle between surface normal and camera line of sight, was varied by...and polarization angle were derived from the Stokes parameters. The dependence of these polarization characteristics on viewing angle was investigated

  4. Esthetic smile preferences and the orientation of the maxillary occlusal plane.

    PubMed

    Kattadiyil, Mathew T; Goodacre, Charles J; Naylor, W Patrick; Maveli, Thomas C

    2012-12-01

    The anteroposterior orientation of the maxillary occlusal plane has an important role in the creation, assessment, and perception of an esthetic smile. However, the effect of the angle at which this plane is visualized (the viewing angle) in a broad smile has not been quantified. The purpose of this study was to assess the esthetic preferences of dental professionals and nondentists by using 3 viewing angles of the anteroposterior orientation of the maxillary occlusal plane. After Institutional Review Board approval, standardized digital photographic images of the smiles of 100 participants were recorded by simultaneously triggering 3 cameras set at different viewing angles. The top camera was positioned 10 degrees above the occlusal plane (camera #1, Top view); the center camera was positioned at the level of the occlusal plane (camera #2, Center view); and the bottom camera was located 10 degrees below the occlusal plane (camera #3, Bottom view). Forty-two dental professionals and 31 nondentists (persons from the general population) independently evaluated digital images of each participant's smile captured from the Top view, Center view, and Bottom view. The 73 evaluators were asked individually through a questionnaire to rank the 3 photographic images of each patient as 'most pleasing,' 'somewhat pleasing,' or 'least pleasing,' with most pleasing being the most esthetic view and the preferred orientation of the occlusal plane. The resulting esthetic preferences were statistically analyzed by using the Friedman test. In addition, the participants were asked to rank their own images from the 3 viewing angles as 'most pleasing,' 'somewhat pleasing,' and 'least pleasing.' The 73 evaluators found statistically significant differences in the esthetic preferences between the Top and Bottom views and between the Center and Bottom views (P<.001). No significant differences were found between the Top and Center views. The Top position was marginally preferred over the Center, and both were significantly preferred over the Bottom position. When the participants evaluated their own smiles, a significantly greater number (P< .001) preferred the Top view over the Center or the Bottom views. No significant differences were found in preferences based on the demographics of the evaluators when comparing age, education, gender, profession, and race. The esthetic preference for the maxillary occlusal plane was influenced by the viewing angle with the higher (Top) and center views preferred by both dental and nondental evaluators. The participants themselves preferred the higher view of their smile significantly more often than the center or lower angle views (P<.001). Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Search for and limits on plume activity on Mimas, Tethys, and Dione with the Cassini Visual Infrared Mapping Spectrometer (VIMS)

    USGS Publications Warehouse

    Buratti, B.J.; Faulk, S.P.; Mosher, J.; Baines, K.H.; Brown, R.H.; Clark, R.N.; Nicholson, P.D.

    2011-01-01

    Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.D., Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at ???2.0. ??m, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active "tiger stripes" in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons. ?? 2011 Elsevier Inc.

  6. Integrated calibration between digital camera and laser scanner from mobile mapping system for land vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang

    The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.

  7. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  8. Geomorphometric multi-scale analysis for the recognition of Moon surface features using multi-resolution DTMs

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Jianping; Sofia, Giulia; Tarolli, Paolo

    2014-05-01

    Moon surface features have great significance in understanding and reconstructing the lunar geological evolution. Linear structures like rilles and ridges are closely related to the internal forced tectonic movement. The craters widely distributed on the moon are also the key research targets for external forced geological evolution. The extremely rare availability of samples and the difficulty for field works make remote sensing the most important approach for planetary studies. New and advanced lunar probes launched by China, U.S., Japan and India provide nowadays a lot of high-quality data, especially in the form of high-resolution Digital Terrain Models (DTMs), bringing new opportunities and challenges for feature extraction on the moon. The aim of this study is to recognize and extract lunar features using geomorphometric analysis based on multi-scale parameters and multi-resolution DTMs. The considered digital datasets include CE1-LAM (Chang'E One, Laser AltiMeter) data with resolution of 500m/pix, LRO-WAC (Lunar Reconnaissance Orbiter, Wide Angle Camera) data with resolution of 100m/pix, LRO-LOLA (Lunar Reconnaissance Orbiter, Lunar Orbiter Laser Altimeter) data with resolution of 60m/pix, and LRO-NAC (Lunar Reconnaissance Orbiter, Narrow Angle Camera) data with resolution of 2-5m/pix. We considered surface derivatives to recognize the linear structures including Rilles and Ridges. Different window scales and thresholds for are considered for feature extraction. We also calculated the roughness index to identify the erosion/deposits area within craters. The results underline the suitability of the adopted methods for feature recognition on the moon surface. The roughness index is found to be a useful tool to distinguish new craters, with higher roughness, from the old craters, which present a smooth and less rough surface.

  9. Instrumentation for Infrared Airglow Clutter.

    DTIC Science & Technology

    1987-03-10

    gain, and filter position to the Camera Head, and monitors these parameters as well as preamp video. GAZER is equipped with a Lenzar wide angle, low...Specifications/Parameters VIDEO SENSOR: Camera ...... . LENZAR Intensicon-8 LLLTV using 2nd gen * micro-channel intensifier and proprietary camera tube

  10. Note: Simple hysteresis parameter inspector for camera module with liquid lens

    NASA Astrophysics Data System (ADS)

    Chen, Po-Jui; Liao, Tai-Shan; Hwang, Chi-Hung

    2010-05-01

    A method to inspect hysteresis parameter is presented in this article. The hysteresis of whole camera module with liquid lens can be measured rather than a single lens merely. Because the variation in focal length influences image quality, we propose utilizing the sharpness of images which is captured from camera module for hysteresis evaluation. Experiments reveal that the profile of sharpness hysteresis corresponds to the characteristic of contact angle of liquid lens. Therefore, it can infer that the hysteresis of camera module is induced by the contact angle of liquid lens. An inspection process takes only 20 s to complete. Thus comparing with other instruments, this inspection method is more suitable to integrate into the mass production lines for online quality assurance.

  11. Autonomous pedestrian localization technique using CMOS camera sensors

    NASA Astrophysics Data System (ADS)

    Chun, Chanwoo

    2014-09-01

    We present a pedestrian localization technique that does not need infrastructure. The proposed angle-only measurement method needs specially manufactured shoes. Each shoe has two CMOS cameras and two markers such as LEDs attached on the inward side. The line of sight (LOS) angles towards the two markers on the forward shoe are measured using the two cameras on the other rear shoe. Our simulation results shows that a pedestrian walking down in a shopping mall wearing this device can be accurately guided to the front of a destination store located 100m away, if the floor plan of the mall is available.

  12. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less

  13. Phootprint - A Phobos sample return mission study

    NASA Astrophysics Data System (ADS)

    Koschny, Detlef; Svedhem, Håkan; Rebuffat, Denis

    Introduction ESA is currently studying a mission to return a sample from Phobos, called Phootprint. This study is performed as part of ESA’s Mars Robotic Exploration Programme. Part of the mission goal is to prepare technology needed for a sample return mission from Mars itself; the mission should also have a strong scientific justification, which is described here. 1. Science goal The main science goal of this mission will be to Understand the formation of the Martian moons Phobos and put constraints on the evolution of the solar system. Currently, there are several possibilities for explaining the formation of the Martian moons: (a) co-formation with Mars (b) capture of objects coming close to Mars (c) Impact of a large body onto Mars and formation from the impact ejecta The main science goal of this mission is to find out which of the three scenarios is the most probable one. To do this, samples from Phobos would be returned to Earth and analyzed with extremely high precision in ground-based laboratories. An on-board payload is foreseen to provide information to put the sample into the necessary geological context. 2. Mission Spacecraft and payload will be based on experience gained from previous studies to Martian moons and asteroids. In particular the Marco Polo and MarcoPolo-R asteroid sample return mission studies performed at ESA were used as a starting point. Currently, industrial studies are ongoing. The initial starting assumption was to use a Soyuz launcher. Uunlike the initial Marco Polo and MarcoPolo-R studies to an asteroid, a transfer stage will be needed. Another main difference to an asteroid mission is the fact that the spacecraft actually orbits Mars, not Phobos or Deimos. It is possible to select a spacecraft orbit, which in a Phobos- or Deimos-centred reference system would give an ellipse around the moon. The following model payload is currently foreseen: - Wide Angle Camera, - Narrow Angle Camera, - Close-Up Camera, - Context camera for sampling context, - visible-IR spectrometer - thermal IR spectrometer - and a Radio Science investigation. It is expected that with these instruments the necessary context for the sample can be provided. The paper will focus on the current status of the mission study.

  14. Easily Accessible Camera Mount

    NASA Technical Reports Server (NTRS)

    Chalson, H. E.

    1986-01-01

    Modified mount enables fast alinement of movie cameras in explosionproof housings. Screw on side and readily reached through side door of housing. Mount includes right-angle drive mechanism containing two miter gears that turn threaded shaft. Shaft drives movable dovetail clamping jaw that engages fixed dovetail plate on camera. Mechanism alines camera in housing and secures it. Reduces installation time by 80 percent.

  15. Multi-Angle Snowflake Camera Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkurko, Konstantin; Garrett, T.; Gaustad, K

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less

  16. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.

    PubMed

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H

    2015-02-01

    Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.

  17. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  18. Hellas as a Possible Site of Ancient Ice-Covered Lakes on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Wilhelms, Don E.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Based on topographic, morphologic, and stratigraphic evidence, we propose that ancient water-laid sediment is the dominant component of deposits within Hellas Planitia, Mars. Multiply layered sediment is manifested by alternating benches and scarps visible in Mars Orbiting Camera narrow-angle (MOC NA) images. Viking Orbiter camera and MOC NA images were used to map contacts and stratigraphically order the different materials units within Hellas. Mar's Orbiting Laser Altimeter (MOLA) data reveal that the contacts of these sedimentary units, as well as a number of scarps or other abrupt changes in landscape texture, trace contours of constant elevation for thousands of km, and in one case all around the basin. Channels, consensually interpreted to be cut by water, lead into the basin. MOLA results indicate that the area encompassed by greater Hellas' highest closed contour is nearly one-fifth that of the entire northern plains, making the Hellas 'drainage' area much larger than previously reported. If lakes formed under climatic conditions similar to the modern Martian climate, they would develop thick ice carapaces, then the lakes would eventually sublimate away. Two units within Hellas exhibit a reticulate or honeycomb pattern we speculate are impressions made by lake-lowered ice blocks grounding into initially soft mud.

  19. Hellas as a possible site of ancient ice-covered lakes on Mars

    USGS Publications Warehouse

    Moore, Johnnie N.; Wilhelms, D.E.

    2001-01-01

    Based on topographic, morphologic, and stratigraphic evidence, we propose that ancient water-laid sediment is the dominant component of deposits within Hellas Planitia, Mars. Multiple-layered sediment is manifested by alternating benches and scarps visible in Mars orbiting camera narrow-angle (MOC NA) images. Viking Orbiter camera and MOC NA images were used to map contacts and stratigraphically order the different materials units within Hellas. Mars orbiting laser altimeter (MOLA) data reveal that the contacts of these sedimentary units, as well as a number of scarps or other abrupt changes in landscape texture, trace contours of constant elevation for thousands of km, and in one case all around the basin. Channels, consensually interpreted to be cut by water, lead into the basin. MOLA results indicate that the area encompassed by greater Hellas' highest closed contour is nearly one-fifth that of the entire northern plains, making the Hellas "drainage" area much larger than previously reported. If lakes formed under climatic conditions similar to the modern Martian climate, they would develop thick ice carapaces, then the lakes would eventually sublimate away. Two units within Hellas exhibit a reticulate or honeycomb pattern, which we speculate are impressions made by lake-lowered ice blocks grounding into initially soft mud.

  20. Optical design of space cameras for automated rendezvous and docking systems

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2018-05-01

    Visible cameras are essential components of a space automated rendezvous and docking (AR and D) system, which is utilized in many space missions including crewed or robotic spaceship docking, on-orbit satellite servicing, autonomous landing and hazard avoidance. Cameras are ubiquitous devices in modern time with countless lens designs that focus on high resolution and color rendition. In comparison, space AR and D cameras, while are not required to have extreme high resolution and color rendition, impose some unique requirements on lenses. Fixed lenses with no moving parts and separated lenses for narrow and wide field-of-view (FOV) are normally used in order to meet high reliability requirement. Cemented lens elements are usually avoided due to wide temperature swing and outgassing requirement in space environment. The lenses should be designed with exceptional straylight performance and minimum lens flare given intense sun light and lacking of atmosphere scattering in space. Furthermore radiation resistant glasses should be considered to prevent glass darkening from space radiation. Neptec has designed and built a narrow FOV (NFOV) lens and a wide FOV (WFOV) lens for an AR and D visible camera system. The lenses are designed by using ZEMAX program; the straylight performance and the lens baffles are simulated by using TracePro program. This paper discusses general requirements for space AR and D camera lenses and the specific measures for lenses to meet the space environmental requirements.

  1. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    NASA Astrophysics Data System (ADS)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  2. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    PubMed Central

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing. PMID:28981533

  3. 9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE LOOKING WEST, APRIL 26, 1948. (ORIGINAL PHOTOGRAPH IN POSSESSION OF DAVE WILLIS, SAN DIEGO, CALIFORNIA.) - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. Summer Harvest in Saratov, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Russia's Saratov Oblast (province) is located in the southeastern portion of the East-European plain, in the Lower Volga River Valley. Southern Russia produces roughly 40 percent of the country's total agricultural output, and Saratov Oblast is the largest producer of grain in the Volga region. Vegetation changes in the province's agricultural lands between spring and summer are apparent in these images acquired on May 31 and July 18, 2002 (upper and lower image panels, respectively) by the Multi-angle Imaging SpectroRadiometer (MISR).

    The left-hand panels are natural color views acquired by MISR's vertical-viewing (nadir) camera. Less vegetation and more earth tones (indicative of bare soils) are apparent in the summer image (lower left). Farmers in the region utilize staggered sowing to help stabilize yields, and a number of different stages of crop maturity can be observed. The main crop is spring wheat, cultivated under non-irrigated conditions. A short growing season and relatively low and variable rainfall are the major limitations to production. Saratov city is apparent as the light gray pixels on the left (west) bank of the Volga River. Riparian vegetation along the Volga exhibits dark green hues, with some new growth appearing in summer.

    The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree backward, nadir and 60-degree forward-viewing cameras displayed as red, green and blue respectively. In these images, color variations serve as a proxy for changes in angular reflectance, and the spring and summer views were processed identically to preserve relative variations in brightness between the two dates. Urban areas and vegetation along the Volga banks look similar in the two seasonal multi-angle composites. The agricultural areas, on the other hand, look strikingly different. This can be attributed to differences in brightness and texture between bare soil and vegetated land. The chestnut-colored soils in this region are brighter in MISR's red band than the vegetation. Because plants have vertical structure, the oblique cameras observe a greater proportion of vegetation relative to the nadir camera, which sees more soil. In spring, therefore, the scene is brightest in the vertical view and thus appears with an overall greenish hue. In summer, the soil characteristics play a greater role in governing the appearance of the scene, and the angular reflectance is now brighter at the oblique view angles (displayed as red and blue), thus imparting a pink color to much of the farmland and a purple color to areas along the banks of several narrow rivers. The unusual appearance of the clouds is due to geometric parallax which splits the imagery into spatially separated components as a consequence of their elevation above the surface.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. These images are a portion of the data acquired during Terra orbits 13033 and 13732, and cover an area of about 173 kilometers x 171 kilometers. They utilize data from blocks 49 to 50 within World Reference System-2 path 170.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  6. Relative depths of simple craters and the nature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.

    2017-12-01

    We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.

  7. Science-Filters Study of Martian Rock Sees Hematite

    NASA Image and Video Library

    2017-11-01

    This false-color image demonstrates how use of special filters available on the Mast Camera (Mastcam) of NASA's Curiosity Mars rover can reveal the presence of certain minerals in target rocks. It is a composite of images taken through three "science" filters chosen for making hematite, an iron-oxide mineral, stand out as exaggerated purple. This target rock, called "Christmas Cove," lies in an area on Mars' "Vera Rubin Ridge" where Mastcam reconnaissance imaging (see PIA22065) with science filters suggested a patchy distribution of exposed hematite. Bright lines within the rocks are fractures filled with calcium sulfate minerals. Christmas Cove did not appear to contain much hematite until the rover team conducted an experiment on this target: Curiosity's wire-bristled brush, the Dust Removal Tool, scrubbed the rock, and a close-up with the Mars Hand Lens Imager (MAHLI) confirmed the brushing. The brushed area is about is about 2.5 inches (6 centimeters) across. The next day -- Sept. 17, 2017, on the mission's Sol 1819 -- this observation with Mastcam and others with the Chemistry and Camera (ChemCam showed a strong hematite presence that had been subdued beneath the dust. The team is continuing to explore whether the patchiness in the reconnaissance imaging may result more from variations in the amount of dust cover rather than from variations in hematite content. Curiosity's Mastcam combines two cameras: one with a telephoto lens and the other with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for this image admits light from a narrow band of wavelengths, extending to only about 5 nanometers longer or shorter than the filter's central wavelength. Three observations are combined for this image, each through one of the filters centered at 751 nanometers (in the near-infrared part of the spectrum just beyond red light), 527 nanometers (green) and 445 nanometers (blue). Usual color photographs from digital cameras -- such as a Mastcam one of this same place (see PIA22067) -- also combine information from red, green and blue filtering, but the filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. Mastcam's narrow-band filters used for this view help to increase spectral contrast, making blues bluer and reds redder, particularly with the processing used to boost contrast in each of the component images of this composite. Fine-grained hematite preferentially absorbs sunlight around in the green portion of the spectrum around 527 nanometers. That gives it the purple look from a combination of red and blue light reflected by the hematite and reaching the camera through the other two filters. https://photojournal.jpl.nasa.gov/catalog/PIA22066

  8. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition

    PubMed Central

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133

  9. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition.

    PubMed

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.

  10. Omnidirectional Underwater Camera Design and Calibration

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach. PMID:25774707

  11. Grooves and Kinks in the Rings

    NASA Image and Video Library

    2017-06-19

    Many of the features seen in Saturn's rings are shaped by the planet's moons. This view from NASA's Cassini spacecraft shows two different effects of moons that cause waves in the A ring and kinks in a faint ringlet. The view captures the outer edge of the 200-mile-wide (320-kilometer-wide) Encke Gap, in the outer portion of Saturn's A ring. This is the same region features the large propeller called Earhart. Also visible here is one of several kinked and clumpy ringlets found within the gap. Kinks and clumps in the Encke ringlet move about, and even appear and disappear, in part due to the gravitational effects of Pan -- which orbits in the gap and whose gravitational influence holds it open. The A ring, which takes up most of the image on the left side, displays wave features caused by Pan, as well as the moons Pandora and Prometheus, which orbit a bit farther from Saturn on both sides of the planet's F ring. This view was taken in visible light with the Cassini spacecraft narrow-angle camera on March 22, 2017, and looks toward the sunlit side of the rings from about 22 degrees above the ring plane. The view was acquired at a distance of approximately 63,000 miles (101,000 kilometers) from Saturn and at a phase angle (the angle between the sun, the rings and the spacecraft) of 59 degrees. Image scale is 1,979 feet (603 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21333

  12. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  13. Reduced intraocular pressure after cataract surgery in patients with narrow angles and chronic angle-closure glaucoma.

    PubMed

    Brown, Reay H; Zhong, Le; Whitman, Allison L; Lynch, Mary G; Kilgo, Patrick D; Hovis, Kristen L

    2014-10-01

    To evaluate the effect of cataract surgery on intraocular pressure (IOP) in patients with narrow angles and chronic angle-closure glaucoma (ACG) and to determine whether the change in IOP was correlated with the preoperative pressure, axial length (AL), and anterior chamber depth (ACD). Private practice, Atlanta, Georgia, USA. Retrospective case series. Charts of patients with narrow angles or chronic ACG who had cataract surgery were reviewed. All eyes had previous laser iridotomies. Data recorded included preoperative and postoperative IOP, AL, and ACD. The preoperative IOP was used to stratify eyes into 4 groups. The charts of 56 patients (83 eyes) were reviewed. The mean reduction IOP in all eyes was 3.28 mm Hg (18%), with 88% having a decrease in IOP. There was a significant correlation between preoperative IOP and the magnitude of IOP reduction (r = 0.68, P < .001). The mean decrease in IOP was 5.3 mm Hg in eyes with a preoperative IOP above 20 mm Hg, 4.6 mm Hg in the over 18 to 20 mm Hg group, 2.5 mm Hg in the over 15 to 18 mm Hg group, and 1.4 mm Hg in the 15 mm Hg or less group. The mean follow-up was 3.0 years ± 2.3 (SD). Cataract surgery reduced IOP in patients with narrow angles and chronic ACG. The magnitude of reduction was highly correlated with preoperative IOP and weakly correlated with ACD. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Investigation into the use of photoanthropometry in facial image comparison.

    PubMed

    Moreton, Reuben; Morley, Johanna

    2011-10-10

    Photoanthropometry is a metric based facial image comparison technique. Measurements of the face are taken from an image using predetermined facial landmarks. Measurements are then converted to proportionality indices (PIs) and compared to PIs from another facial image. Photoanthropometry has been presented as a facial image comparison technique in UK courts for over 15 years. It is generally accepted that extrinsic factors (e.g. orientation of the head, camera angle and distance from the camera) can cause discrepancies in anthropometric measurements of the face from photographs. However there has been limited empirical research into quantifying the influence of such variables. The aim of this study was to determine the reliability of photoanthropometric measurements between different images of the same individual taken with different angulations of the camera. The study examined the facial measurements of 25 individuals from high resolution photographs, taken at different horizontal and vertical camera angles in a controlled environment. Results show that the degree of variability in facial measurements of the same individual due to variations in camera angle can be as great as the variability of facial measurements between different individuals. Results suggest that photoanthropometric facial comparison, as it is currently practiced, is unsuitable for elimination purposes. Preliminary investigations into the effects of distance from camera and image resolution in poor quality images suggest that such images are not an accurate representation of an individuals face, however further work is required. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Evaluation of Suppression of Hydroprocessed Renewable Jet (HRJ) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    DTIC Science & Technology

    2011-07-01

    cameras were installed around the test pan and an underwater GoPro ® video camera recorded the fire from below the layer of fuel. 3.2.2. Camera Images...Distribution A: Approved for public release; distribution unlimited. 3.2.3. Video Images A GoPro video camera with a wide angle lens recorded the tests...camera and the GoPro ® video camera were not used for fire suppression experiments. 3.3.2. Test Pans Two ¼-in thick stainless steel test pans were

  16. The Odd Trio

    NASA Image and Video Library

    2014-09-22

    The Cassini spacecraft captures a rare family photo of three of Saturn's moons that couldn't be more different from each other! As the largest of the three, Tethys (image center) is round and has a variety of terrains across its surface. Meanwhile, Hyperion (to the upper-left of Tethys) is the "wild one" with a chaotic spin and Prometheus (lower-left) is a tiny moon that busies itself sculpting the F ring. To learn more about the surface of Tethys (660 miles, or 1,062 kilometers across), see PIA17164 More on the chaotic spin of Hyperion (168 miles, or 270 kilometers across) can be found at PIA07683 And discover more about the role of Prometheus (53 miles, or 86 kilometers across) in shaping the F ring in PIA12786. This view looks toward the sunlit side of the rings from about 1 degree above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014. The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18283

  17. Checking in on Bleriot

    NASA Image and Video Library

    2017-03-27

    What appears as a pair of bright dashes at the center of this image is one of the features rings scientists have dubbed "propellers." This particular propeller, named Bleriot, marks the presence of a body that is much larger than the particles that surround it, yet too small to clear out a complete gap in the rings (like Pan and Daphnis) and become a moon in its own right. Although the moonlet at the core of the propeller is itself too small to see, the disturbances in the rings caused by its gravity betray its presence. Cassini scientists have been tracking propeller features like this one for years in order to learn how their orbits change over time. From this, they hope to gain insight into how forming planets migrate in the disks in which they form. This view looks toward the sunlit side of the rings from about 59 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 9, 2017. The view was acquired at a distance of approximately 223,000 miles (359,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 73 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20525

  18. Water World

    NASA Image and Video Library

    2015-11-30

    Although Enceladus and Saturn's rings are largely made up of water ice, they show very different characteristics. The small ring particles are too tiny to retain internal heat and have no way to get warm, so they are frozen and geologically dead. Enceladus, on the other hand, is subject to forces that heat its interior to this very day. This results in its famous south polar water jets, which are just visible above the moon's dark, southern limb, along with a sub-surface ocean. Recent work by Cassini scientists suggests that Enceladus (313 miles or 504 kilometers across) has a global ocean of liquid water under its surface. This discovery increases scientists' interest in Enceladus and the quest to understand the role of water in the development of life in the solar system. (For more on the sub-surface ocean, see this story.) This view looks toward the unilluminated side of the rings from about 0.3 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2015. The view was acquired at a distance of approximately 630,000 miles (1.0 million kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase angle of 155 degrees. Image scale is 4 miles (6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18343

  19. Deceptively Small

    NASA Image and Video Library

    2015-02-02

    Tiny Epimetheus is dwarfed by adjacent slivers of the A and F rings. But is it really? Looks can be deceiving! There is approximately 10 to 20 times more mass in that tiny dot than in the piece of the A ring visible in this image! In total, Saturn's rings have about as much mass as a few times the mass of the moon Mimas. (This mass estimate comes from measuring the waves raised in the rings by moons like Epimetheus.) The rings look physically larger than any moon because the individual ring particles are very small, giving them a large surface area for a given mass. Epimetheus (70 miles or 113 kilometers across), on the other hand, has a small surface area per mass compared to the rings, making it look deceptively small. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 5, 2014. The view was obtained at a distance of approximately 1.2 million miles (2 million kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 40 degrees. Image scale is 7 miles (12 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18302

  20. Near-infrared light-guided miniaturized indirect ophthalmoscopy for nonmydriatic wide-field fundus photography.

    PubMed

    Toslak, Devrim; Liu, Changgeng; Alam, Minhaj Nur; Yao, Xincheng

    2018-06-01

    A portable fundus imager is essential for emerging telemedicine screening and point-of-care examination of eye diseases. However, existing portable fundus cameras have limited field of view (FOV) and frequently require pupillary dilation. We report here a miniaturized indirect ophthalmoscopy-based nonmydriatic fundus camera with a snapshot FOV up to 67° external angle, which corresponds to a 101° eye angle. The wide-field fundus camera consists of a near-infrared light source (LS) for retinal guidance and a white LS for color retinal imaging. By incorporating digital image registration and glare elimination methods, a dual-image acquisition approach was used to achieve reflection artifact-free fundus photography.

  1. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  2. Uncertainty of Videogrammetric Techniques used for Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tianshu; DeLoach, Richard

    2002-01-01

    The uncertainty of videogrammetric techniques used for the measurement of static aeroelastic wind tunnel model deformation and wind tunnel model pitch angle is discussed. Sensitivity analyses and geometrical considerations of uncertainty are augmented by analyses of experimental data in which videogrammetric angle measurements were taken simultaneously with precision servo accelerometers corrected for dynamics. An analysis of variance (ANOVA) to examine error dependence on angle of attack, sensor used (inertial or optical). and on tunnel state variables such as Mach number is presented. Experimental comparisons with a high-accuracy indexing table are presented. Small roll angles are found to introduce a zero-shift in the measured angles. It is shown experimentally that. provided the proper constraints necessary for a solution are met, a single- camera solution can he comparable to a 2-camera intersection result. The relative immunity of optical techniques to dynamics is illustrated.

  3. Photometric analysis of Asteroid (21) Lutetia from Rosetta-OSIRIS images

    NASA Astrophysics Data System (ADS)

    Masoumzadeh, N.; Boehnhardt, H.; Li, Jian-Yang; Vincent, J.-B.

    2015-09-01

    We analyzed the photometric properties of Asteroid (21) Lutetia based on images captured by Rosetta during its flyby. We utilized the images recorded in the F17 filter (λ = 631.6 nm) of the Wide Angle Camera (WAC) and in the F82 & F22 filters (λ = 649.2 nm) of the Narrow Angle Camera (NAC) of the OSIRIS imaging system onboard the spacecraft. We present the results of Hapke and Minnaert modeling using disk-integrated and disk-resolved data derived from the surface of the asteroid. At 631.6 nm and 649.2 nm, the geometric albedo of Lutetia is 0.194 ± 0.002. The Bond albedo is 0.076 ± 0.002 at 649.2 nm, and 0.079 ± 0.002 at 631.6 nm. The roughness parameter is 28 ° ± 1 ° , the opposition surge parameters B0 and h are 1.79 ± 0.08 and 0.041 ± 0.003, respectively, and the asymmetry factor of the phase function is -0.28 ± 0.01. The single-scattering albedo is 0.226 ± 0.002 at 631.6 and 649.2 nm. The modeled Hapke parameters of Asteroid Lutetia are close to those of typical S-type asteroids. The Minnaert k parameter of Lutetia at opposition (0.526 ± 0.002) is comparable with other asteroids and comets. Albedo ratio images indicate no significant variation across the surface of Lutetia, apart from the so called NPCC region on Lutetia where a pronounced variation is seen at large phase angle. The small width of the albedo distribution of the surface (∼7% at half maximum) and the similarity between phase ratio maps derived from the measurements and from the modeling suggests that the light scattering property over the whole visible and illuminated surface of the asteroid is widely uniform. The comparison between the reflectance measurement of Lutetia and the available laboratory samples suggests that the regolith on Lutetia is concrete with possible grain size distribution of150 μm or larger.

  4. The role of contact angle on unstable flow formation during infiltration and drainage in wettable porous media

    NASA Astrophysics Data System (ADS)

    Wallach, Rony; Margolis, Michal; Graber, Ellen R.

    2013-10-01

    The impact of contact angle on 2-D spatial and temporal water-content distribution during infiltration and drainage was experimentally studied. The 0.3-0.5 mm fraction of a quartz dune sand was treated and turned subcritically repellent (contact angle of 33°, 48°, 56°, and 75° for S33, S48, S56, and S75, respectively). The media were packed uniformly in transparent flow chambers and water was supplied to the surface as a point source at different rates (1-20 ml/min). A sequence of gray-value images was taken by CCD camera during infiltration and subsequent drainage; gray values were converted to volumetric water content by water volume balance. Narrow and long plumes with water accumulation behind the downward moving wetting front (tip) and negative water gradient above it (tail) developed in the S56 and S75 media during infiltration at lower water application rates. The plumes became bulbous with spatially uniform water-content distribution as water application rates increased. All plumes in these media propagated downward at a constant rate during infiltration and did not change their shape during drainage. In contrast, regular plume shapes were observed in the S33 and S48 media at all flow rates, and drainage profiles were nonmonotonic with a transition plane at the depth that water reached during infiltration. Given that the studied media have similar pore-size distributions, the conclusion is that imbibition hindered by the nonzero contact angle induced pressure buildup at the wetting front (dynamic water-entry value) that controlled the plume shape and internal water-content distribution during infiltration and drainage.

  5. Steepness of Slopes at the Luna-Glob Landing Sites: Estimating by the Shaded Area Percentage in the LROC NAC Images

    NASA Astrophysics Data System (ADS)

    Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Abdrakhimov, A. M.; Kokhanov, A. A.

    2018-03-01

    The paper presents estimates of the occurrence probability of slopes, whose steep surfaces could be dangerous for the landing of the Luna-Glob descent probe ( Luna-25) given the baseline of the span between the landing pads ( 3.5 m), for five potential landing ellipses. As a rule, digital terrain models built from stereo pairs of high-resolution images (here, the images taken by the Narrow Angle Camera onboard the Lunar Reconnaissance Orbiter (LROC NAC)) are used in such cases. However, the planned landing sites are at high latitudes (67°-74° S), which makes it impossible to build digital terrain models, since the difference in the observation angle of the overlapping images is insufficient at these latitudes. Because of this, to estimate the steepness of slopes, we considered the interrelation between the shaded area percentage in the image and the Sun angle over horizon at the moment of imaging. For five proposed landing ellipses, the LROC NAC images (175 images in total) with a resolution from 0.4 to 1.2 m/pixel were analyzed. From the results of the measurements in each of the ellipses, the dependence of the shaded area percentage on the solar angle were built, which was converted to the occurrence probability of slopes. For this, the data on the Apollo 16 landing region ware used, which is covered by both the LROC NAC images and the digital terrain model with high resolution. As a result, the occurrence probability of slopes with different steepness has been estimated on the baseline of 3.5 m for five landing ellipses according to the steepness categories of <7°, 7°-10°, 10°-15°, 15°-20°, and >20°.

  6. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from human fingers.

  7. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  8. Topview stereo: combining vehicle-mounted wide-angle cameras to a distance sensor array

    NASA Astrophysics Data System (ADS)

    Houben, Sebastian

    2015-03-01

    The variety of vehicle-mounted sensors in order to fulfill a growing number of driver assistance tasks has become a substantial factor in automobile manufacturing cost. We present a stereo distance method exploiting the overlapping field of view of a multi-camera fisheye surround view system, as they are used for near-range vehicle surveillance tasks, e.g. in parking maneuvers. Hence, we aim at creating a new input signal from sensors that are already installed. Particular properties of wide-angle cameras (e.g. hanging resolution) demand an adaptation of the image processing pipeline to several problems that do not arise in classical stereo vision performed with cameras carefully designed for this purpose. We introduce the algorithms for rectification, correspondence analysis, and regularization of the disparity image, discuss reasons and avoidance of the shown caveats, and present first results on a prototype topview setup.

  9. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+

    PubMed Central

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.

    2015-01-01

    Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851

  10. What convention is used for the illumination and view angles?

    Atmospheric Science Data Center

    2014-12-08

    ... Azimuth angles are measured clockwise from the direction of travel to local north. For both the Sun and cameras, azimuth describes the ... to the equator, because of its morning equator crossing time. Additionally, the difference in view and solar azimuth angle will be near ...

  11. Frequency-Range Distribution of Boulders Around Cone Crater: Relevance to Landing Site Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Clegg-Watkins, R. N.; Jolliff, B. L.; Lawrence, S. J.

    2016-01-01

    Boulders represent a landing hazard that must be addressed in the planning of future landings on the Moon. A boulder under a landing leg can contribute to deck tilt and boulders can damage spacecraft during landing. Using orbital data to characterize boulder populations at locations where landers have safely touched down (Apollo, Luna, Surveyor, and Chang'e-3 sites) is important for determining landing hazard criteria for future missions. Additionally, assessing the distribution of boulders can address broader science issues, e.g., how far craters distribute boulders and how this distribution varies as a function of crater size and age. The availability of new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images [1] enables the use of boulder size- and range frequency distributions for a variety of purposes [2-6]. Boulders degrade over time and primarily occur around young or fresh craters that are large enough to excavate bedrock. Here we use NAC images to analyze boulder distributions around Cone crater (340 m diameter) at the Apollo 14 site. Cone crater (CC) was selected because it is the largest crater where astronaut surface photography is available for a radial traverse to the rim. Cone crater is young (approximately 29 Ma [7]) relative to the time required to break down boulders [3,8], giving us a data point for boulder range-frequency distributions (BRFDs) as a function of crater age.

  12. Exploring the Moon at High-Resolution: First Results From the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Robinson, Mark; Hiesinger, Harald; McEwen, Alfred; Jolliff, Brad; Thomas, Peter C.; Turtle, Elizabeth; Eliason, Eric; Malin, Mike; Ravine, A.; Bowman-Cisneros, Ernest

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on an Atlas V 401 rocket from the Cape Canaveral Air Force Station Launch Complex 41 on June 18, 2009. After spending four days in Earth-Moon transit, the spacecraft entered a three month commissioning phase in an elliptical 30×200 km orbit. On September 15, 2009, LRO began its planned one-year nominal mapping mission in a quasi-circular 50 km orbit. A multi-year extended mission in a fixed 30×200 km orbit is optional. The Lunar Reconnaissance Orbiter Camera (LROC) consists of a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NACs). The WAC is a 7-color push-frame camera, which images the Moon at 100 and 400 m/pixel in the visible and UV, respectively, while the two NACs are monochrome narrow-angle linescan imagers with 0.5 m/pixel spatial resolution. LROC was specifically designed to address two of the primary LRO mission requirements and six other key science objectives, including 1) assessment of meter-and smaller-scale features in order to select safe sites for potential lunar landings near polar resources and elsewhere on the Moon; 2) acquire multi-temporal synoptic 100 m/pixel images of the poles during every orbit to unambiguously identify regions of permanent shadow and permanent or near permanent illumination; 3) meter-scale mapping of regions with permanent or near-permanent illumination of polar massifs; 4) repeat observations of potential landing sites and other regions to derive high resolution topography; 5) global multispectral observations in seven wavelengths to characterize lunar resources, particularly ilmenite; 6) a global 100-m/pixel basemap with incidence angles (60° -80° ) favorable for morphological interpretations; 7) sub-meter imaging of a variety of geologic units to characterize their physical properties, the variability of the regolith, and other key science questions; 8) meter-scale coverage overlapping with Apollo-era panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972. LROC allows us to determine the recent impact rate of bolides in the size range of 0.5 to 10 meters, which is currently not well known. Determining the impact rate at these sizes enables engineering remediation measures for future surface operations and interplanetary travel. The WAC has imaged nearly the entire Moon in seven wavelengths. A preliminary global WAC stereo-based topographic model is in preparation [1] and global color processing is underway [2]. As the mission progresses repeat global coverage will be obtained as lighting conditions change providing a robust photometric dataset. The NACs are revealing a wealth of morpho-logic features at the meter scale providing the engineering and science constraints needed to support future lunar exploration. All of the Apollo landing sites have been imaged, as well as the majority of robotic landing and impact sites. Through the use of off-nadir slews a collection of stereo pairs is being acquired that enable 5-m scale topographic mapping [3-7]. Impact mor-phologies (terraces, impact melt, rays, etc) are preserved in exquisite detail at all Copernican craters and are enabling new studies of impact mechanics and crater size-frequency distribution measurements [8-12]. Other topical studies including, for example, lunar pyroclastics, domes, and tectonics are underway [e.g., 10-17]. The first PDS data release of LROC data will be in March 2010, and will include all images from the commissioning phase and the first 3 months of the mapping phase. [1] Scholten et al. (2010) 41st LPSC, #2111; [2] Denevi et al. (2010a) 41st LPSC, #2263; [3] Beyer et al. (2010) 41st LPSC, #2678; [4] Archinal et al. (2010) 41st LPSC, #2609; [5] Mattson et al. (2010) 41st LPSC, #1871; [6] Tran et al. (2010) 41st LPSC, #2515; [7] Oberst et al. (2010) 41st LPSC, #2051; [8] Bray et al. (2010) 41st LPSC, #2371; [9] Denevi et al. (2010b) 41st LPSC, #2582; [10] Hiesinger et al. (2010a) 41st LPSC, #2278; [11] Hiesinger et al. (2010b) 41st LPSC, #2304; [12] van der Bogert et al. (2010) 41st LPSC, #2165; [13] Plescia et al. (2010) 41st LPSC, #2160; [14] Lawrence et al. (2010) 41st LPSC, #1906; [15] Gaddis et al. (2010) 41st LPSC, #2059; [16] Watters et al. (2010) 41st LPSC, #1863; [17] Garry et al. (2010) 41st LPSC, #2278.

  13. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  14. ARC-1989-AC89-7019

    NASA Image and Video Library

    1989-08-23

    P-34666 This false color photograph of Neptune was reconstructed from two images taken by Voyager 2's wide angle camera, through the orange and two different methane filters. Objects that deep in the atmosphere are blue, while those at higher altitudes are white. Light at methane wavelengths is mostly absorbed in the deeper atmosphere. The bright, white feature is a high altitude cloud just south of the Great dark Spot. The hard, sharp inner boundary within the bright cloud is an artifact of computer processing on Earth. Other, smaller clouds associated with the Great Dark Spot are white or pink, and are also at high altitudes. Neptune's limb looks reddish because Voyager 2 is viewing it tangentially, and the sunlight is scattered back to space before it can be absorbed by methane. A long, narrow band of high-altitude clouds near the top of the image is located at 25 degrees north latitude, and faint hazes mark the equator and polor regions

  15. Little Bright Spot

    NASA Image and Video Library

    2015-01-12

    A bright spot can be seen on the left side of Rhea in this image. The spot is the crater Inktomi, named for a Lakota spider spirit. Inktomi is believed to be the youngest feature on Rhea (949 miles or 1527 kilometers across). The relative youth of the feature is evident by its brightness. Material that is newly excavated from below the moon's surface and tossed across the surface by a cratering event, appears bright. But as the newly exposed surface is subjected to the harsh space environment, it darkens. This is one technique scientists use to date features on surfaces. This view looks toward the trailing hemisphere of Rhea. North on Rhea is up and rotated 21 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2013. The view was obtained at a distance of approximately 1.0 million miles (1.6 million kilometers) fro http://photojournal.jpl.nasa.gov/catalog/PIA18300

  16. Processing ISS Images of Titan's Surface

    NASA Technical Reports Server (NTRS)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  17. A Snowball in Space

    NASA Image and Video Library

    2013-12-23

    Saturn's moon Enceladus, covered in snow and ice, resembles a perfectly packed snowball in this image from NASA's Cassini mission. Cassini has imaged Enceladus many times throughout its mission, discovering a fractured surface and the now-famous geysers that erupt icy particles and water vapor from fractures crossing the moons' 200-mile-wide (300-kilometer-wide) south polar terrain. The mountain ridge seen in the south in this image is part of the undulating mountain belt that circumscribes this region. This view looks toward the leading side of Enceladus (313 miles, 504 kilometers across). North on Enceladus is up and rotated 6 degrees to the left. The image was taken with the Cassini spacecraft narrow-angle camera on March 10, 2012, using filters sensitive to ultraviolet, visible and infrared light (spanning wavelengths from 338 to 750 nanometers). The view was acquired at a distance of approximately 106,000 miles (170,000 kilometers) from Enceladus. Image scale is 3,336 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17182

  18. KSC-2009-2986

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a technician checks the thermal blanket around the LROC narrow angle camera during closeout on the Lunar Reconnaissance Orbiter, or LRO, before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Above the LROC is the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  19. Flying Over Mimas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie was made of narrow-angle images taken over a period of seven hours during Cassini's close encounter with Saturn's moon Mimas on Aug. 2, 2005.

    In the movie the moon appears to rotate through about 115 degrees and the range varies from 253,000 to 64,000 kilometers (158,000 to 40,000 miles). The image scale in the final pan across the surface is about 760 meters (about 2,500 feet) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  20. Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS

    USGS Publications Warehouse

    Chirico, Peter G.; Dewitt, Jessica D.

    2017-01-01

    This study evaluates the use of a small unmanned aerial system (UAS) to collect imagery over artisanal mining sites in West Africa. The purpose of this study is to consider how very high-resolution imagery and digital surface models (DSMs) derived from structure-from-motion (SfM) photogrammetric techniques from a small UAS can fill the gap in geospatial data collection between satellite imagery and data gathered during field work to map and monitor informal mining sites in tropical environments. The study compares both wide-angle and narrow field of view camera systems in the collection and analysis of high-resolution orthoimages and DSMs of artisanal mining pits. The results of the study indicate that UAS imagery and SfM photogrammetric techniques permit DSMs to be produced with a high degree of precision and relative accuracy, but highlight the challenges of mapping small artisanal mining pits in remote and data sparse terrain.

  1. Laboratory demonstration of image reconstruction for coherent optical system of modular imaging collectors (COSMIC)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1984-01-01

    The first physical demonstration of the principle of image reconstruction using a set of images from a diffraction-blurred elongated aperture is reported. This is an optical validation of previous theoretical and numerical simulations of the COSMIC telescope array (coherent optical system of modular imaging collectors). The present experiment utilizes 17 diffraction blurred exposures of a laboratory light source, as imaged by a lens covered by a narrow-slit aperture; the aperture is rotated 10 degrees between each exposure. The images are recorded in digitized form by a CCD camera, Fourier transformed, numerically filtered, and added; the sum is then filtered and inverse Fourier transformed to form the final image. The image reconstruction process is found to be stable with respect to uncertainties in values of all physical parameters such as effective wavelength, rotation angle, pointing jitter, and aperture shape. Future experiments will explore the effects of low counting rates, autoguiding on the image, various aperture configurations, and separated optics.

  2. High-Resolution Topomapping of Mars: Life After MER Site Selection

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Soricone, R.; Ross, K.; Weller, L.; Rosiek, M.; Redding, B.; Galuszka, D.; Haldemann, A. F. C.

    2004-01-01

    In this abstract we describe our ongoing use of high-resolution images from the Mars Global Surveyor Mars Orbiter Camera Narrow-Angle subsystem (MGS MOC-NA) to derive quantitative topographic and slope data for the martian surface at 3 - 10-m resolution. Our efforts over the past several years focused on assessment of candidate landing sites for the Mars Exploration Rovers (MER) and culminated in the selection of sites in Gusev crater and Meridiani Planum as safe as well as scientifically compelling. As of this writing, MER-A (Spirit) has landed safely in Gusev and we are performing a limited amount of additional mapping near the landing point to support localization of the lander and rover operations planning. The primary focus of our work, however, has been extending our techniques to sample a variety of geologic terrains planetwide to support both a variety of geoscientific studies and planning and data analysis for missions such as Mars Express, Mars Reconnaissance Orbiter, and Phoenix.

  3. Potentially Hospitable Enceladus

    NASA Image and Video Library

    2017-02-06

    Seen from outside, Enceladus appears to be like most of its sibling moons: cold, icy and inhospitable. But under that forbidding exterior may exist the very conditions needed for life. Over the course of the Cassini mission, observations have shown that Enceladus (313 miles or 504 kilometers across) not only has watery jets sending icy grains into space; under its icy crust it also has a global ocean, and may have hydrothermal activity as well. Since scientists believe liquid water is a key ingredient for life, the implications for future missions searching for life elsewhere in our solar system could be significant. This view looks toward the Saturn-facing hemisphere of Enceladus. North on Enceladus is up and rotated 6 degrees to the right. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Nov. 27, 2016. The view was obtained at a distance of approximately 81,000 miles (130,000 kilometers) from Enceladus. Image scale is 2,566 feet (782 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20522

  4. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  5. 3-D Flow Visualization with a Light-field Camera

    NASA Astrophysics Data System (ADS)

    Thurow, B.

    2012-12-01

    Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.

  6. Anterior segment parameters as predictors of intraocular pressure reduction after phacoemulsification in eyes with open-angle glaucoma.

    PubMed

    Hsia, Yen C; Moghimi, Sasan; Coh, Paul; Chen, Rebecca; Masis, Marisse; Lin, Shan C

    2017-07-01

    To evaluate intraocular pressure (IOP) change after cataract surgery in eyes with open-angle glaucoma (OAG) and its relationship to angle and anterior segment parameters measured by anterior segment optical coherence tomography (AS-OCT). University of California, San Francisco, California, USA. Prospective case series. Eyes were placed into a narrow-angle group or open-angle group based on gonioscopy grading. Biometric parameters were measured using AS-OCT (Visante) preoperatively, and IOP 4 months after surgery was obtained. The IOP change and its relationship to AS-OCT parameters were evaluated. Eighty-one eyes of 69 patients were enrolled. The mean age of the patients was 76.8 years. The preoperative IOP was 15.02 mm Hg on 1.89 glaucoma medications. The average mean deviation of preoperative visual field was -4.58 dB. The mean IOP reduction was 2.1 mm Hg (12.8%) from a preoperative mean of 15.0 mm Hg. The IOP reduction was significantly greater in eyes with narrow angles than in eyes with open angles (20.4% versus 8.0%) (P = .002). In multivariate analysis, preoperative IOP (β = -0.53, P < .001, R 2  = 0.40), angle-opening distance at 500 mm (β = 5.83, P = .02, R 2  = 0.45), angle-opening distance at 750 mm (β = 5.82, P = .001, R 2  = 0.52), and lens vault (β = -0.002, P = .009, R 2  = 0.47) were associated with IOP reduction postoperatively. In eyes with OAG, IOP reduction after cataract surgery was greater in eyes with narrower angles. Preoperative IOP, angle-opening distance, and lens vault were predictors for IOP reduction. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Augmented reality glass-free three-dimensional display with the stereo camera

    NASA Astrophysics Data System (ADS)

    Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.

  8. Optical coherence tomography in anterior segment imaging

    PubMed Central

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  9. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    PubMed

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  10. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User’s Head Movement

    PubMed Central

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user’s head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  11. ARC-1986-AC86-7009

    NASA Image and Video Library

    1986-01-17

    Range : 9.1 million miles (5.7 million miles) P-29478C These two images pictures of Uranus, one in true color and the other in false color, were shot by Voyager 2's narrow angle camera. The picture at left has been processed to show Uranus as the human eye would see from the vantage point of the spacecraft. The image is a composite of shots taken through blue, green, and orange filters. The darker shadings on the upper right of the disk correspond to day-night boundaries on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the aborption of red light by methane gas in Uranus' deep, cold, and remarkably clear atmosphere. The picture at right uses false color and extreme contrast to bring out subtle details in the polar region of Uranus. Images obtained through ultraviolet, violet, and orange filters were respectively converted to the same blue, green, and red colors used to produce the picture at left. The very slight contrasts visible in true color are greatly exaggerated here. In this false colr picture, Uranus reveals a dark polar hood surrounded by aseries of progressively lighter concentric bands. One possible explanation is that a brownish haze or smog, concentrated around the pole, is arranged into bands of zonal motions of the upper atmosphere. Several artifacts of the optics and processing are visible. The occasional donut shapes are shadows cast by dust in the camera optics;the processing needed to bring ot faint features also bring out camera blemishes. in addition, the bright pink strip at the lower edge of the planets limb is an artifact of the image enhancement. In fact, the limb is dark and uniform in color around the planet.

  12. A state observer for using a slow camera as a sensor for fast control applications

    NASA Astrophysics Data System (ADS)

    Gahleitner, Reinhard; Schagerl, Martin

    2013-03-01

    This contribution concerns about a problem that often arises in vision based control, when a camera is used as a sensor for fast control applications, or more precisely, when the sample rate of the control loop is higher than the frame rate of the camera. In control applications for mechanical axes, e.g. in robotics or automated production, a camera and some image processing can be used as a sensor to detect positions or angles. The sample time in these applications is typically in the range of a few milliseconds or less and this demands the use of a camera with a high frame rate up to 1000 fps. The presented solution is a special state observer that can work with a slower and therefore cheaper camera to estimate the state variables at the higher sample rate of the control loop. To simplify the image processing for the determination of positions or angles and make it more robust, some LED markers are applied to the plant. Simulation and experimental results show that the concept can be used even if the plant is unstable like the inverted pendulum.

  13. Acapulco, Mexico taken with electronic still camera

    NASA Image and Video Library

    1995-10-29

    STS073-E-5275 (3 Nov. 1995) --- Resort City of Acapulco appears in this north-looking view, photographed from the Earth-orbiting space shuttle Columbia with the Electronic Still Camera (ESC). The airport lies on a narrow neck of land between the sea and a large coastal lagoon. This mission marks the first time NASA has released in mid-flight electronically-downlinked color images that feature geographic subject matter.

  14. Peripapillary Schisis in Glaucoma Patients With Narrow Angles and Increased Intraocular Pressure

    PubMed Central

    Kahook, Malik Y.; Noecker, Robert J.; Ishikawa, Hiroshi; Wollstein, Gadi; Kagemann, Larry; Wojtkowski, Maciej; Duker, Jay S.; Srinivasan, Vivek J.; Fujimoto, James G.; Schuman, Joel S.

    2007-01-01

    PURPOSE To describe two cases of peripapillary retinal schisis in patients with glaucoma without evidence of optic nerve pits, pseudopits, or X-linked retinoschisis. DESIGN Two observational case reports and literature review. METHODS Imaging of the peripapillary nerve fiber layer and schisis cavities was completed in two patients, and one patient was followed over time. RESULTS The first patient, diagnosed with narrow angle glaucoma, was noted to have peripapillary schisis in the right eye with matching changes on visual field and optical coherence tomographic (OCT) results. Follow-up examination revealed that the schisis disappeared in the right eye while appearing in the left. The findings were verified with high-speed ultra-high-resolution OCT performed in both eyes. The second case involved a patient with anatomically narrow angles, high intraocular pressure (IOP), and peripapillary schisis extending into the macula. CONCLUSIONS Peripapillary retinoschisis may represent a unique sequelae of intraocular fluctuations in patients with uncontrolled glaucoma. Further studies are needed to better understand this disease process. PMID:17386284

  15. Mastcam Special Filters Help Locate Variations Ahead

    NASA Image and Video Library

    2017-11-01

    This pair of images from the Mast Camera (Mastcam) on NASA's Curiosity rover illustrates how special filters are used to scout terrain ahead for variations in the local bedrock. The upper panorama is in the Mastcam's usual full color, for comparison. The lower panorama of the same scene, in false color, combines three exposures taken through different "science filters," each selecting for a narrow band of wavelengths. Filters and image processing steps were selected to make stronger signatures of hematite, an iron-oxide mineral, evident as purple. Hematite is of interest in this area of Mars -- partway up "Vera Rubin Ridge" on lower Mount Sharp -- as holding clues about ancient environmental conditions under which that mineral originated. In this pair of panoramas, the strongest indications of hematite appear related to areas where the bedrock is broken up. With information from this Mastcam reconnaissance, the rover team selected destinations in the scene for close-up investigations to gain understanding about the apparent patchiness in hematite spectral features. The Mastcam's left-eye camera took the component images of both panoramas on Sept. 12, 2017, during the 1,814th Martian day, or sol, of Curiosity's work on Mars. The view spans from south-southeast on the left to south-southwest on the right. The foreground across the bottom of the scene is about 50 feet (about 15 meters) wide. Figure 1 includes scale bars of 1 meter (3.3 feet) in the middle distance and 5 meters (16 feet) at upper right. Curiosity's Mastcam combines two cameras: the right eye with a telephoto lens and the left eye with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for the lower panorama shown here admits light from a narrow band of wavelengths, extending to only about 5 to 10 nanometers longer or shorter than the filter's central wavelength. The three observations combined into this product used filters centered at three near-infrared wavelengths: 751 nanometers, 867 nanometers and 1,012 nanometers. Hematite distinctively absorbs some frequencies of infrared light more than others. Usual color photographs from digital cameras -- such as the upper panorama here from Mastcam -- combine information from red, green and blue filtering. The filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. The colors of the upper panorama, as with most featured images from Mastcam, have been tuned with a color adjustment similar to white balancing for approximating how the rocks and sand would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22065

  16. Use of gonioscopy in medicare beneficiaries before glaucoma surgery.

    PubMed

    Coleman, Anne L; Yu, Fei; Evans, Stacy J

    2006-12-01

    The American Academy of Ophthalmology Preferred Practice Patterns for angle closure and open-angle glaucoma (OAG) patients recommends performing bilateral gonioscopy upon initial presentation to evaluate the possibility of narrow angle or angle-closure glaucoma (ACG) and then repeating the examination at least every 5 years. This study aims to assess how commonly eye care providers perform gonioscopy before planned glaucoma surgery in OAG, anatomic narrow angle, and ACG in the Medicare population. Data obtained from a 5% random sample of Medicare beneficiaries undergoing glaucoma surgery in the United States in 1999 were retrospectively reviewed. The proportion of patients with evidence of at least one gonioscopic examination before glaucoma surgery was determined for the period of 1995 to 1999. Demographic and clinical factors potentially influencing the decision to perform gonioscopy were also examined. Overall, gonioscopy is apparently performed in 49% of Medicare beneficiaries during the 4 to 5 years preceding glaucoma surgery. This rate was significantly lower (P < 0.001) in patients with OAG (46%), as compared with anatomic narrow angle (58%) and ACG (57%) patients. Hispanics, elderly (aged 70 to 84), patients undergoing laser iridotomy, and patients receiving care in the New York/New Jersey area all had significantly higher apparent preoperative gonioscopy rates (P < 0.05). Gonioscopy examination before glaucoma surgery in Medicare beneficiaries is underused, undercoded, and/or miscoded, given current recommendations. Underuse is of particular concern in patients undergoing laser iridotomy as it is the diagnostic test of choice in ACG.

  17. Multi-Angle View of the Canary Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A multi-angle view of the Canary Islands in a dust storm, 29 February 2000. At left is a true-color image taken by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. This image was captured by the MISR camera looking at a 70.5-degree angle to the surface, ahead of the spacecraft. The middle image was taken by the MISR downward-looking (nadir) camera, and the right image is from the aftward 70.5-degree camera. The images are reproduced using the same radiometric scale, so variations in brightness, color, and contrast represent true variations in surface and atmospheric reflectance with angle. Windblown dust from the Sahara Desert is apparent in all three images, and is much brighter in the oblique views. This illustrates how MISR's oblique imaging capability makes the instrument a sensitive detector of dust and other particles in the atmosphere. Data for all channels are presented in a Space Oblique Mercator map projection to facilitate their co-registration. The images are about 400 km (250 miles)wide, with a spatial resolution of about 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. Imaging During MESSENGER's Second Flyby of Mercury

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team

    2008-12-01

    During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an average resolution of 2.5 km/pixel. Two NAC mosaics of the entire departing planet will be acquired beginning about 66 minutes after closest approach, with resolutions of 500-700 m/pixel. About 89 minutes following closest approach, the WAC will acquire a multispectral image set with a resolution of about 5 km/pixel. Following this WAC image set, MDIS will continue to acquire occasional images with both the WAC and NAC until 20 hours after closest approach, at which time the flyby data will begin being transmitted to Earth.

  19. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    NASA Astrophysics Data System (ADS)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  20. Differences in iris thickness among African Americans, Caucasian Americans, Hispanic Americans, Chinese Americans, and Filipino-Americans.

    PubMed

    Lee, Roland Y; Huang, Guofu; Porco, Travis C; Chen, Yi-Chun; He, Mingguang; Lin, Shan C

    2013-12-01

    To evaluate the capability of iris thickness parameters to explain the difference in primary angle-closure glaucoma prevalence among the different racial groups. In this prospective study, 436 patients with open and narrow angles that met inclusion criteria were consecutively recruited from the UCSF general ophthalmology and glaucoma clinics to receive anterior segment optical coherence tomography imaging under standardized dark conditions. Images from 11 patients were removed due to poor visibility of the scleral spurs and the remaining images were analyzed using the Zhongshan Angle Assessment Program to assess the following measurements for the nasal and temporal angle of the anterior chamber: iris thickness at 750 and 2000 μm from the scleral spurs and the maximum iris thickness at middle one third of the iris. Iris thickness parameters were compared among and within the following 5 different racial groups: African Americans, Caucasian Americans, Hispanic Americans, Chinese Americans, and Filipino-Americans. In comparing iris parameters among the open-angle racial groups, significant differences were found for nasal iris thickness at 750 and 2000 μm from the scleral spurs in which Chinese Americans displayed the highest mean value (P=0.01, P<0.0001). Among the narrow-angle racial groups, significant difference was found for nasal iris thickness at 2000 μm from the scleral in which Chinese Americans showed the highest mean value (P<0.0001). Significant difference was also found for temporal maximum iris thickness at middle one third of the iris in which African Americans exhibited the highest mean value (P=0.021). Iris thickness was modeled as a function of angle status using linear mixed-effects regression, adjusting for age, sex, pupil diameter, spherical equivalent, ethnicity, and the use of both eyes in patients. The iris thickness difference between the narrow-angle and open-angle groups was significant (P=0.0007). Racial groups that historically showed higher prevalence of primary angle-closure glaucoma possess thicker irides.

  1. Miniaturized fundus camera

    NASA Astrophysics Data System (ADS)

    Gliss, Christine; Parel, Jean-Marie A.; Flynn, John T.; Pratisto, Hans S.; Niederer, Peter F.

    2003-07-01

    We present a miniaturized version of a fundus camera. The camera is designed for the use in screening for retinopathy of prematurity (ROP). There, but also in other applications a small, light weight, digital camera system can be extremely useful. We present a small wide angle digital camera system. The handpiece is significantly smaller and lighter then in all other systems. The electronics is truly portable fitting in a standard boardcase. The camera is designed to be offered at a compatible price. Data from tests on young rabbits' eyes is presented. The development of the camera system is part of a telemedicine project screening for ROP. Telemedical applications are a perfect application for this camera system using both advantages: the portability as well as the digital image.

  2. Qualification Test Report for 450 Gallon Crashworthy Fuel Tank for U.S. Air Force H-53 Helicopter. Volume 6

    DTIC Science & Technology

    1982-04-02

    General S130 Eclipse computer. 2.2.3 Photographic Coverage Each crash test was recorded on 16 mm color film by four W cameras. The event was filmed at...rotate further nose-up until impact. Unfortunately, all cameras had either run out of film or had been turned off prior to impact so that there is no...record of impact angle or crash events. From visual observations at the time, the impact angle seemed to be nearly 90* nose-up. What film exists

  3. Student Measurements of the Double Star Eta Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Brewer, Mark; Cacace, Gabriel; Do, Vivian; Griffith, Nicholas; Malan, Alexandria; Paredes, Hanna; Peticolas, Brian; Stasiak, Kathryne

    2016-10-01

    The double star Eta Cassiopeiae was measured at Vanguard Preparatory School. Digital measurements were made with a 14-inch telescope equipped with a CCD camera. The plate scale was determined to be 0.50 arcseconds per pixel. The separations and position angles were determined to be 13.3 arcseconds and 340.4 degrees, by the use of astronomy software. Previous observations reported in the Washington Double Star Catalog were used as a comparison. The camera angle was found to be the ultimate issue in the skewed data gathered for the double star.

  4. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    NASA Astrophysics Data System (ADS)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  5. Russian Arctic

    Atmospheric Science Data Center

    2013-04-16

    ... faint greenish hue in the multi-angle composite. This subtle effect suggests that the nadir camera is observing more of the brighter ... energy and water at the Earth's surface, and for preserving biodiversity. The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  6. Behavioral patterns and in-situ target strength of the hairtail ( Trichiurus lepturus) via coupling of scientific echosounder and acoustic camera data

    NASA Astrophysics Data System (ADS)

    Hwang, Kangseok; Yoon, Eun-A.; Kang, Sukyung; Cha, Hyungkee; Lee, Kyounghoon

    2017-12-01

    The present study focuses on the influence of target strength (TS) changes in the swimming angle of the hairtail ( Trichiurus lepturus). We measured in-situ TS at 38 and 120 kHz with luring lamps at a fishing ground for jigging boats near the coastal waters of Jeju-do in Korea. Swimming angle and size of hairtails were measured using an acoustic camera. Results showed that mean preanal length was estimated to be 13.5 cm (SD = 2.7 cm) and mean swimming tilt angle was estimated to be 43.9° (SD = 17.6°). The mean TS values were -35.7 and -41.2 dB at 38 and 120 kHz, respectively. The results will assist in understanding the influence of swimming angle on the TS of hairtails and, thus, improve the accuracy of biomass estimates.

  7. Toward high-resolution global topography of Mercury from MESSENGER orbital stereo imaging: A prototype model for the H6 (Kuiper) quadrangle

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Stark, Alexander; Oberst, Jürgen; Matz, Klaus-Dieter; Gwinner, Klaus; Roatsch, Thomas; Watters, Thomas R.

    2017-08-01

    We selected approximately 10,500 narrow-angle camera (NAC) and wide-angle camera (WAC) images of Mercury acquired from orbit by MESSENGER's Mercury Dual Imaging System (MDIS) with an average resolution of 150 m/pixel to compute a digital terrain model (DTM) for the H6 (Kuiper) quadrangle, which extends from 22.5°S to 22.5°N and from 288.0°E to 360.0°E. From the images, we identified about 21,100 stereo image combinations consisting of at least three images each. We applied sparse multi-image matching to derive approximately 250,000 tie-points representing 50,000 ground points. We used the tie-points to carry out a photogrammetric block adjustment, which improves the image pointing and the accuracy of the ground point positions in three dimensions from about 850 m to approximately 55 m. We then applied high-density (pixel-by-pixel) multi-image matching to derive about 45 billion tie-points. Benefitting from improved image pointing data achieved through photogrammetric block adjustment, we computed about 6.3 billion surface points. By interpolation, we generated a DTM with a lateral spacing of 221.7 m/pixel (192 pixels per degree) and a vertical accuracy of about 30 m. The comparison of the DTM with Mercury Laser Altimeter (MLA) profiles obtained over four years of MESSENGER orbital operations reveals that the DTM is geometrically very rigid. It may be used as a reference to identify MLA outliers (e.g., when MLA operated at its ranging limit) or to map offsets of laser altimeter tracks, presumably caused by residual spacecraft orbit and attitude errors. After the relevant outlier removals and corrections, MLA profiles show excellent agreement with topographic profiles from H6, with a root mean square height difference of only 88 m.

  8. Color variations on Victoria quadrangle: support for the geological mapping

    NASA Astrophysics Data System (ADS)

    Zambon, F.; Galluzzi, V.; Carli, C.; Giacomini, L.; Massironi, M.; Palumbo, P.; Guzzetta, L.; Mancinelli, P.; Vivaldi, V.; Ferranti, L.; Pauselli, C.; Frigeri, A.; Zusi, M.; Pozzobon, R.; Cremonese, G.; Ferrari, S.; Capaccioni, F.

    2015-10-01

    Mercury is the closest planet to the Sun. Its extreme thermal environment makes it difficult to explore onsite. In 1974, Mariner 10, the first mission dedicated to Mercury, covered 45% of the surface during of the three Hermean flybys [1]. For about 30 years after Mariner 10, no other mission has flownto Mercury. Many unresolved issues need an answer, and in recent years the interest about Mercury has increased. MESSENGER mission contributed to understand Mercury's origin, its surface structure, and the nature of its magnetic field, exosphere, and magnetosphere [1]. The Mercury Dual Imaging System (MDIS) provided a global coverage of Mercury surface with variable spatial resolution. MDIS is equipped with a narrow angle camera (NAC), dedicated to the study of the geology and a wide angle camera (WAC) with 12 filters useful to investigate the surface composition[2]. Mercury has been divided into 15 quadrangles for mapping purposes [3]. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging spectroscopically data is a poorly followed approach in planetary mapping, but it gives additional information about lithological composition, contributing to the construction of a more complete geological map [e.g. 4]. Recently, [5] proposed a first detailed map of all the Victoria quadrangle (H2). Victoria quadrangle is located in a longitude range between 270°E and 360°E and a latitude range of 22.5°N and 65°N,and itwas only partially mapped by Mariner 10 data[3]. Here we investigate the lithological variation by using the MDIS-WAC data to produce a set of color map products which could be asupport to the geological mapping [5]. The future ESA-JAXA mission to Mercury, BepiColombo, will soon contribute to improve the knowledge of Mercury surface composition and geology thanks to the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS)[6].

  9. Fabrication of multi-focal microlens array on curved surface for wide-angle camera module

    NASA Astrophysics Data System (ADS)

    Pan, Jun-Gu; Su, Guo-Dung J.

    2017-08-01

    In this paper, we present a wide-angle and compact camera module that consists of microlens array with different focal lengths on curved surface. The design integrates the principle of an insect's compound eye and the human eye. It contains a curved hexagonal microlens array and a spherical lens. Compared with normal mobile phone cameras which usually need no less than four lenses, but our proposed system only uses one lens. Furthermore, the thickness of our proposed system is only 2.08 mm and diagonal full field of view is about 100 degrees. In order to make the critical microlens array, we used the inkjet printing to control the surface shape of each microlens for achieving different focal lengths and use replication method to form curved hexagonal microlens array.

  10. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  11. Wide-angle imaging system with fiberoptic components providing angle-dependent virtual material stops

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1993-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  12. Sheath effects on current collection by particle detectors with narrow acceptance angles

    NASA Technical Reports Server (NTRS)

    Singh, N.; Baugher, C. R.

    1981-01-01

    Restriction of the aperture acceptance angle of an ion or electron trap on an attracting spacecraft significantly alters the volt-ampere characteristics of the instrument in a low Mach number plasma. It is shown when the angular acceptance of the aperture is restricted the current to the collector tends to be independent of the Debye length. Expressions for the RPA characteristics for both a thin sheath and a thick sheath are derived; and it is shown that as the aperture is narrowed the curves tend toward equivalence.

  13. Preplanning and Evaluating Video Documentaries and Features.

    ERIC Educational Resources Information Center

    Maynard, Riley

    1997-01-01

    This article presents a ten-part pre-production outline and post-production evaluation that helps communications students more effectively improve video skills. Examines camera movement and motion, camera angle and perspective, lighting, audio, graphics, backgrounds and color, special effects, editing, transitions, and music. Provides a glossary…

  14. Single-Camera Stereoscopy Setup to Visualize 3D Dusty Plasma Flows

    NASA Astrophysics Data System (ADS)

    Romero-Talamas, C. A.; Lemma, T.; Bates, E. M.; Birmingham, W. J.; Rivera, W. F.

    2016-10-01

    A setup to visualize and track individual particles in multi-layered dusty plasma flows is presented. The setup consists of a single camera with variable frame rate, and a pair of adjustable mirrors that project the same field of view from two different angles to the camera, allowing for three-dimensional tracking of particles. Flows are generated by inclining the plane in which the dust is levitated using a specially designed setup that allows for external motion control without compromising vacuum. Dust illumination is achieved with an optics arrangement that includes a Powell lens that creates a laser fan with adjustable thickness and with approximately constant intensity everywhere. Both the illumination and the stereoscopy setup allow for the camera to be placed at right angles with respect to the levitation plane, in preparation for magnetized dusty plasma experiments in which there will be no direct optical access to the levitation plane. Image data and analysis of unmagnetized dusty plasma flows acquired with this setup are presented.

  15. Computing camera heading: A study

    NASA Astrophysics Data System (ADS)

    Zhang, John Jiaxiang

    2000-08-01

    An accurate estimate of the motion of a camera is a crucial first step for the 3D reconstruction of sites, objects, and buildings from video. Solutions to the camera heading problem can be readily applied to many areas, such as robotic navigation, surgical operation, video special effects, multimedia, and lately even in internet commerce. From image sequences of a real world scene, the problem is to calculate the directions of the camera translations. The presence of rotations makes this problem very hard. This is because rotations and translations can have similar effects on the images, and are thus hard to tell apart. However, the visual angles between the projection rays of point pairs are unaffected by rotations, and their changes over time contain sufficient information to determine the direction of camera translation. We developed a new formulation of the visual angle disparity approach, first introduced by Tomasi, to the camera heading problem. Our new derivation makes theoretical analysis possible. Most notably, a theorem is obtained that locates all possible singularities of the residual function for the underlying optimization problem. This allows identifying all computation trouble spots beforehand, and to design reliable and accurate computational optimization methods. A bootstrap-jackknife resampling method simultaneously reduces complexity and tolerates outliers well. Experiments with image sequences show accurate results when compared with the true camera motion as measured with mechanical devices.

  16. The Realm of Daphnis

    NASA Image and Video Library

    2017-02-14

    Daphnis, one of Saturn's ring-embedded moons, is featured in this view, kicking up waves as it orbits within the Keeler gap. The mosaic combines several images to show more waves in the gap edges. Daphnis is a small moon at 5 miles (8 kilometers) across, but its gravity is powerful enough to disrupt the tiny particles of the A ring that form the Keeler gap's edge. As the moon moves through the Keeler gap, wave-like features are created in both the horizontal and vertical plane. Images like this provide scientists with a close-up view of the complicated interactions between a moon and the rings, as well as the interactions between the ring particles themselves, in the wake of the moon's passage. Three wave crests of diminishing sizes trail Daphnis here. In each subsequent crest, the shape of the wave evolves, as the ring particles within the crests collide with one another. Close examination of Daphnis' immediate vicinity also reveals a faint, thin strand of ring material that almost appears to have been directly ripped out of the A ring by Daphnis. The images in this mosaic were taken in visible light, using the Cassini spacecraft narrow-angle camera at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17212

  17. Return to Rhea

    NASA Image and Video Library

    2015-03-30

    After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015. As a prelude to its return to the realm of the icy satellites, the spacecraft had its first relatively close flyby of an icy moon (apart from Titan) in almost two years on Feb. 9. During this encounter Cassini's cameras captured images of the icy moon Rhea, as shown in these in two image mosaics. The views were taken about an hour and a half apart as Cassini drew closer to Rhea. Images taken using clear, green, infrared and ultraviolet spectral filters were combined to create these enhanced color views, which offer an expanded range of the colors visible to human eyes in order to highlight subtle color differences across Rhea's surface. The moon's surface is fairly uniform in natural color. The image at right represents one of the highest resolution color views of Rhea released to date. A larger, monochrome mosaic is available in PIA07763. Both views are orthographic projections facing toward terrain on the trailing hemisphere of Rhea. An orthographic view is most like the view seen by a distant observer looking through a telescope. The views have been rotated so that north on Rhea is up. The smaller view at left is centered at 21 degrees north latitude, 229 degrees west longitude. Resolution in this mosaic is 450 meters (1,476 feet) per pixel. The images were acquired at a distance that ranged from about 51,200 to 46,600 miles (82,100 to 74,600 kilometers) from Rhea. The larger view at right is centered at 9 degrees north latitude, 254 degrees west longitude. Resolution in this mosaic is 300 meters (984 feet) per pixel. The images were acquired at a distance that ranged from about 36,000 to 32,100 miles (57,900 to 51,700 kilometers) from Rhea. The mosaics each consist of multiple narrow-angle camera (NAC) images with data from the wide-angle camera used to fill in areas where NAC data was not available. The image was produced by Heike Rosenberg and Tilmann Denk at Freie Universität in Berlin, Germany. http://photojournal.jpl.nasa.gov/catalog/PIA19057

  18. Sharpening Ejecta Patterns: Investigating Spectral Fidelity After Controlled Intensity-Hue-Saturation Image Fusion of LROC Images of Fresh Craters

    NASA Astrophysics Data System (ADS)

    Awumah, A.; Mahanti, P.; Robinson, M. S.

    2017-12-01

    Image fusion is often used in Earth-based remote sensing applications to merge spatial details from a high-resolution panchromatic (Pan) image with the color information from a lower-resolution multi-spectral (MS) image, resulting in a high-resolution multi-spectral image (HRMS). Previously, the performance of six well-known image fusion methods were compared using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images (1). Results showed the Intensity-Hue-Saturation (IHS) method provided the best spatial performance, but deteriorated the spectral content. In general, there was a trade-off between spatial enhancement and spectral fidelity from the fusion process; the more spatial details from the Pan fused with the MS image, the more spectrally distorted the final HRMS. In this work, we control the amount of spatial details fused (from the LROC NAC images to WAC images) using a controlled IHS method (2), to investigate the spatial variation in spectral distortion on fresh crater ejecta. In the controlled IHS method (2), the percentage of the Pan component merged with the MS is varied. The percent of spatial detail from the Pan used is determined by a variable whose value may be varied between 1 (no Pan utilized) to infinity (entire Pan utilized). An HRMS color composite image (red=415nm, green=321/415nm, blue=321/360nm (3)) was used to assess performance (via visual inspection and metric-based evaluations) at each tested value of the control parameter (1 to 10—after which spectral distortion saturates—in 0.01 increments) within three regions: crater interiors, ejecta blankets, and the background material surrounding the craters. Increasing the control parameter introduced increased spatial sharpness and spectral distortion in all regions, but to varying degrees. Crater interiors suffered the most color distortion, while ejecta experienced less color distortion. The controlled IHS method is therefore desirable for resolution-enhancement of fresh crater ejecta; larger values of the control parameter may be used to sharpen MS images of ejecta patterns but with less impact to color distortion than in the uncontrolled IHS fusion process. References: (1) Prasun et. al (2016) ISPRS. (2) Choi, Myungjin (2006) IEEE. (3) Denevi et. al (2014) JGR.

  19. Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey

    NASA Astrophysics Data System (ADS)

    He, Zhicheng; Sun, Ai-Lei; Zakamska, Nadia L.; Wylezalek, Dominika; Kelly, Michael; Greene, Jenny E.; Rembold, Sandro B.; Riffel, Rogério; Riffel, Rogemar A.

    2018-05-01

    Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z = 0 - 0.14, Lbol˜1042.4 - 44.1 erg s-1) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85-98° with a finite spread of 39-44° (1-σ). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6-2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (˜pc) and galactic (˜ kpc) scales are important in shaping and orienting the AGN narrow-line regions.

  20. Qualitative Assessment of Ultrasound Biomicroscopic Images Using Standard Photographs: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; Huang, Wenyong; Huang, Qunxiao; Zhang, Jian; Foster, Paul J.

    2010-01-01

    Objective. To classify anatomic features related to anterior chamber angles by a qualitative assessment system based on ultrasound biomicroscopy (UBM) images. Methods. Cases of primary angle-closure suspect (PACS), defined by pigmented trabecular meshwork that is not visible in two or more quadrants on static gonioscopy (cases) and systematically selected subjects (1 of every 10) who did not meet this criterion (controls) were enrolled during a population-based survey in Guangzhou, China. All subjects underwent UBM examination. A set of standard UBM images was used to qualitatively classify anatomic features related to the angle configuration, including iris thickness, iris convexity, iris angulation, ciliary body size, and ciliary process position. All analysis was conducted on right eye images. Results. Based on the qualitative grades, the difference in overall iris thickness between gonioscopically narrow eyes (n = 117) and control eyes (n = 57) was not statistically significant. The peripheral one third of the iris tended to be thicker in all quadrants of the PACS eyes, although the difference was statistically significant only in the superior quadrant (P = 0.008). No significant differences were found in the qualitative classifications of iris insertion, iris angulation, ciliary body size, and ciliary process position. The findings were similar when compared with the control group of eyes with wide angles in all quadrants. Conclusions. Basal iris thickness seems to be more relevant to narrow angle configuration than to overall iris thickness. Otherwise, the anterior rotation and size of the ciliary body, the iris insertion, and the overall iris thickness are comparable in narrow- and wide-angle eyes. PMID:19834039

  1. Angle dependent defect modes in a photonic crystal filter doped by high and low temperature superconductor defects

    NASA Astrophysics Data System (ADS)

    Sreejith K., P.; Mathew, Vincent

    2018-05-01

    We have theoretically investigated the incident angle dependent defect modes in a dual channel photonic crystal filter composed of a high and low temperature superconductor defects. It is observed that the defect mode wavelength can be significantly tuned by incident angle for both polarizations. The angle sensitive defect mode property is of particular application in designing narrow band transmission filter.

  2. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  3. Serious Gaming Technologies Support Human Factors Investigations of Advanced Interfaces for Semi-Autonomous Vehicles

    DTIC Science & Technology

    2006-06-01

    conventional camera vs. thermal imager vs. night vision; camera field of view (narrow, wide, panoramic); keyboard + mouse vs. joystick control vs...motorised platform which could scan the immediate area, producing a 360o panorama of “stitched-together” digital pictures. The picture file, together with...VBS was used to automate the process of creating a QuickTime panorama (.mov or .qt), which includes the initial retrieval of the images, the

  4. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  5. Inferred Lunar Boulder Distributions at Decimeter Scales

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.; Spudis, P. D.

    2012-01-01

    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6].

  6. Structural geologic interpretations from radar imagery

    USGS Publications Warehouse

    Reeves, Robert G.

    1969-01-01

    Certain structural geologic features may be more readily recognized on sidelooking airborne radar (SLAR) images than on conventional aerial photographs, other remote sensor imagery, or by ground observations. SLAR systems look obliquely to one or both sides and their images resemble aerial photographs taken at low sun angle with the sun directly behind the camera. They differ from air photos in geometry, resolution, and information content. Radar operates at much lower frequencies than the human eye, camera, or infrared sensors, and thus "sees" differently. The lower frequency enables it to penetrate most clouds and some precipitation, haze, dust, and some vegetation. Radar provides its own illumination, which can be closely controlled in intensity and frequency. It is narrow band, or essentially monochromatic. Low relief and subdued features are accentuated when viewed from the proper direction. Runs over the same area in significantly different directions (more than 45° from each other), show that images taken in one direction may emphasize features that are not emphasized on those taken in the other direction; optimum direction is determined by those features which need to be emphasized for study purposes. Lineaments interpreted as faults stand out on radar imagery of central and western Nevada; folded sedimentary rocks cut by faults can be clearly seen on radar imagery of northern Alabama. In these areas, certain structural and stratigraphic features are more pronounced on radar images than on conventional photographs; thus radar imagery materially aids structural interpretation.

  7. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  8. A Spectralon BRF Data Base for MISR Calibration Application

    NASA Technical Reports Server (NTRS)

    Bruegge, C.; Chrien, N.; Haner, D.

    1999-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.

  9. The canopy camera

    Treesearch

    Harry E. Brown

    1962-01-01

    The canopy camera is a device of new design that takes wide-angle, overhead photographs of vegetation canopies, cloud cover, topographic horizons, and similar subjects. Since the entire hemisphere is photographed in a single exposure, the resulting photograph is circular, with the horizon forming the perimeter and the zenith the center. Photographs of this type provide...

  10. A multiscale video system for studying an optical phenomena during active experiments in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Nikolashkin, S. V.; Reshetnikov, A. A.

    2017-11-01

    The system of video surveillance during active rocket experiments in the Polar geophysical observatory "Tixie" and studies of the effects of "Soyuz" vehicle launches from the "Vostochny" cosmodrome over the territory of the Republic of Sakha (Yakutia) is presented. The created system consists of three AHD video cameras with different angles of view mounted on a common platform mounted on a tripod with the possibility of manual guiding. The main camera with high-sensitivity black and white CCD matrix SONY EXview HADII is equipped depending on the task with lenses "MTO-1000" (F = 1000 mm) or "Jupiter-21M " (F = 300 mm) and is designed for more detailed shooting of luminous formations. The second camera of the same type, but with a 30 degree angle of view. It is intended for shooting of the general plan and large objects, and also for a binding of coordinates of object on stars. The third color wide-angle camera (120 degrees) is designed to be connected to landmarks in the daytime, the optical axis of this channel is directed at 60 degrees down. The data is recorded on the hard disk of a four-channel digital video recorder. Tests of the original version of the system with two channels were conducted during the launch of the geophysical rocket in Tixie in September 2015 and showed its effectiveness.

  11. 4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER SLAB, SUPPORT CARRIAGE, CONCRETE 'A' FRAME STRUCTURE AND CAMERA TOWER LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. Iridotomy to slow progression of angle-closure glaucoma

    PubMed Central

    Le, Jimmy T; Rouse, Benjamin; Gazzard, Gus

    2016-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: The primary objective is to assess the role of iridotomy-compared with observation-in the prevention of visual field loss for individuals who have primary angle closure or primary angle-closure glaucoma in at least one eye. We will also examine the role of iridotomy in the prevention of elevated intraocular pressure (IOP) in individuals with narrow angles (primary angle-closure suspect) in at least one eye. PMID:27551238

  13. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected dust angle, as a function of Lunar Module altitude.

  14. The gonial angle stripper: an instrument for the treatment of prominent gonial angle.

    PubMed

    Kyutoku, S; Yanagida, A; Kusumoto, K; Ogawa, Y

    1994-12-01

    In the Orient, a prominent gonial angle, so-called benign masseteric hypertrophy, is rather common and considered unattractive. Therefore, its surgical correction is one of the most popular forms of facial skeletal contouring. For accurate and safe osteotomy of the mandibular angle region, a gonial angle stripper was specially invented. It has a small projection that will ease identification of the osteotomy line in a narrow operative field. The tool has been clinically used in eight patients to prove its usefulness, especially for a posteriorly developed mandibular angle.

  15. Narrow-angle Astrometry with SUSI

    NASA Astrophysics Data System (ADS)

    Kok, Y.; Ireland, M. J.; Robertson, J. G.; Tuthill, P. G.; Warrington, B. A.; Tango, W. J.

    2014-09-01

    SUSI (Sydney University Stellar Interferometer) is currently being fitted with a 2nd beam combiner, MUSCA (Micro-arcsecond University of Sydney Companion Astrometry), for the purpose of narrow-angle astrometry. With an aim to achieve ˜10 micro-arcseconds of angular resolution at its best, MUSCA allows SUSI to search for planets around bright binary stars, which are its primary targets. While the first beam combiner, PAVO (Precision Astronomical Visible Observations), is used to track stellar fringes during an observation, MUSCA will be used to measure separations of binary stars. MUSCA is a Michelson interferometer and its setup at SUSI will be described in this poster.

  16. SCDU (Spectral Calibration Development Unit) Testbed Narrow Angle Astrometric Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Wehmeier, Udo J.; Weilert, Mark A.; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing

    2010-01-01

    The most stringent astrometric performance requirements on NASA's SIM(Space Interferometer Mission)-Lite mission will come from the so-called Narrow-Angle (NA) observing scenario, aimed at finding Earth-like exoplanets, where the interferometer chops between the target star and several nearby reference stars multiple times over the course of a single visit. Previously, about 20 pm NA error with various shifts was reported. Since then, investigation has been under way to understand the mechanisms that give rise to these shifts. In this paper we report our findings, the adopted mitigation strategies, and the resulting testbed performance.

  17. Plenoptic background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Klemkowsky, Jenna N.; Fahringer, Timothy W.; Clifford, Christopher J.; Bathel, Brett F.; Thurow, Brian S.

    2017-09-01

    The combination of the background oriented schlieren (BOS) technique with the unique imaging capabilities of a plenoptic camera, termed plenoptic BOS, is introduced as a new addition to the family of schlieren techniques. Compared to conventional single camera BOS, plenoptic BOS is capable of sampling multiple lines-of-sight simultaneously. Displacements from each line-of-sight are collectively used to build a four-dimensional displacement field, which is a vector function structured similarly to the original light field captured in a raw plenoptic image. The displacement field is used to render focused BOS images, which qualitatively are narrow depth of field slices of the density gradient field. Unlike focused schlieren methods that require manually changing the focal plane during data collection, plenoptic BOS synthetically changes the focal plane position during post-processing, such that all focal planes are captured in a single snapshot. Through two different experiments, this work demonstrates that plenoptic BOS is capable of isolating narrow depth of field features, qualitatively inferring depth, and quantitatively estimating the location of disturbances in 3D space. Such results motivate future work to transition this single-camera technique towards quantitative reconstructions of 3D density fields.

  18. Effects of Implantable Collamer Lens V4c Placement on Iridocorneal Angle Measurements by Fourier-Domain Optical Coherence Tomography.

    PubMed

    Fernández-Vigo, José Ignacio; Macarro-Merino, Ana; Fernández-Vigo, Cristina; Fernández-Vigo, José Ángel; Martínez-de-la-Casa, José María; Fernández-Pérez, Cristina; García-Feijóo, Julián

    2016-02-01

    To assess by Fourier-domain optical coherence tomography (FDOCT) changes produced in iridocorneal angle measurements in patients undergoing Visian Implantable Collamer Lens (ICL) V4c (STAAR Surgical AG) placement. Prospective interventional case series. In 50 eyes of 25 myopic subjects consecutively scheduled for ICL implant, FDOCT (RTVue; Optovue Inc) iridocorneal angle measurements were made before and 1 and 3 months after surgery. Trabecular-iris angle (TIA) and angle opening distance 500 μm anterior to the scleral spur (AOD500) were compared among the quadrants nasal, temporal, and inferior, and correlations with ocular variables including lens vault were examined. Preoperative TIA was 48.7 ± 8.7, 48.2 ± 8.7, and 48.7 ± 9.3 degrees for the nasal, temporal, and inferior quadrants, with no differences (P = 1.000). Following ICL implant, corresponding values fell to 31.2 ± 11.5, 30.0 ± 10.7, and 29.7 ± 8.1 degrees at 1 month postsurgery, indicating angle narrowing of 34%-42%, and to 30.6 ± 12.3, 30.1 ± 11.9, and 29.8 ± 12.3 degrees, respectively, at 3 months postsurgery. Angle measurements failed to vary between 1 month and 3 months postsurgery (P = .481). In 8 eyes, iridotrabecular contact attributable to surgery was observed. One month after surgery, vault measurements correlated with TIA (R = -.309; P = .048). Six variables were identified as predictors of TIA at 1 month postsurgery (R(2) = .907). Although considerable angle narrowing was detected 1 month after ICL V4c implant, this narrowing remained stable at 3 months postsurgery. Factors predictive of TIA could serve to identify suitable candidates for ICL placement. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats.

    PubMed

    Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E

    1997-12-30

    Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.

  20. Imaging Detonations of Explosives

    DTIC Science & Technology

    2016-04-01

    made using a full-color single-camera pyrometer where wavelength resolution is achieved using the Bayer-type mask covering the sensor chip17 and a...many CHNO- based explosives (e.g., TNT [C7H5N3O6], the formulation C-4 [92% RDX, C3H6N6O6]), hot detonation products are mainly soot and permanent...unreferenced). Essentially, 2 light sensors (cameras), each filtered over a narrow wavelength region, observe an event over the same line of sight. The

  1. 35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR DISTORTION APPROACHING 45 DEGREES WITH LAMP POSTS APPEARING TO BE AT EIGHT ANGLES, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA

  2. Two Perspectives on Forest Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Multi-angle Imaging Spectroradiometer (MISR) images of smoke plumes from wildfires in western Montana acquired on August 14, 2000. A portion of Flathead Lake is visible at the top, and the Bitterroot Range traverses the images. The left view is from MISR's vertical-viewing (nadir) camera. The right view is from the camera that looks forward at a steep angle (60 degrees). The smoke location and extent are far more visible when seen at this highly oblique angle. However, vegetation is much darker in the forward view. A brown burn scar is located nearly in the exact center of the nadir image, while in the high-angle view it is shrouded in smoke. Also visible in the center and upper right of the images, and more obvious in the clearer nadir view, are checkerboard patterns on the surface associated with land ownership boundaries and logging. Compare these images with the high resolution infrared imagery captured nearby by Landsat 7 half an hour earlier. Images by NASA/GSFC/JPL, MISR Science Team.

  3. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at the same exposure time will have same interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) after band-to-band registration (BBR). Thus, in the aerial triangulation stage, the master band of MiniMCA-12 was treated as a reference channel to link with DSLR RGB images. It means, all reference images from the master band of MiniMCA-12 and all RGB images were triangulated at the same time with same coordinate system of ground control points (GCP). Due to the spatial resolution of RGB images is higher than the MiniMCA-12, the GCP can be marked on the RGB images only even they cannot be recognized on the MiniMCA images. Furthermore, a one meter gridded digital surface model (DSM) is created by the RGB images and applied to the MiniMCA imagery for ortho-rectification. Quantitative error analyses show that the proposed BBR scheme can achieve 0.33 pixels of average misregistration residuals length and the co-registration errors among 12 MiniMCA ortho-images and between MiniMCA and Canon RGB ortho-images are all less than 0.6 pixels. The experimental results demonstrate that the proposed method is robust, reliable and accurate for future remote sensing applications.

  4. Send in the Clouds

    NASA Image and Video Library

    2017-01-02

    Floating high above the hydrocarbon lakes, wispy clouds have finally started to return to Titan's northern latitudes Clouds like these disappeared from Titan's (3,200 miles or 5,150 kilometers across) northern reaches for several years (from about 2010 to 2014). Now they have returned, but in far smaller numbers than expected. Since clouds can quickly appear and disappear, Cassini scientists regularly monitor the large moon, in the hopes of observing cloud activity. They are especially interested in comparing these observations to predictions of how cloud cover should change with Saturn's seasons. Titan's clear skies are not what researchers expected. This view looks toward the Saturn-facing side of Titan. North on Titan is up and rotated 3 degrees to the left. The image was taken with the Cassini spacecraft narrow-angle camera on Oct. 29, 2016 using a spectral filter that preferentially admits wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 545,000 miles (878,000 kilometers) from Titan. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20516

  5. Ionospheric Turbulence and the Evolution of Artificial Irregularities Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2015-12-01

    The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and suprathermal electrons. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. Applications are made to the study of irregularities relevant to spacecraft communication and navigation systems.

  6. Cloudy Waves (False Color)

    NASA Image and Video Library

    2017-08-14

    Clouds on Saturn take on the appearance of strokes from a cosmic brush thanks to the wavy way that fluids interact in Saturn's atmosphere. Neighboring bands of clouds move at different speeds and directions depending on their latitudes. This generates turbulence where bands meet and leads to the wavy structure along the interfaces. Saturn's upper atmosphere generates the faint haze seen along the limb of the planet in this image. This false color view is centered on 46 degrees north latitude on Saturn. The images were taken with the Cassini spacecraft narrow-angle camera on May 18, 2017 using a combination of spectral filters which preferentially admit wavelengths of near-infrared light. The image filter centered at 727 nanometers was used for red in this image; the filter centered at 750 nanometers was used for blue. (The green color channel was simulated using an average of the two filters.) The view was obtained at a distance of approximately 750,000 miles (1.2 million kilometers) from Saturn. Image scale is about 4 miles (7 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21341

  7. ARC-1989-A89-7041

    NASA Image and Video Library

    1989-07-30

    P-34540 Range: 37.3 million kilometers (23.6 million miles) This image captured by the Voyager 2 spacecraft was used to confirm the discovery of three new satellites orbiting Neptune. The 46-second exposure was taken with the narrow angle camera and shows the large globe of the planet to be severely overexposed and almost pure white in appearance. The image has been computer-processed to accentuate the new moons, which otherwise would be hard to distinguish from background noise. The satellite 1989N1, at right in this frame, was discovered by Voyager 2 in early July 1989. The new satellites confirmed later are 1989N2, 1989N3 and 1989N4. Each of the moons appears as a small streak, an effect caused by movement of the spacecraft during the long exposure. The new moons occupy nearly circular and equatorial orbits ranging from about 27,300 to 48,300 kilometers (17,000 to 30,000 miles) from Neptunes's cloud tops, and are estimated to range in diameter from about 100 to 200 kilometers (about 60 to 125 miles).

  8. Nevertheless, It Moves

    NASA Image and Video Library

    2017-09-04

    The heavens often seem vast and unchanging as seen from Earth, but movement in the skies is the norm. The relative motions of both Cassini and Enceladus over a 15-minute period create the movement seen in this movie sequence. Cassini has monitored Enceladus (313 miles or 504 kilometers across) with a particular interest in the plumes and the geology of the south polar region for many years. Different viewing geometries give scientists different information, and the resulting animation gives us a unique "spacecraft's eye" view of the flyby. The movie is a composite of six images taken with the Cassini spacecraft narrow-angle camera on Aug. 1, 2017 using filters that allow infrared, green, and ultraviolet light. The image filter centered on 930 nm (IR) is red in this image, the image filter centered on the green is green, and the image filter centered on 338 nm (UV) is blue. The view was obtained at a distance of approximately 112,000 miles (181,000 kilometers) from Enceladus. Image scale is about 0.6 mile (1 kilometer) per pixel. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21344

  9. ARC-1989-A89-7045

    NASA Image and Video Library

    1989-08-26

    Range : 280,000 km. ( 170,000 miles ) P-34726 BW Two 10 minute exposures of Neptune's rings clearly show the two main rings , as well as the inner faint ring and the faint band that extends planetward from roughly halfway between the two bright rings. Both bright rings have material throughout their entire orbit, and are therefore continuous. The inner ring and the broad band are much fainter than the two narrow main rings. These images were taken 1 hour and 27 minutes aprt, using the clear filter on Voyager 2's wide angle camera. These long exposures images were taken while the rings were backlit by the sun. This viewing geometry enhances the visibility of dust and allows optically thinner parts of the rings to be seen. The bright glare in the center is due to overexposure of the crescent of Neptune . The two gaps in the upper part of the outer ring in the image on the left are due to the removal of blemishes during computer processing of the images. Numerous bright stars are evident in the background.

  10. Rays of Creusa

    NASA Image and Video Library

    2017-02-20

    When viewed from a distance with the sun directly behind NASA Cassini, the larger, brighter craters really stand out on moons like Dione. Among these larger craters, some leave bright ray patterns across the moon. The rayed crater seen here on Dione (698 miles, or 1,123 kilometers across) is named Creusa. The rays are brighter material blasted out by the impact that formed the crater. Scientists can use the patterns of ejecta (like these rays), to help determine the order of geological events on a moon's surface by examining which features lie on top of other features. This view looks toward the Saturn-facing side of Dione. North on Dione is up and rotated 31 degrees to the right. The image was taken with the Cassini spacecraft narrow-angle camera on Nov. 26, 2016 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 727 nanometers. The view was obtained at a distance of approximately 350,000 miles (560,000 kilometers) from Dione. Image scale is 1.8 miles (3 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20521

  11. Haze on the Horizon

    NASA Image and Video Library

    2017-07-24

    This false-color view from NASA's Cassini spacecraft gazes toward the rings beyond Saturn's sunlit horizon. Along the limb (the planet's edge) at left can be seen a thin, detached haze. This haze vanishes toward the left side of the scene. Cassini will pass through Saturn's upper atmosphere during the final five orbits of the mission, before making a fateful plunge into Saturn on Sept. 15, 2017. The region through which the spacecraft will fly on those last orbits is well above the haze seen here, which is in Saturn's stratosphere. In fact, even when Cassini plunges toward Saturn to meet its fate, contact with the spacecraft is expected to be lost before it reaches the depth of this haze. This view is a false-color composite made using images taken in red, green and ultraviolet spectral filters. The images were obtained using the Cassini spacecraft narrow-angle camera on July 16, 2017, at a distance of about 777,000 miles (1.25 million kilometers) from Saturn. Image scale is about 4 miles (7 kilometers) per pixel on Saturn. https://photojournal.jpl.nasa.gov/catalog/PIA21621

  12. Fire and Ice

    NASA Image and Video Library

    2013-12-23

    Saturn's largest and second largest moons, Titan and Rhea, appear to be stacked on top of each other in this true-color scene from NASA's Cassini spacecraft. The north polar hood can be seen on Titan (3,200 miles or 5,150 kilometers across) appearing as a detached layer at the top of the moon on the top right. See PIA08137 to learn more about Titan's atmosphere and the north polar hood. This view looks toward the Saturn-facing side of Rhea (949 miles or 1528 kilometers across). North on Rhea is up and rotated 35 degrees to the right. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were acquired with the Cassini spacecraft narrow-angle camera on June 16, 2011, at a distance of approximately 1.1 million miles (1.8 million kilometers) from Rhea and 1.5 million miles (2.5 million kilometers) from Titan. Image scale is 7 miles (11 kilometers) per pixel on Rhea and 9 miles (15 kilometers) on Titan. http://photojournal.jpl.nasa.gov/catalog/PIA17174

  13. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  14. First Imaging Results from the Iapetus B/C Flyby of the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Denk, T.; Neukum, G.; Roatsch, T.; McEwen, A. S.; Turtle, E. P.; Thomas, P. C.; Helfenstein, P.; Wagner, R. J.; Porco, C.C.; Perry, J. E.

    2005-01-01

    The first of two relatively close Iapetus flybys in Cassini's primary mission occured on Dec 31, 2004 18:49 UTC near apoapsis from orbit "B" to "C" at an altitude of approximately 123,400 km over the northern leading hemisphere, resulting in a minimum pixel scale of 740 m for the ISS narrow angle camera (NAC). Data revealed details of a greater than 1300-km-long ridge that had been discovered just one week earlier in optical navigation images. Individual mountains within the western part of the ridge reach heights of approximately 20 km over surrounding terrain. The data set provides constraints on the origin of the albedo dichotomy. It appears very likely that the dark material is overlying an ice crust, but no evidence for emplacement of dark material via surface flows is apparent. Instead, signs for dark-material emplacement through processes that included ballistic transportation are visible. No bright-floor ("punch-through") craters have been found on the dark hemisphere. The ridge discovery may revive the idea of an endogenic origin of the dark side.

  15. Extreme depth-of-field intraocular lenses

    NASA Astrophysics Data System (ADS)

    Baker, Kenneth M.

    1996-05-01

    A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.

  16. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  17. 2D temperature field measurement in a direct-injection engine using LIF technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  18. ARC-1989-A89-7006

    NASA Image and Video Library

    1989-08-21

    Range : 12 million km (7.5 million miles) Resolution 110 km (68 miles) per pixel. These 2 images of Neptune were taken by Voyager 2's narrow-angle camera. During the 17.6 hours between the left and right images, the Great Dark Spot, at 22 degrees south latitude (left of center), has completed a little less than one rotation of Neptune. The smaller dark spot, at 54 south, completed a little more than one rotation, as can be seen by comparing its relative positions in the two pictures. The Great Dark Spot and the smaller spot have a relative velocity of 100 meters per second (220 miles an hour). The light and dark bands circling Neptune indicate predominantly zonal (east-west) motion. The diffuse white feature north of the Great Dark Spot is near Neptune's equator, and rotates with about the same period as the Great Dark Spot. Streak of bright clouds at the south edge, and just east of the Great Dark Spot, are its constatnt companions, and change the details of their appearance, often within a few hours. Changing brightness of the cloud streaks could be a result of vertical mortions.

  19. Half-lit Dione

    NASA Image and Video Library

    2017-10-16

    Saturn's moon Dione is captured in this view from NASA's Cassini spacecraft, half in shadow and half in light. Sinuous canyons carve interconnected paths across the moon's icy landscape. Subtle variations in brightness hint at differences in composition, as well as the size and shape of grains in Dione's surface material, or regolith. Cassini spent more than a decade at Saturn studying Dione (698 miles or 1,123 kilometers across) and the planet's many other moons as part of the quest to understand how the moons formed and evolved, and how they are connected. This view looks toward the side of Dione that faces away from Saturn. North is up and rotated 59 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on June 22, 2017. The view was obtained at a distance of approximately 224,000 miles (360,000 kilometers) from Dione. Image scale is 1.4 mile (2.2 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21349

  20. A Last Look at Titan

    NASA Image and Video Library

    2017-09-15

    As it glanced around the Saturn system one final time, NASA's Cassini spacecraft captured this view of the planet's giant moon Titan. Interest in mysterious Titan was a major motivating factor to return to Saturn with Cassini-Huygens following the Voyager mission flybys of the early 1980s. Cassini and its Huygens probe, supplied by European Space Agency, revealed the moon to be every bit as fascinating as scientists had hoped. These views were obtained by Cassini's narrow-angle camera on Sept. 13, 2017. They are among the last images Cassini sent back to Earth. This natural color view, made from images taken using red, green and blue spectral filters, shows Titan much as Voyager saw it -- a mostly featureless golden orb, swathed in a dense atmospheric haze. An enhanced-color view (Figure 1) adds to this color a separate view taken using a spectral filter (centered at 938 nanometers) that can partially see through the haze. The views were acquired at a distance of 481,000 miles (774,000 kilometers) from Titan. The image scale is about 3 miles (5 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21890

  1. Chasms on Dione

    NASA Image and Video Library

    2015-08-17

    While not bursting with activity like its sister satellite Enceladus, the surface of Dione is definitely not boring. Some parts of the surface are covered by linear features, called chasmata, which provide dramatic contrast to the round impact craters that typically cover moons. The bright network of fractures on Dione (698 miles or 1123 kilometers across) was seen originally at poor resolution in Voyager images and was labeled as "wispy terrain." The nature of this terrain was unclear until Cassini showed that they weren't surface deposits of frost, as some had suspected, but rather a pattern of bright icy cliffs among myriad fractures. One possibility is that this stress pattern may be related to Dione's orbital evolution and the effect of tidal stresses over time. This view looks toward the trailing hemisphere of Dione. North on Dione is up. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 11, 2015. The view was acquired at a distance of approximately 68,000 miles (110,000 kilometers) from Dione. Image scale is 2,200 feet (660 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18327

  2. Here Looking at You, Tethys

    NASA Image and Video Library

    2017-01-23

    Tethys, one of Saturn's larger icy moons, vaguely resembles an eyeball staring off into space in this view from NASA's Cassini spacecraft. The resemblance is due to the enormous crater, Odysseus, and its complex of central peaks. Like any solar system moon, Tethys (660 miles or 1,062 kilometers across) has suffered many impacts. These impacts are a prime shaper of the appearance of a moon's surface , especially when the moon has no active geological processes. In this case, a large impact not only created a crater known as Odysseus, but the rebound of the impact caused the mountainous peaks, named Scheria Montes, to form in the center of the crater. This view looks toward the leading side of Tethys. North on Tethys is up and rotated 1 degree to the left. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Nov. 10, 2016. The view was acquired at a distance of approximately 228,000 miles (367,000 kilometers) from Tethys. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20518

  3. Worlds Apart

    NASA Image and Video Library

    2015-10-12

    Although Mimas and Pandora, shown here, both orbit Saturn, they are very different moons. Pandora, "small" by moon standards (50 miles or 81 kilometers across) is elongated and irregular in shape. Mimas (246 miles or 396 kilometers across), a "medium-sized" moon, formed into a sphere due to self-gravity imposed by its higher mass. The shapes of moons can teach us much about their history. For example, one explanation for Pandora's elongated shape and low density is that it may have formed by gathering ring particles onto a dense core. This view looks toward the unilluminated side of the rings from 0.26 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2015. The view was obtained at a distance of approximately 485,000 miles (781,000 kilometers) from Pandora. Image scale is 3 miles (5 kilometers) per pixel. Mimas is 904,000 miles (1.4 million kilometers) from the spacecraft in this image. The scale on Mimas is 5.4 miles (8.4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18339

  4. Analysis of the effect on optical equipment caused by solar position in target flight measure

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-hua; Hu, Hai-bin

    2012-11-01

    Optical equipment is widely used to measure flight parameters in target flight performance test, but the equipment is sensitive to the sun's rays. In order to avoid the disadvantage of sun's rays directly shines to the optical equipment camera lens when measuring target flight parameters, the angle between observation direction and the line which connects optical equipment camera lens and the sun should be kept at a big range, The calculation method of the solar azimuth and altitude to the optical equipment at any time and at any place on the earth, the equipment observation direction model and the calculating model of angle between observation direction and the line which connects optical equipment camera lens are introduced in this article. Also, the simulation of the effect on optical equipment caused by solar position at different time, different date, different month and different target flight direction is given in this article.

  5. Have a Nice Spring! MOC Revisits "Happy Face" Crater

    NASA Image and Video Library

    2005-05-16

    Smile! Spring has sprung in the martian southern hemisphere. With it comes the annual retreat of the winter polar frost cap. This view of "Happy Face Crater"--officially named "Galle Crater"--shows patches of white water ice frost in and around the crater's south-facing slopes. Slopes that face south will retain frost longer than north-facing slopes because they do not receive as much sunlight in early spring. This picture is a composite of images taken by the Mars Global Surveyor Mars Orbiter Camera (MOC) red and blue wide angle cameras. The wide angle cameras were designed to monitor the changing weather, frost, and wind patterns on Mars. Galle Crater is located on the east rim of the Argyre Basin and is about 215 kilometers (134 miles) across. In this picture, illumination is from the upper left and north is up. http://photojournal.jpl.nasa.gov/catalog/PIA02325

  6. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    PubMed Central

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454

  7. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-11-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

  8. Performance Characteristics For The Orbiter Camera Payload System's Large Format Camera (LFC)

    NASA Astrophysics Data System (ADS)

    MoIIberg, Bernard H.

    1981-11-01

    The Orbiter Camera Payload System, the OCPS, is an integrated photographic system which is carried into Earth orbit as a payload in the Shuttle Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC) which is a precision wide-angle cartographic instrument that is capable of produc-ing high resolution stereophotography of great geometric fidelity in multiple base to height ratios. The primary design objective for the LFC was to maximize all system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment.

  9. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  10. Clumps in the F Ring

    NASA Image and Video Library

    2004-03-12

    Scientists have only a rough idea of the lifetime of clumps in Saturn's rings - a mystery that Cassini may help answer. The latest images taken by the Cassini-Huygens spacecraft show clumps seemingly embedded within Saturn's narrow, outermost F ring. The narrow angle camera took the images on Feb. 23, 2004, from a distance of 62.9 million kilometers (39 million miles). The two images taken nearly two hours apart show these clumps as they revolve about the planet. The small dot at center right in the second image is one of Saturn's small moons, Janus, which is 181 kilometers, (112 miles) across. Like all particles in Saturn's ring system, these clump features orbit the planet in the same direction in which the planet rotates. This direction is clockwise as seen from Cassini's southern vantage point below the ring plane. Two clumps in particular, one of them extended, is visible in the upper part of the F ring in the image on the left, and in the lower part of the ring in the image on the right. Other knot-like irregularities in the ring's brightness are visible in the image on the right. The core of the F ring is about 50 kilometers (31miles) wide, and from Cassini's current distance, is not fully visible. The imaging team enhanced the contrast of the images and magnified them to aid visibility of the F ring and the clump features. The camera took the images with the green filter, which is centered at 568 nanometers. The image scale is 377 kilometers (234 miles) per pixel. NASA's two Voyager spacecraft that flew past Saturn in 1980 and 1981 were the first to see these clumps. The Voyager data suggest that the clumps change very little and can be tracked as they orbit for 30 days or more. No clump survived from the time of the first Voyager flyby to the Voyager 2 flyby nine months later. Scientists are not certain of the cause of these features. Among the theories proposed are meteoroid bombardments and inter-particle collisions in the F ring. http://photojournal.jpl.nasa.gov/catalog/PIA05382

  11. Dark Spots on Titan

    NASA Image and Video Library

    2005-05-02

    This recent image of Titan reveals more complex patterns of bright and dark regions on the surface, including a small, dark, circular feature, completely surrounded by brighter material. During the two most recent flybys of Titan, on March 31 and April 16, 2005, Cassini captured a number of images of the hemisphere of Titan that faces Saturn. The image at the left is taken from a mosaic of images obtained in March 2005 (see PIA06222) and shows the location of the more recently acquired image at the right. The new image shows intriguing details in the bright and dark patterns near an 80-kilometer-wide (50-mile) crater seen first by Cassini's synthetic aperture radar experiment during a Titan flyby in February 2005 (see PIA07368) and subsequently seen by the imaging science subsystem cameras as a dark spot (center of the image at the left). Interestingly, a smaller, roughly 20-kilometer-wide (12-mile), dark and circular feature can be seen within an irregularly-shaped, brighter ring, and is similar to the larger dark spot associated with the radar crater. However, the imaging cameras see only brightness variations, and without topographic information, the identity of this feature as an impact crater cannot be conclusively determined from this image. The visual infrared mapping spectrometer, which is sensitive to longer wavelengths where Titan's atmospheric haze is less obscuring -- observed this area simultaneously with the imaging cameras, so those data, and perhaps future observations by Cassini's radar, may help to answer the question of this feature's origin. The new image at the right consists of five images that have been added together and enhanced to bring out surface detail and to reduce noise, although some camera artifacts remain. These images were taken with the Cassini spacecraft narrow-angle camera using a filter sensitive to wavelengths of infrared light centered at 938 nanometers -- considered to be the imaging science subsystem's best spectral filter for observing the surface of Titan. This view was acquired from a distance of 33,000 kilometers (20,500 miles). The pixel scale of this image is 390 meters (0.2 miles) per pixel, although the actual resolution is likely to be several times larger. http://photojournal.jpl.nasa.gov/catalog/PIA06234

  12. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    PubMed

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  13. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.

    The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.

    This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  14. Interference-induced angle-independent acoustical transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less

  15. New gonioscopy system using only infrared light.

    PubMed

    Sugimoto, Kota; Ito, Kunio; Matsunaga, Koichi; Miura, Katsuya; Esaki, Koji; Uji, Yukitaka

    2005-08-01

    To describe an infrared gonioscopy system designed to observe the anterior chamber angle under natural mydriasis in a completely darkened room. An infrared light filter was used to modify the light source of the slit-lamp microscope. A television monitor connected to a CCD monochrome camera was used to indirectly observe the angle. Use of the infrared system enabled observation of the angle under natural mydriasis in a completely darkened room. Infrared gonioscopy is a useful procedure for the observation of the angle under natural mydriasis.

  16. STS-31 crew activity on the middeck of the Earth-orbiting Discovery, OV-103

    NASA Image and Video Library

    1990-04-29

    STS031-05-002 (24-29 April 1990) --- A 35mm camera with a "fish eye" lens captured this high angle image on Discovery's middeck. Astronaut Kathryn D. Sullivan works with the IMAX camera in foreground, while Astronaut Steven A. Hawley consults a checklist in corner. An Arriflex motion picture camera records student ion arc experiment in apparatus mounted on stowage locker. The experiment was the project of Gregory S. Peterson, currently a student at Utah State University.

  17. Video sensor with range measurement capability

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Briscoe, Jeri M. (Inventor); Corder, Eric L. (Inventor); Broderick, David J. (Inventor)

    2008-01-01

    A video sensor device is provided which incorporates a rangefinder function. The device includes a single video camera and a fixed laser spaced a predetermined distance from the camera for, when activated, producing a laser beam. A diffractive optic element divides the beam so that multiple light spots are produced on a target object. A processor calculates the range to the object based on the known spacing and angles determined from the light spots on the video images produced by the camera.

  18. Colorful Structure at Fine Scales

    NASA Image and Video Library

    2017-09-07

    These are the highest-resolution color images of any part of Saturn's rings, to date, showing a portion of the inner-central part of the planet's B Ring. The view is a mosaic of two images that show a region that lies between 61,300 and 65,600 miles (98,600 and 105,500 kilometers) from Saturn's center. This image is a natural color composite, created using images taken with red, green and blue spectral filters. The pale tan color is generally not perceptible with the naked eye in telescope views, especially given that Saturn has a similar hue. The material responsible for bestowing this color on the rings -- which are mostly water ice and would otherwise appear white -- is a matter of intense debate among ring scientists that will hopefully be settled by new in-situ observations before the end of Cassini's mission. The different ringlets seen here are part of what is called the "irregular structure" of the B ring. Cassini radio occultations of the rings have shown that these features have extremely sharp boundaries on even smaller scales (radially, or along the direction outward from Saturn) than the camera can resolve here. Closer to Saturn, the irregular structures become fuzzier and more rounded, less opaque, and their color contrast diminishes. The narrow ringlets in the middle of this scene are each about 25 miles (40 kilometers) wide, and the broader bands at right are about 200 to 300 miles (300 to 500 kilometers) across. It remains unclear exactly what causes the variable brightness of these ringlets and bands -- the basic brightness of the ring particles themselves, shadowing on their surfaces, their absolute abundance, and how densely the particles are packed, may all play a role. The second image (Figure 1) is a color-enhanced version. Blue colors represent areas where the spectrum at visible wavelengths is less reddish (meaning the spectrum is flatter toward red wavelengths), while red colors represent areas that are spectrally redder (meaning the spectrum has a steeper spectrum toward red wavelengths). Observations from the Voyager mission and Cassini's visual and infrared mapping spectrometer previously showed these color variations at lower resolution, but it was not known that such well-defined color contrasts would be this sharply defined down to the scale (radial scale) of a couple of miles or kilometers, as seen here. Analysis of additional images from this observation, taken using infrared spectral filters sensitive to absorption of light by water ice, indicates that the areas that appear more visibly reddish in the color-enhanced version are also richer in water ice. The third image (Figure 2) is a composite of the "true" and "enhanced" color images for easy comparison. This image was taken on July 6, 2017, with the Cassini spacecraft narrow-angle camera. The image was acquired on the sunlit side of the rings from a distance of 47,000 miles (76,000 kilometers) away from the area pictured. The image scale is about 2 miles (3 kilometers) per pixel. The phase angle, or sun-ring-spacecraft angle, is 90 degrees. https://photojournal.jpl.nasa.gov/catalog/PIA21628

  19. Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2005-01-01

    Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).

  20. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    PubMed

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  1. 22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD TOP OF CONCRETE 'A' FRAME STRUCTURE SHOWING DRIVE CABLES, DRIVE GEAR, BOTTOM OF CAMERA TOWER AND 'CROWS NEST' CONTROL ROOM. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. Wild 2 Close Look

    NASA Image and Video Library

    2004-06-17

    This image shows the comet Wild 2, which NASA's Stardust spacecraft flew by on Jan. 2, 2004. This image is the closest short exposure of the comet, taken at an11.4-degree phase angle, the angle between the camera, comet and the Sun. http://photojournal.jpl.nasa.gov/catalog/PIA06285

  3. Apollo 8 Mission image,Farside of Moon

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Farside of Moon. Image taken on Revolution 4. Camera Tilt Mode: Vertical Stereo. Sun Angle: 13. Original Film Magazine was labeled D. Camera Data: 70mm Hasselblad. Lens: 80mm; F-Stop: F/2.8; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Flight Date: December 21-27,1968.

  4. The Effect of Selected Cinemagraphic Elements on Audience Perception of Mediated Concepts.

    ERIC Educational Resources Information Center

    Orr, Quinn

    This study is to explore cinemagraphic and visual elements and their inter-relations through the reinterpretation of previous research and literature. The cinemagraphic elements of visual images (camera angle, camera motion, subject motion, color, and lighting) work as a language requiring a proper grammar for the messages to be conveyed in their…

  5. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    NASA Astrophysics Data System (ADS)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  6. Cosmic Blasting Zone

    NASA Image and Video Library

    2005-12-06

    Saturn's impact-pummeled Hyperion stares back at Cassini in this six-image mosaic taken during the spacecraft’s close approach on Sept. 26, 2005. This up-close view shows a low density body blasted by impacts over the eons. Scientists originally believed that the spongy appearance of Hyperion is caused by a phenomenon called thermal erosion, in which dark materials accumulating on crater floors are warmed by sunlight and melt deeper into the surface, allowing surrounding ice to vaporize away. Cassini scientists now think that Hyperion’s unusual appearance can be attributed to the fact that it has an unusually low density for such a large object, giving it weak surface gravity and high porosity. These characteristics help preserve the original shapes of Hyperion’s craters by limiting the amount of impact ejecta coating the moon’s surface. Impactors tend to make craters by compressing the surface material, rather than blasting it out. Further, Hyperion’s weak gravity, and correspondingly low escape velocity, means that what little ejecta is produced has a good chance of escaping the moon altogether. At 280 kilometers, (174 miles) across, Hyperion’s impact-shaped morphology makes it the largest of Saturn's irregularly-shaped moons. Six, clear-filter images were combined to create this mosaic. Images were taken by the Cassini spacecraft narrow-angle camera at a mean distance of about 33,000 kilometers (20,500 miles) from Hyperion and at a sun-Hyperion-spacecraft, or phase, angle of 51 degrees. Image scale is 197 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07761

  7. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  8. Functional range of movement of the hand: declination angles to reachable space.

    PubMed

    Pham, Hai Trieu; Pathirana, Pubudu N; Caelli, Terry

    2014-01-01

    The measurement of the range of hand joint movement is an essential part of clinical practice and rehabilitation. Current methods use three finger joint declination angles of the metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints. In this paper we propose an alternate form of measurement for the finger movement. Using the notion of reachable space instead of declination angles has significant advantages. Firstly, it provides a visual and quantifiable method that therapists, insurance companies and patients can easily use to understand the functional capabilities of the hand. Secondly, it eliminates the redundant declination angle constraints. Finally, reachable space, defined by a set of reachable fingertip positions, can be measured and constructed by using a modern camera such as Creative Senz3D or built-in hand gesture sensors such as the Leap Motion Controller. Use of cameras or optical-type sensors for this purpose have considerable benefits such as eliminating and minimal involvement of therapist errors, non-contact measurement in addition to valuable time saving for the clinician. A comparison between using declination angles and reachable space were made based on Hume's experiment on functional range of movement to prove the efficiency of this new approach.

  9. Regolith Gardening Caused by Recent Lunar Impacts Observed by the Lunar Reconnaissance Obiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.

    2016-12-01

    Temporal observations by the Lunar Reconnaissance Obiter Camera (LROC) Narrow Angle Camera (NAC) enable us to map and measure the spatial distribution of ejecta as well as quantify faint distal zones that may be the result of early stage jetting caused by meteoroid impacts. These detailed before and after observations enable the examination of surface reflectance changes as well as the analysis of nearby features (i.e. highly degraded craters, secondary craters, and new/spatially shifted boulders). In addition, NAC temporal pairs reveal numerous areas where the regolith has been churned and modified. These features, which we refer to as splotches, are most likely caused by small secondary impacts due to their high population near recent impact events [Robinson et al., 2015]. Using over 14,000 NAC temporal pairs, we identified over 47,000 splotches and quantified their spatial coverage and rate of formation. Based on the observed size frequency distribution, our models indicate that 99% of the entire lunar surface is modified by 1 m in diameter and larger splotches over a period of 8.1x10^4 years. These splotches have the potential to churn the upper few cm of regolith, which influence the local surface roughness and ultimately the surface reflectance observed from orbit. This new churning rate estimate is consistent with previous analysis of regolith properties within drive core samples acquired during the Apollo missions; these cores reveal that the upper 2 cm was rapidly and continuously modified over periods of <=10^5 years [Fruchter et al., 1977]. Overall, the examination of LROC NAC temporal pairs enables detailed studies of the impact process on a scale that exceeds laboratory experiments. Continued collection of NAC temporal pairs during the LRO Cornerstone Mission and future extended missions will aid in the discovery of new, larger impact craters and other contemporary surface changes. References:Fruchter et al. 1977. Proc. Lunar Planet Sci. Conf. 8th. pp. 3595-3605. Robinson et al. 2015. Icarus 252, 229-235.

  10. Impressions from Cassini

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's turbulent atmosphere is reminiscent of a Van Gogh painting in this view from Cassini. However, unlike the famous impressionist painter, Cassini records the world precisely as it appears to the spacecraft's cameras.

    The feathery band that cuts across from the upper left corner to the right side of this scene has a chevron, or arrow, shape near the right. The center of the chevron is located at the latitude (about 28 degrees South) of an eastward-flowing zonal jet in the atmosphere. Counter-flowing eastward and westward jets are the dominant dynamic features seen in the giant planet atmospheres. A chevron-shaped feature with the tip pointed east means that this is a local maximum in the eastward wind and a region of horizontal wind shear, where clouds to the north and south of the jet are being swept back by the slower currents on the sides of the jet.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 6, 2005, at a distance of approximately 2.5 million kilometers (1.5 million miles) from Saturn using a filter sensitive to wavelengths of infrared light centered at 727 nanometers. The image scale is 14 kilometers (9 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  11. A new look at formation and timing of thrust fault scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Watters, T. R.; Robinson, M. S.; Beyer, R. A.; Bell, J. F.; Pritchard, M. E.; Banks, M. E.; Garry, W. B.; Williams, N. R.

    2009-12-01

    The current view of lunar tectonics is that most crustal deformation is directly associated with mare basins. Lunar lobate scarps, in contrast to nearside mare wrinkle ridges, and graben, are found most often in the highlands and are the dominant tectonic landform on the farside. Lunar scarps are relatively small-scale tectonic landforms, only easily resolved in the highest resolution Apollo Panoramic Camera and Lunar Orbiter images. These scarps are interpreted to be the surface expression of thrust faults, yet they have not been well characterized and their global spatial distribution remains unknown. Images from the Lunar Reconnaissance Orbiter Camera (LROC) reveal previously undetected scarps as well as remarkable new features related to some previously known lobate scarps. LROC Narrow Angle Camera (NAC) 1 to 2 m/pixel images show meter-scale tectonic landforms associated with the Lee-Lincoln scarp. The Lee-Lincoln thrust fault scarp cuts across the mare basalt-filled Taurus-Littrow valley near the Apollo 17 landing site, trending roughly north-south between two highland massifs. The fault scarp extends into the highlands of North Massif where it cuts up slope for a short distance and abruptly changes trend to the northwest cutting along slope for kilometers. NAC stereo-derived topography shows a narrow rise associated with the scarp segment in the valley floor. Spatially correlated with the rise is an array of fractures and shallow extensional troughs or graben. The small-scale graben have maximum widths of ~25 m and are typically 100-200 meters in length. The rise is interpreted to be the result of flexural bending of the valley floor basalts with bending stresses causing extension of the upper regolith. Lobate scarps appear to be among the youngest tectonic landforms on the Moon based on their generally crisp appearance and a lack of superposed, relatively large-diameter (>500 m), impact craters. NAC images of known and newly detected scarps reveal evidence of crosscut impact craters as small as ~5-10 m-in-diameter. Crosscut meter-scale craters indicate a young age for the lobate scarps. Until now, the identification of lobate scarps has been limited by the lack of high resolution images with optimal lighting geometry for most of the Moon. The vast majority of the known lunar scarps are confined to the equatorial zone in areas imaged by the Apollo Panoramic Cameras. LROC NAC imaging now makes global detection of the small-scale scarps possible. A previously undetected lobate scarp has been found in the north polar region at ~88 degrees N. This discovery suggests that thrust fault scarps may be globally distributed. The young age of the lobate scarps indicated by crosscutting relations with impact craters and the discovery of a high-latitude scarp suggests global-scale, late-stage contraction. If thrust fault scarps are proven to be globally distributed, this discovery has important implications for the thermal history of the Moon.

  12. Photogrammetry System and Method for Determining Relative Motion Between Two Bodies

    NASA Technical Reports Server (NTRS)

    Miller, Samuel A. (Inventor); Severance, Kurt (Inventor)

    2014-01-01

    A photogrammetry system and method provide for determining the relative position between two objects. The system utilizes one or more imaging devices, such as high speed cameras, that are mounted on a first body, and three or more photogrammetry targets of a known location on a second body. The system and method can be utilized with cameras having fish-eye, hyperbolic, omnidirectional, or other lenses. The system and method do not require overlapping fields-of-view if two or more cameras are utilized. The system and method derive relative orientation by equally weighting information from an arbitrary number of heterogeneous cameras, all with non-overlapping fields-of-view. Furthermore, the system can make the measurements with arbitrary wide-angle lenses on the cameras.

  13. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  14. Background correction in forensic photography. II. Photography of blood under conditions of non-uniform illumination or variable substrate color--practical aspects and limitations.

    PubMed

    Wagner, John H; Miskelly, Gordon M

    2003-05-01

    The combination of photographs taken at wavelengths at and bracketing the peak of a narrow absorbance band can lead to enhanced visualization of the substance causing the narrow absorbance band. This concept can be used to detect putative bloodstains by division of a linear photographic image taken at or near 415 nm with an image obtained by averaging linear photographs taken at or near 395 and 435 nm. Nonlinear images can also be background corrected by substituting subtraction for the division. This paper details experimental applications and limitations of this technique, including wavelength selection of the illuminant and at the camera. Characterization of a digital camera to be used in such a study is also detailed. Detection limits for blood using the three wavelength correction method under optimum conditions have been determined to be as low as 1 in 900 dilution, although on strongly patterned substrates blood diluted more than twenty-fold is difficult to detect. Use of only the 435 nm photograph to estimate the background in the 415 nm image lead to a twofold improvement in detection limit on unpatterned substrates compared with the three wavelength method with the particular camera and lighting system used, but it gave poorer background correction on patterned substrates.

  15. Development of a software-hardware complex for studying the process of grinding by a pendulum deformer

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.

  16. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  17. [Reliability of static posturography in elderly persons].

    PubMed

    Bauer, C M; Gröger, I; Rupprecht, R; Tibesku, C O; Gassmann, K G

    2010-08-01

    Static posturography is used to quantify body sway. It is used to assess the balance of elderly persons who are prone to falls. There is still no general opinion concerning the reliability of force platform measurements. The aim of this study was to test the reliability of force platform parameters when measuring elderly persons. The reliability of 11 force platform parameters was tested measuring 30 elderly persons. The following parameters were calculated: mean speed of center of pressure displacement in mm/s, length of sway in mm, sway area in mm(2), amplitudes of center of pressure movement, the axis of oscillation in degrees and the person's angles of inclination in degrees. Three measurements were taken on the same day, with a resting period of 2 min. Four different test conditions were used: normal standing and narrow stand with eyes open and eyes closed, respectively. Reliability was determined by using intraclass correlation coefficients. Six parameters had excellent reliability with a correlation coefficient of >0.9: mean speed of center of pressure movement during narrow stand, area of sway during narrow stand, length of sway during normal and narrow stand, and the angle of inclination in the sagittal plane during normal stand and narrow stand. The condition "narrow stand eyes closed" proved to be the most reliable test position. Six parameters proved to have excellent reliability and are recommended to be used in further investigations. Narrow stand with eyes closed should be used as the test position. The tested protocol proved to be reliable. Whether these parameters can be used to predict falls in elderly persons remains to be investigated.

  18. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Mironova, T. V.; Sultanov, T. T.

    2010-09-01

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases.

  20. Glare on the Window

    NASA Image and Video Library

    2018-03-05

    In this image, NASA's Cassini sees Saturn and its rings through a haze of Sun glare on the camera lens. If you could travel to Saturn in person and look out the window of your spacecraft when the Sun was at a certain angle, you might see a view very similar to this one. Images taken using red, green and blue spectral filters were combined to show the scene in natural color. The images were taken with Cassini's wide-angle camera on June 23, 2013, at a distance of approximately 491,200 miles (790,500 kilometers) from Saturn. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA17185

  1. NASA Releases New High-Resolution Earthrise Image

    NASA Image and Video Library

    2017-12-08

    NASA's Lunar Reconnaissance Orbiter (LRO) recently captured a unique view of Earth from the spacecraft's vantage point in orbit around the moon. "The image is simply stunning," said Noah Petro, Deputy Project Scientist for LRO at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The image of the Earth evokes the famous 'Blue Marble' image taken by Astronaut Harrison Schmitt during Apollo 17, 43 years ago, which also showed Africa prominently in the picture." In this composite image we see Earth appear to rise over the lunar horizon from the viewpoint of the spacecraft, with the center of the Earth just off the coast of Liberia (at 4.04 degrees North, 12.44 degrees West). The large tan area in the upper right is the Sahara Desert, and just beyond is Saudi Arabia. The Atlantic and Pacific coasts of South America are visible to the left. On the moon, we get a glimpse of the crater Compton, which is located just beyond the eastern limb of the moon, on the lunar farside. LRO was launched on June 18, 2009, and has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the moon. LRO experiences 12 earthrises every day; however the spacecraft is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that its camera instrument can capture a view of Earth. Occasionally LRO points off into space to acquire observations of the extremely thin lunar atmosphere and perform instrument calibration measurements. During these movements sometimes Earth (and other planets) pass through the camera's field of view and dramatic images such as the one shown here are acquired. This image was composed from a series of images taken Oct. 12, when LRO was about 83 miles (134 kilometers) above the moon's farside crater Compton. Capturing an image of the Earth and moon with LRO's Lunar Reconnaissance Orbiter Camera (LROC) instrument is a complicated task. First the spacecraft must be rolled to the side (in this case 67 degrees), then the spacecraft slews with the direction of travel to maximize the width of the lunar horizon in LROC's Narrow Angle Camera image. All this takes place while LRO is traveling faster than 3,580 miles per hour (over 1,600 meters per second) relative to the lunar surface below the spacecraft! The high-resolution Narrow Angle Camera (NAC) on LRO takes black-and-white images, while the lower resolution Wide Angle Camera (WAC) takes color images, so you might wonder how we got a high-resolution picture of the Earth in color. Since the spacecraft, Earth, and moon are all in motion, we had to do some special processing to create an image that represents the view of the Earth and moon at one particular time. The final Earth image contains both WAC and NAC information. WAC provides the color, and the NAC provides high-resolution detail. "From the Earth, the daily moonrise and moonset are always inspiring moments," said Mark Robinson of Arizona State University in Tempe, principal investigator for LROC. "However, lunar astronauts will see something very different: viewed from the lunar surface, the Earth never rises or sets. Since the moon is tidally locked, Earth is always in the same spot above the horizon, varying only a small amount with the slight wobble of the moon. The Earth may not move across the 'sky', but the view is not static. Future astronauts will see the continents rotate in and out of view and the ever-changing pattern of clouds will always catch one's eye, at least on the nearside. The Earth is never visible from the farside; imagine a sky with no Earth or moon - what will farside explorers think with no Earth overhead?" NASA's first Earthrise image was taken with the Lunar Orbiter 1 spacecraft in 1966. Perhaps NASA's most iconic Earthrise photo was taken by the crew of the Apollo 8 mission as the spacecraft entered lunar orbit on Christmas Eve Dec. 24, 1968. That evening, the astronauts -- Commander Frank Borman, Command Module Pilot Jim Lovell, and Lunar Module Pilot William Anders -- held a live broadcast from lunar orbit, in which they showed pictures of the Earth and moon as seen from their spacecraft. Said Lovell, "The vast loneliness is awe-inspiring and it makes you realize just what you have back there on Earth." Credit: NASA/Goddard/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  3. Lens and Camera Arrays for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Cox, D.; McGraw, J.; Zimmer, P.

    2016-09-01

    In recent years, a number of sky survey projects have chosen to use arrays of commercial cameras coupled with commercial photographic lenses to enable low-cost, wide-area observation. Projects such as SuperWASP, FAVOR, RAPTOR, Lotis, PANOPTES, and DragonFly rely on multiple cameras with commercial lenses to image wide areas of the sky each night. The sensors are usually commercial astronomical charge coupled devices (CCDs) or digital single reflex (DSLR) cameras, while the lenses are large-aperture, highend consumer items intended for general photography. While much of this equipment is very capable and relatively inexpensive, this approach comes with a number of significant limitations that reduce sensitivity and overall utility of the image data. The most frequently encountered limitations include lens vignetting, narrow spectral bandpass, and a relatively large point spread function. Understanding these limits helps to assess the utility of the data, and identify areas where advanced optical designs could significantly improve survey performance.

  4. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  5. 75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION CEREMONIES AS SEEN FROM A FIXED CAMERA STATION, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. Equipment Development for Automatic Anthropometric Measurements

    NASA Technical Reports Server (NTRS)

    Cater, J. P.; Oakey, W. E.

    1978-01-01

    An automated procedure for measuring and recording the anthropometric active angles is presented. The small portable system consists of a microprocessor controlled video data acquisition system which measures single plane active angles using television video techniques and provides the measured data on sponsored-specified preformatted data sheets. This system, using only a single video camera, observes the end limits of the movement of a pair of separated lamps and calculates the vector angle between the extreme positions.

  7. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  8. Double hump sign in indentation gonioscopy is correlated with presence of plateau iris configuration regardless of patent iridotomy.

    PubMed

    Kiuchi, Yoshiaki; Kanamoto, Takashi; Nakamura, Takao

    2009-02-01

    A plateau iris is one of the clinical forms of angle closure glaucoma. In patients with a patent iridotomy, the double hump sign detected during indentation gonioscopy has been reported to indicate the existence of a plateau iris configuration. The purpose of this study was to determine whether the double hump sign is correlated with the presence of the plateau iris syndrome regardless of the patency of the iridotomy. Five women and 3 men without a patent iridotomy presented with narrow angles on gonioscopy and a double hump sign on indentation gonioscopy. Ultrasound biomicroscopy (UBM) imaging was performed to determine the etiology of the narrow angle and double hump sign, and to determine the appropriate treatment to prevent the progression of visual field damage. Ten patients with narrow angles and without a double hump sign were also examined by UBM to serve as a control group. All 8 patients who showed double hump sign had a short iris root, which was inserted anterior to the ciliary face, a typical anatomic appearance of a plateau iris. On the other hand, only 1 eye of 10 eyes in control group appeared to have a plateau iris. A double hump sign observed on indentation gonioscopy is strongly correlated with the presence of a plateau iris, and therefore a useful indicator of a plateau iris configuration regardless of the patency of a laser iridotomy. Thus, a plateau iris configuration can be detected without using a UBM in many cases.

  9. Observational Implications of Gamma-Ray Burst Afterglow Jet Simulations and Numerical Light Curve Calculations

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik J.; MacFadyen, Andrew I.

    2012-06-01

    We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow jets and the observational implications of numerical simulations of relativistic jets in two dimensions. We confirm earlier numerical results that sideways expansion of relativistic jets during the bulk of the afterglow emission phase is logarithmic in time and find that this also applies to narrow jets with half opening angle of 0.05 rad. As a result, afterglow jets remain highly nonspherical until after they have become nonrelativistic. Although sideways expansion steepens the afterglow light curve after the jet break, the jet edges becoming visible dominates the jet break, which means that the jet break is sensitive to the observer angle even for narrow jets. Failure to take the observer angle into account can lead to an overestimation of the jet energy by up to a factor of four. This weakens the challenge posed to the magneter energy limit by extreme events such as GRB090926A. Late-time radio calorimetry based on a spherical nonrelativistic outflow model remains relevant when the observer is approximately on-axis and where differences of a few in flux level between the model and the simulation are acceptable. However, this does not imply sphericity of the outflow and therefore does not translate to high observer angles relevant to orphan afterglows. For more accurate calorimetry and in order to model significant late-time features such as the rise of the counterjet, detailed jet simulations remain indispensable.

  10. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    NASA Astrophysics Data System (ADS)

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  11. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Hasselmann, P. H.; Barucci, M. A.; Feller, C.; Besse, S.; Leyrat, C.; Lara, L.; Gutierrez, P. J.; Oklay, N.; Tubiana, C.; Scholten, F.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Güttler, C.; Hviid, S. F.; Ip, W.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Matz, K.-D.; Michalik, H.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Preusker, F.; Shi, X.; Snodgrass, C.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims: We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods: The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results: The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with local variations of up to ~16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions. Table 1 is available in electronic form at http://www.aanda.org

  12. Real-time machine vision system using FPGA and soft-core processor

    NASA Astrophysics Data System (ADS)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  13. Single exposure three-dimensional imaging of dusty plasma clusters.

    PubMed

    Hartmann, Peter; Donkó, István; Donkó, Zoltán

    2013-02-01

    We have worked out the details of a single camera, single exposure method to perform three-dimensional imaging of a finite particle cluster. The procedure is based on the plenoptic imaging principle and utilizes a commercial Lytro light field still camera. We demonstrate the capabilities of our technique on a single layer particle cluster in a dusty plasma, where the camera is aligned and inclined at a small angle to the particle layer. The reconstruction of the third coordinate (depth) is found to be accurate and even shadowing particles can be identified.

  14. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L. Sabau, N. Thomas, C. Tubiana, J-B. Vincent, P. Wenzel, Associate Scientists & Assistants.

  15. The Formation of Lunar Impact Basins: Observational Constraints from LRO Datasets and Comparisons with Models

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Head, J. W., III

    2016-12-01

    Impact basins provide windows into the subsurface and through time on a planetary body. However, meaningful geologic interpretations rely on a detailed understanding of their formation and the origin of basin materials. Data from the Lunar Reconnaissance Orbiter (LRO) have been critical to advancing our understanding of the formation of impact basins. We present a number of recent observations, including measurements of basin morphometry, mineralogy, and gravity anomalies, which provide a framework for constraining current formation models. Image data from the LRO Wide Angle Camera (WAC) and altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) were used to refine the recognition of both fresh and degraded impact basins, including their ring structures. Analyses of gravity anomalies from the GRAIL mission show that mantle uplifts confined within the inner basin rings are characteristics that basins acquire from the onset. We used LOLA data to also make new measurements of basin morphometry. Small basins possessing two concentric rings ("peak-ring basins") have unique topographic signatures, consisting of inner depressions bounded by a peak ring and a higher annulus that grades to steeper wall material. LRO Narrow Angle Camera (NAC) images and Diviner rock abundance maps were used to identify boulder-rich outcrops in basin rings, which focused mineralogical analyses using Moon Mineralogy Mapper hyperspectral data. Crystalline plagioclase and candidate shock plagioclase outcrops were found to be abundant within basins of all sizes. These observations combined with crater scaling laws and lunar crustal thickness constrain the depth of origin of basin peak rings to be near the maximum depth of excavation. Comparisons between iSALE numerical models and observations show important consistencies and inconsistencies that can help to refine current models. In particular, improvements in the match between observed and modeled morphometry of craters transitional between complex craters with central peaks and peak-ring basins are needed. Models of the predicted gravity signature for a range of basin sizes could also benefit from additional comparisons with those observed. This work also provides a framework for understanding the degraded impact-basin record on Earth, including the Chicxulub basin.

  16. Reflective Filters Design for Self-Filtering Narrowband Ultraviolet Imaging Experiment Wide-Field Surveys (NUVIEWS) Project

    NASA Technical Reports Server (NTRS)

    Park, Jung- Ho; Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.

    1994-01-01

    We report the design of multilayer reflective filters for the self-filtering cameras of the NUVIEWS project. Wide angle self-filtering cameras were designed to image the C IV (154.9 nm) line emission, and H2 Lyman band fluorescence (centered at 161 nm) over a 20 deg x 30 deg field of view. A key element of the filter design includes the development of pi-multilayers optimized to provide maximum reflectance at 154.9 nm and 161 nm for the respective cameras without significant spectral sensitivity to the large cone angle of the incident radiation. We applied self-filtering concepts to design NUVIEWS telescope filters that are composed of three reflective mirrors and one folding mirror. The filters with narrowband widths of 6 and 8 rim at 154.9 and 161 nm, respectively, have net throughputs of more than 50 % with average blocking of out-of-band wavelengths better than 3 x 10(exp -4)%.

  17. CCD Camera Lens Interface for Real-Time Theodolite Alignment

    NASA Technical Reports Server (NTRS)

    Wake, Shane; Scott, V. Stanley, III

    2012-01-01

    Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.

  18. Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera

    PubMed Central

    Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing

    2018-01-01

    The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885

  19. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    DOE PAGES

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; ...

    2016-11-28

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less

  20. Afocal viewport optics for underwater imaging

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  1. On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; del-Castillo-Negrete, D.

    2017-12-01

    Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.

  2. 2D Measurements of the Balmer Series in Proto-MPEX using a Fast Visible Camera Setup

    NASA Astrophysics Data System (ADS)

    Lindquist, Elizabeth G.; Biewer, Theodore M.; Ray, Holly B.

    2017-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device with densities up to 1020 m-3 and temperatures up to 20 eV. Broadband spectral measurements show the visible emission spectra are solely due to the Balmer lines of deuterium. Monochromatic and RGB color Sanstreak SC1 Edgertronic fast visible cameras capture high speed video of plasmas in Proto-MPEX. The color camera is equipped with a long pass 450 nm filter and an internal Bayer filter to view the Dα line at 656 nm on the red channel and the Dβ line at 486 nm on the blue channel. The monochromatic camera has a 434 nm narrow bandpass filter to view the Dγ intensity. In the setup, a 50/50 beam splitter is used so both cameras image the same region of the plasma discharge. Camera images were aligned to each other by viewing a grid ensuring 1 pixel registration between the two cameras. A uniform intensity calibrated white light source was used to perform a pixel-to-pixel relative and an absolute intensity calibration for both cameras. Python scripts that combined the dual camera data, rendering the Dα, Dβ, and Dγ intensity ratios. Observations from Proto-MPEX discharges will be presented. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  3. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  4. Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; Liao, Anna; Manohara, Harish; Shahinian, Hrayr

    2008-01-01

    The term Multi-Angle and Rear Viewing Endoscopic tooL (MARVEL) denotes an auxiliary endoscope, now undergoing development, that a surgeon would use in conjunction with a conventional endoscope to obtain additional perspective. The role of the MARVEL in endoscopic brain surgery would be similar to the role of a mouth mirror in dentistry. Such a tool is potentially useful for in-situ planetary geology applications for the close-up imaging of unexposed rock surfaces in cracks or those not in the direct line of sight. A conventional endoscope provides mostly a frontal view that is, a view along its longitudinal axis and, hence, along a straight line extending from an opening through which it is inserted. The MARVEL could be inserted through the same opening as that of the conventional endoscope, but could be adjusted to provide a view from almost any desired angle. The MARVEL camera image would be displayed, on the same monitor as that of the conventional endoscopic image, as an inset within the conventional endoscopic image. For example, while viewing a tumor from the front in the conventional endoscopic image, the surgeon could simultaneously view the tumor from the side or the rear in the MARVEL image, and could thereby gain additional visual cues that would aid in precise three-dimensional positioning of surgical tools to excise the tumor. Indeed, a side or rear view through the MARVEL could be essential in a case in which the object of surgical interest was not visible from the front. The conceptual design of the MARVEL exploits the surgeon s familiarity with endoscopic surgical tools. The MARVEL would include a miniature electronic camera and miniature radio transmitter mounted on the tip of a surgical tool derived from an endo-scissor (see figure). The inclusion of the radio transmitter would eliminate the need for wires, which could interfere with manipulation of this and other surgical tools. The handgrip of the tool would be connected to a linkage similar to that of an endo-scissor, but the linkage would be configured to enable adjustment of the camera angle instead of actuation of a scissor blade. It is envisioned that thicknesses of the tool shaft and the camera would be less than 4 mm, so that the camera-tipped tool could be swiftly inserted and withdrawn through a dime-size opening. Electronic cameras having dimensions of the order of millimeters are already commercially available, but their designs are not optimized for use in endoscopic brain surgery. The variety of potential endoscopic, thoracoscopic, and laparoscopic applications can be expected to increase as further development of electronic cameras yields further miniaturization and improvements in imaging performance.

  5. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution.

    PubMed

    Hodel, Jérôme; Silvera, Jonathan; Bekaert, Olivier; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno; Decq, Philippe

    2011-02-01

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus.

  6. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV

    2005-01-01

    The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.

  7. 78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN WITH A 70 MM MITCHEL MOTION PICTURE CAMERA, Date unknown, circa 1950. (Original photograph in possession of Dave Willis, San Diego, California.) Photograph represents central frame of negative. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. Dependence of astigmatism, far-field pattern, and spectral envelope width on active layer thickness of gain guided lasers with narrow stripe geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamine, T.

    1984-06-15

    The effects of active layer thickness on the astigmatism, the angle of far-field pattern width parallel to the junction, and the spectral envelope width of a gain guided laser with a narrow stripe geometry have been investigated analytically and experimentally. It is concluded that a large level of astigmatism, a narrow far-field pattern width, and a rapid convergence of the spectral envelope width are inherent to the gain guided lasers with thin active layers.

  9. Docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1990-01-01

    Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  10. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  11. Evaluation of modified portable digital camera for screening of diabetic retinopathy.

    PubMed

    Chalam, Kakarla V; Brar, Vikram S; Keshavamurthy, Ravi

    2009-01-01

    To describe a portable wide-field noncontact digital camera for posterior segment photography. The digital camera has a compound lens consisting of two optical elements (a 90-dpt and a 20-dpt lens) attached to a 7.2-megapixel camera. White-light-emitting diodes are used to illuminate the fundus and reduce source reflection. The camera settings are set to candlelight mode, the optic zoom standardized to x2.4 and the focus is manually set to 3.0 m. The new technique provides quality wide-angle digital images of the retina (60 degrees ) in patients with dilated pupils, at a fraction of the cost of established digital fundus photography. The modified digital camera is a useful alternative technique to acquire fundus images and provides a tool for screening posterior segment conditions, including diabetic retinopathy in a variety of clinical settings.

  12. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Apollo 8 Mission image

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Moon, Latitude 15 degrees South,Longitude 170 degrees West. Camera Tilt Mode: High Oblique. Direction: Southeast. Sun Angle 17 degrees. Original Film Magazine was labeled E. Camera Data: 70mm Hasselblad; F-Stop: F-5.6; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Other Photographic Coverage: Lunar Orbiter 1 (LO I) S-3. Flight Date: December 21-27,1968.

  14. Observation of Planetary Motion Using a Digital Camera

    ERIC Educational Resources Information Center

    Meyn, Jan-Peter

    2008-01-01

    A digital SLR camera with a standard lens (50 mm focal length, f/1.4) on a fixed tripod is used to obtain photographs of the sky which contain stars up to 8[superscript m] apparent magnitude. The angle of view is large enough to ensure visual identification of the photograph with a large sky region in a stellar map. The resolution is sufficient to…

  15. Optimization design of periscope type 3X zoom lens design for a five megapixel cellphone camera

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Shing; Tien, Chuen-Lin; Pan, Jui-Wen; Chao, Yu-Hao; Chu, Pu-Yi

    2016-11-01

    This paper presents a periscope type 3X zoom lenses design for a five megapixel cellphone camera. The configuration of optical system uses the right angle prism in front of the zoom lenses to change the optical path rotated by a 90° angle resulting in the zoom lenses length of 6 mm. The zoom lenses can be embedded in mobile phone with a thickness of 6 mm. The zoom lenses have three groups with six elements. The half field of view is varied from 30° to 10.89°, the effective focal length is adjusted from 3.142 mm to 9.426 mm, and the F-number is changed from 2.8 to 5.13.

  16. Sidelooking laser altimeter for a flight simulator

    NASA Technical Reports Server (NTRS)

    Webster, L. D. (Inventor)

    1983-01-01

    An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.

  17. Investigating at the Moon With new Eyes: The Lunar Reconnaissance Orbiter Mission Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Robinson, M. S.; McEwen, A. S.; Turtle, E. P.; Eliason, E. M.; Jolliff, B. L.; Malin, M. C.; Thomas, P. C.

    The Lunar Reconnaissance Orbiter Mission Camera (LROC) H. Hiesinger (1,2), M.S. Robinson (3), A.S. McEwen (4), E.P. Turtle (4), E.M. Eliason (4), B.L. Jolliff (5), M.C. Malin (6), and P.C. Thomas (7) (1) Brown Univ., Dept. of Geological Sciences, Providence RI 02912, Harald_Hiesinger@brown.edu, (2) Westfaelische Wilhelms-University, (3) Northwestern Univ., (4) LPL, Univ. of Arizona, (5) Washington Univ., (6) Malin Space Science Systems, (7) Cornell Univ. The Lunar Reconnaissance Orbiter (LRO) mission is scheduled for launch in October 2008 as a first step to return humans to the Moon by 2018. The main goals of the Lunar Reconnaissance Orbiter Camera (LROC) are to: 1) assess meter and smaller- scale features for safety analyses for potential lunar landing sites near polar resources, and elsewhere on the Moon; and 2) acquire multi-temporal images of the poles to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near permanent illumination over a full lunar year. In addition, LROC will return six high-value datasets such as 1) meter-scale maps of regions of permanent or near permanent illumination of polar massifs; 2) high resolution topography through stereogrammetric and photometric stereo analyses for potential landing sites; 3) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 4) a global 100-m/pixel basemap with incidence angles (60-80 degree) favorable for morphologic interpretations; 5) images of a variety of geologic units at sub-meter resolution to investigate physical properties and regolith variability; and 6) meter-scale coverage overlapping with Apollo Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to estimate hazards for future surface operations. LROC consists of two narrow-angle cameras (NACs) which will provide 0.5-m scale panchromatic images over a 5-km swath, a wide-angle camera (WAC) to acquire images at about 100 m/pixel in seven color bands over a 100-km swath, and a common Sequence and Compressor System (SCS). Each NAC has a 700-mm-focal-length optic that images onto a 5000-pixel CCD line-array, providing a cross-track field-of-view (FOV) of 2.86 degree. The NAC readout noise is better than 100 e- , and the data are sampled at 12 bits. Its internal buffer holds 256 MB of uncompressed data, enough for a full-swath image 25-km long or a 2x2 binned image 100-km long. The WAC has two 6-mm- focal-length lenses imaging onto the same 1000 x 1000 pixel, electronically shuttered CCD area-array, one imaging in the visible/near IR, and the other in the UV. Each has a cross-track FOV of 90 degree. From the nominal 50-km orbit, the WAC will have a resolution of 100 m/pixel in the visible, and a swath width of ˜100 km. The seven-band color capability of the WAC is achieved by color filters mounted directly 1 over the detector, providing different sections of the CCD with different filters [1]. The readout noise is less than 40 e- , and, as with the NAC, pixel values are digitized to 12-bits and may be subsequently converted to 8-bit values. The total mass of the LROC system is about 12 kg; the total LROC power consumption averages at 22 W (30 W peak). Assuming a downlink with lossless compression, LRO will produce a total of 20 TeraBytes (TB) of raw data. Production of higher-level data products will result in a total of 70 TB for Planetary Data System (PDS) archiving, 100 times larger than any previous missions. [1] Malin et al., JGR, 106, 17651-17672, 2001. 2

  18. Integrated ExoMars PanCam, Raman, and close-up imaging field tests on AMASE 2009

    NASA Astrophysics Data System (ADS)

    Foss Amundsen, Hans Erik; Westall, Frances; Steele, Andrew; Vago, Jorge; Schmitz, Nicole; Bauer, Arnold; Cousins, Claire; Rull, Fernando; Sansano, Antonio; Midtkandal, Ivar

    2010-05-01

    Arctic Mars Analog Svalbard Expedition (AMASE) uses Mars analog field sites on the Arctic islands of Svalbard (Norway) for research within astrobiology and for testing of payload instruments onboard Mars missions Mars Science Laboratory, ExoMars and Mars Sample Return. AMASE 2009 marked the seventh consecutive year of field testing. Instrument shakedowns were arranged to mimic rover operations on Mars and included the panoramic camera (PanCam), mineral- and organic chemistry sensors (Raman-LIBS) and ground penetrating radar (Wisdom) onboard ExoMars together with CheMin and SAM instruments onboard MSL and testing of sampling and caching protocols using JPĹs Fido rover. Test sites included volcanic rocks within the Bockfjord Volcanic Complex (BVC) with carbonate deposits identical to those in ALH84001 and Carboniferous sandstones and paleosols at Ismåsestranda. In view of the 2018 ExoMars mission, field models of the PanCam and Raman instruments, as well as an Olympus E410 camera having similar technical specifications to the ExoMars Close-Up Imager (CLUPI) were used in an integrated exercise to characterise the geology and habitability of the different field sites. The BVC locality consisted of volcanclastic sediments deposited on the flanks of the 1 Ma old Sverrefjell volcano. This volcano is constructed of primitive alkaline basalt with abundant mantle xenoliths. The sediments were a mixture of hyaloclastite, ash, volcanic bombs, lava detritus, and xenoliths (peridotites, granulites) deposited in a roughly laminated fashion on the slopes of the volcano. Late stage carbonate deposits were also present. The Ismåsestranda locality consisted of fine-grained sandstone deposited in a littoral environment. The sandstones were characterised by a variety of sedimentary structures reflecting a marginal marine depositional environment. They were highly variegated in colour due to diagenetic remobilisation of trace elements. PanCam made general context observations using the stereo Wide Angle Camera for taking images at 12 VIS-NIR wavelengths. More detailed images were made with the narrow angle colour High Resolution Channel of PanCam (PanCam HRC). These images were complimented by colour images made at 50-7 cm distance from the rock targets by the CLUPI-simulator camera. Compositional information was provided by the Raman spectrometer.The images and analyses obtained from the instruments permitted preliminary characterisation of the geological context at the two test sites. However, full characterisation of the rocks using more than one site is necessary to correctly interpret the nature of the rocks and their environment of formation, especially in the case of the Ismåsestranda sediments. Joint testing of ExoMars, MSL and MSR instruments on AMASE provides a unique opportunity to highgrade instrument selection for future Mars missions and to foster collaboration between ESA and NASA teams towards the tandem launch of ExoMars and MAX-C in 2018.

  19. Characterization and performance of PAUCam filters

    NASA Astrophysics Data System (ADS)

    Casas, R.; Cardiel-Sas, L.; Castander, F. J.; Díaz, C.; Gaweda, J.; Jiménez Rojas, J.; Jiménez, S.; Lamensans, M.; Padilla, C.; Rodriguez, F. J.; Sanchez, E.; Sevilla Noarbe, I.

    2016-08-01

    PAUCam is a large field of view camera designed to exploit the field delivered by the prime focus corrector of the William Herschel Telescope, at the Observatorio del Roque de los Muchachos. One of the new features of this camera is its filter system, placed within a few millimeters of the focal plane using eleven trays containing 40 narrow band and 6 broad band filters, working in vacuum at an operational temperature of 250K and in a focalized beam. In this contribution, we describe the performance of these filters both in the characterization tests at the laboratory.

  20. Volume three-dimensional flow measurements using wavelength multiplexing.

    PubMed

    Moore, Andrew J; Smith, Jason; Lawson, Nicholas J

    2005-10-01

    Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.

  1. Dual-mode switching of a liquid crystal panel for viewing angle control

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kwon, Yong-Hoan; Kim, Jae Chang; Yoon, Tae-Hoon

    2007-03-01

    The authors propose a method to control the viewing angle of a liquid crystal (LC) panel using dual-mode switching. To realize both wide viewing angle (WVA) characteristics and narrow viewing angle (NVA) characteristics with a single LC panel, the authors use two different dark states. The LC layer can be aligned homogeneously parallel to the transmission axis of the bottom polarizer for WVA dark state operation, while it can be aligned vertically for NVA dark state operation. The authors demonstrated that viewing angle control can be achieved with a single panel without any loss of contrast at the front.

  2. Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Choi, Y. J.; Kim, S.; Kang, K. I.

    2016-12-01

    A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.

  3. InfraCAM (trade mark): A Hand-Held Commercial Infrared Camera Modified for Spaceborne Applications

    NASA Technical Reports Server (NTRS)

    Manitakos, Daniel; Jones, Jeffrey; Melikian, Simon

    1996-01-01

    In 1994, Inframetrics introduced the InfraCAM(TM), a high resolution hand-held thermal imager. As the world's smallest, lightest and lowest power PtSi based infrared camera, the InfraCAM is ideal for a wise range of industrial, non destructive testing, surveillance and scientific applications. In addition to numerous commercial applications, the light weight and low power consumption of the InfraCAM make it extremely valuable for adaptation to space borne applications. Consequently, the InfraCAM has been selected by NASA Lewis Research Center (LeRC) in Cleveland, Ohio, for use as part of the DARTFire (Diffusive and Radiative Transport in Fires) space borne experiment. In this experiment, a solid fuel is ignited in a low gravity environment. The combustion period is recorded by both visible and infrared cameras. The infrared camera measures the emission from polymethyl methacrylate, (PMMA) and combustion products in six distinct narrow spectral bands. Four cameras successfully completed all qualification tests at Inframetrics and at NASA Lewis. They are presently being used for ground based testing in preparation for space flight in the fall of 1995.

  4. Orbital-science investigation: Part C: photogrammetry of Apollo 15 photography

    USGS Publications Warehouse

    Wu, Sherman S.C.; Schafer, Francis J.; Jordan, Raymond; Nakata, Gary M.; Derick, James L.

    1972-01-01

    Mapping of large areas of the Moon by photogrammetric methods was not seriously considered until the Apollo 15 mission. In this mission, a mapping camera system and a 61-cm optical-bar high-resolution panoramic camera, as well as a laser altimeter, were used. The mapping camera system comprises a 7.6-cm metric terrain camera and a 7.6-cm stellar camera mounted in a fixed angular relationship (an angle of 96° between the two camera axes). The metric camera has a glass focal-plane plate with reseau grids. The ground-resolution capability from an altitude of 110 km is approximately 20 m. Because of the auxiliary stellar camera and the laser altimeter, the resulting metric photography can be used not only for medium- and small-scale cartographic or topographic maps, but it also can provide a basis for establishing a lunar geodetic network. The optical-bar panoramic camera has a 135- to 180-line resolution, which is approximately 1 to 2 m of ground resolution from an altitude of 110 km. Very large scale specialized topographic maps for supporting geologic studies of lunar-surface features can be produced from the stereoscopic coverage provided by this camera.

  5. Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report

    NASA Technical Reports Server (NTRS)

    Camperchioli, William

    2005-01-01

    A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.

  6. Contemplative Janus

    NASA Image and Video Library

    2015-01-19

    Janus (111 miles or 179 kilometers across) seems to almost stare off into the distance, contemplating deep, moonish thoughts as the F ring stands by at the bottom of this image. From this image, it is easy to distinguish Janus' shape from that of a sphere. Many of Saturn's smaller moons have similarly irregular shapes that scientists believe may give clues to their origins and internal structure. Models combining the dynamics of this moon with its shape imply the existence of mass inhomogeneities within Janus. This would be a surprising result for a body the size of Janus. By studying more images of Janus, scientists may be able confirm this finding and determine just how complicated the internal structure of this small body is. This image is roughly centered on the side of Janus which faces away from Saturn. North on Janus is up and rotated 3 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 28, 2012. The view was obtained at a distance of approximately 54,000 miles (87,000 kilometers) from Janus. Image scale is 1,700 feet (520 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18299

  7. Studies of High Power RF-induced Turbulence in the Ionosphere over HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2016-12-01

    The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and production of suprathermal electrons. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. Recent results of simulations of these experiments enable interpretation of many observed features. Applications are made to the study of irregularities relevant to spacecraft communication and navigation systems.

  8. Cassini ISS astrometry of the Saturnian satellites: Tethys, Dione, Rhea, Iapetus, and Phoebe 2004-2012

    NASA Astrophysics Data System (ADS)

    Tajeddine, R.; Lainey, V.; Cooper, N. J.; Murray, C. D.

    2015-03-01

    Context. The Cassini spacecraft has been orbiting Saturn since 2004 and has returned images of satellites with an astrometric resolution as high as a few hundred meters per pixel. Aims: We used the images taken by the Narrow Angle Camera (NAC) of the Image Science Subsystem (ISS) instrument on board Cassini, for the purpose of astrometry. Methods: We applied the same method that was previously developed to reduce Cassini NAC images of Mimas and Enceladus. Results: We provide 5463 astrometric positions in right ascension and declination (α, δ) of the satellites: Tethys, Dione, Rhea, Iapetus, and Phoebe, using images that were taken by Cassini NAC between 2004 and 2012. the mean residuals compared to the JPL ephemeris SAT365 are of the order of hundreds of meters with standard deviations of the order of a few kilometers. The frequency analysis of the residuals shows the remaining unmodelled effects of satellites on the dynamics of other satellites. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A73

  9. ARC-1986-AC86-7015

    NASA Image and Video Library

    1986-01-21

    4.17 million miles (2.59 million miles) Resolution : 40 km. (25mi.) P-29498C This false color, Voyager 2 composite view of all nine of Uranian rings was made from six 15 second exposures through the narrow angle camera. The special computer processing used to extract color information from the extremely dark and faint rings, causing the even fainter, pastel lines seen between the rings. Two images, each in the green, clear, & violet filters, were added together and averaged to find the proper color difference between the rings. the final image was made from these three color averages and represents an enhanced, false color view. The image shows that the brightest, or Epsilon ring, at top ,is neutral in color, with the fainter eight other rings showing color differences between them. moving down, toward, Uranus, we see the Delta, Gamma, & Eta rings in shades of blue and green; the Beta & Alpha rings in somewhat lighter tones; and then finally, a set of three, known simply as 4, 5, & 6 rings, in faint off-white tones. Scientists will use this color information to try to understand the nature and origin of the ring material.

  10. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    PubMed

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm 2 . The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm 2 ). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  11. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source

    PubMed Central

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K.

    2016-01-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm2. The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm2). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications. PMID:27896012

  12. Thermophysical properties of the MER and Beagle II landing site regions on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Hynek, Brian M.; Pelkey, Shannon M.; Mellon, Michael T.; Martínez-Alonso, Sara; Putzig, Nathaniel E.; Murphy, Nate; Christensen, Philip R.

    2006-08-01

    We analyzed remote-sensing observations of the Isidis Basin, Gusev Crater, and Meridiani Planum landing sites for Beagle II, MER-A Spirit, and MER-B Opportunity spacecraft, respectively. We emphasized the thermophysical properties using daytime and nighttime radiance measurements from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer and Mars Odyssey Thermal Emission Imaging System (THEMIS) and thermal inertias derived from nighttime data sets. THEMIS visible images, MGS Mars Orbiter Camera (MOC) narrow-angle images, and MGS Mars Orbiter Laser Altimeter (MOLA) data are incorporated as well. Additionally, the remote-sensing data were compared with ground-truth at the MER sites. The Isidis Basin surface layer has been shaped by aeolian processes and erosion by slope winds coming off of the southern highlands and funneling through notches between massifs. In the Gusev region, surface materials of contrasting thermophysical properties have been interpreted as rocks or bedrock, duricrust, and dust deposits; these are consistent with a complex geological history dominated by volcanic and aeolian processes. At Meridiani Planum the many layers having different thermophysical and erosional properties suggest periodic deposition of differing sedimentological facies possibly related to clast size, grain orientation and packing, or mineralogy.

  13. The terminal Velocity of the Deep Impact dust Ejecta

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.

    2009-05-01

    The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.

  14. KSC-2009-2989

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians photograph the Lunar Reconnaissance Orbiter, or LRO, during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments on the LRO include the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  15. Providing Internet Access to High-Resolution Mars Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  16. The Propeller Belts in Saturn A Ring

    NASA Image and Video Library

    2017-01-30

    This image from NASA's Cassini mission shows a region in Saturn's A ring. The level of detail is twice as high as this part of the rings has ever been seen before. The view contains many small, bright blemishes due to cosmic rays and charged particle radiation near the planet. The view shows a section of the A ring known to researchers for hosting belts of propellers -- bright, narrow, propeller-shaped disturbances in the ring produced by the gravity of unseen embedded moonlets. Several small propellers are visible in this view. These are on the order of 10 times smaller than the large, bright propellers whose orbits scientists have routinely tracked (and which are given nicknames for famous aviators). This image is a lightly processed version, with minimal enhancement, preserving all original details present in the image. he image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 33,000 miles (54,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (330 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21059

  17. Spots on Saturn

    NASA Image and Video Library

    2004-04-02

    As Cassini closes in on Saturn, its view is growing sharper with time and now reveals new atmospheric features in the planet's southern hemisphere. Atmospheric features, such as two small, faint dark spots, visible in the planet's southern hemisphere, will become clearer in the coming months. The spots are located at 38 degrees south latitude. The spacecraft's narrow angle camera took several exposures on March 8, 2004, which have been combined to create this natural color image. The image contrast and colors have been slightly enhanced to aid visibility. Moons visible in the lower half of this image are: Mimas (398 kilometers, or 247 miles across) at left, just below the rings; Dione (1,118 kilometers, or 695 miles across) at left, below Mimas; and Enceladus (499 kilometers, 310 miles across) at right. The moons had their brightness enhanced to aid visibility. The spacecraft was then 56.4 million kilometers (35 million miles) from Saturn, or slightly more than one-third of the distance from Earth to the Sun. The image scale is approximately 338 kilometers (210 miles) per pixel. The planet is 23 percent larger in this image than it appeared in the preceding color image, taken four weeks earlier. http://photojournal.jpl.nasa.gov/catalog/PIA05385

  18. Windblown Dunes and Ripples

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-411, 4 July 2003

    July 4, 2003, is the 6th anniversary of the Mars Pathfinder landing. One of the elements carried to the red planet by Pathfinder was the Wind Sock Experiment. This project was designed to measure wind activity by taking pictures of three aluminum 'wind socks.' While the winds at the Mars Pathfinder site did not blow particularly strong during the course of that mission, dust storms seen from orbit and Earth-based telescopes attest to the fact that wind is a major force of change on the dry, desert surface of Mars today. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle image shows dark sand dunes and lighter-toned ripples trapped among the mountainous central peak of an old impact crater in Terra Tyrrhena near 13.9oS, 246.7oW. The dune slip faces--the steepest slope on the larger dunes--indicate sand transport is from the top/upper left toward the bottom/lower right. North is toward the top/upper right; the picture is 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left. This picture was obtained in April 2003.

  19. Evaluation of a novel collimator for molecular breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon

    Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less

  20. Evaluation of a novel collimator for molecular breast tomosynthesis.

    PubMed

    Gilland, David R; Welch, Benjamin L; Lee, Seungjoon; Kross, Brian; Weisenberger, Andrew G

    2017-11-01

    This study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelated (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (-25° to 25°) using 99m Tc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging. © 2017 American Association of Physicists in Medicine.

Top