Sample records for camera pose estimation

  1. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  2. Neuromorphic Event-Based 3D Pose Estimation

    PubMed Central

    Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.

    2016-01-01

    Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547

  3. Vision Based SLAM in Dynamic Scenes

    DTIC Science & Technology

    2012-12-20

    the correct relative poses between cameras at frame F. For this purpose, we detect and match SURF features between cameras in dilierent groups, and...all cameras in s uch a challenging case. For a compa rison, we disabled the ’ inte r-camera pose estimation’ and applied the ’ intra-camera pose esti

  4. A robust vision-based sensor fusion approach for real-time pose estimation.

    PubMed

    Assa, Akbar; Janabi-Sharifi, Farrokh

    2014-02-01

    Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.

  5. Optical fringe-reflection deflectometry with bundle adjustment

    NASA Astrophysics Data System (ADS)

    Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng

    2018-06-01

    Liquid crystal display (LCD) screens are located outside of a camera's field of view in fringe-reflection deflectometry. Therefore, fringes that are displayed on LCD screens are obtained through specular reflection by a fixed camera. Thus, the pose calibration between the camera and LCD screen is one of the main challenges in fringe-reflection deflectometry. A markerless planar mirror is used to reflect the LCD screen more than three times, and the fringes are mapped into the fixed camera. The geometrical calibration can be accomplished by estimating the pose between the camera and the virtual image of fringes. Considering the relation between their pose, the incidence and reflection rays can be unified in the camera frame, and a forward triangulation intersection can be operated in the camera frame to measure three-dimensional (3D) coordinates of the specular surface. In the final optimization, constraint-bundle adjustment is operated to refine simultaneously the camera intrinsic parameters, including distortion coefficients, estimated geometrical pose between the LCD screen and camera, and 3D coordinates of the specular surface, with the help of the absolute phase collinear constraint. Simulation and experiment results demonstrate that the pose calibration with planar mirror reflection is simple and feasible, and the constraint-bundle adjustment can enhance the 3D coordinate measurement accuracy in fringe-reflection deflectometry.

  6. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    PubMed Central

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-01-01

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555

  7. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems.

    PubMed

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-02-14

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  8. Estimation of Antenna Pose in the Earth Frame Using Camera and IMU Data from Mobile Phones

    PubMed Central

    Wang, Zhen; Jin, Bingwen; Geng, Weidong

    2017-01-01

    The poses of base station antennas play an important role in cellular network optimization. Existing methods of pose estimation are based on physical measurements performed either by tower climbers or using additional sensors attached to antennas. In this paper, we present a novel non-contact method of antenna pose measurement based on multi-view images of the antenna and inertial measurement unit (IMU) data captured by a mobile phone. Given a known 3D model of the antenna, we first estimate the antenna pose relative to the phone camera from the multi-view images and then employ the corresponding IMU data to transform the pose from the camera coordinate frame into the Earth coordinate frame. To enhance the resulting accuracy, we improve existing camera-IMU calibration models by introducing additional degrees of freedom between the IMU sensors and defining a new error metric based on both the downtilt and azimuth angles, instead of a unified rotational error metric, to refine the calibration. In comparison with existing camera-IMU calibration methods, our method achieves an improvement in azimuth accuracy of approximately 1.0 degree on average while maintaining the same level of downtilt accuracy. For the pose estimation in the camera coordinate frame, we propose an automatic method of initializing the optimization solver and generating bounding constraints on the resulting pose to achieve better accuracy. With this initialization, state-of-the-art visual pose estimation methods yield satisfactory results in more than 75% of cases when plugged into our pipeline, and our solution, which takes advantage of the constraints, achieves even lower estimation errors on the downtilt and azimuth angles, both on average (0.13 and 0.3 degrees lower, respectively) and in the worst case (0.15 and 7.3 degrees lower, respectively), according to an evaluation conducted on a dataset consisting of 65 groups of data. We show that both of our enhancements contribute to the performance improvement offered by the proposed estimation pipeline, which achieves downtilt and azimuth accuracies of respectively 0.47 and 5.6 degrees on average and 1.38 and 12.0 degrees in the worst case, thereby satisfying the accuracy requirements for network optimization in the telecommunication industry. PMID:28397765

  9. Camera pose estimation for augmented reality in a small indoor dynamic scene

    NASA Astrophysics Data System (ADS)

    Frikha, Rawia; Ejbali, Ridha; Zaied, Mourad

    2017-09-01

    Camera pose estimation remains a challenging task for augmented reality (AR) applications. Simultaneous localization and mapping (SLAM)-based methods are able to estimate the six degrees of freedom camera motion while constructing a map of an unknown environment. However, these methods do not provide any reference for where to insert virtual objects since they do not have any information about scene structure and may fail in cases of occlusion of three-dimensional (3-D) map points or dynamic objects. This paper presents a real-time monocular piece wise planar SLAM method using the planar scene assumption. Using planar structures in the mapping process allows rendering virtual objects in a meaningful way on the one hand and improving the precision of the camera pose and the quality of 3-D reconstruction of the environment by adding constraints on 3-D points and poses in the optimization process on the other hand. We proposed to benefit from the 3-D planes rigidity motion in the tracking process to enhance the system robustness in the case of dynamic scenes. Experimental results show that using a constrained planar scene improves our system accuracy and robustness compared with the classical SLAM systems.

  10. A multi-camera system for real-time pose estimation

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin

    2007-04-01

    This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.

  11. A Simulation Environment for Benchmarking Sensor Fusion-Based Pose Estimators.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2015-12-19

    In-depth analysis and performance evaluation of sensor fusion-based estimators may be critical when performed using real-world sensor data. For this reason, simulation is widely recognized as one of the most powerful tools for algorithm benchmarking. In this paper, we present a simulation framework suitable for assessing the performance of sensor fusion-based pose estimators. The systems used for implementing the framework were magnetic/inertial measurement units (MIMUs) and a camera, although the addition of further sensing modalities is straightforward. Typical nuisance factors were also included for each sensor. The proposed simulation environment was validated using real-life sensor data employed for motion tracking. The higher mismatch between real and simulated sensors was about 5% of the measured quantity (for the camera simulation), whereas a lower correlation was found for an axis of the gyroscope (0.90). In addition, a real benchmarking example of an extended Kalman filter for pose estimation from MIMU and camera data is presented.

  12. Vision-guided gripping of a cylinder

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.

  13. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    NASA Astrophysics Data System (ADS)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  14. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  15. An anti-disturbing real time pose estimation method and system

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new method can estimate pose between camera and object when part even all known features are lost, and has a quick response time benefit from GPU parallel computing. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in autonomous navigation and positioning, robots fields at unknown environment. The results of simulation and experiments demonstrate that proposed method could suppress noise effectively, extracted features robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  16. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1992-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  17. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  18. Free-viewpoint video of human actors using multiple handheld Kinects.

    PubMed

    Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian

    2013-10-01

    We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.

  19. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    PubMed

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  20. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    PubMed Central

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  1. Autocalibration of a projector-camera system.

    PubMed

    Okatani, Takayuki; Deguchi, Koichiro

    2005-12-01

    This paper presents a method for calibrating a projector-camera system that consists of multiple projectors (or multiple poses of a single projector), a camera, and a planar screen. We consider the problem of estimating the homography between the screen and the image plane of the camera or the screen-camera homography, in the case where there is no prior knowledge regarding the screen surface that enables the direct computation of the homography. It is assumed that the pose of each projector is unknown while its internal geometry is known. Subsequently, it is shown that the screen-camera homography can be determined from only the images projected by the projectors and then obtained by the camera, up to a transformation with four degrees of freedom. This transformation corresponds to arbitrariness in choosing a two-dimensional coordinate system on the screen surface and when this coordinate system is chosen in some manner, the screen-camera homography as well as the unknown poses of the projectors can be uniquely determined. A noniterative algorithm is presented, which computes the homography from three or more images. Several experimental results on synthetic as well as real images are shown to demonstrate the effectiveness of the method.

  2. Satellite markers: a simple method for ground truth car pose on stereo video

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-04-01

    Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.

  3. First stereo video dataset with ground truth for remote car pose estimation using satellite markers

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Pierini, Marco

    2018-04-01

    Leading causes of PTW (Powered Two-Wheeler) crashes and near misses in urban areas are on the part of a failure or delayed prediction of the changing trajectories of other vehicles. Regrettably, misperception from both car drivers and motorcycle riders results in fatal or serious consequences for riders. Intelligent vehicles could provide early warning about possible collisions, helping to avoid the crash. There is evidence that stereo cameras can be used for estimating the heading angle of other vehicles, which is key to anticipate their imminent location, but there is limited heading ground truth data available in the public domain. Consequently, we employed a marker-based technique for creating ground truth of car pose and create a dataset∗ for computer vision benchmarking purposes. This dataset of a moving vehicle collected from a static mounted stereo camera is a simplification of a complex and dynamic reality, which serves as a test bed for car pose estimation algorithms. The dataset contains the accurate pose of the moving obstacle, and realistic imagery including texture-less and non-lambertian surfaces (e.g. reflectance and transparency).

  4. Driver head pose tracking with thermal camera

    NASA Astrophysics Data System (ADS)

    Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.

    2016-09-01

    Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.

  5. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras

    NASA Astrophysics Data System (ADS)

    Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd

    2017-10-01

    This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.

  6. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.

    PubMed

    Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos

    2013-12-01

    Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Comparative assessment of techniques for initial pose estimation using monocular vision

    NASA Astrophysics Data System (ADS)

    Sharma, Sumant; D`Amico, Simone

    2016-06-01

    This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.

  8. Landmark based localization in urban environment

    NASA Astrophysics Data System (ADS)

    Qu, Xiaozhi; Soheilian, Bahman; Paparoditis, Nicolas

    2018-06-01

    A landmark based localization with uncertainty analysis based on cameras and geo-referenced landmarks is presented in this paper. The system is developed to adapt different camera configurations for six degree-of-freedom pose estimation. Local bundle adjustment is applied for optimization and the geo-referenced landmarks are integrated to reduce the drift. In particular, the uncertainty analysis is taken into account. On the one hand, we estimate the uncertainties of poses to predict the precision of localization. On the other hand, uncertainty propagation is considered for matching, tracking and landmark registering. The proposed method is evaluated on both KITTI benchmark and the data acquired by a mobile mapping system. In our experiments, decimeter level accuracy can be reached.

  9. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination

    PubMed Central

    Fasano, Giancarmine; Grassi, Michele

    2017-01-01

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651

  10. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-09-24

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.

  11. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  12. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  13. Pose-free structure from motion using depth from motion constraints.

    PubMed

    Zhang, Ji; Boutin, Mireille; Aliaga, Daniel G

    2011-10-01

    Structure from motion (SFM) is the problem of recovering the geometry of a scene from a stream of images taken from unknown viewpoints. One popular approach to estimate the geometry of a scene is to track scene features on several images and reconstruct their position in 3-D. During this process, the unknown camera pose must also be recovered. Unfortunately, recovering the pose can be an ill-conditioned problem which, in turn, can make the SFM problem difficult to solve accurately. We propose an alternative formulation of the SFM problem with fixed internal camera parameters known a priori. In this formulation, obtained by algebraic variable elimination, the external camera pose parameters do not appear. As a result, the problem is better conditioned in addition to involving much fewer variables. Variable elimination is done in three steps. First, we take the standard SFM equations in projective coordinates and eliminate the camera orientations from the equations. We then further eliminate the camera center positions. Finally, we also eliminate all 3-D point positions coordinates, except for their depths with respect to the camera center, thus obtaining a set of simple polynomial equations of degree two and three. We show that, when there are merely a few points and pictures, these "depth-only equations" can be solved in a global fashion using homotopy methods. We also show that, in general, these same equations can be used to formulate a pose-free cost function to refine SFM solutions in a way that is more accurate than by minimizing the total reprojection error, as done when using the bundle adjustment method. The generalization of our approach to the case of varying internal camera parameters is briefly discussed. © 2011 IEEE

  14. Enhancement Strategies for Frame-To Uas Stereo Visual Odometry

    NASA Astrophysics Data System (ADS)

    Kersten, J.; Rodehorst, V.

    2016-06-01

    Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.

  15. Influence of camera parameters on the quality of mobile 3D capture

    NASA Astrophysics Data System (ADS)

    Georgiev, Mihail; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska

    2010-01-01

    We investigate the effect of camera de-calibration on the quality of depth estimation. Dense depth map is a format particularly suitable for mobile 3D capture (scalable and screen independent). However, in real-world scenario cameras might move (vibrations, temp. bend) form their designated positions. For experiments, we create a test framework, described in the paper. We investigate how mechanical changes will affect different (4) stereo-matching algorithms. We also assess how different geometric corrections (none, motion compensation-like, full rectification) will affect the estimation quality (how much offset can be still compensated with "crop" over a larger CCD). Finally, we show how estimated camera pose change (E) relates with stereo-matching, which can be used for "rectification quality" measure.

  16. Face pose tracking using the four-point algorithm

    NASA Astrophysics Data System (ADS)

    Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen

    2017-06-01

    In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.

  17. Towards Unmanned Systems for Dismounted Operations in the Canadian Forces

    DTIC Science & Technology

    2011-01-01

    LIDAR , and RADAR) and lower power/mass, passive imaging techniques such as structure from motion and simultaneous localisation and mapping ( SLAM ...sensors and learning algorithms. 5.1.2 Simultaneous localisation and mapping SLAM algorithms concurrently estimate a robot pose and a map of unique...locations and vehicle pose are part of the SLAM state vector and are estimated in each update step. AISS developed a monocular camera-based SLAM

  18. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  19. Pose estimation of industrial objects towards robot operation

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  20. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information

    PubMed Central

    Di, Kaichang; Zhao, Qiang; Wan, Wenhui; Wang, Yexin; Gao, Yunjun

    2016-01-01

    In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geometric relationship between the image plane coordinates and the depth values is constructed through RGB-D camera calibration. Then, 2D and 3D feature points are automatically extracted and matched between consecutive frames to build a continuous image network. Finally, extended bundle adjustment based on the new projection model, which takes both image and depth measurements into consideration, is applied to the image network for high-precision pose estimation. Field experiments show that the proposed method has a notably better performance than the traditional method, and the experimental results demonstrate the effectiveness of the proposed method in improving localization accuracy. PMID:27529256

  1. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling

    PubMed Central

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-01-01

    RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method. PMID:27690028

  2. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.

    PubMed

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-09-27

    RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method.

  3. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  4. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  5. Camera-pose estimation via projective Newton optimization on the manifold.

    PubMed

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  6. A pose estimation method for unmanned ground vehicles in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  7. Computer vision research with new imaging technology

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Liu, Fei; Sun, Zhenan

    2015-12-01

    Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.

  8. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2012-01-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  9. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2011-12-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  10. 3D ocular ultrasound using gaze tracking on the contralateral eye: a feasibility study.

    PubMed

    Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert

    2011-01-01

    A gaze-deviated examination of the eye with a 2D ultrasound transducer is a common and informative ophthalmic test; however, the complex task of the pose estimation of the ultrasound images relative to the eye affects 3D interpretation. To tackle this challenge, a novel system for 3D image reconstruction based on gaze tracking of the contralateral eye has been proposed. The gaze fixates on several target points and, for each fixation, the pose of the examined eye is inferred from the gaze tracking. A single camera system has been developed for pose estimation combined with subject-specific parameter identification. The ultrasound images are then transformed to the coordinate system of the examined eye to create a 3D volume. Accuracy of the proposed gaze tracking system and the pose estimation of the eye have been validated in a set of experiments. Overall system error, including pose estimation and calibration, are 3.12 mm and 4.68 degrees.

  11. Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao

    2017-09-01

    Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.

  12. Machine Vision for Relative Spacecraft Navigation During Approach to Docking

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Baker, Kenneth

    2011-01-01

    This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.

  13. A Single Camera Motion Capture System for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  14. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    NASA Astrophysics Data System (ADS)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  15. Incorporating structure from motion uncertainty into image-based pose estimation

    NASA Astrophysics Data System (ADS)

    Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen

    2015-05-01

    A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.

  16. Estimating the gaze of a virtuality human.

    PubMed

    Roberts, David J; Rae, John; Duckworth, Tobias W; Moore, Carl M; Aspin, Rob

    2013-04-01

    The aim of our experiment is to determine if eye-gaze can be estimated from a virtuality human: to within the accuracies that underpin social interaction; and reliably across gaze poses and camera arrangements likely in every day settings. The scene is set by explaining why Immersive Virtuality Telepresence has the potential to meet the grand challenge of faithfully communicating both the appearance and the focus of attention of a remote human participant within a shared 3D computer-supported context. Within the experiment n=22 participants rotated static 3D virtuality humans, reconstructed from surround images, until they felt most looked at. The dependent variable was absolute angular error, which was compared to that underpinning social gaze behaviour in the natural world. Independent variables were 1) relative orientations of eye, head and body of captured subject; and 2) subset of cameras used to texture the form. Analysis looked for statistical and practical significance and qualitative corroborating evidence. The analysed results tell us much about the importance and detail of the relationship between gaze pose, method of video based reconstruction, and camera arrangement. They tell us that virtuality can reproduce gaze to an accuracy useful in social interaction, but with the adopted method of Video Based Reconstruction, this is highly dependent on combination of gaze pose and camera arrangement. This suggests changes in the VBR approach in order to allow more flexible camera arrangements. The work is of interest to those wanting to support expressive meetings that are both socially and spatially situated, and particular those using or building Immersive Virtuality Telepresence to accomplish this. It is also of relevance to the use of virtuality humans in applications ranging from the study of human interactions to gaming and the crossing of the stage line in films and TV.

  17. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  18. Vision based object pose estimation for mobile robots

    NASA Technical Reports Server (NTRS)

    Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry

    1994-01-01

    Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.

  19. D Point Cloud Model Colorization by Dense Registration of Digital Images

    NASA Astrophysics Data System (ADS)

    Crombez, N.; Caron, G.; Mouaddib, E.

    2015-02-01

    Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the acquired point clouds is generally rather low because of several problems presented below. We propose an accurate method for registering digital images acquired from any viewpoints on point clouds which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point cloud model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point clouds with better photometric quality and resolution.

  20. Fusion of Building Information and Range Imaging for Autonomous Location Estimation in Indoor Environments

    PubMed Central

    Kohoutek, Tobias K.; Mautz, Rainer; Wegner, Jan D.

    2013-01-01

    We present a novel approach for autonomous location estimation and navigation in indoor environments using range images and prior scene knowledge from a GIS database (CityGML). What makes this task challenging is the arbitrary relative spatial relation between GIS and Time-of-Flight (ToF) range camera further complicated by a markerless configuration. We propose to estimate the camera's pose solely based on matching of GIS objects and their detected location in image sequences. We develop a coarse-to-fine matching strategy that is able to match point clouds without any initial parameters. Experiments with a state-of-the-art ToF point cloud show that our proposed method delivers an absolute camera position with decimeter accuracy, which is sufficient for many real-world applications (e.g., collision avoidance). PMID:23435055

  1. Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2015-03-01

    The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.

  2. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  3. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  4. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera.

    PubMed

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-04-14

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  5. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    PubMed Central

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-01-01

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera. PMID:27089344

  6. Traffic Light Detection Using Conic Section Geometry

    NASA Astrophysics Data System (ADS)

    Hosseinyalmdary, S.; Yilmaz, A.

    2016-06-01

    Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.

  7. Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren

    2012-01-01

    The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.

  8. A combined vision-inertial fusion approach for 6-DoF object pose estimation

    NASA Astrophysics Data System (ADS)

    Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.

    2015-02-01

    The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.

  9. Predicting Sets and Lists: Theory and Practice

    DTIC Science & Technology

    2015-01-01

    school. No work stands in isolation and this work would not have been possible without my co-authors: • “Contextual Optimization of Lists”: Tommy Liu... IMU Microstrain 3DM-GX3-25 PlayStation Eye camera (640x480 @ 30Hz) Onboard ARM-based Linux computer PlayStation Eye camera (640x480 @ 30Hz) Bumblebee...of the IMU integrated in the Ardupilot unit, we added a Microstrain 3DM-GX3-25 IMU which is used to aid real time pose estimation. There are two

  10. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment

    NASA Astrophysics Data System (ADS)

    Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz

    2010-09-01

    This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.

  11. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    PubMed Central

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  12. Hand pose estimation in depth image using CNN and random forest

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cao, Zhiguo; Xiao, Yang; Fang, Zhiwen

    2018-03-01

    Thanks to the availability of low cost depth cameras, like Microsoft Kinect, 3D hand pose estimation attracted special research attention in these years. Due to the large variations in hand`s viewpoint and the high dimension of hand motion, 3D hand pose estimation is still challenging. In this paper we propose a two-stage framework which joint with CNN and Random Forest to boost the performance of hand pose estimation. First, we use a standard Convolutional Neural Network (CNN) to regress the hand joints` locations. Second, using a Random Forest to refine the joints from the first stage. In the second stage, we propose a pyramid feature which merges the information flow of the CNN. Specifically, we get the rough joints` location from first stage, then rotate the convolutional feature maps (and image). After this, for each joint, we map its location to each feature map (and image) firstly, then crop features at each feature map (and image) around its location, put extracted features to Random Forest to refine at last. Experimentally, we evaluate our proposed method on ICVL dataset and get the mean error about 11mm, our method is also real-time on a desktop.

  13. Marker Registration Technique for Handwritten Text Marker in Augmented Reality Applications

    NASA Astrophysics Data System (ADS)

    Thanaborvornwiwat, N.; Patanukhom, K.

    2018-04-01

    Marker registration is a fundamental process to estimate camera poses in marker-based Augmented Reality (AR) systems. We developed AR system that creates correspondence virtual objects on handwritten text markers. This paper presents a new method for registration that is robust for low-content text markers, variation of camera poses, and variation of handwritten styles. The proposed method uses Maximally Stable Extremal Regions (MSER) and polygon simplification for a feature point extraction. The experiment shows that we need to extract only five feature points per image which can provide the best registration results. An exhaustive search is used to find the best matching pattern of the feature points in two images. We also compared performance of the proposed method to some existing registration methods and found that the proposed method can provide better accuracy and time efficiency.

  14. Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.

    PubMed

    Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang

    2016-08-01

    We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.

  15. Improved Feature Matching for Mobile Devices with IMU.

    PubMed

    Masiero, Andrea; Vettore, Antonio

    2016-08-05

    Thanks to the recent diffusion of low-cost high-resolution digital cameras and to the development of mostly automated procedures for image-based 3D reconstruction, the popularity of photogrammetry for environment surveys is constantly increasing in the last years. Automatic feature matching is an important step in order to successfully complete the photogrammetric 3D reconstruction: this step is the fundamental basis for the subsequent estimation of the geometry of the scene. This paper reconsiders the feature matching problem when dealing with smart mobile devices (e.g., when using the standard camera embedded in a smartphone as imaging sensor). More specifically, this paper aims at exploiting the information on camera movements provided by the inertial navigation system (INS) in order to make the feature matching step more robust and, possibly, computationally more efficient. First, a revised version of the affine scale-invariant feature transform (ASIFT) is considered: this version reduces the computational complexity of the original ASIFT, while still ensuring an increase of correct feature matches with respect to the SIFT. Furthermore, a new two-step procedure for the estimation of the essential matrix E (and the camera pose) is proposed in order to increase its estimation robustness and computational efficiency.

  16. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    PubMed Central

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-01-01

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714

  17. Real Time 3D Facial Movement Tracking Using a Monocular Camera.

    PubMed

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-07-25

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  18. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  19. Infrared needle mapping to assist biopsy procedures and training.

    PubMed

    Shar, Bruce; Leis, John; Coucher, John

    2018-04-01

    A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.

  20. Correlation Techniques as Applied to Pose Estimation in Space Station Docking

    NASA Technical Reports Server (NTRS)

    Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-01-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.

  1. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  2. Real-time depth camera tracking with geometrically stable weight algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming

    2017-03-01

    We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.

  3. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  4. Flight Results from the HST SM4 Relative Navigation Sensor System

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel

    2010-01-01

    On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms

  5. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  6. Color correction pipeline optimization for digital cameras

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Bruna, Arcangelo R.; Naccari, Filippo; Schettini, Raimondo

    2013-04-01

    The processing pipeline of a digital camera converts the RAW image acquired by the sensor to a representation of the original scene that should be as faithful as possible. There are mainly two modules responsible for the color-rendering accuracy of a digital camera: the former is the illuminant estimation and correction module, and the latter is the color matrix transformation aimed to adapt the color response of the sensor to a standard color space. These two modules together form what may be called the color correction pipeline. We design and test new color correction pipelines that exploit different illuminant estimation and correction algorithms that are tuned and automatically selected on the basis of the image content. Since the illuminant estimation is an ill-posed problem, illuminant correction is not error-free. An adaptive color matrix transformation module is optimized, taking into account the behavior of the first module in order to alleviate the amplification of color errors. The proposed pipelines are tested on a publicly available dataset of RAW images. Experimental results show that exploiting the cross-talks between the modules of the pipeline can lead to a higher color-rendition accuracy.

  7. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  8. Precise visual navigation using multi-stereo vision and landmark matching

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Oskiper, Taragay; Samarasekera, Supun; Kumar, Rakesh

    2007-04-01

    Traditional vision-based navigation system often drifts over time during navigation. In this paper, we propose a set of techniques which greatly reduce the long term drift and also improve its robustness to many failure conditions. In our approach, two pairs of stereo cameras are integrated to form a forward/backward multi-stereo camera system. As a result, the Field-Of-View of the system is extended significantly to capture more natural landmarks from the scene. This helps to increase the pose estimation accuracy as well as reduce the failure situations. Secondly, a global landmark matching technique is used to recognize the previously visited locations during navigation. Using the matched landmarks, a pose correction technique is used to eliminate the accumulated navigation drift. Finally, in order to further improve the robustness of the system, measurements from low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) sensors are integrated with the visual odometry in an extended Kalman Filtering framework. Our system is significantly more accurate and robust than previously published techniques (1~5% localization error) over long-distance navigation both indoors and outdoors. Real world experiments on a human worn system show that the location can be estimated within 1 meter over 500 meters (around 0.1% localization error averagely) without the use of GPS information.

  9. Geometrical pose and structural estimation from a single image for automatic inspection of filter components

    NASA Astrophysics Data System (ADS)

    Liu, Yonghuai; Rodrigues, Marcos A.

    2000-03-01

    This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.

  10. Loose fusion based on SLAM and IMU for indoor environment

    NASA Astrophysics Data System (ADS)

    Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing

    2018-04-01

    The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.

  11. Poor Man's Virtual Camera: Real-Time Simultaneous Matting and Camera Pose Estimation.

    PubMed

    Szentandrasi, Istvan; Dubska, Marketa; Zacharias, Michal; Herout, Adam

    2016-03-18

    Today's film and advertisement production heavily uses computer graphics combined with living actors by chromakeying. The matchmoving process typically takes a considerable manual effort. Semi-automatic matchmoving tools exist as well, but they still work offline and require manual check-up and correction. In this article, we propose an instant matchmoving solution for green screen. It uses a recent technique of planar uniform marker fields. Our technique can be used in indie and professional filmmaking as a cheap and ultramobile virtual camera, and for shot prototyping and storyboard creation. The matchmoving technique based on marker fields of shades of green is very computationally efficient: we developed and present in the article a mobile application running at 33 FPS. Our technique is thus available to anyone with a smartphone at low cost and with easy setup, opening space for new levels of filmmakers' creative expression.

  12. A simple method to achieve full-field and real-scale reconstruction using a movable stereo rig

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Song, Zhan; Tang, Suming

    2018-06-01

    This paper introduces a simple method to achieve full-field and real-scale reconstruction using a movable binocular vision system (MBVS). The MBVS is composed of two cameras, one is called the tracking camera, and the other is called the working camera. The tracking camera is used for tracking the positions of the MBVS and the working camera is used for the 3D reconstruction task. The MBVS has several advantages compared with a single moving camera or multi-camera networks. Firstly, the MBVS could recover the real-scale-depth-information from the captured image sequences without using auxiliary objects whose geometry or motion should be precisely known. Secondly, the removability of the system could guarantee appropriate baselines to supply more robust point correspondences. Additionally, using one camera could avoid the drawback which exists in multi-camera networks, that the variability of a cameras’ parameters and performance could significantly affect the accuracy and robustness of the feature extraction and stereo matching methods. The proposed framework consists of local reconstruction and initial pose estimation of the MBVS based on transferable features, followed by overall optimization and accurate integration of multi-view 3D reconstruction data. The whole process requires no information other than the input images. The framework has been verified with real data, and very good results have been obtained.

  13. Impact of multi-focused images on recognition of soft biometric traits

    NASA Astrophysics Data System (ADS)

    Chiesa, V.; Dugelay, J. L.

    2016-09-01

    In video surveillance semantic traits estimation as gender and age has always been debated topic because of the uncontrolled environment: while light or pose variations have been largely studied, defocused images are still rarely investigated. Recently the emergence of new technologies, as plenoptic cameras, yields to deal with these problems analyzing multi-focus images. Thanks to a microlens array arranged between the sensor and the main lens, light field cameras are able to record not only the RGB values but also the information related to the direction of light rays: the additional data make possible rendering the image with different focal plane after the acquisition. For our experiments, we use the GUC Light Field Face Database that includes pictures from the First Generation Lytro camera. Taking advantage of light field images, we explore the influence of defocusing on gender recognition and age estimation problems. Evaluations are computed on up-to-date and competitive technologies based on deep learning algorithms. After studying the relationship between focus and gender recognition and focus and age estimation, we compare the results obtained by images defocused by Lytro software with images blurred by more standard filters in order to explore the difference between defocusing and blurring effects. In addition we investigate the impact of deblurring on defocused images with the goal to better understand the different impacts of defocusing and standard blurring on gender and age estimation.

  14. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking

    PubMed Central

    Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong

    2018-01-01

    Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features. PMID:29723974

  15. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking.

    PubMed

    Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Darwish, Walid; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong

    2018-05-01

    Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.

  16. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    PubMed Central

    Park, Jae Byung; Lee, Seung Hun; Lee, Il Jae

    2009-01-01

    In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor. PMID:22400007

  17. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  18. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  19. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  20. Estimation of Tree Position and STEM Diameter Using Simultaneous Localization and Mapping with Data from a Backpack-Mounted Laser Scanner

    NASA Astrophysics Data System (ADS)

    Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.

    2017-10-01

    A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.

  1. Watching Grass - a Pilot Study on the Suitability of Photogrammetric Techniques for Quantifying Change in Aboveground Biomass in Grassland Experiments

    NASA Astrophysics Data System (ADS)

    Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.

    2018-05-01

    Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.

  2. Autonomous proximity operations using machine vision for trajectory control and pose estimation

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Sternberg, Stanley R.

    1991-01-01

    A machine vision algorithm was developed which permits guidance control to be maintained during autonomous proximity operations. At present this algorithm exists as a simulation, running upon an 80386 based personal computer, using a ModelMATE CAD package to render the target vehicle. However, the algorithm is sufficiently simple, so that following off-line training on a known target vehicle, it should run in real time with existing vision hardware. The basis of the algorithm is a sequence of single camera images of the target vehicle, upon which radial transforms were performed. Selected points of the resulting radial signatures are fed through a decision tree, to determine whether the signature matches that of the known reference signatures for a particular view of the target. Based upon recognized scenes, the position of the maneuvering vehicle with respect to the target vehicles can be calculated, and adjustments made in the former's trajectory. In addition, the pose and spin rates of the target satellite can be estimated using this method.

  3. Viewpoint Integration for Hand-Based Recognition of Social Interactions from a First-Person View.

    PubMed

    Bambach, Sven; Crandall, David J; Yu, Chen

    2015-11-01

    Wearable devices are becoming part of everyday life, from first-person cameras (GoPro, Google Glass), to smart watches (Apple Watch), to activity trackers (FitBit). These devices are often equipped with advanced sensors that gather data about the wearer and the environment. These sensors enable new ways of recognizing and analyzing the wearer's everyday personal activities, which could be used for intelligent human-computer interfaces and other applications. We explore one possible application by investigating how egocentric video data collected from head-mounted cameras can be used to recognize social activities between two interacting partners (e.g. playing chess or cards). In particular, we demonstrate that just the positions and poses of hands within the first-person view are highly informative for activity recognition, and present a computer vision approach that detects hands to automatically estimate activities. While hand pose detection is imperfect, we show that combining evidence across first-person views from the two social partners significantly improves activity recognition accuracy. This result highlights how integrating weak but complimentary sources of evidence from social partners engaged in the same task can help to recognize the nature of their interaction.

  4. Viewpoint Integration for Hand-Based Recognition of Social Interactions from a First-Person View

    PubMed Central

    Bambach, Sven; Crandall, David J.; Yu, Chen

    2016-01-01

    Wearable devices are becoming part of everyday life, from first-person cameras (GoPro, Google Glass), to smart watches (Apple Watch), to activity trackers (FitBit). These devices are often equipped with advanced sensors that gather data about the wearer and the environment. These sensors enable new ways of recognizing and analyzing the wearer’s everyday personal activities, which could be used for intelligent human-computer interfaces and other applications. We explore one possible application by investigating how egocentric video data collected from head-mounted cameras can be used to recognize social activities between two interacting partners (e.g. playing chess or cards). In particular, we demonstrate that just the positions and poses of hands within the first-person view are highly informative for activity recognition, and present a computer vision approach that detects hands to automatically estimate activities. While hand pose detection is imperfect, we show that combining evidence across first-person views from the two social partners significantly improves activity recognition accuracy. This result highlights how integrating weak but complimentary sources of evidence from social partners engaged in the same task can help to recognize the nature of their interaction. PMID:28966999

  5. Combined use of a priori data for fast system self-calibration of a non-rigid multi-camera fringe projection system

    NASA Astrophysics Data System (ADS)

    Stavroulakis, Petros I.; Chen, Shuxiao; Sims-Waterhouse, Danny; Piano, Samanta; Southon, Nicholas; Bointon, Patrick; Leach, Richard

    2017-06-01

    In non-rigid fringe projection 3D measurement systems, where either the camera or projector setup can change significantly between measurements or the object needs to be tracked, self-calibration has to be carried out frequently to keep the measurements accurate1. In fringe projection systems, it is common to use methods developed initially for photogrammetry for the calibration of the camera(s) in the system in terms of extrinsic and intrinsic parameters. To calibrate the projector(s) an extra correspondence between a pre-calibrated camera and an image created by the projector is performed. These recalibration steps are usually time consuming and involve the measurement of calibrated patterns on planes, before the actual object can continue to be measured after a motion of a camera or projector has been introduced in the setup and hence do not facilitate fast 3D measurement of objects when frequent experimental setup changes are necessary. By employing and combining a priori information via inverse rendering, on-board sensors, deep learning and leveraging a graphics processor unit (GPU), we assess a fine camera pose estimation method which is based on optimising the rendering of a model of a scene and the object to match the view from the camera. We find that the success of this calibration pipeline can be greatly improved by using adequate a priori information from the aforementioned sources.

  6. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    PubMed Central

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  7. Art critic: Multisignal vision and speech interaction system in a gaming context.

    PubMed

    Reale, Michael J; Liu, Peng; Yin, Lijun; Canavan, Shaun

    2013-12-01

    True immersion of a player within a game can only occur when the world simulated looks and behaves as close to reality as possible. This implies that the game must correctly read and understand, among other things, the player's focus, attitude toward the objects/persons in focus, gestures, and speech. In this paper, we proposed a novel system that integrates eye gaze estimation, head pose estimation, facial expression recognition, speech recognition, and text-to-speech components for use in real-time games. Both the eye gaze and head pose components utilize underlying 3-D models, and our novel head pose estimation algorithm uniquely combines scene flow with a generic head model. The facial expression recognition module uses the local binary patterns with three orthogonal planes approach on the 2-D shape index domain rather than the pixel domain, resulting in improved classification. Our system has also been extended to use a pan-tilt-zoom camera driven by the Kinect, allowing us to track a moving player. A test game, Art Critic, is also presented, which not only demonstrates the utility of our system but also provides a template for player/non-player character (NPC) interaction in a gaming context. The player alters his/her view of the 3-D world using head pose, looks at paintings/NPCs using eye gaze, and makes an evaluation based on the player's expression and speech. The NPC artist will respond with facial expression and synthetic speech based on its personality. Both qualitative and quantitative evaluations of the system are performed to illustrate the system's effectiveness.

  8. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.

    PubMed

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-07-08

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.

  9. Close-Range Tracking of Underwater Vehicles Using Light Beacons

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-01-01

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time. PMID:27023547

  10. Close-Range Tracking of Underwater Vehicles Using Light Beacons.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-03-25

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time.

  11. Synthesis and identification of three-dimensional faces from image(s) and three-dimensional generic models

    NASA Astrophysics Data System (ADS)

    Liu, Zexi; Cohen, Fernand

    2017-11-01

    We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.

  12. Handheld pose tracking using vision-inertial sensors with occlusion handling

    NASA Astrophysics Data System (ADS)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  13. MS Walheim poses with a Hasselblad camera on the flight deck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-08

    STS110-E-5017 (8 April 2002) --- Astronaut Rex J. Walheim, STS-110 mission specialist, holds a camera on the aft flight deck of the Space Shuttle Atlantis. A blue and white Earth is visible through the overhead windows of the orbiter. The image was taken with a digital still camera.

  14. Horizon Based Orientation Estimation for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.

    2016-01-01

    Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.

  15. Real-time 3D human pose recognition from reconstructed volume via voxel classifiers

    NASA Astrophysics Data System (ADS)

    Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo

    2014-03-01

    This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.

  16. Geocam Space: Enhancing Handheld Digital Camera Imagery from the International Space Station for Research and Applications

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lee, Yeon Jin; Dille, Michael

    2016-01-01

    Handheld astronaut photography of the Earth has been collected from the International Space Station (ISS) since 2000, making it the most temporally extensive remotely sensed dataset from this unique Low Earth orbital platform. Exclusive use of digital handheld cameras to perform Earth observations from the ISS began in 2004. Nadir viewing imagery is constrained by the inclined equatorial orbit of the ISS to between 51.6 degrees North and South latitude, however numerous oblique images of land surfaces above these latitudes are included in the dataset. While unmodified commercial off-the-shelf digital cameras provide only visible wavelength, three-band spectral information of limited quality current cameras used with long (400+ mm) lenses can obtain high quality spatial information approaching 2 meters/ground pixel resolution. The dataset is freely available online at the Gateway to Astronaut Photography of Earth site (http://eol.jsc.nasa.gov), and now comprises over 2 million images. Despite this extensive image catalog, use of the data for scientific research, disaster response, commercial applications and visualizations is minimal in comparison to other data collected from free-flying satellite platforms such as Landsat, Worldview, etc. This is due primarily to the lack of fully-georeferenced data products - while current digital cameras typically have integrated GPS, this does not function in the Low Earth Orbit environment. The Earth Science and Remote Sensing (ESRS) Unit at NASA Johnson Space Center provides training in Earth Science topics to ISS crews, performs daily operations and Earth observation target delivery to crews through the Crew Earth Observations (CEO) Facility on board ISS, and also catalogs digital handheld imagery acquired from orbit by manually adding descriptive metadata and determining an image geographic centerpoint using visual feature matching with other georeferenced data, e.g. Landsat, Google Earth, etc. The lack of full geolocation information native to the data makes it difficult to integrate astronaut photographs with other georeferenced data to facilitate quantitative analysis such as urban land cover/land use classification, change detection, or geologic mapping. The manual determination of image centerpoints is both time and labor-intensive, leading to delays in releasing geolocated and cataloged data to the public, such as the timely use of data for disaster response. The GeoCam Space project was funded by the ISS Program in 2015 to develop an on-orbit hardware and ground-based software system for increasing the efficiency of geolocating astronaut photographs from the ISS (Fig. 1). The Intelligent Robotics Group at NASA Ames Research Center leads the development of both the ground and on-orbit systems in collaboration with the ESRS Unit. The hardware component consists of modified smartphone elements including cameras, central processing unit, wireless Ethernet, and an inertial measurement unit (gyroscopes/accelerometers/magnetometers) reconfigured into a compact unit that attaches to the base of the current Nikon D4 camera - and its replacement, the Nikon D5 - and connects using the standard Nikon peripheral connector or USB port. This provides secondary, side and downward facing cameras perpendicular to the primary camera pointing direction. The secondary cameras observe calibration targets with known internal X, Y, and Z position affixed to the interior of the ISS to determine the camera pose corresponding to each image frame. This information is recorded by the GeoCam Space unit and indexed for correlation to the camera time recorded for each image frame. Data - image, EXIF header, and camera pose information - is transmitted to the ground software system (GeoRef) using the established Ku-band USOS downlink system. Following integration on the ground, the camera pose information provides an initial geolocation estimate for the individual film frame. This new capability represents a significant advance in geolocation from the manual feature-matching approach for both nadir and off-nadir viewing imagery. With the initial geolocation estimate, full georeferencing of an image is completed using the rapid tie-pointing interface in GeoRef, and the resulting data is added to the Gateway to Astronaut Photography of Earth online database in both Geotiff and Keyhole Markup Language (kml) formats. The integration of the GeoRef software component of Geocam Space into the CEO image cataloging workflow is complete, and disaster response imagery acquired by the ISS crew is now fully georeferenced as a standard data product. The on-orbit hardware component (GeoSens) is in final prototyping phase, and is on-schedule for launch to the ISS in late 2016. Installation and routine use of the Geocam Space system for handheld digital camera photography from the ISS is expected to significantly improve the usefulness of this unique dataset for a variety of public- and private-sector applications.

  17. Registration of partially overlapping surfaces for range image based augmented reality on mobile devices

    NASA Astrophysics Data System (ADS)

    Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.

    2012-02-01

    Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.

  18. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction.

    PubMed

    Cao, Yanpeng; Xu, Baobei; Ye, Zhangyu; Yang, Jiangxin; Cao, Yanlong; Tisse, Christel-Loic; Li, Xin

    2018-04-02

    Three-dimensional geometrical models with incorporated surface temperature data provide important information for various applications such as medical imaging, energy auditing, and intelligent robots. In this paper we present a robust method for mobile and real-time 3D thermographic reconstruction through depth and thermal sensor fusion. A multimodal imaging device consisting of a thermal camera and a RGB-D sensor is calibrated geometrically and used for data capturing. Based on the underlying principle that temperature information remains robust against illumination and viewpoint changes, we present a Thermal-guided Iterative Closest Point (T-ICP) methodology to facilitate reliable 3D thermal scanning applications. The pose of sensing device is initially estimated using correspondences found through maximizing the thermal consistency between consecutive infrared images. The coarse pose estimate is further refined by finding the motion parameters that minimize a combined geometric and thermographic loss function. Experimental results demonstrate that complimentary information captured by multimodal sensors can be utilized to improve performance of 3D thermographic reconstruction. Through effective fusion of thermal and depth data, the proposed approach generates more accurate 3D thermal models using significantly less scanning data.

  19. Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment

    PubMed Central

    Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang

    2013-01-01

    Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620

  20. Localization of Mobile Robots Using Odometry and an External Vision Sensor

    PubMed Central

    Pizarro, Daniel; Mazo, Manuel; Santiso, Enrique; Marron, Marta; Jimenez, David; Cobreces, Santiago; Losada, Cristina

    2010-01-01

    This paper presents a sensor system for robot localization based on the information obtained from a single camera attached in a fixed place external to the robot. Our approach firstly obtains the 3D geometrical model of the robot based on the projection of its natural appearance in the camera while the robot performs an initialization trajectory. This paper proposes a structure-from-motion solution that uses the odometry sensors inside the robot as a metric reference. Secondly, an online localization method based on a sequential Bayesian inference is proposed, which uses the geometrical model of the robot as a link between image measurements and pose estimation. The online approach is resistant to hard occlusions and the experimental setup proposed in this paper shows its effectiveness in real situations. The proposed approach has many applications in both the industrial and service robot fields. PMID:22319318

  1. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  2. Localization of mobile robots using odometry and an external vision sensor.

    PubMed

    Pizarro, Daniel; Mazo, Manuel; Santiso, Enrique; Marron, Marta; Jimenez, David; Cobreces, Santiago; Losada, Cristina

    2010-01-01

    This paper presents a sensor system for robot localization based on the information obtained from a single camera attached in a fixed place external to the robot. Our approach firstly obtains the 3D geometrical model of the robot based on the projection of its natural appearance in the camera while the robot performs an initialization trajectory. This paper proposes a structure-from-motion solution that uses the odometry sensors inside the robot as a metric reference. Secondly, an online localization method based on a sequential Bayesian inference is proposed, which uses the geometrical model of the robot as a link between image measurements and pose estimation. The online approach is resistant to hard occlusions and the experimental setup proposed in this paper shows its effectiveness in real situations. The proposed approach has many applications in both the industrial and service robot fields.

  3. A dataset of stereoscopic images and ground-truth disparity mimicking human fixations in peripersonal space

    PubMed Central

    Canessa, Andrea; Gibaldi, Agostino; Chessa, Manuela; Fato, Marco; Solari, Fabio; Sabatini, Silvio P.

    2017-01-01

    Binocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion. The virtual environment we developed relies on highly accurate 3D virtual models, and its full controllability allows us to obtain the stereoscopic pairs together with the ground-truth depth and camera pose information. We thus created a stereoscopic dataset: GENUA PESTO—GENoa hUman Active fixation database: PEripersonal space STereoscopic images and grOund truth disparity. The dataset aims to provide a unified framework useful for a number of problems relevant to human and computer vision, from scene exploration and eye movement studies to 3D scene reconstruction. PMID:28350382

  4. Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, S.; Peter, M.

    2017-05-01

    In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.

  5. Astronauts Mario Runco, Jr. and Andrew S. W. Thomas, both mission specialists, pose for photo while

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Astronauts Mario Runco, Jr. and Andrew S. W. Thomas, both mission specialists, pose for photo while in the mid-deck of the Earth-orbiting Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).

  6. Expedition Two crewmembers pose in Destiny Laboratory module

    NASA Image and Video Library

    2001-03-31

    ISS002-E-5488 (31 March 2001) --- The Expedition Two crewmembers -- astronaut Susan J. Helms (left), cosmonaut Yury V. Usachev and astronaut James S. Voss -- pose for a photograph in the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  7. Combining color and shape information for illumination-viewpoint invariant object recognition.

    PubMed

    Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis

    2006-01-01

    In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.

  8. Modeling Meteor Flares for Spacecraft Safety

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven

    2017-01-01

    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  9. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.

  10. Acting for the Camera: Horace Poolaw's Film Stills of Family, 1925-1950

    ERIC Educational Resources Information Center

    Jerman, Hadley

    2011-01-01

    In the late 1920s, Kiowa photographer Horace Poolaw began documenting daily life in southwestern Oklahoma with the camera. As Poolaw began making dramatically posed, narrative-rich portraits of family members, historian Lewis Mumford asserted that the modern individual now viewed him or herself "as a public character, "being…

  11. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.

    PubMed

    Chen, Jian; Jia, Bingxi; Zhang, Kaixiang

    2017-11-01

    In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.

  12. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation

    PubMed Central

    Airò Farulla, Giuseppe; Pianu, Daniele; Cempini, Marco; Cortese, Mario; Russo, Ludovico O.; Indaco, Marco; Nerino, Roberto; Chimienti, Antonio; Oddo, Calogero M.; Vitiello, Nicola

    2016-01-01

    Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator’s hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers’ hands movements. PMID:26861333

  13. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation.

    PubMed

    Airò Farulla, Giuseppe; Pianu, Daniele; Cempini, Marco; Cortese, Mario; Russo, Ludovico O; Indaco, Marco; Nerino, Roberto; Chimienti, Antonio; Oddo, Calogero M; Vitiello, Nicola

    2016-02-05

    Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master-slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator's hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers' hands movements.

  14. Testing and evaluation of a wearable augmented reality system for natural outdoor environments

    NASA Astrophysics Data System (ADS)

    Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg

    2013-05-01

    This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.

  15. A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept.

    PubMed

    Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung

    2017-02-01

    A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.

  16. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1992-01-01

    Progress on the following tasks is reported: feature calculation; membership calculation; clustering methods (including initial experiments on pose estimation); and acquisition of images (including camera calibration information for digitization of model). The report consists of 'stand alone' sections, describing the activities in each task. We would like to highlight the fact that during this quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering. We have discovered a method to remove the probabilistic constraints that the sum of the memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper, describing this approach, is included.

  17. Robust Feature Matching in Terrestrial Image Sequences

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Ghuffar, S.

    2018-04-01

    From the last decade, the feature detection, description and matching techniques are most commonly exploited in various photogrammetric and computer vision applications, which includes: 3D reconstruction of scenes, image stitching for panoramic creation, image classification, or object recognition etc. However, in terrestrial imagery of urban scenes contains various issues, which include duplicate and identical structures (i.e. repeated windows and doors) that cause the problem in feature matching phase and ultimately lead to failure of results specially in case of camera pose and scene structure estimation. In this paper, we will address the issue related to ambiguous feature matching in urban environment due to repeating patterns.

  18. A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery.

    PubMed

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J

    2014-09-26

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.

  19. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  20. Non-Parametric Blur Map Regression for Depth of Field Extension.

    PubMed

    D'Andres, Laurent; Salvador, Jordi; Kochale, Axel; Susstrunk, Sabine

    2016-04-01

    Real camera systems have a limited depth of field (DOF) which may cause an image to be degraded due to visible misfocus or too shallow DOF. In this paper, we present a blind deblurring pipeline able to restore such images by slightly extending their DOF and recovering sharpness in regions slightly out of focus. To address this severely ill-posed problem, our algorithm relies first on the estimation of the spatially varying defocus blur. Drawing on local frequency image features, a machine learning approach based on the recently introduced regression tree fields is used to train a model able to regress a coherent defocus blur map of the image, labeling each pixel by the scale of a defocus point spread function. A non-blind spatially varying deblurring algorithm is then used to properly extend the DOF of the image. The good performance of our algorithm is assessed both quantitatively, using realistic ground truth data obtained with a novel approach based on a plenoptic camera, and qualitatively with real images.

  1. Eye pupil detection system using an ensemble of regression forest and fast radial symmetry transform with a near infrared camera

    NASA Astrophysics Data System (ADS)

    Jeong, Mira; Nam, Jae-Yeal; Ko, Byoung Chul

    2017-09-01

    In this paper, we focus on pupil center detection in various video sequences that include head poses and changes in illumination. To detect the pupil center, we first find four eye landmarks in each eye by using cascade local regression based on a regression forest. Based on the rough location of the pupil, a fast radial symmetric transform is applied using the previously found pupil location to rearrange the fine pupil center. As the final step, the pupil displacement is estimated between the previous frame and the current frame to maintain the level of accuracy against a false locating result occurring in a particular frame. We generated a new face dataset, called Keimyung University pupil detection (KMUPD), with infrared camera. The proposed method was successfully applied to the KMUPD dataset, and the results indicate that its pupil center detection capability is better than that of other methods and with a shorter processing time.

  2. Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2016-06-01

    Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.

  3. STS-105 MS Barry and Commander Horowitz pose in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5185 (17 August 2001) --- Astronauts Daniel T. Barry (left), STS-105 mission specialist, and Scott J. Horowitz, commander, pause from their daily activities to pose for this photo in the Destiny laboratory while visiting the International Space Station (ISS). This image was taken with a digital still camera.

  4. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-01-01

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758

  5. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects

    NASA Astrophysics Data System (ADS)

    Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo

    2017-01-01

    Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.

  6. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Visual Odometry for Autonomous Deep-Space Navigation

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Visual Odometry fills two critical needs shared by all future exploration architectures considered by NASA: Autonomous Rendezvous and Docking (AR&D), and autonomous navigation during loss of comm. To do this, a camera is combined with cutting-edge algorithms (called Visual Odometry) into a unit that provides accurate relative pose between the camera and the object in the imagery. Recent simulation analyses have demonstrated the ability of this new technology to reliably, accurately, and quickly compute a relative pose. This project advances this technology by both preparing the system to process flight imagery and creating an activity to capture said imagery. This technology can provide a pioneering optical navigation platform capable of supporting a wide variety of future missions scenarios: deep space rendezvous, asteroid exploration, loss-of-comm.

  8. A Foot-Arch Parameter Measurement System Using a RGB-D Camera.

    PubMed

    Chun, Sungkuk; Kong, Sejin; Mun, Kyung-Ryoul; Kim, Jinwook

    2017-08-04

    The conventional method of measuring foot-arch parameters is highly dependent on the measurer's skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were -0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system.

  9. A Foot-Arch Parameter Measurement System Using a RGB-D Camera

    PubMed Central

    Kong, Sejin; Mun, Kyung-Ryoul; Kim, Jinwook

    2017-01-01

    The conventional method of measuring foot-arch parameters is highly dependent on the measurer’s skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were −0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system. PMID:28777349

  10. Improving color constancy by discounting the variation of camera spectral sensitivity

    NASA Astrophysics Data System (ADS)

    Gao, Shao-Bing; Zhang, Ming; Li, Chao-Yi; Li, Yong-Jie

    2017-08-01

    It is an ill-posed problem to recover the true scene colors from a color biased image by discounting the effects of scene illuminant and camera spectral sensitivity (CSS) at the same time. Most color constancy (CC) models have been designed to first estimate the illuminant color, which is then removed from the color biased image to obtain an image taken under white light, without the explicit consideration of CSS effect on CC. This paper first studies the CSS effect on illuminant estimation arising in the inter-dataset-based CC (inter-CC), i.e., training a CC model on one dataset and then testing on another dataset captured by a distinct CSS. We show the clear degradation of existing CC models for inter-CC application. Then a simple way is proposed to overcome such degradation by first learning quickly a transform matrix between the two distinct CSSs (CSS-1 and CSS-2). The learned matrix is then used to convert the data (including the illuminant ground truth and the color biased images) rendered under CSS-1 into CSS-2, and then train and apply the CC model on the color biased images under CSS-2, without the need of burdensome acquiring of training set under CSS-2. Extensive experiments on synthetic and real images show that our method can clearly improve the inter-CC performance for traditional CC algorithms. We suggest that by taking the CSS effect into account, it is more likely to obtain the truly color constant images invariant to the changes of both illuminant and camera sensors.

  11. Effect of Clouds on Optical Imaging of the Space Shuttle During the Ascent Phase: A Statistical Analysis Based on a 3D Model

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.

    2004-01-01

    Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.

  12. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    PubMed

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  13. Evaluation of the Intel RealSense SR300 camera for image-guided interventions and application in vertebral level localization

    NASA Astrophysics Data System (ADS)

    House, Rachael; Lasso, Andras; Harish, Vinyas; Baum, Zachary; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Optical pose tracking of medical instruments is often used in image-guided interventions. Unfortunately, compared to commonly used computing devices, optical trackers tend to be large, heavy, and expensive devices. Compact 3D vision systems, such as Intel RealSense cameras can capture 3D pose information at several magnitudes lower cost, size, and weight. We propose to use Intel SR300 device for applications where it is not practical or feasible to use conventional trackers and limited range and tracking accuracy is acceptable. We also put forward a vertebral level localization application utilizing the SR300 to reduce risk of wrong-level surgery. METHODS: The SR300 was utilized as an object tracker by extending the PLUS toolkit to support data collection from RealSense cameras. Accuracy of the camera was tested by comparing to a high-accuracy optical tracker. CT images of a lumbar spine phantom were obtained and used to create a 3D model in 3D Slicer. The SR300 was used to obtain a surface model of the phantom. Markers were attached to the phantom and a pointer and tracked using Intel RealSense SDK's built-in object tracking feature. 3D Slicer was used to align CT image with phantom using landmark registration and display the CT image overlaid on the optical image. RESULTS: Accuracy of the camera yielded a median position error of 3.3mm (95th percentile 6.7mm) and orientation error of 1.6° (95th percentile 4.3°) in a 20x16x10cm workspace, constantly maintaining proper marker orientation. The model and surface correctly aligned demonstrating the vertebral level localization application. CONCLUSION: The SR300 may be usable for pose tracking in medical procedures where limited accuracy is acceptable. Initial results suggest the SR300 is suitable for vertebral level localization.

  14. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2017-05-01

    Recent progress in the development of unmanned aerial vehicles (UAVs) has led to more and more situations in which drones like quadrocopters or octocopters pose a potential serious thread or could be used as a powerful tool for illegal activities. Therefore, counter-UAV systems are required in a lot of applications to detect approaching drones as early as possible. In this paper, an efficient and robust algorithm is presented for UAV detection using static VIS and SWIR cameras. Whereas VIS cameras with a high resolution enable to detect UAVs in the daytime in further distances, surveillance at night can be performed with a SWIR camera. First, a background estimation and structural adaptive change detection process detects movements and other changes in the observed scene. Afterwards, the local density of changes is computed used for background density learning and to build up the foreground model which are compared in order to finally get the UAV alarm result. The density model is used to filter out noise effects, on the one hand. On the other hand, moving scene parts like moving leaves in the wind or driving cars on a street can easily be learned in order to mask such areas out and suppress false alarms there. This scene learning is done automatically simply by processing without UAVs in order to capture the normal situation. The given results document the performance of the presented approach in VIS and SWIR in different situations.

  15. The Kinect as an interventional tracking system

    NASA Astrophysics Data System (ADS)

    Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael

    2012-02-01

    This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.

  16. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Ye, W.; Qiao, G.; Kong, F.; Guo, S.; Ma, X.; Tong, X.; Li, R.

    2016-06-01

    Global climate change is one of the major challenges that all nations are commonly facing. Long-term observations of the Antarctic ice sheet have been playing a critical role in quantitatively estimating and predicting effects resulting from the global changes. The film-based ARGON reconnaissance imagery provides a remarkable data source for studying the Antarctic ice-sheet in 1960s, thus greatly extending the time period of Antarctica surface observations. To deal with the low-quality images and the unavailability of camera poses, a systematic photogrammetric approach is proposed to reconstruct the interior and exterior orientation information for further glacial mapping applications, including ice flow velocity mapping and mass balance estimation. Some noteworthy details while performing geometric modelling using the ARGON images were introduced, including methods and results for handling specific effects of film deformation, damaged or missing fiducial marks and calibration report, automatic fiducial mark detection, control point selection through Antarctic shadow and ice surface terrain analysis, and others. Several sites in East Antarctica were tested. As an example, four images in the Byrd glacier region were used to assess the accuracy of the geometric modelling. A digital elevation model (DEM) and an orthophoto map of Byrd glacier were generated. The accuracy of the ground positions estimated by using independent check points is within one nominal pixel of 140 m of ARGON imagery. Furthermore, a number of significant features, such as ice flow velocity and regional change patterns, will be extracted and analysed.

  17. Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case

    PubMed Central

    Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique

    2017-01-01

    This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144

  18. Operating Room of the Future: Advanced Technologies in Safe and Efficient Operating Rooms

    DTIC Science & Technology

    2008-10-01

    fit” or compatibility with different tasks. Ideally, the optimal match between tasks and well-designed display alternatives will be self -apparent...hierarchical display environment. The FARO robot arm is used as an accurate and reliable tracker to control a virtual camera. The virtual camera pose is...in learning outcomes due to self -feedback, improvements in learning outcomes due to instructor feedback and synchronous versus asynchronous

  19. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles

    PubMed Central

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe

    2017-01-01

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work. PMID:28718788

  20. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.

    PubMed

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian

    2017-07-18

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  1. Implementation of a Real-Time Stacking Algorithm in a Photogrammetric Digital Camera for Uavs

    NASA Astrophysics Data System (ADS)

    Audi, A.; Pierrot-Deseilligny, M.; Meynard, C.; Thom, C.

    2017-08-01

    In the recent years, unmanned aerial vehicles (UAVs) have become an interesting tool in aerial photography and photogrammetry activities. In this context, some applications (like cloudy sky surveys, narrow-spectral imagery and night-vision imagery) need a longexposure time where one of the main problems is the motion blur caused by the erratic camera movements during image acquisition. This paper describes an automatic real-time stacking algorithm which produces a high photogrammetric quality final composite image with an equivalent long-exposure time using several images acquired with short-exposure times. Our method is inspired by feature-based image registration technique. The algorithm is implemented on the light-weight IGN camera, which has an IMU sensor and a SoC/FPGA. To obtain the correct parameters for the resampling of images, the presented method accurately estimates the geometrical relation between the first and the Nth image, taking into account the internal parameters and the distortion of the camera. Features are detected in the first image by the FAST detector, than homologous points on other images are obtained by template matching aided by the IMU sensors. The SoC/FPGA in the camera is used to speed up time-consuming parts of the algorithm such as features detection and images resampling in order to achieve a real-time performance as we want to write only the resulting final image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images, as well as block diagrams of the described architecture. The resulting stacked image obtained on real surveys doesn't seem visually impaired. Timing results demonstrate that our algorithm can be used in real-time since its processing time is less than the writing time of an image in the storage device. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real-time the gyrometers of the IMU.

  2. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  3. Integrating Depth and Image Sequences for Planetary Rover Mapping Using Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Peng, M.; Wan, W.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Zhao, Q.; Teng, B.; Mao, X.

    2018-04-01

    RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of the proposed method.

  4. Robust Kalman filtering cooperated Elman neural network learning for vision-sensing-based robotic manipulation with global stability.

    PubMed

    Zhong, Xungao; Zhong, Xunyu; Peng, Xiafu

    2013-10-08

    In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained) using a new input-output data pair vector (obtained from the KF cycle) to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme's performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.

  5. Multiple vehicle tracking in aerial video sequence using driver behavior analysis and improved deterministic data association

    NASA Astrophysics Data System (ADS)

    Zhang, Xunxun; Xu, Hongke; Fang, Jianwu

    2018-01-01

    Along with the rapid development of the unmanned aerial vehicle technology, multiple vehicle tracking (MVT) in aerial video sequence has received widespread interest for providing the required traffic information. Due to the camera motion and complex background, MVT in aerial video sequence poses unique challenges. We propose an efficient MVT algorithm via driver behavior-based Kalman filter (DBKF) and an improved deterministic data association (IDDA) method. First, a hierarchical image registration method is put forward to compensate the camera motion. Afterward, to improve the accuracy of the state estimation, we propose the DBKF module by incorporating the driver behavior into the Kalman filter, where artificial potential field is introduced to reflect the driver behavior. Then, to implement the data association, a local optimization method is designed instead of global optimization. By introducing the adaptive operating strategy, the proposed IDDA method can also deal with the situation in which the vehicles suddenly appear or disappear. Finally, comprehensive experiments on the DARPA VIVID data set and KIT AIS data set demonstrate that the proposed algorithm can generate satisfactory and superior results.

  6. Dezhurov and Tyurin pose in Zvezda during Expedition Three

    NASA Image and Video Library

    2001-08-01

    ISS003-E-5498 (August 2001) --- Cosmonauts Mikhail Tyurin (left) and Vladimir Dezhurov, Expedition Three flight engineers, pose for a photograph in the Zvezda Service Module. Tyurin and Dezhurov represent Rosaviakosmos. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.

  7. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  8. Exploring point-cloud features from partial body views for gender classification

    NASA Astrophysics Data System (ADS)

    Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga

    2012-06-01

    In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further investigation of more complex partial body viewing problems and new methods for estimating the two position coordinates for the axis location and the unknown body orientation angle.

  9. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    NASA Astrophysics Data System (ADS)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative poses between all frames are given.

  10. A Framework for Analyzing the Whole Body Surface Area from a Single View

    PubMed Central

    Doretto, Gianfranco; Adjeroh, Donald

    2017-01-01

    We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895

  11. Remote Viewer for Maritime Robotics Software

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Wolf, Michael; Huntsberger, Terrance L.; Howard, Andrew B.

    2013-01-01

    This software is a viewer program for maritime robotics software that provides a 3D visualization of the boat pose, its position history, ENC (Electrical Nautical Chart) information, camera images, map overlay, and detected tracks.

  12. Automatic techniques for 3D reconstruction of critical workplace body postures from range imaging data

    NASA Astrophysics Data System (ADS)

    Westfeld, Patrick; Maas, Hans-Gerd; Bringmann, Oliver; Gröllich, Daniel; Schmauder, Martin

    2013-11-01

    The paper shows techniques for the determination of structured motion parameters from range camera image sequences. The core contribution of the work presented here is the development of an integrated least squares 3D tracking approach based on amplitude and range image sequences to calculate dense 3D motion vector fields. Geometric primitives of a human body model are fitted to time series of range camera point clouds using these vector fields as additional information. Body poses and motion information for individual body parts are derived from the model fit. On the basis of these pose and motion parameters, critical body postures are detected. The primary aim of the study is to automate ergonomic studies for risk assessments regulated by law, identifying harmful movements and awkward body postures in a workplace.

  13. The Expedition Two crew pose in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5183 (17 August 2001) --- The Expedition Two crew members pause from their daily activities to pose for a group photo in the Destiny laboratory while visiting the International Space Station (ISS). From left to right are, astronaut Susan J. Helms, flight engineer, cosmonaut Yury V. Usachev, mission commander, and astronaut James S. Voss, flight engineer. Usachev represents Rosaviakosmos. This image was taken with a digital still camera.

  14. Image-based aircraft pose estimation: a comparison of simulations and real-world data

    NASA Astrophysics Data System (ADS)

    Breuers, Marcel G. J.; de Reus, Nico

    2001-10-01

    The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.

  15. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    NASA Astrophysics Data System (ADS)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.

  16. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  17. The investigation and implementation of real-time face pose and direction estimation on mobile computing devices

    NASA Astrophysics Data System (ADS)

    Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae

    2012-04-01

    The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.

  18. STS-99 Commander Kregel poses with EARTHKAM camera on OV-105's flight deck

    NASA Image and Video Library

    2000-03-30

    STS099-314-035 (11-22 February 2000) ---Astronaut Kevin R. Kregel, mission commander, works with camera equipment, which was used for the EarthKAM project. The camera stayed busy throughout the 11-day mission taking vertical imagery of the Earth points of opportunity for the project. Students across the United States and in France, Germany and Japan took photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more.

  19. Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D

    ERIC Educational Resources Information Center

    Doliotis, Paul

    2013-01-01

    The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…

  20. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.

    PubMed

    Alatise, Mary B; Hancke, Gerhard P

    2017-09-21

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs).

  1. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter

    PubMed Central

    Hancke, Gerhard P.

    2017-01-01

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs). PMID:28934102

  2. Rapid assessment of forest canopy and light regime using smartphone hemispherical photography.

    PubMed

    Bianchi, Simone; Cahalan, Christine; Hale, Sophie; Gibbons, James Michael

    2017-12-01

    Hemispherical photography (HP), implemented with cameras equipped with "fisheye" lenses, is a widely used method for describing forest canopies and light regimes. A promising technological advance is the availability of low-cost fisheye lenses for smartphone cameras. However, smartphone camera sensors cannot record a full hemisphere. We investigate whether smartphone HP is a cheaper and faster but still adequate operational alternative to traditional cameras for describing forest canopies and light regimes. We collected hemispherical pictures with both smartphone and traditional cameras in 223 forest sample points, across different overstory species and canopy densities. The smartphone image acquisition followed a faster and simpler protocol than that for the traditional camera. We automatically thresholded all images. We processed the traditional camera images for Canopy Openness (CO) and Site Factor estimation. For smartphone images, we took two pictures with different orientations per point and used two processing protocols: (i) we estimated and averaged total canopy gap from the two single pictures, and (ii) merging the two pictures together, we formed images closer to full hemispheres and estimated from them CO and Site Factors. We compared the same parameters obtained from different cameras and estimated generalized linear mixed models (GLMMs) between them. Total canopy gap estimated from the first processing protocol for smartphone pictures was on average significantly higher than CO estimated from traditional camera images, although with a consistent bias. Canopy Openness and Site Factors estimated from merged smartphone pictures of the second processing protocol were on average significantly higher than those from traditional cameras images, although with relatively little absolute differences and scatter. Smartphone HP is an acceptable alternative to HP using traditional cameras, providing similar results with a faster and cheaper methodology. Smartphone outputs can be directly used as they are for ecological studies, or converted with specific models for a better comparison to traditional cameras.

  3. Vision-Based Precision Landings of a Tailsitter UAV

    DTIC Science & Technology

    2010-04-01

    2.2: Schematic of the controller used in simulation. The block diagram shown in Figure 2.2 shows the simulation structure used to simulate the vision...the structure of the flight facility walls, any vibration applied to the structure would potentially change the pose of the cameras. Each camera’s pose...relative to the target in Chap- ter 4, a flat earth assumption was made. In several situations the approximation that the ground over which the UAV is

  4. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

  5. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  6. Using the Standard Deviation of a Region of Interest in an Image to Estimate Camera to Emitter Distance

    PubMed Central

    Cano-García, Angel E.; Lazaro, José Luis; Infante, Arturo; Fernández, Pedro; Pompa-Chacón, Yamilet; Espinoza, Felipe

    2012-01-01

    In this study, a camera to infrared diode (IRED) distance estimation problem was analyzed. The main objective was to define an alternative to measures depth only using the information extracted from pixel grey levels of the IRED image to estimate the distance between the camera and the IRED. In this paper, the standard deviation of the pixel grey level in the region of interest containing the IRED image is proposed as an empirical parameter to define a model for estimating camera to emitter distance. This model includes the camera exposure time, IRED radiant intensity and the distance between the camera and the IRED. An expression for the standard deviation model related to these magnitudes was also derived and calibrated using different images taken under different conditions. From this analysis, we determined the optimum parameters to ensure the best accuracy provided by this alternative. Once the model calibration had been carried out, a differential method to estimate the distance between the camera and the IRED was defined and applied, considering that the camera was aligned with the IRED. The results indicate that this method represents a useful alternative for determining the depth information. PMID:22778608

  7. Using the standard deviation of a region of interest in an image to estimate camera to emitter distance.

    PubMed

    Cano-García, Angel E; Lazaro, José Luis; Infante, Arturo; Fernández, Pedro; Pompa-Chacón, Yamilet; Espinoza, Felipe

    2012-01-01

    In this study, a camera to infrared diode (IRED) distance estimation problem was analyzed. The main objective was to define an alternative to measures depth only using the information extracted from pixel grey levels of the IRED image to estimate the distance between the camera and the IRED. In this paper, the standard deviation of the pixel grey level in the region of interest containing the IRED image is proposed as an empirical parameter to define a model for estimating camera to emitter distance. This model includes the camera exposure time, IRED radiant intensity and the distance between the camera and the IRED. An expression for the standard deviation model related to these magnitudes was also derived and calibrated using different images taken under different conditions. From this analysis, we determined the optimum parameters to ensure the best accuracy provided by this alternative. Once the model calibration had been carried out, a differential method to estimate the distance between the camera and the IRED was defined and applied, considering that the camera was aligned with the IRED. The results indicate that this method represents a useful alternative for determining the depth information.

  8. Camera Trajectory fromWide Baseline Images

    NASA Astrophysics Data System (ADS)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the angle θ of its corresponding rays w.r.t. the optical axis as θ = ar 1+br2 . After a successful calibration, we know the correspondence of the image points to the 3D optical rays in the coordinate system of the camera. The following steps aim at finding the transformation between the camera and the world coordinate systems, i.e. the pose of the camera in the 3D world, using 2D image matches. For computing 3D structure, we construct a set of tentative matches detecting different affine covariant feature regions including MSER, Harris Affine, and Hessian Affine in acquired images. These features are alternative to popular SIFT features and work comparably in our situation. Parameters of the detectors are chosen to limit the number of regions to 1-2 thousands per image. The detected regions are assigned local affine frames (LAF) and transformed into standard positions w.r.t. their LAFs. Discrete Cosine Descriptors are computed for each region in the standard position. Finally, mutual distances of all regions in one image and all regions in the other image are computed as the Euclidean distances of their descriptors and tentative matches are constructed by selecting the mutually closest pairs. Opposed to the methods using short baseline images, simpler image features which are not affine covariant cannot be used because the view point can change a lot between consecutive frames. Furthermore, feature matching has to be performed on the whole frame because no assumptions on the proximity of the consecutive projections can be made for wide baseline images. This is making the feature detection, description, and matching much more time-consuming than it is for short baseline images and limits the usage to low frame rate sequences when operating in real-time. Robust 3D structure can be computed by RANSAC which searches for the largest subset of the set of tentative matches which is, within a predefined threshold ", consistent with an epipolar geometry. We use ordered sampling as suggested in to draw 5-tuples from the list of tentative matches ordered ascendingly by the distance of their descriptors which may help to reduce the number of samples in RANSAC. From each 5-tuple, relative orientation is computed by solving the 5-point minimal relative orientation problem for calibrated cameras. Often, there are more models which are supported by a large number of matches. Thus the chance that the correct model, even if it has the largest support, will be found by running a single RANSAC is small. Work suggested to generate models by randomized sampling as in RANSAC but to use soft (kernel) voting for a parameter instead of looking for the maximal support. The best model is then selected as the one with the parameter closest to the maximum in the accumulator space. In our case, we vote in a two-dimensional accumulator for the estimated camera motion direction. However, unlike in, we do not cast votes directly by each sampled epipolar geometry but by the best epipolar geometries recovered by ordered sampling of RANSAC. With our technique, we could go up to the 98.5 % contamination of mismatches with comparable effort as simple RANSAC does for the contamination by 84 %. The relative camera orientation with the motion direction closest to the maximum in the voting space is finally selected. As already mentioned in the first paragraph, the use of camera trajectory estimates is quite wide. In we have introduced a technique for measuring the size of camera translation relatively to the observed scene which uses the dominant apical angle computed at the reconstructed scene points and is robust against mismatches. The experiments demonstrated that the measure can be used to improve the robustness of camera path computation and object recognition for methods which use a geometric, e.g. the ground plane, constraint such as does for the detection of pedestrians. Using the camera trajectories, perspective cutouts with stabilized horizon are constructed and an arbitrary object recognition routine designed to work with images acquired by perspective cameras can be used without any further modifications.

  9. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    NASA Astrophysics Data System (ADS)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  10. Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.

    PubMed

    Donné, Simon; Goossens, Bart; Philips, Wilfried

    2017-08-23

    Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.

  11. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    PubMed Central

    Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming

    2016-01-01

    Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633

  12. Estimating satellite pose and motion parameters using a novelty filter and neural net tracker

    NASA Technical Reports Server (NTRS)

    Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne

    1989-01-01

    A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.

  13. Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation

    NASA Astrophysics Data System (ADS)

    Lim, Tae W.

    2015-06-01

    A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.

  14. Automatic Intra-Operative Stitching of Non-Overlapping Cone-Beam CT Acquisitions

    PubMed Central

    Fotouhi, Javad; Fuerst, Bernhard; Unberath, Mathias; Reichenstein, Stefan; Lee, Sing Chun; Johnson, Alex A.; Osgood, Greg M.; Armand, Mehran; Navab, Nassir

    2018-01-01

    Purpose Cone-Beam Computed Tomography (CBCT) is one of the primary imaging modalities in radiation therapy, dentistry, and orthopedic interventions. While CBCT provides crucial intraoperative information, it is bounded by a limited imaging volume, resulting in reduced effectiveness. This paper introduces an approach allowing real-time intraoperative stitching of overlapping and non-overlapping CBCT volumes to enable 3D measurements on large anatomical structures. Methods A CBCT-capable mobile C-arm is augmented with a Red-Green-Blue-Depth (RGBD) camera. An off-line co-calibration of the two imaging modalities results in co-registered video, infrared, and X-ray views of the surgical scene. Then, automatic stitching of multiple small, non-overlapping CBCT volumes is possible by recovering the relative motion of the C-arm with respect to the patient based on the camera observations. We propose three methods to recover the relative pose: RGB-based tracking of visual markers that are placed near the surgical site, RGBD-based simultaneous localization and mapping (SLAM) of the surgical scene which incorporates both color and depth information for pose estimation, and surface tracking of the patient using only depth data provided by the RGBD sensor. Results On an animal cadaver, we show stitching errors as low as 0.33 mm, 0.91 mm, and 1.72mm when the visual marker, RGBD SLAM, and surface data are used for tracking, respectively. Conclusions The proposed method overcomes one of the major limitations of CBCT C-arm systems by integrating vision-based tracking and expanding the imaging volume without any intraoperative use of calibration grids or external tracking systems. We believe this solution to be most appropriate for 3D intraoperative verification of several orthopedic procedures. PMID:29569728

  15. Commander Bloomfield poses on the middeck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-08

    STS110-E-5033 (8 April 2002) --- Astronaut Michael J. Bloomfield, STS-110 mission commander, is photographed on the mid deck of the Space Shuttle Atlantis. The image was taken with a digital still camera.

  16. STS-48 crew poses for onboard (inflight) portrait on OV-103's middeck

    NASA Image and Video Library

    1991-09-15

    STS048-21-04 (15 Sept 1991) --- The five astronauts pose on the Space Shuttle Discovery's middeck for the traditional in-flight crew portrait. Astronaut John O. Creighton, mission commander, is at center. Others are (front row, left to right) Kenneth S. Reightler, pilot; and James F. Buchli, mission specialist; and (rear row, left to right) astronauts Mark N. Brown and Charles D. (Sam) Gemar, both mission specialists. The image was photographed with a pre-set 35mm camera.

  17. STS-44 crew poses for their onboard (in-space) portrait on OV-104's middeck

    NASA Image and Video Library

    1991-12-01

    STS044-50-033 (24 Nov-1 Dec 1991) --- The six crewmembers for STS-44 assemble on the middeck. An auto-set 35mm camera recorded this view of them enroute to a more formal pose. Astronaut Frederick D. Gregory, Mission Commander, is at center. Clockwise from his position, other crewmembers are Payload Specialist Thomas J. Hennen; and astronauts James S. Voss, Mario Runco Jr. and F. Story Musgrave, all Mission Specialists, and Terence T. (Tom) Henricks, Pilot.

  18. Helms, Usachev and Voss pose with the ISS Ships Log

    NASA Image and Video Library

    2001-08-20

    STS105-E-5386 (20 August 2001) --- The Expedition Two crewmembers, Susan J. Helms (left), flight engineer, cosmonaut Yury V. Usachev, mission commander, and James S. Voss, flight engineer, pose in Unity Node 1 for their final group photograph aboard the International Space Station (ISS). With the arrival of Expedition Three, Usachev, Helms and Voss will return to Earth with the STS-105 crew thus completing their five month mission. This image was taken with a digital still camera.

  19. Are camera surveys useful for assessing recruitment in white-tailed deer?

    DOE PAGES

    Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.; ...

    2016-12-27

    Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less

  20. Robust estimation of simulated urinary volume from camera images under bathroom illumination.

    PubMed

    Honda, Chizuru; Bhuiyan, Md Shoaib; Kawanaka, Haruki; Watanabe, Eiichi; Oguri, Koji

    2016-08-01

    General uroflowmetry method involves the risk of nosocomial infections or time and effort of the recording. Medical institutions, therefore, need to measure voided volume simply and hygienically. Multiple cylindrical model that can estimate the fluid flow rate from the photographed image using camera has been proposed in an earlier study. This study implemented a flow rate estimation by using a general-purpose camera system (Raspberry Pi Camera Module) and the multiple cylindrical model. However, large amounts of noise in extracting liquid region are generated by the variation of the illumination when performing measurements in the bathroom. So the estimation error gets very large. In other words, the specifications of the previous study's camera setup regarding the shutter type and the frame rate was too strict. In this study, we relax the specifications to achieve a flow rate estimation using a general-purpose camera. In order to determine the appropriate approximate curve, we propose a binarizing method using background subtraction at each scanning row and a curve approximation method using RANSAC. Finally, by evaluating the estimation accuracy of our experiment and by comparing it with the earlier study's results, we show the effectiveness of our proposed method for flow rate estimation.

  1. Audiovisual quality estimation of mobile phone video cameras with interpretation-based quality approach

    NASA Astrophysics Data System (ADS)

    Radun, Jenni E.; Virtanen, Toni; Olives, Jean-Luc; Vaahteranoksa, Mikko; Vuori, Tero; Nyman, Göte

    2007-01-01

    We present an effective method for comparing subjective audiovisual quality and the features related to the quality changes of different video cameras. Both quantitative estimation of overall quality and qualitative description of critical quality features are achieved by the method. The aim was to combine two image quality evaluation methods, the quantitative Absolute Category Rating (ACR) method with hidden reference removal and the qualitative Interpretation- Based Quality (IBQ) method in order to see how they complement each other in audiovisual quality estimation tasks. 26 observers estimated the audiovisual quality of six different cameras, mainly mobile phone video cameras. In order to achieve an efficient subjective estimation of audiovisual quality, only two contents with different quality requirements were recorded with each camera. The results show that the subjectively important quality features were more related to the overall estimations of cameras' visual video quality than to the features related to sound. The data demonstrated two significant quality dimensions related to visual quality: darkness and sharpness. We conclude that the qualitative methodology can complement quantitative quality estimations also with audiovisual material. The IBQ approach is valuable especially, when the induced quality changes are multidimensional.

  2. Camera traps and activity signs to estimate wild boar density and derive abundance indices.

    PubMed

    Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave

    2018-04-01

    Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.

  3. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.

    PubMed

    Song, Yu; Nuske, Stephen; Scherer, Sebastian

    2016-12-22

    State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.

  4. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  5. Pose and motion recovery from feature correspondences and a digital terrain map.

    PubMed

    Lerner, Ronen; Rivlin, Ehud; Rotstein, Héctor P

    2006-09-01

    A novel algorithm for pose and motion estimation using corresponding features and a Digital Terrain Map is proposed. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the novel algorithm is demonstrated in variety of scenarios.

  6. Raven: An On-Orbit Relative Navigation Demonstration Using International Space Station Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Strube, Matthew; Henry, Ross; Skeleton, Eugene; Eepoel, John Van; Gill, Nat; McKenna, Reed

    2015-01-01

    Since the last Hubble Servicing Mission five years ago, the Satellite Servicing Capabilities Office (SSCO) at the NASA Goddard Space Flight Center (GSFC) has been focusing on maturing the technologies necessary to robotically service orbiting legacy assets-spacecraft not necessarily designed for in-flight service. Raven, SSCO's next orbital experiment to the International Space Station (ISS), is a real-time autonomous non-cooperative relative navigation system that will mature the estimation algorithms required for rendezvous and proximity operations for a satellite-servicing mission. Raven will fly as a hosted payload as part of the Space Test Program's STP-H5 mission, which will be mounted on an external ExPRESS Logistics Carrier (ELC) and will image the many visiting vehicles arriving and departing from the ISS as targets for observation. Raven will host multiple sensors: a visible camera with a variable field of view lens, a long-wave infrared camera, and a short-wave flash lidar. This sensor suite can be pointed via a two-axis gimbal to provide a wide field of regard to track the visiting vehicles as they make their approach. Various real-time vision processing algorithms will produce range, bearing, and six degree of freedom pose measurements that will be processed in a relative navigation filter to produce an optimal relative state estimate. In this overview paper, we will cover top-level requirements, experimental concept of operations, system design, and the status of Raven integration and test activities.

  7. Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.

    PubMed

    Bell, Charreau S; Obstein, Keith L; Valdastri, Pietro

    2013-11-01

    Colorectal cancer is one of the leading causes of cancer-related deaths in the world, although it can be effectively treated if detected early. Teleoperated flexible endoscopes are an emerging technology to ease patient apprehension about the procedure, and subsequently increase compliance. Essential to teleoperation is robust feedback reflecting the change in pose (i.e., position and orientation) of the tip of the endoscope. The goal of this study is to first describe a novel image-based tracking system for teleoperated flexible endoscopes, and subsequently determine its viability in a clinical setting. The proposed approach leverages artificial neural networks (ANNs) to learn the mapping that links the optical flow between two sequential images to the change in the pose of the camera. Secondly, the study investigates for the first time how narrow band illumination (NBI) - today available in commercial gastrointestinal endoscopes - can be applied to enhance feature extraction, and quantify the effect of NBI and white light illumination (WLI), as well as their color information, on the strength of features extracted from the endoscopic camera stream. In order to provide the best features for the neural networks to learn the change in pose based on the image stream, we investigated two different imaging modalities - WLI and NBI - and we applied two different spatial partitions - lumen-centered and grid-based - to create descriptors used as input to the ANNs. An experiment was performed to compare the error of these four variations, measured in root mean square error (RMSE) from ground truth given by a robotic arm, to that of a commercial state-of-the-art magnetic tracker. The viability of this technique for a clinical setting was then tested using the four ANN variations, a magnetic tracker, and a commercial colonoscope. The trial was performed by an expert endoscopist (>2000 lifetime procedures) on a colonoscopy training model with porcine blood, and the RMSE of the ANN output was calculated with respect to the magnetic tracker readings. Using the image stream obtained from the commercial endoscope, the strength of features extracted was evaluated. In the first experiment, the best ANNs resulted from grid-based partitioning under WLI (2.42mm RMSE) for position, and from lumen-centered partitioning under NBI (1.69° RMSE) for rotation. By comparison, the performance of the tracker was 2.49mm RMSE in position and 0.89° RMSE in rotation. The trial with the commercial endoscope indicated that lumen-centered partitioning was the best overall, while NBI outperformed WLI in terms of illumination modality. The performance of lumen-centered partitioning with NBI was 1.03±0.8mm RMSE in positional degrees of freedom (DOF), and 1.26±0.98° RMSE in rotational DOF, while with WLI, the performance was 1.56±1.15mm RMSE in positional DOF and 2.45±1.90° RMSE in rotational DOF. Finally, the features extracted under NBI were found to be twice as strong as those extracted under WLI, but no significance in feature strengths was observed between a grayscale version of the image, and the red, blue, and green color channels. This work demonstrates that both WLI and NBI, combined with feature partitioning based on the anatomy of the colon, provide valid mechanisms for endoscopic camera pose estimation via image stream. Illumination provided by WLI and NBI produce ANNs with similar performance which are comparable to that of a state-of-the-art magnetic tracker. However, NBI produces features that are stronger than WLI, which enables more robust feature tracking, and better performance of the ANN in terms of accuracy. Thus, NBI with lumen-centered partitioning resulted the best approach among the different variations tested for vision-based pose estimation. The proposed approach takes advantage of components already available in commercial gastrointestinal endoscopes to provide accurate feedback about the motion of the tip of the endoscope. This solution may serve as an enabling technology for closed-loop control of teleoperated flexible endoscopes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mobile markerless augmented reality and its application in forensic medicine.

    PubMed

    Kilgus, Thomas; Heim, Eric; Haase, Sven; Prüfer, Sabine; Müller, Michael; Seitel, Alexander; Fangerau, Markus; Wiebe, Tamara; Iszatt, Justin; Schlemmer, Heinz-Peter; Hornegger, Joachim; Yen, Kathrin; Maier-Hein, Lena

    2015-05-01

    During autopsy, forensic pathologists today mostly rely on visible indication, tactile perception and experience to determine the cause of death. Although computed tomography (CT) data is often available for the bodies under examination, these data are rarely used due to the lack of radiological workstations in the pathological suite. The data may prevent the forensic pathologist from damaging evidence by allowing him to associate, for example, external wounds to internal injuries. To facilitate this, we propose a new multimodal approach for intuitive visualization of forensic data and evaluate its feasibility. A range camera is mounted on a tablet computer and positioned in a way such that the camera simultaneously captures depth and color information of the body. A server estimates the camera pose based on surface registration of CT and depth data to allow for augmented reality visualization of the internal anatomy directly on the tablet. Additionally, projection of color information onto the CT surface is implemented. We validated the system in a postmortem pilot study using fiducials attached to the skin for quantification of a mean target registration error of [Formula: see text] mm. The system is mobile, markerless, intuitive and real-time capable with sufficient accuracy. It can support the forensic pathologist during autopsy with augmented reality and textured surfaces. Furthermore, the system enables multimodal documentation for presentation in court. Despite its preliminary prototype status, it has high potential due to its low price and simplicity.

  9. Study on the initial value for the exterior orientation of the mobile version

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-jing; Li, Shi-liang

    2011-10-01

    Single mobile vision coordinate measurement system is in the measurement site using a single camera body and a notebook computer to achieve three-dimensional coordinates. To obtain more accurate approximate values of exterior orientation calculation in the follow-up is very important in the measurement process. The problem is a typical one for the space resection, and now studies on this topic have been widely conducted in research. Single-phase space resection mainly focuses on two aspects: of co-angular constraint based on the method, its representatives are camera co-angular constraint pose estimation algorithm and the cone angle law; the other is a direct linear transformation (DLT). One common drawback for both methods is that the CCD lens distortion is not considered. When the initial value was calculated with the direct linear transformation method, the distribution and abundance of control points is required relatively high, the need that control points can not be distributed in the same plane must be met, and there are at least six non- coplanar control points. However, its usefulness is limited. Initial value will directly influence the convergence and convergence speed of the ways of calculation. This paper will make the nonlinear of the total linear equations linearized by using the total linear equations containing distorted items and Taylor series expansion, calculating the initial value of the camera exterior orientation. Finally, the initial value is proved to be better through experiments.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.

    Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less

  11. Effects of camera location on the reconstruction of 3D flare trajectory with two cameras

    NASA Astrophysics Data System (ADS)

    Özsaraç, Seçkin; Yeşilkaya, Muhammed

    2015-05-01

    Flares are used as valuable electronic warfare assets for the battle against infrared guided missiles. The trajectory of the flare is one of the most important factors that determine the effectiveness of the counter measure. Reconstruction of the three dimensional (3D) position of a point, which is seen by multiple cameras, is a common problem. Camera placement, camera calibration, corresponding pixel determination in between the images of different cameras and also the triangulation algorithm affect the performance of 3D position estimation. In this paper, we specifically investigate the effects of camera placement on the flare trajectory estimation performance by simulations. Firstly, 3D trajectory of a flare and also the aircraft, which dispenses the flare, are generated with simple motion models. Then, we place two virtual ideal pinhole camera models on different locations. Assuming the cameras are tracking the aircraft perfectly, the view vectors of the cameras are computed. Afterwards, using the view vector of each camera and also the 3D position of the flare, image plane coordinates of the flare on both cameras are computed using the field of view (FOV) values. To increase the fidelity of the simulation, we have used two sources of error. One is used to model the uncertainties in the determination of the camera view vectors, i.e. the orientations of the cameras are measured noisy. Second noise source is used to model the imperfections of the corresponding pixel determination of the flare in between the two cameras. Finally, 3D position of the flare is estimated using the corresponding pixel indices, view vector and also the FOV of the cameras by triangulation. All the processes mentioned so far are repeated for different relative camera placements so that the optimum estimation error performance is found for the given aircraft and are trajectories.

  12. Variation in detection among passive infrared triggered-cameras used in wildlife research

    USGS Publications Warehouse

    Damm, Philip E.; Grand, James B.; Barnett, Steven W.

    2010-01-01

    Precise and accurate estimates of demographics such as age structure, productivity, and density are necessary in determining habitat and harvest management strategies for wildlife populations. Surveys using automated cameras are becoming an increasingly popular tool for estimating these parameters. However, most camera studies fail to incorporate detection probabilities, leading to parameter underestimation. The objective of this study was to determine the sources of heterogeneity in detection for trail cameras that incorporate a passive infrared (PIR) triggering system sensitive to heat and motion. Images were collected at four baited sites within the Conecuh National Forest, Alabama, using three cameras at each site operating continuously over the same seven-day period. Detection was estimated for four groups of animals based on taxonomic group and body size. Our hypotheses of detection considered variation among bait sites and cameras. The best model (w=0.99) estimated different rates of detection for each camera in addition to different detection rates for four animal groupings. Factors that explain this variability might include poor manufacturing tolerances, variation in PIR sensitivity, animal behavior, and species-specific infrared radiation. Population surveys using trail cameras with PIR systems must incorporate detection rates for individual cameras. Incorporating time-lapse triggering systems into survey designs should eliminate issues associated with PIR systems.

  13. Camera Network Topology Discovery Literature Review

    DTIC Science & Technology

    2011-11-01

    essential for 21st century military, enviromental and surveillance applications [Devarajan, Cheng & Radke 2008]. Computer networks pose several research...starting and ending points of object trajectories into entry/exit regions [Makris & Ellis 2003]. 3LDA is a new standard for document analysis. The model

  14. Helms in Node 1/Unity module

    NASA Image and Video Library

    2001-04-07

    ISS002-E-5511 (07 April 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, pauses from moving through the Node 1 / Unity module of the International Space Station (ISS) to pose for a photograph. This image was recorded with a digital still camera.

  15. Head pose estimation in computer vision: a survey.

    PubMed

    Murphy-Chutorian, Erik; Trivedi, Mohan Manubhai

    2009-04-01

    The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.

  16. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  17. Trapping Elusive Cats: Using Intensive Camera Trapping to Estimate the Density of a Rare African Felid

    PubMed Central

    Brassine, Eléanor; Parker, Daniel

    2015-01-01

    Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species. PMID:26698574

  18. Trapping Elusive Cats: Using Intensive Camera Trapping to Estimate the Density of a Rare African Felid.

    PubMed

    Brassine, Eléanor; Parker, Daniel

    2015-01-01

    Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100 km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species.

  19. Real-time Awake Animal Motion Tracking System for SPECT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon

    Enhancements have been made in the development of a real-time optical pose measurement and tracking system that provides 3D position and orientation data for a single photon emission computed tomography (SPECT) imaging system for awake, unanesthetized, unrestrained small animals. Three optical cameras with infrared (IR) illumination view the head movements of an animal enclosed in a transparent burrow. Markers placed on the head provide landmark points for image segmentation. Strobed IR LED s are synchronized to the cameras and illuminate the markers to prevent motion blur for each set of images. The system using the three cameras automatically segments themore » markers, detects missing data, rejects false reflections, performs trinocular marker correspondence, and calculates the 3D pose of the animal s head. Improvements have been made in methods for segmentation, tracking, and 3D calculation to give higher speed and more accurate measurements during a scan. The optical hardware has been installed within a Siemens MicroCAT II small animal scanner at Johns Hopkins without requiring functional changes to the scanner operation. The system has undergone testing using both phantoms and live mice and has been characterized in terms of speed, accuracy, robustness, and reliability. Experimental data showing these motion tracking results are given.« less

  20. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps

    PubMed Central

    Si, Xingfeng; Kays, Roland

    2014-01-01

    Camera traps is an important wildlife inventory tool for estimating species diversity at a site. Knowing what minimum trapping effort is needed to detect target species is also important to designing efficient studies, considering both the number of camera locations, and survey length. Here, we take advantage of a two-year camera trapping dataset from a small (24-ha) study plot in Gutianshan National Nature Reserve, eastern China to estimate the minimum trapping effort actually needed to sample the wildlife community. We also evaluated the relative value of adding new camera sites or running cameras for a longer period at one site. The full dataset includes 1727 independent photographs captured during 13,824 camera days, documenting 10 resident terrestrial species of birds and mammals. Our rarefaction analysis shows that a minimum of 931 camera days would be needed to detect the resident species sufficiently in the plot, and c. 8700 camera days to detect all 10 resident species. In terms of detecting a diversity of species, the optimal sampling period for one camera site was c. 40, or long enough to record about 20 independent photographs. Our analysis of evaluating the increasing number of additional camera sites shows that rotating cameras to new sites would be more efficient for measuring species richness than leaving cameras at fewer sites for a longer period. PMID:24868493

  1. Catchment-Scale Terrain Modelling with Structure-from-Motion Photogrammetry: a replacement for airborne lidar?

    NASA Astrophysics Data System (ADS)

    Brasington, J.

    2015-12-01

    Over the last five years, Structure-from-Motion photogrammetry has dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales where relaxed logistics permit the use of dense ground control and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial networks based on strips of nadir photography can lead to unstable camera calibration and systematic errors that are difficult to model with sparse ground control. We demonstrate how a low cost multi-camera platform providing both nadir and oblique imagery can support robust camera calibration, enabling the generation of high quality, large-scale terrain products that are suitable for precision fluvial change detection.

  2. Catchment-Scale Terrain Modelling with Structure-from-Motion Photogrammetry: a replacement for airborne lidar?

    NASA Astrophysics Data System (ADS)

    Brasington, James; James, Joe; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia

    2016-04-01

    In recent years, 3D terrain reconstructions based on Structure-from-Motion photogrammetry have dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales (0.1-5 Ha), where relaxed logistics permit the use of dense ground control networks and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to established landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of the quality of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial photogrammetric networks based on strips of nadir photography can lead to unstable camera calibration and systematic errors that are difficult to model with sparse ground control. We demonstrate how a low cost multi-camera platform providing both nadir and oblique imagery can support robust camera calibration, enabling the generation of high quality, large-scale terrain products that are suitable for precision fluvial change detection.

  3. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-12-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated.

  4. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    NASA Astrophysics Data System (ADS)

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  5. STS-48 Pilot Reightler on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Pilot Kenneth S. Reightler, Jr, positioned under overhead window W8, poses for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  6. Expedition One and STS-97 crew pose for portrait

    NASA Image and Video Library

    2000-12-08

    S97-E-5144 (8 December 2000) --- The STS-97 astronauts and the Expedition 1 crew members pose for an historic portrait onboard the International Space Station (ISS) shortly after hatches were opened between the Space Shuttle Endeavour and the station. In front, from the left, are Sergei K. Krikalev, Brent W. Jett, Jr., William M. Shepherd and Joseph R. Tanner. In back, from the left, are Marc Garneau, Carlos I. Noriega, Yuri P. Gidzenko and Michael J. Bloomfield. A pre-set digital still camera was used to record the scene.

  7. Optimal accelerometer placement on a robot arm for pose estimation

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  8. Method to optimize patch size based on spatial frequency response in image rendering of the light field

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui

    2018-05-01

    A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.

  9. Helms and Voss in Service Module

    NASA Image and Video Library

    2001-04-10

    ISS002-E-5335 (10 April 2001) --- Astronaut Susan J. Helms (left and astronaut James S. Voss, both Expedition Two flight engineers, pose for a photograph aboard the Zvezda/Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.

  10. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  11. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  12. Samba: a real-time motion capture system using wireless camera sensor networks.

    PubMed

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-03-20

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.

  13. Video see-through augmented reality for oral and maxillofacial surgery.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-06-01

    Oral and maxillofacial surgery has not been benefitting from image guidance techniques owing to the limitations in image registration. A real-time markerless image registration method is proposed by integrating a shape matching method into a 2D tracking framework. The image registration is performed by matching the patient's teeth model with intraoperative video to obtain its pose. The resulting pose is used to overlay relevant models from the same CT space on the camera video for augmented reality. The proposed system was evaluated on mandible/maxilla phantoms, a volunteer and clinical data. Experimental results show that the target overlay error is about 1 mm, and the frame rate of registration update yields 3-5 frames per second with a 4 K camera. The significance of this work lies in its simplicity in clinical setting and the seamless integration into the current medical procedure with satisfactory response time and overlay accuracy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks

    PubMed Central

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-01-01

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments. PMID:24658618

  15. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  16. Offshore remote sensing of the ocean by stereo vision systems

    NASA Astrophysics Data System (ADS)

    Gallego, Guillermo; Shih, Ping-Chang; Benetazzo, Alvise; Yezzi, Anthony; Fedele, Francesco

    2014-05-01

    In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting oberved waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss furure lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.

  17. Head Pose Estimation on Eyeglasses Using Line Detection and Classification Approach

    NASA Astrophysics Data System (ADS)

    Setthawong, Pisal; Vannija, Vajirasak

    This paper proposes a unique approach for head pose estimation of subjects with eyeglasses by using a combination of line detection and classification approaches. Head pose estimation is considered as an important non-verbal form of communication and could also be used in the area of Human-Computer Interface. A major improvement of the proposed approach is that it allows estimation of head poses at a high yaw/pitch angle when compared with existing geometric approaches, does not require expensive data preparation and training, and is generally fast when compared with other approaches.

  18. Fast human pose estimation using 3D Zernike descriptors

    NASA Astrophysics Data System (ADS)

    Berjón, Daniel; Morán, Francisco

    2012-03-01

    Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

  19. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    NASA Technical Reports Server (NTRS)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  20. Runco and Thomas show off trays of food on the middeck

    NASA Image and Video Library

    1996-05-26

    S77-E-5120 (26 May 1996) --- Astronauts Mario Runco, Jr. and Andrew S. W. Thomas, both mission specialists, pose for photo while in the middeck of the Earth-orbiting Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).

  1. Optical correlation based pose estimation using bipolar phase grayscale amplitude spatial light modulators

    NASA Astrophysics Data System (ADS)

    Outerbridge, Gregory John, II

    Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.

  2. The use of uncalibrated roadside CCTV cameras to estimate mean traffic speed

    DOT National Transportation Integrated Search

    2001-12-01

    In this report, we present a novel approach for estimating traffic speed using a sequence of images from an un-calibrated camera. We assert that exact calibration is not necessary to estimate speed. Instead, to estimate speed, we use: (1) geometric r...

  3. Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path

    PubMed Central

    Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki

    2017-01-01

    Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622

  4. Mark-recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study

    USGS Publications Warehouse

    Alanso, Robert S.; McClintock, Brett T.; Lyren, Lisa M.; Boydston, Erin E.; Crooks, Kevin R.

    2015-01-01

    Abundance estimation of carnivore populations is difficult and has prompted the use of non-invasive detection methods, such as remotely-triggered cameras, to collect data. To analyze photo data, studies focusing on carnivores with unique pelage patterns have utilized a mark-recapture framework and studies of carnivores without unique pelage patterns have used a mark-resight framework. We compared mark-resight and mark-recapture estimation methods to estimate bobcat (Lynx rufus) population sizes, which motivated the development of a new "hybrid" mark-resight model as an alternative to traditional methods. We deployed a sampling grid of 30 cameras throughout the urban southern California study area. Additionally, we physically captured and marked a subset of the bobcat population with GPS telemetry collars. Since we could identify individual bobcats with photos of unique pelage patterns and a subset of the population was physically marked, we were able to use traditional mark-recapture and mark-resight methods, as well as the new “hybrid” mark-resight model we developed to estimate bobcat abundance. We recorded 109 bobcat photos during 4,669 camera nights and physically marked 27 bobcats with GPS telemetry collars. Abundance estimates produced by the traditional mark-recapture, traditional mark-resight, and “hybrid” mark-resight methods were similar, however precision differed depending on the models used. Traditional mark-recapture and mark-resight estimates were relatively imprecise with percent confidence interval lengths exceeding 100% of point estimates. Hybrid mark-resight models produced better precision with percent confidence intervals not exceeding 57%. The increased precision of the hybrid mark-resight method stems from utilizing the complete encounter histories of physically marked individuals (including those never detected by a camera trap) and the encounter histories of naturally marked individuals detected at camera traps. This new estimator may be particularly useful for estimating abundance of uniquely identifiable species that are difficult to sample using camera traps alone.

  5. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors

    PubMed Central

    Song, Yu; Nuske, Stephen; Scherer, Sebastian

    2016-01-01

    State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524

  6. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  7. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles D.; Hansen, Leslie A.

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed atmore » the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.« less

  8. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  9. Robust head pose estimation via supervised manifold learning.

    PubMed

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Utilizing Job Camera Technology in Construction Education

    ERIC Educational Resources Information Center

    Bruce, Richard D.; McCandless, David W.; Berryman, Chuck W.; Strong, Shawn D.

    2008-01-01

    One of the toughest hurdles to overcome in construction education is the varying levels of construction field experience among undergraduate students. Although an internship is a common construction management requirement, it is often completed after students complete classes in planning and scheduling. This poses a challenge for the modern…

  11. Commander Bloomfield and MS Ochoa pose on the middeck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-09

    STS110-E-5091 (9 April 2002) --- Astronauts Ellen Ochoa (left) and Michael J. Bloomfield, STS-110 mission specialist and mission commander, respectively, are photographed on the mid deck of the Space Shuttle Atlantis. The image was taken with a digital still camera.

  12. Horowitz and Barry inside Soyuz spacecraft with Sokol suits

    NASA Image and Video Library

    2001-08-20

    STS105-E-5389 (20 August 2001) --- Scott J. Horowitz (center), STS-105 commander, and Daniel T. Barry, mission specialist, pose among the stowage bags and Sokol suits in the Soyuz spacecraft which is docked to the International Space Station (ISS). This image was taken with a digital still camera.

  13. Efficacy of time-lapse photography and repeated counts abundance estimation for white-tailed deer populations

    USGS Publications Warehouse

    Keever, Allison; McGowan, Conor P.; Ditchkoff, Stephen S.; Acker, S.A.; Grand, James B.; Newbolt, Chad H.

    2017-01-01

    Automated cameras have become increasingly common for monitoring wildlife populations and estimating abundance. Most analytical methods, however, fail to account for incomplete and variable detection probabilities, which biases abundance estimates. Methods which do account for detection have not been thoroughly tested, and those that have been tested were compared to other methods of abundance estimation. The goal of this study was to evaluate the accuracy and effectiveness of the N-mixture method, which explicitly incorporates detection probability, to monitor white-tailed deer (Odocoileus virginianus) by using camera surveys and a known, marked population to collect data and estimate abundance. Motion-triggered camera surveys were conducted at Auburn University’s deer research facility in 2010. Abundance estimates were generated using N-mixture models and compared to the known number of marked deer in the population. We compared abundance estimates generated from a decreasing number of survey days used in analysis and by time periods (DAY, NIGHT, SUNRISE, SUNSET, CREPUSCULAR, ALL TIMES). Accurate abundance estimates were generated using 24 h of data and nighttime only data. Accuracy of abundance estimates increased with increasing number of survey days until day 5, and there was no improvement with additional data. This suggests that, for our system, 5-day camera surveys conducted at night were adequate for abundance estimation and population monitoring. Further, our study demonstrates that camera surveys and N-mixture models may be a highly effective method for estimation and monitoring of ungulate populations.

  14. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    PubMed

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  15. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

    PubMed

    Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua

    2013-12-01

    This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

  16. Projector-Based Augmented Reality for Quality Inspection of Scanned Objects

    NASA Astrophysics Data System (ADS)

    Kern, J.; Weinmann, M.; Wursthorn, S.

    2017-09-01

    After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object's surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector's pose later on for projecting textures with information onto the object's surface. Changes within the projected 3D information or of the projector's pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.

  17. Exemplar-based human action pose correction.

    PubMed

    Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen

    2014-07-01

    The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems.

  18. Tanner poses by the Floating Potential Probe during the third EVA of STS-97

    NASA Image and Video Library

    2000-12-07

    STS097-377-006 (7 December 2000) --- --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree (left) placed atop the P6 solar array structure, the highest point in their construction project. Astronaut Joseph R. Tanner, mission specialist, then posed for this photo with the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour. Astronaut Carlos I. Noriega, mission specialist who shared three STS-97 space walks with Tanner, took the photo with a 35mm camera.

  19. STS-34 crewmembers pose for onboard crew portrait on OV-104's flight deck

    NASA Image and Video Library

    1989-10-23

    STS034-06-019 (18-23 Oct. 1989) --- The five astronaut crew members for NASA's STS-34 mission pose for an in-space crew "portrait," using a pre-set 35mm camera. Coincidentally, astronauts Donald E. Williams (left), commander, and Michael J. McCulley (right), pilot, are positioned at their respective stations of operation (except that they are turned 180 degrees) aboard the Earth-orbiting space shuttle Atlantis. They form "bookends" for the crew's three mission specialists -- Ellen S. Baker (second left), Shannon W. Lucid and Franklin R. Chang-Diaz.

  20. Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an Electronic Still Camera (ESC) snapshot inside the Spacehab Module onboard the Earth-orbiting Space Shuttle Endeavour. In upper left is the view port which crew members had used for viewing and photographing operations with the Spartan 207/Inflatable Antenna Experiment (IAE). Thomas has his hand on an aft-bulkhead-mounted locker. The Space Experiment Facility (SEF), designed and managed by the University of Alabama, is just behind his left shoulder.

  1. Pose tracking for augmented reality applications in outdoor archaeological sites

    NASA Astrophysics Data System (ADS)

    Younes, Georges; Asmar, Daniel; Elhajj, Imad; Al-Harithy, Howayda

    2017-01-01

    In recent years, agencies around the world have invested huge amounts of effort toward digitizing many aspects of the world's cultural heritage. Of particular importance is the digitization of outdoor archaeological sites. In the spirit of valorization of this digital information, many groups have developed virtual or augmented reality (AR) computer applications themed around a particular archaeological object. The problem of pose tracking in outdoor AR applications is addressed. Different positional systems are analyzed, resulting in the selection of a monocular camera-based user tracker. The limitations that challenge this technique from map generation, scale, anchoring, to lighting conditions are analyzed and systematically addressed. Finally, as a case study, our pose tracking system is implemented within an AR experience in the Byblos Roman theater in Lebanon.

  2. Inertial sensor self-calibration in a visually-aided navigation approach for a micro-AUV.

    PubMed

    Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P

    2015-01-16

    This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.

  3. Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV

    PubMed Central

    Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P.

    2015-01-01

    This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time. PMID:25602263

  4. The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set

    PubMed Central

    Dalrymple, Kirsten A.; Gomez, Jesse; Duchaine, Brad

    2013-01-01

    Facial identity and expression play critical roles in our social lives. Faces are therefore frequently used as stimuli in a variety of areas of scientific research. Although several extensive and well-controlled databases of adult faces exist, few databases include children’s faces. Here we present the Dartmouth Database of Children’s Faces, a set of photographs of 40 male and 40 female Caucasian children between 6 and 16 years-of-age. Models posed eight facial expressions and were photographed from five camera angles under two lighting conditions. Models wore black hats and black gowns to minimize extra-facial variables. To validate the images, independent raters identified facial expressions, rated their intensity, and provided an age estimate for each model. The Dartmouth Database of Children’s Faces is freely available for research purposes and can be downloaded by contacting the corresponding author by email. PMID:24244434

  5. Nonlinear features for classification and pose estimation of machined parts from single views

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-10-01

    A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.

  6. Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras.

    PubMed

    Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-06-24

    Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer's calibration.

  7. Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras

    PubMed Central

    Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-01-01

    Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer’s calibration. PMID:28672823

  8. Machine vision based teleoperation aid

    NASA Technical Reports Server (NTRS)

    Hoff, William A.; Gatrell, Lance B.; Spofford, John R.

    1991-01-01

    When teleoperating a robot using video from a remote camera, it is difficult for the operator to gauge depth and orientation from a single view. In addition, there are situations where a camera mounted for viewing by the teleoperator during a teleoperation task may not be able to see the tool tip, or the viewing angle may not be intuitive (requiring extensive training to reduce the risk of incorrect or dangerous moves by the teleoperator). A machine vision based teleoperator aid is presented which uses the operator's camera view to compute an object's pose (position and orientation), and then overlays onto the operator's screen information on the object's current and desired positions. The operator can choose to display orientation and translation information as graphics and/or text. This aid provides easily assimilated depth and relative orientation information to the teleoperator. The camera may be mounted at any known orientation relative to the tool tip. A preliminary experiment with human operators was conducted and showed that task accuracies were significantly greater with than without this aid.

  9. Can camera traps monitor Komodo dragons a large ectothermic predator?

    PubMed

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  10. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    PubMed Central

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027

  11. Depth estimation using a lightfield camera

    NASA Astrophysics Data System (ADS)

    Roper, Carissa

    The latest innovation to camera design has come in the form of the lightfield, or plenoptic, camera that captures 4-D radiance data rather than just the 2-D scene image via microlens arrays. With the spatial and angular light ray data now recorded on the camera sensor, it is feasible to construct algorithms that can estimate depth of field in different portions of a given scene. There are limitations to the precision due to hardware structure and the sheer number of scene variations that can occur. In this thesis, the potential of digital image analysis and spatial filtering to extract depth information is tested on the commercially available plenoptic camera.

  12. General theory of remote gaze estimation using the pupil center and corneal reflections.

    PubMed

    Guestrin, Elias Daniel; Eizenman, Moshe

    2006-06-01

    This paper presents a general theory for the remote estimation of the point-of-gaze (POG) from the coordinates of the centers of the pupil and corneal reflections. Corneal reflections are produced by light sources that illuminate the eye and the centers of the pupil and corneal reflections are estimated in video images from one or more cameras. The general theory covers the full range of possible system configurations. Using one camera and one light source, the POG can be estimated only if the head is completely stationary. Using one camera and multiple light sources, the POG can be estimated with free head movements, following the completion of a multiple-point calibration procedure. When multiple cameras and multiple light sources are used, the POG can be estimated following a simple one-point calibration procedure. Experimental and simulation results suggest that the main sources of gaze estimation errors are the discrepancy between the shape of real corneas and the spherical corneal shape assumed in the general theory, and the noise in the estimation of the centers of the pupil and corneal reflections. A detailed example of a system that uses the general theory to estimate the POG on a computer screen is presented.

  13. Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial

    NASA Astrophysics Data System (ADS)

    Moult, E.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.; Fallavollita, P.

    2011-03-01

    Motivation: In prostate brachytherapy, real-time dosimetry would be ideal to allow for rapid evaluation of the implant quality intra-operatively. However, such a mechanism requires an imaging system that is both real-time and which provides, via multiple C-arm fluoroscopy images, clear information describing the three-dimensional position of the seeds deposited within the prostate. Thus, accurate tracking of the C-arm poses proves to be of critical importance to the process. Methodology: We compute the pose of the C-arm relative to a stationary radiographic fiducial of known geometry by employing a hybrid registration framework. Firstly, by means of an ellipse segmentation algorithm and a 2D/3D feature based registration, we exploit known FTRAC geometry to recover an initial estimate of the C-arm pose. Using this estimate, we then initialize the intensity-based registration which serves to recover a refined and accurate estimation of the C-arm pose. Results: Ground-truth pose was established for each C-arm image through a published and clinically tested segmentation-based method. Using 169 clinical C-arm images and a +/-10° and +/-10 mm random perturbation of the ground-truth pose, the average rotation and translation errors were 0.68° (std = 0.06°) and 0.64 mm (std = 0.24 mm). Conclusion: Fully automated C-arm pose estimation using a 2D/3D hybrid registration scheme was found to be clinically robust based on human patient data.

  14. Three-Dimensional Object Recognition and Registration for Robotic Grasping Systems Using a Modified Viewpoint Feature Histogram

    PubMed Central

    Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming

    2016-01-01

    This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080

  15. Bone Pose Estimation in the Presence of Soft Tissue Artifact Using Triangular Cosserat Point Elements.

    PubMed

    Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon

    2016-04-01

    Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose.

  16. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  17. Subject-specific and pose-oriented facial features for face recognition across poses.

    PubMed

    Lee, Ping-Han; Hsu, Gee-Sern; Wang, Yun-Wen; Hung, Yi-Ping

    2012-10-01

    Most face recognition scenarios assume that frontal faces or mug shots are available for enrollment to the database, faces of other poses are collected in the probe set. Given a face from the probe set, one needs to determine whether a match in the database exists. This is under the assumption that in forensic applications, most suspects have their mug shots available in the database, and face recognition aims at recognizing the suspects when their faces of various poses are captured by a surveillance camera. This paper considers a different scenario: given a face with multiple poses available, which may or may not include a mug shot, develop a method to recognize the face with poses different from those captured. That is, given two disjoint sets of poses of a face, one for enrollment and the other for recognition, this paper reports a method best for handling such cases. The proposed method includes feature extraction and classification. For feature extraction, we first cluster the poses of each subject's face in the enrollment set into a few pose classes and then decompose the appearance of the face in each pose class using Embedded Hidden Markov Model, which allows us to define a set of subject-specific and pose-priented (SSPO) facial components for each subject. For classification, an Adaboost weighting scheme is used to fuse the component classifiers with SSPO component features. The proposed method is proven to outperform other approaches, including a component-based classifier with local facial features cropped manually, in an extensive performance evaluation study.

  18. Empirical mode decomposition-based facial pose estimation inside video sequences

    NASA Astrophysics Data System (ADS)

    Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing

    2010-03-01

    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.

  19. Accurate estimation of camera shot noise in the real-time

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the accuracy of the obtained temporal noise values was estimated.

  20. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    NASA Technical Reports Server (NTRS)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  1. Recovering the 3d Pose and Shape of Vehicles from Stereo Images

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2018-05-01

    The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.

  2. Learning toward practical head pose estimation

    NASA Astrophysics Data System (ADS)

    Sang, Gaoli; He, Feixiang; Zhu, Rong; Xuan, Shibin

    2017-08-01

    Head pose is useful information for many face-related tasks, such as face recognition, behavior analysis, human-computer interfaces, etc. Existing head pose estimation methods usually assume that the face images have been well aligned or that sufficient and precise training data are available. In practical applications, however, these assumptions are very likely to be invalid. This paper first investigates the impact of the failure of these assumptions, i.e., misalignment of face images, uncertainty and undersampling of training data, on head pose estimation accuracy of state-of-the-art methods. A learning-based approach is then designed to enhance the robustness of head pose estimation to these factors. To cope with misalignment, instead of using hand-crafted features, it seeks suitable features by learning from a set of training data with a deep convolutional neural network (DCNN), such that the training data can be best classified into the correct head pose categories. To handle uncertainty and undersampling, it employs multivariate labeling distributions (MLDs) with dense sampling intervals to represent the head pose attributes of face images. The correlation between the features and the dense MLD representations of face images is approximated by a maximum entropy model, whose parameters are optimized on the given training data. To estimate the head pose of a face image, its MLD representation is first computed according to the model based on the features extracted from the image by the trained DCNN, and its head pose is then assumed to be the one corresponding to the peak in its MLD. Evaluation experiments on the Pointing'04, FacePix, Multi-PIE, and CASIA-PEAL databases prove the effectiveness and efficiency of the proposed method.

  3. Bone orientation and position estimation errors using Cosserat point elements and least squares methods: Application to gait.

    PubMed

    Solav, Dana; Camomilla, Valentina; Cereatti, Andrea; Barré, Arnaud; Aminian, Kamiar; Wolf, Alon

    2017-09-06

    The aim of this study was to analyze the accuracy of bone pose estimation based on sub-clusters of three skin-markers characterized by triangular Cosserat point elements (TCPEs) and to evaluate the capability of four instantaneous physical parameters, which can be measured non-invasively in vivo, to identify the most accurate TCPEs. Moreover, TCPE pose estimations were compared with the estimations of two least squares minimization methods applied to the cluster of all markers, using rigid body (RBLS) and homogeneous deformation (HDLS) assumptions. Analysis was performed on previously collected in vivo treadmill gait data composed of simultaneous measurements of the gold-standard bone pose by bi-plane fluoroscopy tracking the subjects' knee prosthesis and a stereophotogrammetric system tracking skin-markers affected by soft tissue artifact. Femur orientation and position errors estimated from skin-marker clusters were computed for 18 subjects using clusters of up to 35 markers. Results based on gold-standard data revealed that instantaneous subsets of TCPEs exist which estimate the femur pose with reasonable accuracy (median root mean square error during stance/swing: 1.4/2.8deg for orientation, 1.5/4.2mm for position). A non-invasive and instantaneous criteria to select accurate TCPEs for pose estimation (4.8/7.3deg, 5.8/12.3mm), was compared with RBLS (4.3/6.6deg, 6.9/16.6mm) and HDLS (4.6/7.6deg, 6.7/12.5mm). Accounting for homogeneous deformation, using HDLS or selected TCPEs, yielded more accurate position estimations than RBLS method, which, conversely, yielded more accurate orientation estimations. Further investigation is required to devise effective criteria for cluster selection that could represent a significant improvement in bone pose estimation accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  5. User-assisted visual search and tracking across distributed multi-camera networks

    NASA Astrophysics Data System (ADS)

    Raja, Yogesh; Gong, Shaogang; Xiang, Tao

    2011-11-01

    Human CCTV operators face several challenges in their task which can lead to missed events, people or associations, including: (a) data overload in large distributed multi-camera environments; (b) short attention span; (c) limited knowledge of what to look for; and (d) lack of access to non-visual contextual intelligence to aid search. Developing a system to aid human operators and alleviate such burdens requires addressing the problem of automatic re-identification of people across disjoint camera views, a matching task made difficult by factors such as lighting, viewpoint and pose changes and for which absolute scoring approaches are not best suited. Accordingly, we describe a distributed multi-camera tracking (MCT) system to visually aid human operators in associating people and objects effectively over multiple disjoint camera views in a large public space. The system comprises three key novel components: (1) relative measures of ranking rather than absolute scoring to learn the best features for matching; (2) multi-camera behaviour profiling as higher-level knowledge to reduce the search space and increase the chance of finding correct matches; and (3) human-assisted data mining to interactively guide search and in the process recover missing detections and discover previously unknown associations. We provide an extensive evaluation of the greater effectiveness of the system as compared to existing approaches on industry-standard i-LIDS multi-camera data.

  6. Evaluation of Trail-Cameras for Analyzing the Diet of Nesting Raptors Using the Northern Goshawk as a Model

    PubMed Central

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007–2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1–2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts. PMID:25992956

  7. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model.

    PubMed

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007-2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1-2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts.

  8. Achievable Rate Estimation of IEEE 802.11ad Visual Big-Data Uplink Access in Cloud-Enabled Surveillance Applications.

    PubMed

    Kim, Joongheon; Kim, Jong-Kook

    2016-01-01

    This paper addresses the computation procedures for estimating the impact of interference in 60 GHz IEEE 802.11ad uplink access in order to construct visual big-data database from randomly deployed surveillance camera sensing devices. The acquired large-scale massive visual information from surveillance camera devices will be used for organizing big-data database, i.e., this estimation is essential for constructing centralized cloud-enabled surveillance database. This performance estimation study captures interference impacts on the target cloud access points from multiple interference components generated by the 60 GHz wireless transmissions from nearby surveillance camera devices to their associated cloud access points. With this uplink interference scenario, the interference impacts on the main wireless transmission from a target surveillance camera device to its associated target cloud access point with a number of settings are measured and estimated under the consideration of 60 GHz radiation characteristics and antenna radiation pattern models.

  9. Calibration of an Outdoor Distributed Camera Network with a 3D Point Cloud

    PubMed Central

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H.; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-01-01

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221

  10. Calibration of an outdoor distributed camera network with a 3D point cloud.

    PubMed

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-07-29

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC).

  11. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  12. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  13. Scent Lure Effect on Camera-Trap Based Leopard Density Estimates

    PubMed Central

    Braczkowski, Alexander Richard; Balme, Guy Andrew; Dickman, Amy; Fattebert, Julien; Johnson, Paul; Dickerson, Tristan; Macdonald, David Whyte; Hunter, Luke

    2016-01-01

    Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treatment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28–9.28 leopards/100km2) were considerably higher than estimates from spatially-explicit methods (3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted. PMID:27050816

  14. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments.

    PubMed

    Ionescu, Catalin; Papava, Dragos; Olaru, Vlad; Sminchisescu, Cristian

    2014-07-01

    We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.

  15. STS-48 MS Brown on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Mission Specialist (MS) Mark N. Brown looks away from the portable laptop computer screen to pose for an Electronic Still Camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Brown was working at the payload station before the interruption. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  16. Towards Kilo-Hertz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras.

    PubMed

    Bapat, Akash; Dunn, Enrique; Frahm, Jan-Michael

    2016-11-01

    To maintain a reliable registration of the virtual world with the real world, augmented reality (AR) applications require highly accurate, low-latency tracking of the device. In this paper, we propose a novel method for performing this fast 6-DOF head pose tracking using a cluster of rolling shutter cameras. The key idea is that a rolling shutter camera works by capturing the rows of an image in rapid succession, essentially acting as a high-frequency 1D image sensor. By integrating multiple rolling shutter cameras on the AR device, our tracker is able to perform 6-DOF markerless tracking in a static indoor environment with minimal latency. Compared to state-of-the-art tracking systems, this tracking approach performs at significantly higher frequency, and it works in generalized environments. To demonstrate the feasibility of our system, we present thorough evaluations on synthetically generated data with tracking frequencies reaching 56.7 kHz. We further validate the method's accuracy on real-world images collected from a prototype of our tracking system against ground truth data using standard commodity GoPro cameras capturing at 120 Hz frame rate.

  17. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  18. Classification and pose estimation of objects using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-03-01

    A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.

  19. COBRA ATD multispectral camera response model

    NASA Astrophysics Data System (ADS)

    Holmes, V. Todd; Kenton, Arthur C.; Hilton, Russell J.; Witherspoon, Ned H.; Holloway, John H., Jr.

    2000-08-01

    A new multispectral camera response model has been developed in support of the US Marine Corps (USMC) Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) Program. This analytical model accurately estimates response form five Xybion intensified IMC 201 multispectral cameras used for COBRA ATD airborne minefield detection. The camera model design is based on a series of camera response curves which were generated through optical laboratory test performed by the Naval Surface Warfare Center, Dahlgren Division, Coastal Systems Station (CSS). Data fitting techniques were applied to these measured response curves to obtain nonlinear expressions which estimates digitized camera output as a function of irradiance, intensifier gain, and exposure. This COBRA Camera Response Model was proven to be very accurate, stable over a wide range of parameters, analytically invertible, and relatively simple. This practical camera model was subsequently incorporated into the COBRA sensor performance evaluation and computational tools for research analysis modeling toolbox in order to enhance COBRA modeling and simulation capabilities. Details of the camera model design and comparisons of modeled response to measured experimental data are presented.

  20. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  1. Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.

    PubMed

    Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios

    2017-03-01

    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.

  2. Traceable Calibration, Performance Metrics, and Uncertainty Estimates of Minirhizotron Digital Imagery for Fine-Root Measurements

    PubMed Central

    Roberti, Joshua A.; SanClements, Michael D.; Loescher, Henry W.; Ayres, Edward

    2014-01-01

    Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified the precision of camera location for successive images, estimated the trueness and precision of each camera's ability to quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified. PMID:25391023

  3. Guidoni in front of Node 1/Unity hatch

    NASA Image and Video Library

    2001-04-27

    ISS002-E-6128 (27 April 2001) --- Umberto Guidoni of the European Space Agency (ESA), STS-100 mission specialist, poses for a photograph in Unity Node 1 as the hatch to the Multipurpose Logistics Module (MPLM) Raphaello is being closed near the end of the STS-100 mission. The image was taken with a digital still camera.

  4. User Interface Preferences in the Design of a Camera-Based Navigation and Wayfinding Aid

    ERIC Educational Resources Information Center

    Arditi, Aries; Tian, YingLi

    2013-01-01

    Introduction: Development of a sensing device that can provide a sufficient perceptual substrate for persons with visual impairments to orient themselves and travel confidently has been a persistent rehabilitation technology goal, with the user interface posing a significant challenge. In the study presented here, we enlist the advice and ideas of…

  5. Seeing with the Camera: Analysing Children's Photographs of Literacy in the Home.

    ERIC Educational Resources Information Center

    Moss, Gemma

    2001-01-01

    Examines the issues raised by photographs children took of reading in the home as part of a funded research project exploring the gendering of reading in the 7-9 age group. Focuses on the dilemmas the images pose for analysis, and what the images, considered in themselves, can be taken as evidence for. (SG)

  6. Helms and Usachev in Destiny Laboratory module

    NASA Image and Video Library

    2001-04-05

    ISS002-E-5497 (05 April 2001) --- Astronaut Susan J. Helms (left), Expedition Two flight engineer, pauses from her work to pose for a photograph while Expedition Two mission commander, cosmonaut Yury V. Usachev, speaks into a microphone aboard the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  7. Constrained optimization for position calibration of an NMR field camera.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Effects of red light camera enforcement on fatal crashes in large U.S. cities.

    PubMed

    Hu, Wen; McCartt, Anne T; Teoh, Eric R

    2011-08-01

    To estimate the effects of red light camera enforcement on per capita fatal crash rates at intersections with signal lights. From the 99 large U.S. cities with more than 200,000 residents in 2008, 14 cities were identified with red light camera enforcement programs for all of 2004-2008 but not at any time during 1992-1996, and 48 cities were identified without camera programs during either period. Analyses compared the citywide per capita rate of fatal red light running crashes and the citywide per capita rate of all fatal crashes at signalized intersections during the two study periods, and rate changes then were compared for cities with and without cameras programs. Poisson regression was used to model crash rates as a function of red light camera enforcement, land area, and population density. The average annual rate of fatal red light running crashes declined for both study groups, but the decline was larger for cities with red light camera enforcement programs than for cities without camera programs (35% vs. 14%). The average annual rate of all fatal crashes at signalized intersections decreased by 14% for cities with camera programs and increased slightly (2%) for cities without cameras. After controlling for population density and land area, the rate of fatal red light running crashes during 2004-2008 for cities with camera programs was an estimated 24% lower than what would have been expected without cameras. The rate of all fatal crashes at signalized intersections during 2004-2008 for cities with camera programs was an estimated 17% lower than what would have been expected without cameras. Red light camera enforcement programs were associated with a statistically significant reduction in the citywide rate of fatal red light running crashes and a smaller but still significant reduction in the rate of all fatal crashes at signalized intersections. The study adds to the large body of evidence that red light camera enforcement can prevent the most serious crashes. Communities seeking to reduce crashes at intersections should consider this evidence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Optical flow and driver's kinematics analysis for state of alert sensing.

    PubMed

    Jiménez-Pinto, Javier; Torres-Torriti, Miguel

    2013-03-28

    Road accident statistics from different countries show that a significant number of accidents occur due to driver's fatigue and lack of awareness to traffic conditions. In particular, about 60% of the accidents in which long haul truck and bus drivers are involved are attributed to drowsiness and fatigue. It is thus fundamental to improve non-invasive systems for sensing a driver's state of alert. One of the main challenges to correctly resolve the state of alert is measuring the percentage of eyelid closure over time (PERCLOS), despite the driver's head and body movements. In this paper, we propose a technique that involves optical flow and driver's kinematics analysis to improve the robustness of the driver's alert state measurement under pose changes using a single camera with near-infrared illumination. The proposed approach infers and keeps track of the driver's pose in 3D space in order to ensure that eyes can be located correctly, even after periods of partial occlusion, for example, when the driver stares away from the camera. Our experiments show the effectiveness of the approach with a correct eyes detection rate of 99.41%, on average. The results obtained with the proposed approach in an experiment involving fifteen persons under different levels of sleep deprivation also confirm the discriminability of the fatigue levels. In addition to the measurement of fatigue and drowsiness, the pose tracking capability of the proposed approach has potential applications in distraction assessment and alerting of machine operators.

  10. Optical Flow and Driver's Kinematics Analysis for State of Alert Sensing

    PubMed Central

    Jiménez-Pinto, Javier; Torres-Torriti, Miguel

    2013-01-01

    Road accident statistics from different countries show that a significant number of accidents occur due to driver's fatigue and lack of awareness to traffic conditions. In particular, about 60% of the accidents in which long haul truck and bus drivers are involved are attributed to drowsiness and fatigue. It is thus fundamental to improve non-invasive systems for sensing a driver's state of alert. One of the main challenges to correctly resolve the state of alert is measuring the percentage of eyelid closure over time (PERCLOS), despite the driver's head and body movements. In this paper, we propose a technique that involves optical flow and driver's kinematics analysis to improve the robustness of the driver's alert state measurement under pose changes using a single camera with near-infrared illumination. The proposed approach infers and keeps track of the driver's pose in 3D space in order to ensure that eyes can be located correctly, even after periods of partial occlusion, for example, when the driver stares away from the camera. Our experiments show the effectiveness of the approach with a correct eyes detection rate of 99.41%, on average. The results obtained with the proposed approach in an experiment involving fifteen persons under different levels of sleep deprivation also confirm the discriminability of the fatigue levels. In addition to the measurement of fatigue and drowsiness, the pose tracking capability of the proposed approach has potential applications in distraction assessment and alerting of machine operators. PMID:23539029

  11. In-Situ Cameras for Radiometric Correction of Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Kautz, Jess S.

    The atmosphere distorts the spectrum of remotely sensed data, negatively affecting all forms of investigating Earth's surface. To gather reliable data, it is vital that atmospheric corrections are accurate. The current state of the field of atmospheric correction does not account well for the benefits and costs of different correction algorithms. Ground spectral data are required to evaluate these algorithms better. This dissertation explores using cameras as radiometers as a means of gathering ground spectral data. I introduce techniques to implement a camera systems for atmospheric correction using off the shelf parts. To aid the design of future camera systems for radiometric correction, methods for estimating the system error prior to construction, calibration and testing of the resulting camera system are explored. Simulations are used to investigate the relationship between the reflectance accuracy of the camera system and the quality of atmospheric correction. In the design phase, read noise and filter choice are found to be the strongest sources of system error. I explain the calibration methods for the camera system, showing the problems of pixel to angle calibration, and adapting the web camera for scientific work. The camera system is tested in the field to estimate its ability to recover directional reflectance from BRF data. I estimate the error in the system due to the experimental set up, then explore how the system error changes with different cameras, environmental set-ups and inversions. With these experiments, I learn about the importance of the dynamic range of the camera, and the input ranges used for the PROSAIL inversion. Evidence that the camera can perform within the specification set for ELM correction in this dissertation is evaluated. The analysis is concluded by simulating an ELM correction of a scene using various numbers of calibration targets, and levels of system error, to find the number of cameras needed for a full-scale implementation.

  12. Space-variant restoration of images degraded by camera motion blur.

    PubMed

    Sorel, Michal; Flusser, Jan

    2008-02-01

    We examine the problem of restoration from multiple images degraded by camera motion blur. We consider scenes with significant depth variations resulting in space-variant blur. The proposed algorithm can be applied if the camera moves along an arbitrary curve parallel to the image plane, without any rotations. The knowledge of camera trajectory and camera parameters is not necessary. At the input, the user selects a region where depth variations are negligible. The algorithm belongs to the group of variational methods that estimate simultaneously a sharp image and a depth map, based on the minimization of a cost functional. To initialize the minimization, it uses an auxiliary window-based depth estimation algorithm. Feasibility of the algorithm is demonstrated by three experiments with real images.

  13. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    PubMed

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  14. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs) †

    PubMed Central

    Jaramillo, Carlos; Valenti, Roberto G.; Guo, Ling; Xiao, Jizhong

    2016-01-01

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351

  15. Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.

    PubMed

    Raposo, Carolina; Antunes, Michel; P Barreto, Joao

    2017-08-09

    The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.

  16. C-arm rotation encoding with accelerometers.

    PubMed

    Grzeda, Victor; Fichtinger, Gabor

    2010-07-01

    Fluoroscopic C-arms are being incorporated in computer-assisted interventions in increasing number. For these applications to work, the relative poses of imaging must be known. To find the pose, tracking methods such as optical cameras, electromagnetic trackers, and radiographic fiducials have been used-all hampered by significant shortcomings. We propose to recover the rotational pose of the C-arm using the angle-sensing ability of accelerometers, by exploiting the capability of the accelerometer to measure tilt angles. By affixing the accelerometer to a C-arm, the accelerometer tracks the C-arm pose during rotations of the C-arm. To demonstrate this concept, a C-arm analogue was constructed with a webcam device affixed to the C-arm model to mimic X-ray imaging. Then, measuring the offset between the accelerometer angle readings to the webcam pose angle, an angle correction equation (ACE) was created to properly tracking the C-arm rotational pose. Several tests were performed on the webcam C-arm model using the ACEs to tracking the primary and secondary angle rotations of the model. We evaluated the capability of linear and polynomial ACEs to tracking the webcam C-arm pose angle for different rotational scenarios. The test results showed that the accelerometer could track the pose of the webcam C-arm model with an accuracy of less than 1.0 degree. The accelerometer was successful in sensing the C-arm's rotation with clinically adequate accuracy in the C-arm webcam model.

  17. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  18. An eye model for uncalibrated eye gaze estimation under variable head pose

    NASA Astrophysics Data System (ADS)

    Hnatow, Justin; Savakis, Andreas

    2007-04-01

    Gaze estimation is an important component of computer vision systems that monitor human activity for surveillance, human-computer interaction, and various other applications including iris recognition. Gaze estimation methods are particularly valuable when they are non-intrusive, do not require calibration, and generalize well across users. This paper presents a novel eye model that is employed for efficiently performing uncalibrated eye gaze estimation. The proposed eye model was constructed from a geometric simplification of the eye and anthropometric data about eye feature sizes in order to circumvent the requirement of calibration procedures for each individual user. The positions of the two eye corners and the midpupil, the distance between the two eye corners, and the radius of the eye sphere are required for gaze angle calculation. The locations of the eye corners and midpupil are estimated via processing following eye detection, and the remaining parameters are obtained from anthropometric data. This eye model is easily extended to estimating eye gaze under variable head pose. The eye model was tested on still images of subjects at frontal pose (0 °) and side pose (34 °). An upper bound of the model's performance was obtained by manually selecting the eye feature locations. The resulting average absolute error was 2.98 ° for frontal pose and 2.87 ° for side pose. The error was consistent across subjects, which indicates that good generalization was obtained. This level of performance compares well with other gaze estimation systems that utilize a calibration procedure to measure eye features.

  19. Dual Quaternions as Constraints in 4D-DPM Models for Pose Estimation.

    PubMed

    Martinez-Berti, Enrique; Sánchez-Salmerón, Antonio-José; Ricolfe-Viala, Carlos

    2017-08-19

    The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was formerly defined based only on red-green-blue (RGB) channels, in order to obtain a four-dimensional DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematics models. In this context, the main goal of this paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve the inverse kinematics.

  20. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  1. Faces of glory: the left-cheek posing bias for medallists of Brazilian jiu-jitsu competitions.

    PubMed

    Okubo, Matia

    2018-04-20

    Laboratory studies have shown that people tend to show the left side of their face when asked to broadly express emotions, while they tend to show the right side when asked to hide emotions. Because emotions are expressed more intensely in the left side of the face, it is hypothesized that an individual's intention to express or hide emotions biases the direction of lateral facial poses. The present study tested this hypothesis using photographic portraits of individuals experiencing emotional events in a naturalistic setting: the reception of medals in Brazilian jiu-jitsu competitions. Portrait photographs of Brazilian jiu-jitsu competitors were sourced online (N = 460) and were rated by two independent raters in terms of posing direction, emotional expression, and medal colour. Gold and silver medallists showed their left cheeks to the camera for commemorative photographs taken immediately after the medal ceremony. Positive emotions were expressed more often for gold medallists than silver ones. The left-cheek posing bias observed in the present study supports the hypothesis that the intended purpose of expressing or hiding emotions determines the direction of lateral posing biases, and extends the laboratory findings to situations in the real world.

  2. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  3. Scale Estimation and Correction of the Monocular Simultaneous Localization and Mapping (SLAM) Based on Fusion of 1D Laser Range Finder and Vision Data.

    PubMed

    Zhang, Zhuang; Zhao, Rujin; Liu, Enhai; Yan, Kun; Ma, Yuebo

    2018-06-15

    This article presents a new sensor fusion method for visual simultaneous localization and mapping (SLAM) through integration of a monocular camera and a 1D-laser range finder. Such as a fusion method provides the scale estimation and drift correction and it is not limited by volume, e.g., the stereo camera is constrained by the baseline and overcomes the limited depth range problem associated with SLAM for RGBD cameras. We first present the analytical feasibility for estimating the absolute scale through the fusion of 1D distance information and image information. Next, the analytical derivation of the laser-vision fusion is described in detail based on the local dense reconstruction of the image sequences. We also correct the scale drift of the monocular SLAM using the laser distance information which is independent of the drift error. Finally, application of this approach to both indoor and outdoor scenes is verified by the Technical University of Munich dataset of RGBD and self-collected data. We compare the effects of the scale estimation and drift correction of the proposed method with the SLAM for a monocular camera and a RGBD camera.

  4. Multiple-camera/motion stereoscopy for range estimation in helicopter flight

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.

    1993-01-01

    Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.

  5. An investigation into multi-dimensional prediction models to estimate the pose error of a quadcopter in a CSP plant setting

    NASA Astrophysics Data System (ADS)

    Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann

    2016-05-01

    The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.

  6. Automatic Orientation of Large Blocks of Oblique Images

    NASA Astrophysics Data System (ADS)

    Rupnik, E.; Nex, F.; Remondino, F.

    2013-05-01

    Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III) with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right) by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.

  7. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  8. Real-time upper-body human pose estimation from depth data using Kalman filter for simulator

    NASA Astrophysics Data System (ADS)

    Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.

    2014-08-01

    Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.

  9. Megapixel mythology and photospace: estimating photospace for camera phones from large image sets

    NASA Astrophysics Data System (ADS)

    Hultgren, Bror O.; Hertel, Dirk W.

    2008-01-01

    It is a myth that more pixels alone result in better images. The marketing of camera phones in particular has focused on their pixel numbers. However, their performance varies considerably according to the conditions of image capture. Camera phones are often used in low-light situations where the lack of a flash and limited exposure time will produce underexposed, noisy and blurred images. Camera utilization can be quantitatively described by photospace distributions, a statistical description of the frequency of pictures taken at varying light levels and camera-subject distances. If the photospace distribution is known, the user-experienced distribution of quality can be determined either directly by direct measurement of subjective quality, or by photospace-weighting of objective attributes. The population of a photospace distribution requires examining large numbers of images taken under typical camera phone usage conditions. ImagePhi was developed as a user-friendly software tool to interactively estimate the primary photospace variables, subject illumination and subject distance, from individual images. Additionally, subjective evaluations of image quality and failure modes for low quality images can be entered into ImagePhi. ImagePhi has been applied to sets of images taken by typical users with a selection of popular camera phones varying in resolution. The estimated photospace distribution of camera phone usage has been correlated with the distributions of failure modes. The subjective and objective data show that photospace conditions have a much bigger impact on image quality of a camera phone than the pixel count of its imager. The 'megapixel myth' is thus seen to be less a myth than an ill framed conditional assertion, whose conditions are to a large extent specified by the camera's operational state in photospace.

  10. Images of the future - Two decades in astronomy

    NASA Technical Reports Server (NTRS)

    Weistrop, D.

    1982-01-01

    Future instruments for the 100-10,000 A UV-wavelength region will require detectors with greater quantum efficiency, smaller picture elements, a greater wavelength range, and greater active area than those currently available. After assessing the development status and performance characteristics of vidicons, image tubes, electronographic cameras, digicons, silicon arrays and microchannel plate intensifiers presently employed by astronomical spacecraft, attention is given to such next-generation detectors as the Mosaicked Optical Self-scanned Array Imaging Camera, which consists of a photocathode deposited on the input side of a microchannel plate intensifier. The problems posed by the signal processing and data analysis requirements of the devices foreseen for the 21st century are noted.

  11. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.

  12. Librations and obliquity of Mercury from the BepiColombo laser altimetry, radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V. M.

    2010-12-01

    Through its anomalously high uncompressed density implying a metal fraction of 60% or more by mass, Mercury represents an extreme outcome of planetary formation in the inner solar system. The space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the obliquity, the 88-day forced libration, the planetary induced librations and the degree-two coefficients of the gravity field of Mercury. We report here on aspects of the observational strategy of ESA’s BepiColombo mission to determine the libration amplitude and obliquity, taking into account the space as well as the ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission, but a significant constraint is posed by the fact that the planetary surface can only be photographed under very strict illumination conditions. We therefore study the possibility to use the information embedded in the groundtrack crossings (crosstracks) of the BepiColombo laser altimeter (BELA) in addition to the primary photographic data in order to estimate the librations and obliquity of Mercury. An advantage of the laser altimetry data is that it does not depend on the solar incidence angle on the surface nor on the presence of specific surface features as required for the camera data in the camera rotation experiment. Both laser and photographic measurements were simulated in a realistic set-up in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet as a function of the amount of measurements made, the number of different targets and crosstrack points considered and their locations on the surface of the planet. Such an analysis requires the use of an accurate model of the rotation of Mercury, which takes into account longitudinal librations additional to the main 88 day libration due to planetary perturbations on Mercury's orbit. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will only be sufficient to constrain the size and physical state of the core of Mercury if certain conditions are satisfied. If the orbiter follows the ESA baseline mission scenario, and at least 25 landmarks are imaged at least twice over the mission duration (360 days), the annual libration amplitude and obliquity can be determined with sufficient accuracy. Also the Jupiter induced libration amplitude can pose an additional constraint on the interior of the planet. We will discuss the relative contributions of the different methods will enable us to determine the optimum combinations of the observations with consequences for the mission planning and the instrument performances.

  13. An improved silhouette for human pose estimation

    NASA Astrophysics Data System (ADS)

    Hawes, Anthony H.; Iftekharuddin, Khan M.

    2017-08-01

    We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.

  14. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors

  15. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.

  16. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    PubMed

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  17. Expedition Three crew pose for a group photo in Zvezda during Expedition Three

    NASA Image and Video Library

    2001-10-01

    ISS003-E-7044 (October 2001) --- Astronaut Frank L. Culbertson, Jr. (center), Expedition Three mission commander, flanked by cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov, both flight engineers, assemble for a group photo in the Zvezda Service Module on the International Space Station (ISS). Tyurin and Dezhurov represent Rosaviakosmos. This image was taken with a digital still camera.

  18. New learning based super-resolution: use of DWT and IGMRF prior.

    PubMed

    Gajjar, Prakash P; Joshi, Manjunath V

    2010-05-01

    In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.

  19. STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  20. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  1. Are camera surveys useful for assessing recruitment in white-tailed deer?

    Treesearch

    M. Colter Chitwood; Marcus A. Lashley; John C. Kilgo; Michael J. Cherry; L. Mike Conner; Mark Vukovich; H. Scott Ray; Charles Ruth; Robert J. Warren; Christopher S. DePerno; Christopher E. Moorman

    2017-01-01

    Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter...

  2. Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2005-01-01

    Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).

  3. Pose estimation for augmented reality applications using genetic algorithm.

    PubMed

    Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen

    2005-12-01

    This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.

  4. Comparison of standing volume estimates using optical dendrometers

    Treesearch

    Neil A. Clark; Stanley J. Zarnoch; Alexander Clark; Gregory A. Reams

    2001-01-01

    This study compared height and diameter measurements and volume estimates on 20 hardwood and 20 softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers. Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera was used. There were no significant...

  5. Comparison of Standing Volume Estimates Using Optical Dendrometers

    Treesearch

    Neil A. Clark; Stanley J. Zarnoch; Alexander Clark; Gregory A. Reams

    2001-01-01

    This study compared height and diameter measurements and volume estimates on 20 hardwood and 20 softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers. Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera was used. There were no significant...

  6. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  7. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  8. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  9. Aperiodicity Correction for Rotor Tip Vortex Measurements

    NASA Technical Reports Server (NTRS)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  10. A Real-Time Augmented Reality System to See-Through Cars.

    PubMed

    Rameau, Francois; Ha, Hyowon; Joo, Kyungdon; Choi, Jinsoo; Park, Kibaek; Kweon, In So

    2016-11-01

    One of the most hazardous driving scenario is the overtaking of a slower vehicle, indeed, in this case the front vehicle (being overtaken) can occlude an important part of the field of view of the rear vehicle's driver. This lack of visibility is the most probable cause of accidents in this context. Recent research works tend to prove that augmented reality applied to assisted driving can significantly reduce the risk of accidents. In this paper, we present a real-time marker-less system to see through cars. For this purpose, two cars are equipped with cameras and an appropriate wireless communication system. The stereo vision system mounted on the front car allows to create a sparse 3D map of the environment where the rear car can be localized. Using this inter-car pose estimation, a synthetic image is generated to overcome the occlusion and to create a seamless see-through effect which preserves the structure of the scene.

  11. Efficient Wide Baseline Structure from Motion

    NASA Astrophysics Data System (ADS)

    Michelini, Mario; Mayer, Helmut

    2016-06-01

    This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.

  12. Effects of Different Camera Motions on the Error in Estimates of Epipolar Geometry between Two Dimensional Images in Order to Provide a Framework for Solutions to Vision Based Simultaneous Localization and Mapping (SLAM)

    DTIC Science & Technology

    2007-09-01

    the projective camera matrix (P) which is a 3x4 matrix that is represents both the intrinsic and extrinsic parameters of a camera. It is used to...K contains the intrinsic parameters of the camera and |R t⎡ ⎤⎣ ⎦ represents the extrinsic parameters of the camera. By definition, the extrinsic ... extrinsic parameters are known then the camera is said to be calibrated. If only the intrinsic parameters are known, then the projective camera can

  13. A deep learning approach for pose estimation from volumetric OCT data.

    PubMed

    Gessert, Nils; Schlüter, Matthias; Schlaefer, Alexander

    2018-05-01

    Tracking the pose of instruments is a central problem in image-guided surgery. For microscopic scenarios, optical coherence tomography (OCT) is increasingly used as an imaging modality. OCT is suitable for accurate pose estimation due to its micrometer range resolution and volumetric field of view. However, OCT image processing is challenging due to speckle noise and reflection artifacts in addition to the images' 3D nature. We address pose estimation from OCT volume data with a new deep learning-based tracking framework. For this purpose, we design a new 3D convolutional neural network (CNN) architecture to directly predict the 6D pose of a small marker geometry from OCT volumes. We use a hexapod robot to automatically acquire labeled data points which we use to train 3D CNN architectures for multi-output regression. We use this setup to provide an in-depth analysis on deep learning-based pose estimation from volumes. Specifically, we demonstrate that exploiting volume information for pose estimation yields higher accuracy than relying on 2D representations with depth information. Supporting this observation, we provide quantitative and qualitative results that 3D CNNs effectively exploit the depth structure of marker objects. Regarding the deep learning aspect, we present efficient design principles for 3D CNNs, making use of insights from the 2D deep learning community. In particular, we present Inception3D as a new architecture which performs best for our application. We show that our deep learning approach reaches errors at our ground-truth label's resolution. We achieve a mean average error of 14.89 ± 9.3 µm and 0.096 ± 0.072° for position and orientation learning, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems with Noisy Data.

    DTIC Science & Technology

    1980-02-01

    to estimate f -..ell, -noderately ,-ell, or- poorly. 1 ’The sansitivity *of a rec-ilarized estimate of f to the noise is made explicit. After giving the...AD-A 7 .SA92 925 WISCONSIN UN! V-MADISON DEFT OF STATISTICS F /S 11,’ 1 ILL POSED PRORLEMS: NUMERICAL ANn STATISTICAL METHODS FOR MILOL-ETC(U FEB 80 a...estimate f given z. We first define the 1 intrinsic rank of the problem where jK(tit) f (t)dt is known exactly. This 0 definition is used to provide insight

  15. A Simple Approach to Collecting Useful Wildlife Data Using Remote Camera-Traps in Undergraduate Biology Courses

    ERIC Educational Resources Information Center

    Christensen, David R.

    2016-01-01

    Remote camera-traps are commonly used to estimate the abundance, diversity, behavior and habitat use of wildlife in an inexpensive and nonintrusive manner. Because of the increasing use of remote-cameras in wildlife studies, students interested in wildlife biology should be exposed to the use of remote-cameras early in their academic careers.…

  16. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  17. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  18. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  19. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  20. Robot acting on moving bodies (RAMBO): Preliminary results

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madju; Harwood, David

    1989-01-01

    A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  1. Astrophotography Basics: Meteors, Comets, Eclipses, Aurorae, Star Trails. Revised.

    ERIC Educational Resources Information Center

    Eastman Kodak Co., Rochester, NY.

    This pamphlet gives an introduction to the principles of astronomical picture-taking. Chapters included are: (1) "Getting Started" (describing stationary cameras, sky charts and mapping, guided cameras, telescopes, brightness of astronomical subjects, estimating exposure, film selection, camera filters, film processing, and exposure for…

  2. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  3. Omnidirectional Underwater Camera Design and Calibration

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach. PMID:25774707

  4. STS-41 crewmembers pose on OV-103's middeck for inflight (in-space) portrait

    NASA Image and Video Library

    1990-10-10

    STS041-26-007 (6-10 Oct 1990) --- A 35mm preset camera on Discovery's middeck captures the traditional in-space portrait of the STS-41 crewmembers. In front are (l.-r.) Astronauts Richard N. Richards, mission commander; and Robert D. Cabana, pilot. In the rear are (l.-r.) Astronauts Thomas D. Akers, Bruce E. Melnick and William M. Shepherd.

  5. STS-30 crewmembers pose for onboard portrait on OV-104's aft flight deck

    NASA Image and Video Library

    1989-05-08

    STS030-21-008 (4-8 May 1989) --- A traditional in-space crew portrait for STS-30 aboard the Atlantis. Astronaut Mary L. Cleave is in front. Others pictured, left to right, are astronauts Norman E. Thagard, Ronald J. Grabe, David M. Walker and Mark C. Lee. An automatic, pre-set 35mm camera using color negative film recorded the scene.

  6. Optimizing Orbital Debris Monitoring with Optical Telescopes

    DTIC Science & Technology

    2010-09-01

    poses an increasing risk to manned space missions and operational satellites ; however, the majority of debris large enough to cause catastrophic...cameras hosted on GEO- based satellites for monitoring GEO. Performance analysis indicates significant potential contributions of these systems as a...concerns over the long term-viability of the space environment and the resulting economic impacts. The 2007 China anti- satellite test and the 2009

  7. Estimating aquatic hazards posed by prescription pharmaceutical residues from municipal wastewater

    EPA Science Inventory

    Risks posed by pharmaceuticals in the environment are hard to estimate due to limited monitoring capacity and difficulty interpreting monitoring results. In order to partially address these issues, we suggest a method for prioritizing pharmaceuticals for monitoring, and a framewo...

  8. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    PubMed

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.

  9. Camera trapping estimates of density and survival of fishers (Martes pennanti)

    Treesearch

    Mark J. Jordan; Reginald H. Barrett; Kathryn L. Purcell

    2011-01-01

    Developing efficient monitoring strategies for species of conservation concern is critical to ensuring their persistence. We have developed a method using camera traps to estimate density and survival in mesocarnivores and tested it on a population of fishers Martes pennanti in an area of approximately 300 km2 of the southern...

  10. Human Age Estimation Method Robust to Camera Sensor and/or Face Movement

    PubMed Central

    Nguyen, Dat Tien; Cho, So Ra; Pham, Tuyen Danh; Park, Kang Ryoung

    2015-01-01

    Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method. PMID:26334282

  11. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  12. A system for tracking and recognizing pedestrian faces using a network of loosely coupled cameras

    NASA Astrophysics Data System (ADS)

    Gagnon, L.; Laliberté, F.; Foucher, S.; Branzan Albu, A.; Laurendeau, D.

    2006-05-01

    A face recognition module has been developed for an intelligent multi-camera video surveillance system. The module can recognize a pedestrian face in terms of six basic emotions and the neutral state. Face and facial features detection (eyes, nasal root, nose and mouth) are first performed using cascades of boosted classifiers. These features are used to normalize the pose and dimension of the face image. Gabor filters are then sampled on a regular grid covering the face image to build a facial feature vector that feeds a nearest neighbor classifier with a cosine distance similarity measure for facial expression interpretation and face model construction. A graphical user interface allows the user to adjust the module parameters.

  13. Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.

    PubMed

    Xiao Yang; Jianjiang Feng; Jie Zhou

    2014-05-01

    Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.

  14. The development of automated behavior analysis software

    NASA Astrophysics Data System (ADS)

    Jaana, Yuki; Prima, Oky Dicky A.; Imabuchi, Takashi; Ito, Hisayoshi; Hosogoe, Kumiko

    2015-03-01

    The measurement of behavior for participants in a conversation scene involves verbal and nonverbal communications. The measurement validity may vary depending on the observers caused by some aspects such as human error, poorly designed measurement systems, and inadequate observer training. Although some systems have been introduced in previous studies to automatically measure the behaviors, these systems prevent participants to talk in a natural way. In this study, we propose a software application program to automatically analyze behaviors of the participants including utterances, facial expressions (happy or neutral), head nods, and poses using only a single omnidirectional camera. The camera is small enough to be embedded into a table to allow participants to have spontaneous conversation. The proposed software utilizes facial feature tracking based on constrained local model to observe the changes of the facial features captured by the camera, and the Japanese female facial expression database to recognize expressions. Our experiment results show that there are significant correlations between measurements observed by the observers and by the software.

  15. Lightweight UAV with on-board photogrammetry and single-frequency GPS positioning for metrology applications

    NASA Astrophysics Data System (ADS)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.; Martin, O.

    2017-05-01

    This article presents a coupled system consisting of a single-frequency GPS receiver and a light photogrammetric quality camera embedded in an Unmanned Aerial Vehicle (UAV). The aim is to produce high quality data that can be used in metrology applications. The issue of Integrated Sensor Orientation (ISO) of camera poses using only GPS measurements is presented and discussed. The accuracy reached by our system based on sensors developed at the French Mapping Agency (IGN) Opto-Electronics, Instrumentation and Metrology Laboratory (LOEMI) is qualified. These sensors are specially designed for close-range aerial image acquisition with a UAV. Lever-arm calibration and time synchronization are explained and performed to reach maximum accuracy. All processing steps are detailed from data acquisition to quality control of final products. We show that an accuracy of a few centimeters can be reached with this system which uses low-cost UAV and GPS module coupled with the IGN-LOEMI home-made camera.

  16. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry.

    PubMed

    Popescu, Viorel D; Valpine, Perry; Sweitzer, Rick A

    2014-04-01

    Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.

  17. Camera-trap study of ocelot and other secretive mammals in the northern Pantanal

    USGS Publications Warehouse

    Trolle, M.; Kery, M.

    2005-01-01

    Reliable information on abundance of the ocelot (Leopardus pardalis) is scarce. We conducted the first camera-trap study in the northern part of the Pantanal wetlands of Brazil, one of the wildlife hotspots of South America. Using capture-recapture analysis, we estimated a density of 0.112 independent individuals per km2 (SE 0.069). We list other mammals recorded with camera traps and show that camera-trap placement on roads or on trails has striking effects on camera-trapping rates.

  18. Thermal Remote Sensing with Uav-Based Workflows

    NASA Astrophysics Data System (ADS)

    Boesch, R.

    2017-08-01

    Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.

  19. A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences

    PubMed Central

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933

  20. Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm

    PubMed Central

    Hashimoto, Koichi

    2017-01-01

    Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216

  1. An evaluation of 3D head pose estimation using the Microsoft Kinect v2.

    PubMed

    Darby, John; Sánchez, María B; Butler, Penelope B; Loram, Ian D

    2016-07-01

    The Kinect v2 sensor supports real-time non-invasive 3D head pose estimation. Because the sensor is small, widely available and relatively cheap it has great potential as a tool for groups interested in measuring head posture. In this paper we compare the Kinect's head pose estimates with a marker-based record of ground truth in order to establish its accuracy. During movement of the head and neck alone (with static torso), we find average errors in absolute yaw, pitch and roll angles of 2.0±1.2°, 7.3±3.2° and 2.6±0.7°, and in rotations relative to the rest pose of 1.4±0.5°, 2.1±0.4° and 2.0±0.8°. Larger head rotations where it becomes difficult to see facial features can cause estimation to fail (10.2±6.1% of all poses in our static torso range of motion tests) but we found no significant changes in performance with the participant standing further away from Kinect - additionally enabling full-body pose estimation - or without performing face shape calibration, something which is not always possible for younger or disabled participants. Where facial features remain visible, the sensor has applications in the non-invasive assessment of postural control, e.g. during a programme of physical therapy. In particular, a multi-Kinect setup covering the full range of head (and body) movement would appear to be a promising way forward. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  3. Astronaut Edwin Aldrin poses for photograph beside deployed U.S. flag

    NASA Image and Video Library

    1969-07-20

    AS11-40-5875 (20 July 1969) --- Astronaut Edwin E. Aldrin Jr., lunar module pilot of the first lunar landing mission, poses for a photograph beside the deployed United States flag during an Apollo 11 extravehicular activity (EVA) on the lunar surface. The Lunar Module (LM) is on the left, and the footprints of the astronauts are clearly visible in the soil of the moon. Astronaut Neil A. Armstrong, commander, took this picture with a 70mm Hasselblad lunar surface camera. While astronauts Armstrong and Aldrin descended in the LM, the "Eagle", to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA

  4. STS-27 crew poses for inflight portrait on forward flight deck with football

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.

  5. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  6. Camera trap placement and the potential for bias due to trails and other features

    PubMed Central

    Forrester, Tavis D.

    2017-01-01

    Camera trapping has become an increasingly widespread tool for wildlife ecologists, with large numbers of studies relying on photo capture rates or presence/absence information. It is increasingly clear that camera placement can directly impact this kind of data, yet these biases are poorly understood. We used a paired camera design to investigate the effect of small-scale habitat features on species richness estimates, and capture rate and detection probability of several mammal species in the Shenandoah Valley of Virginia, USA. Cameras were deployed at either log features or on game trails with a paired camera at a nearby random location. Overall capture rates were significantly higher at trail and log cameras compared to their paired random cameras, and some species showed capture rates as much as 9.7 times greater at feature-based cameras. We recorded more species at both log (17) and trail features (15) than at their paired control cameras (13 and 12 species, respectively), yet richness estimates were indistinguishable after 659 and 385 camera nights of survey effort, respectively. We detected significant increases (ranging from 11–33%) in detection probability for five species resulting from the presence of game trails. For six species detection probability was also influenced by the presence of a log feature. This bias was most pronounced for the three rodents investigated, where in all cases detection probability was substantially higher (24.9–38.2%) at log cameras. Our results indicate that small-scale factors, including the presence of game trails and other features, can have significant impacts on species detection when camera traps are employed. Significant biases may result if the presence and quality of these features are not documented and either incorporated into analytical procedures, or controlled for in study design. PMID:29045478

  7. Camera trap placement and the potential for bias due to trails and other features.

    PubMed

    Kolowski, Joseph M; Forrester, Tavis D

    2017-01-01

    Camera trapping has become an increasingly widespread tool for wildlife ecologists, with large numbers of studies relying on photo capture rates or presence/absence information. It is increasingly clear that camera placement can directly impact this kind of data, yet these biases are poorly understood. We used a paired camera design to investigate the effect of small-scale habitat features on species richness estimates, and capture rate and detection probability of several mammal species in the Shenandoah Valley of Virginia, USA. Cameras were deployed at either log features or on game trails with a paired camera at a nearby random location. Overall capture rates were significantly higher at trail and log cameras compared to their paired random cameras, and some species showed capture rates as much as 9.7 times greater at feature-based cameras. We recorded more species at both log (17) and trail features (15) than at their paired control cameras (13 and 12 species, respectively), yet richness estimates were indistinguishable after 659 and 385 camera nights of survey effort, respectively. We detected significant increases (ranging from 11-33%) in detection probability for five species resulting from the presence of game trails. For six species detection probability was also influenced by the presence of a log feature. This bias was most pronounced for the three rodents investigated, where in all cases detection probability was substantially higher (24.9-38.2%) at log cameras. Our results indicate that small-scale factors, including the presence of game trails and other features, can have significant impacts on species detection when camera traps are employed. Significant biases may result if the presence and quality of these features are not documented and either incorporated into analytical procedures, or controlled for in study design.

  8. An optimal algorithm for reconstructing images from binary measurements

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin

    2010-01-01

    We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.

  9. A Low-Dimensional Radial Silhouette-Based Feature for Fast Human Action Recognition Fusing Multiple Views.

    PubMed

    Chaaraoui, Alexandros Andre; Flórez-Revuelta, Francisco

    2014-01-01

    This paper presents a novel silhouette-based feature for vision-based human action recognition, which relies on the contour of the silhouette and a radial scheme. Its low-dimensionality and ease of extraction result in an outstanding proficiency for real-time scenarios. This feature is used in a learning algorithm that by means of model fusion of multiple camera streams builds a bag of key poses, which serves as a dictionary of known poses and allows converting the training sequences into sequences of key poses. These are used in order to perform action recognition by means of a sequence matching algorithm. Experimentation on three different datasets returns high and stable recognition rates. To the best of our knowledge, this paper presents the highest results so far on the MuHAVi-MAS dataset. Real-time suitability is given, since the method easily performs above video frequency. Therefore, the related requirements that applications as ambient-assisted living services impose are successfully fulfilled.

  10. Light field geometry of a Standard Plenoptic Camera.

    PubMed

    Hahne, Christopher; Aggoun, Amar; Haxha, Shyqyri; Velisavljevic, Vladan; Fernández, Juan Carlos Jácome

    2014-11-03

    The Standard Plenoptic Camera (SPC) is an innovation in photography, allowing for acquiring two-dimensional images focused at different depths, from a single exposure. Contrary to conventional cameras, the SPC consists of a micro lens array and a main lens projecting virtual lenses into object space. For the first time, the present research provides an approach to estimate the distance and depth of refocused images extracted from captures obtained by an SPC. Furthermore, estimates for the position and baseline of virtual lenses which correspond to an equivalent camera array are derived. On the basis of paraxial approximation, a ray tracing model employing linear equations has been developed and implemented using Matlab. The optics simulation tool Zemax is utilized for validation purposes. By designing a realistic SPC, experiments demonstrate that a predicted image refocusing distance at 3.5 m deviates by less than 11% from the simulation in Zemax, whereas baseline estimations indicate no significant difference. Applying the proposed methodology will enable an alternative to the traditional depth map acquisition by disparity analysis.

  11. Sensor fusion of cameras and a laser for city-scale 3D reconstruction.

    PubMed

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-11-04

    This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  12. Density estimation in a wolverine population using spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin

    2011-01-01

    Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.

  13. Camera formation and more, but what comes next? an analysis of volcanic threat of Nisyros island, Greece

    NASA Astrophysics Data System (ADS)

    Winson, A.; Kinvig, H.; Gottsmann, J.; Partington, E.; Geyer, A.

    2008-10-01

    We present an analysis of volcanic threat of Nisyros island (Greece) based on a catalogue of questions compiled for the USGS National Volcano Early Warning System (NVEWS). We find that the score puts Nisyros in the league of volcanoes posing a very high threat. US volcanoes with a comparable threat level include Mt. St. Helens, Augustine and the Long Valley caldera.

  14. STS-105 crewmembers pose for their group photo in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5190 (17 August 2001) --- The STS-105 crew members pause for this group photo in the Destiny laboratory on the International Space Station (ISS). Clockwise from bottom are, Scott J. Horowitz and Frederick W. (Rick) Sturckow, mission commander and pilot, respectively, Patrick G. Forrester and Daniel T. Barry, both mission specialists. This image was taken with a digital still camera.

  15. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in a standard DEM format and used for projection.

  16. Probabilistic visual and electromagnetic data fusion for robust drift-free sequential mosaicking: application to fetoscopy

    PubMed Central

    Tella-Amo, Marcel; Peter, Loic; Shakir, Dzhoshkun I.; Deprest, Jan; Iglesias, Juan Eugenio; Ourselin, Sebastien

    2018-01-01

    Abstract. The most effective treatment for twin-to-twin transfusion syndrome is laser photocoagulation of the shared vascular anastomoses in the placenta. Vascular connections are extremely challenging to locate due to their caliber and the reduced field-of-view of the fetoscope. Therefore, mosaicking techniques are beneficial to expand the scene, facilitate navigation, and allow vessel photocoagulation decision-making. Local vision-based mosaicking algorithms inherently drift over time due to the use of pairwise transformations. We propose the use of an electromagnetic tracker (EMT) sensor mounted at the tip of the fetoscope to obtain camera pose measurements, which we incorporate into a probabilistic framework with frame-to-frame visual information to achieve globally consistent sequential mosaics. We parametrize the problem in terms of plane and camera poses constrained by EMT measurements to enforce global consistency while leveraging pairwise image relationships in a sequential fashion through the use of local bundle adjustment. We show that our approach is drift-free and performs similarly to state-of-the-art global alignment techniques like bundle adjustment albeit with much less computational burden. Additionally, we propose a version of bundle adjustment that uses EMT information. We demonstrate the robustness to EMT noise and loss of visual information and evaluate mosaics for synthetic, phantom-based and ex vivo datasets. PMID:29487889

  17. Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns

    NASA Astrophysics Data System (ADS)

    Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.

    2012-07-01

    Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.

  18. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  19. Real-time stop sign detection and distance estimation using a single camera

    NASA Astrophysics Data System (ADS)

    Wang, Wenpeng; Su, Yuxuan; Cheng, Ming

    2018-04-01

    In modern world, the drastic development of driver assistance system has made driving a lot easier than before. In order to increase the safety onboard, a method was proposed to detect STOP sign and estimate distance using a single camera. In STOP sign detection, LBP-cascade classifier was applied to identify the sign in the image, and the principle of pinhole imaging was based for distance estimation. Road test was conducted using a detection system built with a CMOS camera and software developed by Python language with OpenCV library. Results shows that that the proposed system reach a detection accuracy of maximum of 97.6% at 10m, a minimum of 95.00% at 20m, and 5% max error in distance estimation. The results indicate that the system is effective and has the potential to be used in both autonomous driving and advanced driver assistance driving systems.

  20. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  1. Automatic portion estimation and visual refinement in mobile dietary assessment

    PubMed Central

    Woo, Insoo; Otsmo, Karl; Kim, SungYe; Ebert, David S.; Delp, Edward J.; Boushey, Carol J.

    2011-01-01

    As concern for obesity grows, the need for automated and accurate methods to monitor nutrient intake becomes essential as dietary intake provides a valuable basis for managing dietary imbalance. Moreover, as mobile devices with built-in cameras have become ubiquitous, one potential means of monitoring dietary intake is photographing meals using mobile devices and having an automatic estimate of the nutrient contents returned. One of the challenging problems of the image-based dietary assessment is the accurate estimation of food portion size from a photograph taken with a mobile digital camera. In this work, we describe a method to automatically calculate portion size of a variety of foods through volume estimation using an image. These “portion volumes” utilize camera parameter estimation and model reconstruction to determine the volume of food items, from which nutritional content is then extrapolated. In this paper, we describe our initial results of accuracy evaluation using real and simulated meal images and demonstrate the potential of our approach. PMID:22242198

  2. Automatic portion estimation and visual refinement in mobile dietary assessment

    NASA Astrophysics Data System (ADS)

    Woo, Insoo; Otsmo, Karl; Kim, SungYe; Ebert, David S.; Delp, Edward J.; Boushey, Carol J.

    2010-01-01

    As concern for obesity grows, the need for automated and accurate methods to monitor nutrient intake becomes essential as dietary intake provides a valuable basis for managing dietary imbalance. Moreover, as mobile devices with built-in cameras have become ubiquitous, one potential means of monitoring dietary intake is photographing meals using mobile devices and having an automatic estimate of the nutrient contents returned. One of the challenging problems of the image-based dietary assessment is the accurate estimation of food portion size from a photograph taken with a mobile digital camera. In this work, we describe a method to automatically calculate portion size of a variety of foods through volume estimation using an image. These "portion volumes" utilize camera parameter estimation and model reconstruction to determine the volume of food items, from which nutritional content is then extrapolated. In this paper, we describe our initial results of accuracy evaluation using real and simulated meal images and demonstrate the potential of our approach.

  3. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  4. Crop classification and LAI estimation using original and resolution-reduced images from consumer-grade cameras

    USDA-ARS?s Scientific Manuscript database

    Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original an...

  5. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  6. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    ERIC Educational Resources Information Center

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  7. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  8. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  9. Attribute And-Or Grammar for Joint Parsing of Human Pose, Parts and Attributes.

    PubMed

    Park, Seyoung; Nie, Xiaohan; Zhu, Song-Chun

    2017-07-25

    This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i)Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii)Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii)Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.

  10. IMU-based Real-time Pose Measurement system for Anterior Pelvic Plane in Total Hip Replacement Surgeries.

    PubMed

    Zhe Cao; Shaojie Su; Hao Tang; Yixin Zhou; Zhihua Wang; Hong Chen

    2017-07-01

    With the aging of population, the number of Total Hip Replacement Surgeries (THR) increased year by year. In THR, inaccurate position of the implanted prosthesis may lead to the failure of the operation. In order to reduce the failure rate and acquire the real-time pose of Anterior Pelvic Plane (APP), we propose a measurement system in this paper. The measurement system includes two parts: Initial Pose Measurement Instrument (IPMI) and Real-time Pose Measurement Instrument (RPMI). IPMI is used to acquire the initial pose of the APP, and RPMI is used to estimate the real-time pose of the APP. Both are composed of an Inertial Measurement Unit (IMU) and magnetometer sensors. To estimate the attitude of the measurement system, the Extended Kalman Filter (EKF) is adopted in this paper. The real-time pose of the APP could be acquired together with the algorithm designed in the paper. The experiment results show that the Root Mean Square Error (RMSE) is within 1.6 degrees, which meets the requirement of THR operations.

  11. On-Tree Mango Fruit Size Estimation Using RGB-D Images

    PubMed Central

    Wang, Zhenglin; Verma, Brijesh

    2017-01-01

    In-field mango fruit sizing is useful for estimation of fruit maturation and size distribution, informing the decision to harvest, harvest resourcing (e.g., tray insert sizes), and marketing. In-field machine vision imaging has been used for fruit count, but assessment of fruit size from images also requires estimation of camera-to-fruit distance. Low cost examples of three technologies for assessment of camera to fruit distance were assessed: a RGB-D (depth) camera, a stereo vision camera and a Time of Flight (ToF) laser rangefinder. The RGB-D camera was recommended on cost and performance, although it functioned poorly in direct sunlight. The RGB-D camera was calibrated, and depth information matched to the RGB image. To detect fruit, a cascade detection with histogram of oriented gradients (HOG) feature was used, then Otsu’s method, followed by color thresholding was applied in the CIE L*a*b* color space to remove background objects (leaves, branches etc.). A one-dimensional (1D) filter was developed to remove the fruit pedicles, and an ellipse fitting method employed to identify well-separated fruit. Finally, fruit lineal dimensions were calculated using the RGB-D depth information, fruit image size and the thin lens formula. A Root Mean Square Error (RMSE) = 4.9 and 4.3 mm was achieved for estimated fruit length and width, respectively, relative to manual measurement, for which repeated human measures were characterized by a standard deviation of 1.2 mm. In conclusion, the RGB-D method for rapid in-field mango fruit size estimation is practical in terms of cost and ease of use, but cannot be used in direct intense sunshine. We believe this work represents the first practical implementation of machine vision fruit sizing in field, with practicality gauged in terms of cost and simplicity of operation. PMID:29182534

  12. Comparison of estimates of left ventricular ejection fraction obtained from gated blood pool imaging, different software packages and cameras.

    PubMed

    Steyn, Rachelle; Boniaszczuk, John; Geldenhuys, Theodore

    2014-01-01

    To determine how two software packages, supplied by Siemens and Hermes, for processing gated blood pool (GBP) studies should be used in our department and whether the use of different cameras for the acquisition of raw data influences the results. The study had two components. For the first component, 200 studies were acquired on a General Electric (GE) camera and processed three times by three operators using the Siemens and Hermes software packages. For the second part, 200 studies were acquired on two different cameras (GE and Siemens). The matched pairs of raw data were processed by one operator using the Siemens and Hermes software packages. The Siemens method consistently gave estimates that were 4.3% higher than the Hermes method (p < 0.001). The differences were not associated with any particular level of left ventricular ejection fraction (LVEF). There was no difference in the estimates of LVEF obtained by the three operators (p = 0.1794). The reproducibility of estimates was good. In 95% of patients, using the Siemens method, the SD of the three estimates of LVEF by operator 1 was ≤ 1.7, operator 2 was ≤ 2.1 and operator 3 was ≤ 1.3. The corresponding values for the Hermes method were ≤ 2.5, ≤ 2.0 and ≤ 2.1. There was no difference in the results of matched pairs of data acquired on different cameras (p = 0.4933) CONCLUSION: Software packages for processing GBP studies are not interchangeable. The report should include the name and version of the software package used. Wherever possible, the same package should be used for serial studies. If this is not possible, the report should include the limits of agreement of the different packages. Data acquisition on different cameras did not influence the results.

  13. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  14. Discriminating Projections for Estimating Face Age in Wild Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokola, Ryan A; Bolme, David S; Ricanek, Karl

    2014-01-01

    We introduce a novel approach to estimating the age of a human from a single uncontrolled image. Current face age estimation algorithms work well in highly controlled images, and some are robust to changes in illumination, but it is usually assumed that images are close to frontal. This bias is clearly seen in the datasets that are commonly used to evaluate age estimation, which either entirely or mostly consist of frontal images. Using pose-specific projections, our algorithm maps image features into a pose-insensitive latent space that is discriminative with respect to age. Age estimation is then performed using a multi-classmore » SVM. We show that our approach outperforms other published results on the Images of Groups dataset, which is the only age-related dataset with a non-trivial number of off-axis face images, and that we are competitive with recent age estimation algorithms on the mostly-frontal FG-NET dataset. We also experimentally demonstrate that our feature projections introduce insensitivity to pose.« less

  15. Digital stereophotogrammetry based on circular markers and zooming cameras: evaluation of a method for 3D analysis of small motions in orthopaedic research

    PubMed Central

    2011-01-01

    Background Orthopaedic research projects focusing on small displacements in a small measurement volume require a radiation free, three dimensional motion analysis system. A stereophotogrammetrical motion analysis system can track wireless, small, light-weight markers attached to the objects. Thereby the disturbance of the measured objects through the marker tracking can be kept at minimum. The purpose of this study was to develop and evaluate a non-position fixed compact motion analysis system configured for a small measurement volume and able to zoom while tracking small round flat markers in respect to a fiducial marker which was used for the camera pose estimation. Methods The system consisted of two web cameras and the fiducial marker placed in front of them. The markers to track were black circles on a white background. The algorithm to detect a centre of the projected circle on the image plane was described and applied. In order to evaluate the accuracy (mean measurement error) and precision (standard deviation of the measurement error) of the optical measurement system, two experiments were performed: 1) inter-marker distance measurement and 2) marker displacement measurement. Results The first experiment of the 10 mm distances measurement showed a total accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment, translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with the entire accuracy of 0.058° and the precision was of ± 0.172°. Conclusions The description of the non-proprietary measurement device with very good levels of accuracy and precision may provide opportunities for new, cost effective applications of stereophotogrammetrical analysis in musculoskeletal research projects, focusing on kinematics of small displacements in a small measurement volume. PMID:21284867

  16. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  17. Stereo pair design for cameras with a fovea

    NASA Technical Reports Server (NTRS)

    Chettri, Samir R.; Keefe, Michael; Zimmerman, John R.

    1992-01-01

    We describe the methodology for the design and selection of a stereo pair when the cameras have a greater concentration of sensing elements in the center of the image plane (fovea). Binocular vision is important for the purpose of depth estimation, which in turn is important in a variety of applications such as gaging and autonomous vehicle guidance. We assume that one camera has square pixels of size dv and the other has pixels of size rdv, where r is between 0 and 1. We then derive results for the average error, the maximum error, and the error distribution in the depth determination of a point. These results can be shown to be a general form of the results for the case when the cameras have equal sized pixels. We discuss the behavior of the depth estimation error as we vary r and the tradeoffs between the extra processing time and increased accuracy. Knowing these results makes it possible to study the case when we have a pair of cameras with a fovea.

  18. Practical target location and accuracy indicator in digital close range photogrammetry using consumer grade cameras

    NASA Astrophysics Data System (ADS)

    Moriya, Gentaro; Chikatsu, Hirofumi

    2011-07-01

    Recently, pixel numbers and functions of consumer grade digital camera are amazingly increasing by modern semiconductor and digital technology, and there are many low-priced consumer grade digital cameras which have more than 10 mega pixels on the market in Japan. In these circumstances, digital photogrammetry using consumer grade cameras is enormously expected in various application fields. There is a large body of literature on calibration of consumer grade digital cameras and circular target location. Target location with subpixel accuracy had been investigated as a star tracker issue, and many target location algorithms have been carried out. It is widely accepted that the least squares models with ellipse fitting is the most accurate algorithm. However, there are still problems for efficient digital close range photogrammetry. These problems are reconfirmation of the target location algorithms with subpixel accuracy for consumer grade digital cameras, relationship between number of edge points along target boundary and accuracy, and an indicator for estimating the accuracy of normal digital close range photogrammetry using consumer grade cameras. With this motive, an empirical testing of several algorithms for target location with subpixel accuracy and an indicator for estimating the accuracy are investigated in this paper using real data which were acquired indoors using 7 consumer grade digital cameras which have 7.2 mega pixels to 14.7 mega pixels.

  19. Recognizable-image selection for fingerprint recognition with a mobile-device camera.

    PubMed

    Lee, Dongjae; Choi, Kyoungtaek; Choi, Heeseung; Kim, Jaihie

    2008-02-01

    This paper proposes a recognizable-image selection algorithm for fingerprint-verification systems that use a camera embedded in a mobile device. A recognizable image is defined as the fingerprint image which includes the characteristics that are sufficiently discriminating an individual from other people. While general camera systems obtain focused images by using various gradient measures to estimate high-frequency components, mobile cameras cannot acquire recognizable images in the same way because the obtained images may not be adequate for fingerprint recognition, even if they are properly focused. A recognizable image has to meet the following two conditions: First, valid region in the recognizable image should be large enough compared with other nonrecognizable images. Here, a valid region is a well-focused part, and ridges in the region are clearly distinguishable from valleys. In order to select valid regions, this paper proposes a new focus-measurement algorithm using the secondary partial derivatives and a quality estimation utilizing the coherence and symmetry of gradient distribution. Second, rolling and pitching degrees of a finger measured from the camera plane should be within some limit for a recognizable image. The position of a core point and the contour of a finger are used to estimate the degrees of rolling and pitching. Experimental results show that our proposed method selects valid regions and estimates the degrees of rolling and pitching properly. In addition, fingerprint-verification performance is improved by detecting the recognizable images.

  20. Self-Portraits: Smartphones Reveal a Side Bias in Non-Artists

    PubMed Central

    2013-01-01

    According to surveys of art books and exhibitions, artists prefer poses showing the left side of the face when composing a portrait and the right side when composing a self-portrait. However, it is presently not known whether similar biases can be observed in individuals that lack formal artistic training. We collected self-portraits by naïve photographers who used the iPhone™ front camera, and confirmed a right side bias in this non-artist sample and even when biomechanical constraints would have favored the opposite. This result undermines explanations based on posing conventions due to artistic training or biomechanical factors, and is consistent with the hypothesis that side biases in portraiture and self-portraiture are caused by biologically- determined asymmetries in facial expressiveness. PMID:23405117

  1. Dynamic Geometry Capture with a Multi-View Structured-Light System

    DTIC Science & Technology

    2014-12-19

    funding was never a problem during my studies . One of the best parts of my time at UC Berkeley has been working with colleagues within the Video and...scientific and medical applications such as quantifying improvement in physical therapy and measuring unnatural poses in ergonomic studies . Specifically... cases with limited scene texture. This direct generation of surface geometry provides us with a distinct advantage over multi-camera based systems. For

  2. Walz, Bloomfield, Walheim and Ross pose in Zvezda during STS-110's visit to the ISS

    NASA Image and Video Library

    2002-04-09

    STS110-E-5127 (10 April 2002) --- Astronauts Carl E. Walz (top left), Expedition Four flight engineer, Michael J. Bloomfield, STS-110 mission commander, and Rex J. Walheim (bottom left) and Jerry L. Ross, both STS-110 mission specialists, gather for an informal photo in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  3. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.

  4. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas

    PubMed Central

    2018-01-01

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites. PMID:29673230

  5. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    PubMed

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  6. Closed form unsupervised registration of multi-temporal structure from motion-multiview stereo data using non-linearly weighted image features

    NASA Astrophysics Data System (ADS)

    Seers, T. D.; Hodgetts, D.

    2013-12-01

    Seers, T. D. & Hodgetts, D. School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK. M13 9PL. The detection of topological change at the Earth's surface is of considerable scholarly interest, allowing the quantification of the rates of geomorphic processes whilst providing lucid insights into the underlying mechanisms driving landscape evolution. In this regard, the past decade has witnessed the ever increasing proliferation of studies employing multi-temporal topographic data in within the geosciences, bolstered by continuing technical advancements in the acquisition and processing of prerequisite datasets. Provided by workers within the field of Computer Vision, multiview stereo (MVS) dense surface reconstructions, primed by structure-from-motion (SfM) based camera pose estimation represents one such development. Providing a cost effective, operationally efficient data capture medium, the modest requirement of a consumer grade camera for data collection coupled with the minimal user intervention required during post-processing makes SfM-MVS an attractive alternative to terrestrial laser scanners for collecting multi-temporal topographic datasets. However, in similitude to terrestrial scanner derived data, the co-registration of spatially coincident or partially overlapping scans produced by SfM-MVS presents a major technical challenge, particularly in the case of semi non-rigid scenes produced during topographic change detection studies. Moreover, the arbitrary scaling resulting from SfM ambiguity requires that a scale matrix must be estimated during the transformation, introducing further complexity into its formulation. Here, we present a novel, fully unsupervised algorithm which utilises non-linearly weighted image features for the solving the similarity transform (scale, translation rotation) between partially overlapping scans produced by SfM-MVS image processing. With the only initialization condition being partial intersection between input image sets, our method has major advantages over conventional iterative least squares minimization based methods (e.g. Iterative Closest Point variants), acting only on rigid areas of target scenes, being capable of reliably estimating the scaling factor and requiring no incipient estimation of the transformation to initialize (i.e. manual rough alignment). Moreover, because the solution is closed form, convergence is considerably more expedient that most iterative methods. It is hoped that the availability of improved co-registration routines, such as the one presented here, will facilitate the routine collection of multi-temporal topographic datasets by a wider range of geoscience practitioners.

  7. Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David

    1989-01-01

    Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  8. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  9. Robust gaze-steering of an active vision system against errors in the estimated parameters

    NASA Astrophysics Data System (ADS)

    Han, Youngmo

    2015-01-01

    Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.

  10. Improved depth estimation with the light field camera

    NASA Astrophysics Data System (ADS)

    Wang, Huachun; Sang, Xinzhu; Chen, Duo; Guo, Nan; Wang, Peng; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    Light-field cameras are used in consumer and industrial applications. An array of micro-lenses captures enough information that one can refocus images after acquisition, as well as shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. Thus, depth estimation from both defocus and correspondence are now available in a single capture. And Lytro.Inc also provides a depth estimation from a single-shot capture with light field camera, like Lytro Illum. This Lytro depth estimation containing many correct depth information can be used for higher quality estimation. In this paper, we present a novel simple and principled algorithm that computes dense depth estimation by combining defocus, correspondence and Lytro depth estimations. We analyze 2D epipolar image (EPI) to get defocus and correspondence depth maps. Defocus depth is obtained by computing the spatial gradient after angular integration and correspondence depth by computing the angular variance from EPIs. Lytro depth can be extracted from Lyrto Illum with software. We then show how to combine the three cues into a high quality depth map. Our method for depth estimation is suitable for computer vision applications such as matting, full control of depth-of-field, and surface reconstruction, as well as light filed display

  11. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  12. Goal-oriented rectification of camera-based document images.

    PubMed

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.

  13. Human silhouette matching based on moment invariants

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Chao; Qiu, Xian-Jie; Xia, Shi-Hong; Wang, Zhao-Qi

    2005-07-01

    This paper aims to apply the method of silhouette matching based on moment invariants to infer the human motion parameters from video sequences of single monocular uncalibrated camera. Currently, there are two ways of tracking human motion: Marker and Markerless. While a hybrid framework is introduced in this paper to recover the input video contents. A standard 3D motion database is built up by marker technique in advance. Given a video sequences, human silhouettes are extracted as well as the viewpoint information of the camera which would be utilized to project the standard 3D motion database onto the 2D one. Therefore, the video recovery problem is formulated as a matching issue of finding the most similar body pose in standard 2D library with the one in video image. The framework is applied to the special trampoline sport where we can obtain the complicated human motion parameters in the single camera video sequences, and a lot of experiments are demonstrated that this approach is feasible in the field of monocular video-based 3D motion reconstruction.

  14. Vision-based control for flight relative to dynamic environments

    NASA Astrophysics Data System (ADS)

    Causey, Ryan Scott

    The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.

  15. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    PubMed Central

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  16. A model-based 3D template matching technique for pose acquisition of an uncooperative space object.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2015-03-16

    This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented.

  17. Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose

    NASA Astrophysics Data System (ADS)

    Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.

  18. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  19. Cloud Height Estimation with a Single Digital Camera and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Carretas, Filipe; Janeiro, Fernando M.

    2014-05-01

    Clouds influence the local weather, the global climate and are an important parameter in the weather prediction models. Clouds are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of cloud parameters. Recently, the authors developed a low-cost system for the measurement of cloud base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are acquired simultaneously. In this work we present a new system that estimates the cloud height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to acquire images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the cloud height in real time. To estimate the cloud height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with cloud features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output parameter in the output layer is the cloud height estimated by the ANN. The training procedure was performed, using the back-propagation method, in a set of 260 different clouds with heights in the range [1000, 5000] m. The training of the ANN has resulted in a correlation ratio of 0.74. This trained ANN can therefore be used to estimate the cloud height. The previously described system can also measure the wind speed and direction at cloud height by measuring the displacement, in pixels, of a cloud feature between consecutively acquired photos. Also, the geographical north direction can be estimated using this setup through sequential night images with high exposure times. A further advantage of this single camera system is that no camera calibration or synchronization is needed. This significantly reduces the cost and complexity of field deployment of cloud height measurement systems based on digital photography.

  20. Infrared cameras are potential traceable "fixed points" for future thermometry studies.

    PubMed

    Yap Kannan, R; Keresztes, K; Hussain, S; Coats, T J; Bown, M J

    2015-01-01

    The National physical laboratory (NPL) requires "fixed points" whose temperatures have been established by the International Temperature Scale of 1990 (ITS 90) be used for device calibration. In practice, "near" blackbody radiators together with the standard platinum resistance thermometer is accepted as a standard. The aim of this study was to report the correlation and limits of agreement (LOA) of the thermal infrared camera and non-contact infrared temporal thermometer against each other and the "near" blackbody radiator. Temperature readings from an infrared thermography camera (FLIR T650sc) and a non-contact infrared temporal thermometer (Hubdic FS-700) were compared to a near blackbody (Hyperion R blackbody model 982) at 0.5 °C increments between 20-40 °C. At each increment, blackbody cavity temperature was confirmed with the platinum resistance thermometer. Measurements were taken initially with the thermal infrared camera followed by the infrared thermometer, with each device mounted in turn on a stand at a fixed distance of 20 cm and 5 cm from the blackbody aperture, respectively. The platinum thermometer under-estimated the blackbody temperature by 0.015 °C (95% LOA: -0.08 °C to 0.05 °C), in contrast to the thermal infrared camera and infrared thermometer which over-estimated the blackbody temperature by 0.16 °C (95% LOA: 0.03 °C to 0.28 °C) and 0.75 °C (95% LOA: -0.30 °C to 1.79 °C), respectively. Infrared thermometer over-estimates thermal infrared camera measurements by 0.6 °C (95% LOA: -0.46 °C to 1.65 °C). In conclusion, the thermal infrared camera is a potential temperature reference "fixed point" that could substitute mercury thermometers. However, further repeatability and reproducibility studies will be required with different models of thermal infrared cameras.

  1. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data

    PubMed Central

    Lewis, Jesse S.; Gerber, Brian D.

    2014-01-01

    Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal populations to estimate species occurrence. Occupancy modelling provides a flexible framework for the analysis of these data; explicitly recognizing that given a species occupies an area the probability of detecting it is often less than one. Despite the number of studies using camera data in an occupancy framework, there is only limited guidance from the scientific literature about survey design trade-offs when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers to maximise available resources and determine whether the objectives of a monitoring program or research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 km2 of the Western Slope of Colorado, USA to explore how survey effort (number of cameras deployed and the length of sampling period) affects the accuracy and precision (i.e., error) of the occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach where species occupancy and detection parameters were informed by empirical data from motion-activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10–120 cameras) and occasions (20–120 survey days). Our findings demonstrate that increasing total sampling effort generally decreases error associated with the occupancy estimate, but changing the number of sites or sampling duration can have very different results, depending on whether a species is spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the required survey effort includes maximizing the number of sites and the number of survey days, often to a level that may be logistically unrealistic for many studies. For common species with low detection (i.e., bobcat and coyote) the most efficient sampling approach was to increase the number of occasions (survey days). However, for common species that are moderately detectable (i.e., cottontail rabbit and mule deer), occupancy could reliably be estimated with comparatively low numbers of cameras over a short sampling period. We provide general guidelines for reliably estimating occupancy across a range of terrestrial species (rare to common: ψ = 0.175–0.970, and low to moderate detectability: p = 0.003–0.200) using motion-activated cameras. Wildlife researchers/managers with limited knowledge of the relative abundance and likelihood of detection of a particular species can apply these guidelines regardless of location. We emphasize the importance of prior biological knowledge, defined objectives and detailed planning (e.g., simulating different study-design scenarios) for designing effective monitoring programs and research studies. PMID:25210658

  2. Intraoperative on-the-fly organ-mosaicking for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Bodenstedt, S.; Reichard, D.; Suwelack, S.; Wagner, M.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.; Speidel, S.

    2015-03-01

    The goal of computer-assisted surgery is to provide the surgeon with guidance during an intervention using augmented reality (AR). To display preoperative data correctly, soft tissue deformations that occur during surgery have to be taken into consideration. Optical laparoscopic sensors, such as stereo endoscopes, can produce a 3D reconstruction of single stereo frames for registration. Due to the small field of view and the homogeneous structure of tissue, reconstructing just a single frame in general will not provide enough detail to register and update preoperative data due to ambiguities. In this paper, we propose and evaluate a system that combines multiple smaller reconstructions from different viewpoints to segment and reconstruct a large model of an organ. By using GPU-based methods we achieve near real-time performance. We evaluated the system on an ex-vivo porcine liver (4.21mm+/- 0.63) and on two synthetic silicone livers (3.64mm +/- 0.31 and 1.89mm +/- 0.19) using three different methods for estimating the camera pose (no tracking, optical tracking and a combination).

  3. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    NASA Astrophysics Data System (ADS)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  4. Tomographic iterative reconstruction of a passive scalar in a 3D turbulent flow

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Kylling, Arve; Cassiani, Massimo; Solveig Dinger, Anne; Stebel, Kerstin; Schmidbauer, Norbert; Stohl, Andreas

    2017-04-01

    Turbulence in stable planetary boundary layers often encountered in high latitudes influences the exchange fluxes of heat, momentum, water vapor and greenhouse gases between the Earth's surface and the atmosphere. In climate and meteorological models, such effects of turbulence need to be parameterized, ultimately based on experimental data. A novel experimental approach is being developed within the COMTESSA project in order to study turbulence statistics at high resolution. Using controlled tracer releases, high-resolution camera images and estimates of the background radiation, different tomographic algorithms can be applied in order to obtain time series of 3D representations of the scalar dispersion. In this preliminary work, using synthetic data, we investigate different reconstruction algorithms with emphasis on algebraic methods. We study the dependence of the reconstruction quality on the discretization resolution and the geometry of the experimental device in both 2 and 3-D cases. We assess the computational aspects of the iterative algorithms focusing of the phenomenon of semi-convergence applying a variety of stopping rules. We discuss different strategies for error reduction and regularization of the ill-posed problem.

  5. Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Shenoy, Rajesh

    1997-10-01

    Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.

  6. Optical flow estimation on image sequences with differently exposed frames

    NASA Astrophysics Data System (ADS)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  7. Vision-Based SLAM System for Unmanned Aerial Vehicles

    PubMed Central

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  8. A reference estimator based on composite sensor pattern noise for source device identification

    NASA Astrophysics Data System (ADS)

    Li, Ruizhe; Li, Chang-Tsun; Guan, Yu

    2014-02-01

    It has been proved that Sensor Pattern Noise (SPN) can serve as an imaging device fingerprint for source camera identification. Reference SPN estimation is a very important procedure within the framework of this application. Most previous works built reference SPN by averaging the SPNs extracted from 50 images of blue sky. However, this method can be problematic. Firstly, in practice we may face the problem of source camera identification in the absence of the imaging cameras and reference SPNs, which means only natural images with scene details are available for reference SPN estimation rather than blue sky images. It is challenging because the reference SPN can be severely contaminated by image content. Secondly, the number of available reference images sometimes is too few for existing methods to estimate a reliable reference SPN. In fact, existing methods lack consideration of the number of available reference images as they were designed for the datasets with abundant images to estimate the reference SPN. In order to deal with the aforementioned problem, in this work, a novel reference estimator is proposed. Experimental results show that our proposed method achieves better performance than the methods based on the averaged reference SPN, especially when few reference images used.

  9. Using a trichromatic CCD camera for spectral skylight estimation.

    PubMed

    López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier; Olmo, F J; Cazorla, A; Alados-Arboledas, L

    2008-12-01

    In a previous work [J. Opt. Soc. Am. A 24, 942-956 (2007)] we showed how to design an optimum multispectral system aimed at spectral recovery of skylight. Since high-resolution multispectral images of skylight could be interesting for many scientific disciplines, here we also propose a nonoptimum but much cheaper and faster approach to achieve this goal by using a trichromatic RGB charge-coupled device (CCD) digital camera. The camera is attached to a fish-eye lens, hence permitting us to obtain a spectrum of every point of the skydome corresponding to each pixel of the image. In this work we show how to apply multispectral techniques to the sensors' responses of a common trichromatic camera in order to obtain skylight spectra from them. This spectral information is accurate enough to estimate experimental values of some climate parameters or to be used in algorithms for automatic cloud detection, among many other possible scientific applications.

  10. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  11. A Review Of Oculoplastic Photography: A Guide For Clinician Photographers

    PubMed Central

    Yap, Jun Fai; Wai, Yong Zheng; Ng, Qi Xiong

    2016-01-01

    Clinical photography in the field of oculoplastic surgery has many applications. It is possible for clinicians to obtain standardized clinical photographs without a studio. A clinician photographer has the advantage of knowing exactly what to photograph as well as having immediate access to the images. In order to maintain standardization in the photographs, the photographic settings should remain constant. This article covers essential photographic equipment, camera settings, patient pose, and digital asset management. PMID:27630805

  12. Expedition Two Crew photo in Quest airlock

    NASA Image and Video Library

    2001-07-20

    STS104-E-5188 (20 July 2001) --- The Expedition Two crew poses for an in-flight portrait in the newly- delivered Quest Airlock on the International Space Station (ISS). Flanked by two extravehicular mobility unit (EMU) space suits, are, from left, Susan J. Helms, Yury V. Usachev and James S. Voss. Usachev is commander and Voss and Helms are both flight engineers. This image was recorded by one of the visiting STS-104 crew members using a digital still camera.

  13. Haignere and Culbertson pose in Node 1 during Expedition Three

    NASA Image and Video Library

    2001-10-23

    ISS003-E-7061 (23-31 October 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, shakes hands with French Flight Engineer Claudie Haignere of the Soyuz Taxi crew, in the Unity node on the International Space Station (ISS). Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.

  14. Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems

    Treesearch

    D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman

    1998-01-01

    The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...

  15. Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry

    NASA Technical Reports Server (NTRS)

    Morris, Daniel Dale (Inventor); Chang, Hong (Inventor); Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Graf, Jodi Seaborn (Inventor)

    2016-01-01

    A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.

  16. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on real-time implementation and application-specific analysis.« less

  17. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  18. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  19. Dense depth maps from correspondences derived from perceived motion

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2017-01-01

    Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.

  20. Joint estimation of high resolution images and depth maps from light field cameras

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki

    2014-03-01

    Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.

  1. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Yury Usachev (left), Susan Helms (center) and James Voss (right) take time to pose for the camera after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B. They are the Expedition Two crew who will be flying to the International Space Station on mission STS-102 to replace Expedition One. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  2. Efficient structure from motion on large scenes using UAV with position and pose information

    NASA Astrophysics Data System (ADS)

    Teng, Xichao; Yu, Qifeng; Shang, Yang; Luo, Jing; Wang, Gang

    2018-04-01

    In this paper, we exploit prior information from global positioning systems and inertial measurement units to speed up the process of large scene reconstruction from images acquired by Unmanned Aerial Vehicles. We utilize weak pose information and intrinsic parameter to obtain the projection matrix for each view. As compared to unmanned aerial vehicles' flight altitude, topographic relief can usually be ignored, we assume that the scene is flat and use weak perspective camera to get projective transformations between two views. Furthermore, we propose an overlap criterion and select potentially matching view pairs between projective transformed views. A robust global structure from motion method is used for image based reconstruction. Our real world experiments show that the approach is accurate, scalable and computationally efficient. Moreover, projective transformations between views can also be used to eliminate false matching.

  3. Automated face detection for occurrence and occupancy estimation in chimpanzees.

    PubMed

    Crunchant, Anne-Sophie; Egerer, Monika; Loos, Alexander; Burghardt, Tilo; Zuberbühler, Klaus; Corogenes, Katherine; Leinert, Vera; Kulik, Lars; Kühl, Hjalmar S

    2017-03-01

    Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2-4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage. Using semi-automated ape face detection technology for processing camera trap footage requires only 2-4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably. © 2017 Wiley Periodicals, Inc.

  4. Thermal Effects on Camera Focal Length in Messenger Star Calibration and Orbital Imaging

    NASA Astrophysics Data System (ADS)

    Burmeister, S.; Elgner, S.; Preusker, F.; Stark, A.; Oberst, J.

    2018-04-01

    We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft for the camera's thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS). Within the several hundreds of images of star fields, the Wide Angle Camera (WAC) typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T) = A0 + A1 T. Next, we use images from MESSENGER's orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM). We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera - as well as the camera's focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC). This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in the photogrammetric analysis, specifically these may be responsible for erroneous longwavelength trends in topographic models.

  5. Face recognition system for set-top box-based intelligent TV.

    PubMed

    Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Park, Kang Ryoung

    2014-11-18

    Despite the prevalence of smart TVs, many consumers continue to use conventional TVs with supplementary set-top boxes (STBs) because of the high cost of smart TVs. However, because the processing power of a STB is quite low, the smart TV functionalities that can be implemented in a STB are very limited. Because of this, negligible research has been conducted regarding face recognition for conventional TVs with supplementary STBs, even though many such studies have been conducted with smart TVs. In terms of camera sensors, previous face recognition systems have used high-resolution cameras, cameras with high magnification zoom lenses, or camera systems with panning and tilting devices that can be used for face recognition from various positions. However, these cameras and devices cannot be used in intelligent TV environments because of limitations related to size and cost, and only small, low cost web-cameras can be used. The resulting face recognition performance is degraded because of the limited resolution and quality levels of the images. Therefore, we propose a new face recognition system for intelligent TVs in order to overcome the limitations associated with low resource set-top box and low cost web-cameras. We implement the face recognition system using a software algorithm that does not require special devices or cameras. Our research has the following four novelties: first, the candidate regions in a viewer's face are detected in an image captured by a camera connected to the STB via low processing background subtraction and face color filtering; second, the detected candidate regions of face are transmitted to a server that has high processing power in order to detect face regions accurately; third, in-plane rotations of the face regions are compensated based on similarities between the left and right half sub-regions of the face regions; fourth, various poses of the viewer's face region are identified using five templates obtained during the initial user registration stage and multi-level local binary pattern matching. Experimental results indicate that the recall; precision; and genuine acceptance rate were about 95.7%; 96.2%; and 90.2%, respectively.

  6. Estimating tiger abundance from camera trap data: Field surveys and analytical issues

    USGS Publications Warehouse

    Karanth, K. Ullas; Nichols, James D.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Automated photography of tigers Panthera tigris for purely illustrative purposes was pioneered by British forester Fred Champion (1927, 1933) in India in the early part of the Twentieth Century. However, it was McDougal (1977) in Nepal who first used camera traps, equipped with single-lens reflex cameras activated by pressure pads, to identify individual tigers and study their social and predatory behaviors. These attempts involved a small number of expensive, cumbersome camera traps, and were not, in any formal sense, directed at “sampling” tiger populations.

  7. 3D Reconstruction of a Fluvial Sediment Slug from Source to Sink: reach-scale modeling of the Dart River, NZ

    NASA Astrophysics Data System (ADS)

    Brasington, J.; Cook, S.; Cox, S.; James, J.; Lehane, N.; McColl, S. T.; Quincey, D. J.; Williams, R. D.

    2014-12-01

    Following heavy rainfall on 4/1/14, a debris flow at Slip Stream (44.59 S 168.34 E) introduced >106 m3 of sediment to the Dart River valley floor in NZ Southern Alps. Runout over an existing fan dammed the Dart River causing a sudden drop in discharge downstream. This broad dam was breached quickly; however the temporary loss of conveyance impounded a 3 km lake with a volume of 6 x 106 m3 and depths that exceed 10 m. Quantifying the impact of this large sediment pulse on the Dart River is urgently needed to assess potential sedimentation downstream and will also provide an ideal vehicle to test theories of bed wave migration in large, extensively braided rivers. Recent advances in geomatics offer the opportunity to study these impacts directly through the production of high-resolution DEMs. These 3D snapshots can then be compared through time to quantify the morphodynamic response of the channel as it adjusts to the change in sediment supply. In this study we describe the methods and results of a novel survey strategy designed to capture of the complex morphology of the Dart River along a remote 40 km reach, from the upstream landslide source to its distal sediment sink in Lake Wakatipu. The scale of this system presents major logistical and methodological challenges, and hitherto would have conventionally be addressed with airborne laser scanning, bringing with it significant deployment constraints and costs. By contrast, we present sub-metre 3D reconstructions of the system (Figure 1), derived from highly redundant aerial photography shot with a non-metric camera from a helicopter survey that extended over an 80 km2 area. Structure-from-Motion photogrammetry was used to solve simultaneously camera position, pose and derive a 3D point cloud based on over 4000 images. Reconstructions were found to exhibit significant systematic error resulting from the implicit estimation of the internal camera orientation parameters, and we show how these effects can be minimized by optimizing the lens calibration before and after scene reconstruction using both external constraints and refined camera models. An analysis of DEM uncertainty, undertaken through comparison with long-range TLS data, demonstrates the potential for this low-cost survey strategy to generate models superior to conventional laser swath mapping even over large areas.

  8. An Improved Method of Pose Estimation for Lighthouse Base Station Extension.

    PubMed

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-10-22

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.

  9. An Improved Method of Pose Estimation for Lighthouse Base Station Extension

    PubMed Central

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-01-01

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509

  10. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  11. Structure-From-Motion in 3D Space Using 2D Lidars

    PubMed Central

    Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So

    2017-01-01

    This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372

  12. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  13. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  14. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  15. Traffic monitoring with distributed smart cameras

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Rosner, Marcin; Ulm, Michael; Schwingshackl, Gert

    2012-01-01

    The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. Today the automated analysis of traffic situations is still in its infancy--the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully captured and interpreted by a vision system. 3In this work we present steps towards a visual monitoring system which is designed to detect potentially dangerous traffic situations around a pedestrian crossing at a street intersection. The camera system is specifically designed to detect incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system has been field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in a weatherproof housing. Two cameras run vehicle detection and tracking software, one camera runs a pedestrian detection and tracking module based on the HOG dectection principle. All 3 cameras use sparse optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. Geometric calibration of the cameras allows us to estimate the real-world co-ordinates of detected objects and to link the cameras together into one common reference system. This work describes the foundation for all the different object detection modalities (pedestrians, vehicles), and explains the system setup, tis design, and evaluation results which we have achieved so far.

  16. Pan-STARRRS Status and Geo Observations Results

    DTIC Science & Technology

    2011-09-01

    Earth Orbiting asteroids which may pose a threat. The final design includes four 1.8m telescopes each equipped with a giga- pixel camera and is...are relative to the rotation of the earth, the mount is commanded utilizing “stare mode” for all GEO observations. The belt is surveyed by...integration time the geo belt is observed M number of times. In order to detect an object it must be observed N number of times out of the possible M

  17. Astronaut Charles Conrad poses in shower facility in crew quarters

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, smiles for the camera after a hot bath in the shower facility in the crew quarters of the Orbital Workshop of the Skylab 2 space station cluster in Earth orbit. In deploying the shower facility the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  18. STS-109 inflight crew portrait

    NASA Image and Video Library

    2002-03-11

    STS109-E-6032 (11 March 2002) --- On the Space Shuttle Columbia’s mid deck, the crewmembers for the STS-109 mission pose for the traditional in-flight portrait. From the left (front row), are astronauts Nancy J. Currie, mission specialist, Scott D. Altman, mission commander, and Duane G. Carey, pilot. From the left (back row), are astronauts John M. Grunsfeld, payload commander, and Richard M. Linnehan, James H. Newman, and Michael J. Massimino, all mission specialists. The image was recorded with a digital still camera.

  19. Expedition Three, Expedition Four and STS-108 crews eat a meal in Zvezda

    NASA Image and Video Library

    2001-12-15

    ISS003-E-8385 (15 December 2001) --- Astronaut Carl E. Walz (left), Expedition Four flight engineer; cosmonaut Yuri I. Onufrienko, Expedition Four mission commander; along with astronauts Dominic L. Gorie, STS-108 mission commander, and Frank L. Culbertson, Jr., Expedition Three mission commander, pose for a group photo in the Zvezda Service Module on the International Space Station (ISS). Various food items are visible in the foreground. The image was taken with a digital still camera.

  20. Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter

    PubMed Central

    Cano-García, Angel E.; Galilea, José Luis Lázaro; Fernández, Pedro; Infante, Arturo Luis; Pompa-Chacón, Yamilet; Vázquez, Carlos Andrés Luna

    2013-01-01

    Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED). They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m. PMID:23727954

  1. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    NASA Astrophysics Data System (ADS)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured with the device's digital camera, and an interface is available for annotating (interpreting) the image using lines and polygons. Image-to-geometry registration is then performed using a developed algorithm, initialised using the coarse pose from the on-board orientation and positioning sensors. The annotations made on the captured images are then available in the 3D model coordinate system for overlay and export. This workflow allows geologists to make interpretations and conceptual models in the field, which can then be linked to and refined in office workflows for later MPS property modelling.

  2. AnimalFinder: A semi-automated system for animal detection in time-lapse camera trap images

    USGS Publications Warehouse

    Price Tack, Jennifer L.; West, Brian S.; McGowan, Conor P.; Ditchkoff, Stephen S.; Reeves, Stanley J.; Keever, Allison; Grand, James B.

    2017-01-01

    Although the use of camera traps in wildlife management is well established, technologies to automate image processing have been much slower in development, despite their potential to drastically reduce personnel time and cost required to review photos. We developed AnimalFinder in MATLAB® to identify animal presence in time-lapse camera trap images by comparing individual photos to all images contained within the subset of images (i.e. photos from the same survey and site), with some manual processing required to remove false positives and collect other relevant data (species, sex, etc.). We tested AnimalFinder on a set of camera trap images and compared the presence/absence results with manual-only review with white-tailed deer (Odocoileus virginianus), wild pigs (Sus scrofa), and raccoons (Procyon lotor). We compared abundance estimates, model rankings, and coefficient estimates of detection and abundance for white-tailed deer using N-mixture models. AnimalFinder performance varied depending on a threshold value that affects program sensitivity to frequently occurring pixels in a series of images. Higher threshold values led to fewer false negatives (missed deer images) but increased manual processing time, but even at the highest threshold value, the program reduced the images requiring manual review by ~40% and correctly identified >90% of deer, raccoon, and wild pig images. Estimates of white-tailed deer were similar between AnimalFinder and the manual-only method (~1–2 deer difference, depending on the model), as were model rankings and coefficient estimates. Our results show that the program significantly reduced data processing time and may increase efficiency of camera trapping surveys.

  3. A hierarchical model for estimating density in camera-trap studies

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.

    2009-01-01

    Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.

  4. Estimation of color modification in digital images by CFA pattern change.

    PubMed

    Choi, Chang-Hee; Lee, Hae-Yeoun; Lee, Heung-Kyu

    2013-03-10

    Extensive studies have been carried out for detecting image forgery such as copy-move, re-sampling, blurring, and contrast enhancement. Although color modification is a common forgery technique, there is no reported forensic method for detecting this type of manipulation. In this paper, we propose a novel algorithm for estimating color modification in images acquired from digital cameras when the images are modified. Most commercial digital cameras are equipped with a color filter array (CFA) for acquiring the color information of each pixel. As a result, the images acquired from such digital cameras include a trace from the CFA pattern. This pattern is composed of the basic red green blue (RGB) colors, and it is changed when color modification is carried out on the image. We designed an advanced intermediate value counting method for measuring the change in the CFA pattern and estimating the extent of color modification. The proposed method is verified experimentally by using 10,366 test images. The results confirmed the ability of the proposed method to estimate color modification with high accuracy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.

    PubMed

    Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond

    2018-04-01

    We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.

  6. A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity

    PubMed Central

    Lomp, Oliver; Faubel, Christian; Schöner, Gregor

    2017-01-01

    Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145

  7. Cloud fractions estimated from shipboard whole-sky camera and ceilometer observations between East Asia and Antarctica

    NASA Astrophysics Data System (ADS)

    Kuji, M.; Hagiwara, M.; Hori, M.; Shiobara, M.

    2017-12-01

    Shipboard observations on cloud fraction were carried out along the round research cruise between East Asia and Antarctica from November 2015 to Aril 2016 using a whole-sky camera and a ceilometer onboard Research Vessel (R/V) Shirase. We retrieved cloud fraction from the whole-sky camera based on the brightness and color of the images, while we estimated cloud fraction from the ceilometer as a cloud frequency of occurrence. As a result, the average cloud fractions over outward open ocean, sea ice region, and returning openocean were approximately 56% (60%), 44% (64%), and 67% (72%), respectively, with the whole-sky camera (ceilometer). The comparison of the daily-averaged cloud fractions from the whole-sky camera and the ceilometer, it is found that the correlation coefficient was 0.73 for the 129 match-up dataset between East Asia and Antarctica including sea ice region as well as open ocean. The results are qualitatively consistent between the two observations as a whole, but there exists some underestimation with the whole-sky camera compared to the ceilometer. One of the reasons is possibly that the imager is apt to dismiss an optically thinner clouds that can be detected by the ceilometer. On the other hand, the difference of their view angles between the imager and the ceilometer possibly affects the estimation. Therefore, it is necessary to elucidate the cloud properties with detailed match-up analyses in future. Another future task is to compare the cloud fractions with satellite observation such as MODIS cloud products. Shipboard observations in themselves are very valuable for the validation of products from satellite observation, because we do not necessarily have many validation sites over Southern Ocean and sea ice region in particular.

  8. Attempt to the detection of small wildfire by the uncooled micro bolometer camera onboard 50 kg class satellite

    NASA Astrophysics Data System (ADS)

    Fukuhara, T.; Kouyama, T.; Kato, S.; Nakamura, R.

    2016-12-01

    University International Formation Mission (UNIFORM) in Japan started in 2011 is an ambitious project that specialized to surveillance of small wildfire to contribute to provide fire information for initial suppression. Final aim of the mission is to construct a constellation with several 50 kg class satellites for frequent and exclusive observation. The uncooled micro-bolometer camera with 640 x 480 pixels based on commercial products has been newly developed for the first satellite. It has been successfully launched on 24 May 2014 and injected to the Sun-Synchronous orbit at local time of 12:00 with altitude of 628 km. The camera has been detected considerable hotspots not only wildfire but also volcanoes. Brightness temperature observed on orbit has been verified and scale of observed wildfire has been roughly presumed; the smallest wildfire ever detected has flame zone less than 2 x 103 m2. It is one tenth of initial requirement estimated in design process; our camera has enough ability to discover small wildfire and to provide beneficial information for fire control with low cost and quick fabrication; it would contribute to practical utility especially in developing nations. A next camera is available for new wildfire mission with satellite constellation; it has already developed for flight. Pixel arrays increasing to 1024 x 768, spatial resolution becomes fine to detect smaller wildfire whereas the swath of image is kept. This camera would be applied to the future planetary mission for Mars and Asteroid explore, too. When it observes planetary surface, thermal inertia can be estimated from continuous observation. When it observes atmosphere, cloud-top altitude can be estimated from horizontal temperature distribution.

  9. Estimating Species Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera Trap Data

    PubMed Central

    Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A.; Spitale, Daniel

    2014-01-01

    Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species’ richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species’ occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as ‘montane forest dwellers’, e.g. the endemic Sanje mangabey (Cercocebus sanjei), and ‘lowland forest dwellers’, e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806

  10. Temporal subtraction of chest radiographs compensating pose differences

    NASA Astrophysics Data System (ADS)

    von Berg, Jens; Dworzak, Jalda; Klinder, Tobias; Manke, Dirk; Kreth, Adrian; Lamecker, Hans; Zachow, Stefan; Lorenz, Cristian

    2011-03-01

    Temporal subtraction techniques using 2D image registration improve the detectability of interval changes from chest radiographs. Although such methods are well known for some time they are not widely used in radiologic practice. The reason is the occurrence of strong pose differences between two acquisitions with a time interval of months to years in between. Such strong perspective differences occur in a reasonable number of cases. They cannot be compensated by available image registration methods and thus mask interval changes to be undetectable. In this paper a method is proposed to estimate a 3D pose difference by the adaptation of a 3D rib cage model to both projections. The difference between both is then compensated for, thus producing a subtraction image with virtually no change in pose. The method generally assumes that no 3D image data is available from the patient. The accuracy of pose estimation is validated with chest phantom images acquired under controlled geometric conditions. A subtle interval change simulated by a piece of plastic foam attached to the phantom becomes visible in subtraction images generated with this technique even at strong angular pose differences like an anterior-posterior inclination of 13 degrees.

  11. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    PubMed

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and conservation actions are based.

  12. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  13. STS-56 MS1 Foale and MS2 Cockrell on aft flight deck of Discovery, OV-103

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Mission Specialist 1 (MS1) Michael Foale (left) and MS2 Kenneth D. Cockrell pose on aft flight deck of Discovery, Orbiter Vehicle (OV) 103, for this in-cabin electronic still camera (ESC) photograph. The two crewmembers are positioned in front of the onorbit station with a beam of sunlight shining through overhead window W8. The cable on the bottom right is part of the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES), connecting the HERCULES Attitude Processor (HAP) to the Inertial Measurement Unit (IMU). In-cabin shots with the camera are for test purposes only. HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they merely point and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. Digital file name is ESC01008.TGA.

  14. Non-Cooperative Facial Recognition Video Dataset Collection Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Marcia L.; Erikson, Rebecca L.; Lombardo, Nicholas J.

    The Pacific Northwest National Laboratory (PNNL) will produce a non-cooperative (i.e. not posing for the camera) facial recognition video data set for research purposes to evaluate and enhance facial recognition systems technology. The aggregate data set consists of 1) videos capturing PNNL role players and public volunteers in three key operational settings, 2) photographs of the role players for enrolling in an evaluation database, and 3) ground truth data that documents when the role player is within various camera fields of view. PNNL will deliver the aggregate data set to DHS who may then choose to make it available tomore » other government agencies interested in evaluating and enhancing facial recognition systems. The three operational settings that will be the focus of the video collection effort include: 1) unidirectional crowd flow 2) bi-directional crowd flow, and 3) linear and/or serpentine queues.« less

  15. Report Of The HST Strategy Panel: A Strategy For Recovery

    DTIC Science & Technology

    1991-01-01

    orbit change out: the Wide Field/Planetary Camera II (WFPC II), the Near-Infrared Camera and Multi- Object Spectrometer (NICMOS) and the Space ...are the Space Telescope Imaging Spectrograph (STB), the Near-Infrared Camera and Multi- Object Spectrom- eter (NICMOS), and the second Wide Field and...expected to fail to lock due to duplicity was 20%; on- orbit data indicates that 10% may be a better estimate, but the guide stars were preselected

  16. Integration of image capture and processing: beyond single-chip digital camera

    NASA Astrophysics Data System (ADS)

    Lim, SukHwan; El Gamal, Abbas

    2001-05-01

    An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.

  17. Incremental Multi-view 3D Reconstruction Starting from Two Images Taken by a Stereo Pair of Cameras

    NASA Astrophysics Data System (ADS)

    El hazzat, Soulaiman; Saaidi, Abderrahim; Karam, Antoine; Satori, Khalid

    2015-03-01

    In this paper, we present a new method for multi-view 3D reconstruction based on the use of a binocular stereo vision system constituted of two unattached cameras to initialize the reconstruction process. Afterwards , the second camera of stereo vision system (characterized by varying parameters) moves to capture more images at different times which are used to obtain an almost complete 3D reconstruction. The first two projection matrices are estimated by using a 3D pattern with known properties. After that, 3D scene points are recovered by triangulation of the matched interest points between these two images. The proposed approach is incremental. At each insertion of a new image, the camera projection matrix is estimated using the 3D information already calculated and new 3D points are recovered by triangulation from the result of the matching of interest points between the inserted image and the previous image. For the refinement of the new projection matrix and the new 3D points, a local bundle adjustment is performed. At first, all projection matrices are estimated, the matches between consecutive images are detected and Euclidean sparse 3D reconstruction is obtained. So, to increase the number of matches and have a more dense reconstruction, the Match propagation algorithm, more suitable for interesting movement of the camera, was applied on the pairs of consecutive images. The experimental results show the power and robustness of the proposed approach.

  18. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.

    PubMed

    Song, Kai-Tai; Tai, Jen-Chao

    2006-10-01

    Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.

  19. SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera.

    PubMed

    Wang, Ting-Chun; Chandraker, Manmohan; Efros, Alexei A; Ramamoorthi, Ravi

    2018-03-01

    Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

  20. What are we missing? Advantages of more than one viewpoint to estimate fish assemblages using baited video

    PubMed Central

    Huveneers, Charlie; Fairweather, Peter G.

    2018-01-01

    Counting errors can bias assessments of species abundance and richness, which can affect assessments of stock structure, population structure and monitoring programmes. Many methods for studying ecology use fixed viewpoints (e.g. camera traps, underwater video), but there is little known about how this biases the data obtained. In the marine realm, most studies using baited underwater video, a common method for monitoring fish and nekton, have previously only assessed fishes using a single bait-facing viewpoint. To investigate the biases stemming from using fixed viewpoints, we added cameras to cover 360° views around the units. We found similar species richness for all observed viewpoints but the bait-facing viewpoint recorded the highest fish abundance. Sightings of infrequently seen and shy species increased with the additional cameras and the extra viewpoints allowed the abundance estimates of highly abundant schooling species to be up to 60% higher. We specifically recommend the use of additional cameras for studies focusing on shyer species or those particularly interested in increasing the sensitivity of the method by avoiding saturation in highly abundant species. Studies may also benefit from using additional cameras to focus observation on the downstream viewpoint. PMID:29892386

Top