Sample records for camera slow control

  1. Status of the NectarCAM camera project

    NASA Astrophysics Data System (ADS)

    Glicenstein, J.-F.; Barcelo, M.; Barrio, J.-A.; Blanch, O.; Boix, J.; Bolmont, J.; Boutonnet, C.; Brun, P.; Chabanne, E.; Champion, C.; Colonges, S.; Corona, P.; Courty, B.; Delagnes, E.; Delgado, C.; Diaz, C.; Ernenwein, J.-P.; Fegan, S.; Ferreira, O.; Fesquet, M.; Fontaine, G.; Fouque, N.; Henault, F.; Gascón, D.; Giebels, B.; Herranz, D.; Hermel, R.; Hoffmann, D.; Horan, D.; Houles, J.; Jean, P.; Karkar, S.; Knödlseder, J.; Martinez, G.; Lamanna, G.; LeFlour, T.; Lévêque, A.; Lopez-Coto, R.; Louis, F.; Moudden, Y.; Moulin, E.; Nayman, P.; Nunio, F.; Olive, J.-F.; Panazol, J.-L.; Pavy, S.; Petrucci, P.-O.; Punch, M.; Prast, Julie; Ramon, P.; Rateau, S.; Ribó, M.; Rosier-Lees, S.; Sanuy, A.; Sizun, P.; Sieiro, J.; Sulanke, K.-H.; Tavernet, J.-P.; Tejedor, L. A.; Toussenel, F.; Vasileiadis, G.; Voisin, V.; Waegebert, V.; Zurbach, C.

    2014-07-01

    NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014.

  2. Time-Lapse Motion Picture Technique Applied to the Study of Geological Processes.

    PubMed

    Miller, R D; Crandell, D R

    1959-09-25

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  3. A state observer for using a slow camera as a sensor for fast control applications

    NASA Astrophysics Data System (ADS)

    Gahleitner, Reinhard; Schagerl, Martin

    2013-03-01

    This contribution concerns about a problem that often arises in vision based control, when a camera is used as a sensor for fast control applications, or more precisely, when the sample rate of the control loop is higher than the frame rate of the camera. In control applications for mechanical axes, e.g. in robotics or automated production, a camera and some image processing can be used as a sensor to detect positions or angles. The sample time in these applications is typically in the range of a few milliseconds or less and this demands the use of a camera with a high frame rate up to 1000 fps. The presented solution is a special state observer that can work with a slower and therefore cheaper camera to estimate the state variables at the higher sample rate of the control loop. To simplify the image processing for the determination of positions or angles and make it more robust, some LED markers are applied to the plant. Simulation and experimental results show that the concept can be used even if the plant is unstable like the inverted pendulum.

  4. Low, slow, small target recognition based on spatial vision network

    NASA Astrophysics Data System (ADS)

    Cheng, Zhao; Guo, Pei; Qi, Xin

    2018-03-01

    Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.

  5. Electronic cameras for low-light microscopy.

    PubMed

    Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith

    2013-01-01

    This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.

  6. Exploding Balloons, Deformed Balls, Strange Reflections and Breaking Rods: Slow Motion Analysis of Selected Hands-On Experiments

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    A selection of hands-on experiments from different fields of physics, which happen too fast for the eye or video cameras to properly observe and analyse the phenomena, is presented. They are recorded and analysed using modern high speed cameras. Two types of cameras were used: the first were rather inexpensive consumer products such as Casio…

  7. DC drive system for cine/pulse cameras

    NASA Technical Reports Server (NTRS)

    Gerlach, R. H.; Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1977-01-01

    Camera-drive functions are separated mechanically into two groups which are driven by two separate dc brushless motors. First motor, a 90 deg stepper, drives rotating shutter; second electronically commutated motor drives claw and film transport. Shutter is made of one piece but has two openings for slow and fast exposures.

  8. A design of camera simulator for photoelectric image acquisition system

    NASA Astrophysics Data System (ADS)

    Cai, Guanghui; Liu, Wen; Zhang, Xin

    2015-02-01

    In the process of developing the photoelectric image acquisition equipment, it needs to verify the function and performance. In order to make the photoelectric device recall the image data formerly in the process of debugging and testing, a design scheme of the camera simulator is presented. In this system, with FPGA as the control core, the image data is saved in NAND flash trough USB2.0 bus. Due to the access rate of the NAND, flash is too slow to meet the requirement of the sytsem, to fix the problem, the pipeline technique and the High-Band-Buses technique are applied in the design to improve the storage rate. It reads image data out from flash in the control logic of FPGA and output separately from three different interface of Camera Link, LVDS and PAL, which can provide image data for photoelectric image acquisition equipment's debugging and algorithm validation. However, because the standard of PAL image resolution is 720*576, the resolution is different between PAL image and input image, so the image can be output after the resolution conversion. The experimental results demonstrate that the camera simulator outputs three format image sequence correctly, which can be captured and displayed by frame gather. And the three-format image data can meet test requirements of the most equipment, shorten debugging time and improve the test efficiency.

  9. Tele-Education: Teaching over the Telephone with Slow-Scan Video.

    ERIC Educational Resources Information Center

    Kelleher, Kathleen

    1983-01-01

    This report describes educational applications of slow-scan television (SSTV) teleconferencing, which uses a video signal generated from a standard, low-cost, industrial television camera and compressed to a bandwidth suitable for transmission over telephone lines. Following a brief explanation of the capabilities of SSTV and the required…

  10. Thermodynamics of Gases: Combustion Processes, Analysed in Slow Motion

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2013-01-01

    We present a number of simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature relatively slow combustion processes of pure hydrogen as well as fast reactions involving oxy-hydrogen in a stoichiometric mixture. (Contains 4 figures.)

  11. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  12. Vapour Pressure and Adiabatic Cooling from Champagne: Slow-Motion Visualization of Gas Thermodynamics

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…

  13. The World in Slow Motion: Using a High-Speed Camera in a Physics Workshop

    ERIC Educational Resources Information Center

    Dewanto, Andreas; Lim, Geok Quee; Kuang, Jianhong; Zhang, Jinfeng; Yeo, Ye

    2012-01-01

    We present a physics workshop for college students to investigate various physical phenomena using high-speed cameras. The technical specifications required, the step-by-step instructions, as well as the practical limitations of the workshop, are discussed. This workshop is also intended to be a novel way to promote physics to Generation-Y…

  14. Mapping Land and Water Surface Topography with instantaneous Structure from Motion

    NASA Astrophysics Data System (ADS)

    Dietrich, J.; Fonstad, M. A.

    2012-12-01

    Structure from Motion (SfM) has given researchers an invaluable tool for low-cost, high-resolution 3D mapping of the environment. These SfM 3D surface models are commonly constructed from many digital photographs collected with one digital camera (either handheld or attached to aerial platform). This method works for stationary or very slow moving objects. However, objects in motion are impossible to capture with one-camera SfM. With multiple simultaneously triggered cameras, it becomes possible to capture multiple photographs at the same time which allows for the construction 3D surface models of moving objects and surfaces, an instantaneous SfM (ISfM) surface model. In river science, ISfM provides a low-cost solution for measuring a number of river variables that researchers normally estimate or are unable to collect over large areas. With ISfM and sufficient coverage of the banks and RTK-GPS control it is possible to create a digital surface model of land and water surface elevations across an entire channel and water surface slopes at any point within the surface model. By setting the cameras to collect time-lapse photography of a scene it is possible to create multiple surfaces that can be compared using traditional digital surface model differencing. These water surface models could be combined the high-resolution bathymetry to create fully 3D cross sections that could be useful in hydrologic modeling. Multiple temporal image sets could also be used in 2D or 3D particle image velocimetry to create 3D surface velocity maps of a channel. Other applications in earth science include anything where researchers could benefit from temporal surface modeling like mass movements, lava flows, dam removal monitoring. The camera system that was used for this research consisted of ten pocket digital cameras (Canon A3300) equipped with wireless triggers. The triggers were constructed with an Arduino-style microcontroller and off-the-shelf handheld radios with a maximum range of several kilometers. The cameras are controlled from another microcontroller/radio combination that allows for manual or automatic triggering of the cameras. The total cost of the camera system was approximately 1500 USD.

  15. Measuring full-field displacement spectral components using photographs taken with a DSLR camera via an analogue Fourier integral

    NASA Astrophysics Data System (ADS)

    Javh, Jaka; Slavič, Janko; Boltežar, Miha

    2018-02-01

    Instantaneous full-field displacement fields can be measured using cameras. In fact, using high-speed cameras full-field spectral information up to a couple of kHz can be measured. The trouble is that high-speed cameras capable of measuring high-resolution fields-of-view at high frame rates prove to be very expensive (from tens to hundreds of thousands of euro per camera). This paper introduces a measurement set-up capable of measuring high-frequency vibrations using slow cameras such as DSLR, mirrorless and others. The high-frequency displacements are measured by harmonically blinking the lights at specified frequencies. This harmonic blinking of the lights modulates the intensity changes of the filmed scene and the camera-image acquisition makes the integration over time, thereby producing full-field Fourier coefficients of the filmed structure's displacements.

  16. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  17. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy.

    PubMed Central

    Viles, C L; Sieracki, M E

    1992-01-01

    Accurate measurement of the biomass and size distribution of picoplankton cells (0.2 to 2.0 microns) is paramount in characterizing their contribution to the oceanic food web and global biogeochemical cycling. Image-analyzed fluorescence microscopy, usually based on video camera technology, allows detailed measurements of individual cells to be taken. The application of an imaging system employing a cooled, slow-scan charge-coupled device (CCD) camera to automated counting and sizing of individual picoplankton cells from natural marine samples is described. A slow-scan CCD-based camera was compared to a video camera and was superior for detecting and sizing very small, dim particles such as fluorochrome-stained bacteria. Several edge detection methods for accurately measuring picoplankton cells were evaluated. Standard fluorescent microspheres and a Sargasso Sea surface water picoplankton population were used in the evaluation. Global thresholding was inappropriate for these samples. Methods used previously in image analysis of nanoplankton cells (2 to 20 microns) also did not work well with the smaller picoplankton cells. A method combining an edge detector and an adaptive edge strength operator worked best for rapidly generating accurate cell sizes. A complete sample analysis of more than 1,000 cells averages about 50 min and yields size, shape, and fluorescence data for each cell. With this system, the entire size range of picoplankton can be counted and measured. Images PMID:1610183

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, Kelly

    Movies have transformed our perception of the world. With slow motion photography, we can see a hummingbird flap its wings, and a bullet pierce an apple. The remarkably small and extremely fast molecular world that determines how your body functions cannot be captured with even the most sophisticated movie camera today. To see chemistry in real time requires a camera capable of seeing molecules that are one ten billionth of a foot with a frame rate of 10 trillion frames per second! SLAC has embarked on the construction of just such a camera. Please join me as I discuss howmore » this molecular movie camera will work and how it will change our perception of the molecular world.« less

  19. The front-end electronics and slow control of large area SiPM for the SST-1M camera developed for the CTA experiment

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E.; Troyano Pujadas, I.; Ziȩtara, K.; Błocki, J.; Bogacz, L.; Bulik, T.; Curyło, M.; Dyrda, M.; Frankowski, A.; Grudniki, Ł.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśsko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Żychowski, P.

    2016-09-01

    The single mirror Small Size Telescope (SST-1M) is one of the proposed designs for the smallest type of telescopes, SSTs that will compose the Cherenkov Telescope Array (CTA). The SST-1M camera will use Silicon PhotoMultipliers (SiPM) which are nowadays commonly used in High Energy Physics experiments and many imaging applications. However the unique pixel shape and size have required a dedicated development by the University of Geneva and Hamamatsu. The resulting sensor has a surface of ∼94 mm2 and a total capacitance of ∼3.4 nF. These unique characteristics, combined with the stringent requirements of the CTA project on timing and charge resolution have led the University of Geneva to develop custom front-end electronics. The preamplifier stage has been tailored in order to optimize the signal shape using measurement campaigns and electronic simulation of the sensor. A dedicated trans-impedance pre-amplifier topology is used resulting in a power consumption of 400 mW per pixel and a pulse width < 30 ns. The measurements that have led to the choice of the different components and the resulting performance are detailed in this paper. The slow control electronics was designed to provide the bias voltage with 6.7 mV precision and to correct for temperature variation with a forward feedback compensation with 0.17 °C resolution. It is fully configurable and can be monitored using CANbus interface. The architecture and the characterization of the various elements are presented.

  20. Evaluation of Eye Metrics as a Detector of Fatigue

    DTIC Science & Technology

    2010-03-01

    eyeglass frames . The cameras are angled upward toward the eyes and extract real-time pupil diameter, eye-lid movement, and eye-ball movement. The...because the cameras were mounted on eyeglass -like frames , the system was able to continuously monitor the eye throughout all sessions. Overall, the...of “ fitness for duty” testing and “real-time monitoring” of operator performance has been slow (Institute of Medicine, 2004). Oculometric-based

  1. Multi-Angle Snowflake Camera Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Martin; Bailey, J.

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASCmore » cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.« less

  2. Enhancing physics demos using iPhone slow motion

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2017-12-01

    Slow motion video enhances our ability to perceive and experience the physical world. This can help students and teachers especially in cases of fast moving objects or detailed events that happen too quickly for the eye to follow. As often as possible, demonstrations should be performed by the students themselves and luckily many of them will already have this technology in their pockets. The "S" series of iPhone has the slow motion video feature standard, which also includes simultaneous sound recording (somewhat unusual among slow motion cameras). In this article I share some of my experiences using this feature and provide advice on how to successfully use this technology in the classroom.

  3. A multi-channel coronal spectrophotometer.

    NASA Technical Reports Server (NTRS)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  4. Evaluation of the irising effect of a slow-gating intensified charge-coupled device on laser-induced incandescence measurements of soot

    NASA Astrophysics Data System (ADS)

    Shaddix, Christopher R.; Williams, Timothy C.

    2009-03-01

    Intensified charge-coupled devices (ICCDs) are used extensively in many scientific and engineering environments to image weak or temporally short optical events. To optimize the quantum efficiency of light collection, many of these devices are chosen to have characteristic intensifier gate times that are relatively slow, on the order of tens of nanoseconds. For many measurements associated with nanosecond laser sources, such as scattering-based diagnostics and most laser-induced fluorescence applications, the signals rise and decay sufficiently fast during and after the laser pulse that the intensifier gate may be set to close after the cessation of the signal and still effectively reject interferences associated with longer time scales. However, the relatively long time scale and complex temporal response of laser-induced incandescence (LII) of nanometer-sized particles (such as soot) offer a difficult challenge to the use of slow-gating ICCDs for quantitative measurements. In this paper, ultraviolet Rayleigh scattering imaging is used to quantify the irising effect of a slow-gating scientific ICCD camera, and an analysis is conducted of LII image data collected with this camera as a function of intensifier gate width. The results demonstrate that relatively prompt LII detection, generally desirable to minimize the influences of particle size and local gas pressure and temperature on measurements of the soot volume fraction, is strongly influenced by the irising effect of slow-gating ICCDs.

  5. Underwater Inspection of Navigation Structures with an Acoustic Camera

    DTIC Science & Technology

    2013-08-01

    the camera with a slow angular speed while recording the images. 5. After the scanning has been performed, review recorded data to determine the...Core x86) or newer  2GB RAM  120GB disc space Operating system requirements  Windows XP, Vista, Windows 7, 32/64 bit Java requirements  Sun... Java JDK, Version 1.6, Update 16 or newer, for installation Limitations and tips for proper scanning  Best results are achieved when scanning in

  6. Tectonics of short-offset, slow-slipping transform zones in the FAMOUS area, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Goud, Margaret R.; Karson, Jeffrey A.

    1985-12-01

    ANGUS photographs and ALVIN observational data from Fracture Zones A and B on the Mid-Atlantic Ridge near 37°N were examined for structural and sedimentological indications of the area's tectonics. Both transform fault zones are characterized by volcanic rubble, breccias, chalks, and undisturbed sediments typical of slow-slipping transforms. The photographic data consist of 16 camera-sled traverses from the FAMOUS Expedition using the ANGUS deep-towed camera system. These data cover several different morphotectonic provinces along the strike of both slow-slipping (2 cm yr-1) fracture zones. ALVIN data come from two dives in the central part of Fracture Zone B. The two fracture zones differ in their distribution of fractured and sheared chalks which indicate regions of strike-slip deformation along the transform. Evidence of shearing is confined to a very narrow region in the center of FZ A, whereas the zone of shear deformation is as much as 6 km wide across FZ B. Other differences include the morphology and depth of the transform valleys and their contiguous nodal basins and the extent of exposures of fresh-looking volcanic ridges in the nodal basin.

  7. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.

  8. System for photometric calibration of optoelectronic imaging devices especially streak cameras

    DOEpatents

    Boni, Robert; Jaanimagi, Paul

    2003-11-04

    A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.

  9. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second

    PubMed Central

    An, Lin; Li, Peng; Shen, Tueng T.; Wang, Ruikang

    2011-01-01

    We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm2. In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm2, to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging. PMID:22025983

  10. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second.

    PubMed

    An, Lin; Li, Peng; Shen, Tueng T; Wang, Ruikang

    2011-10-01

    We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm(2). In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm(2), to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging.

  11. Vapour pressure and adiabatic cooling from champagne: slow-motion visualization of gas thermodynamics

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2012-09-01

    We present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects as well as adiabatic cooling observed upon opening a bottle of champagne.

  12. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    NASA Astrophysics Data System (ADS)

    Lee, Victor R.

    2015-04-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video, can be deployed in such a way to support students' participation in practices of scientific modeling. As participants in classroom design experiment, fifteen fifth-grade students worked with high-speed cameras and stop-motion animation software (SAM Animation) over several days to produce dynamic models of motion and body movement. The designed series of learning activities involved iterative cycles of animation creation and critique and use of various depictive materials. Subsequent analysis of flipbooks of human jumping movements created by the students at the beginning and end of the unit revealed a significant improvement in both the epistemic fidelity of students' representations. Excerpts from classroom observations highlight the role that the teacher plays in supporting students' thoughtful reflection of and attention to slow-motion video. In total, this design and research intervention demonstrates that the combination of technologies, activities, and teacher support can lead to improvements in some of the foundations associated with students' modeling.

  13. Two-modality γ detection of blood volume by camera imaging and nonimaging stethoscope for kinetic studies of cardiovascular control in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Chambron, Jacques; Dumitresco, Barbu; Karman, Miklos; Pszota, Agnes; Simon, Atilla; Didon-Poncelet, Anna; Demangeat, Jean

    2002-04-01

    The quantification of rapid hemodynamic reactions to wide and slow breathing movements has been performed, by two modalities (gamma) -left ventriculography of 99mTc-labeled blood volume, in anterior oblique incidence on standing and even exercising healthy volunteers and cardiac patients. A highly sensitive stethoscope delivered whole (gamma) -counts acquired at 30 msec intervals in a square field of view including the left ventricle, in a one dimensional low resolution imaging mode for beat to beat analysis. A planar 2D (gamma) -camera imaging of the same cardiac area was then performed without cardiac gating for alternate acquisitions during deep inspiration and deep expiration, completed by a 3D MRI assessment of the stethoscope detection field. Young healthy volunteers displayed wide variations of diastolic times and stroke volumes, as a result of enhanced baroreflex control, together with +/- 16% variations of the stethoscope's background blood volume counts. Any of the components of these responses were shifted, abolished or even inverted as a result of either obesity, hypertension, aging or cardiac pathologies. The assessment of breathing control of the cardiovascular system by the beat to beat (gamma) -ventriculography combined with nuclear 2D and 3D MRI imaging is a kinetic method allowing the detection of functional anomalies in still ambulatory patients.

  14. Differential effects of film on preschool children's behaviour dependent on editing pace.

    PubMed

    Kostyrka-Allchorne, Katarzyna; Cooper, Nicholas R; Gossmann, Anna Maria; Barber, Katy J; Simpson, Andrew

    2017-05-01

    Evidence on how the pace of television and film editing affects children's behaviour and attention is inconclusive. We examined whether a fast-paced film affected how preschool-aged children interacted with toys. The study comprised 70 children (36 girls) aged two to four-and-a-half years who attended preschools in Essex, United Kingdom. The children were paired up and tested with either a fast- or a slow-paced film of a narrator reading a children's story. The fast-paced version had 102 camera cuts and 16 still images, and the slow-paced version had 22 camera cuts and four still images. Each dyad took part in two video-recorded free-play sessions, before and after they watched one of the specially edited four-minute films. The number of toys the children played with before and after the film sessions was recorded. Before they watched the films, the children's behaviour did not differ between the groups. However, after watching the film, the children in the fast-paced group shifted their attention between toys more frequently than the children who watched the slow-paced film. Even a brief exposure to differently paced films had an immediate effect on how the children interacted with their toys. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  15. High-speed polarized light microscopy for in situ, dynamic measurement of birefringence properties

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Pankow, Mark; Shadow Huang, Hsiao-Ying; Peters, Kara

    2018-01-01

    A high-speed, quantitative polarized light microscopy (QPLM) instrument has been developed to monitor the optical slow axis spatial realignment during controlled medium to high strain rate experiments at acquisition rates up to 10 kHz. This high-speed QPLM instrument is implemented within a modified drop tower and demonstrated using polycarbonate specimens. By utilizing a rotating quarter wave plate and a high-speed camera, the minimum acquisition time to generate an alignment map of a birefringent specimen is 6.1 ms. A sequential analysis method allows the QPLM instrument to generate QPLM data at the high-speed camera imaging frequency 10 kHz. The obtained QPLM data is processed using a vector correlation technique to detect anomalous optical axis realignment and retardation changes throughout the loading event. The detected anomalous optical axis realignment is shown to be associated with crack initiation, propagation, and specimen failure in a dynamically loaded polycarbonate specimen. The work provides a foundation for detecting damage in biological tissues through local collagen fiber realignment and fracture during dynamic loading.

  16. High speed imaging - An important industrial tool

    NASA Technical Reports Server (NTRS)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  17. Soft X-ray and XUV imaging with a charge-coupled device /CCD/-based detector

    NASA Technical Reports Server (NTRS)

    Loter, N. G.; Burstein, P.; Krieger, A.; Ross, D.; Harrison, D.; Michels, D. J.

    1981-01-01

    A soft X-ray/XUV imaging camera which uses a thinned, back-illuminated, all-buried channel RCA CCD for radiation sensing has been built and tested. The camera is a slow-scan device which makes possible frame integration if necessary. The detection characteristics of the device have been tested over the 15-1500 eV range. The response was linear with exposure up to 0.2-0.4 erg/sq cm; saturation occurred at greater exposures. Attention is given to attempts to resolve single photons with energies of 1.5 keV.

  18. A photoelectric technique for measuring lightning-channel propagation velocities from a mobile laboratory

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.

  19. Time-lapse cinemicroscopy.

    PubMed

    Riddle, P N

    1990-01-01

    Cinematography commenced as a scientific technique used as a system for "slowing down" observed movement. Marey in 1888 (1) constructed, following a number of other ideas, a "Chambre Chronophoto-graphique," which had practically all the elements of the modern cine camera. With this he made serial photographs (not transparencies) of various biological phenomena (2).

  20. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  1. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  2. Terminal navigation analysis for the 1980 comet Encke slow flyby mission

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Mcdanell, J. P.; Rinker, G. C.

    1973-01-01

    The initial results of a terminal navigation analysis for the proposed 1980 solar electric slow flyby mission to the comet Encke are presented. The navigation technique employs onboard optical measurements with the scientific television camera, groundbased observations of the spacecraft and comet, and groundbased orbit determination and thrust vector update computation. The knowledge and delivery accuracies of the spacecraft are evaluated as a function of the important parameters affecting the terminal navigation. These include optical measurement accuracy, thruster noise level, duration of the planned terminal coast period, comet ephemeris uncertainty, guidance initiation time, guidance update frequency, and optical data rate.

  3. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).

  4. Oscillating Droplets and Incompressible Liquids: Slow-Motion Visualization of Experiments with Fluids

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    We present fascinating simple demonstration experiments recorded with high-speed cameras in the field of fluid dynamics. Examples include oscillations of falling droplets, effects happening upon impact of a liquid droplet into a liquid, the disintegration of extremely large droplets in free fall and the consequences of incompressibility. (Contains…

  5. "Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera

    ERIC Educational Resources Information Center

    Ng, Pun-hon; Chan, Kin-lok

    2015-01-01

    In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…

  6. Measuring Effects Of Lightning On Power And Telephone Lines

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Thompson, E. M.; Medelius, P.; Rubinstein, M.; Tzeng, A.

    1992-01-01

    Spherical antenna senses both horizontal and vertical fields simultaneously. Measures "fast" components of electric field used in conjunction with other equipment, including antenna measuring "slow" vertical component of electric field; microphone that senses thunder; cameras making visual records, which locate lightning; magnetic-field sensor; optical sensors; and instruments measuring speed and direction of wind.

  7. Thin and Slow Smoke Detection by Using Frequency Image

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Oe, Shunitiro

    In this paper, a new method to detect thin and slow smoke for early fire alarm by using frequency image has been proposed. The correlation coefficient of the frequency image between the current stage and the initial stage are calculated, so are the gray image correlation coefficient of the color image. When the thin smoke close to transparent enters into the camera view, the correlation coefficient of the frequency image becomes small, while the gray image correlation coefficient of the color image hardly change and keep large. When something which is not transparent, like human beings, etc., enters into the camera view, the correlation coefficient of the frequency image becomes small, as well as that of color image. Based on the difference of correlation coefficient between frequency image and color image in different situations, the thin smoke can be detected. Also, considering the movement of the thin smoke, miss detection caused by the illustration change or noise can be avoided. Several experiments in different situations are carried out, and the experimental results show the effect of the proposed method.

  8. Camera Control and Geo-Registration for Video Sensor Networks

    NASA Astrophysics Data System (ADS)

    Davis, James W.

    With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.

  9. Circuit design of an EMCCD camera

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; Jin, Jianhui; He, Chun

    2012-07-01

    EMCCDs have been used in the astronomical observations in many ways. Recently we develop a camera using an EMCCD TX285. The CCD chip is cooled to -100°C in an LN2 dewar. The camera controller consists of a driving board, a control board and a temperature control board. Power supplies and driving clocks of the CCD are provided by the driving board, the timing generator is located in the control board. The timing generator and an embedded Nios II CPU are implemented in an FPGA. Moreover the ADC and the data transfer circuit are also in the control board, and controlled by the FPGA. The data transfer between the image workstation and the camera is done through a Camera Link frame grabber. The software of image acquisition is built using VC++ and Sapera LT. This paper describes the camera structure, the main components and circuit design for video signal processing channel, clock driver, FPGA and Camera Link interfaces, temperature metering and control system. Some testing results are presented.

  10. Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics

    ERIC Educational Resources Information Center

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-01-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…

  11. A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens

    NASA Astrophysics Data System (ADS)

    Freudenthal, John; Leadbetter, Andy; Wolf, Jacob; Wang, Baoliang; Segal, Solomon

    2014-11-01

    The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.

  12. Comparison of three different techniques for camera and motion control of a teleoperated robot.

    PubMed

    Doisy, Guillaume; Ronen, Adi; Edan, Yael

    2017-01-01

    This research aims to evaluate new methods for robot motion control and camera orientation control through the operator's head orientation in robot teleoperation tasks. Specifically, the use of head-tracking in a non-invasive way, without immersive virtual reality devices was combined and compared with classical control modes for robot movements and camera control. Three control conditions were tested: 1) a condition with classical joystick control of both the movements of the robot and the robot camera, 2) a condition where the robot movements were controlled by a joystick and the robot camera was controlled by the user head orientation, and 3) a condition where the movements of the robot were controlled by hand gestures and the robot camera was controlled by the user head orientation. Performance, workload metrics and their evolution as the participants gained experience with the system were evaluated in a series of experiments: for each participant, the metrics were recorded during four successive similar trials. Results shows that the concept of robot camera control by user head orientation has the potential of improving the intuitiveness of robot teleoperation interfaces, specifically for novice users. However, more development is needed to reach a margin of progression comparable to a classical joystick interface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Feasibility of touch-less control of operating room lights.

    PubMed

    Hartmann, Florian; Schlaefer, Alexander

    2013-03-01

    Today's highly technical operating rooms lead to fairly complex surgical workflows where the surgeon has to interact with a number of devices, including the operating room light. Hence, ideally, the surgeon could direct the light without major disruption of his work. We studied whether a gesture tracking-based control of an automated operating room light is feasible. So far, there has been little research on control approaches for operating lights. We have implemented an exemplary setup to mimic an automated light controlled by a gesture tracking system. The setup includes a articulated arm to position the light source and an off-the-shelf RGBD camera to detect the user interaction. We assessed the tracking performance using a robot-mounted hand phantom and ran a number of tests with 18 volunteers to evaluate the potential of touch-less light control. All test persons were comfortable with using the gesture-based system and quickly learned how to move a light spot on flat surface. The hand tracking error is direction-dependent and in the range of several centimeters, with a standard deviation of less than 1 mm and up to 3.5 mm orthogonal and parallel to the finger orientation, respectively. However, the subjects had no problems following even more complex paths with a width of less than 10 cm. The average speed was 0.15 m/s, and even initially slow subjects improved over time. Gestures to initiate control can be performed in approximately 2 s. Two-thirds of the subjects considered gesture control to be simple, and a majority considered it to be rather efficient. Implementation of an automated operating room light and touch-less control using an RGBD camera for gesture tracking is feasible. The remaining tracking error does not affect smooth control, and the use of the system is intuitive even for inexperienced users.

  14. The Lancashire telemedicine ambulance.

    PubMed

    Curry, G R; Harrop, N

    1998-01-01

    An emergency ambulance was equipped with three video-cameras and a system for transmitting slow-scan video-pictures through a cellular telephone link to a hospital accident and emergency department. Video-pictures were trasmitted at a resolution of 320 x 240 pixels and a frame rate of 15 pictures/min. In addition, a helmet-mounted camera was used with a wireless transmission link to the ambulance and thence the hospital. Speech was transmitted by a second hand-held cellular telephone. The equipment was installed in 1996-7 and video-recordings of actual ambulance journeys were made in July 1997. The technical feasibility of the telemedicine ambulance has been demonstrated and further clinical assessment is now in progress.

  15. Experimental study of 3-D structure and evolution of foam

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Tan, E.; Bauer, J. M.

    1998-11-01

    Liquid foam coarsens due to diffusion of gas between adjacent foam cells. This evolution process is slow, but leads to rapid topological changes taking place during localized rearrangements of Plateau borders or disappearance of small cells. We are developing a new imaging technique to construct the three-dimensional topology of real soap foam contained in a small glass container. The technique uses 3 video cameras equipped with lenses having narrow depth-of-field. These cameras are moved with respect to the container, in effect obtaining numerous slices through the foam. Preliminary experimental results showing typical rearrangement events will also be presented. These events involve for example disappearance of either triangular or rectangular cell faces.

  16. In Brief: Mars imagery now available on the web

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    More than 1200 images taken by the NASA Mars Reconnaissance Orbiter's High Resolution Imaging Experiment (HiRISE) camera have now been made available to the public on the Internet. HiRISE takes images of 6-kilometer-wide swaths of Mars, resolving features as small as 40 centimeters. The camera is expected to take images of about 1% of the planet over the next year and a half. The images-available at http://hirise.lpl.arizona.edu, a new node for NASA's Planetary Data System data archive-can be explored online with the IAS Viewer that allows for high quality images to be seen even with a slow or limited network connection.

  17. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.

  18. Slow Speed--Fast Motion: Time-Lapse Recordings in Physics Education

    ERIC Educational Resources Information Center

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-01-01

    Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…

  19. Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.

    2017-10-01

    A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.

  20. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1993-01-01

    This investigation has evaluated the voice-commanded camera control concept. For this particular task, total voice control of continuous and discrete camera functions was significantly slower than manual control. There was no significant difference between voice and manual input for several types of errors. There was not a clear trend in subjective preference of camera command input modality. Task performance, in terms of both accuracy and speed, was very similar across both levels of experience.

  1. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on any type of computer and will soon be downloadable from the net (http://rsb.info.nih.gov/ij/plugins or http://nucleartoolkit.free.fr).

  2. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  3. Optical Transient Monitor (OTM) for BOOTES Project

    NASA Astrophysics Data System (ADS)

    Páta, P.; Bernas, M.; Castro-Tirado, A. J.; Hudec, R.

    2003-04-01

    The Optical Transient Monitor (OTM) is a software for control of three wide and ultra-wide filed cameras of BOOTES (Burst Observer and Optical Transient Exploring System) station. The OTM is a PC based and it is powerful tool for taking images from two SBIG CCD cameras in same time or from one camera only. The control program for BOOTES cameras is Windows 98 or MSDOS based. Now the version for Windows 2000 is prepared. There are five main supported modes of work. The OTM program could control cameras and evaluate image data without human interaction.

  4. Slow Progress in Dune (Left Rear Wheel)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The left rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  5. Slow Progress in Dune (Left Front Wheel)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  6. 15 CFR 744.9 - Restrictions on certain exports and reexports of cameras controlled by ECCN 6A003.b.4.b.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reexports of cameras controlled by ECCN 6A003.b.4.b. 744.9 Section 744.9 Commerce and Foreign Trade... on certain exports and reexports of cameras controlled by ECCN 6A003.b.4.b. (a) General prohibitions... license is required to export or reexport to any destination other than Canada cameras described in ECCN...

  7. 15 CFR 744.9 - Restrictions on certain exports and reexports of cameras controlled by ECCN 6A003.b.4.b.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reexports of cameras controlled by ECCN 6A003.b.4.b. 744.9 Section 744.9 Commerce and Foreign Trade... on certain exports and reexports of cameras controlled by ECCN 6A003.b.4.b. (a) General prohibitions... license is required to export or reexport to any destination other than Canada cameras described in ECCN...

  8. 15 CFR 744.9 - Restrictions on certain exports and reexports of cameras controlled by ECCN 6A003.b.4.b.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reexports of cameras controlled by ECCN 6A003.b.4.b. 744.9 Section 744.9 Commerce and Foreign Trade... on certain exports and reexports of cameras controlled by ECCN 6A003.b.4.b. (a) General prohibitions... license is required to export or reexport to any destination other than Canada cameras described in ECCN...

  9. Energy-efficient lighting system for television

    DOEpatents

    Cawthorne, Duane C.

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  10. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  11. Composite video and graphics display for multiple camera viewing system in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1991-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  12. Composite video and graphics display for camera viewing systems in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1993-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  13. Thermographic analysis and autonomic response in the hands of patients with leprosy.

    PubMed

    Cavalheiro, Aretusa Lopes; Costa, Debora Tacon da; Menezes, Ana Luiza Ferro de; Pereira, Janser Moura; Carvalho, Eliane Maria de

    2016-01-01

    Low temperatures and slow blood flow may result from peripheral neuropathy caused by leprosy, and the simple detection of cold fingers could already be a preliminary classification for these patients. To investigate whether infrared thermography would be able to measure this change in temperature in the hands of people with leprosy. The study assessed 17 leprosy patients who were under treatment at the National Reference Center for Sanitary Dermatology and Leprosy, Uberlândia/MG, and 15 people without leprosy for the control group. The infrared camera FLIR A325 and Therma CAM Researcher Professional 2.9 software were used to measure the temperature. The room was air-conditioned, maintaining the temperature at 25°C; the distance between the camera and the limb was 70 cm. The vasomotor reflex of patients was tested by a cold stress on the palm. The study showed a significant interaction between the clinical form of leprosy and temperature, where the control group and the borderline-borderline form revealed a higher initial temperature, while borderline-lepromatous and lepromatous leprosy showed a lower temperature. Regarding vasomotor reflex, lepromatous leprosy patients were unable to recover the initial temperature after cold stress, while those with the borderline-tuberculoid form not only recovered but exceeded the initial temperature. Thermography proved a potential tool to assist in the early detection of neuropathies, helping in the prevention of major nerve damage and the installation of deformities and disabilities that are characteristic of leprosy.

  14. A telephoto camera system with shooting direction control by gaze detection

    NASA Astrophysics Data System (ADS)

    Teraya, Daiki; Hachisu, Takumi; Yendo, Tomohiro

    2015-05-01

    For safe driving, it is important for driver to check traffic conditions such as traffic lights, or traffic signs as early as soon. If on-vehicle camera takes image of important objects to understand traffic conditions from long distance and shows these to driver, driver can understand traffic conditions earlier. To take image of long distance objects clearly, the focal length of camera must be long. When the focal length is long, on-vehicle camera doesn't have enough field of view to check traffic conditions. Therefore, in order to get necessary images from long distance, camera must have long-focal length and controllability of shooting direction. In previous study, driver indicates shooting direction on displayed image taken by a wide-angle camera, a direction controllable camera takes telescopic image, and displays these to driver. However, driver uses a touch panel to indicate the shooting direction in previous study. It is cause of disturb driving. So, we propose a telephoto camera system for driving support whose shooting direction is controlled by driver's gaze to avoid disturbing drive. This proposed system is composed of a gaze detector and an active telephoto camera whose shooting direction is controlled. We adopt non-wear detecting method to avoid hindrance to drive. The gaze detector measures driver's gaze by image processing. The shooting direction of the active telephoto camera is controlled by galvanometer scanners and the direction can be switched within a few milliseconds. We confirmed that the proposed system takes images of gazing straight ahead of subject by experiments.

  15. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  16. Runaway electron generation and control

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Boncagni, L.; Buratti, P.; Carnevale, D.; Causa, F.; Gospodarczyk Martin-Solis, M., Jr.; Popovic, Z.; Agostini, M.; Apruzzese, G.; Bin, W.; Cianfarani, C.; De Angelis, R.; Granucci, G.; Grosso, A.; Maddaluno, G.; Marocco, D.; Piergotti, V.; Pensa, A.; Podda, S.; Pucella, G.; Ramogida, G.; Rocchi, G.; Riva, M.; Sibio, A.; Sozzi, C.; Tilia, B.; Tudisco, O.; Valisa, M.; FTU Team

    2017-01-01

    We present an overview of FTU experiments on runaway electron (RE) generation and control carried out through a comprehensive set of real-time (RT) diagnostics/control systems and newly installed RE diagnostics. An RE imaging spectrometer system detects visible and infrared synchrotron radiation. A Cherenkov probe measures RE escaping the plasma. A gamma camera provides hard x-ray radial profiles from RE bremsstrahlung interactions in the plasma. Experiments on the onset and suppression of RE show that the threshold electric field for RE generation is larger than that expected according to a purely collisional theory, but consistent with an increase due to synchrotron radiation losses. This might imply a lower density to be targeted with massive gas injection for RE suppression in ITER. Experiments on active control of disruption-generated RE have been performed through feedback on poloidal coils by implementing an RT boundary-reconstruction algorithm evaluated on magnetic moments. The results indicate that the slow plasma current ramp-down and the simultaneous reduction of the reference plasma external radius are beneficial in dissipating the RE beam energy and population, leading to reduced RE interactions with plasma facing components. RE active control is therefore suggested as a possible alternative or complementary technique to massive gas injection.

  17. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Astrophysics Data System (ADS)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  18. Camera-Based Lock-in and Heterodyne Carrierographic Photoluminescence Imaging of Crystalline Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Sun, Q. M.; Melnikov, A.; Mandelis, A.

    2015-06-01

    Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.

  19. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  20. Forensic 3D Scene Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3Dmore » measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.« less

  1. Control system for several rotating mirror camera synchronization operation

    NASA Astrophysics Data System (ADS)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  2. Effects of Selected Filmic Coding Elements of TV on the Development of the Euclidean Concepts of Horizontality and Verticality in Adolescents.

    ERIC Educational Resources Information Center

    Lynch, Beth Eloise

    This study was conducted to determine whether the filmic coding elements of split screen, slow motion, generated line cues, the zoom of a camera, and rotation could aid in the development of the Euclidean space concepts of horizontality and verticality, and to explore presence and development of spatial skills involving these two concepts in…

  3. Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico

    2013-10-01

    The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.

  4. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into amore » turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.« less

  5. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  6. Studying cooling curves with a smartphone

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Martín-Ramos, Pablo; da Silva, Pedro Pereira

    2018-01-01

    This paper describes a simple procedure for the study of the cooling of a spherical body using a standard thermometer and a smartphone. Experiments making use of smartphone sensors have been described before, contributing to an improved teaching of classical mechanics, but rarely expand to thermodynamics. In this experiment, instead of using a smartphone camera to slow down a fast movement, we are using the device to speed up a slow process. For that we propose the use of the free app Framelapse to take periodic pictures (in the form of a time-lapse video) and then the free app VidAnalysis to track the position of the mercury inside the thermometer, thus effortlessly tracking the temperature of a cooling body (Fig. 1).

  7. Passive auto-focus for digital still cameras and camera phones: Filter-switching and low-light techniques

    NASA Astrophysics Data System (ADS)

    Gamadia, Mark Noel

    In order to gain valuable market share in the growing consumer digital still camera and camera phone market, camera manufacturers have to continually add and improve existing features to their latest product offerings. Auto-focus (AF) is one such feature, whose aim is to enable consumers to quickly take sharply focused pictures with little or no manual intervention in adjusting the camera's focus lens. While AF has been a standard feature in digital still and cell-phone cameras, consumers often complain about their cameras' slow AF performance, which may lead to missed photographic opportunities, rendering valuable moments and events with undesired out-of-focus pictures. This dissertation addresses this critical issue to advance the state-of-the-art in the digital band-pass filter, passive AF method. This method is widely used to realize AF in the camera industry, where a focus actuator is adjusted via a search algorithm to locate the in-focus position by maximizing a sharpness measure extracted from a particular frequency band of the incoming image of the scene. There are no known systematic methods for automatically deriving the parameters such as the digital pass-bands or the search step-size increments used in existing passive AF schemes. Conventional methods require time consuming experimentation and tuning in order to arrive at a set of parameters which balance AF performance in terms of speed and accuracy ultimately causing a delay in product time-to-market. This dissertation presents a new framework for determining an optimal set of passive AF parameters, named Filter- Switching AF, providing an automatic approach to achieve superior AF performance, both in good and low lighting conditions based on the following performance measures (metrics): speed (total number of iterations), accuracy (offset from truth), power consumption (total distance moved), and user experience (in-focus position overrun). Performance results using three different prototype cameras are presented to further illustrate the real-world AF performance gains achieved by the developed approach. The major contribution of this dissertation is that the developed auto focusing approach can be successfully used by camera manufacturers in the development of the AF feature in future generations of digital still cameras and camera phones.

  8. 3-dimensional telepresence system for a robotic environment

    DOEpatents

    Anderson, Matthew O.; McKay, Mark D.

    2000-01-01

    A telepresence system includes a camera pair remotely controlled by a control module affixed to an operator. The camera pair provides for three dimensional viewing and the control module, affixed to the operator, affords hands-free operation of the camera pair. In one embodiment, the control module is affixed to the head of the operator and an initial position is established. A triangulating device is provided to track the head movement of the operator relative to the initial position. A processor module receives input from the triangulating device to determine where the operator has moved relative to the initial position and moves the camera pair in response thereto. The movement of the camera pair is predetermined by a software map having a plurality of operation zones. Each zone therein corresponds to unique camera movement parameters such as speed of movement. Speed parameters include constant speed, or increasing or decreasing. Other parameters include pan, tilt, slide, raise or lowering of the cameras. Other user interface devices are provided to improve the three dimensional control capabilities of an operator in a local operating environment. Such other devices include a pair of visual display glasses, a microphone and a remote actuator. The pair of visual display glasses are provided to facilitate three dimensional viewing, hence depth perception. The microphone affords hands-free camera movement by utilizing voice commands. The actuator allows the operator to remotely control various robotic mechanisms in the remote operating environment.

  9. Breathing synchronized assessment of the chest hemodynamics: application to gamma and MR angiography

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Demangeat, Jean-Louis; Germain, Philippe; Baruthio, Joseph

    2003-05-01

    The project was to assess by gamma and MR angiography the bulk variations of chest blood volume related to deep and slow breathing movements. The acquisitions were performed at constant intervals on the widely moving system, without cardiac gating. Two fast enough modalities were used: a gamma-stethoscope working at 30 msec intervals for bulk volumic detection (of 99Tc labelled red cells), and MR imaging at 0.5 sec intervals well depicting displacements but not yet performing true angiography. The third modality yielding quantitative imaging was the scintillation gamma camera, but which required 30 sec signal acquisitions for each image. Frames were acquired at 1 sec intervals for up to 30 breathing cycles, and later sorted with double (inspiration and expiration) synchronization for the reconstruction of an average breathing cycle. Convergent results were obtained from the three angiographic modalities, confirming that the deep breathing movements produced inspiratory increases in bulk blood volume and caudal-median displacement of heart and great vessels, and expiratory decreases in blood volume and cranial-left displacement of heart and great vessels. Deep and slow breathing contributed effectively to thoracic blood pumping. The design of a 64x64 channels collimator has been undertaken to speed up the scintillation camera imaging acquisitions.

  10. Video-rate or high-precision: a flexible range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  11. Unstructured Facility Navigation by Applying the NIST 4D/RCS Architecture

    DTIC Science & Technology

    2006-07-01

    control, and the planner); wire- less data and emergency stop radios; GPS receiver; inertial navigation unit; dual stereo cameras; infrared sensors...current Actuators Wheel motors, camera controls Scale & filter signals status commands commands commands GPS Antenna Dual stereo cameras...used in the sensory processing module include the two pairs of stereo color cameras, the physical bumper and infrared bumper sensors, the motor

  12. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    NASA Astrophysics Data System (ADS)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  13. Image quality prediction - An aid to the Viking lander imaging investigation on Mars

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Wall, S. D.

    1976-01-01

    Image quality criteria and image quality predictions are formulated for the multispectral panoramic cameras carried by the Viking Mars landers. Image quality predictions are based on expected camera performance, Mars surface radiance, and lighting and viewing geometry (fields of view, Mars lander shadows, solar day-night alternation), and are needed in diagnosis of camera performance, in arriving at a preflight imaging strategy, and revision of that strategy should the need arise. Landing considerations, camera control instructions, camera control logic, aspects of the imaging process (spectral response, spatial response, sensitivity), and likely problems are discussed. Major concerns include: degradation of camera response by isotope radiation, uncertainties in lighting and viewing geometry and in landing site local topography, contamination of camera window by dust abrasion, and initial errors in assigning camera dynamic ranges (gains and offsets).

  14. Auto-converging stereo cameras for 3D robotic tele-operation

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  15. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  16. STRIPE: Remote Driving Using Limited Image Data

    NASA Technical Reports Server (NTRS)

    Kay, Jennifer S.

    1997-01-01

    Driving a vehicle, either directly or remotely, is an inherently visual task. When heavy fog limits visibility, we reduce our car's speed to a slow crawl, even along very familiar roads. In teleoperation systems, an operator's view is limited to images provided by one or more cameras mounted on the remote vehicle. Traditional methods of vehicle teleoperation require that a real time stream of images is transmitted from the vehicle camera to the operator control station, and the operator steers the vehicle accordingly. For this type of teleoperation, the transmission link between the vehicle and operator workstation must be very high bandwidth (because of the high volume of images required) and very low latency (because delayed images can cause operators to steer incorrectly). In many situations, such a high-bandwidth, low-latency communication link is unavailable or even technically impossible to provide. Supervised TeleRobotics using Incremental Polyhedral Earth geometry, or STRIPE, is a teleoperation system for a robot vehicle that allows a human operator to accurately control the remote vehicle across very low bandwidth communication links, and communication links with large delays. In STRIPE, a single image from a camera mounted on the vehicle is transmitted to the operator workstation. The operator uses a mouse to pick a series of 'waypoints' in the image that define a path that the vehicle should follow. These 2D waypoints are then transmitted back to the vehicle, where they are used to compute the appropriate steering commands while the next image is being transmitted. STRIPE requires no advance knowledge of the terrain to be traversed, and can be used by novice operators with only minimal training. STRIPE is a unique combination of computer and human control. The computer must determine the 3D world path designated by the 2D waypoints and then accurately control the vehicle over rugged terrain. The human issues involve accurate path selection, and the prevention of disorientation, a common problem across all types of teleoperation systems. STRIPE is the only semi-autonomous teleoperation system that can accurately follow paths designated in monocular images on varying terrain. The thesis describes the STRIPE algorithm for tracking points using the incremental geometry model, insight into the design and redesign of the interface, an analysis of the effects of potential errors, details of the user studies, and hints on how to improve both the algorithm and interface for future designs.

  17. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system.

    PubMed

    Dixon, W E; Dawson, D M; Zergeroglu, E; Behal, A

    2001-01-01

    This paper considers the problem of position/orientation tracking control of wheeled mobile robots via visual servoing in the presence of parametric uncertainty associated with the mechanical dynamics and the camera system. Specifically, we design an adaptive controller that compensates for uncertain camera and mechanical parameters and ensures global asymptotic position/orientation tracking. Simulation and experimental results are included to illustrate the performance of the control law.

  18. Feasibility study of transmission of OTV camera control information in the video vertical blanking interval

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1994-01-01

    The Operational Television system at Kennedy Space Center operates hundreds of video cameras, many remotely controllable, in support of the operations at the center. This study was undertaken to determine if commercial NABTS (North American Basic Teletext System) teletext transmission in the vertical blanking interval of the genlock signals distributed to the cameras could be used to send remote control commands to the cameras and the associated pan and tilt platforms. Wavelength division multiplexed fiberoptic links are being installed in the OTV system to obtain RS-250 short-haul quality. It was demonstrated that the NABTS transmission could be sent over the fiberoptic cable plant without excessive video quality degradation and that video cameras could be controlled using NABTS transmissions over multimode fiberoptic paths as long as 1.2 km.

  19. Keyboard before Head Tracking Depresses User Success in Remote Camera Control

    NASA Astrophysics Data System (ADS)

    Zhu, Dingyun; Gedeon, Tom; Taylor, Ken

    In remote mining, operators of complex machinery have more tasks or devices to control than they have hands. For example, operating a rock breaker requires two handed joystick control to position and fire the jackhammer, leaving the camera control to either automatic control or require the operator to switch between controls. We modelled such a teleoperated setting by performing experiments using a simple physical game analogue, being a half size table soccer game with two handles. The complex camera angles of the mining application were modelled by obscuring the direct view of the play area and the use of a Pan-Tilt-Zoom (PTZ) camera. The camera control was via either a keyboard or via head tracking using two different sets of head gestures called “head motion” and “head flicking” for turning camera motion on/off. Our results show that the head motion control was able to provide a comparable performance to using a keyboard, while head flicking was significantly worse. In addition, the sequence of use of the three control methods is highly significant. It appears that use of the keyboard first depresses successful use of the head tracking methods, with significantly better results when one of the head tracking methods was used first. Analysis of the qualitative survey data collected supports that the worst (by performance) method was disliked by participants. Surprisingly, use of that worst method as the first control method significantly enhanced performance using the other two control methods.

  20. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  1. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  2. Growing Gallium Arsenide On Silicon

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Gouri

    1989-01-01

    Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.

  3. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  4. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    NASA Astrophysics Data System (ADS)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  5. Development of a camera casing suited for cryogenic and vacuum applications

    NASA Astrophysics Data System (ADS)

    Delaquis, S. C.; Gornea, R.; Janos, S.; Lüthi, M.; von Rohr, Ch Rudolf; Schenk, M.; Vuilleumier, J.-L.

    2013-12-01

    We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Pictures taken by this cryo-camera while immersed in argon vapour and liquid nitrogen are presented. The cryo-camera can provide a live view inside cryogenic set-ups and allows to record video.

  6. Comparison of the temperature accuracy between smart phone based and high-end thermal cameras using a temperature gradient phantom

    NASA Astrophysics Data System (ADS)

    Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.

    2017-03-01

    Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.

  7. Particle image velocimetry based on wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Tang, Chunxiao; Li, Enbang; Li, Hongqiang

    2018-01-01

    This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.

  8. Experiments of draining and filling processes in a collapsible tube at high external pressure

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  9. Design and evaluation of controls for drift, video gain, and color balance in spaceborne facsimile cameras

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.; Kelly, W. L., IV; Rowland, C. W.; Burcher, E. E.

    1973-01-01

    The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system.

  10. Multi-camera synchronization core implemented on USB3 based FPGA platform

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Centered on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a new technique to synchronize up to 8 individual self-timed cameras with minimal error. Small form factor self-timed camera modules of 1 mm x 1 mm or smaller do not normally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge of synchronizing multiple selftimed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames, a Master-Slave interface was implemented. A single camera is defined as the Master, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the implementation of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  11. Image synchronization for 3D application using the NanEye sensor

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Based on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a novel technique to perfectly synchronize up to 8 individual self-timed cameras. Minimal form factor self-timed camera modules of 1 mm x 1 mm or smaller do not generally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge to synchronize multiple self-timed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras to synchronize their frame rate and frame phase. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames of multiple cameras, a Master-Slave interface was implemented. A single camera is defined as the Master entity, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the realization of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  12. General-Purpose Serial Interface For Remote Control

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M.; Gupton, Lawrence E.

    1990-01-01

    Computer controls remote television camera. General-purpose controller developed to serve as interface between host computer and pan/tilt/zoom/focus functions on series of automated video cameras. Interface port based on 8251 programmable communications-interface circuit configured for tristated outputs, and connects controller system to any host computer with RS-232 input/output (I/O) port. Accepts byte-coded data from host, compares them with prestored codes in read-only memory (ROM), and closes or opens appropriate switches. Six output ports control opening and closing of as many as 48 switches. Operator controls remote television camera by speaking commands, in system including general-purpose controller.

  13. Foale uses takes photographs of a BCAT SGSM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20610 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, uses a digital still camera to photograph a Slow Growth Sample Module (SGSM) for the Binary Colloidal Alloy Test-3 (BCAT) experiment. The SGSM is on a mounting bracket attached to the Maintenance Work Area (MWA) table set up in the Destiny laboratory of the International Space Station (ISS).

  14. Advanced Imaging of Elementary Circuits

    NASA Astrophysics Data System (ADS)

    Baird, William H.; Richards, Caleb; Godbole, Pranav

    2012-12-01

    Students commonly find the second semester of introductory physics to be more challenging than the first, probably due to the mechanical intuition we acquire just by moving around. For most students, there is no similar comfort with electricity or magnetism. In an effort to combat this confusion, we decided to examine simple electric circuits with either a high-speed camera or a thermal imager in an effort to make things like current and voltage as familiar as slow motion or temperature.

  15. The imaging system design of three-line LMCCD mapping camera

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da

    2011-08-01

    In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.

  16. Applications of digital image acquisition in anthropometry

    NASA Technical Reports Server (NTRS)

    Woolford, B.; Lewis, J. L.

    1981-01-01

    A description is given of a video kinesimeter, a device for the automatic real-time collection of kinematic and dynamic data. Based on the detection of a single bright spot by three TV cameras, the system provides automatic real-time recording of three-dimensional position and force data. It comprises three cameras, two incandescent lights, a voltage comparator circuit, a central control unit, and a mass storage device. The control unit determines the signal threshold for each camera before testing, sequences the lights, synchronizes and analyzes the scan voltages from the three cameras, digitizes force from a dynamometer, and codes the data for transmission to a floppy disk for recording. Two of the three cameras face each other along the 'X' axis; the third camera, which faces the center of the line between the first two, defines the 'Y' axis. An image from the 'Y' camera and either 'X' camera is necessary for determining the three-dimensional coordinates of the point.

  17. Simulation-based camera navigation training in laparoscopy-a randomized trial.

    PubMed

    Nilsson, Cecilia; Sorensen, Jette Led; Konge, Lars; Westen, Mikkel; Stadeager, Morten; Ottesen, Bent; Bjerrum, Flemming

    2017-05-01

    Inexperienced operating assistants are often tasked with the important role of handling camera navigation during laparoscopic surgery. Incorrect handling can lead to poor visualization, increased operating time, and frustration for the operating surgeon-all of which can compromise patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera navigation skills during a laparoscopic cholecystectomy. The secondary outcome was technical skills after training, using a previously developed model for testing camera navigational skills. The exploratory outcome measured participants' motivation toward the task as an operating assistant. Thirty-six participants were randomized. No significant difference was found in the primary outcome between the three groups (p = 0.279). The secondary outcome showed no significant difference between the interventions groups, total time 167 s (95% CI, 118-217) and 194 s (95% CI, 152-236) for the camera group and the procedure group, respectively (p = 0.369). Both interventions groups were significantly faster than the control group, 307 s (95% CI, 202-412), p = 0.018 and p = 0.045, respectively. On the exploratory outcome, the control group for two dimensions, interest/enjoyment (p = 0.030) and perceived choice (p = 0.033), had a higher score. Simulation-based training improves the technical skills required for camera navigation, regardless of practicing camera navigation or the procedure itself. Transfer to the clinical setting could, however, not be demonstrated. The control group demonstrated higher interest/enjoyment and perceived choice than the camera group.

  18. Correlation of ultrasound imaging of oral swallow with ventilatory alterations in cerebral palsied and normal children: preliminary observations.

    PubMed

    Kenny, D J; Casas, M J; McPherson, K A

    1989-01-01

    Preliminary results of an investigation that synchronizes the videotaped output of ultrasound camera and the analog data from physiological measurements of swallowing and ventilation in normal and cerebral palsied (CP) children are presented. Four cerebral palsied children and three control children undertook a single sip-swallow of 5 ml of liquid and a solid mastication-swallow sequence on three occasions according to a defined protocol. The CP children exhibited much more variability and less control of the liquid bolus than did the controls. The ultrasound image clearly demonstrates the lack of control of the posterior of the tongue in many CP children. Some parts of the sequence of oral swallow and the time to achieve maximum anterior displacement of the hyoid bone appear to be slowed. The sequential events of swallowing show less variability as the sip-swallow proceeds from the oral voluntary to pharyngeal and lower involuntary phases. This study also identified a short-latency apnea that appears to accompany a saliva (protective) swallow and a long-latency apnea that accompanies semi-solid or liquid bolus (alimentary) swallows. Further investigations of normal and CP children utilizing a combined diagnostic imaging-physiological measurement approach will follow this initial study.

  19. In-Flight performance of MESSENGER's Mercury dual imaging system

    USGS Publications Warehouse

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  20. LOFT. Interior, control room in control building (TAN630). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior, control room in control building (TAN-630). Camera facing north. Sign says "This control console is partially active. Do not operate any switch handle without authorization." Date: May 2004. INEEL negative no. HD-39-14-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Feasibility evaluation and study of adapting the attitude reference system to the Orbiter camera payload system's large format camera

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A design concept that will implement a mapping capability for the Orbital Camera Payload System (OCPS) when ground control points are not available is discussed. Through the use of stellar imagery collected by a pair of cameras whose optical axis are structurally related to the large format camera optical axis, such pointing information is made available.

  2. In-flight photogrammetric camera calibration and validation via complementary lidar

    NASA Astrophysics Data System (ADS)

    Gneeniss, A. S.; Mills, J. P.; Miller, P. E.

    2015-02-01

    This research assumes lidar as a reference dataset against which in-flight camera system calibration and validation can be performed. The methodology utilises a robust least squares surface matching algorithm to align a dense network of photogrammetric points to the lidar reference surface, allowing for the automatic extraction of so-called lidar control points (LCPs). Adjustment of the photogrammetric data is then repeated using the extracted LCPs in a self-calibrating bundle adjustment with additional parameters. This methodology was tested using two different photogrammetric datasets, a Microsoft UltraCamX large format camera and an Applanix DSS322 medium format camera. Systematic sensitivity testing explored the influence of the number and weighting of LCPs. For both camera blocks it was found that when the number of control points increase, the accuracy improves regardless of point weighting. The calibration results were compared with those obtained using ground control points, with good agreement found between the two.

  3. Quantitative measurements of Jupiter, Saturn, their rings and satellites made from Voyager imaging data

    NASA Technical Reports Server (NTRS)

    Collins, S. A.; Bunker, A. S.

    1983-01-01

    The Voyager spacecraft cameras use selenium-sulfur slow scan vidicons to convert focused optical images into sensible electrical signals. The vidicon-generated data thus obtained are the basis of measurements of much greater precision than was previously possible, in virtue of their superior linearity, geometric fidelity, and the use of in-flight calibration. Attention is given to positional, radiometric, and dynamical measurements conducted on the basis of vidicon data for the Saturn rings, the Saturn satellites, and the Jupiter atmosphere.

  4. Laser Cooling and Slowing of a Diatomic Molecule

    DTIC Science & Technology

    2013-12-01

    mirror ( Semrock , FF669-Di01) before passing through the interaction region along the 3 mm axis of the slit. Windows are home-made Brewster windows (See... Semrock FF669-Di01 and Semrock FF741-Di01) and a polarizing beam splitter (PBS) to produce a single beam with 1e2 full width intensity waist d = 3.4 mm...pixels as possible, thereby reducing read noise and dark current noise. Behind the camera lens is a single interference filter ( Semrock , FF01-650/60, 24

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1969-01-01

    This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.

  6. Gain monitoring of telescope array photomultiplier cameras for the first 4 years of operation

    NASA Astrophysics Data System (ADS)

    Shin, B. K.; Tokuno, H.; Tsunesada, Y.; Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lim, S. I.; Machida, S.; Martens, K.; Martineau, J.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Myers, I.; Minamino, M.; Miyata, K.; Murano, Y.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Sonley, T. J.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tomida, T.; Troitsky, S.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Vasiloff, G.; Wada, Y.; Wong, T.; Wood, M.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2014-12-01

    The stability of the gain of the photomultiplier (PMT) camera for the Fluorescence Detector (FD) of the Telescope Array experiment was monitored using an 241Am loaded scintillator pulsers (YAP) and a diffused xenon flasher (TXF) for a selected set of 35 PMT-readout channels. From the monitoring of YAP pulses over four years of FD operation, we found slow monotonic drifts of PMT gains at a rate of -1.7 +1.7%/year. An average of the PMT gains over the 35 channels stayed nearly constant with a rate of change measured at -0.01±0.31(stat)±0.21(sys)%/year. No systematic decrease of the PMT gain caused by the night sky background was observed. Monitoring by the TXF also tracked the PMT gain drift of the YAP at 0.88±0.14(stat)%/year.

  7. A High-Speed Motion-Picture Study of Normal Combustion, Knock and Preignition in a Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C; Miller, Cearcy D

    1941-01-01

    Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.

  8. Microprocessor-controlled wide-range streak camera

    NASA Astrophysics Data System (ADS)

    Lewis, Amy E.; Hollabaugh, Craig

    2006-08-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  9. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  10. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  11. Watching elderly and disabled person's physical condition by remotely controlled monorail robot

    NASA Astrophysics Data System (ADS)

    Nagasaka, Yasunori; Matsumoto, Yoshinori; Fukaya, Yasutoshi; Takahashi, Tomoichi; Takeshita, Toru

    2001-10-01

    We are developing a nursing system using robots and cameras. The cameras are mounted on a remote controlled monorail robot which moves inside a room and watches the elderly. It is necessary to pay attention to the elderly at home or nursing homes all time. This requires staffs to pay attention to them at every time. The purpose of our system is to help those staffs. This study intends to improve such situation. A host computer controls a monorail robot to go in front of the elderly using the images taken by cameras on the ceiling. A CCD camera is mounted on the monorail robot to take pictures of their facial expression or movements. The robot sends the images to a host computer that checks them whether something unusual happens or not. We propose a simple calibration method for positioning the monorail robots to track the moves of the elderly for keeping their faces at center of camera view. We built a small experiment system, and evaluated our camera calibration method and image processing algorithm.

  12. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  13. X-ray topography as a process control tool in semiconductor and microcircuit manufacture

    NASA Technical Reports Server (NTRS)

    Parker, D. L.; Porter, W. A.

    1977-01-01

    A bent wafer camera, designed to identify crystal lattice defects in semiconductor materials, was investigated. The camera makes use of conventional X-ray topographs and an innovative slightly bent wafer which allows rays from the point source to strike all portions of the wafer simultaneously. In addition to being utilized in solving production process control problems, this camera design substantially reduces the cost per topograph.

  14. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  15. The suitability of lightfield camera depth maps for coordinate measurement applications

    NASA Astrophysics Data System (ADS)

    Rangappa, Shreedhar; Tailor, Mitul; Petzing, Jon; Kinnell, Peter; Jackson, Michael

    2015-12-01

    Plenoptic cameras can capture 3D information in one exposure without the need for structured illumination, allowing grey scale depth maps of the captured image to be created. The Lytro, a consumer grade plenoptic camera, provides a cost effective method of measuring depth of multiple objects under controlled lightning conditions. In this research, camera control variables, environmental sensitivity, image distortion characteristics, and the effective working range of two Lytro first generation cameras were evaluated. In addition, a calibration process has been created, for the Lytro cameras, to deliver three dimensional output depth maps represented in SI units (metre). The novel results show depth accuracy and repeatability of +10.0 mm to -20.0 mm, and 0.5 mm respectively. For the lateral X and Y coordinates, the accuracy was +1.56 μm to -2.59 μm and the repeatability was 0.25 μm.

  16. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  17. IET. Weather instrumentation tower, located south of control building. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Weather instrumentation tower, located south of control building. Camera facing west. Date: August 17, 1955. INEEL negative no. 55-2414 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Separating the Laparoscopic Camera Cord From the Monopolar "Bovie" Cord Reduces Unintended Thermal Injury From Antenna Coupling: A Randomized Controlled Trial.

    PubMed

    Robinson, Thomas N; Jones, Edward L; Dunn, Christina L; Dunne, Bruce; Johnson, Elizabeth; Townsend, Nicole T; Paniccia, Alessandro; Stiegmann, Greg V

    2015-06-01

    The monopolar "Bovie" is used in virtually every laparoscopic operation. The active electrode and its cord emit radiofrequency energy that couples (or transfers) to nearby conductive material without direct contact. This phenomenon is increased when the active electrode cord is oriented parallel to another wire/cord. The parallel orientation of the "Bovie" and laparoscopic camera cords cause transfer of energy to the camera cord resulting in cutaneous burns at the camera trocar incision. We hypothesized that separating the active electrode/camera cords would reduce thermal injury occurring at the camera trocar incision in comparison to parallel oriented active electrode/camera cords. In this prospective, blinded, randomized controlled trial, patients undergoing standardized laparoscopic cholecystectomy were randomized to separated active electrode/camera cords or parallel oriented active electrode/camera cords. The primary outcome variable was thermal injury determined by histology from skin biopsied at the camera trocar incision. Eighty-four patients participated. Baseline demographics were similar in the groups for age, sex, preoperative diagnosis, operative time, and blood loss. Thermal injury at the camera trocar incision was lower in the separated versus parallel group (31% vs 57%; P = 0.027). Separation of the laparoscopic camera cord from the active electrode cord decreases thermal injury from antenna coupling at the camera trocar incision in comparison to the parallel orientation of these cords. Therefore, parallel orientation of these cords (an arrangement promoted by integrated operating rooms) should be abandoned. The findings of this study should influence the operating room setup for all laparoscopic cases.

  19. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    NASA Astrophysics Data System (ADS)

    Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.

    2007-12-01

    We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  20. BLUE STRAGGLERS IN GLOBULAR CLUSTER 47 TUCANAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The core of globular cluster 47 Tucanae is home to many blue stragglers, rejuvenated stars that glow with the blue light of young stars. A ground-based telescope image (on the left) shows the entire crowded core of 47 Tucanae, located 15,000 light-years away in the constellation Tucana. Peering into the heart of the globular cluster's bright core, the Hubble Space Telescope's Wide Field and Planetary Camera 2 separated the dense clump of stars into many individual stars (image on right). Some of these stars shine with the light of old stars; others with the blue light of blue stragglers. The yellow circles in the Hubble telescope image highlight several of the cluster's blue stragglers. Analysis for this observation centered on one massive blue straggler. Astronomers theorize that blue stragglers are formed either by the slow merger of stars in a double-star system or by the collision of two unrelated stars. For the blue straggler in 47 Tucanae, astronomers favor the slow merger scenario. This image is a 3-color composite of archival Hubble Wide Field and Planetary Camera 2 images in the ultraviolet (blue), blue (green), and violet (red) filters. Color tables were assigned and scaled so that the red giant stars appear orange, main-sequence stars are white/green, and blue stragglers are appropriately blue. The ultraviolet images were taken on Oct. 25, 1995, and the blue and violet images were taken on Sept. 1, 1995. Credit: Rex Saffer (Villanova University) and Dave Zurek (STScI), and NASA

  1. SU-F-J-190: Time Resolved Range Measurement System Using Scintillator and CCD Camera for the Slow Beam Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saotome, N; Furukawa, T; Mizushima, K

    2016-06-15

    Purpose: To investigate the time structure of the range, we have verified the rang shift due to the betatron tune shift with several synchrotron parameters. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. Using image processing, the range was determined the 80 percent of distal dose of the depth light distribution. The root mean square error of the range measurement using the scintillator and CCD system is about 0.2 mm. Range measurement was performed at interval of 170 msec. The chromaticity of the synchrotron was changed in the range of plus ormore » minus 1% from reference chromaticity in this study. All of the particle inside the synchrotron ring were extracted with the output beam intensity 1.8×10{sup 8} and 5.0×10{sub 7} particle per sec. Results: The time strictures of the range were changed by changing of the chromaticity. The reproducibility of the measurement was sufficient to observe the time structures of the range. The range shift was depending on the number of the residual particle inside the synchrotron ring. Conclusion: In slow beam extraction for scanned carbon-ion therapy, the range shift is undesirable because it causes the dose uncertainty in the target. We introduced the time-resolved range measurement using scintillator and CCD system. The scintillator and CCD system have enabled to verify the range shift with sufficient spatial resolution and reproducibility.« less

  2. High-speed DNA-based rolling motors powered by RNase H

    PubMed Central

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.

    2016-01-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152

  3. Observed rate of ionization in shaped-charge releases of barium in the ionosphere

    NASA Technical Reports Server (NTRS)

    Hallinan, Thomas J.

    1988-01-01

    Data from 36 Ba shaped-charge releases carried out at an angle of less than 25 deg to the magnetic field, by the technique of Wescott et al. (1972) and Michel (1974), were examined for evidence of a sustained rate of ionization in excess of that attributable to sunlight. In four of the experiments, the time constant for the decay of the neutrals was measured using an ultrasensitive color TV camera and was found to have a value of about 30 sec, consistent with slow (solar) ionization. Although the qualitative appearance of most jets was found to be consistent with a slow process of ionization, some releases produced a thin confined jet that was suggestive of rapid ionization. Two of these jets were analyzed in detail, but no evidence of anomalous ionization was produced. The data obtained in this work agree with the geometrical predictions of the Swift model.

  4. ARNICA, the NICMOS 3 imaging camera of TIRGO.

    NASA Astrophysics Data System (ADS)

    Lisi, F.; Baffa, C.; Hunt, L.; Stanga, R.

    ARNICA (ARcetri Near Infrared CAmera) is the imaging camera for the near infrared bands between 1.0 and 2.5 μm that Arcetri Observatory has designed and built as a general facility for the TIRGO telescope (1.5 m diameter, f/20) located at Gornergrat (Switzerland). The scale is 1″per pixel, with sky coverage of more than 4 min×4 min on the NICMOS 3 (256×256 pixels, 40 μm side) detector array. The camera is remotely controlled by a PC 486, connected to the array control electronics via a fiber-optics link. A C-language package, running under MS-DOS on the PC 486, acquires and stores the frames, and controls the timing of the array. The camera is intended for imaging of large extra-galactic and Galactic fields; a large effort has been dedicated to explore the possibility of achieving precise photometric measurements in the J, H, K astronomical bands, with very promising results.

  5. Multiplane and Spectrally-Resolved Single Molecule Localization Microscopy with Industrial Grade CMOS cameras.

    PubMed

    Babcock, Hazen P

    2018-01-29

    This work explores the use of industrial grade CMOS cameras for single molecule localization microscopy (SMLM). We show that industrial grade CMOS cameras approach the performance of scientific grade CMOS cameras at a fraction of the cost. This makes it more economically feasible to construct high-performance imaging systems with multiple cameras that are capable of a diversity of applications. In particular we demonstrate the use of industrial CMOS cameras for biplane, multiplane and spectrally resolved SMLM. We also provide open-source software for simultaneous control of multiple CMOS cameras and for the reduction of the movies that are acquired to super-resolution images.

  6. An autonomous sensor module based on a legacy CCTV camera

    NASA Astrophysics Data System (ADS)

    Kent, P. J.; Faulkner, D. A. A.; Marshall, G. F.

    2016-10-01

    A UK MoD funded programme into autonomous sensors arrays (SAPIENT) has been developing new, highly capable sensor modules together with a scalable modular architecture for control and communication. As part of this system there is a desire to also utilise existing legacy sensors. The paper reports upon the development of a SAPIENT-compliant sensor module using a legacy Close-Circuit Television (CCTV) pan-tilt-zoom (PTZ) camera. The PTZ camera sensor provides three modes of operation. In the first mode, the camera is automatically slewed to acquire imagery of a specified scene area, e.g. to provide "eyes-on" confirmation for a human operator or for forensic purposes. In the second mode, the camera is directed to monitor an area of interest, with zoom level automatically optimized for human detection at the appropriate range. Open source algorithms (using OpenCV) are used to automatically detect pedestrians; their real world positions are estimated and communicated back to the SAPIENT central fusion system. In the third mode of operation a "follow" mode is implemented where the camera maintains the detected person within the camera field-of-view without requiring an end-user to directly control the camera with a joystick.

  7. Microprocessor-controlled, wide-range streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy E. Lewis, Craig Hollabaugh

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storagemore » using flash-based storage media. The camera’s user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.« less

  8. Visual control of robots using range images.

    PubMed

    Pomares, Jorge; Gil, Pablo; Torres, Fernando

    2010-01-01

    In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.

  9. Development of Automated Tracking System with Active Cameras for Figure Skating

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.

  10. Camera trap placement and the potential for bias due to trails and other features

    PubMed Central

    Forrester, Tavis D.

    2017-01-01

    Camera trapping has become an increasingly widespread tool for wildlife ecologists, with large numbers of studies relying on photo capture rates or presence/absence information. It is increasingly clear that camera placement can directly impact this kind of data, yet these biases are poorly understood. We used a paired camera design to investigate the effect of small-scale habitat features on species richness estimates, and capture rate and detection probability of several mammal species in the Shenandoah Valley of Virginia, USA. Cameras were deployed at either log features or on game trails with a paired camera at a nearby random location. Overall capture rates were significantly higher at trail and log cameras compared to their paired random cameras, and some species showed capture rates as much as 9.7 times greater at feature-based cameras. We recorded more species at both log (17) and trail features (15) than at their paired control cameras (13 and 12 species, respectively), yet richness estimates were indistinguishable after 659 and 385 camera nights of survey effort, respectively. We detected significant increases (ranging from 11–33%) in detection probability for five species resulting from the presence of game trails. For six species detection probability was also influenced by the presence of a log feature. This bias was most pronounced for the three rodents investigated, where in all cases detection probability was substantially higher (24.9–38.2%) at log cameras. Our results indicate that small-scale factors, including the presence of game trails and other features, can have significant impacts on species detection when camera traps are employed. Significant biases may result if the presence and quality of these features are not documented and either incorporated into analytical procedures, or controlled for in study design. PMID:29045478

  11. Camera trap placement and the potential for bias due to trails and other features.

    PubMed

    Kolowski, Joseph M; Forrester, Tavis D

    2017-01-01

    Camera trapping has become an increasingly widespread tool for wildlife ecologists, with large numbers of studies relying on photo capture rates or presence/absence information. It is increasingly clear that camera placement can directly impact this kind of data, yet these biases are poorly understood. We used a paired camera design to investigate the effect of small-scale habitat features on species richness estimates, and capture rate and detection probability of several mammal species in the Shenandoah Valley of Virginia, USA. Cameras were deployed at either log features or on game trails with a paired camera at a nearby random location. Overall capture rates were significantly higher at trail and log cameras compared to their paired random cameras, and some species showed capture rates as much as 9.7 times greater at feature-based cameras. We recorded more species at both log (17) and trail features (15) than at their paired control cameras (13 and 12 species, respectively), yet richness estimates were indistinguishable after 659 and 385 camera nights of survey effort, respectively. We detected significant increases (ranging from 11-33%) in detection probability for five species resulting from the presence of game trails. For six species detection probability was also influenced by the presence of a log feature. This bias was most pronounced for the three rodents investigated, where in all cases detection probability was substantially higher (24.9-38.2%) at log cameras. Our results indicate that small-scale factors, including the presence of game trails and other features, can have significant impacts on species detection when camera traps are employed. Significant biases may result if the presence and quality of these features are not documented and either incorporated into analytical procedures, or controlled for in study design.

  12. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  13. Using a high-speed movie camera to evaluate slice dropping in clinical image interpretation with stack mode viewers.

    PubMed

    Yakami, Masahiro; Yamamoto, Akira; Yanagisawa, Morio; Sekiguchi, Hiroyuki; Kubo, Takeshi; Togashi, Kaori

    2013-06-01

    The purpose of this study is to verify objectively the rate of slice omission during paging on picture archiving and communication system (PACS) viewers by recording the images shown on the computer displays of these viewers with a high-speed movie camera. This study was approved by the institutional review board. A sequential number from 1 to 250 was superimposed on each slice of a series of clinical Digital Imaging and Communication in Medicine (DICOM) data. The slices were displayed using several DICOM viewers, including in-house developed freeware and clinical PACS viewers. The freeware viewer and one of the clinical PACS viewers included functions to prevent slice dropping. The series was displayed in stack mode and paged in both automatic and manual paging modes. The display was recorded with a high-speed movie camera and played back at a slow speed to check whether slices were dropped. The paging speeds were also measured. With a paging speed faster than half the refresh rate of the display, some viewers dropped up to 52.4 % of the slices, while other well-designed viewers did not, if used with the correct settings. Slice dropping during paging was objectively confirmed using a high-speed movie camera. To prevent slice dropping, the viewer must be specially designed for the purpose and must be used with the correct settings, or the paging speed must be slower than half of the display refresh rate.

  14. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    NASA Astrophysics Data System (ADS)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  15. LPT. Low power test control building (TAN641) interior. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Low power test control building (TAN-641) interior. Camera facing northeast at what remains of control room console. Cut in wall at right of view shows west wall of northern test cell. INEEL negative no. HD-40-4-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. Electronic camera-management system for 35-mm and 70-mm film cameras

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan

    1993-01-01

    Military and commercial test facilities have been tasked with the need for increasingly sophisticated data collection and data reduction. A state-of-the-art electronic control system for high speed 35 mm and 70 mm film cameras designed to meet these tasks is described. Data collection in today's test range environment is difficult at best. The need for a completely integrated image and data collection system is mandated by the increasingly complex test environment. Instrumentation film cameras have been used on test ranges to capture images for decades. Their high frame rates coupled with exceptionally high resolution make them an essential part of any test system. In addition to documenting test events, today's camera system is required to perform many additional tasks. Data reduction to establish TSPI (time- space-position information) may be performed after a mission and is subject to all of the variables present in documenting the mission. A typical scenario would consist of multiple cameras located on tracking mounts capturing the event along with azimuth and elevation position data. Corrected data can then be reduced using each camera's time and position deltas and calculating the TSPI of the object using triangulation. An electronic camera control system designed to meet these requirements has been developed by Photo-Sonics, Inc. The feedback received from test technicians at range facilities throughout the world led Photo-Sonics to design the features of this control system. These prominent new features include: a comprehensive safety management system, full local or remote operation, frame rate accuracy of less than 0.005 percent, and phase locking capability to Irig-B. In fact, Irig-B phase lock operation of multiple cameras can reduce the time-distance delta of a test object traveling at mach-1 to less than one inch during data reduction.

  17. Testbed for remote telepresence research

    NASA Astrophysics Data System (ADS)

    Adnan, Sarmad; Cheatham, John B., Jr.

    1992-11-01

    Teleoperated robots offer solutions to problems associated with operations in remote and unknown environments, such as space. Teleoperated robots can perform tasks related to inspection, maintenance, and retrieval. A video camera can be used to provide some assistance in teleoperations, but for fine manipulation and control, a telepresence system that gives the operator a sense of actually being at the remote location is more desirable. A telepresence system comprised of a head-tracking stereo camera system, a kinematically redundant arm, and an omnidirectional mobile robot has been developed at the mechanical engineering department at Rice University. This paper describes the design and implementation of this system, its control hardware, and software. The mobile omnidirectional robot has three independent degrees of freedom that permit independent control of translation and rotation, thereby simulating a free flying robot in a plane. The kinematically redundant robot arm has eight degrees of freedom that assist in obstacle and singularity avoidance. The on-board control computers permit control of the robot from the dual hand controllers via a radio modem system. A head-mounted display system provides the user with a stereo view from a pair of cameras attached to the mobile robotics system. The head tracking camera system moves stereo cameras mounted on a three degree of freedom platform to coordinate with the operator's head movements. This telepresence system provides a framework for research in remote telepresence, and teleoperations for space.

  18. Integrated calibration between digital camera and laser scanner from mobile mapping system for land vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang

    The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.

  19. Digital Camera Control for Faster Inspection

    NASA Technical Reports Server (NTRS)

    Brown, Katharine; Siekierski, James D.; Mangieri, Mark L.; Dekome, Kent; Cobarruvias, John; Piplani, Perry J.; Busa, Joel

    2009-01-01

    Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency.

  20. Overview of a Hybrid Underwater Camera System

    DTIC Science & Technology

    2014-07-01

    meters), in increments of 200ps. The camera is also equipped with 6:1 motorized zoom lens. A precision miniature attitude, heading reference system ( AHRS ...LUCIE Control & Power Distribution System AHRS Pulsed LASER Gated Camera -^ Sonar Transducer (b) LUCIE sub-systems Proc. ofSPIEVol. 9111

  1. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  2. 67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST OF ASSISTANT LAUNCH CONDUCTOR PANEL SHOWN IN CA-133-1-A-66 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Intelligent viewing control for robotic and automation systems

    NASA Astrophysics Data System (ADS)

    Schenker, Paul S.; Peters, Stephen F.; Paljug, Eric D.; Kim, Won S.

    1994-10-01

    We present a new system for supervisory automated control of multiple remote cameras. Our primary purpose in developing this system has been to provide capability for knowledge- based, `hands-off' viewing during execution of teleoperation/telerobotic tasks. The reported technology has broader applicability to remote surveillance, telescience observation, automated manufacturing workcells, etc. We refer to this new capability as `Intelligent Viewing Control (IVC),' distinguishing it from a simple programmed camera motion control. In the IVC system, camera viewing assignment, sequencing, positioning, panning, and parameter adjustment (zoom, focus, aperture, etc.) are invoked and interactively executed by real-time by a knowledge-based controller, drawing on a priori known task models and constraints, including operator preferences. This multi-camera control is integrated with a real-time, high-fidelity 3D graphics simulation, which is correctly calibrated in perspective to the actual cameras and their platform kinematics (translation/pan-tilt). Such merged graphics- with-video design allows the system user to preview and modify the planned (`choreographed') viewing sequences. Further, during actual task execution, the system operator has available both the resulting optimized video sequence, as well as supplementary graphics views from arbitrary perspectives. IVC, including operator-interactive designation of robot task actions, is presented to the user as a well-integrated video-graphic single screen user interface allowing easy access to all relevant telerobot communication/command/control resources. We describe and show pictorial results of a preliminary IVC system implementation for telerobotic servicing of a satellite.

  4. Infrared Imaging Camera Final Report CRADA No. TC02061.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E. V.; Nebeker, S.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF onmore » this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.« less

  5. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  6. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; Naurois, Mathieu de; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-12-01

    The High Energy Stereoscopic System (HESS) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas highland in Namibia. It was built to detect Very High Energy (VHE > 100 GeV) cosmic gamma rays. Since 2003, HESS has discovered the majority of the known astrophysical VHE gamma-ray sources, opening a new observational window on the extreme non-thermal processes at work in our universe. HESS consists of four 12-m diameter Cherenkov telescopes (CT1-4), which started data taking in 2002, and a larger 28-m telescope (CT5), built in 2012, which lowers the energy threshold of the array to 30 GeV . The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Only the PMTs and their HV supplies have been kept from the original cameras. Novel technical solutions have been introduced, which will find their way into some of the Cherenkov cameras foreseen for the next-generation Cherenkov Telescope Array (CTA) observatory. In particular, the camera readout system is the first large-scale system based on the analog memory chip NECTAr, which was designed for CTA cameras. The camera control subsystems and the control software framework also pursue an innovative design, exploiting cutting-edge hardware and software solutions which excel in performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 have been upgraded in fall 2016. Together they will assure continuous operation of HESS at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded HESS camera.

  7. Electronic Still Camera image of Astronaut Claude Nicollier working with RMS

    NASA Image and Video Library

    1993-12-05

    S61-E-006 (5 Dec 1993) --- The robot arm controlling work of Swiss scientist Claude Nicollier was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. With the mission specialist's assistance, Endeavour's crew captured the Hubble Space Telescope (HST) on December 4, 1993. Four of the seven crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  8. An Automatic Portable Telecine Camera.

    DTIC Science & Technology

    1978-08-01

    five television frames to achieve synchronous operation, that is about 0.2 second. 6.3 Video recorder noise imnunity The synchronisation pulse separator...display is filmed by a modified 16 am cine camera driven by a control unit in which the camera supply voltage is derived from the field synchronisation ...pulses of the video signal. Automatic synchronisation of the camera mechanism is achieved over a wide range of television field frequencies and the

  9. AO WFS detector developments at ESO to prepare for the E-ELT

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Casali, Mark; Finger, Gert; Lewis, Steffan; Marchetti, Enrico; Mehrgan, Leander; Ramsay, Suzanne; Reyes, Javier

    2016-07-01

    ESO has a very active on-going AO WFS detector development program to not only meet the needs of the current crop of instruments for the VLT, but also has been actively involved in gathering requirements, planning, and developing detectors and controllers/cameras for the instruments in design and being proposed for the E-ELT. This paper provides an overall summary of the AO WFS Detector requirements of the E-ELT instruments currently in design and telescope focal units. This is followed by a description of the many interesting detector, controller, and camera developments underway at ESO to meet these needs; a) the rationale behind and plan to upgrade the 240x240 pixels, 2000fps, "zero noise", L3Vision CCD220 sensor based AONGC camera; b) status of the LGSD/NGSD High QE, 3e- RoN, fast 700fps, 1760x1680 pixels, Visible CMOS Imager and camera development; c) status of and development plans for the Selex SAPHIRA NIR eAPD and controller. Most of the instruments and detector/camera developments are described in more detail in other papers at this conference.

  10. KSC-04pd1226

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Rick Wetherington checks out one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  11. KSC-04pd1220

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen works on the recently acquired Contraves-Goerz Kineto Tracking Mount (KTM). Trailer-mounted with a center console/seat and electric drive tracking mount, the KTM includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff. There are 10 KTMs certified for use on the Eastern Range.

  12. KSC-04pd1219

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen works on the recently acquired Contraves-Goerz Kineto Tracking Mount (KTM). Trailer-mounted with a center console/seat and electric drive tracking mount, the KTM includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff. There are 10 KTMs certified for use on the Eastern Range.

  13. KSC-04pd1227

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen checks out one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  14. Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.

    PubMed

    Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua

    2017-05-01

    In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.

  15. The sensory power of cameras and noise meters for protest surveillance in South Korea.

    PubMed

    Kim, Eun-Sung

    2016-06-01

    This article analyzes sensory aspects of material politics in social movements, focusing on two police tools: evidence-collecting cameras and noise meters for protest surveillance. Through interviews with Korean political activists, this article examines the relationship between power and the senses in the material culture of Korean protests and asks why cameras and noise meters appeared in order to control contemporary peaceful protests in the 2000s. The use of cameras and noise meters in contemporary peaceful protests evidences the exercise of what Michel Foucault calls 'micro-power'. Building on material culture studies, this article also compares the visual power of cameras with the sonic power of noise meters, in terms of a wide variety of issues: the control of things versus words, impacts on protest size, differential effects on organizers and participants, and differences in timing regarding surveillance and punishment.

  16. Method and system for providing autonomous control of a platform

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David (Inventor)

    2012-01-01

    The present application provides a system for enabling instrument placement from distances on the order of five meters, for example, and increases accuracy of the instrument placement relative to visually-specified targets. The system provides precision control of a mobile base of a rover and onboard manipulators (e.g., robotic arms) relative to a visually-specified target using one or more sets of cameras. The system automatically compensates for wheel slippage and kinematic inaccuracy ensuring accurate placement (on the order of 2 mm, for example) of the instrument relative to the target. The system provides the ability for autonomous instrument placement by controlling both the base of the rover and the onboard manipulator using a single set of cameras. To extend the distance from which the placement can be completed to nearly five meters, target information may be transferred from navigation cameras (used for long-range) to front hazard cameras (used for positioning the manipulator).

  17. PBF Control Building (PER619) south facade. Camera faces north. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619) south facade. Camera faces north. Note buried tanks with bollards protecting their access hatches. Date: July 2004. INEEL negative no. HD-41-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    ERIC Educational Resources Information Center

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  19. An Integrated System for Wildlife Sensing

    DTIC Science & Technology

    2014-08-14

    design requirement. “Sensor Controller” software. A custom Sensor Controller application was developed for the Android device in order to collect...and log readings from that device’s sensors. “Camera Controller” software. A custom Camera Controller application was developed for the Android device...into 2 separate Android applications (Figure 4). The Sensor Controller logs readings periodically from the Android device’s organic sensors, and

  20. The race between infection and immunity - how do pathogens set the pace?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribiero, Ruy M

    2009-01-01

    Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less

  1. A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Magnone, Lee J.; Huntsberger, Terrance; Aghazarian, Hrand; Padgett, Curtis W.; Trotz, David C.; Garrett, Michael S.

    2009-01-01

    The need for autonomous navigation and intelligent control of unmanned sea surface vehicles requires a mechanically robust sensing architecture that is watertight, durable, and insensitive to vibration and shock loading. The sensing system developed here comprises four black and white cameras and a single color camera. The cameras are rigidly mounted to a camera bar that can be reconfigured to mount multiple vehicles, and act as both navigational cameras and application cameras. The cameras are housed in watertight casings to protect them and their electronics from moisture and wave splashes. Two of the black and white cameras are positioned to provide lateral vision. They are angled away from the front of the vehicle at horizontal angles to provide ideal fields of view for mapping and autonomous navigation. The other two black and white cameras are positioned at an angle into the color camera's field of view to support vehicle applications. These two cameras provide an overlap, as well as a backup to the front camera. The color camera is positioned directly in the middle of the bar, aimed straight ahead. This system is applicable to any sea-going vehicle, both on Earth and in space.

  2. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  3. LPT. Shield test control building (TAN645), north facade. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test control building (TAN-645), north facade. Camera facing south. Obsolete sign dating from post-1970 program says "Energy and Systems Technology Experimental Facility, INEL." INEEL negative no. HD-40-5-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Cameras for semiconductor process control

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  5. Correction And Use Of Jitter In Television Images

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.

    1989-01-01

    Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.

  6. An evaluation of fish behavior upstream of the water temperature control tower at Cougar Dam, Oregon, using acoustic cameras, 2013

    USGS Publications Warehouse

    Adams, Noah S.; Smith, Collin; Plumb, John M.; Hansen, Gabriel S.; Beeman, John W.

    2015-07-06

    This report describes the initial year of a 2-year study to determine the feasibility of using acoustic cameras to monitor fish movements to help inform decisions about fish passage at Cougar Dam near Springfield, Oregon. Specifically, we used acoustic cameras to measure fish presence, travel speed, and direction adjacent to the water temperature control tower in the forebay of Cougar Dam during the spring (May, June, and July) and fall (September, October, and November) of 2013. Cougar Dam is a high-head flood-control dam, and the water temperature control tower enables depth-specific water withdrawals to facilitate adjustment of water temperatures released downstream of the dam. The acoustic cameras were positioned at the upstream entrance of the tower to monitor free-ranging subyearling and yearling-size juvenile Chinook salmon (Oncorhynchus tshawytscha). Because of the large size discrepancy, we could distinguish juvenile Chinook salmon from their predators, which enabled us to measure predators and prey in areas adjacent to the entrance of the tower. We used linear models to quantify and assess operational and environmental factors—such as time of day, discharge, and water temperature—that may influence juvenile Chinook salmon movements within the beam of the acoustic cameras. Although extensive milling behavior of fish near the structure may have masked directed movement of fish and added unpredictability to fish movement models, the acoustic-camera technology enabled us to ascertain the general behavior of discrete size classes of fish. Fish travel speed, direction of travel, and counts of fish moving toward the water temperature control tower primarily were influenced by the amount of water being discharged through the dam.

  7. Design issues for stereo vision systems used on tele-operated robotic platforms

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, Jim; Pezzaniti, J. Larry; Chenault, David B.; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Pettijohn, Brad

    2010-02-01

    The use of tele-operated Unmanned Ground Vehicles (UGVs) for military uses has grown significantly in recent years with operations in both Iraq and Afghanistan. In both cases the safety of the Soldier or technician performing the mission is improved by the large standoff distances afforded by the use of the UGV, but the full performance capability of the robotic system is not utilized due to insufficient depth perception provided by the standard two dimensional video system, causing the operator to slow the mission to ensure the safety of the UGV given the uncertainty of the perceived scene using 2D. To address this Polaris Sensor Technologies has developed, in a series of developments funded by the Leonard Wood Institute at Ft. Leonard Wood, MO, a prototype Stereo Vision Upgrade (SVU) Kit for the Foster-Miller TALON IV robot which provides the operator with improved depth perception and situational awareness, allowing for shorter mission times and higher success rates. Because there are multiple 2D cameras being replaced by stereo camera systems in the SVU Kit, and because the needs of the camera systems for each phase of a mission vary, there are a number of tradeoffs and design choices that must be made in developing such a system for robotic tele-operation. Additionally, human factors design criteria drive optical parameters of the camera systems which must be matched to the display system being used. The problem space for such an upgrade kit will be defined, and the choices made in the development of this particular SVU Kit will be discussed.

  8. Image Intensifier Modules For Use With Commercially Available Solid State Cameras

    NASA Astrophysics Data System (ADS)

    Murphy, Howard; Tyler, Al; Lake, Donald W.

    1989-04-01

    A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.

  9. CICADA -- Configurable Instrument Control and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    CICADA (Young et al. 1997) is a multi-process, distributed application for the control of astronomical data acquisition systems. It comprises elements that control the operation of, and data flow from CCD camera systems; and the operation of telescope instrument control systems. CICADA can be used to dynamically configure support for astronomical instruments that can be made up of multiple cameras and multiple instrument controllers. Each camera is described by a hierarchy of parts that are each individually configured and linked together. Most of CICADA is written in C++ and much of the configurability of CICADA comes from the use of inheritance and polymorphism. An example of a multiple part instrument configuration -- a wide field imager (WFI) -- is described here. WFI, presently under construction, is made up of eight 2k x 4k CCDs with dual SDSU II controllers and will be used at Siding Spring's ANU 40in and AAO 3.9m telescopes.

  10. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C.

    2007-12-01

    A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature is the main parameter affecting IR temperatures, while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 to January 2007, which suggests that origin of the changes were linked to anthropogenic activity, vegetation growth, and the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.

  11. New Modular Camera No Ordinary Joe

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

  12. Myopia Control: A Review.

    PubMed

    Walline, Jeffrey J

    2016-01-01

    Slowing the progression of myopia has become a considerable concern for parents of myopic children. At the same time, clinical science is rapidly advancing the knowledge about methods to slow myopia progression. This article reviews the peer-reviewed literature regarding several modalities attempting to control myopia progression. Several strategies have been shown to be ineffective for myopia control, including undercorrection of myopic refractive error, alignment fit gas-permeable contact lenses, outdoor time, and bifocal of multifocal spectacles. However, a recent randomized clinical trial fitted progressing myopic children with executive bifocals for 3 years and found a 39% slowing of myopia progression for bifocal-only spectacles and 50% treatment effect for bifocal spectacles with base-in prism, although there was not a significant difference in progression between the bifocal-only and bifocal plus prism groups. Interestingly, outdoor time has shown to be effective for reducing the onset of myopia but not for slowing the progression of myopic refractive error. More effective methods of myopia control include orthokeratology, soft bifocal contact lenses, and antimuscarinic agents. Orthokeratology and soft bifocal contact lenses are both thought to provide myopic blur to the retina, which acts as a putative cue to slow myopic eye growth. Each of these myopia control methods provides, on average, slightly less than 50% slowing of myopia progression. All studies have shown clinically meaningful slowing of myopia progression, including several randomized clinical trials. The most investigated antimuscarinic agents include pirenzepine and atropine. Pirenzepine slows myopia progression by approximately 40%, but it is not commercially available in the United States. Atropine provides the best myopia control, but the cycloplegic and mydriatic side effects render it a rarely prescribed myopia control agent in the United States. However, low-concentration atropine has been shown to provide effective myopia control with far fewer side effects than 1.0% atropine. Finally, two agents, low-concentration atropine and outdoor time have been shown to reduce the likelihood of myopia onset. Over the past few years, much has been learned about how to slow the progression of nearsightedness in children, but we still have a lot to learn.

  13. KSC-04pd1223

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen makes adjustments on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  14. KSC-04pd1221

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Worthington (left) and Kenny Allen work on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  15. KSC-04pd1225

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen stands in the center console area of one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric-drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  16. KSC-04pd1224

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Rick Wetherington sits in the center console seat of one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  17. KSC-04pd1222

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Wetherington (left) and Kenny Allen work on two of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  18. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum.

    PubMed

    Yasuma, Fumihito; Mitsunaga, Tomoo; Iso, Daisuke; Nayar, Shree K

    2010-09-01

    We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://www1.cs.columbia.edu/CAVE/projects/gap_camera/ for use by the research community.

  19. Operator vision aids for space teleoperation assembly and servicing

    NASA Technical Reports Server (NTRS)

    Brooks, Thurston L.; Ince, Ilhan; Lee, Greg

    1992-01-01

    This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.

  20. A Major Upgrade of the H.E.S.S. Cherenkov Cameras

    NASA Astrophysics Data System (ADS)

    Lypova, Iryna; Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-03-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in Namibia. It was built to detect Very High Energy (VHE, >100 GeV) cosmic gamma rays, and consists of four 12 m diameter Cherenkov telescopes (CT1-4), built in 2003, and a larger 28 m telescope (CT5), built in 2012. The larger mirror surface of CT5 permits to lower the energy threshold of the array down to 30 GeV. The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Technical solutions forseen for the next-generation Cherenkov Telescope Array (CTA) observatory have been introduced, most notably the readout is based on the NECTAr analog memory chip. The camera control subsystems and the control software framework also pursue an innovative design, increasing the camera performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 will upgraded in Fall 2016. Together they will assure continuous operation of H.E.S.S at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded H.E.S.S. camera.

  1. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants.

    PubMed

    Wang, Yan; Wang, Anqi; Wang, Chunxin; Cui, Bo; Sun, Changjiao; Zhao, Xiang; Zeng, Zhanghua; Shen, Yue; Gao, Fei; Liu, Guoqiang; Cui, Haixin

    2017-10-06

    Pesticide slow-release formulations provide a way to increase the efficiency of active components by reducing the amount of pesticide that needs to be applied. Slow-release formulations also increase the stability and prolong the control effect of photosensitive pesticides. Surfactants are an indispensable part of pesticide formulations, and the choice of surfactant can strongly affect formulation performance. In this study, emamectin-benzoate (EMB) slow-release microspheres were prepared by the microemulsion polymerization method. We explored the effect of different surfactants on the particle size and dispersity of EMB in slow-release microspheres. The results indicated that the samples had uniform spherical shapes with an average diameter of 320.5 ±5.24 nm and good dispersity in the optimal formulation with the polymeric stabilizer polyvinyl alcohol (PVA) and composite non-ionic surfactant polyoxyethylene castor oil (EL-40). The optimal EMB pesticide slow-release microspheres had excellent anti-photolysis performance, stability, controlled release properties, and good leaf distribution. These results demonstrated that EMB slow-release microspheres are an attractive candidate for improving pesticide efficacy and prolonging the control effect of EMB in the environment.

  2. WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research.

    PubMed

    Nazir, Sajid; Newey, Scott; Irvine, R Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; Wal, René van der

    2017-01-01

    The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named 'WiseEye', designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management.

  3. WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research

    PubMed Central

    Nazir, Sajid; Newey, Scott; Irvine, R. Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; van der Wal, René

    2017-01-01

    The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named ‘WiseEye’, designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management. PMID:28076444

  4. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  5. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This close-up view of one of two Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  6. The ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array: camera DAQ software architecture

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.

  7. Center for Coastline Security Technology, Year 3

    DTIC Science & Technology

    2008-05-01

    Polarization control for 3D Imaging with the Sony SRX-R105 Digital Cinema Projectors 3.4 HDMAX Camera and Sony SRX-R105 Projector Configuration for 3D...HDMAX Camera Pair Figure 3.2 Sony SRX-R105 Digital Cinema Projector Figure 3.3 Effect of camera rotation on projected overlay image. Figure 3.4...system that combines a pair of FAU’s HD-MAX video cameras with a pair of Sony SRX-R105 digital cinema projectors for stereo imaging and projection

  8. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  9. Solid state television camera (CCD-buried channel), revision 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  10. Solid state, CCD-buried channel, television camera study and design

    NASA Technical Reports Server (NTRS)

    Hoagland, K. A.; Balopole, H.

    1976-01-01

    An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.

  11. Fretted Terrain Mass Movement

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small mass movement in a fretted terrain valley in the Coloe Fossae region of Mars (see upper right quarter of the image). The term, mass movement, is usually applied to landslides, although it is unclear in this case whether the landform resulted from a single, catastrophic landslide, or the slow creep of ice-rich debris.

    Location near: 35.3oN, 303.1oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  12. Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics

    NASA Astrophysics Data System (ADS)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-07-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.

  13. Robotic Vehicle Communications Interoperability

    DTIC Science & Technology

    1988-08-01

    starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor

  14. Nonholonomic camera-space manipulation using cameras mounted on a mobile base

    NASA Astrophysics Data System (ADS)

    Goodwine, Bill; Seelinger, Michael J.; Skaar, Steven B.; Ma, Qun

    1998-10-01

    The body of work called `Camera Space Manipulation' is an effective and proven method of robotic control. Essentially, this technique identifies and refines the input-output relationship of the plant using estimation methods and drives the plant open-loop to its target state. 3D `success' of the desired motion, i.e., the end effector of the manipulator engages a target at a particular location with a particular orientation, is guaranteed when there is camera space success in two cameras which are adequately separated. Very accurate, sub-pixel positioning of a robotic end effector is possible using this method. To date, however, most efforts in this area have primarily considered holonomic systems. This work addresses the problem of nonholonomic camera space manipulation by considering the problem of a nonholonomic robot with two cameras and a holonomic manipulator on board the nonholonomic platform. While perhaps not as common in robotics, such a combination of holonomic and nonholonomic degrees of freedom are ubiquitous in industry: fork lifts and earth moving equipment are common examples of a nonholonomic system with an on-board holonomic actuator. The nonholonomic nature of the system makes the automation problem more difficult due to a variety of reasons; in particular, the target location is not fixed in the image planes, as it is for holonomic systems (since the cameras are attached to a moving platform), and there is a fundamental `path dependent' nature of nonholonomic kinematics. This work focuses on the sensor space or camera-space-based control laws necessary for effectively implementing an autonomous system of this type.

  15. Backing collisions: a study of drivers' eye and backing behaviour using combined rear-view camera and sensor systems.

    PubMed

    Hurwitz, David S; Pradhan, Anuj; Fisher, Donald L; Knodler, Michael A; Muttart, Jeffrey W; Menon, Rajiv; Meissner, Uwe

    2010-04-01

    Backing crash injures can be severe; approximately 200 of the 2,500 reported injuries of this type per year to children under the age of 15 years result in death. Technology for assisting drivers when backing has limited success in preventing backing crashes. Two questions are addressed: Why is the reduction in backing crashes moderate when rear-view cameras are deployed? Could rear-view cameras augment sensor systems? 46 drivers (36 experimental, 10 control) completed 16 parking trials over 2 days (eight trials per day). Experimental participants were provided with a sensor camera system, controls were not. Three crash scenarios were introduced. Parking facility at UMass Amherst, USA. 46 drivers (33 men, 13 women) average age 29 years, who were Massachusetts residents licensed within the USA for an average of 9.3 years. Interventions Vehicles equipped with a rear-view camera and sensor system-based parking aid. Subject's eye fixations while driving and researcher's observation of collision with objects during backing. Only 20% of drivers looked at the rear-view camera before backing, and 88% of those did not crash. Of those who did not look at the rear-view camera before backing, 46% looked after the sensor warned the driver. This study indicates that drivers not only attend to an audible warning, but will look at a rear-view camera if available. Evidence suggests that when used appropriately, rear-view cameras can mitigate the occurrence of backing crashes, particularly when paired with an appropriate sensor system.

  16. Backing collisions: a study of drivers’ eye and backing behaviour using combined rear-view camera and sensor systems

    PubMed Central

    Hurwitz, David S; Pradhan, Anuj; Fisher, Donald L; Knodler, Michael A; Muttart, Jeffrey W; Menon, Rajiv; Meissner, Uwe

    2012-01-01

    Context Backing crash injures can be severe; approximately 200 of the 2,500 reported injuries of this type per year to children under the age of 15 years result in death. Technology for assisting drivers when backing has limited success in preventing backing crashes. Objectives Two questions are addressed: Why is the reduction in backing crashes moderate when rear-view cameras are deployed? Could rear-view cameras augment sensor systems? Design 46 drivers (36 experimental, 10 control) completed 16 parking trials over 2 days (eight trials per day). Experimental participants were provided with a sensor camera system, controls were not. Three crash scenarios were introduced. Setting Parking facility at UMass Amherst, USA. Subjects 46 drivers (33 men, 13 women) average age 29 years, who were Massachusetts residents licensed within the USA for an average of 9.3 years. Interventions Vehicles equipped with a rear-view camera and sensor system-based parking aid. Main Outcome Measures Subject’s eye fixations while driving and researcher’s observation of collision with objects during backing. Results Only 20% of drivers looked at the rear-view camera before backing, and 88% of those did not crash. Of those who did not look at the rear-view camera before backing, 46% looked after the sensor warned the driver. Conclusions This study indicates that drivers not only attend to an audible warning, but will look at a rear-view camera if available. Evidence suggests that when used appropriately, rear-view cameras can mitigate the occurrence of backing crashes, particularly when paired with an appropriate sensor system. PMID:20363812

  17. Viewpoint matters: objective performance metrics for surgeon endoscope control during robot-assisted surgery.

    PubMed

    Jarc, Anthony M; Curet, Myriam J

    2017-03-01

    Effective visualization of the operative field is vital to surgical safety and education. However, additional metrics for visualization are needed to complement other common measures of surgeon proficiency, such as time or errors. Unlike other surgical modalities, robot-assisted minimally invasive surgery (RAMIS) enables data-driven feedback to trainees through measurement of camera adjustments. The purpose of this study was to validate and quantify the importance of novel camera metrics during RAMIS. New (n = 18), intermediate (n = 8), and experienced (n = 13) surgeons completed 25 virtual reality simulation exercises on the da Vinci Surgical System. Three camera metrics were computed for all exercises and compared to conventional efficiency measures. Both camera metrics and efficiency metrics showed construct validity (p < 0.05) across most exercises (camera movement frequency 23/25, camera movement duration 22/25, camera movement interval 19/25, overall score 24/25, completion time 25/25). Camera metrics differentiated new and experienced surgeons across all tasks as well as efficiency metrics. Finally, camera metrics significantly (p < 0.05) correlated with completion time (camera movement frequency 21/25, camera movement duration 21/25, camera movement interval 20/25) and overall score (camera movement frequency 20/25, camera movement duration 19/25, camera movement interval 20/25) for most exercises. We demonstrate construct validity of novel camera metrics and correlation between camera metrics and efficiency metrics across many simulation exercises. We believe camera metrics could be used to improve RAMIS proficiency-based curricula.

  18. ARNICA: the Arcetri Observatory NICMOS3 imaging camera

    NASA Astrophysics Data System (ADS)

    Lisi, Franco; Baffa, Carlo; Hunt, Leslie K.

    1993-10-01

    ARNICA (ARcetri Near Infrared CAmera) is the imaging camera for the near infrared bands between 1.0 and 2.5 micrometers that Arcetri Observatory has designed and built as a general facility for the TIRGO telescope (1.5 m diameter, f/20) located at Gornergrat (Switzerland). The scale is 1' per pixel, with sky coverage of more than 4' X 4' on the NICMOS 3 (256 X 256 pixels, 40 micrometers side) detector array. The optical path is compact enough to be enclosed in a 25.4 cm diameter dewar; the working temperature is 76 K. The camera is remotely controlled by a 486 PC, connected to the array control electronics via a fiber-optics link. A C-language package, running under MS-DOS on the 486 PC, acquires and stores the frames, and controls the timing of the array. We give an estimate of performance, in terms of sensitivity with an assigned observing time, along with some details on the main parameters of the NICMOS 3 detector.

  19. An attentive multi-camera system

    NASA Astrophysics Data System (ADS)

    Napoletano, Paolo; Tisato, Francesco

    2014-03-01

    Intelligent multi-camera systems that integrate computer vision algorithms are not error free, and thus both false positive and negative detections need to be revised by a specialized human operator. Traditional multi-camera systems usually include a control center with a wall of monitors displaying videos from each camera of the network. Nevertheless, as the number of cameras increases, switching from a camera to another becomes hard for a human operator. In this work we propose a new method that dynamically selects and displays the content of a video camera from all the available contents in the multi-camera system. The proposed method is based on a computational model of human visual attention that integrates top-down and bottom-up cues. We believe that this is the first work that tries to use a model of human visual attention for the dynamic selection of the camera view of a multi-camera system. The proposed method has been experimented in a given scenario and has demonstrated its effectiveness with respect to the other methods and manually generated ground-truth. The effectiveness has been evaluated in terms of number of correct best-views generated by the method with respect to the camera views manually generated by a human operator.

  20. [Characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil under continuous application of different slow/controlled release urea.

    PubMed

    Sun, Xiang Xin; Li, Dong Po; Wu, Zhi Jie; Cui, Ya Lan; Han, Mei; Li, Yong Hua; Yang, De Fu; Cui, Yong Kun

    2016-06-01

    The characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil were examined under 9-year application of different slow/controlled release urea with the common large granule urea (U) as the control. The results showed that compared with the control, all slow/controlled release urea treatments, except 25.8% increase of ammonia volatilization under 1% 3,4-dimethylpyrazole phosphate (DMPP)+U, could decrease the ammonia volatilization. Polymer coated urea (PCU) dominated the highest reduction of 73.4% compared to U, followed by sulfur coated urea (SCU) (72.2%), 0.5% N-(N-butyl) thiophosphoric triamide (NBPT)+1% DMPP+U (71.9%), 1% hydroquinone (HQ)+3% dicyandiamide (DCD)+U (46.9%), 0.5% NBPT+U (43.2%), 1% HQ +U (40.2%), 3% DCD+U (25.5%), and the ammonia volatilization under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). 1% DMPP+U caused the lowest emission of N 2 O under different slow/controlled release urea treatments. The slow/controlled release urea also had a significant potential of N 2 O emission reduction: 1% DMPP+U showed the highest reduction of 74.9% compared to U, followed by PCU (62.1%), 1% HQ+3% DCD+U (54.7%), 0.5% NBPT+1% DMPP+U (42.2%), 3% DCD+U (35.9%), 1% HQ +U (28.9%), 0.5% NBPT+U (17.7%), SCU (14.5%), and N 2 O emissions under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). The comprehensive analysis showed that 0.5% NBPT+1% DMPP+U, SCU and PCU had similar effects on decreasing the ammonia volatilization and N 2 O emission and were remarkably better than the other treatments. The slow release urea with the combination of urease and nitrification inhibitors should be the first choice for reducing N loss and environmental pollution in paddy field, in view of the higher costs of coated urea fertilizers.

  1. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, M.; Ikuta, R.; Imoto, N.

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less

  2. ACT-Vision: active collaborative tracking for multiple PTZ cameras

    NASA Astrophysics Data System (ADS)

    Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet

    2009-04-01

    We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.

  3. Current approaches to myopia control.

    PubMed

    Leo, Seo Wei

    2017-05-01

    Myopia is a global problem, being particularly prevalent in the urban areas of east and southeast Asia. In addition to the direct economic and social burdens, associated ocular complications may lead to substantial vision loss. With prevalence of myopia above 80% and high myopia over 20%, it is crucial to control myopia. The aim of this review to is provide an update on the interventions to slow the onset of myopia and retard its progression. The epidemic of myopia is characterized by increasingly early onset, combined with high myopia progression rates. There are two pathways for myopia control: firstly to slow the onset of myopia and secondly to reduce or prevent progression. Increased time outdoors can reduce the onset of myopia. Atropine 0.01% dose offers an appropriate risk-benefit ratio, with no clinically significant visual side effects balanced against a significant 50% reduction in myopia progression. Orthokeratology contact lenses can slow axial length elongation, but infective keratitis is a risk. Peripheral defocussing lenses may both have a role in slowing myopic progression in a subset of children and further help our understanding of the physiologic control of ocular growth. Myopia control can be achieved by slowing the onset of myopia, which now appears to be possible through increasing time outdoors and slowing the progression of myopia with interventions like atropine and orthokeratology.

  4. Birth control - slow release methods

    MedlinePlus

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  5. A clinical study of the biomechanics of step descent using different treatment modalities for patellofemoral pain.

    PubMed

    Selfe, James; Thewlis, Dominic; Hill, Stephen; Whitaker, Jonathan; Sutton, Chris; Richards, Jim

    2011-05-01

    In the previous study we have demonstrated that in healthy subjects significant changes in coronal and transverse plane mechanics can be produced by the application of a neutral patella taping technique and a patellar brace. Recently it has also been identified that patients with patellofemoral pain syndrome (PFPS) display alterations in gait in the coronal and transverse planes. This study investigated the effect of patellar bracing and taping on the three-dimensional mechanics of the knee of patellofemoral pain patients during a step descent task. Thirteen patients diagnosed with patellofemoral pain syndrome performed a slow step descent. This was conducted under three randomized conditions: (a) no intervention, (b) neutral patella taping, (c) patellofemoral bracing. A 20cm step was constructed to accommodate an AMTI force platform. Kinematic data were collected using a ten camera infra-red Oqus motion analysis system. Reflective markers were placed on the foot, shank and thigh using the Calibrated Anatomical System Technique (CAST). The coronal plane knee range of motion was significantly reduced with taping (P=0.031) and bracing (P=0.005). The transverse plane showed a significant reduction in the knee range of motion with the brace compared to taping (P=0.032) and no treatment (P=0.046). Patients suffering from patellofemoral pain syndrome demonstrated improved coronal plane and torsional control of the knee during slow step descent following the application of bracing and taping. This study further reinforces the view that coronal and transverse plane mechanics should not be overlooked when studying patellofemoral pain. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    NASA Astrophysics Data System (ADS)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  7. First Evidence of Jupiter Ring

    NASA Technical Reports Server (NTRS)

    1979-01-01

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  8. Jupiter's ring

    NASA Technical Reports Server (NTRS)

    1979-01-01

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  9. Jupiter Ring

    NASA Image and Video Library

    2000-03-23

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science. http://photojournal.jpl.nasa.gov/catalog/PIA02251

  10. Earth elevation map production and high resolution sensing camera imaging analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  11. Single chip camera device having double sampling operation

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2002-01-01

    A single chip camera device is formed on a single substrate including an image acquisition portion for control portion and the timing circuit formed on the substrate. The timing circuit also controls the photoreceptors in a double sampling mode in which are reset level is first read and then after an integration time a charged level is read.

  12. Two Persons with Multiple Disabilities Use Camera-Based Microswitch Technology to Control Stimulation with Small Mouth and Eyelid Responses

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Lang, Russell

    2012-01-01

    Background: A camera-based microswitch technology was recently developed to monitor small facial responses of persons with multiple disabilities and allow those responses to control environmental stimulation. This study assessed such a technology with 2 new participants using slight variations of previous responses. Method: The technology involved…

  13. Context-based handover of persons in crowd and riot scenarios

    NASA Astrophysics Data System (ADS)

    Metzler, Jürgen

    2015-02-01

    In order to control riots in crowds, it is helpful to get ringleaders under control and pull them out of the crowd if one has become an offender. A great support to achieve these tasks is the capability of observing the crowd and ringleaders automatically by using cameras. It also allows a better conservation of evidence in riot control. A ringleader who has become an offender should be tracked across and recognized by several cameras, regardless of whether overlapping camera's fields of view exist or not. We propose a context-based approach for handover of persons between different camera fields of view. This approach can be applied for overlapping as well as for non-overlapping fields of view, so that a fast and accurate identification of individual persons in camera networks is feasible. Within the scope of this paper, the approach is applied to a handover of persons between single images without having any temporal information. It is particularly developed for semiautomatic video editing and a handover of persons between cameras in order to improve conservation of evidence. The approach has been developed on a dataset collected during a Crowd and Riot Control (CRC) training of the German armed forces. It consists of three different levels of escalation. First, the crowd started with a peaceful demonstration. Later, there were violent protests, and third, the riot escalated and offenders bumped into the chain of guards. One result of the work is a reliable context-based method for person re-identification between single images of different camera fields of view in crowd and riot scenarios. Furthermore, a qualitative assessment shows that the use of contextual information can support this task additionally. It can decrease the needed time for handover and the number of confusions which supports the conservation of evidence in crowd and riot scenarios.

  14. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    NASA Astrophysics Data System (ADS)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  15. Slow Release Of Reagent Chemicals From Gel Matrices

    NASA Technical Reports Server (NTRS)

    Debnam, William J.; Barber, Patrick G.; Coleman, James

    1988-01-01

    Procedure developed for slow release of reagent chemicals into solutions. Simple and inexpensive and not subject to failure of equipment. Use of toothpaste-type tube or pump dispenser conceivably provides more controlled technique for storage and dispensation of gel matrix. Possible uses include controlled, slow release of reagents in chemical reactions, crystal growth, space-flight experiments, and preformed gel medications from packets.

  16. Uncooled infrared sensors: rapid growth and future perspective

    NASA Astrophysics Data System (ADS)

    Balcerak, Raymond S.

    2000-07-01

    The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.

  17. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  18. Attitude identification for SCOLE using two infrared cameras

    NASA Technical Reports Server (NTRS)

    Shenhar, Joram

    1991-01-01

    An algorithm is presented that incorporates real time data from two infrared cameras and computes the attitude parameters of the Spacecraft COntrol Lab Experiment (SCOLE), a lab apparatus representing an offset feed antenna attached to the Space Shuttle by a flexible mast. The algorithm uses camera position data of three miniature light emitting diodes (LEDs), mounted on the SCOLE platform, permitting arbitrary camera placement and an on-line attitude extraction. The continuous nature of the algorithm allows identification of the placement of the two cameras with respect to some initial position of the three reference LEDs, followed by on-line six degrees of freedom attitude tracking, regardless of the attitude time history. A description is provided of the algorithm in the camera identification mode as well as the mode of target tracking. Experimental data from a reduced size SCOLE-like lab model, reflecting the performance of the camera identification and the tracking processes, are presented. Computer code for camera placement identification and SCOLE attitude tracking is listed.

  19. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  20. Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage

    PubMed Central

    Gupta, Alisha; Singh, Jaswant; Dufort, Isabelle; Robert, Claude; Dias, Fernanda Caminha Faustino

    2017-01-01

    Cryopreservation is known for its marked deleterious effects on embryonic health. Bovine compact morulae were vitrified or slow-frozen, and post-warm morulae were cultured to the expanded blastocyst stage. Blastocysts developed from vitrified and slow-frozen morulae were subjected to microarray analysis and compared with blastocysts developed from unfrozen control morulae for differential gene expression. Morula to blastocyst conversion rate was higher (P < 0.05) in control (72%) and vitrified (77%) than in slow-frozen (34%) morulae. Total 20 genes were upregulated and 44 genes were downregulated in blastocysts developed from vitrified morulae (fold change ≥ ± 2, P < 0.05) in comparison with blastocysts developed from control morulae. In blastocysts developed from slow-frozen morulae, 102 genes were upregulated and 63 genes were downregulated (fold change ≥ ± 1.5, P < 0.05). Blastocysts developed from vitrified morulae exhibited significant changes in gene expression mainly involving embryo implantation (PTGS2, CALB1), lipid peroxidation and reactive oxygen species generation (HSD3B1, AKR1B1, APOA1) and cell differentiation (KRT19, CLDN23). However, blastocysts developed from slow-frozen morulae showed changes in the expression of genes related to cell signaling (SPP1), cell structure and differentiation (DCLK2, JAM2 and VIM), and lipid metabolism (PLA2R1 and SMPD3). In silico comparison between blastocysts developed form vitrified and slow-frozen morulae revealed similar changes in gene expression as between blastocysts developed from vitrified and control morulae. In conclusion, blastocysts developed form vitrified morulae demonstrated better post-warming survival than blastocysts developed from slow-frozen morulae but their gene expression related to lipid metabolism, steroidogenesis, cell differentiation and placentation changed significantly (≥ 2 fold). Slow freezing method killed more morulae than vitrification but those which survived up to blastocyst stage did not express ≥ 2 fold change in their gene expression as compared with blastocysts from control morulae. PMID:29095916

  1. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  2. A compact high-definition low-cost digital stereoscopic video camera for rapid robotic surgery development.

    PubMed

    Carlson, Jay; Kowalczuk, Jędrzej; Psota, Eric; Pérez, Lance C

    2012-01-01

    Robotic surgical platforms require vision feedback systems, which often consist of low-resolution, expensive, single-imager analog cameras. These systems are retooled for 3D display by simply doubling the cameras and outboard control units. Here, a fully-integrated digital stereoscopic video camera employing high-definition sensors and a class-compliant USB video interface is presented. This system can be used with low-cost PC hardware and consumer-level 3D displays for tele-medical surgical applications including military medical support, disaster relief, and space exploration.

  3. Use of camera drive in stereoscopic display of learning contents of introductory physics

    NASA Astrophysics Data System (ADS)

    Matsuura, Shu

    2011-03-01

    Simple 3D physics simulations with stereoscopic display were created for a part of introductory physics e-Learning. First, cameras to see the 3D world can be made controllable by the user. This enabled to observe the system and motions of objects from any position in the 3D world. Second, cameras were made attachable to one of the moving object in the simulation so as to observe the relative motion of other objects. By this option, it was found that users perceive the velocity and acceleration more sensibly on stereoscopic display than on non-stereoscopic 3D display. Simulations were made using Adobe Flash ActionScript, and Papervison 3D library was used to render the 3D models in the flash web pages. To display the stereogram, two viewports from virtual cameras were displayed in parallel in the same web page. For observation of stereogram, the images of two viewports were superimposed by using 3D stereogram projection box (T&TS CO., LTD.), and projected on an 80-inch screen. The virtual cameras were controlled by keyboard and also by Nintendo Wii remote controller buttons. In conclusion, stereoscopic display offers learners more opportunities to play with the simulated models, and to perceive the characteristics of motion better.

  4. Dynamic light scattering microscopy

    NASA Astrophysics Data System (ADS)

    Dzakpasu, Rhonda

    An optical microscope technique, dynamic light scattering microscopy (DLSM) that images dynamically scattered light fluctuation decay rates is introduced. Using physical optics we show theoretically that within the optical resolution of the microscope, relative motions between scattering centers are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The time scale for these intensity fluctuations is predicted. The spatial coherence distance defining the average distance between constructive and destructive interference in the image plane is calculated and compared with the pixel size. We experimentally tested DLSM on polystyrene latex nanospheres and living macrophage cells. In order to record these rapid fluctuations, on a slow progressive scan CCD camera, we used a thin laser line of illumination on the sample such that only a single column of pixels in the CCD camera is illuminated. This allowed the use of the rate of the column-by-column readout transfer process as the acquisition rate of the camera. This manipulation increased the data acquisition rate by at least an order of magnitude in comparison to conventional CCD cameras rates defined by frames/s. Analysis of the observed fluctuations provides information regarding the rates of motion of the scattering centers. These rates, acquired from each position on the sample are used to create a spatial map of the fluctuation decay rates. Our experiments show that with this technique, we are able to achieve a good signal-to-noise ratio and can monitor fast intensity fluctuations, on the order of milliseconds. DLSM appears to provide dynamic information about fast motions within cells at a sub-optical resolution scale and provides a new kind of spatial contrast.

  5. Multi-Angle Snowflake Camera Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkurko, Konstantin; Garrett, T.; Gaustad, K

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less

  6. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  7. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  8. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This view, backdropped against the blackness of space shows one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST). The scene was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  9. Effects of automated speed enforcement in Montgomery County, Maryland, on vehicle speeds, public opinion, and crashes.

    PubMed

    Hu, Wen; McCartt, Anne T

    2016-09-01

    In May 2007, Montgomery County, Maryland, implemented an automated speed enforcement program, with cameras allowed on residential streets with speed limits of 35 mph or lower and in school zones. In 2009, the state speed camera law increased the enforcement threshold from 11 to 12 mph over the speed limit and restricted school zone enforcement hours. In 2012, the county began using a corridor approach, in which cameras were periodically moved along the length of a roadway segment. The long-term effects of the speed camera program on travel speeds, public attitudes, and crashes were evaluated. Changes in travel speeds at camera sites from 6 months before the program began to 7½ years after were compared with changes in speeds at control sites in the nearby Virginia counties of Fairfax and Arlington. A telephone survey of Montgomery County drivers was conducted in Fall 2014 to examine attitudes and experiences related to automated speed enforcement. Using data on crashes during 2004-2013, logistic regression models examined the program's effects on the likelihood that a crash involved an incapacitating or fatal injury on camera-eligible roads and on potential spillover roads in Montgomery County, using crashes in Fairfax County on similar roads as controls. About 7½ years after the program began, speed cameras were associated with a 10% reduction in mean speeds and a 62% reduction in the likelihood that a vehicle was traveling more than 10 mph above the speed limit at camera sites. When interviewed in Fall 2014, 95% of drivers were aware of the camera program, 62% favored it, and most had received a camera ticket or knew someone else who had. The overall effect of the camera program in its modified form, including both the law change and the corridor approach, was a 39% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury. Speed cameras alone were associated with a 19% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury, the law change was associated with a nonsignificant 8% increase, and the corridor approach provided an additional 30% reduction over and above the cameras. This study adds to the evidence that speed cameras can reduce speeding, which can lead to reductions in speeding-related crashes and crashes involving serious injuries or fatalities.

  10. System selects framing rate for spectrograph camera

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Circuit using zero-order light is reflected to a photomultiplier in the incoming radiation of a spectrograph monitor to provide an error signal which controls the advancing and driving rate of the film through the camera.

  11. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  12. Blinded evaluation of the effects of high definition and magnification on perceived image quality in laryngeal imaging.

    PubMed

    Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M

    2006-02-01

    Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.

  13. Science observations with the IUE using the one-gyro mode

    NASA Technical Reports Server (NTRS)

    Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, Chris R.; Perez, M. R.; Webb, J.

    1990-01-01

    The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked which will rely on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.

  14. Science observations with the IUE using the one-gyro mode

    NASA Technical Reports Server (NTRS)

    Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, C.; Perez, M.; Webb, J.

    1990-01-01

    The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked, which will relay on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.

  15. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  16. Automatic exposure control for space sequential camera

    NASA Technical Reports Server (NTRS)

    Mcatee, G. E., Jr.; Stoap, L. J.; Solheim, C. D.; Sharpsteen, J. T.

    1975-01-01

    The final report for the automatic exposure control study for space sequential cameras, for the NASA Johnson Space Center is presented. The material is shown in the same sequence that the work was performed. The purpose of the automatic exposure control is to automatically control the lens iris as well as the camera shutter so that the subject is properly exposed on the film. A study of design approaches is presented. Analysis of the light range of the spectrum covered indicates that the practical range would be from approximately 20 to 6,000 foot-lamberts, or about nine f-stops. Observation of film available from space flights shows that optimum scene illumination is apparently not present in vehicle interior photography as well as in vehicle-to-vehicle situations. The evaluation test procedure for a breadboard, and the results, which provided information for the design of a brassboard are given.

  17. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.

    PubMed

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H

    2015-02-01

    Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.

  18. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.

  19. Low Cost Wireless Network Camera Sensors for Traffic Monitoring

    DOT National Transportation Integrated Search

    2012-07-01

    Many freeways and arterials in major cities in Texas are presently equipped with video detection cameras to : collect data and help in traffic/incident management. In this study, carefully controlled experiments determined : the throughput and output...

  20. Diagnostic accuracy of chest X-rays acquired using a digital camera for low-cost teleradiology.

    PubMed

    Szot, Agnieszka; Jacobson, Francine L; Munn, Samson; Jazayeri, Darius; Nardell, Edward; Harrison, David; Drosten, Ralph; Ohno-Machado, Lucila; Smeaton, Laura M; Fraser, Hamish S F

    2004-02-01

    Store-and-forward telemedicine, using e-mail to send clinical data and digital images, offers a low-cost alternative for physicians in developing countries to obtain second opinions from specialists. To explore the potential usefulness of this technique, 91 chest X-ray images were photographed using a digital camera and a view box. Four independent readers (three radiologists and one pulmonologist) read two types of digital (JPEG and JPEG2000) and original film images and indicated their confidence in the presence of eight features known to be radiological indicators of tuberculosis (TB). The results were compared to a "gold standard" established by two different radiologists, and assessed using receiver operating characteristic (ROC) curve analysis. There was no statistical difference in the overall performance between the readings from the original films and both types of digital images. The size of JPEG2000 images was approximately 120KB, making this technique feasible for slow internet connections. Our preliminary results show the potential usefulness of this technique particularly for tuberculosis and lung disease, but further studies are required to refine its potential.

  1. MPCM: a hardware coder for super slow motion video sequences

    NASA Astrophysics Data System (ADS)

    Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.

    2013-12-01

    In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.

  2. Motion Imagery and Robotics Application (MIRA)

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas

    2011-01-01

    Objectives include: I. Prototype a camera service leveraging the CCSDS Integrated protocol stack (MIRA/SM&C/AMS/DTN): a) CCSDS MIRA Service (New). b) Spacecraft Monitor and Control (SM&C). c) Asynchronous Messaging Service (AMS). d) Delay/Disruption Tolerant Networking (DTN). II. Additional MIRA Objectives: a) Demo of Camera Control through ISS using CCSDS protocol stack (Berlin, May 2011). b) Verify that the CCSDS standards stack can provide end-to-end space camera services across ground and space environments. c) Test interoperability of various CCSDS protocol standards. d) Identify overlaps in the design and implementations of the CCSDS protocol standards. e) Identify software incompatibilities in the CCSDS stack interfaces. f) Provide redlines to the SM&C, AMS, and DTN working groups. d) Enable the CCSDS MIRA service for potential use in ISS Kibo camera commanding. e) Assist in long-term evolution of this entire group of CCSDS standards to TRL 6 or greater.

  3. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  4. Three-dimensional cinematography with control object of unknown shape.

    PubMed

    Dapena, J; Harman, E A; Miller, J A

    1982-01-01

    A technique for reconstruction of three-dimensional (3D) motion which involves a simple filming procedure but allows the deduction of coordinates in large object volumes was developed. Internal camera parameters are calculated from measurements of the film images of two calibrated crosses while external camera parameters are calculated from the film images of points in a control object of unknown shape but at least one known length. The control object, which includes the volume in which the activity is to take place, is formed by a series of poles placed at unknown locations, each carrying two targets. From the internal and external camera parameters, and from locations of the images of point in the films of the two cameras, 3D coordinates of the point can be calculated. Root mean square errors of the three coordinates of points in a large object volume (5m x 5m x 1.5m) were 15 mm, 13 mm, 13 mm and 6 mm, and relative errors in lengths averaged 0.5%, 0.7% and 0.5%, respectively.

  5. Temporal Heterogeneity and the Value of Slowness in Robotic Systems

    DTIC Science & Technology

    2015-11-01

    DIMENSIONS OF HETEROGENEITY By now, we have become reasonably good at designing distributed control strategies for teams of networked agents in order...possible is the recent emergence of a relatively mature theory of how to coordinate control decisions across teams of networked agents. In fact...Loris, illustrated in Figure 2. Figure 2: Slow mammals that serve as bio-inspiration for SlowBot Behavior [Wikipedia] Top: Tree

  6. Integrated inertial stellar attitude sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye M. (Inventor); Kourepenis, Anthony S. (Inventor); Wyman, Jr., William F. (Inventor)

    2007-01-01

    An integrated inertial stellar attitude sensor for an aerospace vehicle includes a star camera system, a gyroscope system, a controller system for synchronously integrating an output of said star camera system and an output of said gyroscope system into a stream of data, and a flight computer responsive to said stream of data for determining from the star camera system output and the gyroscope system output the attitude of the aerospace vehicle.

  7. University of Pennsylvania MAGIC 2010 Final Report

    DTIC Science & Technology

    2011-01-10

    and mapping ( SLAM ) techniques are employed to build a local map of the environment surrounding the robot. Readings from the two complementary LIDAR sen...IMU, LIDAR , Cameras Localization Disrupter UGV Local Navigation Sensors: GPS, IMU, LIDAR , Cameras Laser Control Localization Task Planner Strategy/Plan...various components shown in Figure 2. This is comprised of the following subsystems: • Sensor UGV: Mobile UGVs with LIDAR and camera sensors, GPS, and

  8. Evaluation of stereoscopic video cameras synchronized with the movement of an operator's head on the teleoperation of the actual backhoe shovel

    NASA Astrophysics Data System (ADS)

    Minamoto, Masahiko; Matsunaga, Katsuya

    1999-05-01

    Operator performance while using a remote controlled backhoe shovel is described for three different stereoscopic viewing conditions: direct view, fixed stereoscopic cameras connected to a helmet mounted display (HMD), and rotating stereo camera connected and slaved to the head orientation of a free moving stereo HMD. Results showed that the head- slaved system provided the best performance.

  9. Automatic Exposure Iris Control (AEIC) for data acquisition camera

    NASA Technical Reports Server (NTRS)

    Mcatee, G. E., Jr.; Stoap, L. J.; Solheim, C. D.; Sharpsteen, J. T.

    1975-01-01

    A lens design capable of operating over a total range of f/1.4 to f/11.0 with through the lens light sensing is presented along with a system which compensates for ASA film speeds as well as shutter openings. The space shuttle camera system package is designed so that it can be assembled on the existing 16 mm DAC with a minimum of alteration to the camera.

  10. Preliminary Evaluation of a Commercial 360 Multi-Camera Rig for Photogrammetric Purposes

    NASA Astrophysics Data System (ADS)

    Teppati Losè, L.; Chiabrando, F.; Spanò, A.

    2018-05-01

    The research presented in this paper is focused on a preliminary evaluation of a 360 multi-camera rig: the possibilities to use the images acquired by the system in a photogrammetric workflow and for the creation of spherical images are investigated and different tests and analyses are reported. Particular attention is dedicated to different operative approaches for the estimation of the interior orientation parameters of the cameras, both from an operative and theoretical point of view. The consistency of the six cameras that compose the 360 system was in depth analysed adopting a self-calibration approach in a commercial photogrammetric software solution. A 3D calibration field was projected and created, and several topographic measurements were performed in order to have a set of control points to enhance and control the photogrammetric process. The influence of the interior parameters of the six cameras were analyse both in the different phases of the photogrammetric workflow (reprojection errors on the single tie point, dense cloud generation, geometrical description of the surveyed object, etc.), both in the stitching of the different images into a single spherical panorama (some consideration on the influence of the camera parameters on the overall quality of the spherical image are reported also in these section).

  11. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  12. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  13. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  14. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  15. Direct imaging of slow, stored and stationary EIT polaritons

    NASA Astrophysics Data System (ADS)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  16. Interactive Multimedia Distance Learning (IMDL)

    DTIC Science & Technology

    1999-01-01

    scales to their original values. Media Toolbar. The Media Toolbar provides the instructor the ability to choose camera positions, use the whiteboard ...on the classroom server computer. Whiteboard . Activates a whiteboard associated with the MIDL system. The whiteboard is used to annotate the course...button. Media Control Panel. The Media Control Panel allows the instructor to choose a camera position, use the whiteboard , play some computer video, use

  17. Economical Video Monitoring of Traffic

    NASA Technical Reports Server (NTRS)

    Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.

    1986-01-01

    Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.

  18. The Slow Control System of the Auger Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Barenthien, N.; Bethge, C.; Daumiller, K.; Gemmeke, H.; Kampert, K.-H.; Wiebusch, C.

    2003-07-01

    The fluorescence detector (FD) of the Pierre Auger experiment [1] comprises 24 telescopes that will be situated in 4 remote buildings in the Pampa Amarilla. It is planned to run the fluorescence detectors in absence of operators on site. Therefore, the main task of the Slow Control System (SCS) is to ensure a secure remote operation of the FD system. The Slow Control System works autonomously and continuously monitors those parameters which may disturb a secure operation. Commands from the data-acquisition system or the remote operator are accepted only if they do not violate safety rules that depend on the actual experimental conditions (e.g. high-voltage, wind-sp eed, light, etc.). In case of malfunctions (power failure, communication breakdown, ...) the SCS performs an orderly shutdown and subsequent startup of the fluorescence detector system. The concept and the implementation of the Slow Control System are presented.

  19. A multipurpose camera system for monitoring Kīlauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Lee, Lopaka; Moniz, Cyril J.

    2015-01-01

    We describe a low-cost, compact multipurpose camera system designed for field deployment at active volcanoes that can be used either as a webcam (transmitting images back to an observatory in real-time) or as a time-lapse camera system (storing images onto the camera system for periodic retrieval during field visits). The system also has the capability to acquire high-definition video. The camera system uses a Raspberry Pi single-board computer and a 5-megapixel low-light (near-infrared sensitive) camera, as well as a small Global Positioning System (GPS) module to ensure accurate time-stamping of images. Custom Python scripts control the webcam and GPS unit and handle data management. The inexpensive nature of the system allows it to be installed at hazardous sites where it might be lost. Another major advantage of this camera system is that it provides accurate internal timing (independent of network connection) and, because a full Linux operating system and the Python programming language are available on the camera system itself, it has the versatility to be configured for the specific needs of the user. We describe example deployments of the camera at Kīlauea Volcano, Hawai‘i, to monitor ongoing summit lava lake activity. 

  20. A multiple camera tongue switch for a child with severe spastic quadriplegic cerebral palsy.

    PubMed

    Leung, Brian; Chau, Tom

    2010-01-01

    The present study proposed a video-based access technology that facilitated a non-contact tongue protrusion access modality for a 7-year-old boy with severe spastic quadriplegic cerebral palsy (GMFCS level 5). The proposed system featured a centre camera and two peripheral cameras to extend coverage of the frontal face view of this user for longer durations. The child participated in a descriptive case study. The participant underwent 3 months of tongue protrusion training while the multiple camera tongue switch prototype was being prepared. Later, the participant was brought back for five experiment sessions where he worked on a single-switch picture matching activity, using the multiple camera tongue switch prototype in a controlled environment. The multiple camera tongue switch achieved an average sensitivity of 82% and specificity of 80%. In three of the experiment sessions, the peripheral cameras were associated with most of the true positive switch activations. These activations would have been missed by a centre-camera-only setup. The study demonstrated proof-of-concept of a non-contact tongue access modality implemented by a video-based system involving three cameras and colour video processing.

  1. The origins of SPECT and SPECT/CT.

    PubMed

    Hutton, Brian F

    2014-05-01

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.

  2. Planetary investigation utilizing an imaging spectrometer system based upon charge injection technology

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Harvey, P.; Swift, R.

    1975-01-01

    An intrinsic silicon charge injection device (CID) television sensor array has been used in conjunction with a CaMoO4 colinear tunable acousto optic filter, a 61 inch reflector, a sophisticated computer system, and a digital color TV scan converter/computer to produce near IR images of Saturn and Jupiter with 10A spectral resolution and approximately 3 inch spatial resolution. The CID camera has successfully obtained digitized 100 x 100 array images with 5 minutes of exposure time, and slow-scanned readout to a computer. Details of the equipment setup, innovations, problems, experience, data and final equipment performance limits are given.

  3. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  4. Mechanism controller system for the optical spectroscopic and infrared remote imaging system instrument on board the Rosetta space mission

    NASA Astrophysics Data System (ADS)

    Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.

    2001-05-01

    The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.

  5. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  6. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    NASA Astrophysics Data System (ADS)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  7. Design of a CAN bus interface for photoelectric encoder in the spaceflight camera

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wan, Qiu-hua; She, Rong-hong; Zhao, Chang-hai; Jiang, Yong

    2009-05-01

    In order to make photoelectric encoder usable in a spaceflight camera which adopts CAN bus as the communication method, CAN bus interface of the photoelectric encoder is designed in this paper. CAN bus interface hardware circuit of photoelectric encoder consists of CAN bus controller SJA 1000, CAN bus transceiver TJA1050 and singlechip. CAN bus interface controlling software program is completed in C language. A ten-meter shield twisted pair line is used as the transmission medium in the spaceflight camera, and speed rate is 600kbps.The experiments show that: the photoelectric encoder with CAN bus interface which has the advantages of more reliability, real-time, transfer rate and transfer distance overcomes communication line's shortcomings of classical photoelectric encoder system. The system works well in automatic measuring and controlling system.

  8. Automated remote cameras for monitoring alluvial sandbars on the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Grams, Paul E.; Tusso, Robert B.; Buscombe, Daniel

    2018-02-27

    Automated camera systems deployed at 43 remote locations along the Colorado River corridor in Grand Canyon National Park, Arizona, are used to document sandbar erosion and deposition that are associated with the operations of Glen Canyon Dam. The camera systems, which can operate independently for a year or more, consist of a digital camera triggered by a separate data controller, both of which are powered by an external battery and solar panel. Analysis of images for categorical changes in sandbar size show deposition at 50 percent or more of monitoring sites during controlled flood releases done in 2012, 2013, 2014, and 2016. The images also depict erosion of sandbars and show that erosion rates were highest in the first 3 months following each controlled flood. Erosion rates were highest in 2015, the year of highest annual dam release volume. Comparison of the categorical estimates of sandbar change agree with sandbar change (erosion or deposition) measured by topographic surveys in 76 percent of cases evaluated. A semiautomated method for quantifying changes in sandbar area from the remote-camera images by rectifying the oblique images and segmenting the sandbar from the rest of the image is presented. Calculation of sandbar area by this method agrees with sandbar area determined by topographic survey within approximately 8 percent and allows quantification of sandbar area monthly (or more frequently).

  9. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    PubMed

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  10. The Melting of Natural Snowflakes Suspended in a Vertical Wind Tunnel.

    DTIC Science & Technology

    1982-06-01

    during the melting process is also recorded by cameras A newly developed valve controls the airflow in the chamber while ma n ining the air conditions...12 3.2. Position of Camera System within the Coldroom ..... ... 14 3.3. Schematic Illustration of the Photographic System . . . 15 3.4...apparatus satisfying the majority of the above mentioned criteria. As the snowflake fell into the apparatus, it would pass a camera /stroboscope arrangement

  11. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  12. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This medium close-up view of one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. This view shows the cell side of the minus V-2 panel. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  13. Visual Control for Multirobot Organized Rendezvous.

    PubMed

    Lopez-Nicolas, G; Aranda, M; Mezouar, Y; Sagues, C

    2012-08-01

    This paper addresses the problem of visual control of a set of mobile robots. In our framework, the perception system consists of an uncalibrated flying camera performing an unknown general motion. The robots are assumed to undergo planar motion considering nonholonomic constraints. The goal of the control task is to drive the multirobot system to a desired rendezvous configuration relying solely on visual information given by the flying camera. The desired multirobot configuration is defined with an image of the set of robots in that configuration without any additional information. We propose a homography-based framework relying on the homography induced by the multirobot system that gives a desired homography to be used to define the reference target, and a new image-based control law that drives the robots to the desired configuration by imposing a rigidity constraint. This paper extends our previous work, and the main contributions are that the motion constraints on the flying camera are removed, the control law is improved by reducing the number of required steps, the stability of the new control law is proved, and real experiments are provided to validate the proposal.

  14. Flow Interactions and Control

    DTIC Science & Technology

    2012-03-08

    to-Use 3-D Camera For Measurements in Turbulent Flow Fields B Thurow, Auburn Near Mid Far Conventional imaging Plenoptic imaging Conventional 2...depth-of-field and blur  Reduced aperture (restricted angular information) leads to low signal levels Lightfield Imaging  Plenoptic camera records

  15. The role of aluminum in slow sand filtration.

    PubMed

    Weber-Shirk, Monroe L; Chan, Kwok Loon

    2007-03-01

    Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.

  16. Single-Fiber Optical Link For Video And Control

    NASA Technical Reports Server (NTRS)

    Galloway, F. Houston

    1993-01-01

    Single optical fiber carries control signals to remote television cameras and video signals from cameras. Fiber replaces multiconductor copper cable, with consequent reduction in size. Repeaters not needed. System works with either multimode- or single-mode fiber types. Nonmetallic fiber provides immunity to electromagnetic interference at suboptical frequencies and much less vulnerable to electronic eavesdropping and lightning strikes. Multigigahertz bandwidth more than adequate for high-resolution television signals.

  17. Adjustable control station with movable monitors and cameras for viewing systems in robotics and teleoperations

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1994-01-01

    Real-time video presentations are provided in the field of operator-supervised automation and teleoperation, particularly in control stations having movable cameras for optimal viewing of a region of interest in robotics and teleoperations for performing different types of tasks. Movable monitors to match the corresponding camera orientations (pan, tilt, and roll) are provided in order to match the coordinate systems of all the monitors to the operator internal coordinate system. Automated control of the arrangement of cameras and monitors, and of the configuration of system parameters, is provided for optimal viewing and performance of each type of task for each operator since operators have different individual characteristics. The optimal viewing arrangement and system parameter configuration is determined and stored for each operator in performing each of many types of tasks in order to aid the automation of setting up optimal arrangements and configurations for successive tasks in real time. Factors in determining what is optimal include the operator's ability to use hand-controllers for each type of task. Robot joint locations, forces and torques are used, as well as the operator's identity, to identify the current type of task being performed in order to call up a stored optimal viewing arrangement and system parameter configuration.

  18. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    PubMed

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P < .05), and shifted respiratory peak toward left (P < .05). Compared to 16 breaths/minute, traditional spectral analysis showed increased LF power and LF/HF ratio, decreased HF power of HRV at 8 breaths per minute (P < .05). As breathing rate decreased, corrected spectral analysis showed increased HF power, decreased LF power, LF/HF ratio of HRV (P < .05). Compared to controls, resting baroreflex sensitivity decreased in hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P < .05) and controls (from 88.49 ± 6.01 to 112.91 ± 7.29 ms/mm Hg, P < .05).Slow breathing can increase HF power and decrease LF power and LF/HF ratio in essential hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  19. UCam: universal camera controller and data acquisition system

    NASA Astrophysics Data System (ADS)

    McLay, S. A.; Bezawada, N. N.; Atkinson, D. C.; Ives, D. J.

    2010-07-01

    This paper describes the software architecture and design concepts used in the UKATC's generic camera control and data acquisition software system (UCam) which was originally developed for use with the ARC controller hardware. The ARC detector control electronics are developed by Astronomical Research Cameras (ARC), of San Diego, USA. UCam provides an alternative software solution programmed in C/C++ and python that runs on a real-time Linux operating system to achieve critical speed performance for high time resolution instrumentation. UCam is a server based application that can be accessed remotely and easily integrated as part of a larger instrument control system. It comes with a user friendly client application interface that has several features including a FITS header editor and support for interfacing with network devices. Support is also provided for writing automated scripts in python or as text files. UCam has an application centric design where custom applications for different types of detectors and read out modes can be developed, downloaded and executed on the ARC controller. The built-in de-multiplexer can be easily reconfigured to readout any number of channels for almost any type of detector. It also provides support for numerous sampling modes such as CDS, FOWLER, NDR and threshold limited NDR. UCam has been developed over several years for use on many instruments such as the Wide Field Infra Red Camera (WFCAM) at UKIRT in Hawaii, the mid-IR imager/spectrometer UIST and is also used on instruments at SUBARU, Gemini and Palomar.

  20. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    NASA Astrophysics Data System (ADS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  1. Role of the sodium pump in pacemaker generation in dog colonic smooth muscle.

    PubMed Central

    Barajas-López, C; Chow, E; Den Hertog, A; Huizinga, J D

    1989-01-01

    1. The role of the Na+ pump in the generation of slow wave activity in circular muscle of the dog colon was investigated using a partitioned 'Abe-Tomita' type chamber for voltage control. 2. Blockade of the Na+ pump by omission of extracellular K+, by ouabain, or the combination of 0 mM-Na+ and ouabain, depolarized the membrane up to approximately -40 mV and abolished the slow wave activity. Repolarization back to the control membrane potential by hyperpolarizing current restored the slow wave activity. 3. Slow waves continued to be present in 0 Na+, Li+ HEPES solution. 4. The depolarization induced by the procedures to block Na+ pump activity was associated with an increase in input membrane resistance. 5. Voltage-current relationships show the presence of an inward rectification. 6. Reduction of temperature depolarized the membrane, and decreased the slow wave frequency and amplitude. The slow wave amplitude was restored by repolarization of the membrane. 7. Brief depolarizing pulses evoked premature slow waves. Brief hyperpolarizing pulses terminated the slow waves. 8. We conclude that abolition of slow wave activity by Na+ pump blockade is a direct effect of membrane depolarization and that the Na+ pump is not responsible for the generation of the slow wave. 9. Our results are consistent with the hypothesis that pacemaker activity in smooth muscle is a consequence of membrane conductance changes which are metabolically dependent. PMID:2607455

  2. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  3. Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenpei; Wu, Jianbo; Yoon, Aram

    Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven bymore » inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.« less

  4. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...

    2018-05-02

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  5. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  6. Evolution of the SOFIA tracking control system

    NASA Astrophysics Data System (ADS)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  7. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2 and altitudes up to 50,000 ft (15.24 km). The digital video was used to determine the structural survivability of the debris in a real flight environment and quantify the aerodynamic trajectories of the debris.

  8. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    NASA Astrophysics Data System (ADS)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  9. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  10. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Goad, William K.

    2005-01-01

    Wing-Viewer is a computer program for acquisition and reduction of image data acquired by any of five different scientificgrade commercial electronic cameras used at Langley Research center to observe wind-tunnel models coated with pressure or temperature-sensitive paints (PSP/TSP). Wing-Viewer provides full automation of camera operation and acquisition of image data, and has limited data-preprocessing capability for quick viewing of the results of PSP/TSP test images. Wing- Viewer satisfies a requirement for a standard interface between all the cameras and a single personal computer: Written by use of Microsoft Visual C++ and the Microsoft Foundation Class Library as a framework, Wing-Viewer has the ability to communicate with the C/C++ software libraries that run on the controller circuit cards of all five cameras.

  12. Reductions in injury crashes associated with red light camera enforcement in oxnard, california.

    PubMed

    Retting, Richard A; Kyrychenko, Sergey Y

    2002-11-01

    This study estimated the impact of red light camera enforcement on motor vehicle crashes in one of the first US communities to employ such cameras-Oxnard, California. Crash data were analyzed for Oxnard and for 3 comparison cities. Changes in crash frequencies were compared for Oxnard and control cities and for signalized and nonsignalized intersections by means of a generalized linear regression model. Overall, crashes at signalized intersections throughout Oxnard were reduced by 7% and injury crashes were reduced by 29%. Right-angle crashes, those most associated with red light violations, were reduced by 32%; right-angle crashes involving injuries were reduced by 68%. Because red light cameras can be a permanent component of the transportation infrastructure, crash reductions attributed to camera enforcement should be sustainable.

  13. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes (IACT) located in Namibia. In order to assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA, the older cameras, installed in 2003, are currently undergoing an extensive upgrade. Its goals are reducing the system failure rate, reducing the dead time and improving the overall performance of the array. All camera components have been upgraded, except the mechanical structure and the photo-multiplier tubes (PMTs). Novel technical solutions have been introduced: the upgraded readout electronics is based on the NECTAr analog memory chip; the control of the hardware is carried out by an FPGA coupled to an embedded ARM computer; the control software was re-written from scratch and it is based on modern C++ open source libraries. These hardware and software solutions offer very good performance, robustness and flexibility. The first camera was fielded in July 2015 and has been successfully commissioned; the rest is scheduled to be upgraded in September 2016. The present contribution describes the design, the testing and the performance of the new H.E.S.S. camera and its components.

  14. Astronaut Kathryn Thornton on HST photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-05

    S61-E-011 (5 Dec 1993) --- This view of astronaut Kathryn C. Thornton working on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Thornton, anchored to the end of the Remote Manipulator System (RMS) arm, is installing the +V2 Solar Array Panel as a replacement for the original one removed earlier. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  15. Thermal design and simulation of an attitude-varied space camera

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Yang, Wengang; Feng, Liangjie; Li, XuYang; Wang, Yinghao; Fan, Xuewu; Wen, Desheng

    2015-10-01

    An attitude-varied space camera changes attitude continually when it is working, its attitude changes with large angle in short time leads to the significant change of heat flux; Moreover, the complicated inner heat sources, other payloads and the satellite platform will also bring thermal coupling effects to the space camera. According to a space camera which is located on a two dimensional rotating platform, detailed thermal design is accomplished by means of thermal isolation, thermal transmission and temperature compensation, etc. Then the ultimate simulation cases of both high temperature and low temperature are chosen considering the obscuration of the satellite platform and other payloads, and also the heat flux analysis of light entrance and radiator surface of the camera. NEVEDA and SindaG are used to establish the simulation model of the camera and the analysis is carried out. The results indicate that, under both passive and active thermal control, the temperature of optical components is 20+/-1°C,both their radial and axial temperature gradient are less than 0.3°C, while the temperature of the main structural components is 20+/-2°C, and the temperature fluctuation of the focal plane assemblies is 3.0-9.5°C The simulation shows that the thermal control system can meet the need of the mission, and the thermal design is efficient and reasonable.

  16. Application of phase matching autofocus in airborne long-range oblique photography camera

    NASA Astrophysics Data System (ADS)

    Petrushevsky, Vladimir; Guberman, Asaf

    2014-06-01

    The Condor2 long-range oblique photography (LOROP) camera is mounted in an aerodynamically shaped pod carried by a fast jet aircraft. Large aperture, dual-band (EO/MWIR) camera is equipped with TDI focal plane arrays and provides high-resolution imagery of extended areas at long stand-off ranges, at day and night. Front Ritchey-Chretien optics is made of highly stable materials. However, the camera temperature varies considerably in flight conditions. Moreover, a composite-material structure of the reflective objective undergoes gradual dehumidification in dry nitrogen atmosphere inside the pod, causing some small decrease of the structure length. The temperature and humidity effects change a distance between the mirrors by just a few microns. The distance change is small but nevertheless it alters the camera's infinity focus setpoint significantly, especially in the EO band. To realize the optics' resolution potential, the optimal focus shall be constantly maintained. In-flight best focus calibration and temperature-based open-loop focus control give mostly satisfactory performance. To get even better focusing precision, a closed-loop phase-matching autofocus method was developed for the camera. The method makes use of an existing beamsharer prism FPA arrangement where aperture partition exists inherently in an area of overlap between the adjacent detectors. The defocus is proportional to an image phase shift in the area of overlap. Low-pass filtering of raw defocus estimate reduces random errors related to variable scene content. Closed-loop control converges robustly to precise focus position. The algorithm uses the temperature- and range-based focus prediction as an initial guess for the closed-loop phase-matching control. The autofocus algorithm achieves excellent results and works robustly in various conditions of scene illumination and contrast.

  17. Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor

    NASA Astrophysics Data System (ADS)

    Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso

    2018-04-01

    Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.

  18. Cognitive Slowing in Gulf War Illness Predicts Executive Network Hyperconnectivity: Study in a Population-Representative Sample.

    PubMed

    Turner, Monroe P; Hubbard, Nicholas A; Himes, Lyndahl M; Faghihahmadabadi, Shawheen; Hutchison, Joanna L; Bennett, Ilana J; Motes, Michael A; Haley, Robert W; Rypma, Bart

    Cognitive slowing is a prevalent symptom observed in Gulf War Illness (GWI). The present study assessed the extent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant brain regions was predictive of GWI-related cognitive slowing. GWI patients (n = 54) and healthy veteran controls (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task; DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the DSST relative to controls. Bilateral DLPFC connectivity with task-relevant nodes was altered in GWI patients compared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.

  19. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  20. Vertical-angle control system in the LLMC

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei

    2000-10-01

    A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.

  1. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy.

    PubMed

    Barabas, Federico M; Masullo, Luciano A; Stefani, Fernando D

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  2. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy

    NASA Astrophysics Data System (ADS)

    Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  3. Opto-mechanical design of the G-CLEF flexure control camera system

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Kim, Jihun; Kim, Kang-Min; Chun, Moo-Young; Yu, Young Sam; Lee, Sungho; Nah, Jakyoung; Park, Sung-Joon; Szentgyorgyi, Andrew; McMuldroch, Stuart; Norton, Timothy; Podgorski, William; Evans, Ian; Mueller, Mark; Uomoto, Alan; Crane, Jeffrey; Hare, Tyson

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. KASI (Korea Astronomy and Space Science Institute) is responsible for Flexure Control Camera (FCC) included in the G-CLEF Front End Assembly (GCFEA). The FCC is a kind of guide camera, which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The FCC consists of five optical components: a collimator including triple lenses for producing a pupil, neutral density filters allowing us to use much brighter star as a target or a guide, a tent prism as a focus analyzer for measuring the focus offset at the fiber mirror, a reimaging camera with three pair of lenses for focusing the beam on a CCD focal plane, and a CCD detector for capturing the image on the fiber mirror. In this article, we present the optical and mechanical FCC designs which have been modified after the PDR in April 2015.

  4. Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.

  5. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    PubMed

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  6. Young and Shaw in Shuttle Training Aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut Brewster Shaw, Jr., pilot for STS-9, gets in some practice time over Florida at the controls of the Shuttle Training aircraft (STA). He is turned away from the camera but his name can be seen written on his helmet (41434); Astronaut John W. Young, STS-9 commander, gets in some practice in approach and landing over Florida at the controls of the STA. He is turned away from the camera (41435-6).

  7. In-vessel visible inspection system on KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, Jinil; Seo, D. C.

    2008-08-01

    To monitor the global formation of the initial plasma and damage to the internal structures of the vacuum vessel, an in-vessel visible inspection system has been installed and operated on the Korean superconducting tokamak advanced research (KSTAR) device. It consists of four inspection illuminators and two visible/H-alpha TV cameras. Each illuminator uses four 150W metal-halide lamps with separate lamp controllers, and programmable progressive scan charge-coupled device cameras with 1004×1004 resolution at 48frames/s and a resolution of 640×480 at 210frames/s are used to capture images. In order to provide vessel inspection capability under any operation condition, the lamps and cameras are fully controlled from the main control room and protected by shutters from deposits during plasma operation. In this paper, we describe the design and operation results of the visible inspection system with the images of the KSTAR Ohmic discharges during the first plasma campaign.

  8. An intelligent space for mobile robot localization using a multi-camera system.

    PubMed

    Rampinelli, Mariana; Covre, Vitor Buback; de Queiroz, Felippe Mendonça; Vassallo, Raquel Frizera; Bastos-Filho, Teodiano Freire; Mazo, Manuel

    2014-08-15

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  9. An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System

    PubMed Central

    Rampinelli, Mariana.; Covre, Vitor Buback.; de Queiroz, Felippe Mendonça.; Vassallo, Raquel Frizera.; Bastos-Filho, Teodiano Freire.; Mazo, Manuel.

    2014-01-01

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization. PMID:25196009

  10. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    NASA Astrophysics Data System (ADS)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  11. Experiment K-308: Automatic analysis of muscle fibers from rats subjected to spaceflight

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Chui, L. A.; Vandermeullen, J. P.

    1981-01-01

    The morphology of histochemically prepared muscle sections from the gastrocnemius and plantaris muscles of flight and vivarium control rats was studied quantitatively. Both fast-twitch and slow-twitch fibers were significantly smaller in flight groups than in control groups. Fibers in group 4F were somewhat larger than in 1F, presumably due to growth after recovery. Fibers in 4V were slightly larger than in 1V, presumably due to age. The slow fibers showed more spaceflight induced size loss than fast fibers, suggesting they suffered more from hypogravity. The proportion of slow fibers was also lower in the flight groups, suggesting spaceflight induced fiber type conversion from slow to fast.

  12. Slow Controls Using the Axiom M5235BCC

    NASA Astrophysics Data System (ADS)

    Hague, Tyler

    2008-10-01

    The Forward Vertex Detector group at PHENIX plans to adopt the Axiom M5235 Business Card Controller for use as slow controls. It is also being evaluated for slow controls on FermiLab e906. This controller features the Freescale MCF5235 microprocessor. It also has three parallel buses, these being the MCU port, BUS port, and enhanced Time Processing Unit (eTPU) port. The BUS port uses a chip select module with three external chip selects to communicate with peripherals. This will be used to communicate with and configure Field Programmable Gate Arrays (FPGAs). The controller also has an Ethernet port which can use several different protocols such as TCP and UDP. This will be used to transfer files with computers on a network. The M5235 Business Card Controller will be placed in a VME crate along with VME card and a Spartan-3 FPGA.

  13. Effectiveness of Taxicab Security Equipment in Reducing Driver Homicide Rates

    PubMed Central

    Menéndez, Cammie K.C.; Amandus, Harlan E.; Damadi, Parisa; Wu, Nan; Konda, Srinivas; Hendricks, Scott A.

    2015-01-01

    Background Taxicab drivers historically have had one of the highest work-related homicide rates of any occupation. In 2010 the taxicab driver homicide rate was 7.4 per 100,000 drivers, compared to the overall rate of 0.37 per 100,000 workers. Purpose Evaluate the effectiveness of taxicab security cameras and partitions on citywide taxicab driver homicide rates. Methods Taxicab driver homicide rates were compared in 26 major cities in the U.S. licensing taxicabs with security cameras (n=8); bullet-resistant partitions (n=7); and cities where taxicabs were not equipped with either security cameras or partitions (n=11). News clippings of taxicab driver homicides and the number of licensed taxicabs by city were used to construct taxicab driver homicide rates spanning 15 years (1996–2010). Generalized estimating equations were constructed to model the Poisson-distributed homicide rates on city-specific safety equipment installation status, controlling for city homicide rate and the concurrent decline of homicide rates over time. Data were analyzed in 2012. Results Cities with cameras experienced a threefold reduction in taxicab driver homicides compared with control cities (RR=0.27; 95% CI=0.12, 0.61; p=0.002). There was no difference in homicide rates for cities with partitions compared with control cities (RR=1.15; 95% CI=0.80, 1.64; p=0.575). Conclusions Municipal ordinances and company policies mandating security cameras appear to be highly effective in reducing taxicab driver deaths due to workplace violence. PMID:23790983

  14. Advanced illumination control algorithm for medical endoscopy applications

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  15. ONR Workshop on Magnetohydrodynamic Submarine Propulsion (2nd), Held in San Diego, California on November 16-17, 1989

    DTIC Science & Technology

    1990-07-01

    electrohtic dissociation of the electrode mate- pedo applications seem to be still somewhat rial, and to provide a good gas evolution wlhich out of the...rod cathode. A unique feature of this preliminary experiment was the use of a prototype gated, intensified video camera. This camera is based on a...microprocessor controlled microchannel plate intensifier tube. The intensifier tube image is focused on a standard CCD video camera so that the object

  16. Movable Cameras And Monitors For Viewing Telemanipulator

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Venema, Steven C.

    1993-01-01

    Three methods proposed to assist operator viewing telemanipulator on video monitor in control station when video image generated by movable video camera in remote workspace of telemanipulator. Monitors rotated or shifted and/or images in them transformed to adjust coordinate systems of scenes visible to operator according to motions of cameras and/or operator's preferences. Reduces operator's workload and probability of error by obviating need for mental transformations of coordinates during operation. Methods applied in outer space, undersea, in nuclear industry, in surgery, in entertainment, and in manufacturing.

  17. RISK FACTORS FOR SLOW GAIT SPEED: A NESTED CASE-CONTROL SECONDARY ANALYSIS OF THE MEXICAN HEALTH AND AGING STUDY.

    PubMed

    Pérez-Zepeda, M U; González-Chavero, J G; Salinas-Martinez, R; Gutiérrez-Robledo, L M

    2015-01-01

    Physical performance tests play a major role in the geriatric assessment. In particular, gait speed has shown to be useful for predicting adverse outcomes. However, risk factors for slow gait speed (slowness) are not clearly described. To determine risk factors associated with slowness in Mexican older adults. A two-step process was adopted for exploring the antecedent risk factors of slow gait speed. First, the cut-off values for gait speed were determined in a representative sample of Mexican older adults. Then, antecedent risk factors of slow gait speed (defined using the identified cut-points) were explored in a nested, cohort case-control study. One representative sample of a cross-sectional survey for the first step and the Mexican Health and Aging Study (a cohort characterized by a 10-year follow-up). A 4-meter usual gait speed test was conducted. Lowest gender and height-stratified groups were considered as defining slow gait speed. Sociodemographic characteristics, comorbidities, psychological and health-care related variables were explored to find those associated with the subsequent development of slow gait speed. Unadjusted and adjusted logistic regression models were performed. In the final model, age, diabetes, hypertension, and history of fractures were associated with the development of slow gait speed. Early identification of subjects at risk of developing slow gait speed may halt the path to disability due to the robust association of this physical performance test with functional decline.

  18. Japanese Aircraft Cameras

    DTIC Science & Technology

    1946-09-01

    camera is supported on four rubber grummets to a metal base which is normally attached in tho aircraft by bolts. The pistol grip remote control...daylight loading (h) Supply • 24 volts 1.7 35 nun Cino Gun Pantra ( Tyre number unknown) ’ ." The oamora dsscribod below is a clockwork

  19. Temporal changes in deep-sea sponge populations are correlated to changes in surface climate and food supply

    NASA Astrophysics Data System (ADS)

    Kahn, Amanda S.; Ruhl, Henry A.; Smith, Kenneth L.

    2012-12-01

    Density and average size of two species of abyssal sponges were analyzed at Station M (∼4100 m depth) over an 18-year time-series (1989-2006) using camera sled transects. Both sponge taxa share a similar plate-like morphology despite being within different families, and both showed similar variations in density and average body size over time, suggesting that the same factors may control the demographics of both species. Peaks in significant cross correlations between increases in particulate organic carbon flux and corresponding increases in sponge density occurred with a time lag of 13 months. Sponge density also fluctuated with changes in two climate indices: the NOI with a time lag of 18 months and NPGO with a time lag of 15 months. The results support previous suggestions that increased particulate organic carbon flux may induce recruitment or regeneration in deep-sea sponges. It is unknown whether the appearance of young individuals results from recruitment, regeneration, or both, but the population responses to seasonal and inter-annual changes in food supply demonstrate that sponge populations are dynamic and are capable of responding to inter-annual changes despite being sessile and presumably slow-growing.

  20. Application of low-noise CID imagers in scientific instrumentation cameras

    NASA Astrophysics Data System (ADS)

    Carbone, Joseph; Hutton, J.; Arnold, Frank S.; Zarnowski, Jeffrey J.; Vangorden, Steven; Pilon, Michael J.; Wadsworth, Mark V.

    1991-07-01

    CIDTEC has developed a PC-based instrumentation camera incorporating a preamplifier per row CID imager and a microprocessor/LCA camera controller. The camera takes advantage of CID X-Y addressability to randomly read individual pixels and potentially overlapping pixel subsets in true nondestructive (NDRO) as well as destructive readout modes. Using an oxy- nitride fabricated CID and the NDRO readout technique, pixel full well and noise levels of approximately 1*10(superscript 6) and 40 electrons, respectively, were measured. Data taken from test structures indicates noise levels (which appear to be 1/f limited) can be reduced by a factor of two by eliminating the nitride under the preamplifier gate. Due to software programmability, versatile readout capabilities, wide dynamic range, and extended UV/IR capability, this camera appears to be ideally suited for use in spectroscopy and other scientific applications.

  1. 3D vision upgrade kit for TALON robot

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Pezzaniti, J. Larry; Chenault, David B.; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Pettijohn, Brad

    2010-04-01

    In this paper, we report on the development of a 3D vision field upgrade kit for TALON robot consisting of a replacement flat panel stereoscopic display, and multiple stereo camera systems. An assessment of the system's use for robotic driving, manipulation, and surveillance operations was conducted. The 3D vision system was integrated onto a TALON IV Robot and Operator Control Unit (OCU) such that stock components could be electrically disconnected and removed, and upgrade components coupled directly to the mounting and electrical connections. A replacement display, replacement mast camera with zoom, auto-focus, and variable convergence, and a replacement gripper camera with fixed focus and zoom comprise the upgrade kit. The stereo mast camera allows for improved driving and situational awareness as well as scene survey. The stereo gripper camera allows for improved manipulation in typical TALON missions.

  2. Environmental performance evaluation of an advanced-design solid-state television camera

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  3. Versatile microsecond movie camera

    NASA Astrophysics Data System (ADS)

    Dreyfus, R. W.

    1980-03-01

    A laboratory-type movie camera is described which satisfies many requirements in the range 1 microsec to 1 sec. The camera consists of a He-Ne laser and compatible state-of-the-art components; the primary components are an acoustooptic modulator, an electromechanical beam deflector, and a video tape system. The present camera is distinct in its operation in that submicrosecond laser flashes freeze the image motion while still allowing the simplicity of electromechanical image deflection in the millisecond range. The gating and pulse delay circuits of an oscilloscope synchronize the modulator and scanner relative to the subject being photographed. The optical table construction and electronic control enhance the camera's versatility and adaptability. The instant replay video tape recording allows for easy synchronization and immediate viewing of the results. Economy is achieved by using off-the-shelf components, optical table construction, and short assembly time.

  4. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  5. Closed Loop Control and Turbulent Flows

    DTIC Science & Technology

    2005-10-01

    10 2.9 A schematic diagram of the PIV setup. The PIV controller synchronizes the firing of the lasers and camera...is 16 ms. Consequently, the frequency scaling factor, f*, is 62 Hz. Twin Nd:YAG PIv Back Laser , measurement tressur I5 area tank Water’SuppIly Laser ...YAG twin 532-nm laser was used to illuminate the flow field, and 8-bit gTay-scale images were captured using a 1360 by 1024-pixel resolution camera

  6. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  7. Standard design for National Ignition Facility x-ray streak and framing cameras.

    PubMed

    Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S

    2010-10-01

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  8. Ranging Apparatus and Method Implementing Stereo Vision System

    NASA Technical Reports Server (NTRS)

    Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.

  9. Mapping with MAV: Experimental Study on the Contribution of Absolute and Relative Aerial Position Control

    NASA Astrophysics Data System (ADS)

    Skaloud, J.; Rehak, M.; Lichti, D.

    2014-03-01

    This study highlights the benefit of precise aerial position control in the context of mapping using frame-based imagery taken by small UAVs. We execute several flights with a custom Micro Aerial Vehicle (MAV) octocopter over a small calibration field equipped with 90 signalized targets and 25 ground control points. The octocopter carries a consumer grade RGB camera, modified to insure precise GPS time stamping of each exposure, as well as a multi-frequency/constellation GNSS receiver. The GNSS antenna and camera are rigidly mounted together on a one-axis gimbal that allows control of the obliquity of the captured imagery. The presented experiments focus on including absolute and relative aerial control. We confirm practically that both approaches are very effective: the absolute control allows omission of ground control points while the relative requires only a minimum number of control points. Indeed, the latter method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified (e.g. the lever-arm between the camera perspective and antenna phase centers does not need to be determined) and, second, its principle allows employing a single-frequency antenna and carrier-phase GNSS receiver. This reduces the cost of the system as well as the payload, which in turn increases the flying time.

  10. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  11. Extreme Faint Flux Imaging with an EMCCD

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien

    2009-08-01

    An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.

  12. Space telescope low scattered light camera - A model

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Kuper, T. G.; Shack, R. V.

    1982-01-01

    A design approach for a camera to be used with the space telescope is given. Camera optics relay the system pupil onto an annular Gaussian ring apodizing mask to control scattered light. One and two dimensional models of ripple on the primary mirror were calculated. Scattered light calculations using ripple amplitudes between wavelength/20 wavelength/200 with spatial correlations of the ripple across the primary mirror between 0.2 and 2.0 centimeters indicate that the detection of an object a billion times fainter than a bright source in the field is possible. Detection of a Jovian type planet in orbit about alpha Centauri with a camera on the space telescope may be possible.

  13. Systems and methods for maintaining multiple objects within a camera field-of-view

    DOEpatents

    Gans, Nicholas R.; Dixon, Warren

    2016-03-15

    In one embodiment, a system and method for maintaining objects within a camera field of view include identifying constraints to be enforced, each constraint relating to an attribute of the viewed objects, identifying a priority rank for the constraints such that more important constraints have a higher priority that less important constraints, and determining the set of solutions that satisfy the constraints relative to the order of their priority rank such that solutions that satisfy lower ranking constraints are only considered viable if they also satisfy any higher ranking constraints, each solution providing an indication as to how to control the camera to maintain the objects within the camera field of view.

  14. Hubble Space Telescope photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-008 (4 Dec 1993) --- This view of the Earth-orbiting Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. This view was taken during rendezvous operations. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  15. Improved head-controlled TV system produces high-quality remote image

    NASA Technical Reports Server (NTRS)

    Goertz, R.; Lindberg, J.; Mingesz, D.; Potts, C.

    1967-01-01

    Manipulator operator uses an improved resolution tv camera/monitor positioning system to view the remote handling and processing of reactive, flammable, explosive, or contaminated materials. The pan and tilt motions of the camera and monitor are slaved to follow the corresponding motions of the operators head.

  16. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    PubMed

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca(2+) uptake was prevented, 1 mM H(2)O(2) increased SR Ca(2+) "leak" in fast twitch fibres by 24 +/- 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mM dithiothreitol (DTT). The changes in SR function caused by 1 mM H(2)O(2) were associated with an approximately 65% increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H(2)O(2); P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P < 0.05). Our results indicate that exogenous H(2)O(2) increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  17. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles

    PubMed Central

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-01-01

    The effect of exogenous hydrogen peroxide (H2O2) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mm H2O2 diminished the ability of the Ca2+-depleted SR to reload Ca2+ in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca2+ uptake was prevented, 1 mm H2O2 increased SR Ca2+ ‘leak’ in fast twitch fibres by 24 ± 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mm H2O2 also increased the peak force of low [caffeine] contracture by ∼45 % in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mm dithiothreitol (DTT). The changes in SR function caused by 1 mm H2O2 were associated with an ∼65 % increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H2O2; P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mm H2O2 treatment. Equilibration with 5 mm H2O2 induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mm DTT. Peak DICR was also increased ∼40 % by 5 mm H2O2 in slow twitch fibres compared to control (no H2O2; P < 0.05). Our results indicate that exogenous H2O2 increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca2+ release during contraction and/or an increase in Ca2+ sensitivity. PMID:11897857

  18. Are camera surveys useful for assessing recruitment in white-tailed deer?

    DOE PAGES

    Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.; ...

    2016-12-27

    Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less

  19. Evaluation of Trail-Cameras for Analyzing the Diet of Nesting Raptors Using the Northern Goshawk as a Model

    PubMed Central

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007–2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1–2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts. PMID:25992956

  20. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model.

    PubMed

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007-2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1-2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts.

  1. Calibration and verification of thermographic cameras for geometric measurements

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; González-Jorge, H.; Armesto, J.; Arias, P.

    2011-03-01

    Infrared thermography is a technique with an increasing degree of development and applications. Quality assessment in the measurements performed with the thermal cameras should be achieved through metrology calibration and verification. Infrared cameras acquire temperature and geometric information, although calibration and verification procedures are only usual for thermal data. Black bodies are used for these purposes. Moreover, the geometric information is important for many fields as architecture, civil engineering and industry. This work presents a calibration procedure that allows the photogrammetric restitution and a portable artefact to verify the geometric accuracy, repeatability and drift of thermographic cameras. These results allow the incorporation of this information into the quality control processes of the companies. A grid based on burning lamps is used for the geometric calibration of thermographic cameras. The artefact designed for the geometric verification consists of five delrin spheres and seven cubes of different sizes. Metrology traceability for the artefact is obtained from a coordinate measuring machine. Two sets of targets with different reflectivity are fixed to the spheres and cubes to make data processing and photogrammetric restitution possible. Reflectivity was the chosen material propriety due to the thermographic and visual cameras ability to detect it. Two thermographic cameras from Flir and Nec manufacturers, and one visible camera from Jai are calibrated, verified and compared using calibration grids and the standard artefact. The calibration system based on burning lamps shows its capability to perform the internal orientation of the thermal cameras. Verification results show repeatability better than 1 mm for all cases, being better than 0.5 mm for the visible one. As it must be expected, also accuracy appears higher in the visible camera, and the geometric comparison between thermographic cameras shows slightly better results for the Nec camera.

  2. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  3. Singular perturbations and time scales in the design of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  4. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  5. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  6. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE PAGES

    Yang, Hualei; Yang, Xi; Heskel, Mary; ...

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  7. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hualei; Yang, Xi; Heskel, Mary

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  8. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  9. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats.

    PubMed

    Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E

    1997-12-30

    Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.

  10. Fast Pb-glass neutron-to-light converter for ICF (Inertial Confinement Fusion) target burn history measurements

    NASA Astrophysics Data System (ADS)

    Lerche, R. A.; Cable, M. D.; Phillion, D. W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7 MeV gamma ray emitted in the T(d,gamma)He(5) fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (less than 10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10(exp 13) D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7 MeV gamma rays for burn time measurements.

  11. Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis

    DOE PAGES

    Thomaz, Lucas A.; Jardim, Eric; da Silva, Allan F.; ...

    2017-10-16

    This study presents a family of algorithms based on sparse decompositions that detect anomalies in video sequences obtained from slow moving cameras. These algorithms start by computing the union of subspaces that best represents all the frames from a reference (anomaly free) video as a low-rank projection plus a sparse residue. Then, they perform a low-rank representation of a target (possibly anomalous) video by taking advantage of both the union of subspaces and the sparse residue computed from the reference video. Such algorithms provide good detection results while at the same time obviating the need for previous video synchronization. However,more » this is obtained at the cost of a large computational complexity, which hinders their applicability. Another contribution of this paper approaches this problem by using intrinsic properties of the obtained data representation in order to restrict the search space to the most relevant subspaces, providing computational complexity gains of up to two orders of magnitude. The developed algorithms are shown to cope well with videos acquired in challenging scenarios, as verified by the analysis of 59 videos from the VDAO database that comprises videos with abandoned objects in a cluttered industrial scenario.« less

  12. Time-lapse camera observations of gas piston activity at Pu`u `Ō`ō, Kīlauea volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Orr, Tim R.; Rea, James C.

    2012-12-01

    Gas pistoning is a type of eruptive behavior described first at Kīlauea volcano and characterized by the (commonly) cyclic rise and fall of the lava surface within a volcanic vent or lava lake. Though recognized for decades, its cause continues to be debated, and determining why and when it occurs has important implications for understanding vesiculation and outgassing processes at basaltic volcanoes. Here, we describe gas piston activity that occurred at the Pu`u `Ō`ō cone, in Kīlauea's east rift zone, during June 2006. Direct, detailed measurements of lava level, made from time-lapse camera images captured at close range, show that the gas pistons during the study period lasted from 2 to 60 min, had volumes ranging from 14 to 104 m3, displayed a slowing rise rate of the lava surface, and had an average gas release duration of 49 s. Our data are inconsistent with gas pistoning models that invoke gas slug rise or a dynamic pressure balance but are compatible with models which appeal to gas accumulation and loss near the top of the lava column, possibly through the generation and collapse of a foam layer.

  13. Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomaz, Lucas A.; Jardim, Eric; da Silva, Allan F.

    This study presents a family of algorithms based on sparse decompositions that detect anomalies in video sequences obtained from slow moving cameras. These algorithms start by computing the union of subspaces that best represents all the frames from a reference (anomaly free) video as a low-rank projection plus a sparse residue. Then, they perform a low-rank representation of a target (possibly anomalous) video by taking advantage of both the union of subspaces and the sparse residue computed from the reference video. Such algorithms provide good detection results while at the same time obviating the need for previous video synchronization. However,more » this is obtained at the cost of a large computational complexity, which hinders their applicability. Another contribution of this paper approaches this problem by using intrinsic properties of the obtained data representation in order to restrict the search space to the most relevant subspaces, providing computational complexity gains of up to two orders of magnitude. The developed algorithms are shown to cope well with videos acquired in challenging scenarios, as verified by the analysis of 59 videos from the VDAO database that comprises videos with abandoned objects in a cluttered industrial scenario.« less

  14. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+

    PubMed Central

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.

    2015-01-01

    Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851

  15. SUSI 62 A Robust and Safe Parachute Uav with Long Flight Time and Good Payload

    NASA Astrophysics Data System (ADS)

    Thamm, H. P.

    2011-09-01

    In many research areas in the geo-sciences (erosion, land use, land cover change, etc.) or applications (e.g. forest management, mining, land management etc.) there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for agricultural, forestry and industrial applications.

  16. Accuracy Assessment of GO Pro Hero 3 (black) Camera in Underwater Environment

    NASA Astrophysics Data System (ADS)

    Helmholz, , P.; Long, J.; Munsie, T.; Belton, D.

    2016-06-01

    Modern digital cameras are increasing in quality whilst decreasing in size. In the last decade, a number of waterproof consumer digital cameras (action cameras) have become available, which often cost less than 500. A possible application of such action cameras is in the field of Underwater Photogrammetry. Especially with respect to the fact that with the change of the medium to below water can in turn counteract the distortions present. The goal of this paper is to investigate the suitability of such action cameras for underwater photogrammetric applications focusing on the stability of the camera and the accuracy of the derived coordinates for possible photogrammetric applications. For this paper a series of image sequences was capture in a water tank. A calibration frame was placed in the water tank allowing the calibration of the camera and the validation of the measurements using check points. The accuracy assessment covered three test sets operating three GoPro sports cameras of the same model (Hero 3 black). The test set included the handling of the camera in a controlled manner where the camera was only dunked into the water tank using 7MP and 12MP resolution and a rough handling where the camera was shaken as well as being removed from the waterproof case using 12MP resolution. The tests showed that the camera stability was given with a maximum standard deviation of the camera constant σc of 0.0031mm for 7MB (for an average c of 2.720mm) and 0.0072 mm for 12MB (for an average c of 3.642mm). The residual test of the check points gave for the 7MB test series the largest rms value with only 0.450mm and the largest maximal residual of only 2.5 mm. For the 12MB test series the maximum rms value is 0. 653mm.

  17. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  18. Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints

    NASA Astrophysics Data System (ADS)

    Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.

    Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.

  19. A New Approach for Combining Time-of-Flight and RGB Cameras Based on Depth-Dependent Planar Projective Transformations

    PubMed Central

    Salinas, Carlota; Fernández, Roemi; Montes, Héctor; Armada, Manuel

    2015-01-01

    Image registration for sensor fusion is a valuable technique to acquire 3D and colour information for a scene. Nevertheless, this process normally relies on feature-matching techniques, which is a drawback for combining sensors that are not able to deliver common features. The combination of ToF and RGB cameras is an instance that problem. Typically, the fusion of these sensors is based on the extrinsic parameter computation of the coordinate transformation between the two cameras. This leads to a loss of colour information because of the low resolution of the ToF camera, and sophisticated algorithms are required to minimize this issue. This work proposes a method for sensor registration with non-common features and that avoids the loss of colour information. The depth information is used as a virtual feature for estimating a depth-dependent homography lookup table (Hlut). The homographies are computed within sets of ground control points of 104 images. Since the distance from the control points to the ToF camera are known, the working distance of each element on the Hlut is estimated. Finally, two series of experimental tests have been carried out in order to validate the capabilities of the proposed method. PMID:26404315

  20. Line following using a two camera guidance system for a mobile robot

    NASA Astrophysics Data System (ADS)

    Samu, Tayib; Kelkar, Nikhal; Perdue, David; Ruthemeyer, Michael A.; Matthews, Bradley O.; Hall, Ernest L.

    1996-10-01

    Automated unmanned guided vehicles have many potential applications in manufacturing, medicine, space and defense. A mobile robot has been designed for the 1996 Automated Unmanned Vehicle Society competition which was held in Orlando, Florida on July 15, 1996. The competition required the vehicle to follow solid and dashed lines around an approximately 800 ft. path while avoiding obstacles, overcoming terrain changes such as inclines and sand traps, and attempting to maximize speed. The purpose of this paper is to describe the algorithm developed for the line following. The line following algorithm images two windows and locates their centroid and with the knowledge that the points are on the ground plane, a mathematical and geometrical relationship between the image coordinates of the points and their corresponding ground coordinates are established. The angle of the line and minimum distance from the robot centroid are then calculated and used in the steering control. Two cameras are mounted on the robot with a camera on each side. One camera guides the robot and when it loses track of the line on its side, the robot control system automatically switches to the other camera. The test bed system has provided an educational experience for all involved and permits understanding and extending the state of the art in autonomous vehicle design.

  1. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  2. Temperature resolution enhancing of commercially available IR camera using computer processing

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-09-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Using such THz camera, one can see a temperature difference on the human skin if this difference is caused by different temperatures inside the body. Because the passive THz camera is very expensive, we try to use the IR camera for observing of such phenomenon. We use a computer code that is available for treatment of the images captured by commercially available IR camera, manufactured by Flir Corp. Using this code we demonstrate clearly changing of human body skin temperature induced by water drinking. Nevertheless, in some cases it is necessary to use additional computer processing to show clearly changing of human body temperature. One of these approaches is developed by us. We believe that we increase ten times (or more) the temperature resolution of such camera. Carried out experiments can be used for solving the counter-terrorism problem and for medicine problems solving. Shown phenomenon is very important for the detection of forbidden objects and substances concealed inside the human body using non-destructive control without X-ray application. Early we have demonstrated such possibility using THz radiation.

  3. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves

    PubMed Central

    von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-01-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the ‘up’ state but during the transition from the ‘up’ to the ‘down’ state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now. PMID:25792528

  4. Effects of red light camera enforcement on fatal crashes in large U.S. cities.

    PubMed

    Hu, Wen; McCartt, Anne T; Teoh, Eric R

    2011-08-01

    To estimate the effects of red light camera enforcement on per capita fatal crash rates at intersections with signal lights. From the 99 large U.S. cities with more than 200,000 residents in 2008, 14 cities were identified with red light camera enforcement programs for all of 2004-2008 but not at any time during 1992-1996, and 48 cities were identified without camera programs during either period. Analyses compared the citywide per capita rate of fatal red light running crashes and the citywide per capita rate of all fatal crashes at signalized intersections during the two study periods, and rate changes then were compared for cities with and without cameras programs. Poisson regression was used to model crash rates as a function of red light camera enforcement, land area, and population density. The average annual rate of fatal red light running crashes declined for both study groups, but the decline was larger for cities with red light camera enforcement programs than for cities without camera programs (35% vs. 14%). The average annual rate of all fatal crashes at signalized intersections decreased by 14% for cities with camera programs and increased slightly (2%) for cities without cameras. After controlling for population density and land area, the rate of fatal red light running crashes during 2004-2008 for cities with camera programs was an estimated 24% lower than what would have been expected without cameras. The rate of all fatal crashes at signalized intersections during 2004-2008 for cities with camera programs was an estimated 17% lower than what would have been expected without cameras. Red light camera enforcement programs were associated with a statistically significant reduction in the citywide rate of fatal red light running crashes and a smaller but still significant reduction in the rate of all fatal crashes at signalized intersections. The study adds to the large body of evidence that red light camera enforcement can prevent the most serious crashes. Communities seeking to reduce crashes at intersections should consider this evidence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  6. Adaptive DOF for plenoptic cameras

    NASA Astrophysics Data System (ADS)

    Oberdörster, Alexander; Lensch, Hendrik P. A.

    2013-03-01

    Plenoptic cameras promise to provide arbitrary re-focusing through a scene after the capture. In practice, however, the refocusing range is limited by the depth of field (DOF) of the plenoptic camera. For the focused plenoptic camera, this range is given by the range of object distances for which the microimages are in focus. We propose a technique of recording light fields with an adaptive depth of focus. Between multiple exposures { or multiple recordings of the light field { the distance between the microlens array (MLA) and the image sensor is adjusted. The depth and quality of focus is chosen by changing the number of exposures and the spacing of the MLA movements. In contrast to traditional cameras, extending the DOF does not necessarily lead to an all-in-focus image. Instead, the refocus range is extended. There is full creative control about the focus depth; images with shallow or selective focus can be generated.

  7. RISK FACTORS FOR SLOW GAIT SPEED: A NESTED CASE-CONTROL SECONDARY ANALYSIS OF THE MEXICAN HEALTH AND AGING STUDY

    PubMed Central

    Pérez-Zepeda, M.U.; González-Chavero, J.G.; Salinas-Martinez, R.; Gutiérrez-Robledo, L.M.

    2016-01-01

    Background Physical performance tests play a major role in the geriatric assessment. In particular, gait speed has shown to be useful for predicting adverse outcomes. However, risk factors for slow gait speed (slowness) are not clearly described. Objectives To determine risk factors associated with slowness in Mexican older adults. Design A two-step process was adopted for exploring the antecedent risk factors of slow gait speed. First, the cut-off values for gait speed were determined in a representative sample of Mexican older adults. Then, antecedent risk factors of slow gait speed (defined using the identified cut-points) were explored in a nested, cohort case-control study. Setting, participants One representative sample of a cross-sectional survey for the first step and the Mexican Health and Aging Study (a cohort characterized by a 10-year follow-up). Measurements A 4-meter usual gait speed test was conducted. Lowest gender and height-stratified groups were considered as defining slow gait speed. Sociodemographic characteristics, comorbidities, psychological and health-care related variables were explored to find those associated with the subsequent development of slow gait speed. Unadjusted and adjusted logistic regression models were performed. Results In the final model, age, diabetes, hypertension, and history of fractures were associated with the development of slow gait speed. Conclusions Early identification of subjects at risk of developing slow gait speed may halt the path to disability due to the robust association of this physical performance test with functional decline. PMID:26889463

  8. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  9. Slow Growth and Urban Sprawl: Support for a New Regional Agenda?

    ERIC Educational Resources Information Center

    Gainsborough, Juliet F.

    2002-01-01

    Assessed the possibilities for coalition building around growth related concerns, exploring support for slowing growth in New York City and Los Angeles. Analyzed data from surveys of urban and suburban dwellers regarding support for growth control measures. Suburbanites were much more receptive to slow growth policies than were urbanites, though…

  10. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Kang, Y. W.; Byun, Y. I.

    2007-12-01

    We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  11. [Unmanned aerial vehicles: usefulness for victim searches and triage in disasters].

    PubMed

    Pardo Ríos, Manuel; Pérez Alonso, Nuria; Lasheras Velasco, Joaquín; Juguera Rodríguez, Laura; López Ayuso, Belén; Muñoz Solera, Rubén; Martínez Riquelme, Carolina; Nieto Fernández-Pacheco, Antonio

    2016-01-01

    To analyze the influence of drones equipped with thermal cameras for finding victims and aiding triage during disasters. We carried out a prospective, cross-sectional analysis and 6 experimental simulations, each with 25 victims to locate and triage. Nurses were randomized to a control group or a drone group. Drone-group nurses were given access to images from the thermal cameras 10 minutes before the exercise started. The mean (SD) distance the nurses searched in the control group (1091.11 [146.41] m) was significantly greater than the distance searched by nurses in the drone group (920 [ 71.93] m (P = .0031). The control group found a mean of 66.7% of the victims, a significantly smaller percentage than the drone group's mean of 92% (P = .0001). Triage quality (undertriage and overtriage) was similar in the 2 groups as shown by maneuvers undertaken to open airways and control bleeding. Drones with thermal cameras were useful in searching for victims of simulated disasters in this study, although they had no impact on the quality of the nurses' triage.

  12. Handheld hyperspectral imager system for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  13. Hand-held hyperspectral imager for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  14. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  15. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  16. The prototype cameras for trans-Neptunian automatic occultation survey

    NASA Astrophysics Data System (ADS)

    Wang, Shiang-Yu; Ling, Hung-Hsu; Hu, Yen-Sang; Geary, John C.; Chang, Yin-Chang; Chen, Hsin-Yo; Amato, Stephen M.; Huang, Pin-Jie; Pratlong, Jerome; Szentgyorgyi, Andrew; Lehner, Matthew; Norton, Timothy; Jorden, Paul

    2016-08-01

    The Transneptunian Automated Occultation Survey (TAOS II) is a three robotic telescope project to detect the stellar occultation events generated by TransNeptunian Objects (TNOs). TAOS II project aims to monitor about 10000 stars simultaneously at 20Hz to enable statistically significant event rate. The TAOS II camera is designed to cover the 1.7 degrees diameter field of view of the 1.3m telescope with 10 mosaic 4.5k×2k CMOS sensors. The new CMOS sensor (CIS 113) has a back illumination thinned structure and high sensitivity to provide similar performance to that of the back-illumination thinned CCDs. Due to the requirements of high performance and high speed, the development of the new CMOS sensor is still in progress. Before the science arrays are delivered, a prototype camera is developed to help on the commissioning of the robotic telescope system. The prototype camera uses the small format e2v CIS 107 device but with the same dewar and also the similar control electronics as the TAOS II science camera. The sensors, mounted on a single Invar plate, are cooled to the operation temperature of about 200K as the science array by a cryogenic cooler. The Invar plate is connected to the dewar body through a supporting ring with three G10 bipods. The control electronics consists of analog part and a Xilinx FPGA based digital circuit. One FPGA is needed to control and process the signal from a CMOS sensor for 20Hz region of interests (ROI) readout.

  17. Rugged Video System For Inspecting Animal Burrows

    NASA Technical Reports Server (NTRS)

    Triandafils, Dick; Maples, Art; Breininger, Dave

    1992-01-01

    Video system designed for examining interiors of burrows of gopher tortoises, 5 in. (13 cm) in diameter or greater, to depth of 18 ft. (about 5.5 m), includes video camera, video cassette recorder (VCR), television monitor, control unit, and power supply, all carried in backpack. Polyvinyl chloride (PVC) poles used to maneuver camera into (and out of) burrows, stiff enough to push camera into burrow, but flexible enough to bend around curves. Adult tortoises and other burrow inhabitants observable, young tortoises and such small animals as mice obscured by sand or debris.

  18. ELECTRIC CURTAIN DEVICE FOR CONTROL AND REMOVAL OF FINE PARTICLES

    EPA Science Inventory

    The report gives results of an evaluation of an electric curtain for the purpose of particulate control and removal. If the particles are charged by corona, the curtain will stop them only in a very slow air flow (less than 2 cm/sec). At these slow flows, a vertical curtain would...

  19. Isolating Component Processes of Posterror Slowing with the Psychological Refractory Period Paradigm

    ERIC Educational Resources Information Center

    Steinhauser, Marco; Ernst, Benjamin; Ibald, Kevin W.

    2017-01-01

    Posterror slowing (PES) refers to an increased response time following errors. While PES has traditionally been attributed to control adjustments, recent evidence suggested that PES reflects interference. The present study investigated the hypothesis that control and interference represent 2 components of PES that differ with respect to their time…

  20. Post-Stop-Signal Slowing: Strategies Dominate Reflexes and Implicit Learning

    ERIC Educational Resources Information Center

    Bissett, Patrick G.; Logan, Gordon D.

    2012-01-01

    Control adjustments are necessary to balance competing cognitive demands. One task that is well-suited to explore control adjustments is the stop-signal paradigm, in which subjects must balance initiation and inhibition. One common adjustment in the stop-signal paradigm is post-stop-signal slowing. Existing models of sequential adjustments in the…

  1. Catchment-Scale Terrain Modelling with Structure-from-Motion Photogrammetry: a replacement for airborne lidar?

    NASA Astrophysics Data System (ADS)

    Brasington, J.

    2015-12-01

    Over the last five years, Structure-from-Motion photogrammetry has dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales where relaxed logistics permit the use of dense ground control and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial networks based on strips of nadir photography can lead to unstable camera calibration and systematic errors that are difficult to model with sparse ground control. We demonstrate how a low cost multi-camera platform providing both nadir and oblique imagery can support robust camera calibration, enabling the generation of high quality, large-scale terrain products that are suitable for precision fluvial change detection.

  2. Catchment-Scale Terrain Modelling with Structure-from-Motion Photogrammetry: a replacement for airborne lidar?

    NASA Astrophysics Data System (ADS)

    Brasington, James; James, Joe; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia

    2016-04-01

    In recent years, 3D terrain reconstructions based on Structure-from-Motion photogrammetry have dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales (0.1-5 Ha), where relaxed logistics permit the use of dense ground control networks and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to established landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of the quality of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial photogrammetric networks based on strips of nadir photography can lead to unstable camera calibration and systematic errors that are difficult to model with sparse ground control. We demonstrate how a low cost multi-camera platform providing both nadir and oblique imagery can support robust camera calibration, enabling the generation of high quality, large-scale terrain products that are suitable for precision fluvial change detection.

  3. A simple and inexpensive pulsing device for data-recording cameras

    Treesearch

    David L. Sonderman

    1973-01-01

    In some areas of forestry and wood utilization research, use of automatic data recording equipment has become commonplace. This research note describes the basic electronic components needed to modify an existing intervalometer into a simplified pulsing device for controlling an automatic data recording camera. The pulsing device is easily assembled and inexpensive,...

  4. Mission Specification and Control for Unmanned Aerial and Ground Vehicles for Indoor Target Discovery and Tracking

    DTIC Science & Technology

    2010-01-01

    open garage leading to the building interior. The UAV is positioned north of a potential ingress to the building. As the mission begins, the UAV...camera, the difficulty in detecting and navigating around obstacles using this non- stereo camera necessitated a precomputed map of all obstacles and

  5. A&M. Guard house (TAN638), contextual view. Built in 1968. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Guard house (TAN-638), contextual view. Built in 1968. Camera faces south. Guard house controlled access to radioactive waste storage tanks beyond and to left of view. Date: February 4, 2003. INEEL negative no. HD-33-4-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Pilot Fullerton points Hasselblad camera out forward flight deck window W6

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton, wearing communications kit assembly (ASSY) mini headset (HDST), points Hasselblad camera out forward flight deck pilots station window W6. Forward flight deck control panels F4, F8, and R1, flight mirror assy, Volume R5 Kit, and pilots ejection seat (S2) headrest appear in view.

  7. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Warren

    2004-06-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the performance and enabling capabilities of the resulting visual servo control modules have been demonstrated on mobile robot and robot manipulator platforms.« less

  8. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  9. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition

    PubMed Central

    Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.

    2010-01-01

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475

  10. Motor vehicle injuries in Qatar: time trends in a rapidly developing Middle Eastern nation.

    PubMed

    Mamtani, Ravinder; Al-Thani, Mohammed H; Al-Thani, Al-Anoud Mohammed; Sheikh, Javaid I; Lowenfels, Albert B

    2012-04-01

    Despite their wealth and modern road systems, traffic injury rates in Middle Eastern countries are generally higher than those in Western countries. The authors examined traffic injuries in Qatar during 2000-2010, a period of rapid population growth, focusing on the impact of speed control cameras installed in 2007 on overall injury rates and mortality. During the period 2000-2006, prior to camera installation, the mean (SD) vehicular injury death rate per 100,000 was 19.9±4.1. From 2007 to 2010, the mean (SD) vehicular death rates were significantly lower: 14.7±1.5 (p=0.028). Non-fatal severe injury rates also declined, but mild injury rates increased, perhaps because of increased traffic congestion and improved notification. It is possible that speed cameras decreased speeding enough to affect the death rate, without affecting overall injury rates. These data suggest that in a rapidly growing Middle Eastern country, photo enforcement (speed) cameras can be an important component of traffic control, but other measures will be required for maximum impact.

  11. Motor vehicle injuries in Qatar: time trends in a rapidly developing Middle Eastern nation

    PubMed Central

    Al-Thani, Mohammed H; Al-Thani, Al-Anoud Mohammed; Sheikh, Javaid I; Lowenfels, Albert B

    2011-01-01

    Despite their wealth and modern road systems, traffic injury rates in Middle Eastern countries are generally higher than those in Western countries. The authors examined traffic injuries in Qatar during 2000–2010, a period of rapid population growth, focusing on the impact of speed control cameras installed in 2007 on overall injury rates and mortality. During the period 2000–2006, prior to camera installation, the mean (SD) vehicular injury death rate per 100 000 was 19.9±4.1. From 2007 to 2010, the mean (SD) vehicular death rates were significantly lower: 14.7±1.5 (p=0.028). Non-fatal severe injury rates also declined, but mild injury rates increased, perhaps because of increased traffic congestion and improved notification. It is possible that speed cameras decreased speeding enough to affect the death rate, without affecting overall injury rates. These data suggest that in a rapidly growing Middle Eastern country, photo enforcement (speed) cameras can be an important component of traffic control, but other measures will be required for maximum impact. PMID:21994881

  12. Potential Application of Silica Mineral from Dieng Mountain in Agriculture Sector to Control the Release Rate of Fertilizer Elements

    NASA Astrophysics Data System (ADS)

    Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo

    2017-07-01

    Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.

  13. 640 x 480 MWIR and LWIR camera system developments

    NASA Astrophysics Data System (ADS)

    Tower, John R.; Villani, Thomas S.; Esposito, Benjamin J.; Gilmartin, Harvey R.; Levine, Peter A.; Coyle, Peter J.; Davis, Timothy J.; Shallcross, Frank V.; Sauer, Donald J.; Meyerhofer, Dietrich

    1993-01-01

    The performance of a 640 x 480 PtSi, 3,5 microns (MWIR), Stirling cooled camera system with a minimum resolvable temperature of 0.03 is considered. A preliminary specification of a full-TV resolution PtSi radiometer was developed using the measured performance characteristics of the Stirling cooled camera. The radiometer is capable of imaging rapid thermal transients from 25 to 250 C with better than 1 percent temperature resolution. This performance is achieved using the electronic exposure control capability of the MOS focal plane array (FPA). A liquid nitrogen cooled camera with an eight-position filter wheel has been developed using the 640 x 480 PtSi FPA. Low thermal mass packaging for the FPA was developed for Joule-Thomson applications.

  14. 640 x 480 MWIR and LWIR camera system developments

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Villani, T. S.; Esposito, B. J.; Gilmartin, H. R.; Levine, P. A.; Coyle, P. J.; Davis, T. J.; Shallcross, F. V.; Sauer, D. J.; Meyerhofer, D.

    The performance of a 640 x 480 PtSi, 3,5 microns (MWIR), Stirling cooled camera system with a minimum resolvable temperature of 0.03 is considered. A preliminary specification of a full-TV resolution PtSi radiometer was developed using the measured performance characteristics of the Stirling cooled camera. The radiometer is capable of imaging rapid thermal transients from 25 to 250 C with better than 1 percent temperature resolution. This performance is achieved using the electronic exposure control capability of the MOS focal plane array (FPA). A liquid nitrogen cooled camera with an eight-position filter wheel has been developed using the 640 x 480 PtSi FPA. Low thermal mass packaging for the FPA was developed for Joule-Thomson applications.

  15. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  16. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  17. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-021 (7 Dec 1993) --- This close-up view of one of two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members have been working in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  18. Hubble Space Telescope photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-001 (4 Dec 1993) --- This medium close-up view of the top portion of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  19. HST Solar Arrays photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-07

    S61-E-020 (7 Dec 1993) --- This close-up view of one of two Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993, in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  20. Distributed memory approaches for robotic neural controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1990-01-01

    The suitability is explored of two varieties of distributed memory neutral networks as trainable controllers for a simulated robotics task. The task requires that two cameras observe an arbitrary target point in space. Coordinates of the target on the camera image planes are passed to a neural controller which must learn to solve the inverse kinematics of a manipulator with one revolute and two prismatic joints. Two new network designs are evaluated. The first, radial basis sparse distributed memory (RBSDM), approximates functional mappings as sums of multivariate gaussians centered around previously learned patterns. The second network types involved variations of Adaptive Vector Quantizers or Self Organizing Maps. In these networks, random N dimensional points are given local connectivities. They are then exposed to training patterns and readjust their locations based on a nearest neighbor rule. Both approaches are tested based on their ability to interpolate manipulator joint coordinates for simulated arm movement while simultaneously performing stereo fusion of the camera data. Comparisons are made with classical k-nearest neighbor pattern recognition techniques.

  1. Realization of the ergonomics design and automatic control of the fundus cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Chi-liang; Xiao, Ze-xin; Deng, Shi-chao; Yu, Xin-ye

    2012-12-01

    The principles of ergonomics design in fundus cameras should be extending the agreeableness by automatic control. Firstly, a 3D positional numerical control system is designed for positioning the eye pupils of the patients who are doing fundus examinations. This system consists of a electronically controlled chin bracket for moving up and down, a lateral movement of binocular with the detector and the automatic refocusing of the edges of the eye pupils. Secondly, an auto-focusing device for the object plane of patient's fundus is designed, which collects the patient's fundus images automatically whether their eyes is ametropic or not. Finally, a moving visual target is developed for expanding the fields of the fundus images.

  2. Comparison of low-cost handheld retinal camera and traditional table top retinal camera in the detection of retinal features indicating a risk of cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Joshi, V.; Wigdahl, J.; Nemeth, S.; Zamora, G.; Ebrahim, E.; Soliz, P.

    2018-02-01

    Retinal abnormalities associated with hypertensive retinopathy are useful in assessing the risk of cardiovascular disease, heart failure, and stroke. Assessing these risks as part of primary care can lead to a decrease in the incidence of cardiovascular disease-related deaths. Primary care is a resource limited setting where low cost retinal cameras may bring needed help without compromising care. We compared a low-cost handheld retinal camera to a traditional table top retinal camera on their optical characteristics and performance to detect hypertensive retinopathy. A retrospective dataset of N=40 subjects (28 with hypertensive retinopathy, 12 controls) was used from a clinical study conducted at a primary care clinic in Texas. Non-mydriatic retinal fundus images were acquired using a Pictor Plus hand held camera (Volk Optical Inc.) and a Canon CR1-Mark II tabletop camera (Canon USA) during the same encounter. The images from each camera were graded by a licensed optometrist according to the universally accepted Keith-Wagener-Barker Hypertensive Retinopathy Classification System, three weeks apart to minimize memory bias. The sensitivity of the hand-held camera to detect any level of hypertensive retinopathy was 86% compared to the Canon. Insufficient photographer's skills produced 70% of the false negative cases. The other 30% were due to the handheld camera's insufficient spatial resolution to resolve the vascular changes such as minor A/V nicking and copper wiring, but these were associated with non-referable disease. Physician evaluation of the performance of the handheld camera indicates it is sufficient to provide high risk patients with adequate follow up and management.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.

    Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less

  4. Matter over mind: a randomised-controlled trial of single-session biofeedback training on performance anxiety and heart rate variability in musicians.

    PubMed

    Wells, Ruth; Outhred, Tim; Heathers, James A J; Quintana, Daniel S; Kemp, Andrew H

    2012-01-01

    Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF), a technique involving slow breathing which augments autonomic and emotional regulatory capacity. This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance. A total of 46 trained musicians participated in this study and were randomly allocated to a slow breathing with or without biofeedback or no-treatment control group. A 3 Group×2 Time mixed experimental design was employed to compare the effect of group before and after intervention on performance anxiety (STAI-S) and frequency domain measures of HRV. Slow breathing groups (n=30) showed significantly greater improvements in high frequency (HF) and LF/HF ratio measures of HRV relative to control (n=15) during 5 minute recordings of performance anticipation following the intervention (effect size: η(2) =0.122 and η(2) =0.116, respectively). The addition of biofeedback to a slow breathing protocol did not produce differential results. While intervention groups did not exhibit an overall reduction in self-reported anxiety, participants with high baseline anxiety who received the intervention (n=15) displayed greater reductions in self-reported state anxiety relative to those in the control condition (n=7) (r=0.379). These findings indicate that a single session of slow breathing, regardless of biofeedback, is sufficient for controlling physiological arousal in anticipation of psychosocial stress associated with music performance and that slow breathing is particularly helpful for musicians with high levels of anxiety. Future research is needed to further examine the effects of HRV BF as a low-cost, non-pharmacological treatment for music performance anxiety.

  5. Design and control of active vision based mechanisms for intelligent robots

    NASA Technical Reports Server (NTRS)

    Wu, Liwei; Marefat, Michael M.

    1994-01-01

    In this paper, we propose a design of an active vision system for intelligent robot application purposes. The system has the degrees of freedom of pan, tilt, vergence, camera height adjustment, and baseline adjustment with a hierarchical control system structure. Based on this vision system, we discuss two problems involved in the binocular gaze stabilization process: fixation point selection and vergence disparity extraction. A hierarchical approach to determining point of fixation from potential gaze targets using evaluation function representing human visual behavior to outside stimuli is suggested. We also characterize different visual tasks in two cameras for vergence control purposes, and a phase-based method based on binarized images to extract vergence disparity for vergence control is presented. A control algorithm for vergence control is discussed.

  6. Slow-roll approximation in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less

  7. About possibility of temperature trace observing on the human skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2016-09-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. Three years ago, we have demonstrated principal possibility to see a temperature trace, induced by food eating or water drinking, on the human body skin by using a passive THz camera. However, this camera is very expensive. Therefore, for practice it will be very convenient if one can use the IR camera for this purpose. In contrast to passive THz camera using, the IR camera does not allow to see the object under clothing, if an image, produced by this camera, is used directly. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To overcome this disadvantage we develop novel approach for computer processing of IR camera images. It allows us to increase a temperature resolution of IR camera as well as increasing of human year effective susceptibility. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by T-shirt. Shown results are very important for the detection of forbidden objects, cancelled inside the human body, by using non-destructive control without using X-rays.

  8. Application of video-cameras for quality control and sampling optimisation of hydrological and erosion measurements in a catchment

    NASA Astrophysics Data System (ADS)

    Lora-Millán, Julio S.; Taguas, Encarnacion V.; Gomez, Jose A.; Perez, Rafael

    2014-05-01

    Long term soil erosion studies imply substantial efforts, particularly when there is the need to maintain continuous measurements. There are high costs associated to maintenance of field equipment keeping and quality control of data collection. Energy supply and/or electronic failures, vandalism and burglary are common causes of gaps in datasets, reducing their reach in many cases. In this work, a system of three video-cameras, a recorder and a transmission modem (3G technology) has been set up in a gauging station where rainfall, runoff flow and sediment concentration are monitored. The gauging station is located in the outlet of an olive orchard catchment of 6.4 ha. Rainfall is measured with one automatic raingauge that records intensity at one minute intervals. The discharge is measured by a flume of critical flow depth, where the water is recorded by an ultrasonic sensor. When the water level rises to a predetermined level, the automatic sampler turns on and fills a bottle at different intervals according to a program depending on the antecedent precipitation. A data logger controls the instruments' functions and records the data. The purpose of the video-camera system is to improve the quality of the dataset by i) the visual analysis of the measurement conditions of flow into the flume; ii) the optimisation of the sampling programs. The cameras are positioned to record the flow at the approximation and the gorge of the flume. In order to contrast the values of ultrasonic sensor, there is a third camera recording the flow level close to a measure tape. This system is activated when the ultrasonic sensor detects a height threshold, equivalent to an electric intensity level. Thus, only when there is enough flow, video-cameras record the event. This simplifies post-processing and reduces the cost of download of recordings. The preliminary contrast analysis will be presented as well as the main improvements in the sample program.

  9. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    NASA Technical Reports Server (NTRS)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  10. Can we Use Low-Cost 360 Degree Cameras to Create Accurate 3d Models?

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2018-05-01

    360 degree cameras capture the whole scene around a photographer in a single shot. Cheap 360 cameras are a new paradigm in photogrammetry. The camera can be pointed to any direction, and the large field of view reduces the number of photographs. This paper aims to show that accurate metric reconstructions can be achieved with affordable sensors (less than 300 euro). The camera used in this work is the Xiaomi Mijia Mi Sphere 360, which has a cost of about 300 USD (January 2018). Experiments demonstrate that millimeter-level accuracy can be obtained during the image orientation and surface reconstruction steps, in which the solution from 360° images was compared to check points measured with a total station and laser scanning point clouds. The paper will summarize some practical rules for image acquisition as well as the importance of ground control points to remove possible deformations of the network during bundle adjustment, especially for long sequences with unfavorable geometry. The generation of orthophotos from images having a 360° field of view (that captures the entire scene around the camera) is discussed. Finally, the paper illustrates some case studies where the use of a 360° camera could be a better choice than a project based on central perspective cameras. Basically, 360° cameras become very useful in the survey of long and narrow spaces, as well as interior areas like small rooms.

  11. About possibility of temperature trace observing on a human skin through clothes by using computer processing of IR image

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2017-05-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. For this purpose, we propose to use THz camera and IR camera. Below we continue a possibility of IR camera using for a detection of temperature trace on a human body. In contrast to passive THz camera using, the IR camera does not allow to see very pronounced the object under clothing. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To find possible ways for this disadvantage overcoming we make some experiments with IR camera, produced by FLIR Company and develop novel approach for computer processing of images captured by IR camera. It allows us to increase a temperature resolution of IR camera as well as human year effective susceptibility enhancing. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments are made with observing of temperature trace from objects placed behind think overall. Demonstrated results are very important for the detection of forbidden objects, concealed inside the human body, by using non-destructive control without using X-rays.

  12. Mosaic of Apollo 16 Descartes landing site taken from TV transmission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A 360 degree field of view of the Apollo 16 Descartes landing site area composed of individual scenes taken from a color transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle. This panorama was made while the LRV was parked at the rim of North Ray crater (Stations 11 and 12) during the third Apollo 16 lunar surface extravehicular activity (EVA-3) by Astronauts John W. Young and Charles M. Duke Jr. The overlay identifies the directions and the key lunar terrain features. The camera panned across the rear portion of the LRV in its 360 degree sweep. Note Young and Duke walking along the edge of the crater in one of the scenes. The TV camera was remotely controlled from a console in the Mission Control Center.

  13. Controlled impact demonstration on-board (interior) photographic system

    NASA Technical Reports Server (NTRS)

    May, C. J.

    1986-01-01

    Langley Research Center (LaRC) was responsible for the design, manufacture, and integration of all hardware required for the photographic system used to film the interior of the controlled impact demonstration (CID) B-720 aircraft during actual crash conditions. Four independent power supplies were constructed to operate the ten high-speed 16 mm cameras and twenty-four floodlights. An up-link command system, furnished by Ames Dryden Flight Research Facility (ADFRF), was necessary to activate the power supplies and start the cameras. These events were accomplished by initiation of relays located on each of the photo power pallets. The photographic system performed beyond expectations. All four power distribution pallets with their 20 year old Minuteman batteries performed flawlessly. All 24 lamps worked. All ten on-board high speed (400 fps) 16 mm cameras containing good resolution film data were recovered.

  14. Semi-autonomous wheelchair system using stereoscopic cameras.

    PubMed

    Nguyen, Jordan S; Nguyen, Thanh H; Nguyen, Hung T

    2009-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using stereoscopic cameras to assist hands-free control technologies for severely disabled people. The stereoscopic cameras capture an image from both the left and right cameras, which are then processed with a Sum of Absolute Differences (SAD) correlation algorithm to establish correspondence between image features in the different views of the scene. This is used to produce a stereo disparity image containing information about the depth of objects away from the camera in the image. A geometric projection algorithm is then used to generate a 3-Dimensional (3D) point map, placing pixels of the disparity image in 3D space. This is then converted to a 2-Dimensional (2D) depth map allowing objects in the scene to be viewed and a safe travel path for the wheelchair to be planned and followed based on the user's commands. This assistive technology utilising stereoscopic cameras has the purpose of automated obstacle detection, path planning and following, and collision avoidance during navigation. Experimental results obtained in an indoor environment displayed the effectiveness of this assistive technology.

  15. Design of microcontroller based system for automation of streak camera.

    PubMed

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  16. Technical and instrumental prerequisites for single-port laparoscopic solo surgery: state of art.

    PubMed

    Kim, Say-June; Lee, Sang Chul

    2015-04-21

    With the aid of advanced surgical techniques and instruments, single-port laparoscopic surgery (SPLS) can be accomplished with just two surgical members: an operator and a camera assistant. Under these circumstances, the reasonable replacement of a human camera assistant by a mechanical camera holder has resulted in a new surgical procedure termed single-port solo surgery (SPSS). In SPSS, the fixation and coordinated movement of a camera held by mechanical devices provides fixed and stable operative images that are under the control of the operator. Therefore, SPSS primarily benefits from the provision of the operator's eye-to-hand coordination. Because SPSS is an intuitive modification of SPLS, the indications for SPSS are the same as those for SPLS. Though SPSS necessitates more actions than the surgery with a human assistant, these difficulties seem to be easily overcome by the greater provision of static operative images and the need for less lens cleaning and repositioning of the camera. When the operation is expected to be difficult and demanding, the SPSS process could be assisted by the addition of another instrument holder besides the camera holder.

  17. Design of microcontroller based system for automation of streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor.more » A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.« less

  18. Completely optical orientation determination for an unstabilized aerial three-line camera

    NASA Astrophysics Data System (ADS)

    Wohlfeil, Jürgen

    2010-10-01

    Aerial line cameras allow the fast acquisition of high-resolution images at low costs. Unfortunately the measurement of the camera's orientation with the necessary rate and precision is related with large effort, unless extensive camera stabilization is used. But also stabilization implicates high costs, weight, and power consumption. This contribution shows that it is possible to completely derive the absolute exterior orientation of an unstabilized line camera from its images and global position measurements. The presented approach is based on previous work on the determination of the relative orientation of subsequent lines using optical information from the remote sensing system. The relative orientation is used to pre-correct the line images, in which homologous points can reliably be determined using the SURF operator. Together with the position measurements these points are used to determine the absolute orientation from the relative orientations via bundle adjustment of a block of overlapping line images. The approach was tested at a flight with the DLR's RGB three-line camera MFC. To evaluate the precision of the resulting orientation the measurements of a high-end navigation system and ground control points are used.

  19. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach†

    PubMed Central

    Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.

    2014-01-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060

  20. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach.

    PubMed

    Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W

    2009-12-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.

  1. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    PubMed

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  2. Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles

    NASA Astrophysics Data System (ADS)

    Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.

    2014-12-01

    Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.

  3. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  4. Photogrammetric Method and Software for Stream Planform Identification

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.

    2013-12-01

    Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points

  5. High-frame-rate infrared and visible cameras for test range instrumentation

    NASA Astrophysics Data System (ADS)

    Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1995-09-01

    Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.

  6. Torque controlled rotary-shear experiments reveal pseudotachilites formation-dynamics and precursor events

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Cordonnier, Benoit; De Siena, Luca; Lavier, Luc; Di Toro, Giulio

    2017-04-01

    Except few cases, rotary shear tests, which are designed to study dynamic friction and strengthening/weakening mechanisms in seismogenic faults, are performed by imposing, to the specimens, a slipping velocity that is pre-defined. This approach has been adopted from engineering that typically, tests man-made objects that, when functioning, spin or slide at a pre-defined velocity under a pre-defined load. On the other hand, natural earthquakes are the effect of a rupture that nucleates, propagates and arrests in the subsurface. These three phases, and the consequent emerging fault slipping velocity, are controlled by the accumulated and released energy around the seismogenic fault before, during and after the earthquake. Thus, imposing the slipping velocity in laboratory experiments might not represent the best option to uncover many aspects of earthquake nucleation and fault slipping dynamics. Here we present some experiments performed with an innovative rotary shear apparatus that uses a clock-spring that when winded provides to the rotating sample a linearly increasing torque. Thus, the nucleation of simulated events occur spontaneously when the shear stress on the slipping surface overcomes the static friction times the normal load that is controlled by a deadweight. In addition, this method allows studying precursory seismic events resembling natural slow-slip earthquakes. We report some preliminary results for a transparent polymer that has melting point 340 K and allows observing the slipping surface (i.e., the contact between the two samples). By coupling: i) the rotary shear apparatus, ii) a video camera recording at 60 fps and a iii) laser pointer we observed the formation and evolution of a melt film that forms in the slipping surface after a phase of "dry" stick-slip. After each seismic event the melt layer solidify forming a pseudotachilite that partially welds the slipping surfaces. We also present the mechanical data that show rupture strengthening in concomitance with the formation of the pseudotachilite. Eventually, the original and "welded" slipping surfaces stopped "fracturing" and the failure occurred between the sample and the sample-holder giving insights about fault healing-reactivation cycle. On the light of these data we will discuss the methodology and the results, including some precursory slow-slip events, draw some conclusions and provide outlook for future studies.

  7. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow.

    PubMed

    Turhan, Hasan; Saydam, Gul Sevim; Erbay, Ali Riza; Ayaz, Selime; Yasar, Ayse Saatci; Aksoy, Yuksel; Basar, Nurcan; Yetkin, Ertan

    2006-04-04

    Inflammation has been reported to be a major contributing factor to many cardiovascular events. In the present study, we aimed to evaluate plasma soluble adhesion molecules; intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin as possible indicators of endothelial activation or inflammation in patients with slow coronary flow. Study population included 17 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (group I, 11 male, 6 female, mean age=48+/-9 years), and 20 subjects with angiographically proven normal coronary arteries without associated slow coronary flow (group II, 11 male, 9 female, mean age=50+/-8 years). Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction frame count (TIMI frame count). All patients in group I had TIMI frame counts greater than two standard deviation above those of control subjects (group II) and, therefore, were accepted as exhibiting slow coronary flow. Serum levels of ICAM-1, VCAM-1, and E-selectin were measured in all patients and control subjects using commercially available ELISA kits. Serum ICAM-1, VCAM-1, and E-selectin levels of patients with slow coronary flow were found to be significantly higher than those of control subjects with normal coronary flow (ICAM-1: 545+/-198 ng/ml vs. 242+/-113 ng/ml respectively, p<0.001, VCAM-1: 2040+/-634 ng/ml vs. 918+/-336 ng/ml respectively, p<0.001, E-selectin: 67+/-9 ng/ml vs. 52+/-8 ng/ml respectively, p<0.001). Average TIMI frame count was detected to be significantly correlated with plasma soluble ICAM-1 (r=0.550, p<0.001), VCAM-1 (r=0.569, p<0.001) and E-selectin (r=0.443, p=0.006). Increased levels of soluble adhesion molecules in patients with slow coronary flow may be an indicator of endothelial activation and inflammation and are likely to be in the causal pathway leading to slow coronary flow.

  8. 25 CFR 542.7 - What are the minimum internal control standards for bingo?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acceptable. (b) Game play standards. (1) The functions of seller and payout verifier shall be segregated... selected in the bingo game. (5) Each ball shall be shown to a camera immediately before it is called so that it is individually displayed to all customers. For speed bingo games not verified by camera...

  9. 25 CFR 542.7 - What are the minimum internal control standards for bingo?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section, as approved by the Tribal gaming regulatory authority, will be acceptable. (b) Game play... bingo game. (5) Each ball shall be shown to a camera immediately before it is called so that it is individually displayed to all customers. For speed bingo games not verified by camera equipment, each ball...

  10. 25 CFR 542.7 - What are the minimum internal control standards for bingo?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Game play standards. (1) The functions of seller and payout verifier shall be segregated. Employees who... selected in the bingo game. (5) Each ball shall be shown to a camera immediately before it is called so that it is individually displayed to all customers. For speed bingo games not verified by camera...

  11. LPT. Low power test (TAN640) interior. Basement level. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Low power test (TAN-640) interior. Basement level. Camera facing north. Cable trays and conduit cross tunnel between critical experiment cell and critical experiment control room. Construction 93% complete. Photographer: Jack L. Anderson. Date: October 23, 1957. INEEL negative no. 57-5339 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  13. A Robust Camera-Based Interface for Mobile Entertainment

    PubMed Central

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user’s head by processing the frames provided by the mobile device’s front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device’s orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user’s perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  14. Effect of bowel decontamination with metronidazole and vancomycin on gastroduodenal myoelectric activity.

    PubMed

    Królczyk, Grzegorz; Czupryna, Antoni; Sobocki, Jacek; Nowak, Lukasz; Zurowski, Daniel; Szatyłowiczi, Jadwiga; Strus, Magdalena; Thor, Piotr J

    2004-01-01

    It is well recognized that prolonged antibiotic therapy leading to gut decontamination often results in side effects and may lead to colonization of gut with pathologic bacteria. Changes of a gut microflora could play a role in dysmotility of gastrointestinal tract. The aim of the study was to evaluate influence of intraluminal colon anaerobic and aerobic bacterial flora on myoelectric activity of duodenum and stomach. A myoelectric activity recordings using electrodes implanted on small bowel of the conscious rats were performed. Group I was scheduled for control recording, group II for recordings in 4th day after metronidazole (M) administration (30 mg/kg) and group III for recordings after vancomycin (V) administration (15 mg/kg) respectively. Rat's stools were cultured for confirmation of changes in colon flora composition. Recordings were previously filtered digitally with bandwidth filter 0.01-0.1 Hz and 0.1-1.0 Hz to extract gastric and duodenal slow wave respectively and than analyzed with Fast Fourier Transformation. Baseline duodenal slow wave frequency in control group revealed 0.60 +/- 0.05 Hz. M increased slow waves frequency to 0.64 +/- 0.13 Hz and V did not 0.58 +/- 0.09 Hz (p > 0.05). Slow wave dominant frequency of the stomach showed decrease of frequency from control 0.035 +/- 0.04 to 0.025 +/- 0.06 Hz after M (p < 0.05). Pretreatment with V also did not influence slow wave dominant frequency in comparison to control group (0.036 +/- 0.07 Hz, p > 0.05). Only pretreatment with M significantly decreased gastric slow wave frequency. One can speculate that M effects are related not only to gut decontamination but also directly affects ENS. We propose hypothesis that M influence on slow wave frequency may be related not only to its antimicrobial activity but to its potential neurotoxic action on intramural ENS neurons.

  15. APOLLO 17 - INFLIGHT

    NASA Image and Video Library

    1972-12-14

    The Apollo 17 Lunar Module (LM) "Challenger" ascent stage leaves the Taurus-Littrow landing site as it makes its spectacular liftoff from the lunar surface, as seen in this reproduction taken from a color television transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle (LRV). The LRV-mounted TV camera, remotely controlled from the Mission Control Center (MCC) in Houston, made it possible for people on Earth to watch the fantastic event. The LM liftoff was at 188:01:36 ground elapsed time, 4:54:36 p.m. (CST), Thursday, December 14, 1972.

  16. Solar-Powered Airplane with Cameras and WLAN

    NASA Technical Reports Server (NTRS)

    Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.; hide

    2004-01-01

    An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.

  17. A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA

    NASA Astrophysics Data System (ADS)

    Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred

    2016-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.

  18. Beach Observations using Quadcopter Imagery

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Chung; Wang, Hsing-Yu; Fang, Hui-Ming; Hsiao, Sung-Shan; Tsai, Cheng-Han

    2017-04-01

    Beaches are the places where the interaction of the land and sea takes place, and it is under the influence of many environmental factors, including meteorological and oceanic ones. To understand the evolution or changes of beaches, it may require constant monitoring. One way to monitor the beach changes is to use optical cameras. With careful placements of ground control points, land-based optical cameras, which are inexpensive compared to other remote sensing apparatuses, can be used to survey a relatively large area in a short time. For example, we have used terrestrial optical cameras incorporated with ground control points to monitor beaches. The images from the cameras were calibrated by applying the direct linear transformation, projective transformation, and Sobel edge detector to locate the shoreline. The terrestrial optical cameras can record the beach images continuous, and the shorelines can be satisfactorily identified. However, the terrestrial cameras have some limitations. First, the camera system set a sufficiently high level so that the camera can cover the whole area that is of interest; such a location may not be available. The second limitation is that objects in the image have a different resolution, depending on the distance of objects from the cameras. To overcome these limitations, the present study tested a quadcopter equipped with a down-looking camera to record video and still images of a beach. The quadcopter can be controlled to hover at one location. However, the hovering of the quadcopter can be affected by the wind, since it is not positively anchored to a structure. Although the quadcopter has a gimbal mechanism to damp out tiny shakings of the copter, it will not completely counter movements due to the wind. In our preliminary tests, we have flown the quadcopter up to 500 m high to record 10-minnte video. We then took a 10-minute average of the video data. The averaged image of the coast was blurred because of the time duration of the video and the small movement caused by the quadcopter trying to return to its original position, which is caused by the wind. To solve this problem, the feature detection technique of Speeded Up Robust Features (SURF) method was used on the image of the video, and the resulting image was much sharper than that original image. Next, we extracted the maximum and minimum of RGB value of each pixel, respectively, of the 10-minutes videos. The beach breaker zone showed up in the maximum RGB image as white color areas. Moreover, we were also able to remove the breaker from the images and see the breaker zone bottom features using minimum RGB value of the images. From this test, we also identified the location of the coastline. It was found that the correlation coefficient between the coastline identified by the copter image and that by the ground survey was as high as 0.98. By repeating this copter flight at different times, we could measure the evolution of the coastline.

  19. Automation of the targeting and reflective alignment concept

    NASA Technical Reports Server (NTRS)

    Redfield, Robin C.

    1992-01-01

    The automated alignment system, described herein, employs a reflective, passive (requiring no power) target and includes a PC-based imaging system and one camera mounted on a six degree of freedom robot manipulator. The system detects and corrects for manipulator misalignment in three translational and three rotational directions by employing the Targeting and Reflective Alignment Concept (TRAC), which simplifies alignment by decoupling translational and rotational alignment control. The concept uses information on the camera and the target's relative position based on video feedback from the camera. These relative positions are converted into alignment errors and minimized by motions of the robot. The system is robust to exogenous lighting by virtue of a subtraction algorithm which enables the camera to only see the target. These capabilities are realized with relatively minimal complexity and expense.

  20. Servo-controlled intravital microscope system

    NASA Technical Reports Server (NTRS)

    Mansour, M. N.; Wayland, H. J.; Chapman, C. P. (Inventor)

    1975-01-01

    A microscope system is described for viewing an area of a living body tissue that is rapidly moving, by maintaining the same area in the field-of-view and in focus. A focus sensing portion of the system includes two video cameras at which the viewed image is projected, one camera being slightly in front of the image plane and the other slightly behind it. A focus sensing circuit for each camera differentiates certain high frequency components of the video signal and then detects them and passes them through a low pass filter, to provide dc focus signal whose magnitudes represent the degree of focus. An error signal equal to the difference between the focus signals, drives a servo that moves the microscope objective so that an in-focus view is delivered to an image viewing/recording camera.

  1. Astronauts Thornton & Akers on HST photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-05

    S61-E-012 (5 Dec 1993) --- This view of astronauts Kathryn C. Thornton (top) and Thomas D. Akers working on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Thornton, anchored to the end of the Remote Manipulator System (RMS) arm, is teaming with Akers to install the +V2 Solar Array Panel as a replacement for the original one removed earlier. Akers uses tethers and a foot restraint to remain in position for the task. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  2. Latch of HST aft shroud photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-010 (4 Dec 1993) --- This close-up view of a latch on the minus V3 aft shroud door of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  3. Astronauts Thornton & Akers on HST photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-05

    S61-E-014 (5 Dec 1993) --- This view of astronauts Kathryn C. Thornton (bottom) and Thomas D. Akers working on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Thornton, anchored to the end of the Remote Manipulator System (RMS) arm, is teaming with Akers to install the +V2 Solar Array Panel as a replacement for the original one removed earlier. Akers uses tethers and a foot restraint to remain in position for the task. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  4. Latch of HST aft shroud photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-005 (4 Dec 1993) --- This close-up view of a latch on the minus V3 aft shroud door of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the seven crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  5. Latch of HST aft shroud photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-004 (4 Dec 1993) --- This close-up view of a latch on the minus V3 aft shroud door of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the seven crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  6. Professor Ernst Bresslau, founder of the Zoology Departments at the Universities of Cologne and Sao Paulo: lessons to learn from his life history.

    PubMed

    Pflüger, Hans-Joachim

    2017-06-01

    In this article, the life history of the founding father of the departments of Zoology at the Universities of Cologne and Sao Paulo, Prof. Ernst Bresslau, is described on occasion of the establishing of the "Ernst Bresslau Guest Professorship" at the University of Cologne. His main scientific achievements are discussed, in particular his research on the evolutionary origin of the mammary apparatus, in addition to his broad interest in biological topics. Among the many technical advancements that he introduced was the micro slow-motion camera developed together with the Zeiss Company which allowed to film ciliary beats at high speeds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Exploration of Mars by Mariner 9 - Television sensors and image processing.

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1973-01-01

    Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.

  8. Slow speed—fast motion: time-lapse recordings in physics education

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-05-01

    Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s-1, allowing us to study transient physics phenomena happening too fast for the naked eye. Here we want to extend the range of phenomena which may be studied by video analysis in the opposite direction by focusing on much longer time scales ranging from minutes, hours to many days or even months. We discuss this time-lapse method, needed equipment and give a few hints of how to produce respective recordings for two specific experiments.

  9. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  10. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System

    PubMed Central

    Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570

  11. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    PubMed

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  12. Quantification of Fugitive Methane Emissions with Spatially Correlated Measurements Collected with Novel Plume Camera

    NASA Astrophysics Data System (ADS)

    Tsai, Tracy; Rella, Chris; Crosson, Eric

    2013-04-01

    Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment with known releases from a methane tank, a 2-pixel plume camera measured 496 ± 160 sccm from a release of 650 sccm located 21 m away, and 4,180 ± 962 sccm from a release of 3,400 sccm located 49 m away. These results in addition to results with a higher-pixel camera will be discussed. Field campaign data collected with the plume camera pixels mounted onto a vehicle and driven through the natural gas fields in the Uintah Basin (Utah, United States) will also be presented along with the limitations and advantages of the instrument. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011). 3. U.S. Energy Information Administration. "Number of Producing Wells." . Accessed 6 January 2013.

  13. Self calibrating autoTRAC

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.

    1994-01-01

    The work reported here demonstrates how to automatically compute the position and attitude of a targeting reflective alignment concept (TRAC) camera relative to the robot end effector. In the robotics literature this is known as the sensor registration problem. The registration problem is important to solve if TRAC images need to be related to robot position. Previously, when TRAC operated on the end of a robot arm, the camera had to be precisely located at the correct orientation and position. If this location is in error, then the robot may not be able to grapple an object even though the TRAC sensor indicates it should. In addition, if the camera is significantly far from the alignment it is expected to be at, TRAC may give incorrect feedback for the control of the robot. A simple example is if the robot operator thinks the camera is right side up but the camera is actually upside down, the camera feedback will tell the operator to move in an incorrect direction. The automatic calibration algorithm requires the operator to translate and rotate the robot arbitrary amounts along (about) two coordinate directions. After the motion, the algorithm determines the transformation matrix from the robot end effector to the camera image plane. This report discusses the TRAC sensor registration problem.

  14. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  15. A control system of a mini survey facility for photometric monitoring

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hironori; Yanagisawa, Kenshi; Izumiura, Hideyuki; Shimizu, Yasuhiro; Hanaue, Takumi; Ita, Yoshifusa; Ichikawa, Takashi; Komiyama, Takahiro

    2016-08-01

    We have built a control system for a mini survey facility dedicated to photometric monitoring of nearby bright (K<5) stars in the near-infrared region. The facility comprises a 4-m-diameter rotating dome and a small (30-mm aperture) wide-field (5 × 5 sq. deg. field of view) infrared (1.0-2.5 microns) camera on an equatorial fork mount, as well as power sources and other associated equipment. All the components other than the camera are controlled by microcomputerbased I/O boards that were developed in-house and are in many of the open-use instruments in our observatory. We present the specifications and configuration of the facility hardware, as well as the structure of its control software.

  16. Hydrogen peroxide plasma sterilization of a waterproof, high-definition video camera case for intraoperative imaging in veterinary surgery.

    PubMed

    Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan

    2018-06-13

    To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.

  17. Adaptation of Slow Myofibers: The Effect of Sustained BDNF Treatment of Extraocular Muscles in Infant Nonhuman Primates

    PubMed Central

    Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.

    2015-01-01

    Purpose. We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. Methods. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. Results. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. Conclusions. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM. PMID:26030102

  18. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates.

    PubMed

    Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K

    2015-06-01

    We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.

  19. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  20. The sequence measurement system of the IR camera

    NASA Astrophysics Data System (ADS)

    Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo

    2011-08-01

    Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.

  1. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2014-10-01

    To compare the properties of sleep spindles between healthy subjects and medicated patients with major depressive episode, including frequency range, spectra power, and spatial distribution of spindle power. Continuous 16-channel EEG was used to record nocturnal sleep in healthy control subjects and medicated depressive patients. Recordings were analyzed for changes in EEG power spectra and power topography. Additionally, we graphically demonstrated the pattern of spatial distribution of each type of sleep spindle, divided into fast (12.5-14 Hz) and slow spindles (11-12.5 Hz). Sleep EEG records of depressive subjects exhibited a significantly higher amplitude of slow spindles in the prefrontal region, compared with the healthy controls (P < 0.01). Fast spindles were dominant in the centroparietal region in both depressive patients and the control group. Enhanced slow spindles in the prefrontal region were observed in the medicated depressive patients and not in the healthy controls. The frequency of fast spindles in depressive patients was globally higher than that in healthy participants. The alteration in sleep spindles seen in medicated depressive subjects may reflect a pharmacological modulation of synaptic function involving the thalamic-reticular and thalamocortical mechanisms.

  2. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  3. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  4. Basic design principles of colorimetric vision systems

    NASA Astrophysics Data System (ADS)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  5. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  6. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  7. Automatic alignment method for calibration of hydrometers

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.

    2004-04-01

    This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.

  8. Flash LIDAR Emulator for HIL Simulation

    NASA Technical Reports Server (NTRS)

    Brewster, Paul F.

    2010-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.

  9. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.

    PubMed

    Chen, Jian; Jia, Bingxi; Zhang, Kaixiang

    2017-11-01

    In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.

  10. Binary Colloidal Alloy Test Conducted on Mir

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and the experiment was powered on, the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period.

  11. Stereoscopic camera and viewing systems with undistorted depth presentation and reduced or eliminated erroneous acceleration and deceleration perceptions, or with perceptions produced or enhanced for special effects

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1991-01-01

    Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes.

  12. SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications

    NASA Astrophysics Data System (ADS)

    Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.

    2005-08-01

    A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.

  13. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm3 resolution clinical PET system

    PubMed Central

    Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S.

    2015-01-01

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm3 resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm3 LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image. PMID:25563270

  14. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm{sup 3} resolution clinical PET system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, D. L.; Vandenbroucke, A.; Innes, D.

    2015-01-15

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under constructionmore » consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image.« less

  15. Robust gaze-steering of an active vision system against errors in the estimated parameters

    NASA Astrophysics Data System (ADS)

    Han, Youngmo

    2015-01-01

    Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.

  16. REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR IS FUELED AS AN ETR MOCK-UP. LIGHTS DANGLE BELOW WATER LEVEL. CONTROL RODS AND OTHER APPARATUS DESCEND FROM ABOVE WATER LEVEL. INL NEGATIVE NO. 56-900. Jack L. Anderson, Photographer, 3/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conder, A.; Mummolo, F. J.

    The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.

  19. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  20. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

Top