Shepard, A R; Zhang, W; Eberhardt, N L
1994-01-21
We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.
Hoffmann, Hanne Mette; Crouzin, Nadine; Moreno, Estefanía; Raivio, Noora; Fuentes, Silvia; McCormick, Peter J.; Vignes, Michel
2017-01-01
Abstract Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. Methods: We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. Results: We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor responses in the striatum. In addition, specifically in the accumbens, group I metabotropic glutamate receptor signaling to cAMP responsive-element binding protein shifts from an agonist-induced to an antagonist-induced cAMP responsive-element binding protein phosphorylation. PMID:27744406
Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J
1989-11-25
Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki
The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAsmore » in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.« less
Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior
ERIC Educational Resources Information Center
Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.
2015-01-01
The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…
Dash, P K; Tian, L M; Moore, A N
1998-07-07
Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.
Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan
2008-02-01
We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.
2009-06-01
Osman, F. The human glutathione S-transferase P1 ( GSTP1 ) gene is transactivated by cyclic AMP (cAMP) via a cAMP response element (CRE) proximal to the...transcription start site. Chem-Biol. Interactions 133, 320-321, 2001. 4. Lo, H.-W. and Ali-Osman, F. Cyclic AMP mediated GSTP1 gene activation in...tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. Journal of Cellular
Struthers, R S; Vale, W W; Arias, C; Sawchenko, P E; Montminy, M R
1991-04-18
Most of the transcriptional effects of cyclic AMP are mediated by the cAMP response element binding protein (CREB). After activation of cAMP-dependent protein kinase A, the catalytic subunits of this enzyme apparently mediate the phosphorylation and activation of CREB. As cAMP serves as a mitogenic signal for anterior pituitary somatotrophic cells, we investigated whether CREB similarly regulates proliferation of these cells. We prepared transgenic mice expressing a transcriptionally inactive mutant of CREB (CREBM1), which cannot be phosphorylated, in cells of the anterior pituitary. If CREB activity is required for proliferation, the overexpressed mutant protein would effectively compete with wild-type CREB activity and thereby block the response to cAMP. As predicted, the CREBM1 transgenic mice exhibited a dwarf phenotype with atrophied pituitary glands markedly deficient in somatotroph but not other cell types. We conclude that transcriptional activation of CREB is necessary for the normal development of a highly restricted cell type, and that environmental cues, possibly provided by the hypothalamic growth hormone-releasing factor, are necessary for population of the pituitary by somatotrophic cells.
Andersson, Malin; Konradi, Christine; Cenci, M. Angela
2014-01-01
The cAMP response element-binding protein (CREB) is believed to play a pivotal role in dopamine (DA) receptor-mediated nuclear signaling and neuroplasticity. Here we demonstrate that the significance of CREB for gene expression depends on the experimental paradigm. We compared the role of CREB in two different but related models: L-DOPA administration to unilaterally 6-hydroxydopamine lesioned rats, and cocaine administration to neurologically intact animals. Antisense technology was used to produce a local knockdown of CREB in the lateral caudate–putamen, a region that mediates the dyskinetic or stereotypic manifestations associated with L-DOPA or cocaine treatment, respectively. In intact rats, CREB antisense reduced both basal and cocaine-induced expression of c-Fos, FosB/ΔFosB, and prodynorphin mRNA. In the DA-denervated striatum, CREB was not required for L-DOPA to induce these gene products, nor did CREB contribute considerably to DNA binding activity at cAMP responsive elements (CREs) and CRE-like enhancers. ΔFosB-related proteins and JunD were the main contributors to both CRE and AP-1 DNA–protein complexes in L-DOPA-treated animals. In behavioral studies, intrastriatal CREB knockdown caused enhanced activity scores in intact control animals and exacerbated the dyskinetic effects of acute L-DOPA treatment in 6-OHDA-lesioned animals. These data demonstrate that CREB is not required for the development of L-DOPA-induced dyskinesia in hemiparkinsonian rats. Moreover, our results reveal an unexpected alteration of nuclear signaling mechanisms in the parkinsonian striatum treated with L-DOPA, where AP-1 transcription factors appear to supersede CREB in the activation of CRE-containing genes. PMID:11739600
Zhou, Jian; Ye, Shiqiao; Fujiwara, Toshifumi; Manolagas, Stavros C.; Zhao, Haibo
2013-01-01
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function. PMID:23990467
Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues
2004-01-01
PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng
2012-08-24
Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate informationmore » encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca{sup 2+} stores. Our data indicate that Ca{sup 2+} release from IP{sub 3}-sensitive pools is required for cAMP-induced transcription in hippocampal neurons.« less
Shafiee-Kermani, Farideh; Han, Sang-oh; Miller, William L
2007-07-01
FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.
Optimization of a cAMP response element signal pathway reporter system.
Shan, Qiang; Storm, Daniel R
2010-08-15
A sensitive cAMP response element (CRE) reporter system is essential for studying the cAMP/protein kinase A/cAMP response element binding protein signal pathway. Here we have tested a few CRE promoters and found one with high sensitivity to external stimuli. Using this optimal CRE promoter and the enhanced green fluorescent protein as the reporter, we have established a CRE reporter cell line. This cell line can be used to study the signal pathway by fluorescent microscope, fluorescence-activated cell analysis and luciferase assay. This cell line's sensitivity to forskolin, using the technique of fluorescence-activated cell sorting, was increased to approximately seven times that of its parental HEK 293 cell line, which is currently the most commonly used cell line in the field for the signal pathway study. Therefore, this newly created cell line is potentially useful for studying the signal pathway's modulators, which generally have weaker effect than its mediators. Our research has also established a general procedure for optimizing transcription-based reporter cell lines, which might be useful in performing the same task when studying many other transcription-based signal pathways. (c) 2010 Elsevier B.V. All rights reserved.
Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A
2018-03-05
The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.
CRE-Mediated Transcription and COX-2 Expression in the Pilocarpine Model of Status Epilepticus
Lee, Boyoung; Dziema, Heather; Lee, Kyu Hyun; Choi, Yun-Sik; Obrietan, Karl
2007-01-01
Status epilepticus (SE) triggers neuronal death, reactive gliosis and remodeling of synaptic circuitry, thus leading to profound pathological alterations in CNS physiology. These processes are, in part, regulated by the rapid upregulation of both cytotoxic and cytoprotective genes. One pathway that may couple SE to transcriptionally-dependent alterations in CNS physiology is the CREB (cAMP response element-binding protein)/CRE (cAMP response element) cascade. Here, we utilized the pilocarpine model of SE on a mouse strain transgenic for a CRE-reporter construct (β-galactosidase) to begin to characterize how seizure activity regulates the activation state of the CREB/CRE pathway in both glia and neurons of the hippocampus. SE triggered a rapid (4–8 hrs post SE) but transient increase in CRE-mediated gene expression in the neuronal sublayers. In contrast to neurons, SE induced a lasting increase (up to 20 days) in CRE-mediated transcription in both reactive astrocytes and microglia. CRE-mediated gene expression correlated with expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2). To examine the role of CREB in SE-induced COX-2 expression, we generated a transgenic mouse strain that expresses A-CREB, a potent repressor of CREB-dependent transcription. In these animals, the capacity of SE to stimulate COX-2 expression was markedly attenuated, indicating that CREB is a key intermediate in SE-induced COX-2 expression. Collectively these data show that SE triggers two waves of CREB-mediated gene expression, a transient wave in neurons and a long-lasting wave in reactive glial cells, and that CREB couples SE to COX-2 expression. PMID:17029965
Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J
1994-01-01
Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470
Misra, Jagannath; Chanda, Dipanjan; Kim, Don-kyu; Li, Tiangang; Koo, Seung-Hoi; Back, Sung-Hoon; Chiang, John Y L; Choi, Hueng-Sik
2011-12-09
Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), is a natural polyphenolic compound. Herein the effect of curcumin on endoplasmic reticulum (ER) stress responsive gene expression was investigated. We report that curcumin induces transcriptional corepressor small heterodimer partner-interacting leucine zipper protein (SMILE) gene expression through liver kinase B1 (LKB1)/adenosine monophosphate-activated kinase (AMPK) signaling pathway and represses ER stress-responsive gene transcription in an ER-bound transcription factor specific manner. cAMP responsive element-binding protein H (CREBH) and activating transcription factor 6 (ATF6) are both ER-bound bZIP family transcription factors that are activated upon ER stress. Of interest, we observed that both curcumin treatment and SMILE overexpression only represses CREBH-mediated transactivation of the target gene but not ATF6-mediated transactivation. Knockdown of endogenous SMILE significantly releases the inhibitory effect of curcumin on CREBH transactivation. Intrinsic repressive activity of SMILE is observed in the Gal4 fusion system, and the intrinsic repressive domain is mapped to the C terminus of SMILE spanning amino acid residues 203-269, corresponding to the basic region leucine zipper (bZIP) domain. In vivo interaction assay revealed that through its bZIP domain, SMILE interacts with CREBH and inhibits its transcriptional activity. Interestingly, we observed that SMILE does not interact with ATF6. Furthermore, competition between SMILE and the coactivator peroxisome proliferator-activated receptor α (PGC-1α) on CREBH transactivation has been demonstrated in vitro and in vivo. Finally, chromatin immunoprecipitation assays revealed that curcumin decreases the binding of PGC-1α and CREBH on target gene promoter in a SMILE-dependent manner. Overall, for the first time we suggest a novel phenomenon that the curcumin/LKB1/AMPK/SMILE/PGC1α pathway differentially regulates ER stress-mediated gene transcription.
17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression.
Kanda, Naoko; Watanabe, Shinichi
2004-08-01
Estrogen is reported to prevent age-associated epidermal thinning in the skin. We examined if 17beta-estradiol (E2) may enhance the growth of human keratinocytes, focusing on its effects on the expression of cell cycle-regulatory proteins. E2 enhanced proliferation, bromodeoxyuridine incorporation of keratinocytes, and increased the proportion of cells in the S phase. The E2-induced stimulation of proliferation and bromodeoxyuridine incorporation was suppressed by antisense oligonucleotide against cyclin D2, which induces G1 to S phase progression. E2 increased protein and mRNA levels of cyclin D2, and resultantly enhanced assembly and kinase activities of cyclin D2-cyclin-dependent kinases 4 or 6 complexes. E2 enhanced cyclin D2 promoter activity, and the element homologous to cAMP response element (CRE) on the promoter was responsible for the effect. Cyclin D2 expression was enhanced by antiestrogens, ICI 182,780 and 4-hydroxytamoxifen, and membrane-impermeable bovine serum albumin-conjugated E2, indicating the effects via membrane E2-binding sites. E2 increased the enhancer activity of CRE-like element and the amount of phosphorylated cAMP response element binding protein (CREB) binding this element, and the increases were suppressed by H-89, an inhibitor of cAMP-dependent protein kinase A. H-89 also suppressed E2-induced cyclin D2 expression, proliferation, and bromodeoxyuridine incorporation in keratinocytes. Antisense oligonucleotide against G-protein-coupled receptor GPR30 suppressed the E2-induced increases of phosphorylated CREB, cyclin D2 level, proliferation, and bromodeoxyuridine incorporation in keratinocytes. These results suggest that E2 may stimulate the growth of keratinocytes by inducing cyclin D2 expression via CREB phosphorylation by protein kinase A, dependent on cAMP. These effects of E2 may be mediated via cell surface GPR30.
Cao, Jun-Li; Vialou, Vincent F; Lobo, Mary Kay; Robison, Alfred J; Neve, Rachael L; Cooper, Donald C; Nestler, Eric J; Han, Ming-Hu
2010-09-28
Excessive inhibition of brain neurons in primary or slice cultures can induce homeostatic intrinsic plasticity, but the functional role and underlying molecular mechanisms of such plasticity are poorly understood. Here, we developed an ex vivo locus coeruleus (LC) slice culture system and successfully recapitulated the opiate-induced homeostatic adaptation in electrical activity of LC neurons seen in vivo. We investigated the mechanisms underlying this adaptation in LC slice cultures by use of viral-mediated gene transfer and genetic mutant mice. We found that short-term morphine treatment of slice cultures almost completely abolished the firing of LC neurons, whereas chronic morphine treatment increased LC neuronal excitability as revealed during withdrawal. This increased excitability was mediated by direct activation of opioid receptors and up-regulation of the cAMP pathway and accompanied by increased cAMP response-element binding protein (CREB) activity. Overexpression of a dominant negative CREB mutant blocked the increase in LC excitability induced by morphine- or cAMP-pathway activation. Knockdown of CREB in slice cultures from floxed CREB mice similarly decreased LC excitability. Furthermore, the ability of morphine or CREB overexpression to up-regulate LC firing was blocked by knockout of the CREB target adenylyl cyclase 8. Together, these findings provide direct evidence that prolonged exposure to morphine induces homeostatic plasticity intrinsic to LC neurons, involving up-regulation of the cAMP-CREB signaling pathway, which then enhances LC neuronal excitability.
Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M
2009-07-01
The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.
Karki, Pratap; Webb, Anton; Smith, Keisha; Lee, Kyuwon; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook
2013-01-01
Tamoxifen (TX), a selective estrogen receptor modulator, exerts antagonistic effects on breast tissue and is used to treat breast cancer. Recent evidence also suggests that it may act as an agonist in brain tissue. We reported previously that TX enhanced the expression and function of glutamate transporter 1 (GLT-1) in rat astrocytes, an effect that was mediated by TGF-α. To gain further insight into the mechanisms that mediate TX-induced up-regulation of GLT-1 (EAAT2 in humans), we investigated its effect on GLT-1 at the transcriptional level. TX phosphorylated the cAMP response element-binding protein (CREB) and recruited CREB to the GLT-1 promoter consensus site. The effect of TX on astrocytic GLT-1 was attenuated by the inhibition of PKA, the upstream activator of the CREB pathway. In addition, the effect of TX on GLT-1 promoter activity was abolished by the inhibition of the NF-κB pathway. Furthermore, TX recruited the NF-κB subunits p65 and p50 to the NF-κB binding domain of the GLT-1 promoter. Mutation of NF-κB (triple, −583/-282/-251) or CRE (-308) sites on the GLT-1 promoter led to significant repression of the promoter activity, but neither mutant completely abolished the TX-induced GLT-1 promoter activity. Mutation of both the NF-κB (-583/-282/-251) and CRE (-308) sites led to a complete abrogation of the effect of TX on GLT-1 promoter activity. Taken together, our findings establish that TX regulates GLT-1 via the CREB and NF-κB pathways. PMID:23955341
cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP).
Roberts, Owain Llŷr; Dart, Caroline
2014-02-01
The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.
Ahluwalia, Amrita; Baatar, Dolgor; Jones, Michael K.
2014-01-01
Clinical studies indicate that prostaglandins of E class (PGEs) may promote healing of tissue injury e.g., gastroduodenal and dermal ulcers. However, the precise roles of PGEs, their E-prostanoid (EP) receptors, signaling pathways including cAMP and cAMP response element-binding protein (CREB), and their relation to VEGF and angiogenesis in the tissue injury healing process remain unknown, forming the rationale for this study. Using an esophageal ulcer model in rats, we demonstrated that esophageal mucosa expresses predominantly EP2 receptors and that esophageal ulceration triggers an increase in expression of the EP2 receptor, activation of CREB (the downstream target of the cAMP signaling), and enhanced VEGF gene expression. Treatment of rats with misoprostol, a PGE1 analog capable of activating EP receptors, enhanced phosphorylation of CREB, stimulated VEGF expression and angiogenesis, and accelerated esophageal ulcer healing. In cultured human esophageal epithelial (HET-1A) cells, misoprostol increased intracellular cAMP levels (by 163-fold), induced phosphorylation of CREB, and stimulated VEGF expression. A cAMP analog (Sp-cAMP) mimicked, whereas an inhibitor of cAMP-dependent protein kinase A (Rp-cAMP) blocked, these effects of misoprostol. These results indicate that the EP2/cAMP/protein kinase A pathway mediates the stimulatory effect of PGEs on angiogenesis essential for tissue injury healing via the induction of CREB activity and VEGF expression. PMID:25059824
Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.
Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt
2015-07-01
Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis.
Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis
Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.
2015-01-01
Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632
Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai
2017-06-08
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.
Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai
2017-01-01
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression. PMID:28629115
NASA Technical Reports Server (NTRS)
Thomas, M. J.; Umayahara, Y.; Shu, H.; Centrella, M.; Rotwein, P.; McCarthy, T. L.
1996-01-01
Insulin-like growth factor-I (IGF-I), a multifunctional growth factor, plays a key role in skeletal growth and can enhance bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other agents that increase cAMP activated IGF-I gene transcription in primary rat osteoblast cultures through promoter 1 (P1), the major IGF-I promoter, and found that transcriptional induction was mediated by protein kinase A. We now have identified a short segment of P1 that is essential for full hormonal regulation and have characterized inducible DNA-protein interactions involving this site. Transient transfections of IGF-I P1 reporter genes into primary rat osteoblasts showed that the 328-base pair untranslated region of exon 1 was required for a full 5.3-fold response to PGE2; mutation in a previously footprinted site, HS3D (base pairs +193 to +215), reduced induction by 65%. PGE2 stimulated nuclear protein binding to HS3D. Binding, as determined by gel mobility shift assay, was not seen in nuclear extracts from untreated osteoblast cultures, was detected within 2 h of PGE2 treatment, and was maximal by 4 h. This DNA-protein interaction was not observed in cytoplasmic extracts from PGE2-treated cultures, indicating nuclear localization of the protein kinase A-activated factor(s). Activation of this factor was not blocked by cycloheximide (Chx), and Chx did not impair stimulation of IGF-I gene expression by PGE2. In contrast, binding to a consensus cAMP response element (CRE; 5'-TGACGTCA-3') from the rat somatostatin gene was not modulated by PGE2 or Chx. Competition gel mobility shift analysis using mutated DNA probes identified 5'-CGCAATCG-3' as the minimal sequence needed for inducible binding. All modified IGF-I P1 promoterreporter genes with mutations within this CRE sequence also showed a diminished functional response to PGE2. These results identify the CRE within the 5'-untranslated region of IGF-I exon 1 that is required for hormonal activation of IGF-I gene transcription by cAMP in osteoblasts.
Tunable regulation of CREB DNA binding activity couples genotoxic stress response and metabolism
Kim, Sang Hwa; Trinh, Anthony T.; Larsen, Michele Campaigne; Mastrocola, Adam S.; Jefcoate, Colin R.; Bushel, Pierre R.; Tibbetts, Randal S.
2016-01-01
cAMP response element binding protein (CREB) is a key regulator of glucose metabolism and synaptic plasticity that is canonically regulated through recruitment of transcriptional coactivators. Here we show that phosphorylation of CREB on a conserved cluster of Ser residues (the ATM/CK cluster) by the DNA damage-activated protein kinase ataxia-telangiectasia-mutated (ATM) and casein kinase1 (CK1) and casein kinase2 (CK2) positively and negatively regulates CREB-mediated transcription in a signal dependent manner. In response to genotoxic stress, phosphorylation of the ATM/CK cluster inhibited CREB-mediated gene expression, DNA binding activity and chromatin occupancy proportional to the number of modified Ser residues. Paradoxically, substoichiometric, ATM-independent, phosphorylation of the ATM/CK cluster potentiated bursts in CREB-mediated transcription by promoting recruitment of the CREB coactivator, cAMP-regulated transcriptional coactivators (CRTC2). Livers from mice expressing a non-phosphorylatable CREB allele failed to attenuate gluconeogenic genes in response to DNA damage or fully activate the same genes in response to glucagon. We propose that phosphorylation-dependent regulation of DNA binding activity evolved as a tunable mechanism to control CREB transcriptional output and promote metabolic homeostasis in response to rapidly changing environmental conditions. PMID:27431323
Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L
1996-05-01
In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene. The interactions between CREs and the transcription factor Pit-1 in mediating GH gene expression were also examined. In HeLa cells, a human cervical cancer cell line deficient in Pit-1, both basal and cAMP-induced expression of pGH.CAT were apparent only with the cotransfection of a Pit-1 expression vector. These results taken together indicate that the two CREs in the chinook salmon GH gene are functionally associated with the cAMP-dependent pathway and that their promoter activity is dependent on the presence of Pit-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon
Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, amore » component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates phosphorylation of STAT-3. ► Surfactin induces HO-1 expression and Nrf-2 activation. ► Surfactin induces cAMP and CREB phosphorylation. ► PKA inhibitor blocks HO-1 induction and surfactin’s antiinflammatory effects.« less
Moon, Eun-Yi; Lee, Yu-Sun; Choi, Wahn Soo; Lee, Mi-Hee
2011-10-15
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Scott, Timothy L.; Wakamatsu, Kazumasa; Ito, Shosuke; D’Orazio, John A.
2015-01-01
Summary The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled surface protein found on melanocytes that binds melanocyte stimulating hormone (MSH) and mediates activation of adenylyl cyclase and generation of the second messenger cAMP. MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-of-function polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase activating or phosphodiesterase inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. Here we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor (SCF) derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R’s role in protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses. PMID:19633898
Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C
2009-12-01
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.
Maymó, Julieta Lorena; Pérez Pérez, Antonio; Maskin, Bernardo; Dueñas, José Luis; Calvo, Juan Carlos; Sánchez Margalet, Víctor; Varone, Cecilia Laura
2012-01-01
Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway. PMID:23056265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, E.L.; Singh, J.C.; Jacobson, K.L.
Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated /sup 45/Ca/sup 2 +/ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10/sup -8/M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 x 10/sup -7/more » M) or hydroxylamine (50 ..mu..M) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism. 21 references, 1 figure, 3 tables.« less
Xu, Lu; Sterling, Carol R.
2009-01-01
Tyrosine hydroxylase (TH) plays a critical role in maintaining the appropriate concentrations of catecholamine neurotransmitters in brain and periphery, particularly during long-term stress, long-term drug treatment, or neurodegenerative diseases. Its expression is controlled by both transcriptional and post-transcriptional mechanisms. In a previous report, we showed that treatment of rat midbrain slice explant cultures or mouse MN9D cells with cAMP analog or forskolin leads to induction of TH protein without concomitant induction of TH mRNA. We further showed that cAMP activates mechanisms that regulate TH mRNA translation via cis-acting sequences within its 3′-untranslated region (UTR). In the present report, we extend these studies to show that MN9D cytoplasmic proteins bind to the same TH mRNA 3′-UTR domain that is required for the cAMP response. RNase T1 mapping demonstrates binding of proteins to a 27-nucleotide polypyrimidine-rich sequence within this domain. A specific mutation within the polypyrimidine-rich sequence inhibits protein binding and cAMP-mediated translational activation. UV-cross-linking studies identify a ∼44-kDa protein as a major TH mRNA 3′-UTR binding factor, and cAMP induces the 40- to 42-kDa poly(C)-binding protein-2 (PCBP2) in MN9D cells. We show that PCBP2 binds to the TH mRNA 3′-UTR domain that participates in the cAMP response. Overexpression of PCBP2 induces TH protein without concomitant induction of TH mRNA. These results support a model in which cAMP induces PCBP2, leading to increased interaction with its cognate polypyrimidine binding site in the TH mRNA 3′-UTR. This increased interaction presumably plays a role in the activation of TH mRNA translation by cAMP in dopaminergic neurons. PMID:19620256
Yousufzai, S Y; Ye, Z; Abdel-Latif, A A
1995-12-01
We previously reported that in the iris sphincter smooth muscle, endothelin-1 (ET-1) activates both adenylyl cyclase and the phosphoinositide cascade and that the changes in the levels of cAMP and inositol-1,4,5-trisphosphate (IP3) produced are species specific. In the present study, we examined the mechanism of the ET-1 effects in cat iris sphincter. In general, we found that ET-1 (0.1 microM) increased prostaglandin E2 (PGE2) release by 156%, cAMP accumulation by 310%, IP3 production by 88% and induced contraction; that PGE2 increased cAMP accumulation, IP3 production and contraction; and that the effects of ET-1 are inhibited by indomethacin (Indo), suggesting that arachidonic acid metabolites may mediate the responses to the peptide. Kinetic studies revealed the following: (1) The effect of ET-1 on cAMP accumulation is rapid (within 30 sec), dose dependent (EC50 = 5.8 nM) and completely abolished by Indo (Ki = 0.16 microM), a cyclooxygenase inhibitor, but not by nordihydroguairetic acid, a lipoxygenase inhibitor, implying the involvement of PGs. (2) ET-1 dose-dependently evoked PGe2 release (EC50 = 1.8 nM), IP3 production (EC50 = 4.5 nM) and contraction (EC50 = 5 nM) and that all of these responses were inhibited by Indo. (3) PGE2 increased cAMP accumulation in a dose-dependent manner with an EC50 of 1.5 x 10(-7) M, and PGD2 and PGF2 alpha had little effect on the cyclic nucleotide. (4) PGE2 (1 microM), increased IP3 production by 55% and induced muscle contraction in a dose-dependent manner (EC50 = 40 nM). We conclude from these data that in cat iris sphincter PGs may mediate ET-1-induced cAMP accumulation, IP3 production and smooth muscle contraction.
Haj Slimane, Zeineb; Bedioune, Ibrahim; Lechêne, Patrick; Varin, Audrey; Lefebvre, Florence; Mateo, Philippe; Domergue-Dupont, Valérie; Dewenter, Matthias; Richter, Wito; Conti, Marco; El-Armouche, Ali; Zhang, Jin; Fischmeister, Rodolphe; Vandecasteele, Grégoire
2014-01-01
Aims The cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. Methods and results Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. Conclusion Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation. PMID:24550350
Araki, Shouta; Mezawa, Masaru; Sasaki, Yoko; Yang, Li; Li, Zhengyang; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa
2009-03-01
Parathyroid hormone (PTH) regulates serum calcium and inorganic phosphate levels through its actions on kidney and bone. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation and bone metabolism. We here report that two cAMP response elements (CRE) in the human BSP gene promoter are target of PTH. In human osteoblast-like Saos2 cells, PTH (human 1-34 PTH, 10 nM) increased BSP mRNA and protein levels at 3 h. From transient transfection assays, 2- to 2.5-fold increase in transcription by PTH was observed at 3 and 6 h in -184, -211, -428, -868, and -927 luciferase constructs that included the human BSP gene promoter. Effect of PTH was abrogated by 2 bp mutations in either the CRE1 (-79 to -72) or CRE2 (-674 to -667). Luciferase activities induced by PTH were blocked by protein kinase A inhibitor H89 and tyrosine kinase inhibitor herbimycin A. Gel shift analyses showed that PTH increased binding of nuclear proteins to the CRE1 and CRE2 elements. The CRE1-protein and CRE2-protein complexes were disrupted by CRE binding protein 1 (CREB1) antibodies and supershifted by phospho-CREB1 antibody. ChIP assays detected binding of CREB1 and phospho-CREB1 to a chromatin fragment containing CRE1 and CRE2, and increased binding of phospho-CREB1 to the both sites. These studies demonstrate that PTH stimulates human BSP gene transcription by targeting the two CREs in the promoter of the human BSP gene.
Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene.
Burton, F H; Hasel, K W; Bloom, F E; Sutcliffe, J G
1991-03-07
Cyclic AMP is thought to act as an intracellular second messenger, mediating the physiological response of many cell types to extracellular signals. In the pituitary, growth hormone (GH)-producing cells (somatotrophs) proliferate and produce GH in response to hypothalamic GH-releasing factor, which binds a receptor that stimulates Gs protein activation of adenylyl cyclase. We have now determined whether somatotroph proliferation and GH production are stimulated by cAMP alone, or require concurrent, non-Gs-mediated induction of other regulatory molecules by designing a transgene to induce chronic supraphysiological concentrations of cAMP in somatotrophs. The rat GH promoter was used to express an intracellular form of cholera toxin, a non-cytotoxic and irreversible activator of Gs. Introduction of this transgene into mice caused gigantism, elevated serum GH levels, somatotroph proliferation and pituitary hyperplasia. These results support the direct triggering of these events by cAMP, and illustrate the utility of cholera toxin transgenes as a tool for physiological engineering.
Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhang, Wenri; Klaus, Judith; Young, Jennifer; Koerner, Ines; Sheldahl, Laird C.; Hurn, Patricia D.; Martínez-Murillo, Francisco; Alkayed, Nabil J.
2006-09-01
Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases. ischemia | stroke | estrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon
Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrestmore » of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.« less
Gi proteins regulate adenylyl cyclase activity independent of receptor activation.
Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen
2014-01-01
Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.
Gi Proteins Regulate Adenylyl Cyclase Activity Independent of Receptor Activation
Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen
2014-01-01
Background and purpose Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to Gi, some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. Experimental approach We used the Gs-selective (R,R)- and the Gs- and Gi-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. Key results PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Conclusions and implications Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic Gi and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents. PMID:25203113
Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.
Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre
2016-06-07
Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.
Schachter, J B; Wolfe, B B
1992-03-01
The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.
Felouzis, Virginia; Hermand, Patricia; de Laissardière, Guy Trambly; Combadière, Christophe; Deterre, Philippe
2016-01-01
Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Lingzhi; Insel, Paul A
2004-05-14
The mechanisms by which cAMP mediates apoptosis are not well understood. In the current studies, we used wild-type (WT) S49 T-lymphoma cells and the kin(-) variant (which lacks protein kinase A (PKA)) to examine cAMP/PKA-mediated apoptosis. The cAMP analog, 8-CPT-cAMP, increased phosphorylation of the cAMP response element-binding protein (CREB), activated caspase-3, and induced apoptosis in WT but not in kin(-) S49 cells. Using an array of 96 apoptosis-related genes, we found that treatment of WT cells with 8-CPT-cAMP for 24 h induced expression of mRNA for the pro-apoptotic gene, Bim. Real-time PCR analysis indicated that 8-CPT-cAMP increased Bim RNA in WT cells in <2 h and maintained this increase for >24 h. Bim protein expression increased in WT but not kin(-) cells treated with 8-CPT-cAMP or with the beta-adrenergic receptor agonist isoproterenol. Both apoptosis and Bim expression were reversible with removal of 8-CPT-cAMP after <6 h. The glucocorticoid dexamethasone also promoted apoptosis and Bim expression in S49 cells. In contrast, both UV light and anti-mouse Fas monoclonal antibody promoted apoptosis in S49 cells but did not induce Bim expression. 8-CPT-cAMP also induced Bim expression and enhanced dexamethasone-promoted apoptosis in human T-cell leukemia CEM-C7-14 (glucocorticoid-sensitive) and CEM-C1-15 (glucocorticoid-resistant) cells; increased Bim expression in 8-CPT-cAMP-treated CEM-C1-15 cells correlated with conversion of the cells from resistance to sensitivity to glucocorticoid-promoted apoptosis. Induction of Bim appears to be a key event in cAMP-promoted apoptosis in both murine and human T-cell lymphoma and leukemia cells and thus appears to be a convergence point for the killing of such cells by glucocorticoids and agents that elevate cAMP.
Aouani, A; Hovsépian, S; Fayet, G
1987-07-01
The hormonal regulation of thyroglobulin synthesis has been studied using two independent clones of the OVNIS 6H cell line. Insulin, hydrocortisone and TSH were able to stimulate thyroglobulin synthesis, whereas transferrin, somatostatin and glycyl-histidyl-lysine were without effect. Insulin stimulated thyroglobulin synthesis without affecting cAMP production. Hydrocortisone, when combined with insulin was a stimulator too; this stimulation was not accompanied by an increase in cAMP. TSH alone was unable to stimulate either cAMP or thyroglobulin synthesis. The stimulatory effect of TSH on thyroglobulin synthesis took place only when combined with insulin or insulin plus hydrocortisone, and was mediated by cAMP. Consequently, insulin and hydrocortisone stimulated thyroglobulin synthesis by cAMP-independent mechanisms, whereas TSH acted via the cAMP system. Forskolin mimicked TSH effects on cAMP and thyroglobulin synthesis. Calf serum inhibited cAMP and thyroglobulin production. Optimal cAMP and thyroglobulin synthesis as well as TSH responsiveness were obtained in serum-free medium supplemented with 5 micrograms/ml insulin, 100 nM hydrocortisone and 1 mU/ml TSH.
Murakami, Itsuo; Takeuchi, Sakae; Kudo, Toshiyuki; Sutou, Shizuyo; Takahashi, Sumio
2007-05-01
Tpit/Pitx-responsive element (Tpit/PitxRE), which binds transcription factors Tpit and Pitx1, confers cell-type specific expression of proopiomelanocortin (POMC) gene in pituitary corticotrops where the gene expression is mainly regulated by corticotropin-releasing hormone (CRH) and glucocorticoids (Gcs). CRH stimulates POMC gene expression, which is mediated by the accumulation of intracellular cAMP and requires binding of Nur factors to Nur-responsive element (NurRE). Gcs antagonize NurRE-dependent POMC gene expression through direct interaction between glucocorticoid receptors and Nur factors. We examined whether Tpit/PitxRE and NurRE are involved in CRH/cAMP-induced activation and Gc-induced repression of POMC gene expression by reporter assay in AtT-20 corticotropic cells. Deletion and mutation of Tpit/PitxRE markedly reduced basal activity of the promoter, and those of NurRE decreased the levels of the CRH/cAMP-induced activation. Nifedipine, KN-62, and W-7, specific inhibitors of the L-type calcium channel, calmodulin-dependent protein kinase II, and calmodulin respectively, attenuated CRH/cAMP-induced activation of promoters with three copies of either Tpit/PitxRE or NurRE, indicating that both Tpit/PitxRE and NurRE mediate CRH-induced activation of POMC gene expression in a calcium-dependent manner. Deletion and mutation of Tpit/PitxRE abolished dexamethasone (DEX)-induced repression of POMC gene expression, while those of NurRE did not, indicating that Tpit/PitxRE predominantly mediates Gc-induced repression of POMC transcription. However, DEX treatment attenuated activities of promoters with three copies of either Tpit/PitxRE or NurRE, suggesting that Gcs act at NurRE as well as Tpit/PitxRE to repress POMC gene expression. We conclude that Tpit/PitxRE is an important element by which CRH and Gcs regulate the POMC gene expression.
Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D
1999-09-01
We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.
NASA Technical Reports Server (NTRS)
Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.
2000-01-01
The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.
Identification of second messenger mediating signal transduction in the olfactory receptor cell.
Takeuchi, Hiroko; Kurahashi, Takashi
2003-11-01
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Identification of Second Messenger Mediating Signal Transduction in the Olfactory Receptor Cell
Takeuchi, Hiroko; Kurahashi, Takashi
2003-01-01
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed “InsP3 odorants”). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells (∼2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants. PMID:14581582
Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.
2015-01-01
ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134
Thomas, Elizabeth A.; Carson, Monica J.; Neal, Michael J.; Sutcliffe, J. Gregor
1997-01-01
The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies. PMID:9391162
Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai
2016-12-01
To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.
ERIC Educational Resources Information Center
Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.
2007-01-01
Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…
Walters, C L; Blendy, J A
2001-12-01
Addiction is a complex process that relies on the ability of an organism to integrate positive and negative properties of drugs of abuse. Therefore, studying the reinforcing as well as aversive components of drugs of abuse in a single model system will enable us to understand the role of final common mediators, such as cAMP response element-binding protein (CREB), in the addiction process. To this end, we analyzed mice with a mutation in the alpha and Delta isoforms of the CREB gene. Previously we have shown that CREB(alphaDelta) mutant mice in a mixed genetic background show attenuated signs of physical dependence, as measured by the classic signs of withdrawal. We have generated a uniform genetically stable F1 hybrid (129SvEv/C57BL/6) mouse line harboring the CREB mutation. We have found the functional activity of CREB in these F1 hybrid mice to be dramatically reduced compared with their wild-type littermates. These mice maintain a reduced withdrawal phenotype after chronic morphine. We are now poised to examine a number of complex behavioral phenotypes related to addiction in a well defined CREB-deficient mouse model. We demonstrate that the aversive properties of morphine are still present in CREB mutant mice despite a reduction of physical withdrawal. On the other hand, these mice do not respond to the reinforcing properties of morphine in a conditioned place preference paradigm. In contrast, CREB mutant mice demonstrate an enhanced response to the reinforcing properties of cocaine compared with their wild-type controls in both conditioned place preference and sensitization behaviors. These data may provide the first paradigm for differential vulnerability to various drugs of abuse.
Cyclic AMP Enhances TGFβ Responses of Breast Cancer Cells by Upregulating TGFβ Receptor I Expression
Oerlecke, Ilka; Bauer, Elke; Dittmer, Angela; Leyh, Benjamin; Dittmer, Jürgen
2013-01-01
Cellular functions are regulated by complex networks of many different signaling pathways. The TGFβ and cAMP pathways are of particular importance in tumor progression. We analyzed the cross-talk between these pathways in breast cancer cells in 2D and 3D cultures. We found that cAMP potentiated TGFβ-dependent gene expression by enhancing Smad3 phosphorylation. Higher levels of total Smad3, as observed in 3D-cultured cells, blocked this effect. Two Smad3 regulating proteins, YAP (Yes-associated protein) and TβRI (TGFβ receptor 1), were responsive to cAMP. While YAP had little effect on TGFβ-dependent expression and Smad3 phosphorylation, a constitutively active form of TβRI mimicked the cAMP effect on TGFβ signaling. In 3D-cultured cells, which show much higher levels of TβRI and cAMP, TβRI was unresponsive to cAMP. Upregulation of TβRI expression by cAMP was dependent on transcription. A proximal TβRI promoter fragment was moderately, but significantly activated by cAMP suggesting that cAMP increases TβRI expression at least partially by activating TβRI transcription. Neither the cAMP-responsive element binding protein (CREB) nor the TβRI-regulating transcription factor Six1 was required for the cAMP effect. An inhibitor of histone deacetylases alone or together with cAMP increased TβRI expression by a similar extent as cAMP alone suggesting that cAMP may exert its effect by interfering with histone acetylation. Along with an additive stimulatory effect of cAMP and TGFβ on p21 expression an additive inhibitory effect of these agents on proliferation was observed. Finally, we show that mesenchymal stem cells that interact with breast cancer cells can simultaneously activate the cAMP and TGFβ pathways. In summary, these data suggest that combined effects of cAMP and TGFβ, as e.g. induced by mesenchymal stem cells, involve the upregulation of TβRI expression on the transcriptional level, likely due to changes in histone acetylation. As a consequence, cancer cell functions such as proliferation are affected. PMID:23349840
Tachado, S D; Zhang, Y; Abdel-Latif, A A
1993-05-01
To examine the mechanisms underlying the effects of PGF2 alpha receptor desensitization on agonist-induced second messenger formation and contraction in bovine iris sphincter. Short-term PGF2 alpha receptor desensitization of the bovine iris sphincter was carried out by incubating the tissue in Krebs-Ringer bicarbonate buffer containing 25 microM PGF2 alpha for 45 min at 37 degrees C. The effects of PGF2 alpha and other pharmacologic agents on inositol 1,4,5-triphosphate (IP3) production and cyclic adenosine monophosphate (cAMP) formation in desensitized and nondesensitized tissues were monitored by anion-exchange chromatography and radioimmunoassay. In the isolated bovine iris sphincter, protein kinase C (PKC) is involved in the activation of adenylate cyclase and the desensitization of prostaglandin F2 alpha receptor-mediated responses supported by these findings. (A) Exposure of the tissue to phorbol 12,13-dibutyrate, used to activate PKC, enhanced basal cAMP formation in a dose (EC50 = 8.8 x 10(-8) M) and time (t1/2 = 7.5 min) dependent manner. Phorbol 12,13-dibutyrate increased cAMP levels by twofold and it potentiated the isoproterenol-induced cAMP formation. The biologically inactive phorbol ester, 4 alpha-phorbol had no effect. Staurosporine, a potent PKC inhibitor, inhibited phorbol 12,13-dibutyrate-induced cAMP formation in a dose-dependent manner (IC50 of 0.25 microM). The increase in cAMP levels by phorbol 12,13-dibutyrate results from stimulation of adenylate cyclase, rather than from inhibition of cAMP phosphodiesterase, and it is not mediated through Ca2+ mobilization. Pretreatment of the tissue with phorbol 12,13-dibutyrate inhibited IP3 production in response to PGF2 alpha. (B) Desensitization of the sphincter with PGF2 alpha for 45 min increased cAMP formation and attenuated IP3 production and contraction. The effects of PGF2 alpha desensitization were reversed by pretreatment of the tissue with staurosporine. Down-regulation of PKC prevented the PGF2 alpha-stimulated increase in cAMP formation. In the desensitized tissue, diacylglycerol, the endogenous activator of PKC, may arise from phosphatidylcholine, via phospholipase D. (A) Activation of PKC in the bovine iris sphincter leads to stimulation of adenylate cyclase and to an increase in cAMP formation. The cAMP formed inhibits IP3 production and muscle contraction. (B) PGF2 alpha desensitization results in adenylate cyclase activation, mediated through PKC. (C) PGF2 alpha desensitization could uncouple the receptor from the Gq and Gi proteins and enhance PG stimulation of adenylate cyclase activity through the Gs protein. (D) Uncoupling of the G proteins from the PG receptor and activation of PKC, both of which result in enhanced cAMP formation, may underlie the mechanism of PGF2 alpha desensitization. (E) These observations demonstrate "cross talk" between the two second messenger systems and their physiologic consequences.
Opie, L H; Lubbe, W F
1979-11-24
Ventricular fibrillation is a major mechanism of sudden death. The cellular link between catecholamine activity and the development of serious ventricular arrhythmias may be in the formation of cyclic adenosine monophosphate (cAMP). Cyclic AMP and agents promoting cAMP accumulation allow development of slow responses which, especially in the presence of regional ischaemia, could develop into ventricular fibrillation. The role of beta-antagonist agents in the therapy of acute myocardial infarction is analysed in relation to the hypothesis linking cAMP and ventricular fibrillation. Reasons for the limited effectiveness of anti-arrhythmic therapy with beta-antagonist agents are given.
Schmidt, Martina; Dekker, Frank J; Maarsingh, Harm
2013-04-01
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.
2016-01-01
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880
Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.
Vardjan, Nina; Kreft, Marko; Zorec, Robert
2014-04-01
The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. Copyright © 2014 Wiley Periodicals, Inc.
Functional analysis of the OCA-B promoter.
Stevens, S; Wang, L; Roeder, R G
2000-06-15
OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.
Smith, M R; Greene, W C
1991-01-01
The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation. Images PMID:1832173
Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei
2016-02-01
Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.
Prefrontal Consolidation Supports the Attainment of Fear Memory Accuracy
ERIC Educational Resources Information Center
Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.; Korzus, Edward
2014-01-01
The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required…
ERIC Educational Resources Information Center
Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.
2008-01-01
We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.
1995-01-01
Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of IGF-I exon 1 as being essential for this hormonal regulation.
Enhancement of fear memory by retrieval through reconsolidation
Fukushima, Hotaka; Zhang, Yue; Archbold, Georgia; Ishikawa, Rie; Nader, Karim; Kida, Satoshi
2014-01-01
Memory retrieval is considered to have roles in memory enhancement. Recently, memory reconsolidation was suggested to reinforce or integrate new information into reactivated memory. Here, we show that reactivated inhibitory avoidance (IA) memory is enhanced through reconsolidation under conditions in which memory extinction is not induced. This memory enhancement is mediated by neurons in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) through the simultaneous activation of calcineurin-induced proteasome-dependent protein degradation and cAMP responsive element binding protein-mediated gene expression. Interestingly, the amygdala is required for memory reconsolidation and enhancement, whereas the hippocampus and mPFC are required for only memory enhancement. Furthermore, memory enhancement triggered by retrieval utilizes distinct mechanisms to strengthen IA memory by additional learning that depends only on the amygdala. Our findings indicate that reconsolidation functions to strengthen the original memory and show the dynamic nature of reactivated memory through protein degradation and gene expression in multiple brain regions. DOI: http://dx.doi.org/10.7554/eLife.02736.001 PMID:24963141
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.
Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.
Marathe, G K; Yousufzai, S Y; Abdel-Latif, A A
1996-10-25
The purpose of the present study was to examine the mechanism of the stimulatory effect of substance P (SP) on cyclic AMP (cAMP) accumulation in dog iris sphincter. We found that: (1) SP increased cAMP accumulation in a time- and concentration-dependent manner, the T1/2 and EC50 values being 1.2 min and 44 nM, respectively. SP has no effect on inositol trisphosphate and muscle contraction in this tissue. (2) SP-stimulated cAMP formation was inhibited by quinacrine, a non-specific phospholipase A2 inhibitor (IC50 = 9.5 microM), and by indomethacin (Indo), a cyclooxygenase inhibitor (IC50 = 3.5 nM), in a concentration-dependent manner, suggesting that SP induces cAMP accumulation via an Indo-sensitive pathway. (3) SP-induced arachidonic acid release and SP-induced prostaglandin E2 (PGE2) release were inhibited concentration dependently by quinacrine and Indo, with IC50 values of 11 microM and 0.8 nM, respectively. (4) PGE2 (1 microM) increased cAMP formation in the sphincter muscle by 94%, and, furthermore, the PG, but not SP, stimulated the activity of adenylyl cyclase in membrane fractions isolated from this tissue. (5) Indo (1 microM) blocked the relaxing effect of SP (1 microM) in iris sphincter precontracted with carbachol (1 microM). (6) The inhibitory effect of Indo on SP-induced cAMP accumulation was species specific. Increases in cAMP represent a mechanism by which extracellular SP can regulate smooth muscle function. Thus, we conclude from these studies that in dog iris sphincter SP-induced cAMP accumulation is mediated through PGs, and that in this cholinergically innervated muscle SP via cAMP could function, in part, to modulate the physiological responses to muscarinic receptor stimulation.
Kim, Hyo Jung; Kim, Il Soon; Dong, Yin; Lee, Ik-Soo; Kim, Jin Sook; Kim, Jong-Sang; Woo, Je-Tae; Cha, Byung-Yoon
2015-04-20
The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.
Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
Chen, S; Lane, A P; Bock, R; Leinders-Zufall, T; Zufall, F
2000-07-01
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.
MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells
Lyons, Jesse; Bastian, Boris C.; McCormick, Frank
2013-01-01
The melanocortin 1 receptor (MC1R) mediates the tanning response through induction of cAMP and downstream pigmentary enzymes. Diminished function alleles of MC1R are associated with decreased tanning and increased melanoma risk, which has been attributed to increased rates of mutation. We have found that MC1R or cAMP signaling also directly decreases proliferation in melanoma cell lines. MC1R overexpression, treatment with the MC1R ligand, or treatment with small-molecule activators of cAMP signaling causes delayed progression from G2 into mitosis. This delay is caused by phosphorylation and inhibition of cdc25B, a cyclin dependent kinase 1-activating phosphatase, and is rescued by expression of a cdc25B mutant that cannot be phosphorylated at the serine 323 residue. These results show that MC1R and cAMP signaling can directly inhibit melanoma growth through regulation of the G2/M checkpoint. PMID:23908401
Daily rhythms in locomotor circuits in Drosophila involve PDF
Pírez, Nicolás; Christmann, Bethany L.
2013-01-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep. PMID:23678016
Daily rhythms in locomotor circuits in Drosophila involve PDF.
Pírez, Nicolás; Christmann, Bethany L; Griffith, Leslie C
2013-08-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
Yu, Hai-Fan; Tao, Ran; Yang, Zhan-Qing; Wang, Kai; Yue, Zhan-Peng; Guo, Bin
2018-02-01
Ptn is a pleiotropic growth factor involving in the regulation of cellular proliferation and differentiation, but its biological function in uterine decidualization remains unknown. Here, we showed that Ptn was highly expressed in the decidual cells, and could induce the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1 which were two well-established differentiation markers for decidualization, suggesting an important role of Ptn in decidualization. In the uterine stromal cells, progesterone stimulated the expression of Ptn accompanied with an accumulation of intracellular cAMP level. Silencing of Ptn impeded the induction of progesterone and cAMP on the differentiation of uterine stromal cells. Administration of PKA inhibitor H89 resulted in a blockage of progesterone on Ptn expression. Further analysis evidenced that regulation of progesterone and cAMP on Ptn was mediated by C/EBPβ. During in vitro decidualization, knockdown of Ptn could weaken the up-regulation of Prl8a2 and Prl3c1 elicited by C/EBPβ overexpression, while constitutive activation of Ptn reversed the repressive effects of C/EBPβ siRNA on the expression of Prl8a2 and Prl3c1. Meanwhile, Ptn might mediate the regulation of C/EBPβ on Hand2 which was a downstream target of Ptn in the differentiation of uterine stromal cells. Attenuation of Ptn or C/EBPβ by specific siRNA blocked the stimulation of Hand2 by progesterone and cAMP. Collectively, Ptn may play a vital role in the progesterone-induced decidualization pathway. © 2017 Wiley Periodicals, Inc.
Neurokinin B Exerts Direct Effects on the Ovary to Stimulate Estradiol Production.
Qi, Xin; Salem, Mohamed; Zhou, Wenyi; Sato-Shimizu, Miwa; Ye, Gang; Smitz, Johan; Peng, Chun
2016-09-01
Neurokinin B (NKB) and its receptor, NK3R, play critical roles in reproduction by regulating the secretion of the hypothalamic GnRH. NKB and NK3R genes are also expressed in the ovary; however, their physiological roles within the ovary are unknown. The aim of this study was to determine whether NKB acts directly on the ovary to regulate reproduction. Injection of NKB into zebrafish accelerated follicle development, increased the mRNA levels of cyp11a1 and cyp19a1, and enhanced estradiol production. Similarly, NKB induced cyp11a1 and cyp19a1 expression in primary cultures of zebrafish follicular cells and stimulated estradiol production from cultured follicles. Furthermore, NKB activates cAMP response element-binding protein and ERK, and ERK inhibitors abolished the effect of NKB on cyp11a1, whereas protein kinase A and calmodulin-dependent protein kinase II inhibitors that blocked the activation of cAMP response element-binding protein, attenuated the effect of NKB on cyp19a1 expression. In a human granulosa cell line, COV434, a NKB agonist, senktide, also increased CYP11A1 and CYP19A1 mRNA levels and enhanced aromatase protein levels and activities. Small interfering RNA-mediated knockdown of NK3R reduced senktide-induced CYP11A1 and CYP19A1 mRNA levels. Finally, we found that NK3R mRNA was strongly down-regulated in granulosa cells obtained from polycystic ovary syndrome (PCOS) patients when compared with non-PCOS subjects. Taken together, our findings establish a direct action of NKB to induce ovarian estrogen production and raise the possibility that defective signaling of this pathway may contribute to the development of PCOS.
Zhu, Xinjian; Dubey, Deepti; Bermudez, Camilo; Porter, Brenda E
2015-12-01
Current epilepsy therapies directed at altering the function of neurotransmitter receptors or ion channels, or release of synaptic vesicles fail to prevent seizures in approximately 30% of patients. A better understanding of the molecular mechanism underlying epilepsy is needed to provide new therapeutic targets. The activity of cyclic AMP (cAMP) response element-binding protein (CREB), a major transcription factor promoting CRE-mediated transcription, increases following a prolonged seizure called status epilepticus. It is also increased in the seizure focus of patients with medically intractable focal epilepsy. Herein we explored the effect of acute suppression of CREB activity on status epilepticus and spontaneous seizures in a chronic epilepsy model. Pilocarpine chemoconvulsant was used to induce status epilepticus. To suppress CREB activity, a transgenic mouse line expressing an inducible dominant negative mutant of CREB (CREB(IR) ) with a serine to alanine 133 substitution was used. Status epilepticus and spontaneous seizures of transgenic and wild-type mice were analyzed using video-electroencephalography (EEG) to assess the effect of CREB suppression on seizures. Our findings indicate that activation of CREB(IR) shortens the duration of status epilepticus. The frequency of spontaneous seizures decreased in mice with chronic epilepsy during CREB(IR) induction; however, the duration of the spontaneous seizures was unchanged. Of interest, we found significantly reduced levels of phospho-CREB Ser133 upon activation of CREB(IR) , supporting prior work suggesting that binding to the CRE site is important for CREB phosphorylation. Our results suggest that CRE transcription supports seizure activity both during status epilepticus and in spontaneous seizures. Thus, blocking of CRE transcription is a novel target for the treatment of epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Upregulation of suppressor of cytokine signaling 3 in microglia by cinnamic acid.
Chakrabarti, Sudipta; Jana, Malabendu; Roy, Avik; Pahan, Kalipada
2018-05-06
Neuroinflammation plays an important role in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Suppressor of cytokine signaling 3 (SOCS3) is an anti-inflammatory molecule that suppresses cytokine signaling and inflammatory gene expression in different cells including microglia. However, pathways through which SOCS3 could be upregulated are poorly described. Cinnamic acid is a metabolite of cinnamon, a natural compound that is being widely used all over the world as a spice or flavoring agent. This study delineates the importance of cinnamic acid for the upregulation of SOCS3 in microglia. Cinnamic acid upregulated the expression of SOCS3 mRNA and protein in mouse BV-2 microglial cells in dose- and time-dependent manner. Accordingly, cinnamic acid also increased the level of SOCS3 and suppressed the expression of inducible nitric oxide synthase and proinflammatory cytokines (TNFα, IL-1β and IL-6) in LPS-stimulated BV-2 microglial cells. Similar to BV-2 microglial cells, cinnamic acid also increased the expression of SOCS3 in primary mouse microglia and astrocytes. Presence of cAMP response element in the promoter of socs3 gene, activation of cAMP response element binding (CREB) by cinnamic acid, abrogation of cinnamic acid-mediated upregulation of SOCS3 by siRNA knockdown of CREB, and the recruitment of CREB to the socs3 gene promoter by cinnamic acid suggest that cinnamic acid increases the expression of SOCS3 by CREB. These studies suggest that cinnamic acid upregulates SOCS3 via CREB pathway, which may be of importance in neuroinflammatory and neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G
2017-06-01
Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.
Roles of Estrogen Receptor-α and the Coactivator MED1 During Human Endometrial Decidualization
Kaya Okur, Hatice S.; Das, Amrita; Taylor, Robert N.; Bagchi, Indrani C.
2016-01-01
The steroid hormones 17β-estradiol and progesterone are critical regulators of endometrial stromal cell differentiation, known as decidualization, which is a prerequisite for successful establishment of pregnancy. The present study using primary human endometrial stromal cells (HESCs) addressed the role of estrogen receptor-α (ESR1) in decidualization. Knockdown of ESR1 transcripts by RNA interference led to a marked reduction in decidualization of HESCs. Gene expression profiling at an early stage of decidualization indicated that ESR1 negatively regulates several cell cycle regulatory factors, thereby suppressing the proliferation of HESCs as these cells enter the differentiation program. ESR1 also controls the expression of WNT4, FOXO1, and progesterone receptor (PGR), well-known mediators of decidualization. Whereas ESR1 knockdown strongly inhibited the expression of FOXO1 and WNT4 transcripts within 24 hours of the initiation of decidualization, PGR expression remained unaffected at this early time point. Our study also revealed a major role of cAMP signaling in influencing the function of ESR1 during decidualization. Using a proteomic approach, we discovered that the cAMP-dependent protein kinase A (PKA) phosphorylates Mediator 1 (MED1), a subunit of the mediator coactivator complex, during HESC differentiation. Using immunoprecipitation, we demonstrated that PKA-phosphorylated MED1 interacts with ESR1. The PKA-dependent phosphorylation of MED1 was also correlated with its enhanced recruitment to estrogen-responsive elements in the WNT4 gene. Knockdown of MED1 transcripts impaired the expression of ESR1-induced WNT4 and FOXO1 transcripts and blocked decidualization. Based on these findings, we conclude that modulation of ESR1-MED1 interactions by cAMP signaling plays a critical role in human decidualization. PMID:26849466
Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.
2013-01-01
The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844
Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae
2015-01-01
Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.
Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho
2015-01-01
This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.
Shafer, Orie T; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O; Lohse, Martin J; Taghert, Paul H
2008-04-24
The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of approximately 150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network.
Simko, Veronika; Iuliano, Filippo; Sevcikova, Andrea; Labudova, Martina; Barathova, Monika; Radvak, Peter; Pastorekova, Silvia; Pastorek, Jaromir; Csaderova, Lucia
2017-08-31
Hypoxia is a phenomenon often arising in solid tumours, linked to aggressive malignancy, bad prognosis and resistance to therapy. Hypoxia-inducible factor-1 has been identified as a key mediator of cell and tissue adaptation to hypoxic conditions through transcriptional activation of many genes involved in glucose metabolism and other cancer-related processes, such as angiogenesis, cell survival and cell invasion. Cyclic adenosine 3'5'-monophosphate is one of the most ancient and evolutionarily conserved signalling molecules and the cAMP/PKA signalling pathway plays an important role in cellular adaptation to hypoxia. We have investigated possible new mechanisms behind hypoxic activation of the cAMP/PKA pathway. For the first time, we have shown that hypoxia induces transcriptional up-regulation of the system of adenylyl cyclases, enzymes responsible for cAMP production, in a panel of carcinoma cell lines of various origin. Our data prove functional relevance of the hypoxic increase of adenylyl cyclases VI and VII at least partially mediated by HIF-1 transcription factor. We have identified adenylyl cyclase VI and VII isoforms as mediators of cellular response to hypoxia, which led to the elevation of cAMP levels and enhanced PKA activity, with an impact on cell migration and pH regulation.
Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...
Increases in brain-derived neurotrophic factor (Bdnf), Ca2+/calmodulin-dependent protein kinase II alpha (Camk2a), and cyclic adenosine monophosphate (cAMP) response element binding (Creb1) gene expression have been associated with learning in a variety of different rodent studie...
cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration
Stewart, Randi
2012-01-01
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781
Fryrear, Kimberly A.; Guo, Xin
2012-01-01
The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)–modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB–mediated and decreased cAMP Response Element-Binding (CREB)–mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage–induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanling; Sato, Masaaki; Guo, Yuan
2014-10-15
The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations weremore » not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.« less
Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; ...
2016-06-02
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF bindsmore » to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.« less
Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Baoyu; Shu, Chang; Gao, Xinsheng
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF bindsmore » to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.« less
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Shu, H.; Casinghino, S.; Crothers, K.; Rotwein, P.; Centrella, M.
1997-01-01
Insulin-like growth factor-I (IGF-I) is a key factor in bone remodeling. In osteoblasts, IGF-I synthesis is enhanced by parathyroid hormone and prostaglandin E2 (PGE2) through cAMP-activated protein kinase. In rats, estrogen loss after ovariectomy leads to a rise in serum IGF-I and an increase in bone remodeling, both of which are reversed by estrogen treatment. To examine estrogen-dependent regulation of IGF-I expression at the molecular level, primary fetal rat osteoblasts were co-transfected with the estrogen receptor (hER, to ensure active ER expression), and luciferase reporter plasmids controlled by promoter 1 of the rat IGF-I gene (IGF-I P1), used exclusively in these cells. As reported, 1 microM PGE2 increased IGF-I P1 activity by 5-fold. 17beta-Estradiol alone had no effect, but dose-dependently suppressed the stimulatory effect of PGE2 by up to 90% (ED50 approximately 0.1 nM). This occurred within 3 h, persisted for at least 16 h, required ER, and appeared specific, since 17alpha-estradiol was 100-300-fold less effective. By contrast, 17beta-estradiol stimulated estrogen response element (ERE)-dependent reporter expression by up to 10-fold. 17beta-Estradiol also suppressed an IGF-I P1 construct retaining only minimal promoter sequence required for cAMP-dependent gene activation, but did not affect the 60-fold increase in cAMP induced by PGE2. There is no consensus ERE in rat IGF-I P1, suggesting novel downstream interactions in the cAMP pathway that normally enhances IGF-I expression in skeletal cells. To explore this, nuclear extract from osteoblasts expressing hER were examined by electrophoretic mobility shift assay using the atypical cAMP response element in IGF-I P1. Estrogen alone did not cause DNA-protein binding, while PGE2 induced a characteristic gel shift complex. Co-treatment with both hormones caused a gel shift greatly diminished in intensity, consistent with their combined effects on IGF-I promoter activity. Nonetheless, hER did not bind IGF-I cAMP response element or any adjacent sequences. These results provide new molecular evidence that estrogen may temper the biological effects of hormones acting through cAMP to regulate skeletal IGF-I expression and activity.
Fu, Shou-Peng; Wang, Wei; Liu, Bing-Run; Yang, Huan-Min; Ji, Hong; Yang, Zhan-Qing; Guo, Bin; Liu, Ju-Xiong; Wang, Jian-Fa
2015-02-16
β-hydroxybutyric acid (BHBA) regulates the synthesis and secretion of growth hormone (GH) and prolactin (PRL), but its mechanism is unknown. In this study, we detected the effects of BHBA on the activities of G protein signaling pathways, AMPK-α activity, GH, and PRL gene transcription, and GH and PRL secretion in dairy cow anterior pituitary cells (DCAPCs). The results showed that BHBA decreased intracellular cAMP levels and a subsequent reduction in protein kinase A (PKA) activity. Inhibition of PKA activity reduced cAMP response element-binding protein (CREB) phosphorylation, thereby inhibiting GH and PRL transcription and secretion. The effects of BHBA were attenuated by a specific Gαi inhibitor, pertussis toxin (PTX). In addition, intracellular BHBA uptake mediated by monocarboxylate transporter 1 (MCT1) could trigger AMPK signaling and result in the decrease in GH and PRL mRNA translation in DCAPCs cultured under low-glucose and non-glucose condition when compared with the high-glucose group. This study identifies a biochemical mechanism for the regulatory action of BHBA on GH and PRL gene transcription, translation, and secretion in DCAPCs, which may be one of the factors that regulate pituitary function during the transition period in dairy cows.
Internal Leadership Development.
ERIC Educational Resources Information Center
Thurber, Christopher A.
2001-01-01
Discusses how camps can cultivate staff from among the camper ranks. Outlines questions to consider in deciding whether internal leadership development (ILD) is appropriate and feasible. Describes elements of successful ILD programs and six training techniques to maximize ILD: leadership by example, delegation of responsibility, role-playing,…
ERIC Educational Resources Information Center
Henderson, Karla A.
1997-01-01
A marketing model for camps includes a mix of services, presentation, and communication elements that promote the virtues of camp, convince potential campers and their families of the benefits of camp, and successfully distinguish the camp from others. Includes resources related to marketing strategies, theme merchandise, and market trends…
Dale, Philippa; Head, Victoria; Dowling, Mark R; Taylor, Colin W
2018-05-01
Intracellular Ca 2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca 2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca 2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [ 3 H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca 2+ and cAMP signaling pathways. Histamine stimulated Ca 2+ release through inositol 1,4,5-trisphosphate (IP 3 ) receptors in hBASMCs. β 2 -adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca 2+ signals. Responses to other Ca 2+ -mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E 2 (PGE 2 ), through EP 2 and EP 4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca 2+ signals. There was no consistent relationship between the inhibition of Ca 2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP 2 and EP 4 receptors, through cAMP and PKA, selectively inhibit Ca 2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H 1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa
2007-09-01
Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.
Silva, G B; Juncos, L I; Baigorria, S T; Garcia, N H
2013-01-01
Dehydration and acute reductions of blood pressure increases ADH and Ang II levels. These hormones increase transport along the distal nephron. In the thick ascending limb (TAL) ADH increases transport via cAMP, while Ang II acts via superoxide (O2-). However, the mechanism of interaction of these hormones in this segment remains unclear. The aim of this study was to explore ADH/Ang II interactions on TAL transport. For this, we measured the effects of ADH/Ang II, added sequentially to TAL suspensions from Wistar rats, on oxygen consumption (QO2) -as a transport index-, cAMP and O2-. Basal QO2 was 112+-5 nmol O2/min/mg protein. Addition of ADH (1nM) increased QO2 by 227 percent. In the presence of ADH, Ang II (1nM) elicited a QO2 transient response. During an initial 3.1+-0.7 minutes after adding Ang II, QO2 decreased 58 percent (p less than 0.03 initial vs. ADH) and then rose by 188 percent (p less than 0.03 late vs initial Ang II). We found that Losartan blocked the initial effects of Ang II and the latter blocked ADH and forskolin-stimulated cAMP. The NOS inhibitor L-NAME or the AT2 receptor antagonist PD123319 showed no effect on transported related oxygen consumption. Then, we assessed the late period after adding Ang II. The O2- scavenger tempol blocked the late Ang II effects on QO2, while Ang II increased O2- production during this period. We conclude that 1) Ang II has a transient effect on ADH-stimulated transport; 2) this effect is mediated by AT1 receptors; 3) the initial period is mediated by decreased cAMP and 4) the late period is mediated by O2-.
ERIC Educational Resources Information Center
Garst, Barry A.; Gagnon, Ryan J.; Whittington, Anja
2016-01-01
Understanding program components that contribute to positive youth outcomes following camp experiences can help program providers bring a greater level of intentionality to their efforts. The purposes of this study were twofold: (a) to develop reliable and valid measures of life skill development, elements of positive youth development (PYD), and…
Thiel, Gerald; Rössler, Oliver G
2018-06-05
The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.
Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana
2012-05-01
The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.
Activation of Basal Gluconeogenesis by Coactivator p300 Maintains Hepatic Glycogen Storage
Cao, Jia; Meng, Shumei; Ma, Anlin; Radovick, Sally; Wondisford, Fredric E.
2013-01-01
Because hepatic glycogenolysis maintains euglycemia during early fasting, proper hepatic glycogen synthesis in the fed/postprandial states is critical. It has been known for decades that gluconeogenesis is essential for hepatic glycogen synthesis; however, the molecular mechanism remains unknown. In this report, we show that depletion of hepatic p300 reduces glycogen synthesis, decreases hepatic glycogen storage, and leads to relative hypoglycemia. We previously reported that insulin suppressed gluconeogenesis by phosphorylating cAMP response element binding protein-binding protein (CBP) at S436 and disassembling the cAMP response element-binding protein-CBP complex. However, p300, which is closely related to CBP, lacks the corresponding S436 phosphorylation site found on CBP. In a phosphorylation-competent p300G422S knock-in mouse model, we found that mutant mice exhibited reduced hepatic glycogen content and produced significantly less glycogen in a tracer incorporation assay in the postprandial state. Our study demonstrates the important and unique role of p300 in glycogen synthesis through maintaining basal gluconeogenesis. PMID:23770612
Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae
Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie
2012-01-01
Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479
Lee, S; Parent, C A; Insall, R; Firtel, R A
1999-09-01
We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation.
Transcriptional regulation of bone sialoprotein gene by Porphyromonas gingivalis lipopolysaccharide.
Li, Xinyue; Kato, Naoko; Mezawa, Masaru; Li, Zhengyang; Wang, Zhitao; Yang, Li; Sasaki, Yoko; Kaneko, Takashi; Takai, Hideki; Yoshimura, Atsutoshi; Ogata, Yorimasa
2010-07-01
Lipopolysaccharide (LPS) is a major mediator of inflammatory response. Periodontopathic bacterium Porphyromonas gingivalis LPS has quite different character from Escherichia coli LPS. E. coli LPS is agonist for Toll-like receptor 4 (TLR4), whereas P. gingivalis LPS worked as antagonist for TLR4. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. To investigate the effects of P. gingivalis LPS on BSP transcription, we used rat osteoblast-like ROS17/2.8 cells. BSP mRNA levels were decreased by 0.1 microg/ml and increased by 0.01 microg/ml P. gingivalis LPS at 12 h. Results of luciferase assays showed that 0.1 microg/ml decreased and 0.01 microg/ml P. gingivalis LPS increased BSP transcription in -116 to +60 BSP construct. The effects of P. gingivalis LPS were abrogated by double mutations in cAMP response element (CRE) and FGF2 response element (FRE). Tyrosine kinase inhibitor herbimycin A, ERK1/2 inhibitor and antioxidant N-acetylcystein inhibited effects of P. gingivalis LPS. Protein kinase A inhibitor and PI3-kinase/Akt inhibitor only abolished the effect of 0.01 microg/ml P. gingivalis LPS. Furthermore, 0.1 microg/ml LPS decreased the CRE- and FRE-protein complexes formation, whereas 0.01 microg/ml P. gingivalis LPS increased the nuclear protein binding to CRE and FRE. ChIP assays revealed increased binding of CREB1, JunD, Fra2, Runx2, Dlx5, and Smad1 to a chromatin fragment containing the CRE and FRE by 0.01 microg/ml P. gingivalis LPS. These studies therefore indicated that 0.1 microg/ml suppressed, and 0.01 microg/ml P. gingivalis LPS increased BSP gene transcription mediated through CRE and FRE elements in the rat BSP gene promoter. J. Cell. Biochem. 110: 823-833, 2010. (c) 2010 Wiley-Liss, Inc.
Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts
NASA Technical Reports Server (NTRS)
Fitzgerald, J.; Hughes-Fulford, M.
1999-01-01
In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.
Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi
2013-01-01
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732
Specialized rules of gene transcription in male germ cells: the CREM paradigm.
Monaco, Lucia; Kotaja, Noora; Fienga, Giulia; Hogeveen, Kevin; Kolthur, Ullas S; Kimmins, Sarah; Brancorsini, Stefano; Macho, Betina; Sassone-Corsi, Paolo
2004-12-01
Specialized transcription complexes that coordinate the differentiation programme of spermatogenesis have been found in germ cells, which display specific differences in the components of the general transcription machinery. The TATA-binding protein family and its associated cofactors, for example, show upregulated expression in testis. In this physiological context, transcriptional control mediated by the activator cAMP response element modulator (CREM) represents an established paradigm. Somatic cell activation by CREM requires its phosphorylation at a unique regulatory site (Ser117) and subsequent interaction with the ubiquitous coactivator CREB-binding protein. In testis, CREM transcriptional activity is controlled through interaction with a tissue-specific partner, activator of CREM in the testis (ACT), which confers a powerful, phosphorylation-independent activation capacity. The function of ACT was found to be regulated by the testis-specific kinesin KIF17b. Here we discuss some aspects of the testis-specific transcription machinery, whose function is essential for the process of spermatogenesis.
Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik
2014-08-08
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Flavonoid Regulation of HCN2 Channels*
Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.
2013-01-01
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296
Day Camp Manual: Program. Book IV.
ERIC Educational Resources Information Center
Babcock, William
Book IV in a 5-book day camp manual discusses the camp program. Section I describes the organization, definition, and elements essential to successful day camp programs. Section II, which addresses the benefits and special considerations of mass programs, includes rainy day contingencies, materials to have on hand, and activity suggestions.…
Differential PKA activation and AKAP association determines cell fate in cancer cells
2013-01-01
Background The dependence of malignant properties of colorectal cancer (CRC) cells on IGF1R signaling has been demonstrated and several IGF1R antagonists are currently in clinical trials. Recently, we identified a novel pathway in which cAMP independent PKA activation by TGFβ signaling resulted in the destabilization of survivin/XIAP complex leading to increased cell death. In this study, we evaluated the effect of IGF1R inhibition or activation on PKA activation and its downstream cell survival signaling mechanisms. Methods Small molecule IGF1R kinase inhibitor OSI-906 was used to test the effect of IGF1R inhibition on PKA activation, AKAP association and its downstream cell survival signaling. In a complementary approach, ligand mediated activation of IGF1R was performed and AKAP/PKA signaling was analyzed for their downstream survival effects. Results We demonstrate that the inhibition of IGF1R in the IGF1R-dependent CRC subset generates cell death through a novel mechanism involving TGFβ stimulated cAMP independent PKA activity that leads to disruption of cell survival by survivin/XIAP mediated inhibition of caspase activity. Importantly, ligand mediated activation of the IGF1R in CRC cells results in the generation of cAMP dependent PKA activity that functions in cell survival by inhibiting caspase activity. Therefore, this subset of CRC demonstrates 2 opposing pathways organized by 2 different AKAPs in the cytoplasm that both utilize activation of PKA in a manner that leads to different outcomes with respect to life and death. The cAMP independent PKA activation pathway is dependent upon mitochondrial AKAP149 for its apoptotic functions. In contrast, Praja2 (Pja2), an AKAP-like E3 ligase protein was identified as a key element in controlling cAMP dependent PKA activity and pro-survival signaling. Genetic manipulation of AKAP149 and Praja2 using siRNA KD had opposing effects on PKA activity and survivin/XIAP regulation. Conclusions We had identified 2 cytoplasmic pathways dependent upon the same enzymatic activity with opposite effects on cell fate in terms of life and death. Understanding the specific mechanistic functions of IGF1R with respect to determining the PKA survival functions would have potential for impact upon the development of new therapeutic strategies by exploiting the IGF1R/cAMP-PKA survival signaling in cancer. PMID:24083380
Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir
2010-03-01
The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernier, M.; Chatelain, P.; Mather, J.P.
1986-11-01
The author have investigated the effects of insulin and somatomedin-C/insulin like growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 ..mu..g/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolinmore » was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 ..mu..g/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated (/sup 3/H)-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through the receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.« less
A Pediatric Cardiology Fellowship Boot Camp improves trainee confidence.
Allan, Catherine K; Tannous, Paul; DeWitt, Elizabeth; Farias, Michael; Mansfield, Laura; Ronai, Christina; Schidlow, David; Sanders, Stephen P; Lock, James E; Newburger, Jane W; Brown, David W
2016-12-01
Introduction New paediatric cardiology trainees are required to rapidly assimilate knowledge and gain clinical skills to which they have limited or no exposure during residency. The Pediatric Cardiology Fellowship Boot Camp (PCBC) at Boston Children's Hospital was designed to provide incoming fellows with an intensive exposure to congenital cardiac pathology and a broad overview of major areas of paediatric cardiology practice. The PCBC curriculum was designed by core faculty in cardiac pathology, echocardiography, electrophysiology, interventional cardiology, exercise physiology, and cardiac intensive care. Individual faculty contributed learning objectives, which were refined by fellowship directors and used to build a programme of didactics, hands-on/simulation-based activities, and self-guided learning opportunities. A total of 16 incoming fellows participated in the 4-week boot camp, with no concurrent clinical responsibilities, over 2 years. On the basis of pre- and post-PCBC surveys, 80% of trainees strongly agreed that they felt more prepared for clinical responsibilities, and a similar percentage felt that PCBC should be offered to future incoming fellows. Fellows showed significant increase in their confidence in all specific knowledge and skills related to the learning objectives. Fellows rated hands-on learning experiences and simulation-based exercises most highly. We describe a novel 4-week-long boot camp designed to expose incoming paediatric cardiology fellows to the broad spectrum of knowledge and skills required for the practice of paediatric cardiology. The experience increased trainee confidence and sense of preparedness to begin fellowship-related responsibilities. Given that highly interactive activities were rated most highly, boot camps in paediatric cardiology should strongly emphasise these elements.
Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K
2001-04-01
Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.
Fusco, Salvatore; Ripoli, Cristian; Podda, Maria Vittoria; Ranieri, Sofia Chiatamone; Leone, Lucia; Toietta, Gabriele; McBurney, Michael W.; Schütz, Günther; Riccio, Antonella; Grassi, Claudio; Galeotti, Tommaso; Pani, Giovambattista
2012-01-01
Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD+-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes. PMID:22190495
Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin
2015-11-01
Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.
Wilderman, Andrea; Guo, Yurong; Divakaruni, Ajit S.; Perkins, Guy; Zhang, Lingzhi; Murphy, Anne N.; Taylor, Susan S.; Insel, Paul A.
2015-01-01
Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin− (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin− S49 cells. WT, but not kin−, S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin− cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin− cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin− S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin− cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses. PMID:26203188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, F.Y.; Rani, C.S.; Field, J.B.
Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide.more » Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or (1-14C)glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition.« less
Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D
2007-04-01
Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.
Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.
Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N
2012-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D
Trian, Thomas; Burgess, Janette K.; Niimi, Kyoko; Moir, Lyn M.; Ge, Qi; Berger, Patrick; Liggett, Stephen B.; Black, Judith L.; Oliver, Brian G.
2011-01-01
Background and Objective Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. Objective To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism. Methods We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined. Results In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM. Conclusion Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed. PMID:21611147
Tariqul Islam, A F M; Yue, Haicen; Scavello, Margarethakay; Haldeman, Pearce; Rappel, Wouter-Jan; Charest, Pascale G
2018-08-01
To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing. Copyright © 2018 Elsevier Inc. All rights reserved.
Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter
2014-01-01
The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499
Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted
2014-11-19
The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.
Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A
2001-05-01
cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on multicellular development when expressed in wild-type cells. These findings suggest that the phosphorylated C-terminus of cAR1 may be involved in regulating aspects of receptor-mediated processes, is not essential for GBF function, and may play a role in mediating subsequent development. Copyright 2001 Academic Press.
Boy-Marcotte, Emmanuelle; Perrot, Michel; Bussereau, Françoise; Boucherie, Hélian; Jacquet, Michel
1998-01-01
The multicopy suppressors of the snf1 defect, Msn2p and Msn4p transcription factors (Msn2/4p), activate genes through the stress-responsive cis element (CCCCT) in response to various stresses. This cis element is also the target for repression by the cyclic AMP (cAMP)-signaling pathway. We analyzed the two-dimensional gel electrophoresis pattern of protein synthesis of the msn2 msn4 double mutant and compared it with that of the wild-type strain during exponential growth phase and at the diauxic transition. Thirty-nine gene products (including those of ALD3, GDH3, GLK1, GPP2, HSP104, HXK1, PGM2, SOD2, SSA3, SSA4, TKL2, TPS1, and YBR149W) are dependent upon Msn2/4p for their induction at the diauxic transition. The expression of all these genes is repressed by cAMP. Thirty other genes identified during this study are still inducible in the mutant. A subset of these genes were found to be superinduced at the diauxic transition, and others were subject to cAMP repression (including ACH1, ADH2, ALD6, ATP2, GPD1, ICL1, and KGD2). We conclude from this analysis that Msn2/4p control a large number of genes induced at the diauxic transition but that other, as-yet-uncharacterized regulators, also contribute to this response. In addition, we show here that cAMP repression applies to both Msn2/4p-dependent and -independent control of gene expression at the diauxic shift. Furthermore, the fact that all the Msn2/4p gene targets are subject to cAMP repression suggests that these regulators could be targets for the cAMP-signaling pathway. PMID:9495741
Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L
2017-07-18
Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.
Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro
2012-01-01
Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.
Wang, Li; Burmeister, Brian T; Johnson, Keven R; Baillie, George S; Karginov, Andrei V; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K
2015-05-01
Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3',5'-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity. Published by Elsevier Inc.
Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.
Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang
2017-08-01
Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E 2 . Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nicotine suppresses bone sialoprotein gene expression.
Nakayama, Y; Mezawa, M; Araki, S; Sasaki, Y; Wang, S; Han, J; Li, X; Takai, H; Ogata, Y
2009-10-01
Tobacco smoking is a risk factor for periodontitis and osteoporosis. Nicotine is a major component of tobacco, and has been reported to inhibit proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed by differentiated osteoblasts that appears to function in the initial mineralization of bone. The purpose of this study was to determine the effects of nicotine on bone metabolism. We used rat osteobast-like UMR106 and ROS 17/2.8 cells and rat stromal bone marrow RBMC-D8 cells. To determine the molecular basis of the transcriptional regulation of the BSP gene by nicotine, we conducted Northern hybridization, transient transfection analyses with chimeric constructs of the BSP gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Nicotine (250 microg/mL) decreased the BSP mRNA levels at 12 and 24 h in UMR106 and ROS 17/2.8 cells. From transient transfection assays using various sized BSP promoter-luciferase constructs, nicotine decreased the luciferase activities of the construct, including the promoter sequence nucleotides -116 to +60, in UMR106 and RBMC-D8 cells. Nicotine decreased the nuclear protein binding to the cAMP response element (CRE), fibroblast growth factor 2 response element (FRE) and homeodomain protein-binding site (HOX) at 12 and 24 h. This study indicates that nicotine suppresses BSP transcription mediated through CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene.
Ultraviolet radiation directly induces pigment production by cultured human melanocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, P.S.; Gilchrest, B.A.
1987-10-01
In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of /sup 14/C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfoldmore » differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms.« less
Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J.; Guan, Guobo; Huang, Guanghua
2017-01-01
Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. PMID:28787458
ERIC Educational Resources Information Center
Auld, Margaret E.; Ehlke, Graceann
This guide was developed to help the nurse in any outdoor setting or organized camp program serving children and youth to: (1) understand the responsibilities of camp nursing; (2) be aware of the nurse's relationships with the camp director and other workers; (3) relate the camp health program to the overall objectives of the camping program; (4)…
A Transformational Curriculum Model: A Wilderness Travel Adventure Dog Sledding in Temagami.
ERIC Educational Resources Information Center
Leckie, Linda
1996-01-01
Personal narrative links elements of a dog sledding trip with the transformational curriculum model as applied to outdoor education. Describes the physical, mental, and spiritual challenges of a seven-day winter camping and dog sledding trip, during which students learned responsibility through experience and natural consequences and realized the…
CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons
ERIC Educational Resources Information Center
Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine
2012-01-01
The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…
Lee, Susan; Parent, Carole A.; Insall, Robert; Firtel, Richard A.
1999-01-01
We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation. PMID:10473630
Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia
Raju, Sammeta V.; Wang, Guoshun
2012-01-01
Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662
Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling
2014-01-01
Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046
Lacroix, Martin; Hontela, Alice
2003-08-01
The mechanisms of action of o,p'-DDD on adrenal steroidogenesis were investigated in vitro in rainbow trout (Oncorhynchus mykiss). Acute exposures to o,p'-DDD inhibited ACTH-stimulated cortisol secretion while cell viability decreased significantly only at the highest concentration tested (200 microM o,p'-DDD). Stimulation of cortisol secretion with a cAMP analogue (dibutyryl-cAMP) was inhibited at a higher concentration than that needed to inhibit ACTH-stimulated cortisol synthesis in cells exposed to o,p'-DDD. Forskolin-stimulated cortisol secretion and cAMP production, and NaF-stimulated cAMP production were inhibited in a concentration-dependent manner by o,p'-DDD. In contrast, basal cortisol secretion was stimulated while basal cAMP production was unaffected by o,p'-DDD. Pregnenolone-stimulated cortisol secretion was enhanced by o,p'-DDD at a physiologically relevant pregnenolone concentration, while o,p'-DDD inhibited cortisol secretion when a pharmacological concentration of pregnenolone was used. Our results suggest that the cAMP generation step is a target in o,p'-DDD-mediated disruption of ACTH-stimulated adrenal steroidogenesis in rainbow trout but that other downstream targets such as steroidogenic enzymes responsible for cortisol synthesis might also be affected.
Vaeth, Martin; Gogishvili, Tea; Bopp, Tobias; Klein, Matthias; Berberich-Siebelt, Friederike; Gattenloehner, Stefan; Avots, Andris; Sparwasser, Tim; Grebe, Nadine; Schmitt, Edgar; Hünig, Thomas; Serfling, Edgar; Bodor, Josef
2011-01-01
Inducible cAMP early repressor (ICER) is a transcriptional repressor, which, because of alternate promoter use, is generated from the 3′ region of the cAMP response modulator (Crem) gene. Its expression and nuclear occurrence are elevated by high cAMP levels in naturally occurring regulatory T cells (nTregs). Using two mouse models, we demonstrate that nTregs control the cellular localization of ICER/CREM, and thereby inhibit IL-2 synthesis in conventional CD4+ T cells. Ablation of nTregs in depletion of regulatory T-cell (DEREG) mice resulted in cytosolic localization of ICER/CREM and increased IL-2 synthesis upon stimulation. Direct contacts between nTregs and conventional CD4+ T cells led to nuclear accumulation of ICER/CREM and suppression of IL-2 synthesis on administration of CD28 superagonistic (CD28SA) Ab. In a similar way, nTregs communicated with B cells and induced the cAMP-driven nuclear localization of ICER/CREM. High levels of ICER suppressed the induction of nuclear factor of activated T cell c1 (Nfatc1) gene in T cells whose inducible Nfatc1 P1 promoter bears two highly conserved cAMP-responsive elements to which ICER/CREM can bind. These findings suggest that nTregs suppress T-cell responses by the cAMP-dependent nuclear accumulation of ICER/CREM and inhibition of NFATc1 and IL-2 induction. PMID:21262800
Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness
NASA Astrophysics Data System (ADS)
Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.
1989-09-01
Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mei, E-mail: limeihit@163.com; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing; Zhang, Dong-Qing
2011-08-12
Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Romore » 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.« less
Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.
Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M
2014-07-01
Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.
Spindler, Volker; Waschke, Jens
2011-02-01
cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions. © 2011 John Wiley & Sons Ltd.
Out-of-the-Box Marketing Strategies.
ERIC Educational Resources Information Center
Smith, Joanna Warren
1997-01-01
The new definition of camp includes year-round camp programs for a variety of populations at multiple sites. Developing a marketing strategy involves creating a mission statement that is unique, publishing a year-round marketing strategy, delivering a consistent quality product, and getting people to talk about camp. Sidebar lists elements of how…
Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory
ERIC Educational Resources Information Center
Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.
2012-01-01
Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…
Abukhashim, Mohamed; Wiebe, Glenis J; Seubert, John M
2011-10-01
Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which in turn are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). EETs are known to modulate a number of vascular and renal functions, but the exact signaling mechanism(s) of these EET-mediated effects remains unknown. The purpose of this study is to investigate the role of EETs and DHETs in regulating cyclic adenosine monophosphate (cAMP) production via adenylyl cyclase in a human embryonic kidney cell line (HEK293). HEK293 cells were treated with vehicle, forskolin, epinephrine, 11,12-EET, 11,12-DHET, as well as potential pathway and G-protein inhibitors to assess changes in cAMP production. Co-administering 11,12-EET with forskolin effectively eliminated the increased cAMP levels observed in cells treated with forskolin alone. The inhibitory effect of EETs on forskolin-mediated cAMP production was abolished when cells were treated with a sEH inhibitor (tAUCB). 11,12-DHET also negated the effects of forskolin, suggesting that the inhibitory effect observed in EET-treated cells could be attributed to the downstream metabolites, DHETs. In contrast, inhibition of phosphodiesterase IV (PDE4) with rolipram eliminated the effects of EETs or DHETs, and inhibition of Gαi with pertussis toxin also resulted in enhanced cAMP production. Our data suggest that DHETs regulate cAMP production via PDE4 and Gαi protein. Moreover, they provide novel evidence as to how EET-mediated signaling may alter G-protein coupling in HEK293 cells. © Springer Science+Business Media B.V. 2011
Rim, Jong S; Kozak, Leslie P
2002-09-13
Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.
Cawston, Erin E; Redmond, William J; Breen, Courtney M; Grimsey, Natasha L; Connor, Mark; Glass, Michelle
2013-10-01
The cannabinoid receptor type 1 (CB1 ) has an allosteric binding site. The drugs ORG27569 {5-chloro-3-ethyl-N-[2-[4-(1-piperidinyl)phenyl]ethyl]-1H-indole-2-carboxamide} and PSNCBAM-1 {1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea} have been extensively characterized with regard to their effects on signalling of the orthosteric ligand CP55,940 {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol}, and studies have suggested that these allosteric modulators increase binding affinity but act as non-competitive antagonists in functional assays. To gain a deeper understanding of allosteric modulation of CB1 , we examined real-time signalling and trafficking responses of the receptor in the presence of allosteric modulators. Studies of CB1 signalling were carried out in HEK 293 and AtT20 cells expressing haemagglutinin-tagged human and rat CB1 . We measured real-time accumulation of cAMP, activation and desensitization of potassium channel-mediated cellular hyperpolarization and CB1 internalization. ORG27569 and PSNCBAM-1 produce a complex, concentration and time-dependent modulation of agonist-mediated regulation of cAMP levels, as well as an increased rate of desensitization of CB1 -mediated cellular hyperpolarization and a decrease in agonist-induced receptor internalization. Contrary to previous studies characterizing allosteric modulators at CB1, this study suggests that the mechanism of action is not non-competitive antagonism of signalling, but rather that enhanced binding results in an increased rate of receptor desensitization and reduced internalization, which results in time-dependent modulation of cAMP signalling. The observed effect of the allosteric modulators is therefore dependent on the time frame over which the signalling response occurs. This finding may have important consequences for the potential therapeutic application of these compounds. © 2013 The British Pharmacological Society.
Yan, Bing-Ru; Zhou, Lu; Hu, Ming-Ming; Li, Mi; Lin, Heng; Yang, Yan; Wang, Yan-Yi
2017-01-01
Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral infection up-regulated cellular cAMP levels and activated PKACs, which then phosphorylated VISA at T54. This phosphorylation abrogated virus-induced aggregation of VISA and primed it for K48-linked polyubiquitination and degradation by the E3 ligase MARCH5, leading to attenuation of virus-triggered induction of downstream antiviral genes. PKACs-deficiency or inactivation by the inhibitor H89 potentiated innate immunity to RNA viruses in cells and mice. Our findings reveal a critical mechanism of attenuating innate immune response to avoid host damage at the late phase of viral infection by the house-keeping PKA kinase. PMID:28934360
Yan, Bing-Ru; Zhou, Lu; Hu, Ming-Ming; Li, Mi; Lin, Heng; Yang, Yan; Wang, Yan-Yi; Shu, Hong-Bing
2017-09-01
Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral infection up-regulated cellular cAMP levels and activated PKACs, which then phosphorylated VISA at T54. This phosphorylation abrogated virus-induced aggregation of VISA and primed it for K48-linked polyubiquitination and degradation by the E3 ligase MARCH5, leading to attenuation of virus-triggered induction of downstream antiviral genes. PKACs-deficiency or inactivation by the inhibitor H89 potentiated innate immunity to RNA viruses in cells and mice. Our findings reveal a critical mechanism of attenuating innate immune response to avoid host damage at the late phase of viral infection by the house-keeping PKA kinase.
CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function.
Belgacem, Yesser H; Borodinsky, Laura N
2017-01-01
The central nervous system is a highly plastic network of cells that constantly adjusts its functions to environmental stimuli throughout life. Transcription-dependent mechanisms modify neuronal properties to respond to external stimuli regulating numerous developmental functions, such as cell survival and differentiation, and physiological functions such as learning, memory, and circadian rhythmicity. The discovery and cloning of the cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) constituted a big step toward deciphering the molecular mechanisms underlying neuronal plasticity. CREB was first discovered in learning and memory studies as a crucial mediator of activity-dependent changes in target gene expression that in turn impose long-lasting modifications of the structure and function of neurons. In this chapter, we review the molecular and signaling mechanisms of neural activity-dependent recruitment of CREB and its cofactors. We discuss the crosstalk between signaling pathways that imprints diverse spatiotemporal patterns of CREB activation allowing for the integration of a wide variety of stimuli.
CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1.
Chen, Jiaying; Zhang, Can; Mi, Yang; Chen, Fuxue; Du, Dongshu
2017-12-01
Glioma is stemmed from the glial cells in the brain, which is accounted for about 45% of all intracranial tumors. The characteristic of glioma is invasive growth, as well as there is no obvious boundary between normal brain tissue and glioma tissue, so it is difficult to resect completely with worst prognosis. The metabolism of glioma is following the Warburg effect. Previous researches have shown that GLUT1, as a glucose transporter carrier, affected the Warburg effect, but the molecular mechanism is not very clear. CREB1 (cAMP responsive element-binding protein1) is involved in various biological processes, and relevant studies confirmed that CREB1 protein regulated the expression of GLUT1, thus mediating glucose transport in cells. Our experiments mainly reveal that the CREB1 could affect glucose transport in glioma cells by regulating the expression of GLUT1, which controlled the metabolism of glioma and affected the progression of glioma.
Detry, C; Lamour, V; Castronovo, V; Bellahcène, A
2008-02-01
Bone sialoprotein (BSP) expression is detected in a variety of human osteotropic cancers. High expression of BSP in breast and prostate primary carcinomas is associated with progression and bone metastases development. In this study, we examined the transcriptional regulation of BSP gene expression in MDA-MB-231 and MCF-7 human breast cancer cells compared with Saos-2 human osteoblast-like cells. BSP human promoter deletion analyses delineated a -56/-84 region, which comprises a cAMP response element (CRE) that was sufficient for maximal promoter activity in breast cancer cell lines. We found that the basic fibroblast growth factor response element (FRE) also located in the proximal promoter was a crucial regulator of human BSP promoter activity in Saos-2 but not in breast cancer cells. Promoter activity experiments in combination with DNA mobility shift assays demonstrated that BSP promoter activity is under the control of the CRE element, through CREB-1, JunD and Fra-2 binding, in MDA-MB-231, MCF-7 and in Saos-2 cells. Forskolin, a protein kinase A pathway activator, failed to enhance BSP transcriptional activity suggesting that CRE site behaves as a constitutive rather than an inducible element in these cell lines. Over-expression of JunD and Fra-2 increased BSP promoter activity and upregulated endogenous BSP protein expression in MCF-7 and Saos-2 cells while siRNA-mediated inhibition of both factors expression significantly reduced BSP protein level in MDA-MB-231. Collectively, these data provide with new transcriptional mechanisms, implicating CREB and AP-1 factors, that control BSP gene expression in breast cancer cells.
Exploring early twenty-first century developed forest camping experiences and meanings
Barry A. Garst; Daniel R. Williams; Joseph W. Roggenbuck
2010-01-01
This study examines experiences and associated meanings of 38 family groups participating in developed camping. The analysis is guided by discursive social psychology in which expressed meanings reflect interpretive frames campers use to explain experiences. Key elements of camping experience include nature, social interaction, and comfort/convenience. The most common...
Project Trust: Breaking down Barriers between Middle School Children
ERIC Educational Resources Information Center
Batiuk, Mary Ellen; Boland, James A.; Wilcox, Norma
2004-01-01
This paper analyzes the success of a camp retreat weekend called Project Trust involving middle school students and teachers. The goal of the camp is to break down barriers between cliques identified as active in the school. The camp focuses on building team relationships across clique membership and incorporates elements of peace education and…
Park, Keun Hong; Park, Hyun Jin; Shin, Keon Sung; Choi, Hyun Sook; Kai, Masaaki; Lee, Myung Koo
2012-07-01
The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.
Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R
2006-03-01
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.
Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M.
2013-01-01
Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281
NASA Technical Reports Server (NTRS)
Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.
1997-01-01
The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.
NASA Astrophysics Data System (ADS)
Sharman, Elizabeth R.; Taylor, Bruce E.; Minarik, William G.; Dubé, Benoît; Wing, Boswell A.
2015-06-01
We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and "showings" within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between -1.9 and +2.5 ‰, and Δ33SV-CDT values of between -0.59 and -0.03 ‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0 ‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion.
Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R
2006-09-01
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.
Paca-Uccaralertkun, S; Zhao, L J; Adya, N; Cross, J V; Cullen, B R; Boros, I M; Giam, C Z
1994-01-01
The human T-cell lymphotropic virus type I (HTLV-I) transactivator, Tax, the ubiquitous transcriptional factor cyclic AMP (cAMP) response element-binding protein (CREB protein), and the 21-bp repeats in the HTLV-I transcriptional enhancer form a ternary nucleoprotein complex (L. J. Zhao and C. Z. Giam, Proc. Natl. Acad. Sci. USA 89:7070-7074, 1992). Using an antibody directed against the COOH-terminal region of Tax along with purified Tax and CREB proteins, we selected DNA elements bound specifically by the Tax-CREB complex in vitro. Two distinct but related groups of sequences containing the cAMP response element (CRE) flanked by long runs of G and C residues in the 5' and 3' regions, respectively, were preferentially recognized by Tax-CREB. In contrast, CREB alone binds only to CRE motifs (GNTGACG[T/C]) without neighboring G- or C-rich sequences. The Tax-CREB-selected sequences bear a striking resemblance to the 5' or 3' two-thirds of the HTLV-I 21-bp repeats and are highly inducible by Tax. Gel electrophoretic mobility shift assays, DNA transfection, and DNase I footprinting analyses indicated that the G- and C-rich sequences flanking the CRE motif are crucial for Tax-CREB-DNA ternary complex assembly and Tax transactivation but are not in direct contact with the Tax-CREB complex. These data show that Tax recruits CREB to form a multiprotein complex that specifically recognizes the viral 21-bp repeats. The expanded DNA binding specificity of Tax-CREB and the obligatory role the ternary Tax-CREB-DNA complex plays in transactivation reveal a novel mechanism for regulating the transcriptional activity of leucine zipper proteins like CREB.
Vision, Leadership, and Change: The Case of Ramah Summer Camps
ERIC Educational Resources Information Center
Reimer, Joseph
2010-01-01
In his retrospective essay, Seymour Fox (1997) identified "vision" as the essential element that shaped the Ramah camp system. I will take a critical look at Fox's main claims: (1) A particular model of vision was essential to the development of Camp Ramah; and (2) That model of vision should guide contemporary Jewish educators in creating Jewish…
Taylor, Emily J. A.; Pantazaka, Evangelia; Shelley, Kathryn L.
2017-01-01
In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2. Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3. The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through “hyperactive signaling junctions,” wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals. PMID:28877931
Yang, Li-Na; Yin, Ziyi; Zhang, Xi; Feng, Wanzhen; Xiao, Yuhan; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang
2018-05-01
The cyclic adenosine monophosphate (cAMP) signalling pathway mediates signal communication and sensing during infection-related morphogenesis in eukaryotes. Many studies have implicated cAMP as a critical mediator of appressorium development in the rice blast fungus, Magnaporthe oryzae. The cAMP phosphodiesterases, MoPdeH and MoPdeL, as key regulators of intracellular cAMP levels, play pleiotropic roles in cell wall integrity, cellular morphology, appressorium formation and infectious growth in M. oryzae. Here, we analysed the roles of domains of MoPdeH and MoPdeL separately or in chimeras. The results indicated that the HD and EAL domains of MoPdeH are indispensable for its phosphodiesterase activity and function. Replacement of the MoPdeH HD domain with the L1 and L2 domains of MoPdeL, either singly or together, resulted in decreased cAMP hydrolysis activity of MoPdeH. All of the transformants exhibited phenotypes similar to that of the ΔMopdeH mutant, but also revealed that EAL and L1 play additional roles in conidiation, and that L1 is involved in infectious growth. We further found that the intracellular cAMP level is important for surface signal recognition and hyphal autolysis. The intracellular cAMP level negatively regulates Mps1-MAPK and positively regulates Pmk1-MAPK in the rice blast fungus. Our results provide new information to better understand the cAMP signalling pathway in the development, differentiation and plant infection of the fungus. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williaes, B. A.
1983-01-01
It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.
Jung, Eui-Man; Kim, Yu-Kyung; Lee, Geun-Shik; Hyun, Sang-Hwan; Hwang, Woo-Suk; Jeung, Eui-Bae
2012-07-01
Diabetes mellitus is a metabolic disease caused by impaired insulin secretion from the pancreatic β cells and increased insulin resistance in peripheral tissues. Recently, the overexpression of inducible cyclic AMP (cAMP) early repressor (ICER) Iγ in rodent pancreatic β cells was found to induce insulin deficiency and glucagon overproduction similar to that found in human diabetes mellitus. ICER Iγ with only a DNA binding domain interrupts the transcriptional regulation of the cAMP responsive element-binding protein (CREB) target genes. Based on this information, we hypothesized that the overexpression of ICER Iγ, the most powerful competitor to CREB, could be useful for generating a pig model of diabetes. First, we evaluated the promoter activities of the human insulin gene for the β cell-specific overexpression of ICER Iγ in the pig pancreas. The maximum promoter activity region [-1,431 nucleotides (nt) to +1 nt, +1 = the transcriptional start site] of the insulin gene presented an activity level 3-fold higher than a promoterless construct. Second, ICER Iγ overexpression controlled by this promoter region significantly blocked the glucose-mediated insulin transcription, such as that regulated by the viral promoter in the pancreatic β cell line, MIN6. This suggests that the human insulin promoter may facilitate the overexpression of ICER Iγ in porcine pancreatic β cells. In addition, the overexpression of ICER Iγ in porcine β cells may induce human-like type 1 diabetes mellitus in pigs. In the present study, we generated transgenic fibroblasts containing ICER Iγ cDNA controlled by the human insulin promoter, as well as two screening markers, the green fluorescence protein and the neomycin resistance gene. These fibroblasts may provide a source for somatic cell nuclear transfer to generate a pig model that mimics human diabetes mellitus.
Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.
Martin, Adam L; Steurer, Michael A; Aronstam, Robert S
2015-01-01
The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.
Constitutive Activity among Orphan Class-A G Protein Coupled Receptors
Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.
2015-01-01
The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023
Brabets, Timothy P.; Whitman, Matthew S.
2002-01-01
The Camp and Costello Creek watersheds are located on the south side of Denali National Park and Preserve. The Dunkle Mine, an abandoned coal mine, is located near the mouth of Camp Creek. Due to concern about runoff from the mine and its possible effects on the water quality and aquatic habitat of Camp Creek and its receiving stream, Costello Creek, these two streams were studied during the summer runoff months (June to September) in 1999 and 2000 as part of a cooperative study with the National Park Service. Since the south side of Denali National Park and Preserve is part of the U.S. Geological Survey?s National Water-Quality Assessment Cook Inlet Basin study unit, an additional part of this study included analysis of existing water-quality data at 23 sites located throughout the south side of Denali National Park and Preserve to compare with the water quality of Camp and Costello Creeks and to obtain a broader understanding of the water quality in this area of the Cook Inlet Basin. Analysis of water column, bed sediment, fish, invertebrate, and algae data indicate no effects on the water quality of Camp Creek from the Dunkle Mine. Although several organic compounds were found in the streambed of Camp Creek, all concentrations were below recommended levels for aquatic life and most of the concentrations were below the minimum reporting level of 50 ?g/kg. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of Camp Creek exceeded threshold effect concentrations (TEC), but concentrations of these trace elements were also exceeded in streambed sediments of Costello Creek above Camp Creek. Since the percent organic carbon in Camp Creek is relatively high, the toxicity quotient of 0.55 is only slightly above the threshold value of 0.5. Costello Creek has a relatively low organic carbon content and has a higher toxicity quotient of 1.19. Analysis of the water-quality data for other streams located in the south side of Denali National Park and Preserve indicate similarities to Camp Creek and Costello Creek. Most of the streams are calcium bicarbonate/calcium bicarbonate-sulfate type water with the exception of two streams that are calcium sulfate and magnesium sulfate type water. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of 9 streams exceeded the TEC or the probable effect concentration (PEC). Seven streams exceeded the threshold value of the toxicity quotient. Analysis of trace element concentrations in bed sediment and basin characteristics for 16 watersheds by cluster and discriminant analysis techniques indicated that the watersheds could be separated into two groups based on their basin characteristics.
Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP
Vardjan, Nina; Chowdhury, Helena H.; Horvat, Anemari; Velebit, Jelena; Malnar, Maja; Muhič, Marko; Kreft, Marko; Krivec, Špela G.; Bobnar, Saša T.; Miš, Katarina; Pirkmajer, Sergej; Offermanns, Stefan; Henriksen, Gjermund; Storm-Mathisen, Jon; Bergersen, Linda H.; Zorec, Robert
2018-01-01
Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism. PMID:29867342
Chouhan, Nitin Singh; Mohan, Krithika; Ghose, Aurnab
2017-12-01
Social rituals, such as male-male aggression in Drosophila , are often stereotyped and the component behavioral patterns modular. The likelihood of transition from one behavioral pattern to another is malleable by experience and confers flexibility to the behavioral repertoire. Experience-dependent modification of innate aggressive behavior in flies alters fighting strategies during fights and establishes dominant-subordinate relationships. Dominance hierarchies resulting from agonistic encounters are consolidated to longer-lasting, social-status-dependent behavioral modifications, resulting in a robust loser effect. We showed that cAMP dynamics regulated by the calcium-calmodulin-dependent adenylyl cyclase, Rut, and the cAMP phosphodiesterase, Dnc, but not the Amn gene product, in specific neuronal groups of the mushroom body and central complex, mediate behavioral plasticity necessary to establish dominant-subordinate relationships. rut and dnc mutant flies were unable to alter fighting strategies and establish dominance relationships during agonistic interactions. This real-time flexibility during a fight was independent of changes in aggression levels. Longer-term consolidation of social status in the form of a loser effect, however, required additional Amn -dependent inputs to cAMP signaling and involved a circuit-level association between the α/β and γ neurons of the mushroom body. Our findings implicate cAMP signaling in mediating the plasticity of behavioral patterns in aggressive behavior and in the generation of a temporally stable memory trace that manifests as a loser effect. © 2017. Published by The Company of Biologists Ltd.
Heteromerization of G2A and OGR1 enhances proton sensitivity and proton-induced calcium signals.
Huang, Ya-Han; Su, Yeu-Shiuan; Chang, Chung-Jen; Sun, Wei-Hsin
2016-12-01
Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ∼ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH ≥ 6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH ≤ 5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.
Chen, Lin; Hernandez, M. Rosario
2009-01-01
Purpose Investigate the effect of hydrostatic pressure (HP) on 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and downstream signaling in cultures of normal optic nerve head (ONH) astrocytes from Caucasian American (CA) and African American (AA) donors. Methods Intracellular cAMP levels were assayed after exposing ONH astrocytes to HP for varying times. Quantitative RT–PCR was used to determine the expression levels of selected cAMP pathway genes in human ONH astrocytes after HP treatment. Western blots were used to measure changes in the phosphorylation state of cAMP response element binding protein (CREB) in astrocytes subjected to HP, ATP, and phosphodiesterase or kinase inhibitors. Results The basal intracellular cAMP level is similar among AA and CA astrocytes. After exposure to HP for 15 min and 30 min in the presence of a phosphodiesterase inhibitor a further increase of intracellular cAMP was observed in AA astrocytes, but not in CA astrocytes. Consistent with activation of the cAMP-dependent protein kinase pathway, CREB phosphorylation (Ser-133) was increased to a greater extent in AA than in CA astrocytes after 3 h of HP. Exposure to elevated HP for 3–6 h differentially altered the expression levels of selected cAMP pathway genes (ADCY3, ADCY9, PTHLH, PDE7B) in AA compared to CA astrocytes. Treatment with ATP increased more CREB phosphorylation in CA than in AA astrocytes, suggesting differential Ca2+ signaling in these populations. Conclusions Activation of the cAMP-dependent signaling pathway by pressure may be an important contributor to increased susceptibility to elevated intraocular pressure and glaucoma in AA, a population at higher risk for the disease. PMID:19710943
Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system
Aricioglu, Feyza; Means, Andrea; Regunathan, Soundar
2010-01-01
Agmatine is an endogenous amine derived from arginine that potentiates morphine analgesia and blocks symptoms of naloxone-precipitated morphine withdrawal in rats. In this study, we sought to determine whether treatment with agmatine during the development of morphine dependence inhibits the withdrawal symptoms and that the effect is mediated by cAMP system. Exposure of rats to morphine for 7 days resulted in marked naloxone-induced withdrawal symptoms and agmatine treatment along with morphine significantly decreasing the withdrawal symptoms. The levels of cAMP were markedly increased in morphine-treated rat brain slices when incubated with naloxone and this increase was significantly reduced in rats treated with morphine and agmatine. The induction of tyrosine hydroxylase after morphine exposure was also reduced in locus coeruleus when agmatine was administered along with morphine. We conclude that agmatine reduces the development of dependence to morphine and that this effect is probably mediated by the inhibition of cAMP signaling pathway during chronic morphine exposure. PMID:15541421
GW182 controls Drosophila circadian behavior and PDF-Receptor signaling
Zhang, Yong; Emery, Patrick
2013-01-01
The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level - which is limiting in circadian neurons - influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling, and thus profoundly impacts the circadian neural network and its response to environmental inputs. PMID:23583112
mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion.
Liu, Lunhua; Das, Satarupa; Losert, Wolfgang; Parent, Carole A
2010-12-14
We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis. Copyright © 2010 Elsevier Inc. All rights reserved.
Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena
2009-02-01
Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.
Endothelin-1 regulates rat bone sialoprotein gene transcription.
Li, Xinyue; Wang, Zhitao; Yang, Li; Li, Zhengyang; Ogata, Yorimasa
2010-06-01
Endothelin-1 (ET-1) was originally discovered as a vasoconstrictor protein excreted by vascular endothelial cells. Recently, tumor-produced ET-1 has been considered to stimulate osteoblasts to form new bone, and to be an important mediator of osteoblastic bone metastasis. ET-1 has high affinity for two different membrane receptors, ET(A)R and ET(B)R, which are expressed by many types of cells including osteoblasts. Bone sialoprotein (BSP) is a phosphorylated and sulfated glycoprotein associated with mineralized connective tissues. To investigate the effects of ET-1 on BSP transcription, we used rat osteoblast-like ROS17/2.8 cells. Levels of BSP and osteopontin mRNA were increased at 12 h after treatment with ET-1 (10 ng/ml), and ET-1 at the same concentration induced luciferase activity of a -116 to +60 BSP promoter construct at 6 h. Transcriptional activity of -84BSPLUC, which contains the cAMP response element (CRE), was increased by ET-1. Furthermore, at 6 h, ET-1 (10 ng/ml) increased the binding of nuclear protein to CRE, the FGF2 response element (FRE) and the homeodomain protein-binding site (HOX). Antibodies against CREB1, JunD and Fra2 disrupted the formation of CRE-protein complexes, while antibodies against Runx2 and Dlx5 reduced the formation of FRE- and HOX-protein complexes. These findings indicate that ET-1 increases BSP transcription via the CRE, FRE and HOX sites in the rat BSP gene promoter.
Keller, M J; Wheeler, D G; Cooper, E; Meier, J L
2003-06-01
Prior studies have suggested a role of the five copies of the 19-bp-repeat cyclic AMP (cAMP)-response element (CRE) in major immediate-early (MIE) promoter activation, the rate-limiting step in human cytomegalovirus (HCMV) replication. We used two different HCMV genome modification strategies to test this hypothesis in acutely infected cells. We report the following: (i) the CREs do not govern basal levels of MIE promoter activity at a high or low multiplicity of infection (MOI) in human foreskin fibroblast (HFF)- or NTera2-derived neuronal cells; (ii) serum and virion components markedly increase MIE promoter-dependent transcription at a low multiplicity of infection (MOI), but this increase is not mediated by the CREs; (iii) forskolin stimulation of the cAMP signaling pathway induces a two- to threefold increase in MIE RNA levels in a CRE-specific manner at a low MOI in both HFF- and NTera2-derived neuronal cells; and (iv) the CREs do not regulate basal levels of HCMV DNA replication at a high or low MOI in HFF. Their presence does impart a forskolin-induced increase in viral DNA replication at a low MOI but only when basal levels of MIE promoter activity are experimentally diminished. In conclusion, the 19-bp-repeat CREs add to the robust MIE promoter activity that occurs in the acutely infected stimulated cells, although the CREs' greater role may be in other settings.
Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo
2016-12-01
In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.
Kamath, Vidyulata; Moberg, Paul J; Calkins, Monica E; Borgmann-Winter, Karin; Conroy, Catherine G; Gur, Raquel E; Kohler, Christian G; Turetsky, Bruce I
2012-07-01
While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. Copyright © 2012 Elsevier B.V. All rights reserved.
Kamath, Vidyulata; Moberg, Paul J.; Calkins, Monica E.; Borgmann-Winter, Karin; Conroy, Catherine G.; Gur, Raquel E.; Kohler, Christian G.; Turetsky, Bruce I.
2012-01-01
Background While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3’,5’-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Method Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n = 17) and controls at low risk for developing psychosis (n = 15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. Results The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. Conclusions This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. PMID:22537567
Parry, Jesse J.; Chen, Ronald; Andrews, Rebecca; Lears, Kimberly A.
2012-01-01
G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a Bmax and dissociation constant (Kd) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with Bmax and Kd values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling. PMID:22495673
Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.
Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A
2016-01-01
Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways.
Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans
Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja
2016-01-01
ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways. PMID:27921082
NASA Astrophysics Data System (ADS)
Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.
2015-12-01
RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework, and mission presentations. On the basis of this successful effort, we hope to expand to other towns.
Foreign Language Camps: Camp Waskowitz. Teacher's Guide and Planning Book.
ERIC Educational Resources Information Center
Baudin, Phil; And Others
This guide to running a foreign language camp is intended to cover all aspects of camp administration and program planning. The philosophy of language camps is set forth. The chairperson's responsibilities regarding staff recruitment, staff assignments, and handling finances are outlined. Sample schedules for French, Spanish, and German camps are…
Mitton, Bryan; Chae, Hee-Don; Hsu, Katie; Dutta, Ritika; Aldana-Masangkay, Grace; Ferrari, Roberto; Davis, Kara; Tiu, Bruce C.; Kaul, Arya; Lacayo, Norman; Dahl, Gary; Xie, Fuchun; Li, Bingbing X.; Breese, Marcus R.; Landaw, Elliot M.; Nolan, Garry; Pellegrini, Matteo; Romanov, Sergei; Xiao, Xiangshu; Sakamoto, Kathleen M.
2016-01-01
The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, which may represent a novel approach for AML therapy. PMID:27211267
Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D
1986-02-01
Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest that the attenuation of PTH stimulation of cAMP production in treated bone cells may be, at least in part, due to receptor-mediated endocytosis of the hormone.
Turetsky, Bruce I.; Moberg, Paul J.
2012-01-01
Objective Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Method Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. Results There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. Conclusions This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients’ unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dys-regulated in schizophrenia. PMID:19074977
Turetsky, Bruce I; Moberg, Paul J
2009-02-01
Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.
Youth Development Outcomes of the Camp Experience: Evidence for Multidimensional Growth.
Thurber, Christopher A; Scanlin, Marge M; Scheuler, Leslie; Henderson, Karla A
2007-04-01
Three thousand, three hundred and ninety-five families, whose child attended one of 80 different day or resident summer camps for at least one week, completed customized questionnaires that measured growth from precamp to postcamp in four domains: Positive Identity, Social Skills, Physical & Thinking Skills, and Positive Values & Spirituality. Parents, children, and camp staff reported significant positive change in these four domains; more than would be expected by maturation alone. Most gains were maintained or showed additional growth six months later. Few of the camp's structural elements correlated with growth, nor did striking gender, age, or ethnicity differences emerge. The study highlights the particular strengths of camp as an educational institution and social movement and suggests that different variations of summer camp can provide potent developmental experiences.
β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons
Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.
2010-01-01
Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600
Relaxin augments the inflammatory IL6 response in the choriodecidua
JS, Horton; SY, Yamamoto; GD, Bryant-Greenwood
2012-01-01
Intrauterine infection frequently leads to preterm birth (PTB), with the pathophysiology involving activation of the innate immune system and its associated inflammatory response. The choriodecidua produces relaxin (RLN) and elevated levels are associated with preterm premature rupture of the fetal membranes. However, it is not increased in bacterially-mediated PTB, but may act as an endogenous sterile inflammatory mediator. Elevated systemic RLN levels from the corpus luteum are also associated with PTB, but the mechanism is unknown. In clinical obstetrics, intrauterine inflammation or infection can coexist with elevated RLN. Therefore, in this study, we further characterized the effects of RLN alone or together with an inflammatory mediator on the production of IL1B, CSF2 (GM-CSF), IL6, IL8 and TNF, from chorionic cytotrophoblasts (CyT), decidual fibroblasts (DF) and stromal cells (DSC), using interleukin-1 beta (IL1B) to mimic sterile inflammation or lipopolysaccharide (LPS) for bacterial infection. Endogenous differences between the cells showed that the CyT expressed more and the RXFP1, its receptor RXFP1 splice variant D. CyT also showed the most robust cAMP response to RLN with increased IL6 secreted after 4 h, preceded by increased transcription at 1 h, likely due to activation of RXFP1 and cAMP. When all cell types were treated with IL1B and RLN, RLN augmented secretion of IL6 and IL8 from CyT and DF, but not DSC. Similarly, RLN augmented LPS-induced IL6 secretion from CyT and DF. Despite the structural similarity between TLR4 and RXFP1, blocking TLR4 in CyT had no effect on RLN-induced IL6 secretion, suggesting specific activation of RXFP1. Thus, we have shown that in the presence of a low level of intrauterine inflammation/infection, elevated RLN could act on the CyT and DF to augment the inflammatory response, contributing to the pathophysiology of PTB. PMID:22386961
Mechanotransduction through Integrins
NASA Technical Reports Server (NTRS)
Ingber, Donald
2004-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.
Jiang, Xue; Yang, Jingwen; Shen, Zhangfei; Chen, Yajie; Shi, Liangen; Zhou, Naiming
2016-08-01
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho
2015-01-01
In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF. PMID:26586997
Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho
2015-11-01
In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF.
Pasapera, Ana María; Jiménez-Aguilera, María del Pilar; Chauchereau, Anne; Milgrom, Edwin; Olivares, Aleida; Uribe, Aída; Gutiérrez-Sagal, Rubén; Ulloa-Aguirre, Alfredo
2005-03-01
In the present study, we analyzed human follicle-stimulating hormone (FSH)-induced cell proliferation and transactivation of estrogen-sensitive reporter genes-in L cells stably expressing the human FSH receptor [L-(hFSHR(+)) cells]. In order to dissect the signaling pathways involved in this process, L-(hFSHR(+)) cells were transiently transfected with either the 3X-ERE-TAT-Luc or the ERE-VitA2-TK-CAT reporter genes and treated with FSH or PKA activators (cholera toxin, forskolin and 8-Br-cAMP) in the presence or absence of various kinase inhibitors. We found that FSH and all PKA activators, specifically induced transactivation of both reporter genes. Transactivation of estrogen-sensitive genes by FSH or PKA activators were blocked (approximately 90%) by H89 (PKA inhibitor) and LY294002 but not by Wortmannin (PI3-K inhibitors), 4-OH-tamoxifen, ICI182,780 or SB203580 (p38 MAPK inhibitor); PD98059 (ERK1/2 inhibitor) partially (approximately 30%) blocked the FSH-mediated effect. The combination of FSH and estradiol resulted in a synergistic effect on transactivation as well as on cell proliferation, and this enhancement was attenuated by antiestrogens. We additionally analyzed the participation of the coactivators SRC-1 and cAMP response element binding protein (CREB)-binding protein (CBP) in FSH-evoked estrogen receptor (ER)-dependent transactivation; we found that CBP but not SRC-1 potentiated FSH-induced transcriptional activation of both ER-sensitive reporters, being this effect stronger on the ERE-VitA2-TK-CAT than on the 3X-ERE-TAT-Luc reporter. Thus, in L-(hFSHR(+)) cells FSH induces transcriptional activation of estrogen-sensitive genes through an A-kinase-triggered signaling pathway, using also to a lesser extent the ERK1/2 and p38 pathways. PI3-K is not apparently involved in this FSH-mediated process since LY294002, but not Wortmannin, specifically binds ERs and completely blocks estrogen action. Presumably, CBP cooperates with the ER on genes that contain estrogen responsive elements through mechanisms involving the participation of other proteins and/or basal transcription factors (e.g. CREB), which in turn mediate the transcriptional response of estrogen-sensitive reporter genes to FSH stimulation.
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Tang, Ming-Chi
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383more » alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation. ► The combined effects were reversed by H89. ► The combination of rolipram and PGE1 triggered NO production and iNOS expression. ► Effect of YC-1 occurred through inhibition of cAMP-specific PDE.« less
Park, Shin-Ji; Jin, Mei Ling; An, Hyun-Kyu; Kim, Kyoung-Sook; Ko, Min Jung; Kim, Cheol Min; Choi, Young Whan; Lee, Young-Choon
2015-02-19
In this study, a neurite outgrowth-inducing substance was isolated from the ethylacetate extract of the Polygonum multiflorum roots and identified as emodin by gas-liquid chromatography-mass spectrometry and (1)H NMR and (13)C NMR. Emodin displayed remarkable neurite outgrowth-inducing activity in Neuro2a cells, as demonstrated by morphological changes and immunocytochemistry for class III β-tubulin. Emodin exhibited a stronger neutrophic activity than retinoic acid (RA) known as inducer of neurite outgrowth in Neuro2a cells. Emodin treatment resulted in marked increases in phosphorylation of Akt a direct downstream signaling molecule of phosphatidylinositol 3-kinase (PI3K), but upstream of glycogen synthase kinase-3β (GSK-3β) and cAMP response element-binding protein (CREB). These augmentations and neurite-bearing cells induced by emodin were remarkably reduced by the addition of PI3K inhibitor LY294002. These results demonstrate that emodin induces neuronal differentiation of Neuro2a cells via PI3K/Akt/GSK-3β pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hulsurkar, M; Li, Z; Zhang, Y; Li, X; Zheng, D; Li, W
2017-03-01
Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.
The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock
Jagannath, Aarti; Butler, Rachel; Godinho, Sofia I.H.; Couch, Yvonne; Brown, Laurence A.; Vasudevan, Sridhar R.; Flanagan, Kevin C.; Anthony, Daniel; Churchill, Grant C.; Wood, Matthew J.A.; Steiner, Guido; Ebeling, Martin; Hossbach, Markus; Wettstein, Joseph G.; Duffield, Giles E.; Gatti, Silvia; Hankins, Mark W.; Foster, Russell G.; Peirson, Stuart N.
2013-01-01
Summary Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms. PMID:23993098
Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Takeshi; Abe, Daigo; Sekiya, Keizo
2007-06-01
Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less
Seven Habits of Highly Effective Camps.
ERIC Educational Resources Information Center
Thurber, Christopher A.
2002-01-01
Effective camps share seven habits that are essential elements of success: internal leadership development, explicit expectations for staff, ample camper preparation, personal relationships, supervisors-in-residence, two-way communication flow, and commitment to self-improvement. Three key outcomes for directors, staff, and campers resulting from…
Salmon, C; Marchelidon, J; Fontaine-Bertrand, E; Fontaine, Y A
1986-01-01
Cyclic AMP (cAMP) in pieces of eel ovary was greatly increased in vitro by the gonadotropin (cGTH) of carp, another teleost fish; after one hour at 20 degrees C, maximal stimulation = 31.7 and E.D. 50 = 0.08 micrograms/ml. Ovine lutropin (oLH) had less effect (maximal stimulation: 2.35; E.D. 50: 1.42 micrograms/ml); its action suggested that it involved a subfraction (oLH/cGTH RAc) of the receptor-adenylate cyclase (RAc) systems which mediate the action of cGTH. Another difference was the percentage of total cAMP accumulated under hormonal stimulation and released into the incubation medium; this percentage was much higher with oLH than with cGTH (47 vs 8% after one hour at 20 degrees C). This result might be explained by a localization of oLH/cGTH RAc in cells (theca ?) situated on the outside of the follicles and/or by a relative lack of cAMP binding proteins in the case of cAMP produced by oLH/cGTH RAc. Kinetic and thermodependence studies also disclosed hormone-dependent differences; at 5 degrees C, cAMP concentration was maximal after 40 min with oLH, whereas it was still increasing after 3 h with cGTH. Differences in the properties of phosphodiesterases and/or in the clearance rate of hormone-receptor (HR) complexes could explain these results. The set of RAc systems in eel ovary recognizing fish gonadotropin would then be heterogeneous; some of them would be endowed with original properties concerning receptor specificity and cAMP diffusion as well as associated phosphodiesterase activity and/or HR metabolism. We suggest that at a stage of evolution when a single sensu stricto GTH is present (instead of two in tetrapods), "isoreceptors", differing in specificity and in their fate after hormone binding, could be an important element in the fine regulation of gonadal functions.
Elliott, Amicia D.; Ustione, Alessandro
2014-01-01
The dysregulation of glucose-inhibited glucagon secretion from the pancreatic islet α-cell is a critical component of diabetes pathology and metabolic disease. We show a previously uncharacterized [Ca2+]i-independent mechanism of glucagon suppression in human and murine pancreatic islets whereby cAMP and PKA signaling are decreased. This decrease is driven by the combination of somatostatin, which inhibits adenylyl cyclase production of cAMP via the Gαi subunit of the SSTR2, and insulin, which acts via its receptor to activate phosphodiesterase 3B and degrade cytosolic cAMP. Our data indicate that both somatostatin and insulin signaling are required to suppress cAMP/PKA and glucagon secretion from both human and murine α-cells, and the combination of these two signaling mechanisms is sufficient to reduce glucagon secretion from isolated α-cells as well as islets. Thus, we conclude that somatostatin and insulin together are critical paracrine mediators of glucose-inhibited glucagon secretion and function by lowering cAMP/PKA signaling with increasing glucose. PMID:25406263
Sands, William A; Woolson, Hayley D; Milne, Gillian R; Rutherford, Claire; Palmer, Timothy M
2006-09-01
Here, we demonstrate that elevation of intracellular cyclic AMP (cAMP) in vascular endothelial cells (ECs) by either a direct activator of adenylyl cyclase or endogenous cAMP-mobilizing G protein-coupled receptors inhibited the tyrosine phosphorylation of STAT proteins by an interleukin 6 (IL-6) receptor trans-signaling complex (soluble IL-6Ralpha/IL-6). This was associated with the induction of suppressor of cytokine signaling 3 (SOCS-3), a bona fide inhibitor in vivo of gp130, the signal-transducing component of the IL-6 receptor complex. Attenuation of SOCS-3 induction in either ECs or SOCS-3-null murine embryonic fibroblasts abolished the inhibitory effect of cAMP, whereas inhibition of SHP-2, another negative regulator of gp130, was without effect. Interestingly, the inhibition of STAT phosphorylation and SOCS-3 induction did not require cAMP-dependent protein kinase activity but could be recapitulated upon selective activation of the alternative cAMP sensor Epac, a guanine nucleotide exchange factor for Rap1. Consistent with this hypothesis, small interfering RNA-mediated knockdown of Epac1 was sufficient to attenuate both cAMP-mediated SOCS-3 induction and inhibition of STAT phosphorylation, suggesting that Epac activation is both necessary and sufficient to observe these effects. Together, these data argue for the existence of a novel cAMP/Epac/Rap1/SOCS-3 pathway for limiting IL-6 receptor signaling in ECs and illuminate a new mechanism by which cAMP may mediate its potent anti-inflammatory effects.
Alcohol and Staff Leisure Time.
ERIC Educational Resources Information Center
Camping Magazine, 1992
1992-01-01
Discusses the problem of alcohol use and abuse by camp staff. Describes alcohol policies of two different camps. Camp Highlands allows responsible drinking but not intoxication. Camp Olympia requires total abstinence from alcohol. A policy that clearly expresses the camp's philosophy toward alcohol and spells out all expectations and results is…
Manna, Pulak R.; Slominski, Andrzej T.; King, Steven R.; Stetson, Cloyce L.
2014-01-01
Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5′-flanking region of the StAR gene demonstrated the importance of the −254/−1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the −254/−1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells. PMID:24265455
Habituation as an adaptive shift in response strategy mediated by neuropeptides
NASA Astrophysics Data System (ADS)
Ardiel, Evan L.; Yu, Alex J.; Giles, Andrew C.; Rankin, Catharine H.
2017-08-01
Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.
Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.
Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G
2016-02-01
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.
The stimulatory Gα(s) protein is involved in olfactory signal transduction in Drosophila.
Deng, Ying; Zhang, Weiyi; Farhat, Katja; Oberland, Sonja; Gisselmann, Günter; Neuhaus, Eva M
2011-04-07
Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gα(s) plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO₂ responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gα(s) also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gα(s) plays a role in the OR mediated signaling cascade in Drosophila.
DeRubertis, F R; Craven, P
1976-01-01
Hormone-induced desensitization of hormonal regulation of cyclic AMP (cAMP) content has been described in a number of tissues. In the present study, we examined responses of rat liver to glucagon after periods of sustained exposure to the hormone in vivo and in vitro. In intact anesthetized rats infused with glucagon (50 ng/min) for 1 h or more and in liver slices incubated with the hormone (10 muM) for this period, hepatic cAMP responsiveness to glucagon was significantly blunted compared with that of tissue exposed to the hormone for shorter periods. The reduction in hepatic cAMP responsiveness to glucagon appeared to be fully expressed by 2 h. With the doses of hormone employed, the sequential alterations in hepatic responsiveness seemed to be limited to the cAMP system, since other parameters of glucagon action did not wane with time. Diminished hepatic cAMP responsiveness during sustained hormonal exposure could not be attributed to decreased glucagon availability, accelerated extracellular release of cAMP, hepatic ATP depletion, or enhanced phosphodiesterase activity. Studies in vitro suggested that modulation of the cAMP response occurred at the level of adenylate cyclase (AC). During sustained exposure of hepatic slices to glucagon, reductions in glucagon-responsive AC correlated temporally with those in cAMP and both changes were reversible. Alterations in glucagon-responsive AC were demonstrated over a wide range of ATP (10 muM-0.1 mM) and glucagon (10 nM-5 MM) concentrations in the cyclase reaction mixture, and appeared to be a noncompetitive phenomenon relative to glucagon. Maximal NaF-responsive AC did not fall concomitantly with time. Thus, the reduction in glucagon-responsive AC was probably not related to a reduction in the catalytic unit of the enzyme, but could have been due to an alteration in glucagon binding to its receptor sites, or in the coupling mechanism involved in transmission of the hormonal signal to the catalytic unit. Images PMID:176180
Ma, Quan; Ying, Ming; Sui, Xiaojing; Zhang, Huimin; Huang, Haiyan; Yang, Linqing; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei
2015-01-01
Copper is an essential element for human growth and development; however, excessive intake of copper could contribute to neurotoxicity. Here we show that chronic exposure to copper in drinking water impaired spatial memory with simultaneous selective loss of hippocampal pre-synaptic protein synapsin 1, and post-synaptic density protein (PSD)-93/95 in mice. Copper exposure was shown to elevate the levels of nitrotyrosine and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampus, two markers of oxidative stress. Concurrently, we also found that copper exposure activated double stranded RNA-dependent protein kinase (PKR) as evidenced by increased ratio of phosphorylated PKR at Thr451 and total PKR and increased the phosphorylation of its downstream signaling molecule eukaryotic initiation factor 2α (eIF2α) at Ser51 in hippocampus. Consistent with activation of PKR/eIF2α signaling pathway which was shown to mediate synaptic deficit and cognitive impairment, the levels of activating transcription factor 4 (ATF-4), a downstream signaling molecule of eIF2α and a repressor of CREB-mediated gene expression, were significantly increased, while the activity of cAMP response elements binding protein (CREB) was inactivated as suggested by decreased phosphorylation of CREB at Ser133 by copper exposure. In addition, the expression of the pro-apoptotic target molecule C/EBP homology protein (CHOP) of ATF-4 was upregulated and hippocampal neuronal apoptosis was induced by copper exposure. Taken together, we propose that chronic copper exposure might cause spatial memory impairment, selective loss of synaptic proteins, and neuronal apoptosis through the mechanisms involving activation of PKR/eIF2α signaling pathway.
Documentation of angiotensin II receptors in glomerular epithelial cells
NASA Technical Reports Server (NTRS)
Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)
1998-01-01
Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Guan-Lin; Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Wu, Jing-Yiing
Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well asmore » MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.« less
Kawahata, Ichiro; Suzuki, Tatsuya; Rico, Evelyn Gutiérrez; Kusano, Shuichi; Tamura, Hiroshi; Mimaki, Yoshihiro; Yamakuni, Tohru
2017-10-01
A previous study reported biotransformation of a citrus peel polymethoxyflavone, nobiletin, by Aspergillus enabling production of 4'-demethylnobiletin, and the product's antimutagenic activity. However, the effects of fermented citrus peel on the basal forebrain-hippocampal system remain unidentified. Citrus reticulata (ponkan) fruit squeezed draffs are generated as mass waste in beverage factories. In this study using PC12D cells and cultured central nervous system neurons, we therefore examined whether Aspergillus kawachii-fermented citrus fruit squeezed draff could affect cAMP response element (CRE)- and choline acetyltransferase gene (ChAT) promoter region-mediated transcriptional activities relevant to memory formation and cholinergic function. Our current fermentation yielded approximately 80% nobiletin bioconversion, and a sample of hot-water extract of the fermented fruit squeezed draff was stronger than that of the unfermented one in facilitating CRE-mediated transcription in cultured hippocampal neurons as well as in PC12D cells. A sample of 0-80% ethanol-eluted fraction of Diaion HP-20 column-adsorbed components of the preparation obtained by the fermentation concentration-dependently and more strongly facilitated CRE-mediated transcription than did the fraction of the unfermented one in both cell culture systems. In a separate study, this polymethoxyflavone-rich fraction of the fermented fruit squeezed draff showed a potent ability to facilitate CRE-mediated and ChAT transcription in a co-culture of hippocampal neurons and basal forebrain neurons. Repeated oral gavage of mice with the fermented fraction sample prevented MK801-impaired memory formation in mice. These findings suggest that the 4'-demethylnobiletin-rich fraction prepared from the Aspergillus-fermented ponkan squeezed draff has a potential anti-dementia effect.
Camping & the Whirl of Insurance Cycles.
ERIC Educational Resources Information Center
Milgrim, Darrow
1988-01-01
Suggests possible responses for summer camp operators facing insurance rate increases and other insurance industry changes. Examines areas of risk in summer camping and suggests general ways that camps can become more desirable to the insurance industry as "insurable groups." (TES)
Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G
2008-05-02
Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.
Involvement of Sp1 in butyric acid-induced HIV-1 gene expression.
Imai, Kenichi; Okamoto, Takashi; Ochiai, Kuniyasu
2015-01-01
The ability of human immunodeficiency virus-1(HIV-1) to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs), could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP) was required for butyric acid-induced HIV-1 activation. These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria. © 2015 S. Karger AG, Basel.
Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia
NASA Technical Reports Server (NTRS)
Whalen, E. J.; Johnson, A. K.; Lewis, S. J.
1999-01-01
The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.
Bimodal antagonism of PKA signalling by ARHGAP36.
Eccles, Rebecca L; Czajkowski, Maciej T; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver
2016-10-07
Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.
Bimodal antagonism of PKA signalling by ARHGAP36
Eccles, Rebecca L.; Czajkowski, Maciej T.; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver
2016-01-01
Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease. PMID:27713425
Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1
Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian
2007-01-01
Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907
Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon
2015-01-01
Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short—acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024 could potentially provide clinical benefit when used adjunctively with inhaled β2-adrenoreceptor agonists in those patients exhibiting a reduced response to their chronic use. PMID:25799096
Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon
2015-01-01
Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-Adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short-acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024 could potentially provide clinical benefit when used adjunctively with inhaled β2-adrenoreceptor agonists in those patients exhibiting a reduced response to their chronic use.
Stable, sensitive, fluorescence-based method for detecting cAMP.
Hesley, Jayne; Daijo, Janet; Ferguson, Anne T
2002-09-01
cAMP is a universal secondary messenger that connects changes in the extracellular environment, as detected by cell surface receptors, to transcriptional changes in the nucleus. Since cAMP-mediated signal transduction plays a role in critical cell functions and human diseases, monitoring its activity can aid in understanding these responses and the process of drug discovery. This report examines the performance of a fluorescence-based competitive immunoassay in 384-well microplate format. Using purified cAMP as a competitor the estimated detection limit was determined to be 0.1 nM and Z'-factor was greater than 0.83, which indicates that the assay is of high quality and one of the most sensitive assays currently on the market. Of note, the results obtained were similar whether the reaction was allowed to proceed for 10 min or up to 60 min. Next, HEK 293 cells were treated with the promiscuous adenylate cyclase activator, forskolin, and the beta-adrenoceptor agonist, isoproterenol. The resultant average EC50 values were 11 microM and 123 nM, respectively, which correspond to those found in the literature. Together, these results demonstrate that this assay is afast, accurate, non-radioactive method that is ideal for high-throughput screening.
Neuropeptide action in insects and crustaceans.
Mykles, Donald L; Adams, Michael E; Gäde, Gerd; Lange, Angela B; Marco, Heather G; Orchard, Ian
2010-01-01
Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.
GW182 controls Drosophila circadian behavior and PDF-receptor signaling.
Zhang, Yong; Emery, Patrick
2013-04-10
The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level--which is limiting in circadian neurons--influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling and thus profoundly impacts the circadian neural network and its response to environmental inputs. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Hui; Ganta, Suhasini; Fong, Peying
2010-01-01
Subclinical hypothyroidism has been linked to Cystic Fibrosis (CF), and the cystic fibrosis transmembrane conductance regulator (CFTR) shown to be expressed in the thyroid. The thyroid epithelium secretes Cl− and absorbs Na+ in response to cAMP. Chloride secretion may provide a counter-ion for the SLC26A4 (Pendrin)-mediated I− secretion which is required for the first step of thyroid hormonogenesis, thyroglobulin iodination. In contrast, few models exist to explain a role for Na+ absorption. Whether CFTR mediates the secretory Cl− current in thyroid epithelium has not been directly addressed. We used thyroids from a novel pig CFTR−/− model, generated primary pig thyroid epithelial cell cultures (pThECs), analyzed these cultures for preservation of thyroid-specific transcripts and proteins, and monitored 1) the Cl− secretory response to the cAMP agonist, isoproterenol and 2) the amiloride-sensitive Na+ current. Baseline short-circuit current (Isc) did not differ between CFTR+/+ and CFTR−/− cultures. Serosal isoproterenol increased Isc in CFTR+/+, but not CFTR−/−, monolayers. Compared to CFTR+/+ thyroid cultures, amiloride-sensitive Na+ absorption measured in CFTR−/− pThECs represented a greater fraction of the resting Isc. However, levels of transcripts encoding ENaC subunits did not differ between CFTR+/+ and CFTR−/− pThECs. Immunoblot analysis verified ENaC subunit protein expression, but quantification indicated no difference in expression levels. Our studies definitively demonstrate that CFTR mediates cAMP-stimulated Cl− secretion in a well-differentiated thyroid culture model, and that knockout of CFTR promotes increased Na+ absorption by a mechanism other than increased ENaC expression. These findings suggest several models for the mechanism of CF-associated hypothyroidism. PMID:20729267
Camp Is for the Camper: A Counselor's Guide to Youth Development.
ERIC Educational Resources Information Center
Coutellier, Connie C.; Henchey, Kathleen
This booklet provides an orientation tool and quick reference for camp counselors, and is designed to help them understand and enhance youth behavior and development. Chapter 1 discusses the camp environment, the camp counselor's responsibility as a role model, the benefits of camp for kids, establishing a positive relationship with campers at the…
Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease.
Larsen, Hege E; Lefkimmiatis, Konstantinos; Paterson, David J
2016-12-14
Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron's ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.
Pontes, Roberto B; Crajoinas, Renato O; Nishi, Erika E; Oliveira-Sales, Elizabeth B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T
2015-04-15
Renal nerve stimulation at a low frequency (below 2 Hz) causes water and sodium reabsorption via α1-adrenoreceptor tubular activation, a process independent of changes in systemic blood pressure, renal blood flow, or glomerular filtration rate. However, the underlying mechanism of the reabsorption of sodium is not fully understood. Since the sympathetic nervous system and intrarenal ANG II appear to act synergistically to mediate the process of sodium reabsorption, we hypothesized that low-frequency acute electrical stimulation of the renal nerve (ESRN) activates NHE3-mediated sodium reabsorption via ANG II AT1 receptor activation in Wistar rats. We found that ESRN significantly increased urinary angiotensinogen excretion and renal cortical ANG II content, but not the circulating angiotensinogen levels, and also decreased urinary flow and pH and sodium excretion via mechanisms independent of alterations in creatinine clearance. Urinary cAMP excretion was reduced, as was renal cortical PKA activity. ESRN significantly increased NHE3 activity and abundance in the apical microvillar domain of the proximal tubule, decreased the ratio of phosphorylated NHE3 at serine 552/total NHE3, but did not alter total cortical NHE3 abundance. All responses mediated by ESRN were completely abolished by a losartan-mediated AT1 receptor blockade. Taken together, our results demonstrate that higher NHE3-mediated proximal tubular sodium reabsorption induced by ESRN occurs via intrarenal renin angiotensin system activation and triggering of the AT1 receptor/inhibitory G-protein signaling pathway, which leads to inhibition of cAMP formation and reduction of PKA activity. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, S.C.; Hanifin, J.M.; Holden, C.A.
1985-08-01
The BG dog manifests various characteristics of human asthma, including airway hyperreactivity to low concentrations of methacholine. Studies have suggested that airway hyperreactivity in asthma is related to inadequate intracellular cAMP responses. The authors studied cAMP characteristics in MNL from 19 BG and 14 mongrel dogs. beta-Adrenergic receptors were assessed by /sup 125/I CYP in the presence and absence of propranolol. The responses of cAMP to ISO were measured by radioimmunoassay. Adenylate cyclase activity was determined in homogenized MNL preparations by cAMP generation. PDE activity was quantitated by radioenzyme assay. Mongrel dog leukocyte ISO-stimulated cAMP levels doubled, whereas there weremore » negligible increases in MNL from BG dogs. Basal PDE levels were higher in BG dogs than in mongrel dogs. The PDE inhibitor Ro 20-1724 restored ISO-stimulated cAMP responses in MNL of BG dogs. Adenylate cyclase activity was not lower in MNL homogenates from BG dogs than in mongrel dogs. Cells from both BG and mongrel dogs demonstrated similar receptor numbers and affinities of saturable, specific beta-adrenergic binding over a 10 pM to 400 pM range. The results suggest that depressed cAMP responses in BG dogs are due to high PDE activity rather than to a defect in the beta-adrenergic receptor adenylate cyclase system.« less
The PPARγ2 A/B-Domain Plays a Gene-Specific Role in Transactivation and Cofactor Recruitment
Bugge, Anne; Grøntved, Lars; Aagaard, Mads M.; Borup, Rehannah; Mandrup, Susanne
2009-01-01
We have previously shown that adenoviral expression of peroxisome proliferator-activated receptors (PPARs) leads to rapid establishment of transcriptionally active complexes and activation of target gene expression within 5–8 h after transduction. Here we have used the adenoviral delivery system combined with expression array analysis to identify novel putative PPARγ target genes in murine fibroblasts and to determine the role of the A/B-domain in PPARγ-mediated transactivation of genomic target genes. Of the 257 genes found to be induced by PPARγ2 expression, only 25 displayed A/B-domain dependency, i.e. significantly reduced induction in the cells expressing the truncated PPARγ lacking the A/B-domain (PPARγCDE). Nine of the 25 A/B-domain-dependent genes were involved in lipid storage, and in line with this, triglyceride accumulation was considerably decreased in the cells expressing PPARγCDE compared with cells expressing full-length PPARγ2. Using chromatin immunoprecipitation, we demonstrate that PPARγ binding to genomic target sites and recruitment of the mediator component TRAP220/MED1/PBP/DRIP205 is not affected by the deletion of the A/B-domain. By contrast, the PPARγ-mediated cAMP response element-binding protein (CREB)-binding protein (CBP) and p300 recruitment to A/B-domain-dependent target genes is compromised by deletion of the A/B-domain. These results indicate that the A/B-domain of PPARγ2 is specifically involved in the recruitment or stabilization of CBP- and p300-containing cofactor complexes to a subset of target genes. PMID:19282365
Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction.
Hayashi, Maya; Kajioka, Shunichi; Itsumi, Momoe; Takahashi, Ryosuke; Shahab, Nouval; Ishigami, Takao; Takeda, Masahiro; Masuda, Noriyuki; Yamaguchi, Akito; Naito, Seiji
2016-01-01
To clarify the effect of cAMP on the Ca(2+) -sensitized smooth muscle contraction in human detrusor, as well as the role of novel exchange protein directly activated by cAMP (Epac) in cAMP-mediated relaxation. All experimental protocols to record isometric tension force were performed using α-toxin-permeabilized human detrusor smooth muscle strips. The mechanisms of cAMP-mediated suppression of Ca(2+) sensitization activated by 10 μm carbachol (CCh) and 100 μm GTP were studied using a selective rho kinase (ROK) inhibitor, Y-27632, and a selective protein kinase C (PKC) inhibitor, GF-109203X. The relaxation mechanisms were further probed using a selective protein kinase A (PKA) activator, 6-Bnz-cAMP and a selective Epac activator, 8-pCPT-2'-O-Me-cAMP. We observed that CCh-induced Ca(2+) sensitization was inhibited by cAMP in a concentration-dependent manner. GF-109203X (10 μm) but not Y-27632 (10 μm) significantly enhanced the relaxation effect induced by cAMP (100 μm). 6-Bnz-cAMP (100 μm) predominantly decreased the tension force in comparison with 8-pCPT-2'-O-Me-cAMP (100 μm). We showed that cAMP predominantly inhibited the ROK pathway but not the PKC pathway. The PKA-dependent pathway is dominant, while Epac plays a minor role in human detrusor smooth muscle Ca(2+) sensitization. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.
Santhosh, KT; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, AJ; Dakshinamurti, S
2011-01-01
BACKGROUND AND PURPOSE Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor–mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. EXPERIMENTAL APPROACH We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca2+ response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. KEY RESULTS Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. CONCLUSIONS AND IMPLICATIONS TP receptor sensitivity and EC50 for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca2+ mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. PMID:21385177
Rius, Jordi; Martínez-González, José; Crespo, Javier; Badimon, Lina
2004-04-01
Low density lipoproteins (LDLs) modulate the expression of key genes involved in atherogenesis. Recently, we have shown that the transcription factor neuron-derived orphan receptor-1 (NOR-1) is involved in vascular smooth muscle cell (VSMC) proliferation. Our aim was to analyze whether NOR-1 is involved in LDL-induced mitogenic effects in VSMC. LDL induced NOR-1 expression in a time- and dose-dependent manner. Antisense oligonucleotides against NOR-1 inhibit DNA synthesis induced by LDL in VSMCs as efficiently as antisense against the protooncogene c-fos. The upregulation of NOR-1 mRNA levels by LDL involves pertusis-sensitive G protein-coupled receptors, Ca2+ mobilization, protein kinases A (PKA) and C (PKC) activation, and mitogen-activated protein kinase pathways (MAPK) (p44/p42 and p38). LDL promotes cAMP response element binding protein (CREB) activation (phosphorylation in Ser133). In transfection assays a dominant-negative of CREB inhibits NOR-1 promoter activity, while mutation of specific (cAMP response element) CRE sites in the NOR-1 promoter abolishes LDL-induced NOR-1 promoter activity. In VSMCs, LDL-induced mitogenesis involves NOR-1 upregulation through a CREB-dependent mechanism. CREB could play a role in the modulation by LDL of key genes (containing CRE sites) involved in atherogenesis.
NASA Astrophysics Data System (ADS)
Nyarko, B. J. B.; Bredwa-Mensah, Y.; Serfor-Armah, Y.; Dampare, S. B.; Akaho, E. H. K.; Osae, S.; Perbi, A.; Chatt, A.
2007-10-01
Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated.
Lyell, Noreen L.; Colton, Deanna M.; Bose, Jeffrey L.; Tumen-Velasquez, Melissa P.; Kimbrough, John H.
2013-01-01
Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45–50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040–4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199–1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87–91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density. PMID:23995643
Medical Record Keeping in the Summer Camp Setting.
Kaufman, Laura; Holland, Jaycelyn; Weinberg, Stuart; Rosenbloom, S Trent
2016-12-14
Approximately one fifth of school-aged children spend a significant portion of their year at residential summer camp, and a growing number have chronic medical conditions. Camp health records are essential for safe, efficient care and for transitions between camp and home providers, yet little research exists regarding these systems. To survey residential summer camps for children to determine how camps create, store, and use camper health records. To raise awareness in the informatics community of the issues experienced by health providers working in a special pediatric care setting. We designed a web-based electronic survey concerning medical recordkeeping and healthcare practices at summer camps. 953 camps accredited by the American Camp Association received the survey. Responses were consolidated and evaluated for trends and conclusions. Of 953 camps contacted, 298 (31%) responded to the survey. Among respondents, 49.3% stated that there was no computer available at the health center, and 14.8% of camps stated that there was not any computer available to health staff at all. 41.1% of camps stated that internet access was not available. The most common complaints concerning recordkeeping practices were time burden, adequate completion, and consistency. Summer camps in the United States make efforts to appropriately document healthcare given to campers, but inconsistency and inefficiency may be barriers to staff productivity, staff satisfaction, and quality of care. Survey responses suggest that the current methods used by camps to document healthcare cause limitations in consistency, efficiency, and communications between providers, camp staff, and parents. As of 2012, survey respondents articulated need for a standard software to document summer camp healthcare practices that accounts for camp-specific needs. Improvement may be achieved if documentation software offers the networking capability, simplicity, pediatrics-specific features, and avoidance of technical jargon.
Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus
Fernandes, Herman B.; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L.; Kraniotis, Stephen; Marshall, John J.; Kukreja, Lokesh; Vassar, Robert
2015-01-01
Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2−/− mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2−/− mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus. PMID:25904804
Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens
2009-05-01
To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.
Jeevaratnam, Kamalan; Salvage, Samantha C; Li, Mengye; Huang, Christopher L-H
2018-05-30
Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP] i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated G s -protein activation known to increase [cAMP] i , unaccompanied by the [Ca 2+ ] i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed. © 2018 New York Academy of Sciences.
2013-01-01
Background Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Methods Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa,L); and the enhancement in SERCA pump activity via phosphorylation of PLB. Results Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated β-adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa,L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Conclusions Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa,L as the key mechanisms underlying the aforementioned positive FFR. PMID:24020888
Tying the Design of Your Camp Staff Training to the Delivery of Desired Youth Outcomes
ERIC Educational Resources Information Center
Galloway, Robin; Bourdeau, Virginia; Arnold, Mary; Nott, Brooke D.
2013-01-01
As experience camp directors, we've seen the challenges faced by young camp counselors and inexperienced staff. Evaluations from staff at many camps motivated us to help our people be more effective with their campers. In response we created a comprehensive camp staff training. Lessons showed staff what we wanted them to do and say as they…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr
2012-06-01
Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells.« less
Oshima, Satomi; Takehata, Chisato; Sasahara, Ikuko; Lee, Eunjae; Akama, Takao; Taguchi, Motoko
2017-08-21
An intensive consecutive high-volume training camp may induce appetite loss in athletes. Therefore, this study aimed to investigate the changes in stress and appetite responses in male power-trained athletes during an intensive training camp. The measurements at Day 2 and at the end of a 9-day intensive training camp (Camp1 and Camp2, respectively) were compared with those of the resting period (Rest) and the regular training period (Regular; n = 13). The stress state was assessed based on plasma cortisol level, salivary immunoglobulin A level, and a profile of mood states score. The sensation of appetite was assessed using visual analog scale scores, and fasting plasma acylated ghrelin, insulin, and glucose were measured. The cortisol concentrations were significantly higher at Camp2 (466.7 ± 60.7 nmol∙L -1 ) than at Rest (356.3 ± 100.9 nmol∙L -1 ; p = 0.002) or Regular (361.7 ± 111.4 nmol∙L -1 ; p = 0.003). Both prospective and actual food consumption significantly decreased at Camp2, and acylated ghrelin concentration was significantly lower at Camp1 (34.2 ± 8.0 pg∙mL -1 ) and Camp2 (32.0 ± 8.7 pg∙mL -1 ) than at Rest (47.2 ± 11.2 pg∙mL -1 ) or Regular (53.4 ± 12.6 pg∙mL -1 ). Furthermore, the change in acylated ghrelin level was negatively correlated with the change in cortisol concentration. This study's findings suggest that an early-phase physiological stress response may decrease the acylated ghrelin level in male power-trained athletes during an intensive training camp.
Oshima, Satomi; Takehata, Chisato; Sasahara, Ikuko; Lee, Eunjae; Akama, Takao; Taguchi, Motoko
2017-01-01
An intensive consecutive high-volume training camp may induce appetite loss in athletes. Therefore, this study aimed to investigate the changes in stress and appetite responses in male power-trained athletes during an intensive training camp. The measurements at Day 2 and at the end of a 9-day intensive training camp (Camp1 and Camp2, respectively) were compared with those of the resting period (Rest) and the regular training period (Regular; n = 13). The stress state was assessed based on plasma cortisol level, salivary immunoglobulin A level, and a profile of mood states score. The sensation of appetite was assessed using visual analog scale scores, and fasting plasma acylated ghrelin, insulin, and glucose were measured. The cortisol concentrations were significantly higher at Camp2 (466.7 ± 60.7 nmol∙L−1) than at Rest (356.3 ± 100.9 nmol∙L−1; p = 0.002) or Regular (361.7 ± 111.4 nmol∙L−1; p = 0.003). Both prospective and actual food consumption significantly decreased at Camp2, and acylated ghrelin concentration was significantly lower at Camp1 (34.2 ± 8.0 pg∙mL−1) and Camp2 (32.0 ± 8.7 pg∙mL−1) than at Rest (47.2 ± 11.2 pg∙mL−1) or Regular (53.4 ± 12.6 pg∙mL−1). Furthermore, the change in acylated ghrelin level was negatively correlated with the change in cortisol concentration. This study’s findings suggest that an early-phase physiological stress response may decrease the acylated ghrelin level in male power-trained athletes during an intensive training camp. PMID:28825668
Pavot, Pierre; Carbognin, Elena; Martin, Jean-René
2015-01-01
The mushroom bodies (MBs), one of the main structures in the adult insect brain, play a critical role in olfactory learning and memory. Though historical genes such as dunce and rutabaga, which regulate the level of cAMP, were identified more than 30 years ago, their in vivo effects on cellular and physiological mechanisms and particularly on the Ca(2+)-responses still remain largely unknown. In this work, performed in Drosophila, we took advantage of in vivo bioluminescence imaging, which allowed real-time monitoring of the entire MBs (both the calyx/cell-bodies and the lobes) simultaneously. We imaged neuronal Ca(2+)-activity continuously, over a long time period, and characterized the nicotine-evoked Ca(2+)-response. Using both genetics and pharmacological approaches to interfere with different components of the cAMP signaling pathway, we first show that the Ca(2+)-response is proportional to the levels of cAMP. Second, we reveal that an acute change in cAMP levels is sufficient to trigger a Ca(2+)-response. Third, genetic manipulation of protein kinase A (PKA), a direct effector of cAMP, suggests that cAMP also has PKA-independent effects through the cyclic nucleotide-gated Ca(2+)-channel (CNG). Finally, the disruption of calmodulin, one of the main regulators of the rutabaga adenylate cyclase (AC), yields different effects in the calyx/cell-bodies and in the lobes, suggesting a differential and regionalized regulation of AC. Our results provide insights into the complex Ca(2+)-response in the MBs, leading to the conclusion that cAMP modulates the Ca(2+)-responses through both PKA-dependent and -independent mechanisms, the latter through CNG-channels.
Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.
2014-01-01
To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755
Proliferation kinetics and cyclic AMP as prognostic factors in adult acute leukemia.
Paietta, E; Mittermayer, K; Schwarzmeier, J
1980-07-01
In 41 adult patients with acute leukemia (myeloblastic, lymphoblastic, and undifferentiated), proliferation kinetics (as determined by double-label autoradiography) and cyclic adenosine 3',5'-monophosphate (cAMP) concentration were studied for their significance in the prediction of responsiveness to cytostatic therapy. Patients with good clinical response had significantly shorter turnover times and higher labeling indices in the bone marrow than did those who failed to respond to treatment. Cases for which cell kinetics did not correlate with clinical response were explained by variance in the distribution of leukemic blasts between the proliferative cell cycle and the resting pool. Good clinical response was also found to be associated with low levels of cAMP in leukemic cells prior to therapy, whereas high cAMP contents predicted failure. Low cAMP concentrations, however, did not necessarily correlate with short turnover times and vice versa. This might be due to fluctuations of the cAMP concentrations during the cell cycle.
Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory
Maher, Pamela; Akaishi, Tatsuhiro; Abe, Kazuho
2006-01-01
Small molecules that activate signaling pathways used by neurotrophic factors could be useful for treating CNS disorders. Here we show that the flavonoid fisetin activates ERK and induces cAMP response element-binding protein (CREB) phosphorylation in rat hippocampal slices, facilitates long-term potentiation in rat hippocampal slices, and enhances object recognition in mice. Together, these data demonstrate that the natural product fisetin can facilitate long-term memory, and therefore it may be useful for treating patients with memory disorders. PMID:17050681
2012-10-01
critical role of glutathione in maintenance of the mitochondrial genome . Free Radic Biol Med 49:1956–1968 54. Ji L, Chauhan A, Brown WT, Chauhan V (2009...studies in Drosophila have demonstrated the role of PKA in memory formation [25–29]. Mutations in the rutabaga gene, which encodes adenylate cyclase...certain DNA sequences (cAMP response elements), thereby stimulating the transcription of downstream genes and the synthesis of proteins. The CREB
2012-05-17
CONTRACT NUMBER Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER Sd. PROJECT NUMBER Se. TASK NUMBER Sf. WORK UNIT NUMBER 8. PERFORMING ORGANIZATION...construction projects in Afghanistan. In 1984, while continuing his construction support, he turned his focus to funding Afghan training camps, and more...of terrorism, pursuit of weapons of mass destruction, and the notion of using action against Iraq as an example to other regimes. President Bush
Daems, Caroline; Di-Luoffo, Mickaël; Paradis, Élise; Tremblay, Jacques J
2015-07-01
In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.
PDF and cAMP enhance PER stability in Drosophila clock neurons
Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael
2014-01-01
The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054
PDF and cAMP enhance PER stability in Drosophila clock neurons.
Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael
2014-04-01
The neuropeptide PDF is important for Drosophila circadian rhythms: pdf(01) (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light-dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene per(S) ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the per(S) protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf(01) circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, H.; Crowley, J.J.; Chan, J.C.
Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents thatmore » attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.« less
Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats.
Yokochi, Ayumu; Itoh, Hiroo; Maruyama, Junko; Zhang, Erquan; Jiang, Baohua; Mitani, Yoshihide; Hamada, Chikuma; Maruyama, Kazuo
2010-06-01
Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3',5'-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH). A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (-E) pulmonary arteries from the PH and control (non-PH) rats. Colforsin-induced vasodilation was impaired in both +E and -E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration-response curve closer to that of -E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in -E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls. cAMP-mediated vasodilatory responses without beta-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.
Consonni, Sarah V; Gloerich, Martijn; Spanjaard, Emma; Bos, Johannes L
2012-03-06
Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.
Rates and impact of trauma and current stressors among Darfuri refugees in Eastern Chad.
Rasmussen, Andrew; Nguyen, Leanh; Wilkinson, John; Vundla, Sikhumbuzo; Raghavan, Sumithra; Miller, Kenneth E; Keller, Allen S
2010-04-01
Darfur refugees face hardships associated with chronic displacement, including lack of basic needs and safety concerns. Psychiatric research on refugees has focused on trauma, but daily stressors may contribute more to variance in distress. This article reports rates of past trauma and current stressors among Darfur refugees and gauges the contribution of each to psychological distress and functional impairment. A representative sample of 848 Darfuris in 2 refugee camps were interviewed about traumatic events, stressors faced in the camps, psychological distress, and functional impairment. Basic needs and safety concerns were more strongly correlated with measures of distress (rs = .19-.31) than were war-related traumatic events (rs = .09-.20). Hierarchical regression supported models in which effects of trauma on distress were mediated by current stressors. Although war-related traumatic events are the initial causes of refugees' hardship, findings suggest that the day-to-day challenges and concerns in camps mediate psychological distress associated with these events.
Rates and Impact of Trauma and Current Stressors Among Darfuri Refugees in Eastern Chad
Rasmussen, Andrew; Nguyen, Leanh; Wilkinson, John; Vundla, Sikhumbuzo; Raghavan, Sumithra; Miller, Kenneth E.; Keller, Allen S.
2010-01-01
Darfur refugees face hardships associated with chronic displacement, including lack of basic needs and safety concerns. Psychiatric research on refugees has focused on trauma, but daily stressors may contribute more to variance in distress. In this article we report rates of past trauma and current stressors among Darfur refugees and gauge the contribution of each to psychological distress and functional impairment. A representative sample of 848 Darfuris in two refugee camps were interviewed about traumatic events, stressors faced in the camps, psychological distress and functional impairment. Basic needs and safety concerns were more strongly correlated with measures of distress (r's = .19–.31) than were war-related traumatic events (r's = .09–.20). Hierarchical regression supported models in which effects of trauma on distress were mediated by current stressors. Although war-related traumatic events are the initial causes of refugees' hardship, findings suggest that the day-to-day challenges and concerns in camps mediate psychological distress associated with these events. PMID:20553516
Snakes Have Feelings, Too: Elements of a Camp Snake Program.
ERIC Educational Resources Information Center
Allen, Robert Ross
2001-01-01
A camp snake program can help campers overcome their fear of snakes, and people cannot truly enjoy nature when they carry a phobia about any one part of it. It can also help overcome prejudice by teaching truth and respect, instilling compassion, and helping campers develop empathy. Advice on catching, handling, identifying, keeping, and feeding…
ERIC Educational Resources Information Center
Meiseles, Andrea
2017-01-01
In this dissertation, I investigate how Israeli staff members understand the intercultural encounter they experienced in an overnight camp setting; how they navigated the experience; and how the intercultural encounter has impacted them. The research was conducted through qualitative methods of data collection, including elements of ethnography,…
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function
Saponaro, Andrea; Pauleta, Sofia R.; Cantini, Francesca; Matzapetakis, Manolis; Hammann, Christian; Donadoni, Chiara; Hu, Lei; Thiel, Gerhard; Banci, Lucia; Santoro, Bina; Moroni, Anna
2014-01-01
cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD. PMID:25197093
Laurent, C E; Cardinal, R; Rousseau, G; Vermeulen, M; Bouchard, C; Wilkinson, M; Armour, J A; Bouvier, M
2001-02-01
To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.
Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development.
Kero, Jukka; Ahmed, Kashan; Wettschureck, Nina; Tunaru, Sorin; Wintermantel, Tim; Greiner, Erich; Schütz, Günther; Offermanns, Stefan
2007-09-01
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the alpha subunits of Gq and G11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Galphaq/Galpha11-deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that Gq/G11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling.
Krishnamurthy, Srinath; Tulsian, Nikhil Kumar; Chandramohan, Arun; Anand, Ganesh S
2015-09-15
The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ASDC Collaborations and Processes to Ensure Quality Metadata and Consistent Data Availability
NASA Astrophysics Data System (ADS)
Trapasso, T. J.
2017-12-01
With the introduction of new tools, faster computing, and less expensive storage, increased volumes of data are expected to be managed with existing or fewer resources. Metadata management is becoming a heightened challenge from the increase in data volume, resulting in more metadata records needed to be curated for each product. To address metadata availability and completeness, NASA ESDIS has taken significant strides with the creation of the United Metadata Model (UMM) and Common Metadata Repository (CMR). These UMM helps address hurdles experienced by the increasing number of metadata dialects and the CMR provides a primary repository for metadata so that required metadata fields can be served through a growing number of tools and services. However, metadata quality remains an issue as metadata is not always inherent to the end-user. In response to these challenges, the NASA Atmospheric Science Data Center (ASDC) created the Collaboratory for quAlity Metadata Preservation (CAMP) and defined the Product Lifecycle Process (PLP) to work congruently. CAMP is unique in that it provides science team members a UI to directly supply metadata that is complete, compliant, and accurate for their data products. This replaces back-and-forth communication that often results in misinterpreted metadata. Upon review by ASDC staff, metadata is submitted to CMR for broader distribution through Earthdata. Further, approval of science team metadata in CAMP automatically triggers the ASDC PLP workflow to ensure appropriate services are applied throughout the product lifecycle. This presentation will review the design elements of CAMP and PLP as well as demonstrate interfaces to each. It will show the benefits that CAMP and PLP provide to the ASDC that could potentially benefit additional NASA Earth Science Data and Information System (ESDIS) Distributed Active Archive Centers (DAACs).
Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference.
Mu, Ying; Ren, Zhaoxiang; Jia, Jia; Gao, Bo; Zheng, Longtai; Wang, Guanghui; Friedman, Eitan; Zhen, Xuechu
2014-09-25
Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP). The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10 did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB (pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC. The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of opioid addiction.
Heckman, P R A; Blokland, A; Bollen, E P P; Prickaerts, J
2018-04-01
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport
Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens
2003-01-01
Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163
Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María
2017-07-01
What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P < 0.05) and a reduction of the tissue content of cAMP (P < 0.05). These effects were mediated by CB2 receptors since exposure to AM630 (a specific CB2 receptor antagonist) prevented these LPS-induced effects (P < 0.05). Collectively, our results suggest a role for the eCS mediating LPS-induced deleterious effects on reproductive tissues. Since our experimental design involves in vitro experiments of uterine explants, the extrapolation of the results presented here to humans is limited. Our findings provide evidence for the role of CB2 receptors in reproductive events as well as their participation as a mediator of LPS deleterious effects on reproductive tissues. None. Dr Ana María Franchi was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2010/0813 and PICT 2013/0097) and by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013/2050). The authors have no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus.
Fernandes, Herman B; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L; Kraniotis, Stephen; Marshall, John J; Kukreja, Lokesh; Vassar, Robert; Contractor, Anis
2015-04-22
Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus. Copyright © 2015 the authors 0270-6474/15/356544-10$15.00/0.
Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S
2011-07-01
Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Boillot, A; Massol, J; Maupoil, V; Grelier, R; Capellier, G; Berthelot, A; Barale, F
1996-08-01
To investigate responsiveness to exogenous catecholamines in rat bacteremic shock by studying both myocardial and vascular functional parameters; to determine in the same study the relationship of these parameters with other relevant biological parameters of the adrenergic pathway, such as myocardial beta-adrenergic receptors and cyclic adenosine monophosphate (cAMP); and to indirectly approach the roles of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide. Experimental, comparative study. Laboratory in a university hospital. Male Sprague-Dawley rats, weighing 270 to 320 g. Intravenous injection of live Escherichia coli DH5 alpha (2 x 10(10) organisms/kg) or saline (0.6 mL) and comparison of the two groups. Mean arterial pressure and heart rate (HR) were recorded, and circulating TNF-alpha concentrations were measured, during the first 3 hrs after E. coli administration. Myocardial and vascular functional parameters were obtained, respectively, from Langendorff-perfused hearts and isolated aortic rings. Adrenergic biochemical parameters (catecholamines, density and affinity of beta-receptors, and isoproterenol-stimulated myocardial cAMP) were determined 3 hrs after E. coli injection. Mean arterial pressure decreased within 5 to 60 mins after bacteria injection and returned to basal levels in the last 2 hrs; HR was unchanged. Serum TNF-alpha concentrations peaked at 120 mins (7333 +/- 672 pg/mL) and were still increased at 3 hrs. Plasma concentrations of epinephrine and norepinephrine were significantly (p < .05) increased. Baseline values for differential left ventricular pressure and coronary flow were significantly (p < .0001, p < .001, respectively) reduced; HR remained unchanged. Isoproterenol induced a similar increase in differential left ventricular pressure and in HR. There was no decrease in the functional myocardial response to adrenergic stimulation. beta-adrenergic receptors were similar in density and in affinity in the two groups. Isoproterenol-stimulated myocardial cAMP was significantly (p < .01) reduced compared with the control group. In aortic rings, bacteria administration significantly (p < .01) shifted the dose-response curve to norepinephrine to the right, both in the presence and absence of endothelium. NG-monomethyl-L-arginine significantly increased the contractions to attain the control level: p < .001 in presence of endothelium; p < .05 in absence of endothelium. In ex vivo experiments, 3 hrs after E. coli injection, vascular responsiveness was sharply decreased. This impaired response was improved by inhibition of nitric oxide. The heart, nevertheless, was still able to modulate its inotropic and chronotropic response to isoproterenol, even though an impaired beta-adrenergic-receptor stimulation of cAMP was already present.
Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo
2017-04-01
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2- 18 F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1983-01-01
The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.
Jiang, Kesheng; Huang, Qiaoli; Chen, Yicheng; Qian, Feng
2014-01-01
Despite the successful application of all-trans retinoic acid (ATRA) in multiple myeloma treatment, ATRA-induced chemoresistance in the myeloma patients is very common in clinic. In this study, we evaluated the effect of ATRA on the expression of apurinic endonuclease/redox factor-1 (Ape/Ref-1) in the U266 and RPMI-8226 myeloma cells to explore the chemoresistance mechanism involved. ATRA treatment induced upregulation of Ape/Ref-1 via a noncanonical signaling pathway, leading to enhanced pro-survival activity counteracting melphalan (an alkylating agent). ATRA rapidly activated p38-MSK (mitogen- and stress activated protein kinase) cascade to phosphorylate cAMP response element-binding protein (CREB). Phosphorylated CREB was recruited to the Ape/Ref-1 promoter to evoke the gene expression. The stimulation of ATRA on Ape/Ref-1 expression was attenuated by either p38-MSK inhibitors or overexpression of dominant-negative MSK1 mutants. Moreover, ATRA-mediated Ape/Ref-1 upregulation was correlated with histone modification and activation of CBP/p300, an important cofactors for CREB transcriptional activity. C646, a competitive CBP/p300 inhibitor, abolished the upregulation of Ape/Ref-1 induced by ATRA. Intriguingly, CBP rather than p300 played a dominant role in the expression of Ape/Ref-1. Hence, our study suggests the existence of a noncanonical mechanism involving p38-MSK-CREB cascade and CBP induction to mediate ATRA-induced Ape/Ref-1 expression and acquired chemoresistance in myeloma cells. PMID:24416428
Lin, Yi-Ruu; Lo, Chaur-Tsuen; Liu, Shu-Ying; Peng, Kou-Cheng
2012-03-07
Our aim was to determine the effects of two secondary metabolites secreted by Trichoderma harzianum, pachybasin and emodin, on the mycoparasitic coiling behavior and cAMP content of T. harzianum. The number of T. harzianum coils around Nylon 66 fiber was increased in the presence of R. solani. The number of T. harzianum coils around R. solani hyphae and Nylon 66 fiber were significantly increased in the presence of pachybasin and emodin. The cAMP level in T. harzianum was significantly increased by close contact with R. solani and much higer cAMP level in the presence of exogenous pachybasin and emodin. A cAMP inhibitor diminished the effect of pachybasin and emodin on T. harzianum coiling around Nylon 66 fiber. The results suggest that pachybasin and emodin mediate the increase in the number of Trichoderma mycoparasitic coils via cAMP signaling. This is the first report to suggest that pachybasin and emodin play roles in the biocontrol mechanism of Trichoderma.
Goh, Siew-Lee; Looi, Yvonne; Shen, Hui; Fang, Jun; Bodner, Caroline; Houle, Martin; Ng, Andy Cheuk-Him; Screaton, Robert A; Featherstone, Mark
2009-07-10
The transcription factor encoded by the murine ecotropic integration site 1 gene (MEIS1) is a partner of HOX and PBX proteins. It has been implicated in embryonic patterning and leukemia, and causally linked to restless legs syndrome. The MEIS1A C terminus harbors a transcriptional activation domain that is stimulated by protein kinase A (PKA) in a manner dependent on the co-activator of cAMP response element-binding protein (CREB), CREB-binding protein (CBP). We explored the involvement of another mediator of PKA-inducible transcription, namely the CREB co-activators transducers of regulated CREB activity (TORCs). Overexpression of TORC1 or TORC2 bypassed PKA for activation by MEIS1A. Co-immunoprecipitation experiments demonstrated a physical interaction between MEIS1 and TORC2 that is dependent on the MEIS1A C terminus, whereas chromatin immunoprecipitation revealed PKA-inducible recruitment of MEIS1, PBX1, and TORC2 on the MEIS1 target genes Hoxb2 and Meis1. The MEIS1 interaction domain on TORC1 was mapped to the N-terminal coiled-coil region, and TORC1 mutants lacking this domain attenuated the response to PKA on a natural MEIS1A target enhancer. Thus, TORCs physically cooperate with MEIS1 to achieve PKA-inducible transactivation through the MEIS1A C terminus, suggesting a concerted action in developmental and oncogenic processes.
Goh, Siew-Lee; Looi, Yvonne; Shen, Hui; Fang, Jun; Bodner, Caroline; Houle, Martin; Ng, Andy Cheuk-Him; Screaton, Robert A.; Featherstone, Mark
2009-01-01
The transcription factor encoded by the murine ecotropic integration site 1 gene (MEIS1) is a partner of HOX and PBX proteins. It has been implicated in embryonic patterning and leukemia, and causally linked to restless legs syndrome. The MEIS1A C terminus harbors a transcriptional activation domain that is stimulated by protein kinase A (PKA) in a manner dependent on the co-activator of cAMP response element-binding protein (CREB), CREB-binding protein (CBP). We explored the involvement of another mediator of PKA-inducible transcription, namely the CREB co-activators transducers of regulated CREB activity (TORCs). Overexpression of TORC1 or TORC2 bypassed PKA for activation by MEIS1A. Co-immunoprecipitation experiments demonstrated a physical interaction between MEIS1 and TORC2 that is dependent on the MEIS1A C terminus, whereas chromatin immunoprecipitation revealed PKA-inducible recruitment of MEIS1, PBX1, and TORC2 on the MEIS1 target genes Hoxb2 and Meis1. The MEIS1 interaction domain on TORC1 was mapped to the N-terminal coiled-coil region, and TORC1 mutants lacking this domain attenuated the response to PKA on a natural MEIS1A target enhancer. Thus, TORCs physically cooperate with MEIS1 to achieve PKA-inducible transactivation through the MEIS1A C terminus, suggesting a concerted action in developmental and oncogenic processes. PMID:19473990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogure, Takahisa; Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Niitsu, Niigata 956-8603; Takagi, Masamichi
2005-04-01
The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated thatmore » three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.« less
Hess, Kenneth C; Jones, Brian H; Marquez, Becky; Chen, Yanqiu; Ord, Teri S; Kamenetsky, Margarita; Miyamoto, Catarina; Zippin, Jonathan H; Kopf, Gregory S; Suarez, Susan S; Levin, Lonny R; Williams, Carmen J; Buck, Jochen; Moss, Stuart B
2005-08-01
Mammalian fertilization is dependent upon a series of bicarbonate-induced, cAMP-dependent processes sperm undergo as they "capacitate," i.e., acquire the ability to fertilize eggs. Male mice lacking the bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC), the predominant source of cAMP in male germ cells, are infertile, as the sperm are immotile. Membrane-permeable cAMP analogs are reported to rescue the motility defect, but we now show that these "rescued" null sperm were not hyperactive, displayed flagellar angulation, and remained unable to fertilize eggs in vitro. These deficits uncover a requirement for sAC during spermatogenesis and/or epididymal maturation and reveal limitations inherent in studying sAC function using knockout mice. To circumvent this restriction, we identified a specific sAC inhibitor that allowed temporal control over sAC activity. This inhibitor revealed that capacitation is defined by separable events: induction of protein tyrosine phosphorylation and motility are sAC dependent while acrosomal exocytosis is not dependent on sAC.
Butterworth, Michael B.; Edinger, Robert S.; Johnson, John P.; Frizzell, Raymond A.
2005-01-01
Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na+ transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, MPKCCD14) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (ISC), membrane capacitance (CT), and conductance (GT) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 ± 6% (n = 31) increase in ISC and a 15.3 ± 1.5% (n = 15) increase in CT. Selective membrane permeabilization demonstrated that the CT increase was due to an increase in apical membrane capacitance. ISC and CT declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (∼1 h each cycle) resulted in response fatigue; ΔISC decreased ∼10% per stimulation–recovery cycle. When channel production was blocked by cycloheximide, ΔISC decreased ∼15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated ISC, and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the ISC responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation. PMID:15623897
Butterworth, Michael B; Edinger, Robert S; Johnson, John P; Frizzell, Raymond A
2005-01-01
Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na(+) transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, (MPK)CCD(14)) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (I(SC)), membrane capacitance (C(T)), and conductance (G(T)) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 +/- 6% (n = 31) increase in I(SC) and a 15.3 +/- 1.5% (n = 15) increase in C(T). Selective membrane permeabilization demonstrated that the C(T) increase was due to an increase in apical membrane capacitance. I(SC) and C(T) declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (approximately 1 h each cycle) resulted in response fatigue; DeltaI(SC) decreased approximately 10% per stimulation-recovery cycle. When channel production was blocked by cycloheximide, DeltaI(SC) decreased approximately 15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated I(SC), and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the I(SC) responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation.
2012-05-01
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S...2.3.3 Classification using template matching ...................................................... 7 2.4 Details of classification schemes... 7 2.4.1 Camp Butner TEMTADS data inversion and classification scheme .......... 9
ERIC Educational Resources Information Center
Griffin, William H.; Carter, James D.
The strategy used in evaluating an out-of-doors resident camping program for emotionally disturbed children is outlined. This strategy calls for examining the following elements in the program: (1) program goals and objectives; (2) collection and processing program data; (3) camper progress assessment; (4) program audit; (5) assessment of past…
NASA Technical Reports Server (NTRS)
Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki
2002-01-01
The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.
Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L
2006-11-01
Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.
Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline
2013-01-01
Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (5 μm, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n= 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K+ over the same time period (n= 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca2+-sensitive, large-conductance K+ (BKCa) channel opening as iberiotoxin (100 nm) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n= 5; P < 0.05). 8-pCPT-AM increased Ca2+ spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s-1μm-1 (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s−1) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n= 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nm) and to ryanodine (30 μm). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n= 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n= 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n= 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca2+-sensitive, small- and intermediate-conductance K+ (SKCa and IKCa) channels, respectively, and NG-nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase (NOS). In Fluo-4-AM-loaded mesenteric endothelial cells, 8-pCPT-AM induced a sustained increase in global Ca2+. Our data suggest that Epac hyperpolarizes smooth muscle by (1) increasing localized Ca2+ release from ryanodine receptors (Ca2+ sparks) to activate BKCa channels, and (2) endothelial-dependent mechanisms involving the activation of SKCa/IKCa channels and NOS. Epac-mediated smooth muscle hyperpolarization will limit Ca2+ entry via voltage-sensitive Ca2+ channels and represents a novel mechanism of arterial relaxation. PMID:23959673
Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K
2005-03-15
Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.
Klančnik, A; Šikić Pogačar, M; Trošt, K; Tušek Žnidarič, M; Mozetič Vodopivec, B; Smole Možina, S
2017-01-01
To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. Using gene-specific knock-out Camp. jejuni mutants and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition of adhesion of Camp. jejuni to these abiotic and biotic surfaces. Low doses of GSS extract can inhibit Camp. jejuni adhesion to polystyrene surfaces and to PSI and H4 cells, and can thus modulate Camp. jejuni invasion and intracellular survival. An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step towards the application of new innovative strategies to control Campylobacter contamination and infection via the food chain. © 2016 The Society for Applied Microbiology.
Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.
Alexandre, C; Verrier, B
1991-04-01
Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.
Chang, Megan; Sielaff, Alan; Bradin, Stuart; Walker, Kevin; Ambrose, Michael; Hashikawa, Andrew
2017-08-01
Children's summer camps are at risk for multiple pediatric casualties during a disaster. The degree to which summer camps have instituted disaster preparedness is unknown. We assessed disaster preparedness among selected camps nationally for a range of disasters. We partnered with a national, web-based electronic health records system to send camp leadership of 315 camp organizations a 14-question online survey of disaster preparedness. One response from each camp was selected in the following order of importance: owner, director, physician, nurse, medical technician, office staff, and other. The results were analyzed using descriptive statistics. A total of 181 camps responses were received, 169 of which were complete. Camp types were overnight (60%), day (21%), special/medical needs (14%), and other (5%). Survey respondents were directors (52%), nurses (14%), office staff (10%), physicians (5%), owners (5%), emergency medical technicians (2%), and other (12%). Almost 18% of camps were located >20 mi from a major medical center, and 36% were >5 mi from police/fire departments. Many camps were missing emergency supplies: car/booster seats for evacuation (68%), shelter (35%), vehicles for evacuation (26%), quarantine isolation areas (21%), or emergency supplies of extra water (20%) or food (17%). Plans were unavailable for the following: power outages (23%); lockdowns (15%); illness outbreaks (15%); tornadoes (11%); evacuation for fire, flood, or chemical spill (9%); and other severe weather (8%). Many camps did not have online emergency plans (53%), plans for children with special/medical needs (38%), methods to rapidly communicate information to parents (25%), or methods to identify children for evacuation/reunification with parents (40%). Respondents reported that staff participation in disaster drills varied for weather (58%), evacuations (46%), and lockdowns (36%). The majority (75%) of respondents had not collaborated with medical organizations for planning. A substantial proportion of camps were missing critical components of disaster planning. Future interventions must focus on developing summer camp-specific disaster plans, increasing partnerships, and reassessing national disaster plans to include summer camp settings.
A large contribution of a cyclic AMP-independent pathway to turtle olfactory transduction
1994-01-01
Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant cGMP analogue, db-cGMP elicited a small response and the response to 0.1 mM citralva was unaffected by db-cGMP. It was concluded that cAMP- independent (probably IP3-independent) pathway greatly contributes to the turtle olfactory transduction. PMID:7523576
Donovan, Grant T.; Norton, J. Paul; Bower, Jean M.
2013-01-01
In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H2O2) and acid stress. In the mutant strains, H2O2 resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract. PMID:23115037
Brand, Thomas; Schindler, Roland
2017-12-01
The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H
1988-01-01
cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuriya, Mutsuo; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501
Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This primingmore » effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. - Highlights: • Background NE augments the responsiveness of astrocytes to subsequent NE stimulation. • The priming effect is independent of neuronal activity and mediated by βadrenoceptor. • Background subthreshold NE may play gliomodulatory roles in the cerebral cortex.« less
Daily stressors, trauma exposure, and mental health among stateless Rohingya refugees in Bangladesh.
Riley, Andrew; Varner, Andrea; Ventevogel, Peter; Taimur Hasan, M M; Welton-Mitchell, Courtney
2017-06-01
The Rohingya of Myanmar are a severely persecuted minority who form one of the largest groups of stateless people; thousands of them reside in refugee camps in southeastern Bangladesh. There has been little research into the mental health consequences of persecution, war, and other historical trauma endured by the Rohingya; nor has the role of daily environmental stressors associated with continued displacement, statelessness, and life in the refugee camps, been thoroughly researched. This cross-sectional study examined: trauma history, daily environmental stressors, and mental health outcomes for 148 Rohingya adults residing in Kutupalong and Nayapara refugee camps in Bangladesh. Results indicated high levels of mental health concerns: posttraumatic stress disorder (PTSD), depression, somatic complaints, and associated functional impairment. Participants also endorsed local idioms of distress, including somatic complaints and concerns associated with spirit possession. The study also found very high levels of daily environmental stressors associated with life in the camps, including problems with food, lack of freedom of movement, and concerns regarding safety. Regression and associated mediation analyses indicated that, while there was a direct effect of trauma exposure on mental health outcomes (PTSD symptoms), daily environmental stressors partially mediated this relationship. Depression symptoms were associated with daily stressors, but not prior trauma exposure. These findings indicate that daily stressors play a pivotal role in mental health outcomes of populations affected by collective violence and statelessness. It is, therefore, important to consider the role and effects of environmental stressors associated with life in refugee camps on the mental health and psychosocial well-being of stateless populations such as the Rohingya, living in protracted humanitarian environments.
Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory
Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.
2010-01-01
Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466
EPAC expression and function in cardiac fibroblasts and myofibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy
In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF weremore » treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac fibroblast. • PKA regulates collagen gel contraction in cardiac myofibroblast.« less
Manganiello, Vincent; Vaughan, Martha
1972-01-01
The effect of dexamethasone on adenosine 3′,5′-monophosphate (cAMP) phosphodiesterase activity in cultured HTC hepatoma cells was investigated. Homogenates of these cells contain phosphodiesterase activity with two apparent Michaelis constants for cAMP (2-5 μm and 50 μm). At all substrate concentrations tested, phosphodiesterase activity was decreased 25-40% in cells incubated for 36 hr or more with 1 μm dexamethasone. Acid phosphatase activity in the same cells was not decreased. α-Methyl testosterone, 1 μm, was without effect on phosphodiesterase activity. Incubation for 10 min with epinephrine plus theophylline increased the cAMP content of the HTC cells 3- to 6-fold. In cells incubated for 72 hr with dexamethasone, the basal concentration of cAMP was slightly increased and the increment produced by epinephrine plus theophylline was markedly increased. We believe that in many cells the so-called permissive effects of steroid hormones on cAMP mediated processes may be due to an effect of these hormones on cAMP phosphodiesterase activity similar to that observed in HTC cells incubated with dexamethasone. PMID:4341439
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr
The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulationmore » of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2β-mediated intracellular PI(3)P production. • Lyso-Gb3 reduces both surface and total expression of the KCa3.1 channel. • Increasing intracellular levels of PI(3)P only recovers the reduced surface expression.« less
Itoh, Tetsuji; Tokumura, Miwa; Abe, Kohji
2004-09-13
The brain cAMP regulating system and its downstream elements play a pivotal role in the therapeutic effects of antidepressants. We previously reported the increase in activities of phosphodiesterase 4, a major phosphodiesterase isozyme hydrolyzing cAMP, in the frontal cortex and hippocampus of learned helplessness rats, an animal model for depression. The present study was undertaken to examine the combination of effects of rolipram, a phosphodiesterase 4 inhibitor, with imipramine, a typical tricyclic antidepressant, on depressive behavior in learned helplessness rats. Concurrently, cAMP-response element (CRE)-binding activity and brain-derived neurotrophic factor (BDNF) levels related to the therapeutic effects of antidepressants were determined. Repeated administration of imipramine (1.25-10 mg/kg, i.p.) or rolipram (1.25 mg/kg, i.p.) reduced the number of escape failures in learned helplessness rats. Imipramine could not completely ameliorate the escape behavior to a level similar to that of non-stressed rats even at 10 mg/kg. However, repeated coadministration of rolipram with imipramine (1.25 and 2.5 mg/kg, respectively) almost completely eliminated the escape failures in learned helplessness rats. The reduction of CRE-binding activities and BDNF levels in the frontal cortex or hippocampus in learned helplessness rats were ameliorated by treatment with imipramine or rolipram alone. CRE-binding activities and/or BDNF levels of the frontal cortex and hippocampus were significantly increased by treatment with a combination of rolipram and imipramine compared to those in imipramine-treated rats. These results indicated that coadministration of phosphodiesterase type 4 inhibitors with antidepressants may be more effective for depression therapy and suggest that elevation of the cAMP signal transduction pathway is involved in the antidepressive effects.
Hides, Julie A; Endicott, Timothy; Mendis, M Dilani; Stanton, Warren R
2016-07-01
To investigate whether motor control training alters automatic contraction of abdominal muscles in elite cricketers with low back pain (LBP) during performance of a simulated unilateral weight-bearing task. Clinical trial. 26 male elite-cricketers attended a 13-week cricket training camp. Prior to the camp, participants were allocated to a LBP or asymptomatic group. Real-time ultrasound imaging was used to assess automatic abdominal muscle response to axial loading. During the camp, the LBP group performed a staged motor control training program. Following the camp, the automatic response of the abdominal muscles was re-assessed. At pre-camp assessment, when participants were axially loaded with 25% of their own bodyweight, the LBP group showed a 15.5% thicker internal oblique (IO) muscle compared to the asymptomatic group (p = 0.009). The post-camp assessment showed that participants in the LBP group demonstrated less contraction of the IO muscle in response to axial loading compared with the asymptomatic group. A trend was found in the automatic recruitment pattern of the transversus abdominis (p = 0.08). Motor control training normalized excessive contraction of abdominal muscles in response to a low load task. This may be a useful strategy for rehabilitation of cricketers with LBP. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lecomte-Yerna, M. J.; Hazee-Hagelstein, M. T.; Charlet-Renard, C.; Franchimont, P.
1982-01-01
The FSH secretion-inhibiting action of inhibin in vitro under basal conditions and also in the presence of LH-RH is suppressed by the addition of MIX, a phosphodiesterase inhibitor. In the presence of LH-RH, inhibin reduces significantly the intracellular level of cAMP in isolated pituitary cells. In contrast, the simultaneous addition of MIX and inhibin raises the cAMP level, and this stimulation is comparable to the increase observed when MIX is added alone. These observations suggest that one mode of action of inhibin could be mediated by a reduction in cAMP within the pituitary gonadotropic cell.
NASA Astrophysics Data System (ADS)
Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.
1986-08-01
The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.
Jeong, Min-Jae; Kim, Eui-Jun; Cho, Eun-Ah; Ye, Sang-Kyu; Kang, Gyeong Hoon; Juhnn, Yong-Sung
2013-05-02
The transcriptional coactivator p300 functions as a histone acetyltransferase and a scaffold for transcription factors. We investigated the effect of cAMP signalling on p300 expression. The activation of cAMP signalling by the expression of constitutively active Gαs or by treatment with isoproterenol decreased the p300 protein expression in lung cancer cells. Isoproterenol promoted the ubiquitination and subsequent proteasomal degradation of p300 in an Epac-dependent manner. Epac promoted p300 degradation by inhibiting the activity of p38 MAPK. It is concluded that cAMP signalling decreases the level of the p300 protein by promoting its ubiquitin-proteasome dependent degradation, which is mediated by Epac and p38 MAPK, in lung cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Horiuchi, Hiroko; Usami, Atsuko; Shirai, Rie; Harada, Naoki; Ikushiro, Shinichi; Sakaki, Toshiyuki; Nakano, Yoshihisa; Inui, Hiroshi; Yamaji, Ryoichi
2017-09-01
Background: S -equol, which is enantioselectively produced from daidzein by gut microbiota, has been suggested as a chemopreventive agent against type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear. Objective: We investigated the effects of S -equol on pancreatic β-cell function. Methods: β-Cell growth and insulin secretion were evaluated with male Institute of Cancer Research mice and isolated pancreatic islets from the mice, respectively. The mechanisms by which S -equol stimulated β-cell response were examined in INS-1 β-cells. The effect of S -equol treatment on β-cell function was assessed in low-dose streptozotocin-treated mice. S -equol was used at 10 μmol/L for in vitro and ex vivo studies and was administered by oral gavage (20 mg/kg, 2 times/d throughout the experimental period) for in vivo studies. Results: S -equol administration for 7 d increased Ki67-positive β-cells by 27% ( P < 0.01) in mice. S -equol enantioselectively enhanced glucose-stimulated insulin secretion in mouse pancreatic islets by 41% ( P < 0.001). In INS-1 cells, S -equol exerted stronger effects than daidzein on cell growth, insulin secretion, and cAMP-response element (CRE)-mediated transcription. These S -equol effects were diminished by inhibiting protein kinase A. The effective concentration of S -equol for stimulating cAMP production at the plasma membrane was lower than that for phosphodiesterase inhibition. S -equol-stimulated CRE activation was negatively controlled by the knockdown of G-protein α subunit group S (stimulatory) and positively controlled by that of G-protein-coupled receptor kinase-3 and -6. Compared with vehicle-treated controls, S -equol gavage treatment resulted in an increase in β-cell mass of 104% ( P < 0.05), a trend toward high plasma insulin concentrations (by 118%; P = 0.06), and resistance to hyperglycemia after streptozotocin treatment (78% of AUC after glucose challenge; P < 0.01). S -equol administration significantly increased the number of Ki67-positive proliferating β-cells by 62% ( P < 0.01) and decreased that of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic β-cells by 75% ( P < 0.05). Conclusions: Our results show that S -equol boosts β-cell function and prevents hypoglycemia in mice, suggesting its potential for T2DM prevention. © 2017 American Society for Nutrition.
President Carter’s Leadership at Camp David: Mediation as an Exercise in Strategic Thinking
2011-03-24
longer about them, but about the health and welfare of the institution or perhaps the larger environment, including the community of nations.19 Leaders...President Carter was successful. President Sadat and Prime Minster Begin underscored their belief that the successful meeting Camp David was because of...experience is concerned, worked harder than the forefathers did in Egypt in building the pyramids.47 Prime Minster Begin also thanked Carter for
Interactions of Neuromodulators with Cells of the Immune System
1991-06-20
that cyclic AMP (cAMP), minoxidil and norepinephrine inhibit ConA- mediated lymphocyte activation. These experiments test the effects of these... minoxidil or 8x0W1M norepinephrine markedly inhibited IL2 activation (95%, 50% and 60% respec- tively) and showed similar effects in a ConA-activated...and 2) suggest that the inhibi- tory effects of cAMP, minoxidil and norepinephrine occur at points distal to 1L2 interaction in the lymphocyte
2013-10-01
on body weight regulation through hormonal alterations (e.g., leptin, ghrelin , insulin) that may affect appetite regulation, and sleep- mediated...sleep duration for trou- ble sleeping in multivariable modeling yielded nearly identical results, with significantly higher risk seen with ,6 h of sleep...Riddle, Colonel (Retired) (U.S. Air Force, Bio - medical Science Corps); Margaret Ryan (Naval Hospital Camp Pendleton, Camp Pendleton, CA); and Timothy
Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Wang, Hao; Jiang, Shuai; Chen, Hao; Wang, Lingling; Song, Linsheng
2016-12-01
Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO 3 - ] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO 3 - ] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO 2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO 2 exposure. Besides, CO 2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (p<0.05), suggesting the existence of a [HCO 3 - ]/CgsAC/cAMP signal pathway in oyster. The elevated CO 2 could induce an increase of ROS level (p<0.05) and a decrease of phagocytic rate of haemocytes (p<0.05), which could be inhibited by KH7. The results collectively suggest that CgsAC is an important acid-base sensor in oyster and the [HCO 3 - ]/CgsAC/cAMP signal pathway might be responsible for intracellular alkalization effects on oxidative phosphorylation and innate immunity under CO 2 exposure. The changes of intracellular pH, ROS, and phagocytosis mediated by CgsAC might help us to further understand the effects of ocean acidification on marine calcifiers. Copyright © 2016 Elsevier B.V. All rights reserved.
Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.
Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J
2017-09-01
Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.
More, Kunal R.; Siddiqui, Faiza Amber; Pachikara, Niseema; Ramdani, Ghania; Langsley, Gordon; Chitnis, Chetan E.
2014-01-01
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. PMID:25522250
The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion.
Masuyama, Hisashi; Suwaki, Naoko; Tateishi, Yoko; Nakatsukasa, Hideki; Segawa, Tomonori; Hiramatsu, Yuji
2005-05-01
Recent studies have revealed that pregnane X receptor (PXR) can function as a master regulator to control the expression of phase I and phase II drug-metabolizing enzymes, as well as members of the drug transporter family, including multiple drug resistance (MDR) 1, which has a major role in multidrug resistance. Previously, we have demonstrated that steroid/xenobiotics metabolism by tumor tissue through the PXR-cytochrome P-450 3A (CYP3A) pathway might play an important role in endometrial cancer. In this study, we examined which endocrine-disrupting chemicals (EDCs) and anticancer agents might be ligands for PXR and whether these chemicals enhanced PXR-mediated transcription through two different PXR-responsive elements (PXREs), CYP3A4 and MDR1, in endometrial cancer cell lines. Some steroids/EDCs strongly activated PXR-mediated transcription through the CYP3A4-responsive element compared with the MDR1-responsive element, whereas these steroids/EDCs also enhanced the CYP3A4 expression compared with the MDR1 expression. In contrast, the anticancer agents, cisplatin and paclitaxel, strongly activated PXR-mediated transcription through the MDR1-responsive element compared with the CYP3A4-responsive element, whereas these drugs also enhanced the MDR1 expression compared with the CYP3A4 expression. We also analyzed how these ligands regulated PXR-mediated transcription through two different PXREs. In the presence of PXR ligands, there was no difference in the DNA binding affinity of the PXR/retinoid X receptor heterodimer to each PXRE, but there were different interactions of the coactivator to each PXR/PXRE complex. These data suggested that PXR ligands enhanced PXR-mediated transcription in a ligand- and promoter-dependent fashion, which in turn differentially regulated the expression of individual PXR targets, especially CYP3A4 and MDR1.
Teen Moms and Babies Benefit from Camping.
ERIC Educational Resources Information Center
Goode, Marsha; Broesamle, Barbara
1987-01-01
Describes nine-day residential camp for Michigan teenage mothers/babies to enhance personal growth and develop responsible social skills. Outlines goals, pre-camp planning, staff, activities, evaluation. Reports 31 teen moms (ages 13-21) and 35 babies attended in 1986. Indicates participants were in therapy, experienced abuse, had low self-esteem,…
Juergens, Uwe R; Stöber, M; Libertus, H; Darlath, W; Gillissen, A; Vetter, H
2004-07-30
Beta2-adrenergic receptor agonists have several effects on airway function, most of which are mediated in a variety of cell types resulting in increased c-AMP-production and inhibition of inflammatory mediator production. However, their stimulating effects on cAMP-production became known to be inversed by increasing phosphodiesterase (PDE) activity and degradation of cAMP. Therefore, in this study we have evaluated the efficacy of reproterol, a dual acting beta2-adrenoceptor agonist and PDE-inhibitor, as compared to salbutamol and fenoterol with respect to production of cAMP and LTB4 in cultured monocytes. Isolated human monocytes (10(5)/ml) were incubated (n = 9) in suspension with beta2-adrenoceptor agonists (10(-10) -10(-4) M) for 30 minutes with and without IBMX. Then, cAMP production was determined following treatment with Triton-X100. Production of LTB4 was measured following incubation of beta2-adrenoceptor agonists for 4 hrs in the presence of LPS (10 mg/ml). cAMP and LTB subset 4 were measured in culture supernatants by enzyme immunoassay. At 10(-5) M, production of cAMP was significantly stimulated by reproterol > fenoterol > salbutamol in a dose-dependent manner to an extent of *128%, *65%, 13% (*p<0.04) respectively. In contrast, LTB4-production was inhibited significantly to a similar degree by salbutamol and reproterol in a dose-dependent manner by 59% and 49% (10(-5) M, p<0.03), respectively, with decreasing inhibition (15%) after fenoterol. Following co-incubation with IBMX, cAMP production only increased significantly (p<0.002) after fenoterol (+110%) compared to salbutamol (+29%) and reproterol (+50%) (ANOVA, p<0.001). These data suggest effects of the theophylline constituent of reproterol to inhibit adenylyl cyclase induced phosphodiesterase activity. The advantageous synergistic effects of reproterol on cAMP-production need to be further explored in trials.
Wade, Mark R; Tzavara, Eleni T; Nomikos, George G
2004-04-16
The cannabinoid receptor subtype 1 (CB1R) is a member of the G(i)-protein-coupled receptor family and cannabinoid signaling is largely dependent on the suppression of adenylyl cyclase-catalyzed cAMP production. In cell lines transfected with the CB1R or in native tissue preparations, treatment with cannabinoid agonists reduces both basal and forskolin-stimulated cAMP synthesis. We measured extracellular cAMP concentrations in the striatum of freely moving rats utilizing microdialysis to determine if changes in cAMP concentrations in response to CB1R agonists can be monitored in vivo. Striatal infusion of the CB1R agonist WIN55,212-2 (100 microM or 1 mM), dose-dependently decreased basal and forskolin-stimulated extracellular cAMP. These effects were reversed by co-infusion of the CB1R antagonist SR141716A (30 microM), which alone had no effect up to the highest concentration tested (300 microM). These data indicate that changes in extracellular cAMP concentrations in response to CB1R stimulation can be monitored in vivo allowing the study of cannabinoid signaling in the whole animal.
Functional Characteristics of the Naked Mole Rat μ-Opioid Receptor
Roth, Clarisse A.
2013-01-01
While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids. PMID:24312175
Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connelly, P.A.; Sisk, R.B.; Johnson, R.M.
1987-05-01
Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less
Sexual Harassment at Camp: Reducing Liability.
ERIC Educational Resources Information Center
Oakleaf, Linda; Grube, Angela Johnson
2003-01-01
Employers are responsible for sexual harassment perpetrated by a supervisor. Camps may be responsible for sexual harassment between campers. Steps to reduce liability include providing multiple channels for reporting sexual harassment; having written policies prohibiting sexual harassment and procedures for reporting it; posting these policies and…
ERIC Educational Resources Information Center
Abraham, Michelle M.; Kerns, Kathryn A.
2013-01-01
This study examined whether emotions and coping explain (mediate) the association between mother-child attachment and peer relationships. Attachment, positive and negative emotion experience, coping, and peer relationships were examined in 106 fourth-grade through sixth-grade girls attending a 6-day residential camp. Attachment, experience of…
Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei
2016-04-01
Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A summer pharmacy camp for high school students as a pharmacy student recruitment tool.
Myers, Tristan L; DeHart, Renee M; Dunn, Eddie B; Gardner, Stephanie F
2012-05-10
To determine the effectiveness of a summer pharmacy camp on participants' pursuit of enrollment in doctor of pharmacy degree programs. All participants (n = 135) in a pharmacy camp at the University of Arkansas for Medical Sciences (UAMS) College of Pharmacy from 2007-2010 were invited to complete an anonymous online survey instrument. Seventy-three students completed the survey instrument (54% response rate). Ninety-six percent of pharmacy camp participants said that they would recommend pharmacy camp to a friend, and 76% planned to apply or had applied to doctor of pharmacy degree program. Seven of the camp participants had enrolled in the UAMS College of Pharmacy. The pharmacy summer camp at UAMS is effective in maintaining high school students' interest in the profession of pharmacy. Continued use of the pharmacy camp program as a recruitment tool is warranted; however, additional research on this topic is needed.
Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K
1985-01-01
Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291
Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8.
Shinkai, Akeo; Kira, Satoshi; Nakagawa, Noriko; Kashihara, Aiko; Kuramitsu, Seiki; Yokoyama, Shigeyuki
2007-05-01
The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5'-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3'. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative -10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.
Teaching Ugandan Traditional Dances and Drumming in Summer Camps
ERIC Educational Resources Information Center
Mabingo, Alfdaniels
2017-01-01
Dances and drum rhythms from African traditions have been integrated into summer camp activities in the United States as a response to the ever-globalized environments in which these camps are located and the diversity of the campers and teachers that they attract. This reflective article draws on critical reflections, observations and experiences…
Strategies for Developing a University-Sponsored Youth Sports Summer Camp
ERIC Educational Resources Information Center
Walsh, David
2011-01-01
During the summer, universities have the ability to offer on-campus camps that serve the health, physical activity, and educational needs of youths. However, the tasks, responsibilities, time, and knowledge needed to run a camp can be overwhelming. This article describes the administrative components of the lessons learned from the development of…
Meens, M J P M T; Mattheij, N J A; van Loenen, P B; Spijkers, L J A; Lemkens, P; Nelissen, J; Compeer, M G; Alewijnse, A E; De Mey, J G R
2012-05-01
Calcitonin gene-related peptide (CGRP) has been proposed to relax vascular smooth muscle cells (VSMC) via cAMP and can promote dissociation of endothelin-1 (ET-1) from ET(A) receptors. The latter is not mimicked by other stimuli of adenylate cyclases. Therefore, we evaluated the involvement of G-protein βγ subunits (Gβγ) in the arterial effects of CGRP receptor stimulation. To test the hypothesis that instead of α subunits of G-proteins (Gαs), Gβγ mediates the effects of CGRP receptor activation, we used (i) rat isolated mesenteric resistance arteries (MRA), (ii) pharmacological modulators of cyclic nucleotides; and (iii) low molecular weight inhibitors of the functions of Gβγ, gallein and M119. To validate these tools with respect to CGRP receptor function, we performed organ bath studies with rat isolated MRA, radioligand binding on membranes from CHO cells expressing human CGRP receptors and cAMP production assays in rat cultured VSMC. In isolated arteries contracted with K(+) or ET-1, IBMX (PDE inhibitor) increased sodium nitroprusside (SNP)- and isoprenaline (ISO)- but not CGRP-induced relaxations. While fluorescein (negative control) was without effects, gallein increased binding of [(125) I]-CGRP in the absence and presence of GTPγS. Gallein also increased CGRP-induced cAMP production in VSMC. Despite these stimulating effects, gallein and M119 selectively inhibited the relaxing and anti-endothelinergic effects of CGRP in isolated arteries while not altering contractile responses to K(+) or ET-1 or relaxing responses to ISO or SNP. Activated CGRP receptors induce cyclic nucleotide-independent relaxation of VSMC and terminate arterial effects of ET-1 via Gβγ. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Teixeira, Helena M P; Alcantara-Neves, Neuza M; Barreto, Maurício; Figueiredo, Camila A; Costa, Ryan S
2017-02-01
Asthma is a chronic inflammatory disease of the respiratory tract. This heterogeneous disease is caused by the interaction of interindividual genetic variability and environmental factors. The gene adenylyl cyclase type 9 (ADCY9) encodes a protein called adenylyl cyclase (AC), responsible for producing the second messenger cyclic AMP (cAMP). cAMP is produced by T regulatory cells and is involved in the down-regulation of T effector cells. Failures in cAMP production may be related to an imbalance in the regulatory immune response, leading to immune-mediated diseases, such as allergic disorders. The aim of this study was to investigate how polymorphisms in the ADCY9 are associated with asthma and allergic markers. The study comprised 1309 subjects from the SCAALA (Social Changes Asthma and Allergy in Latin America) program. Genotyping was accomplished using the Illumina 2.5 Human Omni bead chip. Logistic regression was used to assess the association between allergy markers and ADCY9 variation in PLINK 1.07 software with adjustments for sex, age, helminth infection and ancestry markers. The ADCY9 candidate gene was associated with different phenotypes, such as asthma, specific IgE, skin prick test, and cytokine production. Among 133 markers analyzed, 29 SNPs where associated with asthma and allergic markers in silico analysis revealed the functional impact of the 6 SNPs on ADCY9 expression. It can be concluded that polymorphisms in the ADCY9 gene are significantly associated with asthma and/or allergy markers. We believe that such polymorphisms may lead to increased expression of adenylyl cyclase with a consequent increase in immunoregulatory activity. Therefore, these SNPs may offer an impact on the occurrence of these conditions in admixture population from countries such as Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, H; Gamper, M; Parent, C; Firtel, R A
1997-01-01
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium. PMID:9250676
Balfanz, Sabine; Strünker, Timo; Frings, Stephan; Baumann, Arnd
2005-04-01
In invertebrates, the biogenic-amine octopamine is an important physiological regulator. It controls and modulates neuronal development, circadian rhythm, locomotion, 'fight or flight' responses, as well as learning and memory. Octopamine mediates its effects by activation of different GTP-binding protein (G protein)-coupled receptor types, which induce either cAMP production or Ca(2+) release. Here we describe the functional characterization of two genes from Drosophila melanogaster that encode three octopamine receptors. The first gene (Dmoa1) codes for two polypeptides that are generated by alternative splicing. When heterologously expressed, both receptors cause oscillatory increases of the intracellular Ca(2+) concentration in response to applying nanomolar concentrations of octopamine. The second gene (Dmoa2) codes for a receptor that specifically activates adenylate cyclase and causes a rise of intracellular cAMP with an EC(50) of approximately 3 x 10(-8) m octopamine. Tyramine, the precursor of octopamine biosynthesis, activates all three receptors at > or = 100-fold higher concentrations, whereas dopamine and serotonin are non-effective. Developmental expression of Dmoa genes was assessed by RT-PCR. Overlapping but not identical expression patterns were observed for the individual transcripts. The genes characterized in this report encode unique receptors that display signature properties of native octopamine receptors.
Lerman, B B; Dong, B; Stein, K M; Markowitz, S M; Linden, J; Catanzaro, D F
1998-01-01
Idiopathic ventricular tachycardia is a generic term that describes the various forms of ventricular arrhythmias that occur in patients without structural heart disease and in the absence of the long QT syndrome. Many of these tachycardias are focal in origin, localize to the right ventricular outflow tract (RVOT), terminate in response to beta blockers, verapamil, vagal maneuvers, and adenosine, and are thought to result from cAMP-mediated triggered activity. DNA was prepared from biopsy samples obtained from myocardial tissue from a patient with adenosine-insensitive idiopathic ventricular tachycardia arising from the RVOT. Genomic sequences of the inhibitory G protein Galphai2 were determined after amplification by PCR and subcloning. A point mutation (F200L) in the GTP binding domain of the inhibitory G protein Galphai2 was identified in a biopsy sample from the arrhythmogenic focus. This mutation was shown to increase intracellular cAMP concentration and inhibit suppression of cAMP by adenosine. No mutations were detected in Galphai2 sequences from myocardial tissue sampled from regions remote from the origin of tachycardia, or from peripheral lymphocytes. These findings suggest that somatic cell mutations in the cAMP-dependent signal transduction pathway occurring during myocardial development may be responsible for some forms of idiopathic ventricular tachycardia. PMID:9637720
Gorokhovich, Yuri; Reid, Matthew; Mignone, Erica; Voros, Andrew
2003-10-01
Coal mine reclamation projects are very expensive and require coordination of local and federal agencies to identify resources for the most economic way of reclaiming mined land. Location of resources for mine reclamation is a spatial problem. This article presents a methodology that allows the combination of spatial data on resources for the coal mine reclamation and uses GIS analysis to develop a priority list of potential mine reclamation sites within contiguous United States using the method of extrapolation. The extrapolation method in this study was based on the Bark Camp reclamation project. The mine reclamation project at Bark Camp, Pennsylvania, USA, provided an example of the beneficial use of fly ash and dredged material to reclaim 402,600 sq mi of a mine abandoned in the 1980s. Railroads provided transportation of dredged material and fly ash to the site. Therefore, four spatial elements contributed to the reclamation project at Bark Camp: dredged material, abandoned mines, fly ash sources, and railroads. Using spatial distribution of these data in the contiguous United States, it was possible to utilize GIS analysis to prioritize areas where reclamation projects similar to Bark Camp are feasible. GIS analysis identified unique occurrences of all four spatial elements used in the Bark Camp case for each 1 km of the United States territory within 20, 40, 60, 80, and 100 km radii from abandoned mines. The results showed the number of abandoned mines for each state and identified their locations. The federal or state governments can use these results in mine reclamation planning.
Cross-adaptation between Olfactory Responses Induced by Two Subgroups of Odorant Molecules
Takeuchi, Hiroko; Imanaka, Yukie; Hirono, Junzo; Kurahashi, Takashi
2003-01-01
It has long been believed that vertebrate olfactory signal transduction is mediated by independent multiple pathways (using cAMP and InsP3 as second messengers). However, the dual presence of parallel pathways in the olfactory receptor cell is still controversial, mainly because of the lack of information regarding the single-cell response induced by odorants that have been shown to produce InsP3 exclusively (but not cAMP) in the olfactory cilia. In this study, we recorded activities of transduction channels of single olfactory receptor cells to InsP3-producing odorants. When the membrane potential was held at −54 mV, application of InsP3-producing odorants to the ciliary region caused an inward current. The reversal potential was 0 ± 7 mV (mean ± SD, n = 10). Actually, InsP3-producing odorants generated responses in a smaller fraction of cells (lilial, 3.4%; lyral, 1.7%) than the cAMP-producing odorant (cineole, 26%). But, fundamental properties of responses were surprisingly homologous; namely, spatial distribution of the sensitivity, waveforms, I-V relation, and reversal potential, dose dependence, time integration of stimulus period, adaptation, and recovery. By applying both types of odorants alternatively to the same cell, furthermore, we observed cells to exhibit symmetrical cross-adaptation. It seems likely that even with odorants with different modalities adaptation occurs completely depending on the amount of current flow. The data will also provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants. PMID:12939391
Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules.
Takeuchi, Hiroko; Imanaka, Yukie; Hirono, Junzo; Kurahashi, Takashi
2003-09-01
It has long been believed that vertebrate olfactory signal transduction is mediated by independent multiple pathways (using cAMP and InsP3 as second messengers). However, the dual presence of parallel pathways in the olfactory receptor cell is still controversial, mainly because of the lack of information regarding the single-cell response induced by odorants that have been shown to produce InsP3 exclusively (but not cAMP) in the olfactory cilia. In this study, we recorded activities of transduction channels of single olfactory receptor cells to InsP3-producing odorants. When the membrane potential was held at -54 mV, application of InsP3-producing odorants to the ciliary region caused an inward current. The reversal potential was 0 +/- 7 mV (mean +/- SD, n = 10). Actually, InsP3-producing odorants generated responses in a smaller fraction of cells (lilial, 3.4%; lyral, 1.7%) than the cAMP-producing odorant (cineole, 26%). But, fundamental properties of responses were surprisingly homologous; namely, spatial distribution of the sensitivity, waveforms, I-V relation, and reversal potential, dose dependence, time integration of stimulus period, adaptation, and recovery. By applying both types of odorants alternatively to the same cell, furthermore, we observed cells to exhibit symmetrical cross-adaptation. It seems likely that even with odorants with different modalities adaptation occurs completely depending on the amount of current flow. The data will also provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Klein, J
1991-06-01
Dream reports occupy a special place in literature about confinement in concentration camps and ghettos (Robert Antelme, Charlotte Delbo, Anna Langfus, André Schwarz-Bart). They are central elements in the narrative that relate the anxiety of those threatened with destruction more faithfully than any realistic account could. They disrupt the chronological linearity and rationality and represent in images horror beyond memory or description.
Mechanisms Restricting Diffusion of Intracellular cAMP.
Agarwal, Shailesh R; Clancy, Colleen E; Harvey, Robert D
2016-01-22
Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.
Mechanisms Restricting Diffusion of Intracellular cAMP
Agarwal, Shailesh R.; Clancy, Colleen E.; Harvey, Robert D.
2016-01-01
Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells. PMID:26795432
Cebolla, Beatriz; Fernández-Pérez, Antonio; Perea, Gertrudis; Araque, Alfonso; Vallejo, Mario
2008-06-25
In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.
Very low-density lipoprotein (VLDL)-induced signals mediating aldosterone production.
Tsai, Ying-Ying; Rainey, William E; Bollag, Wendy B
2017-02-01
Aldosterone, secreted by the adrenal zona glomerulosa, enhances sodium retention, thus increasing blood volume and pressure. Excessive production of aldosterone results in high blood pressure and contributes to cardiovascular and renal disease, stroke and visual loss. Hypertension is also associated with obesity, which is correlated with other serious health risks as well. Although weight gain is associated with increased blood pressure, the mechanism by which excess fat deposits increase blood pressure remains unclear. Several studies have suggested that aldosterone levels are elevated with obesity and may represent a link between obesity and hypertension. In addition to hypertension, obese patients typically have dyslipidemia, including elevated serum levels of very low-density lipoprotein (VLDL). VLDL, which functions to transport triglycerides from the liver to peripheral tissues, has been demonstrated to stimulate aldosterone production. Recent studies suggest that the signaling pathways activated by VLDL are similar to those utilized by AngII. Thus, VLDL increases cytosolic calcium levels and stimulates phospholipase D (PLD) activity to result in the induction of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2) expression. These effects seem to be mediated by the ability of VLDL to increase the phosphorylation (activation) of their regulatory transcription factors, such as the cAMP response element-binding (CREB) protein family of transcription factors. Thus, research into the pathways by which VLDL stimulates aldosterone production may identify novel targets for the development of therapies for the treatment of hypertension, particularly those associated with obesity, and other aldosterone-modulated pathologies. © 2017 Society for Endocrinology.
NASA Astrophysics Data System (ADS)
Terrill, Laura Anne
This study investigated the curricular representations of the environment and the human-environment relationship at one residential school sponsored science camp. Data gathered included field notes from observational time at the camp, interviews with staff and classroom teachers, and documents from the site's website, guides, manuals, and curricular guides. These data were analyzed to understand how the camp represented the human-environment relationship and the "proper" human-environment relationship to its participants. Analysis indicated that the camp's official and enacted curriculum was shaped in response to two perceived problems, (1) students were perceived as having a disconnected relationship with the outdoors and lacking in outdoor experiences; and (2) staff members of the camp believed that time for science during the school day had diminished and that students were not receiving adequate science instruction at school. In response, the goal of the camp was to connect students to the outdoors through hands-on, sensory, experience based science and outdoor education experiences. However, key aspects of the camp experience and the formal and enacted curriculum unintentionally positioned students as separate from nature. The camp experience presented a vacation like understanding of the human-environment relationship as students became tourists of the outdoors. Despite the site's goal of connecting students to the outdoors, the science camp experience worked to distance students from the outdoors by unintentionally representing the outdoors as a place that existed away from home and students' everyday lives. Notably, nature became a place that existed in the past, separate from modernity. Students were tourists in an exotic location - nature. They received tours of the foreign outdoors, had fun, and returned home to their ordinary lives that were separate and distinct from the natural world.
Wiley, J W; O'Dorisio, T M; Owyang, C
1988-01-01
This study evaluates the hypothesis that cholecystokinin (CCK) relaxes the sphincter of Oddi via vasoactive intestinal polypeptide (VIP). Isolated canine sphincter of Oddi were suspended in organ baths under standard conditions. Responses to cholecystokinin octapeptide (CCK-8) and VIP were recorded on a pen recorder via an isometric transducer. 10(-11)-10(-7) M CCK-8 and 4 X 10(-11)-5 X 10(-7) M VIP generated dose-related sphincter of Oddi relaxation, which was unaffected by atropine, propranolol, and phentolamine. The effect of CCK-8 was antagonized by dibutyryl cGMP (Bt2 cGMP) (10(-3) M), the VIP-antagonist (N-Ac-Tyr1, D-Phe2)-growth hormone-releasing factor-(1-29)-NH2, and abolished by tetrodotoxin. In contrast, VIP's relaxing action was tetrodotoxin insensitive. 10(-11)-10(-7) M CCK-8 stimulated dose-dependent release of VIP (0.5-2.2 fm/ml.mg tissue), which was not inhibited by atropine, propranolol, and phentolamine, but was antagonized by 10(-3) M Bt2 cGMP and tetrodotoxin. In addition CCK-8 and VIP generated dose-related (10(-10)-10(-7) M) increases in sphincter of Oddi cAMP levels that were not affected by atropine, propranolol, and phentolamine. Furthermore, 10(-5)-10(-2) M 8-bromo-cAMP caused dose-dependent relaxation of the sphincter of Oddi. In separate studies, a 2-h incubation in physiological solution containing 12 parts/1,000 of rabbit VIP antiserum antagonized sphincter relaxation caused by 4 nM CCK-8 and 6 nM VIP. The antiserum also significantly decreased the sphincter of Oddi cAMP level stimulated by 4 nM CCK-8 by 48 +/- 15%. These studies demonstrate that CCK-8 relaxes the canine sphincter of Oddi via a noncholinergic, nonadrenergic neural pathway involving VIP. The intracellular mechanism mediating CCK/VIP relaxation involves generation of cAMP. Images PMID:3384954
Chiang, Hsiu-Mei; Chien, Yin-Chih; Wu, Chieh-Hsi; Kuo, Yueh-Hsiung; Wu, Wan-Chen; Pan, Yu-Yun; Su, Yu-Han; Wen, Kuo-Ching
2014-03-01
We investigated the effects of an aqueous alcohol extract of Rhodiola rosea (R. rosea) and its hydrolysate on melanin synthesis and the mechanisms mediating the activity. The ratio of tyrosol to salidroside was 2.3 in hydroalcoholic extract, and 51.0 in hydrolysate. We found that R. rosea extract and its hydrolysate inhibited melanin synthesis and tyrosinase activity in mouse melanoma cells (B16F0 cells). R. rosea extract also inhibited gene and protein expression of melanocortin 1 receptor (MC1R) and inhibited c-AMP response element binding protein (CREB) phosphorylation, suppressed the activation of AKT and glycogen synthase kinase-3 beta (GSK3β), and inhibited the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related protein 1 (TRP-1). R. rosea hydrolysate inhibited the phosphorylation of CREB, the activation of AKT and GSK3β, and the expression of MITF and tyrosinase. Our results suggest that R. rosea extract is a novel tyrosinase inhibitor and that it exerts its effects by regulating the CREB/MITF/tyrosinase pathway in B16F0. Further in vivo studies are needed to determine the effectiveness of R. rosea extract as a skin whitening agent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C
2017-06-14
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition.
Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.
Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I
2015-05-23
Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.
Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D
2018-01-01
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
2009-05-31
Konaka H, Sodek J, Zhau HE, Chung LW. Human Osteocalcin and Bone Sialoprotein Mediating Osteomimicry of Prostate Cancer Cells: Role of cAMP... sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling path- way. Cancer Res 2005;65:2303^13
Teenagers and Sexuality at Camp: Understanding Teen Sexuality and Tips for Talking with Them.
ERIC Educational Resources Information Center
Ponton, Lynn E.
2000-01-01
Camp offers teens a place to try out new things, including sexual experimentation. Two case studies illustrate challenging ways sex can come up at camp, and staff responses. Myths and misconceptions about sex, including HIV and gender roles, are discussed. Sidebars discuss guidelines for adults concerning sexual abuse symptoms and tips for talking…
Kanellopoulos, Alexandros K; Semelidou, Ourania; Kotini, Andriana G; Anezaki, Maria; Skoulakis, Efthimios M C
2012-09-19
Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.
Reward-based hypertension control by a synthetic brain-dopamine interface.
Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2013-11-05
Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.
Kim, Byung-Hak; Yoon, Bo Ruem; Kim, Eun Kyoung; Noh, Kum Hee; Kwon, Sun-Ho; Yi, Eun Hee; Lee, Hyun Gyu; Choi, Jung Sook; Kang, Seong Wook; Park, In-Chul; Lee, Won-Woo; Ye, Sang-Kyu
2016-06-15
Autoimmune rheumatoid arthritis is characterized by chronic inflammation and hyperplasia in the synovial joints. Although the cause of rheumatoid arthritis is largely unknown, substantial evidence has supported the importance of immune cells and inflammatory cytokines in the initiation and progression of this disease. Herein, we demonstrated that the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) alleviated type II collagen-induced arthritis in a mouse model. The levels of pro-inflammatory cytokines are elevated in both human patients with rheumatoid arthritis and mice with collagen-induced arthritis. BOT-4-one treatment reduced the levels of pro-inflammatory cytokines in mice and endotoxin-stimulated macrophages. BOT-4-one treatment suppressed the polarization of Th1- and Th17-cell subsets by inhibiting the expression and production of their lineage-specific master transcription factors and cytokines, as well as activation of signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited mitogen-activated protein kinase and NF-kappaB signaling as well as the transcriptional activities and DNA-binding of transcription factors, including activator protein-1, cAMP response element-binding protein and NF-kappaB. Our results suggest that BOT-4-one may have therapeutic potential for the treatment of chronic inflammation associated with autoimmune rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.
Mellon, S H; Wolkowitz, O M; Schonemann, M D; Epel, E S; Rosser, R; Burke, H B; Mahan, L; Reus, V I; Stamatiou, D; Liew, C-C; Cole, S W
2016-05-24
Major depressive disorder (MDD) is associated with a significantly elevated risk of developing serious medical illnesses such as cardiovascular disease, immune impairments, infection, dementia and premature death. Previous work has demonstrated immune dysregulation in subjects with MDD. Using genome-wide transcriptional profiling and promoter-based bioinformatic strategies, we assessed leukocyte transcription factor (TF) activity in leukocytes from 20 unmedicated MDD subjects versus 20 age-, sex- and ethnicity-matched healthy controls, before initiation of antidepressant therapy, and in 17 of the MDD subjects after 8 weeks of sertraline treatment. In leukocytes from unmedicated MDD subjects, bioinformatic analysis of transcription control pathway activity indicated an increased transcriptional activity of cAMP response element-binding/activating TF (CREB/ATF) and increased activity of TFs associated with cellular responses to oxidative stress (nuclear factor erythroid-derived 2-like 2, NFE2l2 or NRF2). Eight weeks of antidepressant therapy was associated with significant reductions in Hamilton Depression Rating Scale scores and reduced activity of NRF2, but not in CREB/ATF activity. Several other transcriptional regulation pathways, including the glucocorticoid receptor (GR), nuclear factor kappa-B cells (NF-κB), early growth response proteins 1-4 (EGR1-4) and interferon-responsive TFs, showed either no significant differences as a function of disease or treatment, or activities that were opposite to those previously hypothesized to be involved in the etiology of MDD or effective treatment. Our results suggest that CREB/ATF and NRF2 signaling may contribute to MDD by activating immune cell transcriptome dynamics that ultimately influence central nervous system (CNS) motivational and affective processes via circulating mediators.
Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.
2008-01-01
The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei
2011-01-01
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943
Ginsburg, G T; Kimmel, A R
1997-08-15
Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.
Signaling molecules involved in the transition of growth to development of Dictyostelium discoideum.
Mir, Hina A; Rajawat, Jyotika; Pradhan, Shalmali; Begum, Rasheedunnisa
2007-03-01
The social amoeba Dictyostelium discoideum, a powerful paradigm provides clear insights into the regulation of growth and development. In addition to possessing complex individual cellular functions like a unicellular eukaryote, D. discoideum cells face the challenge of multicellular development. D. discoideum undergoes a relatively simple differentiation process mainly by cAMP mediated pathway. Despite this relative simplicity, the regulatory signaling pathways are as complex as those seen in metazoan development. However, the introduction of restriction-enzyme-mediated integration (REMI) technique to produce developmental gene knockouts has provided novel insights into the discovery of signaling molecules and their role in D. discoideum development. Cell cycle phase is an important aspect for differentiation of D. discoideum, as cells must reach a specific stage to enter into developmental phase and specific cell cycle regulators are involved in arresting growth phase genes and inducing the developmental genes. In this review, we present an overview of the signaling molecules involved in the regulation of growth to differentiation transition (GDT), molecular mechanism of early developmental events leading to generation of cAMP signal and components of cAMP relay system that operate in this paradigm.
Molecular and genetic substrates linking stress and addiction.
Briand, Lisa A; Blendy, Julie A
2010-02-16
Drug addiction is one of the top three health concerns in the United States in terms of economic and health care costs. Despite this, there are very few effective treatment options available. Therefore, understanding the causes and molecular mechanisms underlying the transition from casual drug use to compulsive drug addiction could aid in the development of treatment options. Studies in humans and animal models indicate that stress can lead to both vulnerability to develop addiction, and increased drug taking and relapse in addicted individuals. Exposure to stress or drugs of abuse results in long-term adaptations in the brain that are likely to involve persistent alterations in gene expression or activation of transcription factors, such as the cAMP Response Element Binding (CREB) protein. The signaling pathways controlled by CREB have been strongly implicated in drug addiction and stress. Many potential CREB target genes have been identified based on the presence of a CRE element in promoter DNA sequences. These include, but are not limited to CRF, BDNF, and dynorphin. These genes have been associated with initiation or reinstatement of drug reward and are altered in one direction or the other following stress. While many reviews have examined the interactions between stress and addiction, the goal of this review was to focus on specific molecules that play key roles in both stress and addiction and are therefore posed to mediate the interaction between the two. Focus on these molecules could provide us with new targets for pharmacological treatments for addiction. Copyright 2009 Elsevier B.V. All rights reserved.
Interconnected network motifs control podocyte morphology and kidney function.
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi
2014-02-04
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Brullo, Chiara; Ricciarelli, Roberta; Prickaerts, Jos; Arancio, Ottavio; Massa, Matteo; Rotolo, Chiara; Romussi, Alessia; Rebosio, Claudia; Marengo, Barbara; Pronzato, Maria Adelaide; van Hagen, Britt T J; van Goethem, Nick P; D'Ursi, Pasqualina; Orro, Alessandro; Milanesi, Luciano; Guariento, Sara; Cichero, Elena; Fossa, Paola; Fedele, Ernesto; Bruno, Olga
2016-11-29
Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
ABFs, a family of ABA-responsive element binding factors.
Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y
2000-01-21
Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.
Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F
2010-01-01
Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.
Bacterial nucleotide-based second messengers.
Pesavento, Christina; Hengge, Regine
2009-04-01
In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.
Rajgopal, Arun; Rebhun, John F.; Burns, Charlie R.; Scholten, Jeffrey D.; Balles, John A.
2015-01-01
Abstract Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway. PMID:25599252
Rajgopal, Arun; Rebhun, John F; Burns, Charlie R; Scholten, Jeffrey D; Balles, John A; Fast, David J
2015-03-01
Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway.
Goulding, Joelle; May, Lauren T; Hill, Stephen J
2018-01-01
Endogenous adenosine A 2B receptors (A 2B AR) mediate cAMP accumulation in HEK 293 cells. Here we have used a biosensor to investigate the mechanism of action of the A 2B AR antagonist PSB 603 in HEK 293 cells. The A 2A agonist CGS 21680 elicited a small response in these cells (circa 20% of that obtained with NECA), suggesting that they also contain a small population of A 2A receptors. The responses to NECA and adenosine were antagonised by PSB 603, but not by the selective A 2A AR antagonist SCH 58261. In contrast, CGS 21680 responses were not antagonised by high concentrations of PSB 603, but were sensitive to inhibition by SCH 58261. Analysis of the effect of increasing concentrations of PSB 603 on the response to NECA indicated a non-competitive mode of action yielding a marked reduction in the NECA E MAX with no significant effect on EC 50 values. Kinetics analysis of the effect of PSB 603 on the A 2B AR-mediated NECA responses confirmed a saturable effect that was consistent with an allosteric mode of antagonism. The possibility that PSB 603 acts as a negative allosteric modulator of A 2B AR suggests new approaches to the development of therapeutic agents to treat conditions where adenosine levels are high. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
TLR-2 Recognizes Propionibacterium acnes CAMP Factor 1 from Highly Inflammatory Strains
Ollagnier, Guillaume; Désiré, Nathalie; Sayon, Sophie; Raingeaud, Jöel; Marcelin, Anne-Geneviève; Calvez, Vincent; Khammari, Amir; Batteux, Frédéric; Dréno, Brigitte; Dupin, Nicolas
2016-01-01
Background Propionibacterium acnes (P. acnes) is an anaerobic, Gram-positive bacteria encountered in inflammatory acne lesions, particularly in the pilosebaceous follicle. P. acnes triggers a strong immune response involving keratinocytes, sebocytes and monocytes, the target cells during acne development. Lipoteicoic acid and peptidoglycan induce the inflammatory reaction, but no P. acnes surface protein interacting with Toll-like receptors has been identified. P. acnes surface proteins have been extracted by lithium stripping and shown to induce CXCL8 production by keratinocytes. Methodology and principal findings Far-western blotting identified two surface proteins, of 24.5- and 27.5-kDa in size, specifically recognized by TLR2. These proteins were characterized, by LC-MS/MS, as CAMP factor 1 devoid of its signal peptide sequence, as shown by N-terminal sequencing. Purified CAMP factor 1 induces CXCL8 production by activating the CXCL8 gene promoter, triggering the synthesis of CXCL8 mRNA. Antibodies against TLR2 significantly decreased the CXCL8 response. For the 27 P. acnes strains used in this study, CAMP1-TLR2 binding intensity was modulated and appeared to be strong in type IB and II strains, which produced large amounts of CXCL8, whereas most of the type IA1 and IA2 strains presented little or no CAMP1-TLR2 binding and low levels of CXCL8 production. The nucleotide sequence of CAMP factor displays a major polymorphism, defining two distinct genetic groups corresponding to CAMP factor 1 with 14 amino-acid changes from strains phylotyped II with moderate and high levels of CAMP1-TLR2 binding activity, and CAMP factor 1 containing 0, 1 or 2 amino-acid changes from strains phylotyped IA1, IA2, or IB presenting no, weak or moderate CAMP1-TLR2 binding. Conclusions Our findings indicate that CAMP factor 1 may contribute to P. acnes virulence, by amplifying the inflammation reaction through direct interaction with TLR2. PMID:27902761
TLR-2 Recognizes Propionibacterium acnes CAMP Factor 1 from Highly Inflammatory Strains.
Lheure, Coralie; Grange, Philippe Alain; Ollagnier, Guillaume; Morand, Philippe; Désiré, Nathalie; Sayon, Sophie; Corvec, Stéphane; Raingeaud, Jöel; Marcelin, Anne-Geneviève; Calvez, Vincent; Khammari, Amir; Batteux, Frédéric; Dréno, Brigitte; Dupin, Nicolas
2016-01-01
Propionibacterium acnes (P. acnes) is an anaerobic, Gram-positive bacteria encountered in inflammatory acne lesions, particularly in the pilosebaceous follicle. P. acnes triggers a strong immune response involving keratinocytes, sebocytes and monocytes, the target cells during acne development. Lipoteicoic acid and peptidoglycan induce the inflammatory reaction, but no P. acnes surface protein interacting with Toll-like receptors has been identified. P. acnes surface proteins have been extracted by lithium stripping and shown to induce CXCL8 production by keratinocytes. Far-western blotting identified two surface proteins, of 24.5- and 27.5-kDa in size, specifically recognized by TLR2. These proteins were characterized, by LC-MS/MS, as CAMP factor 1 devoid of its signal peptide sequence, as shown by N-terminal sequencing. Purified CAMP factor 1 induces CXCL8 production by activating the CXCL8 gene promoter, triggering the synthesis of CXCL8 mRNA. Antibodies against TLR2 significantly decreased the CXCL8 response. For the 27 P. acnes strains used in this study, CAMP1-TLR2 binding intensity was modulated and appeared to be strong in type IB and II strains, which produced large amounts of CXCL8, whereas most of the type IA1 and IA2 strains presented little or no CAMP1-TLR2 binding and low levels of CXCL8 production. The nucleotide sequence of CAMP factor displays a major polymorphism, defining two distinct genetic groups corresponding to CAMP factor 1 with 14 amino-acid changes from strains phylotyped II with moderate and high levels of CAMP1-TLR2 binding activity, and CAMP factor 1 containing 0, 1 or 2 amino-acid changes from strains phylotyped IA1, IA2, or IB presenting no, weak or moderate CAMP1-TLR2 binding. Our findings indicate that CAMP factor 1 may contribute to P. acnes virulence, by amplifying the inflammation reaction through direct interaction with TLR2.
Scott, Glynis; Leopardi, Sonya; Printup, Stacey; Malhi, Namrita; Seiberg, Miri; Lapoint, Randi
2004-05-01
Prostaglandins (PG) are key mediators of diverse functions in the skin and several reports suggest that PG mediate post-inflammatory pigmentary changes through modulation of melanocyte dendricity and melanin synthesis. The proteinase-activated receptor 2 (PAR-2) is important for skin pigmentation because activation of keratinocyte PAR-2 stimulates uptake of melanosomes through phagocytosis in a Rho-dependent manner. In this report, we show that activation of keratinocyte PAR-2 stimulates release of PGE(2) and PGF(2alpha) and that PGE(2) and PGF(2alpha) act as paracrine factors that stimulate melanocyte dendricity. We characterized the expression of the EP and FP receptors in human melanocytes and show that human melanocytes express EP1 and EP3, and the FP receptor, but not EP2 and EP4. Treatment of melanocytes with EP1 and EP3 receptor agonists resulted in increased melanocyte dendricity, indicating that both EP1 and EP3 receptor signaling contribute to PGE(2)-mediated melanocyte dendricity. Certain EP3 receptor subtypes have been shown to increase adenosine 3',5'-cyclic monophosphate (cAMP) through coupling to Gs, whereas EP1 is known to couple to Gq to activate phospholipase C with elevation in Ca(2+). The cAMP/protein kinase A system is known to modulate melanocyte dendrite formation through modulation of Rac and Rho activity. Neither PGF(2alpha) or PGE(2) elevated cAMP in human melanocytes showing that dendricity observed in response to PGE(2) and PGF(2alpha) is cAMP-independent. Our data suggest that PAR-2 mediates cutaneous pigmentation both through increased uptake of melanosomes by keratinocytes, as well as by release of PGE(2) and PGF(2alpha) that stimulate melanocyte dendricity through EP1, EP3, and FP receptors.
Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi
2014-12-15
The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Zingg, Jean-Marc; Hasan, Syeda T; Nakagawa, Kiyotaka; Canepa, Elisa; Ricciarelli, Roberta; Villacorta, Luis; Azzi, Angelo; Meydani, Mohsen
2017-01-02
Curcumin, a polyphenol from turmeric (Curcuma longa), reduces inflammation, atherosclerosis, and obesity in several animal studies. In Ldlr -/- mice fed a high-fat diet (HFD), curcumin reduces plasma lipid levels, therefore contributing to a lower accumulation of lipids and to reduced expression of fatty acid transport proteins (CD36/FAT, FABP4/aP2) in peritoneal macrophages. In this study, we analyzed the molecular mechanisms by which curcumin (500, 1000, 1500 mg/kg diet, for 4 months) may influence plasma and tissue lipid levels in Ldlr -/- mice fed an HFD. In liver, HFD significantly suppressed cAMP levels, and curcumin restored almost normal levels. Similar trends were observed in adipose tissues, but not in brain, skeletal muscle, spleen, and kidney. Treatment with curcumin increased phosphorylation of CREB in liver, what may play a role in regulatory effects of curcumin in lipid homeostasis. In cell lines, curcumin increased the level of cAMP, activated the transcription factor CREB and the human CD36 promoter via a sequence containing a consensus CREB response element. Regulatory effects of HFD and Cur on gene expression were observed in liver, less in skeletal muscle and not in brain. Since the cAMP/protein kinase A (PKA)/CREB pathway plays an important role in lipid homeostasis, energy expenditure, and thermogenesis by increasing lipolysis and fatty acid β-oxidation, an increase in cAMP levels induced by curcumin may contribute to its hypolipidemic and anti-atherosclerotic effects. © 2016 BioFactors, 43(1):42-53, 2017. © 2016 International Union of Biochemistry and Molecular Biology.
Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M.; Xu, Ying
2016-01-01
Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711
Interpreting Camp to Parents: A Better Way to Observe--Record--Report. An Occasional Paper.
ERIC Educational Resources Information Center
Shopper, Moisy
1980-01-01
Camps offer a unique opportunity to inform parents of the psychological workings of their child through information based on a large repertoire of situations. Camps can be interpreted to parents as a better way to observe, record, and report how their children: (1) reacted to "on-hand contact"; (2) accepted duties and responsibility; (3)…
ERIC Educational Resources Information Center
Wu, Hui
2007-01-01
By reflecting on Japanese internment camps executed by the U.S. government in World War II, this article examines camp schools' curricula and writing assignments and an English teacher's response to student essays to show how racially profiled students and their Caucasian teacher negotiated the political meanings of civil rights and freedom.…
Scott, Glynis; Leopardi, Sonya; Parker, Lorelle; Babiarz, Laura; Seiberg, Miri; Han, Rujiing
2003-09-01
Recent work shows that the G-protein-coupled receptor proteinase activated receptor-2 activates signals that stimulate melanosome uptake in keratinocytes in vivo and in vitro. The Rho family of GTP-binding proteins is involved in cytoskeletal remodeling during phagocytosis. We show that proteinase-activated receptor-2 mediated phagocytosis in human keratinocytes is Rho dependent and that proteinase-activated receptor-2 signals to activate Rho. In contrast, Rho activity did not affect either proteinase-activated receptor-2 activity or mRNA and protein levels. We explored the signaling mechanisms of proteinase-activated receptor-2 mediated Rho activation in human keratinocytes and show that activation of proteinase-activated receptor-2, either through specific proteinase-activated receptor-2 activating peptides or through trypsinization, elevates cAMP in keratinocytes. Proteinase-activated receptor-2 mediated Rho activation was pertussis toxin insensitive and independent of the protein kinase A signaling pathway. These data are the first to show that proteinase-activated receptor-2 mediated phagocytosis is Rho dependent and that proteinase-activated receptor-2 signals to Rho and cAMP in keratinocytes. Because phagocytosis of melanosomes is recognized as an important mechanism for melanosome transfer to keratinocytes, these results suggest that Rho is a critical signaling intermediate in melanosome uptake in keratinocytes.
Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.
2014-01-01
Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804
Klein, MT; Teitler, M
2011-01-01
BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551
Srinivasan, Subhashini; Mir, Fozia; Huang, Jin-Sheng; Khasawneh, Fadi T.; Lam, Stephen C.-T.; Le Breton, Guy C.
2009-01-01
ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors. PMID:19346255
β-Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent*
Morgan, Sarah J.; Deshpande, Deepak A.; Tiegs, Brian C.; Misior, Anna M.; Yan, Huandong; Hershfeld, Alena V.; Rich, Thomas C.; Panettieri, Reynold A.; An, Steven S.; Penn, Raymond B.
2014-01-01
Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. PMID:24973219
Identification of cytosolic phosphodiesterases in the erythrocyte: A possible role for PDE5
Adderley, Shaquria P.; Thuet, Kelly M.; Sridharan, Meera; Bowles, Elizabeth A.; Stephenson, Alan H.; Ellsworth, Mary L.; Sprague, Randy S.
2011-01-01
Summary Background Within erythrocytes (RBCs), cAMP levels are regulated by phosphodiesterases (PDEs). Increases in cAMP and ATP release associated with activation of β-adrenergic receptors (βARs) and prostacyclin receptors (IPRs) are regulated by PDEs 2, 4 and PDE 3, respectively. Here we establish the presence of cytosolic PDEs in RBCs and determine a role for PDE5 in regulating levels of cGMP. Material/Methods Purified cytosolic proteins were obtained from isolated human RBCs and western analysis was performed using antibodies against PDEs 3A, 4 and 5. Rabbit RBCs were incubated with dbcGMP, a cGMP analog, to determine the effect of cGMP on cAMP levels. To determine if cGMP affects receptor-mediated increases in cAMP, rabbit RBCs were incubated with dbcGMP prior to addition of isoproterenol (ISO), a βAR receptor agonist. To demonstrate that endogenous cGMP produces the same effect, rabbit and human RBCs were incubated with SpNONOate (SpNO), a nitric oxide donor, and YC1, a direct activator of soluble guanylyl cyclase (sGC), in the absence and presence of a selective PDE5 inhibitor, zaprinast (ZAP). Results Western analysis identified PDEs 3A, 4D and 5A. dbcGMP produced a concentration dependent increase in cAMP and ISO-induced increases in cAMP were potentiated by dbcGMP. In addition, incubation with YC1 and SpNO in the presence of ZAP potentiated βAR-induced increases in cAMP. Conclusions PDEs 2, 3A and 5 are present in the cytosol of human RBCs. PDE5 activity in RBCs regulates cGMP levels. Increases in intracellular cGMP augment cAMP levels. These studies suggest a novel role for PDE5 in erythrocytes. PMID:21525805
Elevated Cyclic AMP Levels in T Lymphocytes Transformed by Human T-Cell Lymphotropic Virus Type 1▿
Kress, Andrea K.; Schneider, Grit; Pichler, Klemens; Kalmer, Martina; Fleckenstein, Bernhard; Grassmann, Ralph
2010-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), transforms CD4+ T cells to permanent growth through its transactivator Tax. HTLV-1-transformed cells share phenotypic properties with memory and regulatory T cells (T-reg). Murine T-reg-mediated suppression employs elevated cyclic AMP (cAMP) levels as a key regulator. This led us to determine cAMP levels in HTLV-1-transformed cells. We found elevated cAMP concentrations as a consistent feature of all HTLV-1-transformed cell lines, including in vitro-HTLV-1-transformed, Tax-transformed, and patient-derived cells. In transformed cells with conditional Tax expression, high cAMP levels coincided with the presence of Tax but were lost without it. However, transient ectopic expression of Tax alone was not sufficient to induce cAMP. We found specific downregulation of the cAMP-degrading phosphodiesterase 3B (PDE3B) in HTLV-1-transformed cells, which was independent of Tax in transient expression experiments. This is in line with the notion that PDE3B transcripts and cAMP levels are inversely correlated. Overexpression of PDE3B led to a decrease of cAMP in HTLV-1-transformed cells. Decreased expression of PDE3B was associated with inhibitory histone modifications at the PDE3B promoter and the PDE3B locus. In summary, Tax transformation and its continuous expression contribute to elevated cAMP levels, which may be regulated through PDE3B suppression. This shows that HTLV-1-transformed cells assume biological features of long-lived T-cell populations that potentially contribute to viral persistence. PMID:20573814
Epac-protein kinase C alpha signaling in purinergic P2X3R-mediated hyperalgesia after inflammation.
Gu, Yanping; Li, Guangwen; Chen, Yong; Huang, Li-Yen Mae
2016-07-01
Sensitization of purinergic P2X3 receptors (P2X3Rs) is a major mechanism contributing to injury-induced exaggerated pain responses. We showed in a previous study that cyclic adenosine monophosphate (cAMP)-dependent guanine nucleotide exchange factor 1 (Epac1) in rat sensory dorsal root ganglia (DRGs) is upregulated after inflammatory injury, and it plays a critical role in P2X3R sensitization by activating protein kinase C epsilon (PKCε) inside the cells. protein kinase C epsilon has been established as the major PKC isoform mediating injury-induced hyperalgesic responses. On the other hand, the role of PKCα in receptor sensitization was seldom considered. Here, we studied the participation of PKCα in Epac signaling in P2X3R-mediated hyperalgesia. The expression of both Epac1 and Epac2 and the level of cAMP in DRGs are greatly enhanced after complete Freund adjuvant (CFA)-induced inflammation. The expression of phosphorylated PKCα is also upregulated. Complete Freund adjuvant (CFA)-induced P2X3R-mediated hyperalgesia is not only blocked by Epac antagonists but also by the classical PKC isoform inhibitors, Go6976, and PKCα-siRNA. These CFA effects are mimicked by the application of the Epac agonist, 8-(4-chlorophenylthio)-2 -O-methyl-cAMP (CPT), in control rats, further confirming the involvement of Epacs. Because the application of Go6976 prior to CPT still reduces CPT-induced hyperalgesia, PKCα is downstream of Epacs to mediate the enhancement of P2X3R responses in DRGs. The pattern of translocation of PKCα inside DRG neurons in response to CPT or CFA stimulation is distinct from that of PKCε. Thus, in contrast to prevalent view, PKCα also plays an essential role in producing complex inflammation-induced receptor-mediated hyperalgesia.
Function of beta 2-adrenergic receptors in chronic localized myalgia.
Maekawa, Kenji; Kuboki, Takuo; Inoue, Eitoku; Inoue-Minakuchi, Mami; Suzuki, Koji; Yatani, Hirofumi; Clark, Glenn T
2003-01-01
To investigate alteration of beta 2-adrenergic receptor (beta 2 AR) function in chronic localized myalgia subjects by evaluating levels of the beta 2 AR second messenger, cyclic adenosine monophosphate (cAMP), in mononuclear cells after beta AR-agonist stimulation. Eleven chronic localized myalgia subjects and 21 matched healthy controls participated in this study. Peripheral blood (30 cc) was drawn from the subjects' anterocubital vein. Mononuclear cells were isolated from the total blood by using the Ficoll-Hypaque gradient technique. Basal and stimulated intracellular cAMP levels were determined by enzyme immunoassay using a commercially available kit. Aliquots of 5 x 10(6) cells were incubated with or without stimulation of the beta AR-agonist isoproterenol for 5 minutes. Five different concentrations of isoproterenol (10(-3) M to 10(-7) M) were utilized. cAMP levels in both groups were tested statistically by a 2-way repeated-measures ANOVA with 2 predictors, group difference and isoproterenol concentration difference. As with isoproterenol stimulation, the cAMP responses to forskolin, which activates adenylyl cyclase directly and produces cAMP, bypassing the cell surface receptors were also measured. The basal cAMP levels in both groups (myalgia: 0.33 +/- 0.02 pmol/5 x 10(6) cells; control: 0.43 +/- 0.10 pmol/5 x 10(6) cells) were almost identical, and isoproterenol-produced cAMP levels increased dose-dependently in both groups. No significant differences in the mean cAMP levels were observed between the groups (P = .909). Significant increases were observed according to the isoproterenol concentration increase (P < .0001). The cAMP responses to forskolin stimulation also showed no significant group difference (P = .971). These results suggest that beta 2 AR function is not different between localized myalgia subjects and healthy individuals.
Estimating the magnitude of near-membrane PDE4 activity in living cells.
Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C
2015-09-15
Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. Copyright © 2015 the American Physiological Society.
Integrating Enhanced STEM Themes in the UTEP CAREERS Weather Camp for Youth
NASA Astrophysics Data System (ADS)
Güereque, M.; Olgin, J. G.; Kier, M. W.; Winston, C. E.; Fitzgerald, R. M.; Morris, V. R.
2014-12-01
The NOAA Center for Atmospheric Science (NCAS) sponsors a network of high school and middle school summer camps entitled "Channeling Atmospheric Research into Educational Experiences Reaching Students program, CAREERS". These camps are conducted nationwide at NCAS academic partners; the University of Texas at El Paso (UTEP), Howard University (HU), University of Puerto Rico at Mayagüez (UPRM), and Jackson State University (JSU). The goals of these camps are to increase the interest of secondary school (HS) students in atmospheric and weather related sciences, target under-represented students, and to ultimately boost their college enrollment in STEM related fields. For 2014 at UTEP, the annual student-outreach weather camp program underwent a thematic overhaul that sought to incorporate more of the geological and environmental context of the region. Doctoral students were allowed to assume greater responsibility for the design, development and implementation of the camp activities. The prevailing assumption was that these Ph.D. students were better suited for peer mentoring, bridging the age and interest gap, and delivering the material through the modern technologies and modes of communication. The redesigned approach focused on the identification of climate drivers within the region and this concept formed a thread throughout the planning and design of the camp modules. The outcome resulted in the incorporation of project based learning (PBL) activities, field excursions, and deployment of weather instrumentation, for explaining regional climate processes and events. Standardized surveys were administered to camp participants to evaluate the efficacy, as well as student perceptions of the camp and its activities. Results will be presented that are based on qualitative and quantitative analysis of student responses.
Estimating the magnitude of near-membrane PDE4 activity in living cells
Xin, Wenkuan; Feinstein, Wei P.; Britain, Andrea L.; Ochoa, Cristhiaan D.; Zhu, Bing; Richter, Wito; Leavesley, Silas J.
2015-01-01
Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. PMID:26201952
Blockade of beta-adrenoceptors enhances cAMP signal transduction in vivo
NASA Technical Reports Server (NTRS)
Whalen, E. J.; Johnson, A. K.; Lewis, S. J.
1998-01-01
The aim of this study was to determine whether the blockade of beta-adrenoceptors would enhance cAMP-mediated signal transduction processes in vivo. The administration of the membrane permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP, 10 micromol/kg, i.v.) produced an increase in heart rate (+27 +/- 2%, P < 0.05), a fall in mean arterial blood pressure (-21 +/- 3%, P < 0.05) and falls in hindquarter (-12 +/- 3%, P < 0.05) and mesenteric (-32 +/- 3%, P < 0.05) vascular resistances in pentobarbital-anesthetized rats. The beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.) lowered heart rate (-12 +/- 3%, P < 0.05) but did not affect mean arterial blood pressure or vascular resistances. The tachycardia, hypotension and vasodilation produced by 8-CPT-cAMP were exaggerated after administration of propranolol (P < 0.05 for all comparisons). The nitric oxide-donor, sodium nitroprusside (2 microg/kg, i.v.), produced falls in mean arterial blood pressure and vascular resistances of similar magnitude to those produced by 8-CPT-cAMP. These sodium nitroprusside-induced responses were unaffected by propranolol (P < 0.05 for all comparisons). Sodium nitroprusside also produced a minor increase in heart rate (+5 +/- 1%, P < 0.05) which was abolished by propranolol. These findings suggest that 8-CPT-cAMP directly increases heart rate and that blockade of beta-adrenoceptors enhances the potency of cAMP within the heart and vasculature.
ERIC Educational Resources Information Center
Freeman, Melissa; Preissle, Judith; Havick, Steven
2010-01-01
An external evaluation documented what occurred in an inaugural summer camp to teach high school students how to preserve religious freedom by learning about and acting on the history and current state of church-state separation and other first amendment issues. Camp designers hoped to promote religious diversity values and civic engagement in…
Salmon, Didier
2018-04-25
Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Hynes, Thomas R; Yost, Evan A; Yost, Stacy M; Hartle, Cassandra M; Ott, Braden J; Berlot, Catherine H
2015-07-06
The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Li, Wencheng; Liu, Jiao; Hammond, Sean L.; Tjalkens, Ronald B.; Saifudeen, Zubaida
2015-01-01
We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter. PMID:25994957
Dimitrov, Eugene L; DeJoseph, M Regina; Brownfield, Mark S; Urban, Janice H
2007-08-01
The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.
Hofmann, Claudia; Dunger, Nadja; Doser, Kristina; Lippert, Elisabeth; Siller, Sebastian; Edinger, Matthias; Falk, Werner; Obermeier, Florian
2014-01-01
Cytosine-guanosine dinucleotide (CpG) motifs are immunostimulatory components of bacterial DNA and activators of innate immunity through Toll-like receptor 9 (TLR9). Administration of CpG oligodeoxynucleotides before the onset of experimental colitis prevents intestinal inflammation by enforcement of regulatory mechanisms. It was investigated whether physiologic CpG/TLR9 interactions are critical for the homeostasis of the intestinal immune system. Mesenteric lymph node cell and lamina propria mononuclear cell (LPMC) populations from BALB/c wild-type (wt) or TLR9 mice were assessed by flow cytometry and proteome profiling. Cytokine secretion was determined and nuclear extracts were analyzed for nuclear factor kappa B (NF-κB) and cAMP response-element binding protein activity. To assess the colitogenic potential of intestinal T cells, CD4-enriched cells from LPMC of wt or TLR9 donor mice were injected intraperitoneally in recipient CB-17 SCID mice. TLR9 deficiency was accompanied by slight changes in cellular composition and phosphorylation of signaling proteins of mesenteric lymph node cell and LPMC. LPMC from TLR9 mice displayed an increased proinflammatory phenotype compared with wt LPMC. NF-κB activity in cells from TLR9 mice was enhanced, whereas cAMP response-element binding activity was reduced compared with wt. Transfer of lamina propria CD4-enriched T cells from TLR9 mice induced severe colitis, whereas wt lamina propria CD4-enriched T cells displayed an attenuated phenotype. Lack of physiologic CpG/TLR9 interaction impairs the function of the intestinal immune system indicated by enhanced proinflammatory properties. Thus, physiologic CpG/TLR interaction is essential for homeostasis of the intestinal immune system as it is required for the induction of counterregulating anti-inflammatory mechanisms.
Huang, Wei-Ching; Lin, Yee-Shin; Wang, Chi-Yun; Tsai, Cheng-Chieh; Tseng, Hsiang-Chi; Chen, Chia-Ling; Lu, Pei-Jung; Chen, Po-See; Qian, Li; Hong, Jau-Shyong; Lin, Chiou-Feng
2009-01-01
The inflammatory effects of glycogen synthase kinase-3 (GSK-3) have been identified; however, the potential mechanism is still controversial. In this study, we investigated the effects of GSK-3-mediated interleukin-10 (IL-10) inhibition on lipopolysaccharide (LPS)-induced inflammation. Treatment with GSK-3 inhibitor significantly blocked LPS-induced nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression in BV2 murine microglial cells and primary rat microglia-enriched cultures. Using an antibody array and enzyme-linked immunosorbent assay, we found that GSK-3-inhibitor treatment blocked LPS-induced upregulation of regulated on activation normal T-cell expressed and secreted (RANTES) and increased IL-10 expression. The time kinetics and dose–response relations were confirmed. Reverse transcription–polymerase chain reaction showed changes on the messenger RNA level as well. Inhibiting GSK-3 using short-interference RNA, and transfecting cells with dominant-negative GSK-3β, blocked LPS-elicited NO and RANTES expression but increased IL-10 expression. In contrast, GSK-3β overexpression upregulated NO and RANTES but downregulated IL-10 in LPS-stimulated cells. Treating cells with anti-IL-10 neutralizing antibodies to prevent GSK-3 from downregulating NO and RANTES showed that the anti-inflammatory effects are, at least in part, IL-10-dependent. The involvement of Akt, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-κB that positively regulated IL-10 was demonstrated. Furthermore, inhibiting GSK-3 increased the nuclear translocation of transcription factors, that all important for IL-10 expression, including CCAAT/enhancer-binding protein beat (C/EBPβ), C/EBPδ, cAMP response binding element protein and NF-κB. Taken together, these findings reveal that LPS induces iNOS/NO biosynthesis and RANTES production through a mechanism involving GSK-3-mediated IL-10 downregulation. PMID:19175796
Huang, Wei-Ching; Lin, Yee-Shin; Wang, Chi-Yun; Tsai, Cheng-Chieh; Tseng, Hsiang-Chi; Chen, Chia-Ling; Lu, Pei-Jung; Chen, Po-See; Qian, Li; Hong, Jau-Shyong; Lin, Chiou-Feng
2009-09-01
The inflammatory effects of glycogen synthase kinase-3 (GSK-3) have been identified; however, the potential mechanism is still controversial. In this study, we investigated the effects of GSK-3-mediated interleukin-10 (IL-10) inhibition on lipopolysaccharide (LPS)-induced inflammation. Treatment with GSK-3 inhibitor significantly blocked LPS-induced nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression in BV2 murine microglial cells and primary rat microglia-enriched cultures. Using an antibody array and enzyme-linked immunosorbent assay, we found that GSK-3-inhibitor treatment blocked LPS-induced upregulation of regulated on activation normal T-cell expressed and secreted (RANTES) and increased IL-10 expression. The time kinetics and dose-response relations were confirmed. Reverse transcription-polymerase chain reaction showed changes on the messenger RNA level as well. Inhibiting GSK-3 using short-interference RNA, and transfecting cells with dominant-negative GSK-3beta, blocked LPS-elicited NO and RANTES expression but increased IL-10 expression. In contrast, GSK-3beta overexpression upregulated NO and RANTES but downregulated IL-10 in LPS-stimulated cells. Treating cells with anti-IL-10 neutralizing antibodies to prevent GSK-3 from downregulating NO and RANTES showed that the anti-inflammatory effects are, at least in part, IL-10-dependent. The involvement of Akt, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-kappaB that positively regulated IL-10 was demonstrated. Furthermore, inhibiting GSK-3 increased the nuclear translocation of transcription factors, that all important for IL-10 expression, including CCAAT/enhancer-binding protein beat (C/EBPbeta), C/EBPdelta, cAMP response binding element protein and NF-kappaB. Taken together, these findings reveal that LPS induces iNOS/NO biosynthesis and RANTES production through a mechanism involving GSK-3-mediated IL-10 downregulation.
Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y
1995-01-01
The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA amplifies TSH-induced H2O2 production at the steps of phospholipase-C and phospholipase-A2 activation in a pertussis toxin-sensitive manner.
Hepatic TRAF2 Regulates Glucose Metabolism Through Enhancing Glucagon Responses
Chen, Zheng; Sheng, Liang; Shen, Hong; Zhao, Yujun; Wang, Shaomeng; Brink, Robert; Rui, Liangyou
2012-01-01
Obesity is associated with intrahepatic inflammation that promotes insulin resistance and type 2 diabetes. Tumor necrosis factor receptor–associated factor (TRAF)2 is a key adaptor molecule that is known to mediate proinflammatory cytokine signaling in immune cells; however, its metabolic function remains unclear. We examined the role of hepatic TRAF2 in the regulation of insulin sensitivity and glucose metabolism. TRAF2 was deleted specifically in hepatocytes using the Cre/loxP system. The mutant mice were fed a high-fat diet (HFD) to induce insulin resistance and hyperglycemia. Hepatic glucose production (HGP) was examined using pyruvate tolerance tests, 2H nuclear magnetic resonance spectroscopy, and in vitro HGP assays. The expression of gluconeogenic genes was measured by quantitative real-time PCR. Insulin sensitivity was analyzed using insulin tolerance tests and insulin-stimulated phosphorylation of insulin receptors and Akt. Glucagon action was examined using glucagon tolerance tests and glucagon-stimulated HGP, cAMP-responsive element–binding (CREB) phosphorylation, and expression of gluconeogenic genes in the liver and primary hepatocytes. Hepatocyte-specific TRAF2 knockout (HKO) mice exhibited normal body weight, blood glucose levels, and insulin sensitivity. Under HFD conditions, blood glucose levels were significantly lower (by >30%) in HKO than in control mice. Both insulin signaling and the hypoglycemic response to insulin were similar between HKO and control mice. In contrast, glucagon signaling and the hyperglycemic response to glucagon were severely impaired in HKO mice. In addition, TRAF2 overexpression significantly increased the ability of glucagon or a cAMP analog to stimulate CREB phosphorylation, gluconeogenic gene expression, and HGP in primary hepatocytes. These results suggest that the hepatic TRAF2 cell autonomously promotes hepatic gluconeogenesis by enhancing the hyperglycemic response to glucagon and other factors that increase cAMP levels, thus contributing to hyperglycemia in obesity. PMID:22315325
Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho
2006-06-01
Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.
Bove, Frank J; Ruckart, Perri Zeitz; Maslia, Morris; Larson, Theodore C
2014-08-13
Two drinking water systems at U.S. Marine Corps Base Camp Lejeune, North Carolina were contaminated with solvents during 1950s-1985. We conducted a retrospective cohort mortality study of 4,647 civilian, full-time workers employed at Camp Lejeune during 1973-1985 and potentially exposed to contaminated drinking water. We selected a comparison cohort of 4,690 Camp Pendleton workers employed during 1973-1985 and unexposed to contaminated drinking water. Mortality follow-up period was 1979-2008. Cause-specific standardized mortality ratios utilized U.S. age-, sex-, race-, and calendar period-specific mortality rates as reference. We used survival analysis to compare mortality rates between Camp Lejeune and Camp Pendleton workers and assess the effects of estimated cumulative contaminant exposures within the Camp Lejeune cohort. Ground water contaminant fate/transport and distribution system models provided monthly estimated contaminant levels in drinking water serving workplaces at Camp Lejeune. The confidence interval (CI) indicated precision of effect estimates. Compared to Camp Pendleton, Camp Lejeune workers had mortality hazard ratios (HRs) >1.50 for kidney cancer (HR = 1.92, 95% CI: 0.58, 6.34), leukemias (HR = 1.59, 95% CI: 0.66, 3.84), multiple myeloma (HR = 1.84, 95% CI: 0.45, 7.58), rectal cancer (HR = 1.65, 95% CI: 0.36, 7.44), oral cavity cancers (HR = 1.93, 95% CI: 0.34, 10.81), and Parkinson's disease (HR = 3.13, 95% CI: 0.76, 12.81). Within the Camp Lejeune cohort, monotonic exposure-response relationships were observed for leukemia and vinyl chloride and PCE, with mortality HRs at the high exposure category of 1.72 (95% CI: 0.33, 8.83) and 1.82 (95% CI: 0.36, 9.32), respectively. Cumulative exposures were above the median for most deaths from cancers of the kidney, esophagus, rectum, prostate, and Parkinson's disease, but small numbers precluded evaluation of exposure-response relationships. The study found elevated HRs in the Camp Lejeune cohort for several causes of death including cancers of the kidney, rectum, oral cavity, leukemias, multiple myeloma, and Parkinson's disease. Only 14% of the Camp Lejeune cohort died by end of follow-up, producing small numbers of cause-specific deaths and wide CIs. Additional follow-up would be necessary to comprehensively assess drinking water exposure effects at the base.
Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.
Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre
2017-12-15
Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Wang, Jun-Wei; Zhou, Tian-Shou
2009-12-01
In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light-dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα-/--mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα-/- mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell.
Nature and mechanism of action of the CAMP protein of group B streptococci.
Bernheimer, A W; Linder, R; Avigad, L S
1979-01-01
The extracellular product of group B streptococci responsible for the CAMP reaction was purified to near homogeneity. It is a relatively thermostable protein having a molecular weight of 23,500 and an isoelectric pH of 8.3. It was found that the CAMP reaction could be simulated by substituting [14C]glucose-containing liposomes prepared from sphingomyelin, cholesterol, and dicetyl phosphate for sheep erythrocytes. In the belief that the liposome system is a valid model, the mechanism of the CAMP reaction was further investigated by using liposomes in which N-acylsphingosine (ceramide) was substituted for sphingomyelin. In this system disruption of liposomes, as measured by release of trapped [14C]glucose, was effected by CAMP protein alone. As judged from thin-layer chromatography, CAMP protein caused no reduction in the amount of ceramide present in ceramide-containing liposomes, nor were split products demonstrable. However, binding of CAMP protein to ceramide-containing liposomes could be shown. It is inferred that in sheep erythrocytes CAMP protein reacts nonenzymatically with membrane ceramide formed by the prior action of staphylococcal sphingomyelinase and that binding of CAMP protein to ceramide disorganizes the lipid bilayer to an extent that results in cell lysis. Images PMID:378839
Isolation and functional characterization of CE1 binding proteins.
Lee, Sun-ji; Park, Ji Hye; Lee, Mi Hun; Yu, Ji-hyun; Kim, Soo Young
2010-12-16
Abscisic acid (ABA) is a plant hormone that controls seed germination, protective responses to various abiotic stresses and seed maturation. The ABA-dependent processes entail changes in gene expression. Numerous genes are regulated by ABA, and promoter analyses of the genes revealed that cis-elements sharing the ACGTGGC consensus sequence are ubiquitous among ABA-regulated gene promoters. The importance of the core sequence, which is generally known as ABA response element (ABRE), has been demonstrated by various experiments, and its cognate transcription factors known as ABFs/AREBs have been identified. Although necessary, ABRE alone is not sufficient, and another cis-element known as "coupling element (CE)" is required for full range ABA-regulation of gene expression. Several CEs are known. However, despite their importance, the cognate transcription factors mediating ABA response via CEs have not been reported to date. Here, we report the isolation of transcription factors that bind one of the coupling elements, CE1. To isolate CE1 binding proteins, we carried out yeast one-hybrid screens. Reporter genes containing a trimer of the CE1 element were prepared and introduced into a yeast strain. The yeast was transformed with library DNA that represents RNA isolated from ABA-treated Arabidopsis seedlings. From the screen of 3.6 million yeast transformants, we isolated 78 positive clones. Analysis of the clones revealed that a group of AP2/ERF domain proteins binds the CE1 element. We investigated their expression patterns and analyzed their overexpression lines to investigate the in vivo functions of the CE element binding factors (CEBFs). Here, we show that one of the CEBFs, AtERF13, confers ABA hypersensitivity in Arabidopsis, whereas two other CEBFs enhance sugar sensitivity. Our results indicate that a group of AP2/ERF superfamily proteins interacts with CE1. Several CEBFs are known to mediate defense or abiotic stress response, but the physiological functions of other CEBFs remain to be determined. Our in vivo functional analysis of several CEBFs suggests that they are likely to be involved in ABA and/or sugar response. Together with previous results reported by others, our current data raise an interesting possibility that the coupling element CE1 may function not only as an ABRE but also as an element mediating biotic and abiotic stress responses.
Rossi Paccani, Silvia; Benagiano, Marisa; Capitani, Nagaja; Zornetta, Irene; Ladant, Daniel; Montecucco, Cesare; D'Elios, Mario M.; Baldari, Cosima T.
2009-01-01
The adjuvanticity of bacterial adenylate cyclase toxins has been ascribed to their capacity, largely mediated by cAMP, to modulate APC activation, resulting in the expression of Th2–driving cytokines. On the other hand, cAMP has been demonstrated to induce a Th2 bias when present during T cell priming, suggesting that bacterial cAMP elevating toxins may directly affect the Th1/Th2 balance. Here we have investigated the effects on human CD4+ T cell differentiation of two adenylate cyclase toxins, Bacillus anthracis edema toxin (ET) and Bordetella pertussis CyaA, which differ in structure, mode of cell entry, and subcellular localization. We show that low concentrations of ET and CyaA, but not of their genetically detoxified adenylate cyclase defective counterparts, potently promote Th2 cell differentiation by inducing expression of the master Th2 transcription factors, c-maf and GATA-3. We also present evidence that the Th2–polarizing concentrations of ET and CyaA selectively inhibit TCR–dependent activation of Akt1, which is required for Th1 cell differentiation, while enhancing the activation of two TCR–signaling mediators, Vav1 and p38, implicated in Th2 cell differentiation. This is at variance from the immunosuppressive toxin concentrations, which interfere with the earliest step in TCR signaling, activation of the tyrosine kinase Lck, resulting in impaired CD3ζ phosphorylation and inhibition of TCR coupling to ZAP-70 and Erk activation. These results demonstrate that, notwithstanding their differences in their intracellular localization, which result in focalized cAMP production, both toxins directly affect the Th1/Th2 balance by interfering with the same steps in TCR signaling, and suggest that their adjuvanticity is likely to result from their combined effects on APC and CD4+ T cells. Furthermore, our results strongly support the key role of cAMP in the adjuvanticity of these toxins. PMID:19266022
Cushner-Weinstein, Sandra; Berl, Madison; Salpekar, Jay A; Johnson, Jami L; Pearl, Phillip L; Conry, Joan A; Kolodgie, Marian; Scully, Audrey; Gaillard, William D; Weinstein, Steven L
2007-02-01
Children with epilepsy attending a condition-specific overnight camp were evaluated for behavioral changes over 3 consecutive years, using a modification of the Vineland Adaptive Behavioral Scale. Trained counselors completed pre- and postcamp assessments for each camper. Repeated-measures MANOVA was used to analyze effects of the camp experience for each year, with respect to gender and age. Repeated-measures ANOVA was conducted to evaluate long-term effects from year-to-year comparisons for return campers, following three successive camp experiences. A significant change in social interaction was observed over 3 years. Despite some decline at the start of camp in consecutive years, the overall trend for return campers suggests a positive cumulative impact of continued camp participation, with improvements in the domains of social interaction, responsibility, and communication. A condition-specific camp designed for children with epilepsy can improve adaptive behaviors and social interactions. Overall net gains appear to increase over time, suggesting additional benefits for return campers.
The UXO Classification Demonstration at the Former Camp Butner, NC
2011-07-01
Symposium and Workshop, Technical Session 2D: Classification Methods for Military Munitions Response. 1 December 2010. [49] Pasion , L. Personal...Communication. 15 June 2011. [50] Pasion , L. “Practical Strategies for UXO Discrimination: Camp Butner Analysis.” ESTCP Munitions Management In-Progress...Review. 9 February 2011. [51] Pasion , L., et al. “UXO Discrimination Using Full Coverage and Cued Interrogation Data Sets at Camp Butner, NC.” Partners
Luo, Yong; Peng, Mei; Wei, Hong
2017-01-01
Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia by melatonin largely operates via a PLC-mediated mechanism. PMID:29247156
Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119.
Hassing, Helle A; Fares, Suzan; Larsen, Olav; Pad, Hamideh; Hauge, Maria; Jones, Robert M; Schwartz, Thue W; Hansen, Harald S; Rosenkilde, Mette M
2016-11-01
GPR119 is a Gαs-coupled lipid-sensor in the gut, where it mediates release of incretin hormones from the enteroendocrine cells and in pancreatic α-cells, where it releases insulin. Naturally occurring lipids such as monoacylglycerols (MAGs) and N-acylethanolamines (NAEs), like oleoylethanolamide (OEA), activate GPR119, and multiple synthetic ligands have been described. Here, we extend the GPR119 signaling profile to Gαq and Gαi in addition to β-arrestin recruitment and the downstream transcription factors CRE (cAMP response element), SRE (serum response element) and NFAT (nuclear factor of activated T cells). The endogenous OEA and the synthetic AR231453 were full agonists in all pathways except for NFAT, where no ligand-modulation was observed. The potency of AR231453 varied <16-fold (EC 50 from 6 to 95nM) across the different signaling pathways, whereas that of OEA varied >175-fold (from 85nM to 15μM) indicating a biased signaling for OEA. The degree of constitutive activity was 1-10%, 10-30% and 30-70% of OEA-induced E max in Gαi, Gαq and Gαs-driven pathways, respectively. This coincided with the lowest and highest OEA potency observed in Gαi and Gαs-driven pathways, respectively. Incubation for 2h with the 2-MAG-lipase inhibitor JZL84 doubled the constitutive activity, indicating that endogenous lipids contribute to the apparent constitutive activity. Finally, besides being an agonist, AR231453 acted as a positive allosteric modulator of OEA and increased its potency by 54-fold at 100nM AR231453. Our studies uncovering broad and biased signaling, masked constitutive activity by endogenous MAGs, and ago-allosteric properties of synthetic ligands may explain why many GPR119 drug-discovery programs have failed so far. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jordan, B.
2016-12-01
Field-based petrologic research projects often involve multiple field seasons, with geochemical analysis of samples collected in one season informing aspects of subsequent field seasons. To simulate this approach in the Iceland Volcanology Field Camp (South Dakota School of Mines & Technology) a portable X-ray fluorescence spectrometer (pXRF) was employed to provide "laboratory analyses" in support of a course mapping project. The project was conducted in the Árnes central volcano in the Neogene plateau lava succession in the West Fjords of northwestern Iceland. The field area has a wide compositional spectrum from basalt to rhyolite, with abundant intermediates. The pXRF is particularly helpful in the study of these kinds of rocks in Iceland because lithologies can be quite similar across a wide range of compositions (often lacking diagnostic macroscopic phenocryst assemblages, and having similar groundmass characteristics). A Bruker Tracer III-SD pXRF was utilized, operating at 40 KeV and 11.2 μA with no filter. Analyses were conducted at basecamp in the evenings on relatively flat fresh surfaces, with three 30 s analyses of different spots for each sample. A basic empirical calibration was generated with six aphyric samples previously analyzed by laboratory XRF. Light elements Na, Mg, and Al were not determined directly, but were estimated based on linear or polynomial correlations with other elements or elemental ratios (K, Ca, and Sr/Y respectively) determined from a previously obtained laboratory XRF data set for this central volcano. The resulting chemical analyses (normalized to sum to 100%) provided full major and minor element compositions to be used for classification, and several trace elements (V, Sr, Y, Zr) that could potentially distinguish different lavas of similar major element composition. The approach is coarse, and has pitfalls particularly regarding porphyritic rocks, but serves the objectives of the field camp project.
ERIC Educational Resources Information Center
Shelton, Michael
1998-01-01
Explains techniques for reducing stress: diaphragmatic breathing, relaxation, progressive muscle relaxation, and meditation. Two sidebars define the fight-or-flight response and the camp administration's role in helping to lower stress through staff training and reduction of camp-wide stressors. (SAS)
Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy
NASA Astrophysics Data System (ADS)
Ahmed, Syeed Ehsan
Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.
Johansson, C Christian; Dahle, Maria K; Blomqvist, Sandra Rodrigo; Grønning, Line M; Aandahl, Einar M; Enerbäck, Sven; Taskén, Kjetil
2003-05-09
Forkhead/winged helix (FOX) transcription factors are essential for control of the cell cycle and metabolism. Here, we show that spleens from Mf2-/- (FOXD2-/-) mice have reduced mRNA (50%) and protein (35%) levels of the RIalpha subunit of the cAMP-dependent protein kinase. In T cells from Mf2-/- mice, reduced levels of RIalpha translates functionally into approximately 2-fold less sensitivity to cAMP-mediated inhibition of proliferation triggered through the T cell receptor-CD3 complex. In Jurkat T cells, FOXD2 overexpression increased the endogenous levels of RIalpha through induction of the RIalpha1b promoter. FOXD2 overexpression also increased the sensitivity of the promoter to cAMP. Finally, co-expression experiments demonstrated that protein kinase Balpha/Akt1 work together with FOXD2 to induce the RIalpha1b promoter (10-fold) and increase endogenous RIalpha protein levels further. Taken together, our data indicate that FOXD2 is a physiological regulator of the RIalpha1b promoter in vivo working synergistically with protein kinase B to induce cAMP-dependent protein kinase RIalpha expression, which increases cAMP sensitivity and sets the threshold for cAMP-mediated negative modulation of T cell activation.
Trapped in Statelessness: Rohingya Refugees in Bangladesh.
Milton, Abul Hasnat; Rahman, Mijanur; Hussain, Sumaira; Jindal, Charulata; Choudhury, Sushmita; Akter, Shahnaz; Ferdousi, Shahana; Mouly, Tafzila Akter; Hall, John; Efird, Jimmy T
2017-08-21
The Rohingya people are one of the most ill-treated and persecuted refugee groups in the world, having lived in a realm of statelessness for over six generations, and who are still doing so. In recent years, more than 500,000 Rohingyas fled from Myanmar (Burma) to neighboring countries. This article addresses the Rohingya refugee crisis in Bangladesh, with special emphasis on the living conditions of this vulnerable population. We reviewed several documents on Rohingya refugees, visited a registered refugee camp (Teknaf), collected case reports, and conducted a series of meetings with stakeholders in the Cox's Bazar district of Bangladesh. A total of 33,131 registered Rohingya refugees are living in two registered camps in Cox's Bazar, and up to 80,000 additional refugees are housed in nearby makeshift camps. Overall, the living conditions of Rohingya refugees inside the overcrowded camps remain dismal. Mental health is poor, proper hygiene conditions are lacking, malnutrition is endemic, and physical/sexual abuse is high. A concerted diplomatic effort involving Bangladesh and Myanmar, and international mediators such as the Organization of Islamic Countries and the United Nations, is urgently required to effectively address this complex situation.
5D imaging approaches reveal the formation of distinct intracellular cAMP spatial gradients
NASA Astrophysics Data System (ADS)
Rich, Thomas C.; Annamdevula, Naga; Trinh, Kenny; Britain, Andrea L.; Mayes, Samuel A.; Griswold, John R.; Deal, Joshua; Hoffman, Chase; West, Savannah; Leavesley, Silas J.
2017-02-01
Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions. Several lines of evidence suggest that the distribution of cAMP within cells is not uniform. However, to date, no studies have measured the kinetics of 3D cAMP distributions within cells. This is largely due to the low signal-tonoise ratio of FRET-based probes. We previously reported that hyperspectral imaging improves the signal-to-noise ratio of FRET measurements. Here we utilized hyperspectral imaging approaches to measure FRET signals in five dimensions (5D) - three spatial (x, y, z), wavelength (λ), and time (t) - allowing us to visualize cAMP gradients in pulmonary endothelial cells. cAMP levels were measured using a FRET-based sensor (H188) comprised of a cAMP binding domain sandwiched between FRET donor and acceptor - Turquoise and Venus fluorescent proteins. We observed cAMP gradients in response to 0.1 or 1 μM isoproterenol, 0.1 or 1 μM PGE1, or 50 μM forskolin. Forskolin- and isoproterenol-induced cAMP gradients formed from the apical (high cAMP) to basolateral (low cAMP) face of cells. In contrast, PGE1-induced cAMP gradients originated from both the basolateral and apical faces of cells. Data suggest that 2D (x,y) studies of cAMP compartmentalization may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D (x,y,z) studies are required to assess mechanisms of signaling specificity. Results demonstrate that 5D imaging technologies are powerful tools for measuring biochemical processes in discrete subcellular domains.
ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract.
Yang, Yanyan; Yang, Woo Seok; Yu, Tao; Sung, Gi-Ho; Park, Kye Won; Yoon, Keejung; Son, Young-Jin; Hwang, Hyunsik; Kwak, Yi-Seong; Lee, Chang-Muk; Rhee, Man Hee; Kim, Jong-Hoon; Cho, Jae Youl
2014-05-28
Korean Red Ginseng (KRG) is one of the representative traditional herbal medicines prepared from Panax ginseng Meyer (Araliaceae) in Korea. It has been reported that KRG exhibits a lot of different biological actions such as anti-aging, anti-fatigue, anti-stress, anti-atherosclerosis, anti-diabetic, anti-cancer, and anti-inflammatory activities. Although systematic studies have investigated how KRG is able to ameliorate various inflammatory diseases, its molecular inhibitory mechanisms had not been carried out prior to this study. In order to investigate these mechanisms, we evaluated the effects of a water extract of Korean Red Ginseng (KRG-WE) on the in vitro inflammatory responses of activated RAW264.7 cells, and on in vivo gastritis and peritonitis models by analyzing the activation events of inflammation-inducing transcription factors and their upstream kinases. KRG-WE reduced the production of nitric oxide (NO), protected cells against NO-induced apoptosis, suppressed mRNA levels of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and interferon (IFN)-β, ameliorated EtOH/HCl-induced gastritis, and downregulated peritoneal exudate-derived NO production from lipopolysaccharide (LPS)-injected mice. The inhibition of these inflammatory responses by KRG-WE was regulated through the suppression of p38, c-Jun N-terminal kinase (JNK), and TANK-binding kinase 1 (TBK1) and by subsequent inhibition of activating transcription factor (ATF)-2, cAMP response element-binding protein (CREB), and IRF-3 activation. Of ginsensides included in this extract, interestingly, G-Rc showed the highest inhibitory potency on IRF-3-mediated luciferase activity. These results strongly suggest that the anti-inflammatory activities of KRG-WE could be due to its inhibition of the p38/JNK/TBK1 activation pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-01-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653
Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J
2004-03-01
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.
Lai, Hui-Chi; Wu, Ming-Jiuan; Chen, Pei-Yi; Sheu, Ting-Ting; Chiu, Szu-Ping; Lin, Meng-Han; Ho, Chi-Tang; Yen, Jui-Hung
2011-01-01
5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF), a hydroxylated polymethoxyflavone, is found exclusively in the Citrus genus, particularly in the peels of sweet orange. In this research, we report the first investigation of the neurotrophic effects and mechanism of 5-OH-HxMF in PC12 pheochromocytoma cells. We found that 5-OH-HxMF can effectively induce PC12 neurite outgrowth accompanied with the expression of neuronal differentiation marker protein growth-associated protein-43(GAP-43). 5-OH-HxMF caused the enhancement of cyclic AMP response element binding protein (CREB) phosphorylation, c-fos gene expression and CRE-mediated transcription, which was inhibited by 2-naphthol AS-E phosphate (KG-501), a specific antagonist for the CREB-CBP complex formation. Moreover, 5-OH-HxMF-induced both CRE transcription activity and neurite outgrowth were inhibited by adenylate cyclase and protein kinase A (PKA) inhibitor, but not MEK1/2, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) or calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. Consistently, 5-OH-HxMF treatment increased the intracellular cAMP level and downstream component, PKA activity. We also found that addition of K252a, a TrKA antagonist, significantly inhibited NGF- but not 5-OH-HxMF-induced neurite outgrowth. These results reveal for the first time that 5-OH-HxMF is an effective neurotrophic agent and its effect is mainly through a cAMP/PKA-dependent, but TrKA-independent, signaling pathway coupling with CRE-mediated gene transcription. A PKC-dependent and CREB-independent pathway was also involved in its neurotrophic action. PMID:22140566
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-04-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.
Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Faraji, Fahimeh; Mozaffari, Shiva
2017-10-01
Nicotine abuse adversely affects brain and causes apoptotic neurodegeneration. Curcumin- a bright yellow chemical compound found in turmeric is associated with neuroprotective properties. The current study was designed to evaluate the role of CREB-BDNF signaling in mediating the neuroprotective effects of curcumin against nicotine-induced apoptosis, oxidative stress and inflammation in rats. Sixty adult male rats were divided randomly into six groups. Group 1 received 0.7 ml/rat normal saline, group 2 received 6 mg/kg nicotine. Groups 3, 4, 5 and 6 were treated concurrently with nicotine (6 mg/kg) and curcumin (10, 20, 40 and 60 mg/kg i.p. respectively) for 21 days. Open Field Test (OFT) was used to evaluate the motor activity. Hippocampal oxidative, anti-oxidant, inflammatory and apoptotic factors were evaluated. Furthermore, phosphorylated brain cyclic adenosine monophosphate (cAMP) response element binding protein (P-CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene and protein levels. We found that nicotine disturbed the motor activity in OFT and simultaneous treatment with curcumin (40 and 60 mg/kg) reduced the nicotine-induced motor activity disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of GSH, IL-1β, TNF-α and Bax, while reducing Bcl-2, P-CREB and BDNF levels in the hippocampus. Nicotine also reduced the activity of superoxide dismutase, glutathione peroxidase and glutathione reductase in hippocampus. In contrast, various doses of curcumin attenuated nicotine-induced apoptosis, oxidative stress and inflammation; while elevating P-CREB and BDNF levels. Thus, curcumin via activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced inflammation, apoptosis and oxidative stress.
Chae, Hee-Don; Cox, Nick; Dahl, Gary V.; Lacayo, Norman J.; Davis, Kara L.; Capolicchio, Samanta; Smith, Mark; Sakamoto, Kathleen M.
2018-01-01
CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells. PMID:29435104
Corbett, Blythe A.; Swain, Deanna M.; Coke, Catherine; Simon, David; Newsom, Cassandra; Houchins-Juarez, Nea; Jenson, Ashley; Wang, Lily; Song, Yanna
2013-01-01
Objective SENSE Theatre is a novel intervention program aimed at improving reciprocal social interaction in youth with autism spectrum disorder (ASD) using behavioral strategies and theatrical techniques in a peer-mediated model. Previous research using a 3-month model showed improvement in face perception, social interaction, and reductions in stress. The current study assessed a 2-week summer camp model. Method Typically developing peers were trained and paired with ASD youth (8–17 years). Social perception and interaction skills were measured before and after treatment using neuropsychological and parental measures. Behavioral coding by reliable, independent raters was conducted within the treatment context (theatre) and outside the setting (playground). Salivary cortisol levels to assess physiological arousal were measured across contexts (home, theatre, and playground). A pretest-posttest design for within-group comparisons was used, and pre-specified pairwise comparisons were achieved using a nonparametric Wilcoxon signed rank test. Results Significant differences were observed in face processing, social awareness, and social cognition (p<0.05). Duration of interaction with familiar peers increased significantly over the course of treatment (p<0.05) while engagement with novel peers outside the treatment setting remained stable. Cortisol levels rose on the first day of camp compared to home values yet declined by the end of treatment and further reduced during post-treatment play with peers. Conclusions Results corroborate previous findings that the peer-mediated theatre program contributes to improvement in core social deficits in ASD using a short-term, summer camp treatment model. Future studies will explore treatment length and peer familiarity to optimize and generalize gains. PMID:24150989
Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E
2006-03-01
The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.
Community Partnerships Can Be Risky Business.
ERIC Educational Resources Information Center
Schirick, Ed
2001-01-01
Considers risk management and liability issues in cases of camp partnerships with schools, camp alternatives to incarceration for juvenile offenders, and elder hostel programs. Discusses making contracts, hiring attorneys, identifying risks and responsibilities, insuring volunteers, governmental immunity, liability waivers, additional insured…
PDE and cognitive processing: beyond the memory domain.
Heckman, P R A; Blokland, A; Ramaekers, J; Prickaerts, J
2015-03-01
Phosphodiesterase inhibitors (PDE-Is) enhance cAMP and/or cGMP signaling via reducing the degradation of these cyclic nucleotides. Both cAMP and cGMP signaling are essential for a variety of cellular functions and exert their effects both pre- and post-synaptically. Either of these second messengers relays and amplifies incoming signals at receptors on the cell surface making them important elements in signal transduction cascades and essential in cellular signaling in a variety of cell functions including neurotransmitter release and neuroprotection. Consequently, these processes can be influenced by PDE-Is as they increase cAMP and/or cGMP concentrations. PDE-Is have been considered as possible therapeutic agents to treat impaired memory function linked to several brain disorders, including depression, schizophrenia and Alzheimer's disease (AD). This review will, however, focus on the possible role of phosphodiesterases (PDEs) in cognitive decline beyond the memory domain. Here we will discuss the involvement of PDEs on three related domains: attention, information filtering (sensory- and sensorimotor gating) and response inhibition (drug-induced hyperlocomotion). Currently, these are emerging cognitive domains in the field of PDE research. Here we discuss experimental studies and the potential beneficial effects of PDE-I drugs on these cognitive domains, as effects of PDE-Is on these domains could potentially influence effects on memory performance. Overall, PDE4 seems to be the most promising target for all domains discussed in this review. Copyright © 2014 Elsevier Inc. All rights reserved.
Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato
2017-01-29
Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Xue-Feng; Song, Shun-de; Li, Ya-Jun; Hu, Zheng Qiang; Zhang, Zhe-Wen; Yan, Chun-Guang; Li, Zi-Gang; Tang, Hui-Fang
2018-06-01
Quercetin (Que) as an abundant flavonol element possesses potent antioxidative properties and has protective effect in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the specific mechanism is still unclear, so we investigated the effect of Que from in vivo and in vitro studies and the related mechanism of cAMP-PKA/Epac pathway. The results in mice suggested that Que can inhibit the release of inflammatory cytokine, block neutrophil recruitment, and decrease the albumin leakage in dose-dependent manners. At the same time, Que can increase the cAMP content of lung tissue, and Epac content, except PKA. The results in epithelial cell (MLE-12) suggested that Que also can inhibit the inflammatory mediators keratinocyte-derived chemokines release after LPS stimulation; Epac inhibitor ESI-09 functionally antagonizes the inhibitory effect of Que; meanwhile, PKA inhibitor H89 functionally enhances the inhibitory effect of Que. Overexpression of Epac1 in MLE-12 suggested that Epac1 enhance the effect of Que. All those results suggested that the protective effect of quercetin in ALI is involved in cAMP-Epac pathway.
Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin.
Feinstein, Timothy N; Yui, Naofumi; Webber, Matthew J; Wehbi, Vanessa L; Stevenson, Hilary P; King, J Darwin; Hallows, Kenneth R; Brown, Dennis; Bouley, Richard; Vilardaga, Jean-Pierre
2013-09-27
The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na(+) transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel "noncanonical" regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex.
Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C
2017-01-01
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition. DOI: http://dx.doi.org/10.7554/eLife.24998.001 PMID:28613156
Function and dysfunction of CNG channels: insights from channelopathies and mouse models.
Biel, Martin; Michalakis, Stylianos
2007-06-01
Channels directly gated by cyclic nucleotides (CNG channels) are important cellular switches that mediate influx of Na+ and Ca2+ in response to increases in the intracellular concentration of cAMP and cGMP. In photoreceptors and olfactory receptor neurons, these channels serve as final targets for cGMP and cAMP signaling pathways that are initiated by the absorption of photons and the binding of odorants, respectively. CNG channels have been also found in other types of neurons and in non-excitable cells. However, in most of these cells, the physiological role of CNG channels has yet to be determined. CNG channels have a complex heteromeric structure. The properties of individual subunits that assemble in specific stoichiometries to the native channels have been extensively investigated in heterologous expression systems. Recently, mutations in human CNG channel genes leading to inherited diseases (so-called channelopathies) have been functionally characterized. Moreover, mouse knockout models were generated to define the role of CNG channel proteins in vivo. In this review, we will summarize recent insights into the physiological and pathophysiological role of CNG channel proteins that have emerged from genetic studies in mice and humans.
How do stimulant treatments for ADHD work? Evidence for mediation by improved cognition.
Hawk, Larry W; Fosco, Whitney D; Colder, Craig R; Waxmonsky, James G; Pelham, William E; Rosch, Keri S
2018-05-07
Stimulant medications such as methylphenidate (MPH) are the frontline treatment for Attention-Deficit/Hyperactivity Disorder (ADHD). Despite their well-documented efficacy, the mechanisms by which stimulants improve clinical outcomes are not clear. The current study evaluated whether MPH effects on classroom behavior were mediated by improved cognitive functioning. Children with ADHD (n = 82; 9-12 years old) participated in a week-long summer research camp, consisting of cognitive testing, classroom periods, and recreational activities. After a baseline day, participants completed a 3-day randomized, double-blind, placebo-controlled trial of MPH (at doses approximating 0.3 and 0.6 mg/kg of immediate-release MPH dosed TID). Cognitive domains included inhibitory control (Stop Signal Task and prepulse inhibition of startle), attention (Continuous Performance Task and reaction time variability), and working memory (forward and backward spatial span). Clinical outcomes included math seatwork productivity and teacher-rated classroom behavior. A within-subjects path-analytic approach was used to test mediation. MPH-placebo and dose-response contrasts were used to evaluate drug effects. Methylphenidate improved seatwork productivity and teacher ratings (ds = 1.4 and 1.1) and all domains of cognition (ds = 0.3-1.1). Inhibitory control (Stop Signal Task, SST) and working memory backward uniquely mediated the effect of MPH (vs. placebo) on productivity. Only working memory backward mediated the impact of MPH on teacher-rated behavior. The dose-response (0.6 vs. 0.3 mg/kg) effects were more modest for clinical outcomes (ds = 0.4 and 0.2) and cognition (ds = 0-0.3); there was no evidence of cognitive mediation of the clinical dose-response effects. These findings are novel in demonstrating that specific cognitive processes mediate clinical improvement with stimulant treatment for ADHD. They converge with work on ADHD theory, neurobiology, and treatment development in suggesting that inhibitory control and working memory may be mechanisms of stimulant treatment response in ADHD. More work is necessary to evaluate the degree to which these findings generalize to chronic treatment, a broader array of clinical outcomes, and nonstimulant treatments. © 2018 Association for Child and Adolescent Mental Health.
Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori
2012-01-01
Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.
Carrasco-Navarro, Ulises; Vera-Estrella, Rosario; Barkla, Bronwyn J; Zúñiga-León, Eduardo; Reyes-Vivas, Horacio; Fernández, Francisco J; Fierro, Francisco
2016-10-06
The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC-MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed.
Biazi, Giuliana R; Frasson, Isabele G; Miksza, Daniele R; de Morais, Hely; de Fatima Silva, Flaviane; Bertolini, Gisele L; de Souza, Helenir M
2018-05-15
The response to glucagon and adrenaline in cancer cachexia is poorly known. The aim of this study was to investigate the response to glucagon, adrenergic agonists (α and β) and cyclic adenosine monophosphate (cAMP) on glycogenolysis, gluconeogenesis, and glycolysis in liver perfusion of Walker-256 tumor-bearing rats with advanced cachexia. Liver ATP content was also investigated. Rats without tumor (healthy) were used as controls. Agonists α (phenylephrine) and β (isoproterenol) adrenergic, instead of adrenaline, and cAMP, the second messenger of glucagon and isoproterenol, were used in an attempt to identify mechanisms involved in the responses. Glucagon (1 nM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in the liver of healthy and tumor-bearing rats, but their effects were lower in tumor-bearing rats. Isoproterenol (20 µM) stimulated glycogenolysis, gluconeogenesis, and glycolysis in healthy rats and had virtually no effect in tumor-bearing rats. cAMP (9 µM) also stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in healthy rats but had practically no effect in tumor-bearing rats. Phenylephrine (2 µM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis and these effects were also lower in tumor-bearing rats than in healthy. Liver ATP content was lower in tumor-bearing rats. In conclusion, tumor-bearing rats with advanced cachexia showed a decreased hepatic response to glucagon, adrenergic agonists (α and β), and cAMP in glycogenolysis, gluconeogenesis, and glycolysis, which may be due to a reduced rate of regulatory enzyme phosphorylation caused by the low ATP levels in the liver. © 2018 Wiley Periodicals, Inc.
Compliance of camps in the United States with guidelines for health and safety practices.
Olympia, Robert P; Hollern, Kaylee; Armstrong, Caitlin; Adedayo, Pelumi; Dunnick, Jennifer; Hartley, Jessica; Doshi, Bhavin
2015-03-01
To determine the compliance of US camps with guidelines for health and safety practices as set forth by the American Academy of Pediatrics and the US Department of Homeland Security. An electronic questionnaire was distributed to US camps during the summer of 2012 as identified by 3 online summer camp directories. Analysis was performed on 433 completed questionnaires. Fourteen percent of camps were considered medically related. Ninety-three percent of camps have established relationships with community emergency medical services, 34% with local orthodontists, and 37% with local mental health professionals. Camps reported the immediate availability of the following: automated external defibrillators (75%), respiratory rescue inhalers (44%), epinephrine autoinjectors (64%), cervical spine collars (62%), and backboard with restraints (76%). Camps reported the presence of the following written health policies: dehydration (91%), asthma and anaphylaxis (88%), head injuries (90%), seizures (78%), cardiac arrest (76%), and drowning (73%). Although 93% of camps have a disaster response plan, 15% never practice the plan. Sixty-eight percent of camps are familiar with community evacuation plans, and 67% have access to vehicles for transport. Camps reported the presence of the following written disaster policies: fire (96%), tornadoes (68%), arrival of suspicious individuals (84%), hostage situations (18%). Areas for improvement in the compliance of US camps with specific recommendations for health and safety practices were identified, such as medically preparing campers before their attendance, developing relationships with community health providers, increasing the immediate availability of several emergency medications and equipment, and developing policies and protocols for medical and disaster emergencies.
Bergold, P J; Sweatt, J D; Winicov, I; Weiss, K R; Kandel, E R; Schwartz, J H
1990-01-01
Depending on the number or the length of exposure, application of serotonin can produce either short-term or long-term presynaptic facilitation of Aplysia sensory-to-motor synapses. The cAMP-dependent protein kinase, a heterodimer of two regulatory and two catalytic subunits, has been shown to become stably activated only during long-term facilitation. Both acquisition of long-term facilitation and persistent activation of the kinase is blocked by anisomycin, an effective, reversible, and specific inhibitor of protein synthesis in Aplysia. We report here that 2-hr exposure of pleural sensory cells to serotonin lowers the concentration of regulatory subunits but does not change the concentration of catalytic subunits, as assayed 24 hr later; 5-min exposure to serotonin has no effect on either type of subunit. Increasing intracellular cAMP with a permeable analog of cAMP together with the phosphodiesterase inhibitor isobutyl methylxanthine also decreased regulatory subunits, suggesting that cAMP is the second messenger mediating serotonin action. Anisomycin blocked the loss of regulatory subunits only when applied with serotonin; application after the 2-hr treatment with serotonin had no effect. In the Aplysia accessory radula contractor muscle, prolonged exposure to serotonin or to the peptide transmitter small cardioactive peptide B, both of which produce large increases in intracellular cAMP, does not decrease regulatory subunits. This mechanism of regulating the cAMP-dependent protein kinase therefore may be specific to the nervous system. We conclude that during long-term facilitation, new protein is synthesized in response to the facilitatory stimulus, which changes the ratio of subunits of the cAMP-dependent protein kinase. This alteration in ratio could persistently activate the kinase and produce the persistent phosphorylation seen in long-term facilitated sensory cells. Images PMID:1692622
Binging & Purging: Youth Who Suffer Bulimia.
ERIC Educational Resources Information Center
Strodel, Donna
1990-01-01
Describes bulimia, its symptoms, characteristics and bulimic's family profile. Disorder may be more difficult to hide at camp. Camp staff could be first to recognize symptoms. Describes behavior indicators of bulimics. Suggests appropriate responses and counseling techniques for helping bulimic campers. (TES)
β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent.
Morgan, Sarah J; Deshpande, Deepak A; Tiegs, Brian C; Misior, Anna M; Yan, Huandong; Hershfeld, Alena V; Rich, Thomas C; Panettieri, Reynold A; An, Steven S; Penn, Raymond B
2014-08-15
Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Hyang-Mi; Kim, Ji-Sun; Kang, Sa-Ouk
2016-12-01
Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development. © 2016 Federation of European Biochemical Societies.
Glycogen synthase kinase-3 enhances nuclear export of a Dictyostelium STAT protein
Ginger, Rebecca S.; Dalton, Emma C.; Ryves, W.Jonathan; Fukuzawa, Masashi; Williams, Jeffrey G.; Harwood, Adrian J.
2000-01-01
Extracellular cAMP stimulates the rapid tyrosine phosphorylation and nuclear translocation of the Dictyostelium STAT protein Dd-STATa. Here we show that it also induces serine phosphorylation by GskA, a homologue of glycogen synthase kinase-3 (GSK-3). Tyrosine phosphorylation occurs within 10 s of stimulation, whereas serine phosphorylation takes 5 min, matching the kinetics observed for the cAMP regulation of GskA. Phosphorylation by GskA enhances nuclear export of Dd-STATa. The phosphorylated region, however, is not itself a nuclear export signal and we identify a region elsewhere in the protein that mediates nuclear export. These results suggest a biphasic regulation of Dd-STATa, in which extracellular cAMP initially directs nuclear import and then, via GskA, promotes its subsequent export. It also raises the possibility of an analogous regulation of STAT nuclear export in higher eukaryotes. PMID:11032815
NASA Astrophysics Data System (ADS)
Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro
2013-12-01
The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.
Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.
Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel
2016-06-01
3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
A possible signal-coupling role for cyclic AMP during endocytosis in Amoeba proteus.
Prusch, R D; Roscoe, J C
1993-01-01
Cytoplasmic levels of cAMP in Amoeba proteus were measured utilizing radioimmunoassays under control conditions and when stimulated by inducers of either pinocytosis or phagocytosis. In control cells, cytoplasmic cAMP levels were approximately 0.39 pM/mg cells. When exposed to either chemotactic peptide or mannose which stimulate phagocytosis in the amoeba, there is a rapid doubling of the cAMP level within 45 sec of stimulation which then returns to the control level within 3-5 min. Theophylline prolongs the elevation of cytoplasmic cAMP in stimulated cells and is also capable of eliciting food vacuole formation in the amoeba. In addition isoproterenol also causes food vacuole formation in the amoeba as well as a large and prolonged increase in cytoplasmic cAMP levels. Inducers of pinocytosis (BSA and Na Cl) also elicit changes in cytoplasmic cAMP in the amoeba, but the response appears to differ from that elicited by inducers of phagocytosis in that the peak cAMP levels are broader and biphasic. It is concluded that cAMP plays a signal-coupling role during the early phases of both forms of endocytosis in Amoeba proteus.
Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Park, Dong Hyun; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae; Ryu, Jong Hoon
2010-08-16
Opuntia ficus-indica var. saboten Makino (Cactaceae) is used to treat burns, edema, dyspepsia, and asthma in traditional medicine. The present study investigated the beneficial effects of the n-butanolic extract of O. ficus-indica var. saboten (BOF) on memory performance in mice and attempts to uncover the mechanisms underlying its action. Memory performance was assessed with the passive avoidance task, and western blotting and immunohistochemistry were used to measure changes in protein expression and cell survival. After the oral administration of BOF for 7 days, the latency time in the passive avoidance task was significantly increased relative to vehicle-treated controls (P<0.05). Western blotting revealed that the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element binding-protein (pCREB), and phosphorylated extracellular signal-regulated kinase (pERK) 1/2 were significantly increased in hippocampal tissue after 7 days of BOF administration (P<0.05). Doublecortin and 5-bromo-2-deoxyuridine immunostaining also revealed that BOF significantly enhanced the survival of immature neurons, but did not affect neuronal cell proliferation in the subgranular zone of the hippocampal dentate gyrus. These results suggest that the subchronic administration of BOF enhances long-term memory, and that this effect is partially mediated by ERK-CREB-BDNF signaling and the survival of immature neurons. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Gounden, Shivona; Chuturgoon, Anil
2017-05-01
Sirtuin 3 (SIRT3) regulates mitochondrial antioxidant (AO) defense and improves mitochondrial disorders. Curcumin protects mitochondria; however, the mechanisms need investigation. We postulated that curcumin increases AO defense under hyperglycemic conditions in HepG2 cells through SIRT3-mediated mechanisms. Cell viability was determined in HepG2 cells cultured with 5 mM glucose, 19.9 mM mannitol, vehicle control, 10 mM glucose, and 30 mM glucose in the absence or presence of curcumin for 24 h. SIRT3, nuclear factor-kappa B (NF-κB), heat-shock protein 70 (Hsp70), and Lon protein expressions were determined using western blot. Transcript levels of SIRT3, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), cAMP response element-binding protein (CREB), glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2) were measured by quantitative polymerase chain reaction. Cell viability, SIRT3 protein expression, transcript levels of SIRT3, PGC-1α, CREB, GPx1, and SOD2 and protein expressions of NF-κB, Lon, and Hsp70 were significantly increased in the curcumin-treated hyperglycemic groups. Since curcumin and SIRT3 both improve mitochondrial function and AO defense, SIRT3 may be involved in the protective effects of curcumin.
Li, Ping; Liu, Ping; Peng, Yan; Zhang, Zhuo-Hang; Li, Xiao-Ming; Xiong, Ren-Ping; Chen, Xing; Zhao, Yan; Ning, Ya-Lei; Yang, Nan; Zhang, Bo; Zhou, Yuan-Guo
2018-06-27
Increasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF-β1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF-β1 concentrations, but the mechanism by which low TGF-β1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit. The mRNA and protein expression and phosphorylation levels of corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting. We first found that low TGF-β1 concentrations not only promoted c-Ski mRNA and protein expression in rat primary fibroblasts but also increased the phosphorylation levels of Extracellular Signal-Regulated Kinases (ERK) and cAMP response element binding (CREB) protein. An ERK kinase (mitogen-activated protein kinase kinase, MEK) inhibitor significantly inhibited ERK1/2 phosphorylation levels, markedly reducing c-Ski expression and CREB phosphorylation levels and abrogating the growth-promoting effect of low TGF-β1 concentrations. At the same time, Smad2/3 phosphorylation levels were not significantly changed. Taken together, these results suggest that the increased cell proliferation induced by low TGF-β1 concentrations mediates c-Ski expression potentially through the ERK/CREB pathway rather than through the classic TGF-β1/Smad pathway.
Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa
2016-01-01
Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433
How sodium arsenite improve amyloid β-induced memory deficit?
Nassireslami, Ehsan; Nikbin, Parmida; Amini, Elham; Payandemehr, Borna; Shaerzadeh, Fatemeh; Khodagholi, Fariba; Yazdi, Behnoosh Bonakdar; Kebriaeezadeh, Abbas; Taghizadeh, Ghorban; Sharifzadeh, Mohammad
2016-09-01
Evidence has shown that arsenic exposure, besides its toxic effects results in impairment of learning and memory, but its molecular mechanisms are not fully understood. In the present study, we examined sodium arsenite (1, 5, 10, 100nM) effects on contextual and tone memory of male rats in Pavlovian fear conditioning paradigm alone and in co-administration with β-amyloid. We detected changes in the level of caspase-3, nuclear factor kappa-B (NF-κB), cAMP response element-binding (CREB), heme oxygenase-1 and NF-E2-related factor-2 (Nrf2) by Western blot. Sodium arsenite in high doses induced significant memory impairment 9 and 16days after infusion. By contrast, low doses of sodium arsenite attenuate memory deficit in Aβ injected rats after 16days. Our data revealed that treatment with high concentration of sodium arsenite increased caspase-3 cleavage and NF-κB level, 9days after injection. Whereas, low doses of sodium arsenite cause Nrf2 and HO-1 activation and increased CREB phosphorylation in the hippocampus. These findings suggest the concentration dependent effects of sodium arsenite on contextual and tone memory. Moreover, it seems that the neuroprotective effects of ultra-low concentrations of sodium arsenite on Aβ-induced memory impairment is mediated via an increase Nrf2, HO-1 and CREB phosphorylation levels and decrease caspase-3 and NF-κB amount. Copyright © 2016. Published by Elsevier Inc.
Wu, Chi-Hao; Huang, Shang-Ming; Yen, Gow-Chin
2011-02-01
The current study was designed to evaluate the effects of silymarin (SM) on advanced glycation endproduct (AGE) formation and monocyte activation induced by S100b, a specific ligand of receptor for AGEs. The in vivo verification of antiglycation, antioxidant, and antiinflammatory capacities was examined by 12 weeks of SM administration in streptozotocin-diabetic rats. In vitro glycation assays demonstrated that SM exerted marked inhibition during the late stages of glycation and subsequent crosslinking. Dual action mechanisms, namely, antioxidant and reactive carbonyl trapping activities, may contribute to its antiglycation effect. SM produced a significant decrease in monocytic interleukin-1β and COX-2 levels and prevented oxidant formation caused by S100b, which appeared to be mediated by inhibition of p47phox membrane translocation. Chromatin immunoprecipitation demonstrated that S100b increased the recruitment of nuclear factor-kappaB transcription factor as well as cAMP response element-binding-binding protein and coactivator-associated arginine methyltransferase-1 cofactors to the interleukin-1β promoter, whereas these changes were inhibited with SM treatment. In vivo, SM reduced tissue AGE accumulation, tail collagen crosslinking, and concentrations of plasma glycated albumin. Levels of oxidative and inflammatory biomarkers were also significantly decreased in SM-treated groups compared with the diabetic group. These data suggest that SM supplementation may reduce the burden of AGEs in diabetics and may prevent resulting complications.
Kaplan, A D; Reimer, W J; Feldman, R D; Dixon, S J
1995-04-01
Binding to PTH to its cell surface receptor activates both adenylyl cyclase and phospholipase-C, leading to elevation of cytosolic cAMP and free Ca2+. We have shown previously that extracellular nucleotides interact with P2U and P2Y subtypes of purinoceptor on osteoblastic cells, both linked to Ca2+ mobilization. In the present study, we investigated possible interactions between nucleotide and PTH signaling pathways in osteoblastic cells. The cytosolic free Ca2+ concentration ([Ca2+]i) of UMR-106 osteoblastic cells was monitored by fluorescence spectrophotometry. PTH (0.01-1 microM; bovine 1-84 or human 1-34) induced a small transient elevation of [Ca2+]i, lasting less than 1 min. A number of nucleotides, including ATP, UTP, and UDP, induced transient elevation of [Ca2+]i and potentiated the subsequent Ca2+ response to PTH. Of the nucleotides tested, UDP was the most effective at potentiating the PTH-induced Ca2+ transient. Treatment of cells with UDP (100 microM for 2.5 min), but not inorganic phosphate or uridine, reversibly potentiated the Ca2+ response to PTH (0.1 microM) by 11 +/- 2-fold (mean +/- SEM; n = 39). In contrast, UDP did not affect the cAMP response to PTH, indicating a selective action on Ca2+ signaling. Potentiation of the Ca2+ signal was still observed in the absence of extracellular Ca2+, establishing that nucleotides enhance PTH-induced release of Ca2+ from intracellular stores. Studies using selective purinoceptor agonists suggest that potentiation of PTH signaling is mediated by the P2U receptor subtype. In vivo, nucleotides released during trauma or inflammation may modulate PTH-induced Ca2+ signaling in osteoblasts.
2014-01-01
Background Two drinking water systems at U.S. Marine Corps Base Camp Lejeune, North Carolina were contaminated with solvents during 1950s-1985. Methods We conducted a retrospective cohort mortality study of 4,647 civilian, full-time workers employed at Camp Lejeune during 1973–1985 and potentially exposed to contaminated drinking water. We selected a comparison cohort of 4,690 Camp Pendleton workers employed during 1973–1985 and unexposed to contaminated drinking water. Mortality follow-up period was 1979-2008. Cause-specific standardized mortality ratios utilized U.S. age-, sex-, race-, and calendar period-specific mortality rates as reference. We used survival analysis to compare mortality rates between Camp Lejeune and Camp Pendleton workers and assess the effects of estimated cumulative contaminant exposures within the Camp Lejeune cohort. Ground water contaminant fate/transport and distribution system models provided monthly estimated contaminant levels in drinking water serving workplaces at Camp Lejeune. The confidence interval (CI) indicated precision of effect estimates. Results Compared to Camp Pendleton, Camp Lejeune workers had mortality hazard ratios (HRs) >1.50 for kidney cancer (HR = 1.92, 95% CI: 0.58, 6.34), leukemias (HR = 1.59, 95% CI: 0.66, 3.84), multiple myeloma (HR = 1.84, 95% CI: 0.45, 7.58), rectal cancer (HR = 1.65, 95% CI: 0.36, 7.44), oral cavity cancers (HR = 1.93, 95% CI: 0.34, 10.81), and Parkinson’s disease (HR = 3.13, 95% CI: 0.76, 12.81). Within the Camp Lejeune cohort, monotonic exposure-response relationships were observed for leukemia and vinyl chloride and PCE, with mortality HRs at the high exposure category of 1.72 (95% CI: 0.33, 8.83) and 1.82 (95% CI: 0.36, 9.32), respectively. Cumulative exposures were above the median for most deaths from cancers of the kidney, esophagus, rectum, prostate, and Parkinson’s disease, but small numbers precluded evaluation of exposure-response relationships. Conclusion The study found elevated HRs in the Camp Lejeune cohort for several causes of death including cancers of the kidney, rectum, oral cavity, leukemias, multiple myeloma, and Parkinson’s disease. Only 14% of the Camp Lejeune cohort died by end of follow-up, producing small numbers of cause-specific deaths and wide CIs. Additional follow-up would be necessary to comprehensively assess drinking water exposure effects at the base. PMID:25115749
Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels.
Brown, R L; Snow, S D; Haley, T L
1998-01-01
In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the entire amino-terminal domain had little effect on potentiation by MTSET. PMID:9675183
Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong
2014-07-01
1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.
Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark
2016-01-01
Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation
Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald
2001-01-01
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376
RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.
Lim, C J; Spiegelman, G B; Weeks, G
2001-08-15
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.
Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion.
Katona, Dávid; Rajki, Anikó; Di Benedetto, Giulietta; Pozzan, Tullio; Spät, András
2015-09-05
Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Payment or Reimbursement for Certain Medical Expenses for Camp Lejeune Family Members. Final rule.
2017-05-05
The Department of Veterans Affairs (VA) adopts as final an interim final rule addressing payment or reimbursement of certain medical expenses for family members of Camp Lejeune veterans. Under this rule, VA reimburses family members, or pays providers, for medical expenses incurred as a result of certain illnesses and conditions that may be associated with contaminants present in the base water supply at U.S. Marine Corps Base Camp Lejeune (Camp Lejeune), North Carolina, from August 1, 1953, to December 31, 1987. Payment or reimbursement is made within the limitations set forth in statute and Camp Lejeune family members receive hospital care and medical services that are consistent with the manner in which we provide hospital care and medical services to Camp Lejeune veterans. The statutory authority has since been amended to also include certain veterans' family members who resided at Camp Lejeune, North Carolina, for no less than 30 days (consecutive or nonconsecutive) between August 1, 1953, and December 31, 1987. This final rule will reflect that statutory change and will address public comments received in response to the interim final rule.
Identification of cis-acting regulatory elements in the human oxytocin gene promoter.
Richard, S; Zingg, H H
1991-12-01
The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT promoter resides in a small region extending only 50 bases upstream of the cap site and that this activity is the result of a cooperative interaction of at least three distinct proximal promoter elements.
Camp Crisis Management: Responding to New Challenges.
ERIC Educational Resources Information Center
Evans, Will
2002-01-01
Camps should have crisis management plans. Steps to formulating a plan include involving appropriate off-site agencies, identifying potential threats, gathering resources, crafting an appropriate response, training via role-playing, managing incoming and outgoing information, and writing it down. Sidebars present resources, successful response…
Sanz-Quinto, Santiago; López-Grueso, Raúl; Brizuela, Gabriel; Flatt, Andrew A; Moya-Ramón, Manuel
2018-06-20
Sanz-Quinto, S, López-Grueso, R, Brizuela, G, Flatt, AA, and Moya-Ramón, M. Influence of training models at 3,900-m altitude on the physiological response and performance of a professional wheelchair athlete: A case study. J Strength Cond Res XX(X): 000-000, 2018-This case study compared the effects of two training camps using flexible planning (FP) vs. inflexible planning (IP) at 3,860-m altitude on physiological and performance responses of an elite marathon wheelchair athlete with Charcot-Marie-Tooth disease (CMT). During IP, the athlete completed preplanned training sessions. During FP, training was adjusted based on vagally mediated heart rate variability (HRV) with specific sessions being performed when a reference HRV value was attained. The camp phases were baseline in normoxia (BN), baseline in hypoxia (BH), specific training weeks 1-4 (W1, W2, W3, W4), and Post-camp (Post). Outcome measures included the root mean square of successive R-R interval differences (rMSSD), resting heart rate (HRrest), oxygen saturation (SO2), diastolic blood pressure and systolic blood pressure, power output and a 3,000-m test. A greater impairment of normalized rMSSD (BN) was shown in IP during BH (57.30 ± 2.38% vs. 72.94 ± 11.59%, p = 0.004), W2 (63.99 ± 10.32% vs. 81.65 ± 8.87%, p = 0.005), and W4 (46.11 ± 8.61% vs. 59.35 ± 6.81%, p = 0.008). At Post, only in FP was rMSSD restored (104.47 ± 35.80%). Relative changes were shown in power output (+3 W in IP vs. +6 W in FP) and 3,000-m test (-7s in IP vs. -16s in FP). This case study demonstrated that FP resulted in less suppression and faster restoration of rMSSD and more positive changes in performance than IP in an elite wheelchair marathoner with CMT.
Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina
2008-10-01
Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.
Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat
2013-07-01
Taurolithocholate (TLC) acutely inhibits the biliary excretion of multidrug-resistant associated protein 2 (Mrp2) substrates by inducing Mrp2 retrieval from the canalicular membrane, whereas cyclic adenosine monophosphate (cAMP) increases plasma membrane (PM)-MRP2. The effect of TLC may be mediated via protein kinase Cϵ (PKCϵ). Myristoylated alanine-rich C kinase substrate (MARCKS) is a membrane-bound F-actin crosslinking protein and is phosphorylated by PKCs. MARCKS phosphorylation has been implicated in endocytosis, and the underlying mechanism appears to be the detachment of phosphorylated myristoylated alanine-rich C kinase substrate (pMARCKS) from the membrane. The aim of the present study was to test the hypothesis that TLC-induced MRP2 retrieval involves PKCϵ-mediated MARCKS phosphorylation. Studies were conducted in HuH7 cells stably transfected with sodium taurocholate cotransporting polypeptide (HuH-NTCP cells) and in rat hepatocytes. TLC increased PM-PKCϵ and decreased PM-MRP2 in both HuH-NTCP cells and hepatocytes. cAMP did not affect PM-PKCϵ and increased PM-MRP2 in these cells. In HuH-NTCP cells, dominant-negative (DN) PKCϵ reversed TLC-induced decreases in PM-MRP2 without affecting cAMP-induced increases in PM-MRP2. TLC, but not cAMP, increased MARCKS phosphorylation in HuH-NTCP cells and hepatocytes. TLC and phorbol myristate acetate increased cytosolic pMARCKS and decreased PM-MARCKS in HuH-NTCP cells. TLC failed to increase MARCKS phosphorylation in HuH-NTCP cells transfected with DN-PKCϵ, and this suggested PKCϵ-mediated phosphorylation of MARCKS by TLC. In HuH-NTCP cells transfected with phosphorylation-deficient MARCKS, TLC failed to increase MARCKS phosphorylation or decrease PM-MRP2. Taken together, these results support the hypothesis that TLC-induced MRP2 retrieval involves TLC-mediated activation of PKCϵ followed by MARCKS phosphorylation and consequent detachment of MARCKS from the membrane. Copyright © 2013 American Association for the Study of Liver Diseases.
Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline
2009-01-01
Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242
Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter
2010-01-01
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028
The role of ventral striatal cAMP signaling in stress-induced behaviors
Plattner, Florian; Hayashi, Kanehiro; Hernandez, Adan; Benavides, David R.; Tassin, Tara C.; Tan, Chunfeng; Day, Jonathan; Fina, Maggy W.; Yuen, Eunice Y.; Yan, Zhen; Goldberg, Matthew S.; Nairn, Angus C.; Greengard, Paul; Nestler, Eric J.; Taussig, Ronald; Nishi, Akinori; Houslay, Miles D.; Bibb, James A.
2015-01-01
The cAMP/PKA signaling cascade is a ubiquitous pathway acting downstream of multiple neuromodulators. We found that the phosphorylation of phosphodiesterase-4 (PDE4) by cyclin-dependent protein kinase 5 (Cdk5) facilitates cAMP degradation and homeostasis of cAMP/PKA signaling. In mice, loss of Cdk5 throughout the forebrain elevated cAMP levels and increased PKA activity in striatal neurons, and altered behavioral responses to acute or chronic stressors. Ventral striatum- or D1 dopamine receptor-specific conditional knockout of Cdk5, or ventral striatum infusion of a small interfering peptide that selectively targets the regulation of PDE4 by Cdk5, all produced analogical effects on stress-induced behavioral responses. Together, our results demonstrate that altering cAMP signaling in medium spiny neurons of the ventral striatum can effectively modulate stress-induced behavioral states. We propose that targeting the Cdk5 regulation of PDE4 could be a new therapeutic approach for clinical conditions associated with stress, such as depression. PMID:26192746
Inhibition of basolateral cAMP permeability in the toad urinary bladder.
Boom, A; Golstein, P E; Frerotte, M; Sande, J V; Beauwens, R
2000-10-01
1. The effect of sulphonylurea drugs on hydrosmotic flow across toad urinary bladder epithelium was re-evaluated in the present study. Glibenclamide, added to the basolateral medium, significantly enhanced the osmotic flow induced by low doses of antidiuretic hormone (ADH) or forskolin (FK), while it inhibited the effect of exogenous cyclic adenosine monophosphate (cAMP) or its non-hydrolysable bromo derivative, 8-Br-cAMP, added to the basolateral medium. These opposite effects of glibenclamide on the transepithelial osmotic flow can be explained by a reduction of cAMP permeability across the basolateral membrane of the epithelium. The decrease in cAMP permeability leads, according to the direction of the cAMP gradient, to firstly an enhanced osmotic flow when cAMP is generated intracellularly by addition of ADH and FK, glibenclamide reducing cAMP exit from the cell, and secondly a decreased osmotic flow in response to cAMP (and 8-Br-cAMP) added to the basolateral medium, glibenclamide inhibiting, in this case, their entry into the cell. 2. The demonstration that glibenclamide actually inhibits the basolateral cAMP permeability rests on the fact that firstly it decreases the release of cAMP into the basolateral medium by about 40 %, at each concentration of ADH or forskolin tested, secondly it increases the cAMP content of paired hemibladders incubated in the presence of ADH or FK, when intracellular degradation was prevented by phosphodiesterase inhibition, and thirdly it decreases also the uptake of basolateral 8-Br-[3H]cAMP into paired toad hemibladders. 3. Taken together, the present data demonstrate that glibenclamide inhibits the toad urinary bladder basolateral membrane permeability to cAMP, most probably by a direct interaction with a membrane protein not yet indentified but distinct from the sulphonylurea receptor.
Prescott, William A; Violanti, Kelsey C; Fusco, Nicholas M
2018-01-01
New York state requires day/summer camps to keep immunization records for all enrolled campers and strongly recommends requiring vaccination for all campers and staff. The objective of this study was to characterize immunization requirements/recommendations for children/adolescents enrolled in and staff employed at day/summer camps in New York state. An electronic hyperlink to a 9-question survey instrument was distributed via e-mail to 178 day/summer camps located in New York state cities with a population size greater than 100 000 people. A follow-up telephone survey was offered to nonresponders. The survey instrument included questions pertaining to vaccination documentation policies for campers/staff and the specific vaccines that the camp required/recommended. Fisher's exact and Chi-square tests were used to analyze categorical data. Sixty-five day/summer camps responded to the survey (36.5% response rate): 48 (73.8%) and 23 (41.8%) camps indicated having a policy/procedure for documenting vaccinations for campers and staff, respectively. Camps that had a policy/procedure for campers were more likely to have a policy/procedure for staff ( P = .0007). Age-appropriate vaccinations that were required/recommended for campers by at least 80% of camps included: measles, mumps, and rubella (MMR), diphtheria, tetanus, and pertussis (DTaP), hepatitis B, inactivated/oral poliovirus (IPV/OPV), Haemophilus influenzae type b (Hib), and varicella. Age-appropriate vaccinations that were required/recommended for staff by at least 80% of camps included: DTaP, hepatitis B, IPV/OPV, MMR, meningococcus, varicella, Hib, and tetanus, diphtheria, and pertussis (Tdap). Vaccination policies at day/summer camps in New York state appear to be suboptimal. Educational outreach may encourage camps to strengthen their immunization policies, which may reduce the transmission of vaccine-preventable diseases.
Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway
Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O
2007-01-01
Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164
Cheng, Yougan; Othmer, Hans
2016-01-01
Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty and mammalian leukocytes, the model can serve as a generic one for direction sensing. PMID:27152956
Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd
2017-10-30
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.
Gueguen, Marie; Vallin, Benjamin; Glorian, Martine; Blaise, Régis; Limon, Isabelle
2016-01-01
In response to various types of vascular stress, the smooth muscle cells of the vessel wall (VSMCs) change phenotype and acquire the capacity to react to abnormal signals. This phenomenon favors the involvement of these cells in the development of major vascular diseases, such as atherosclerosis, and some complications of angioplasty, such as restenosis. The cyclic adenosine monophosphate (cAMP) pathway plays a key role in the integration of stimuli from the immediate environment and in the development of cellular responses. The temporal and spatial subcellular compartmentalization of cAMP ensures that the signals transmitted are specific. This compartmentalization is dependent on the diversity of (1) proteins directly or indirectly regulating the synthesis, degradation or release of cAMP; (2) intracellular effectors of cAMP; (3) isoforms of all these proteins with unique biochemical properties and unique patterns of regulation and (4) the scaffolding proteins on which the macromolecular complexes are built. This review illustrates the ways in which changes in the profile of adenylyl cyclases (ACs) may play critical roles in signal integration, the response of muscle cells and pathological vascular remodeling. It also illustrates the relevance of the renewed consideration of ACs as potentially interesting treatment targets. © Société de Biologie, 2016.
Real-time monitoring of intracellular cAMP during acute ethanol exposure
Gupta, Ratna; Qualls-Creekmore, Emily; Yoshimura, Masami
2013-01-01
Background In previous studies we have shown that ethanol enhances the activity of Gs-stimulated membrane-bound adenylyl cyclase (AC). The effect is AC isoform specific and the type 7 AC (AC7) is most responsive to ethanol. In this study, we employed a fluorescence resonance energy transfer (FRET) based cAMP sensor, Epac1-camps, to examine real-time temporal dynamics of ethanol effects on cAMP concentrations. To our knowledge, this is the first report on real-time detection of the ethanol effect on intracellular cAMP. Methods Hela cells were transfected with Epac1-camps, dopamine D1A receptor, and one isoform of AC (AC7 or AC3). Fluorescent images were captured using a specific filter set for cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and FRET, respectively and FRET intensity was calculated on a pixel-by-pixel basis to examine changes in cAMP. Results During 2-minute stimulation with dopamine (DA), the cytoplasmic cAMP level quickly increased, then decreased to a plateau, where the cAMP level was higher than the level prior to stimulation with DA. Ethanol concentration dependently increased cytoplasmic cAMP in cells transfected with AC7, while ethanol did not have effect on cells transfected with AC3. Similar trends were observed for cAMP at the plasma membrane and in the nucleus during 2-minute stimulation with DA. Unexpectedly, when cells expressing AC7 were stimulated with DA or other Gs protein-coupled receptor’s ligand plus ethanol for 5 seconds, ethanol reduced cAMP concentration. Conclusion These results suggest that ethanol has two opposing effects on the cAMP generating system in an AC isoform specific manner, the enhancing effect on AC activity and the short lived inhibitory effect. Thus, ethanol may have a different effect on cAMP depending on not only AC isoform but also the duration of exposure. PMID:23731206
Lloyd, G S; Busby, S J; Savery, N J
1998-01-01
During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed. PMID:9461538
Salinthone, Sonemany; Schillace, Robynn V.; Tsang, Catherine; Regan, John W.; Bourdette, Dennis N.; Carr, Daniel W.
2010-01-01
Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer’s disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R and S LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCc with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G- protein coupled receptors, including histamine and adenosine, but not the beta adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases. PMID:21036588
Giraldo, Esther; Hinchado, María D; Ortega, Eduardo
2013-09-01
Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.
Mazhab-Jafari, Mohammad T; Das, Rahul; Fotheringham, Steven A; SilDas, Soumita; Chowdhury, Somenath; Melacini, Giuseppe
2007-11-21
cAMP (adenosine 3',5'-cyclic monophosphate) is a ubiquitous second messenger that activates a multitude of essential cellular responses. Two key receptors for cAMP in eukaryotes are protein kinase A (PKA) and the exchange protein directly activated by cAMP (EPAC), which is a recently discovered guanine nucleotide exchange factor (GEF) for the small GTPases Rap1 and Rap2. Previous attempts to investigate the mechanism of allosteric activation of eukaryotic cAMP-binding domains (CBDs) at atomic or residue resolution have been hampered by the instability of the apo form, which requires the use of mixed apo/holo systems, that have provided only a partial picture of the CBD apo state and of the allosteric networks controlled by cAMP. Here, we show that, unlike other eukaryotic CBDs, both apo and cAMP-bound states of the EPAC1 CBD are stable under our experimental conditions, providing a unique opportunity to define at an unprecedented level of detail the allosteric interactions linking two critical functional sites of this CBD. These are the phosphate binding cassette (PBC), where cAMP binds, and the N-terminal helical bundle (NTHB), which is the site of the inhibitory interactions between the regulatory and catalytic regions of EPAC. Specifically, the combined analysis of the cAMP-dependent changes in chemical shifts, 2 degrees structure probabilities, hydrogen/hydrogen exchange (H/H) and hydrogen/deuterium exchange (H/D) protection factors reveals that the long-range communication between the PBC and the NTHB is implemented by two distinct intramolecular cAMP-signaling pathways, respectively, mediated by the beta2-beta3 loop and the alpha6 helix. Docking of cAMP into the PBC perturbs the NTHB inner core packing and the helical probabilities of selected NTHB residues. The proposed model is consistent with the allosteric role previously hypothesized for L273 and F300 based on site-directed mutagenesis; however, our data show that such a contact is part of a significantly more extended allosteric network that, unlike PKA, involves a tight coupling between the alpha- and beta-subdomains of the EPAC CBD. The proposed mechanism of allosteric activation will serve as a basis to understand agonism and antagonism in the EPAC system and provides also a general paradigm for how small ligands control protein-protein interfaces.
Corbett, Blythe A; Swain, Deanna M; Coke, Catherine; Simon, David; Newsom, Cassandra; Houchins-Juarez, Nea; Jenson, Ashley; Wang, Lily; Song, Yanna
2014-02-01
Social Emotional NeuroScience Endocrinology Theatre is a novel intervention program aimed at improving reciprocal social interaction in youth with autism spectrum disorder (ASD) using behavioral strategies and theatrical techniques in a peer-mediated model. Previous research using a 3-month model showed improvement in face perception, social interaction, and reductions in stress. The current study assessed a 2-week summer camp model. Typically developing peers were trained and paired with ASD youth (8-17 years). Social perception and interaction skills were measured before and after treatment using neuropsychological and parental measures. Behavioral coding by reliable, independent raters was conducted within the treatment context (theatre) and outside the setting (playground). Salivary cortisol levels to assess physiological arousal were measured across contexts (home, theatre, and playground). A pretest-posttest design for within-group comparisons was used, and prespecified pairwise comparisons were achieved using a nonparametric Wilcoxon signed-rank test. Significant differences were observed in face processing, social awareness, and social cognition (P < 0.05). Duration of interaction with familiar peers increased significantly over the course of treatment (P < 0.05), while engagement with novel peers outside the treatment setting remained stable. Cortisol levels rose on the first day of camp compared with home values yet declined by the end of treatment and further reduced during posttreatment play with peers. Results corroborate previous findings that the peer-mediated theatre program contributes to improvement in core social deficits in ASD using a short-term, summer camp treatment model. Future studies will explore treatment length and peer familiarity to optimize and generalize gains. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Koinuma, Shingo; Takeuchi, Kohei; Wada, Naoyuki; Nakamura, Takeshi
2017-11-01
Cyclic AMP plays a pivotal role in neurite growth. During outgrowth, a trafficking system supplies membrane at growth cones. However, the cAMP-induced signaling leading to the regulation of membrane trafficking remains unknown. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking. Recent studies have shown a role of TC10 in neurite growth in NGF-treated PC12 cells. Here, we investigated a mechanical linkage between cAMP and TC10 in neuritogenesis. Plasmalemmal TC10 activity decreased abruptly after cAMP addition in neuronal cells. TC10 was locally inactivated at extending neurite tips in cAMP-treated PC12 cells. TC10 depletion led to a decrease in cAMP-induced neurite outgrowth. Constitutively active TC10 could not rescue this growth reduction, supporting our model for a role of GTP hydrolysis of TC10 in neuritogenesis by accelerating vesicle fusion. The cAMP-induced TC10 inactivation was mediated by PKA. Considering cAMP-induced RhoA inactivation, we found that p190B, but not p190A, mediated inactivation of TC10 and RhoA. Upon cAMP treatment, p190B was recruited to the plasma membrane. STEF depletion and Rac1-N17 expression reduced cAMP-induced TC10 inactivation. Together, the PKA-STEF-Rac1-p190B pathway leading to inactivation of TC10 and RhoA at the plasma membrane plays an important role in cAMP-induced neurite outgrowth. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Vinogradova, Tatiana M.; Lakatta, Edward G.
2009-01-01
Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534
Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin
2015-06-15
In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.