Science.gov

Sample records for canberra tokamak

  1. Geomagnetic Workshop, Canberra

    NASA Astrophysics Data System (ADS)

    Barton, C. E.; Lilley, F. E. M.; Milligan, P. R.

    On May 14-15, 1985, 63 discerning geomagnetists flocked to Canberra to attend the Geomagnetic Workshop coorganized by the Australian Bureau of Mineral Resources (BMR) and the Research School of Earth Sciences, Australian National University (ANU). With an aurorally glowing cast that included an International Association of Geomagnetism and Aeronomy (IAGA) president, former president, and division chairman, the Oriental Magneto-Banquet (which was the center of the meeting), was assured of success. As a cunning ploy to mask the true nature of this gastronomic extravagance from the probings of income tax departments, a presentation of scientific papers on Australian geomagnetism in its global setting was arranged.The Australian region, including New Zealand, Papua New Guinea, Indonesia, and a large sector of the Antarctic, covers one eighth of the Earth's surface and historically has played an important role in the study of geomagnetism. The region contains both the south magnetic and geomagnetic poles, and two Australian Antarctic stations (Casey and Davis) are situated in the region of the south polar cusp (see Figure 1).

  2. Canberra

    Atmospheric Science Data Center

    2013-04-16

    article title:  Fires in the Australian Capital Territory     View Larger ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees ...

  3. Space Radar Image of Canberra, Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Australia's capital city, Canberra, is shown in the center of this spaceborne radar image. Images like this can help urban planners assess land use patterns. Heavily developed areas appear in bright patchwork patterns of orange, yellow and blue. Dense vegetation appears bright green, while cleared areas appear in dark blue or black. Located in southeastern Australia, the site of Canberra was selected as the capital in 1901 as a geographic compromise between Sydney and Melbourne. Design and construction of the city began in 1908 under the supervision of American architect Walter Burley-Griffin. Lake Burley-Griffin is located above and to the left of the center of the image. The bright pink area is the Parliament House. The city streets, lined with government buildings, radiate like spokes from the Parliament House. The bright purple cross in the lower left corner of the image is a reflection from one of the large dish-shaped radio antennas at the Tidbinbilla, Canberra Deep Space Network Communication Complex, operated jointly by NASA and the Australian Space Office. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, onboard the space shuttle Endeavour. The image is 28 kilometers by 25 kilometers (17 miles by 15 miles) and is centered at 35.35 degrees south latitude, 149.17 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Office of Mission to Planet Earth.

  4. Canberra Alpha Sentry Installation Functional Design Criteria (FDC)

    SciTech Connect

    WHITE, W.F.

    1999-12-16

    This document provides the functional design criteria for the installation of the Canberra Alpha Sentry System at selected locations within the Plutonium Finishing Plant (PFP). The equipment being installed is identified by part number in Section 3 and the locations are given in Section 5. The design, procurement and installation are assigned to Fluor Federal Services.

  5. Pu-238 assay performance with the Canberra IQ3 system

    SciTech Connect

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  6. A Personal Memoir of Policy Failure: The Failed Merger of ANU and the Canberra CAE

    ERIC Educational Resources Information Center

    Scott, Roger

    2004-01-01

    The more immediate context of the events the author describes in this article is needed in order to identify the policy framework within which the Australian National University (ANU)-Canberra CAE (CCAE) merger was placed as a component of a wider public policy initiative undertaken by John Dawkins. There were four major components in that wider…

  7. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  8. Calibration and Use of the Canberra iSolo 300G

    SciTech Connect

    Smith, T; Graham, C L; Sundsmo, T; Shingleton, K L

    2010-11-24

    This procedure provides instructions for the calibration and use of the Canberra iSolo Low Background Alpha/Beta Counting System (iSolo) that is used for counting air filters and swipe samples. This detector is capable of providing radioisotope identification (e.g., it can discriminate between radon daughters and plutonium). This procedure includes step-by-step instructions for: (1) Performing periodic or daily 'Background' and 'Efficiency QC' checks; (2) Setting-up the iSolo for counting swipes and air filters; (3) Counting swipes and air filters for alpha and beta activity; and (4) Annual calibration.

  9. Measles vaccine efficacy study in a Canberra high school: a study following a measles outbreak.

    PubMed

    Cheah, D; Lane, J M; Passaris, I

    1993-12-01

    An outbreak of measles which occurred in Canberra between October and December, 1991, was investigated to estimate the public health utility of the vaccine. The measles vaccine efficacy was determined for the 13-15 year old children in a selected high school. During the outbreak, at least 82 Canberra children contracted measles. Teenage males accounted for 56% of total cases, and 22% of cases were confirmed by serology. The vaccine coverage in the high school studied decreased with increasing school years, varying from 85.8% in Grade 8 to 79.2% in Grade 10. The highest attack rate occurred in Grade 10 (66/1000). The vaccine efficacy for age 13-15 was estimated to be 72% (95% Cl, 45-86%) but varied from 67 to 73%. Measles remains a serious disease of childhood in Australia. The elimination of measles is only partly dependent on the vaccine coverage of children. Issues relating to the effectiveness of vaccine are also important. A two dose vaccine strategy with the second dose of measles, mumps, rubella vaccine (MMR), given preferably in the last year of primary school or the first year of high school, is supported by the findings of this study.

  10. Characterization of Canberra's Tomographic Gamma-Ray Can Scanner ('Can-TGS') - 13311

    SciTech Connect

    LeBlanc, P.J.; Lagana, J.; Kirkpatrick, J.; Nakazawa, D.; Smith, S. Kane; Venkataraman, R.; Villani, M.; Young, B.M.

    2013-07-01

    The Tomographic Gamma-ray Scanner (TGS) for large volume drummed waste has been successfully commercialized by Canberra over the last several years. As part of an R and D effort to continually improve this technology, we have developed a scaled down version of the standard commercial product (Can-TGS). The Can-TGS is able to accommodate cans and pails of various sizes, ranging from sub-liter to 20 liter volumes with densities of up to 4 g/cc. The Can-TGS has three diamond-shaped collimators (6.35 mm [0.25''], 12.7 mm [0.5''], and 25.4 mm [1'']) to facilitate a range of container volumes and heights. As with the standard TGS, the Can-TGS has a transmission source sub-system, where the transmission source can be easily swapped between sources of various strengths and type. The acquisition portion of the Can-TGS is powered by the Canberra Lynx{sup R} MCA which accommodates both multi-spectral scaling (MSS) and list-mode. Recently, the Can-TGS has been successfully characterized for an 18.93 L [5-gallon] container for the 25.4 mm diamond-shaped collimator. In principle, a single measurement (with good statistics) is required for each configuration in order to characterize the system. However, for this study, measurements were performed for several different matrices. For each matrix used, 6 different measurements were acquired. For each of these measurements, the drum was rotated 60 deg. with respect to the previous starting position. This procedure was followed in order to average out any radial bias that might be produced from just a single measurement. A description of the Can-TGS system is given. The details of the recent characterization measurements and the associated data analysis and results are presented. TGS results are compared with Segmented Gamma Scanner (SGS) results for the same source configuration. Additionally, the future outlook for Canberra's R and D efforts with this system is discussed. These efforts include TGS algorithm optimization, improving

  11. Verification of HEPA Filter Analysis for the Canberra Q2 Waste Assay System

    SciTech Connect

    Casella, V.R.

    2002-12-06

    Data from measurements of a standard 20 inches x 20 inches source positioned on the end and in the middle of a HEPA filter verified that assaying HEPA filters with the Canberra Q2 and using the standard drum calibration with a percent full parameter of 70 percent gives acceptable results for gamma rays above 122 keV. For the gamma-ray energy range of 122 keV to 1400 keV, nuclide concentrations would be somewhat overestimated by from about 35 percent (122 keV) to about 10 percent (1400 keV). Also, Am-241 (60 keV) is conservatively overestimated by about a factor of 2.6 using this configuration.

  12. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  13. External ventricular drain infections at the Canberra Hospital: A retrospective study.

    PubMed

    Phan, Kevin; Schultz, Konrad; Huang, Christopher; Halcrow, Stephen; Fuller, John; McDowell, David; Mews, Peter J; Rao, Prashanth J

    2016-10-01

    External ventricular drains (EVD) are crucial for the emergency management of hydrocephalus and raised intracranial pressure. Infection is the most morbid and costly cause of EVD malfunction and can cost up to $50,000 US to treat per case. In 2007, Canberra Hospital changed EVD management protocols requiring set-up of EVD transducer systems in theatre, cessation of prophylactic antibiotics after 24hours, cerebrospinal fluid (CSF) samples second or third daily and discontinuation of elective EVD changes. The current study aimed to retrospectively audit EVD inserted between 2006 and 2010 in order to determine the impact of these changes. There was a non-significant downward trend in infection rates from 20.93% to 11.50% (p=0.343) after the protocol changes. Patient age (OR=1.032, p=0.064, confidence interval (CI): 0.998-1.067) and sex (OR=1.405, p=0.595, CI: 0.401-4.917) were not significantly associated with infection. However, multiple drains were associated with a significant increase in infections rates (OR=21.96, p=0.001, CI: 6.103-79.023) and systemic perioperative antibiotic prophylaxis was associated with decreased rates of infections (OR=0.269, p=0.044, CI: 0.075-0.964). Our study showed a non-significant downwards trend in infections with introduction of changes to hospital protocol and illustrated some risk factors for infection in the Australian setting. PMID:27349469

  14. Background frequency of Bacillus species at the Canberra Airport: A 12 month study.

    PubMed

    Gahan, Michelle E; Thomas, Rory; Rossi, Rebecca; Nelson, Michelle; Roffey, Paul; Richardson, Michelle M; McNevin, Dennis

    2015-12-01

    Anthrax, caused by Bacillus anthracis, is a naturally occurring disease in Australia. Whilst mainly limited to livestock in grazing regions of Victoria and New South Wales, movement of people, stock and vehicles means B. anthracis could be present outside this region. Of particular interest is the "background" prevalence of B. anthracis at transport hubs including airports. The aim of this study was to determine the background frequency of B. anthracis and the commonly used hoax agent Bacillus thuringiensis at the Canberra Airport over a 12 month period. Samples were collected daily for seven days each month from August 2011-July 2012 and analyzed using species specific real-time polymerase chain reaction. Fourteen samples (of a total of 575) were positive for the B. anthracis PL3 genomic marker, 24 for the cya (pXO1) plasmid marker and five for the capB (pXO2) plasmid marker. Whilst five samples were positive for both PL3 and cya, no samples were positive for all three markers hence there is no evidence to suggest the presence of pathogenic B. anthracis strains. B. anthracis targets were detected primarily in February 2012 and B. thuringiensis peaked in October and November 2011 and again in April and May 2012. This study provides a rapid method to screen for, and differentiate, Bacillus species. Armed with this information investigators will be able to discriminate a "threat" from "background" frequencies should the need arise.

  15. Downscaling approach to develop future sub-daily IDF relations for Canberra Airport Region, Australia

    NASA Astrophysics Data System (ADS)

    Herath, H. M. S. M.; Sarukkalige, P. R.; Nguyen, V. T. V.

    2015-06-01

    Downscaling of climate projections is the most adopted method to assess the impacts of climate change at regional and local scale. In the last decade, downscaling techniques which provide reasonable improvement to resolution of General Circulation Models' (GCMs) output are developed in notable manner. Most of these techniques are limited to spatial downscaling of GCMs' output and still there is a high demand to develop temporal downscaling approaches. As the main objective of this study, combined approach of spatial and temporal downscaling is developed to improve the resolution of rainfall predicted by GCMs. Canberra airport region is subjected to this study and the applicability of proposed downscaling approach is evaluated for Sydney, Melbourne, Brisbane, Adelaide, Perth and Darwin regions. Statistical Downscaling Model (SDSM) is used to spatial downscaling and numerical model based on scaling invariant concept is used to temporal downscaling of rainfalls. National Centre of Environmental Prediction (NCEP) data is used in SDSM model calibration and validation. Regression based bias correction function is used to improve the accuracy of downscaled annual maximum rainfalls using HadCM3-A2. By analysing the non-central moments of observed rainfalls, single time regime (from 30 min to 24 h) is identified which exist scaling behaviour and it is used to estimate the sub daily extreme rainfall depths from daily downscaled rainfalls. Finally, as the major output of this study, Intensity Duration Frequency (IDF) relations are developed for the future periods of 2020s, 2050s and 2080s in the context of climate change.

  16. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002

    NASA Astrophysics Data System (ADS)

    de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander

    2008-12-01

    During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.

  17. An outbreak of gastroenteritis linked to a buffet lunch served at a Canberra restaurant.

    PubMed

    Sloan-Gardner, Timothy S; Glynn-Robinson, Anna-Jane; Roberts-Witteveen, April; Krsteski, Radomir; Rogers, Keith; Kaye, Andrew; Moffatt, Cameron R M

    2014-12-31

    In 2013, an outbreak of gastrointestinal illness occurred following a buffet lunch at a restaurant in Canberra. An investigation was conducted to identify the cause of illness and to implement appropriate public health measures to prevent further disease. We conducted a retrospective cohort study via telephone interviews, using a structured questionnaire developed from the restaurant buffet menu. A case was defined as someone who ate the buffet lunch at the restaurant on the implicated date and developed any symptoms of gastrointestinal illness (such as diarrhoea, abdominal pain and nausea) following the consumption of food. A total of 74% (225/303) of known attendees were interviewed, of whom 56% (125/225) had become ill. The median incubation period and duration of illness were 13 and 19 hours respectively. The most commonly reported symptoms were diarrhoea (94%, 118/125) and abdominal pain (82%, 103/125). A toxin-mediated gastrointestinal illness was suspected based on the incubation period, duration of illness and the symptoms. The environmental health investigation identified a lack of designated hand washing facilities in the kitchen, an absence of thermometers for measuring food temperatures and several maintenance and minor cleaning issues. A number of food samples were taken for microbiological analysis. Multivariable analysis showed that illness was significantly associated with consuming curried prawns (OR 18.4, 95% CI 8.6-39.3, P < 0.001) and Caesar salad (OR 3.6, 95% CI 1.8-7.5, P 0.001). Enterotoxin-producing Staphylococcus aureus and Bacillus cereus were identified in leftover samples of cooked buffet food, but this food was not epidemiologically implicated. The investigation suggested that a breakdown in cleanliness, temperature control and food handling practices may have resulted in contamination of the buffet food. In order to prevent such outbreaks in the future, caterers and restaurateurs need to ensure they have the appropriate facilities and

  18. An outbreak of gastroenteritis linked to a buffet lunch served at a Canberra restaurant.

    PubMed

    Sloan-Gardner, Timothy S; Glynn-Robinson, Anna-Jane; Roberts-Witteveen, April; Krsteski, Radomir; Rogers, Keith; Kaye, Andrew; Moffatt, Cameron R M

    2014-12-01

    In 2013, an outbreak of gastrointestinal illness occurred following a buffet lunch at a restaurant in Canberra. An investigation was conducted to identify the cause of illness and to implement appropriate public health measures to prevent further disease. We conducted a retrospective cohort study via telephone interviews, using a structured questionnaire developed from the restaurant buffet menu. A case was defined as someone who ate the buffet lunch at the restaurant on the implicated date and developed any symptoms of gastrointestinal illness (such as diarrhoea, abdominal pain and nausea) following the consumption of food. A total of 74% (225/303) of known attendees were interviewed, of whom 56% (125/225) had become ill. The median incubation period and duration of illness were 13 and 19 hours respectively. The most commonly reported symptoms were diarrhoea (94%, 118/125) and abdominal pain (82%, 103/125). A toxin-mediated gastrointestinal illness was suspected based on the incubation period, duration of illness and the symptoms. The environmental health investigation identified a lack of designated hand washing facilities in the kitchen, an absence of thermometers for measuring food temperatures and several maintenance and minor cleaning issues. A number of food samples were taken for microbiological analysis. Multivariable analysis showed that illness was significantly associated with consuming curried prawns (OR 18.4, 95% CI 8.6-39.3, P < 0.001) and Caesar salad (OR 3.6, 95% CI 1.8-7.5, P 0.001). Enterotoxin-producing Staphylococcus aureus and Bacillus cereus were identified in leftover samples of cooked buffet food, but this food was not epidemiologically implicated. The investigation suggested that a breakdown in cleanliness, temperature control and food handling practices may have resulted in contamination of the buffet food. In order to prevent such outbreaks in the future, caterers and restaurateurs need to ensure they have the appropriate facilities and

  19. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  20. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  1. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  2. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  3. Texas Experimental Tokamak

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  4. ARIES tokamak reactor study

    SciTech Connect

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein.

  5. Education for a Sustainable Society. Papers presented at the National Conference of the Australian College of Education (31st, Canberra, 1991).

    ERIC Educational Resources Information Center

    Anderson, Jonathan, Ed.

    The chapters in this book, developed from presentations made at the Annual Conference of the Australian College of Education in Canberra, explore the theme of a sustainable society and the role of education. In the first part, five writers explore the meaning of "sustainable society." Sir Ninian Stephen, Ian Lowe, and Janet Hunt argue that…

  6. Tearing Modes in Tokamaks

    SciTech Connect

    White, R. B.

    2008-05-14

    This lecture gives a basic introduction to magnetic pound elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi pound cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.

  7. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  8. Tokamak plasma modelling and atomic processes

    NASA Astrophysics Data System (ADS)

    Kawamura, T.

    1986-06-01

    Topics addressed include: particle control in a tokomak device; ionizing and recombining plasmas; effects of data accuracy on tokamak impurity transport modeling; plasma modeling of tokamaks; and ultraviolet and X-ray spectroscopy of tokamak plasmas.

  9. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  10. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  11. TPX tokamak construction management

    SciTech Connect

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-12-31

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly.

  12. Tokamak divertor maps

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Verma, Arun; Boozer, Allen

    1994-08-01

    A mapping method is developed to investigate the problem of determination and control of heat-deposition patterns on the plates of a tokamak divertor. The deposition pattern is largely determined by the magnetic field lines, which are mathematically equivalent to the trajectories of a single-degree-of-freedom time-dependent Hamiltonian system. Maps are natural tools to study the generic features of such systems. The general theory of maps is presented, and methods for incorporating various features of the magnetic field and particle motion in divertor tokamaks are given. Features of the magnetic field include the profile of the rotational transform, single- versus double-null divertor, reverse map, the effects of naturally occurring low M and N, and externally imposed high-M, high-N perturbations. Particle motion includes radial diffusion, pitch angle and energy scattering, and the electric sheath at the plate. The method is illustrated by calculating the stochastic broadening in a single- null divertor tokamak. Maps provide an efficient, economic and elegant method to study the problem of motion of plasma particles in the stochastic scrape-off layer.

  13. Impurity transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Amano, T.

    1983-12-01

    Theoretical and experimental efforts directed towards gaining an understanding of impurity behavior in Tokamaks are reviewed. In the Alcator Tokamak experiments, a laser blow-off technique was used to introduce trace amounts of impurities into ohmically heated plasmas. After a series of experiments in which they injected Si, Al, Fe, Mo impurities, an equation representing empirical impurity confinement time was derived. The scaling of this equation was compared with the results of impurity injection experiments on other Tokamaks, FT-I, PDX, TFR, ISX-B. Impurity confinement times in all these cases agree remarkably well, except for the TFR confinement times, which were about a factor of two larger than predicted. In the presence of intense neutral beam injection impurity ions behave differently. Specifically, in the ISX-B experiments, a marked accumulation of impurity ions toward the center of the plasma was observed in the case of counter neutral beam injection. This was interpreted semi-quantitatively by the neoclassical effect of the rotation of the plasma driven by the neutral beam.

  14. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  15. Magnetic confinement experiment -- 1: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1994-12-31

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.

  16. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  17. Sawtooth oscillation in tokamaks

    SciTech Connect

    Park, W.; Monticello, D.A.

    1989-03-01

    A three-dimensional nonlinear toroidal full MHD code, MH3D, has been used to study sawtooth oscillations in tokamaks. The profile evolution during the sawtooth crash phase compares well with experiment, but only if neoclassical resistivity is used in the rise phase. (Classical resistivity has been used in most of the previous theoretical sawtooth studies.) With neoclassical resistivity, the q value at the axis drops from 1 to about 0.8 before the crash phase, and then resets to 1 through a Kadomtsev-type complete reconnection process. This ..delta..q/sub 0/ approx. = 0.2 is much larger than ..delta..q/sub o/ approx. = 0.01, which is obtained if classical resistivity is used. The current profile is strongly peaked at the axis with a flat region around the singular surface, and is similar to the Textor profile. To understand this behavior, approximate formulas for the time behavior of current and q values are derived. A functional dependence of sawtooth period scaling is also derived. A semi-empirical scaling is found which fits the experimental data from various tokamaks. Some evidence is presented which indicates that the fast crash time is due to enhanced effective resistivity inside the singular current sheet, generated by, e.g., microinstability and electron parallel viscosity with stochastic fields at the x-point. 16 refs., 5 figs.

  18. Development of energy compensated Geiger Muller detector based on the T2416A Canberra Co. GM detector

    NASA Astrophysics Data System (ADS)

    Mohamed Noor, Omar

    Geiger Muller counters have been a fundamental device in radiation detection for decades due to their simplicity and low cost. Canberra Company has been designing and manufacturing Geiger Muller detectors in various designs for radiation monitoring and field characterization. However, these devices have a draw back when it comes to radiation activity measurements due to the over response of the detector in low energy range i.e., 20 -- 250 keV. One of the widely used Geiger Muller counter in the industrial sector is the T2416A. This device is used not only as a survey meter in high intensity gamma radiation fields, but also as a detection device employed in different survey meters for calibration purposes. Among such instruments one can cite the Inspector 1000 and the RadiaGem system. The T2416A GM detector has an over response in the low energy region of about a factor of 6 to 40 relative to 137Cs energy (i.e. 662 keV). In an attempt to flatten this response, in this study, the counter has been redesigned to be an energy compensated Geiger Muller counter. To achieve this goal, a special filtering material has been designed with a composition of different materials and in different thicknesses. The work has been carried out by adopting an approach of simulating the response of the detector with different materials as well as measurements at different photon energies up to 250 keV with and without filtering materials. A series of experimental and simulation data has been analyzed and compared against each other.

  19. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  20. Bibliography of fusion product physics in tokamaks

    SciTech Connect

    Hively, L. M.; Sigmar, D. J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  1. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  2. Status of tokamak experiments

    SciTech Connect

    Wolf, G.H.

    1996-03-01

    Plasma-wall interaction, heat removal and ash exhaust have emerged as the dominant problems still to be solved in order to achieve ignition and - even more difficult - to maintain a state of self-sustained thermo-nuclear burn. This is of particular delicacy, since those operational regimes which yield the best energy confinement correspond to an even better particle confinement and confinement of impurities, which then tend to accumulate in the plasma core and to result in disruption or degradation of the tokamak discharge. Therefore, plasma-wall interaction, heat removal and particle exhaust will determine not only the structure and configuration of the plasma edge region, of the wall system and of the materials facing the plasma, but also the final choice of useful confinement regimes. Moreover, the potential effect of powerful {alpha}-particle heating on plasma stability and confinement has to be kept below critical values. For the latter requirement, a final answer can only be obtained in an ITER-type device where ignition and burn will become accessible. 72 refs., 12 figs.

  3. Resistive instabilities in tokamaks

    SciTech Connect

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.

  4. Fuel retention in tokamaks

    NASA Astrophysics Data System (ADS)

    Loarer, T.

    2009-06-01

    Tritium retention constitutes an outstanding problem for ITER operation and future fusion reactors, particularly for the choice of the first wall materials. In present day tokamaks, fuel retention is evaluated by two complementary methods. The in situ gas balance allows evaluation of how much fuel is retained during a discharge and, typically, up to one day of experiments. Post-mortem analysis is used to determine where the fuel is retained, integrated over an experimental campaign. In all the carbon clad devices, using the two methods, the retention is demonstrated to be very closely related to the carbon net erosion. This results from plasma-wall interaction with ion and charge-exchange fluxes, ELMs and is proportional to the pulse duration. The fuel retention by implantation saturates at high wall temperatures and limits the D/C ratio in the deposited layers but, as far as a carbon source exists, the dominant retention process remains the co-deposition of carbon with deuterium. In full metallic device, in the absence of wall conditioning with boron, co-deposition is strongly reduced and fuel retention below 1% can be achieved. Extrapolation to ITER shows that removing the carbon from the plasma-facing components would increase the number of discharges to 2500 before reaching the maximum tritium limit of 700 g.

  5. Tokamak coordinate conventions: COCOS

    NASA Astrophysics Data System (ADS)

    Sauter, O.; Medvedev, S. Yu.

    2013-02-01

    Dealing with electromagnetic fields, in particular current and related magnetic fields, yields "natural" physical vector relations in 3-D. However, when it comes to choosing local coordinate systems, the "usual" right-handed systems are not necessarily the best choices, which means that there are several options being chosen. In the magnetic fusion community such a difficulty exists for the choices of the cylindrical and of the toroidal coordinate systems. In addition many codes depend on knowledge of an equilibrium. In particular, the Grad-Shafranov axisymmetric equilibrium solution for tokamak plasmas, ψ, does not depend on the sign of the plasma current Ip nor that of the magnetic field B0. This often results in ill-defined conventions. Moreover the sign, amplitude and offset of ψ are of less importance, since the free sources in the equation depend on the normalized radial coordinate. The signs of the free sources, dp/dψ and dF2/dψ (p being the pressure, ψ the poloidal magnetic flux and F=RBφ), must be consistent to generate the current density profile. For example, RF and CD calculations (Radio Frequency heating and Current Drive) require an exact sign convention in order to calculate a co- or counter-CD component. It is shown that there are over 16 different coordinate conventions. This paper proposes a unique identifier, the COCOS convention, to distinguish between the 16 most-commonly used options. Given the present worldwide efforts towards code integration, the proposed new index COCOS defining uniquely the COordinate COnventionS required as input by a given code or module is particularly useful. As codes use different conventions, it is useful to allow different sign conventions for equilibrium code input and output, equilibrium being at the core of any calculations in magnetic fusion. Additionally, given two different COCOS conventions, it becomes simple to transform between them. The relevant transformations are described in detail.

  6. Understanding disruptions in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid

    2011-10-01

    Disruptions in tokamaks are known since 1963 but even now some aspects of them remain a mystery. This talk describes progress made recently in understanding disruptions. A major step forward occurred in 2007 when the importance of galvanic contact of the plasma with the wall in plasma dynamics was pointed out. The toroidal asymmetry of plasma current, observed in JET vertical disruptions, was explained by the theory of the wall touching kink mode. The currents shared by the plasma with the wall and responsible for the asymmetry were identified as generated by the kink mode. Such currents are referred to as Hiro currents. They have shown exceptional consistency with the entire JET disruption data base (more than 5500 cases) and ruled out the long lasting interpretation based on ``halo currents,'' which contradict experiments even in the sign of the measured asymmetry. Accordingly, the sideways forces are understood and their scaling from JET to ITER was justified. Hiro currents provide also a plausible explanation of the current spike at the beginning of the disruptions. The important role of the plasma edge and its interaction with the wall was revealed. Based on this new understanding of disruptions, dedicated experiments on the current spike (J-TEXT, Wuhan, China) and runaway prevention by the repetitive triggering of kink modes (T-10, AUG, Tore Supra) were motivated and are in progress. Accordingly, the need for new, adaptive grid approaches to numerical simulations of disruptions became evident. In addition to the core MHD, simulations of realistic wall geometry, disruption specific plasma edge physics, plasma-wall interaction, and energetic particles need be developed. The first results of simulations of the fast MHD regime, Hiro current generation, and slower plasma decay due to a wall touching kink mode made with the new DSC code are presented. This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  7. Energy losses on tokamak startup

    SciTech Connect

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1983-01-01

    During the startup of a tokamak reactor using poloidal field (PF) coils to induce plasma currents, the conducting structures carry induced currents. The associated energy losses in the circuits must be provided by the startup coils and the PF system. This paper provides quantitative and comparitive values for the energies required as a function of the thickness or resistivity of the torus shells.

  8. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  9. Fusion product measurements in tokamaks

    SciTech Connect

    Strachan, J.D.

    1985-05-01

    Diagnostic methods and the applications of fusion product measurements in tokamaks are reviewed with emphasis on results from PLT, PDX, and TFTR. Measurements have been made using the 2.5-MeV neutron from the d(d, n)/sup 3/ He reaction, the 3-MeV proton from the d(d, p)t reaction, both the 3.7-MeV alpha and the 14.7-MeV proton from the d(/sup 3/He, p)..cap alpha.. reaction, and the 14-MeV neutron from the d(t, n)..cap alpha.. reaction. The common use of these measurements is the determination of the ion temperature from the magnitude of the d-d neutron emission. For tokamak plasmas, these results are usually in good agreement with the charge exchange ion temperature. Recently, the charged fusion products have been used for high-resolution spectroscopic purposes, and emission profile measurements. Pitch angle resolution of the escaping 3-MeV proton emission has been used to determine the poloidal magnetic field inside the tokamak. Major issues in this field include the expected tritium operation on TFTR where the neutron measurements will determine when tritium will be introduced into the TFTR vessel and provide a measurement of the fusion power multiplication value (Q). The TFTR Q approx. 1 experiments will also provide a chance to measure the confinement of 3.5-MeV alphas in a tokamak.

  10. Bootstrapped tokamak with oscillating field current drive

    SciTech Connect

    Weening, R.H. )

    1993-07-01

    A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.

  11. Transport of Dust Particles in Tokamak Devices

    SciTech Connect

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  12. Microwave Tokamak Experiment: Overview and status

    SciTech Connect

    Not Available

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs.

  13. Comprehensive numerical modelling of tokamaks

    SciTech Connect

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-03

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell.

  14. Neoclassical magnetic microislands in tokamaks

    SciTech Connect

    Kovalishen, E.A.; Mikhailovskii, A.B.; Botov, P.V.; Shirokov, M.S.; Konovalov, S.V.; Tsypin, V.S.; Galvao, R.M.O.

    2005-09-15

    Possibility of existence of neoclassical magnetic microislands (island width smaller than the ion Larmor radius) in a tokamak in the banana regime is shown. The rotation frequency of such islands is found. It is shown that for the case of positive electron temperature gradient, the bootstrap current destabilizes the microislands while the polarization current leads to their stabilization. Maximally possible neoclassical microisland width is estimated.

  15. Gyrosheath near the tokamak edge

    SciTech Connect

    Hazeltine, R.D.; Xiao, H. . Inst. for Fusion Studies); Valanju, P.M. . Fusion Research Center)

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results.

  16. Transport Equations In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.

    2009-11-01

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for: neoclassical effects on the parallel Ohm's law (trapped particle effects on resistivity, bootstrap current); fluctuation-induced transport; heating, current-drive and flow sources and sinks; small B field non-axisymmetries; magnetic field transients etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed recently using a kinetic-based framework. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfv'en waves (Grad-Shafranov equilibrium, ion radial force balance); sound waves (pressure constant along field lines, incompressible flows within a flux surface); and ion collisions (damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on the plasma fluid: 7 ambipolar collision-based ones (classical, neoclassical, etc.) and 8 non-ambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients etc.). The plasma toroidal rotation equation [1] results from setting to zero the net radial current induced by the non-ambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the non-ambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The resultant transport equations will be presented and contrasted with the usual ones. [4pt] [1] J.D. Callen, A.J. Cole, C.C. Hegna, ``Toroidal Rotation In

  17. Magnetic confinement experiment. I: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.

  18. Tokamak plasma position dynamics and feedback control

    SciTech Connect

    Burenko, L.; Bailey, J.M.

    1983-01-01

    The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form.

  19. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  20. Natural current profiles in a tokamak

    SciTech Connect

    Taylor, J.B.

    1990-08-01

    In this paper I show how one may arrive at a universal, or natural, family of Tokamak profiles using only accepted physical principles. These particular profiles are similar to ones proposed previously on the basis of ad hoc variational principles and the point of the present paper is to provide a justification for them. However in addition, the present work provides an interesting view of Tokamak fluctuations and leads to a new result -- a relationship between the inward particle pinch velocity, the diffusion coefficient and the current profile. The basic Tokamak model is described in this paper. Then an analogy is developed between Tokamak profiles and the equilibrium of a realisable dynamical system. Then the equations governing the natural Tokamak profiles are derived by applying standard statistical mechanics to this analog. The profiles themselves are calculated and some other results of the theory are described.

  1. Transport equations in tokamak plasmas

    SciTech Connect

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2010-05-15

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The

  2. Transport equations in tokamak plasmasa)

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2010-05-01

    Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfvén waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The "mean field" effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The

  3. Tokamak plasma interaction with limiters

    NASA Astrophysics Data System (ADS)

    Pitcher, Charles Spencer

    1988-08-01

    The importance of plasma purity is discussed in terms of the general requirements of controlled thermonuclear fusion. The tokamak approach to fusion and its inherent problem of plasma contamination are introduced. A main source of impurities is due to the bombardment of the limiter by energetic particles and thus the three main aspects of the plasma-limiter interaction are reviewed, boundary plasma conditions, fueling/recycling and impurity production. The experiments, carried out on the DITE tokomak at Culham Laboratory, UK, investigated these three topics and the results are compared with predicted behavior; new physical phenomena are presented in all three areas.

  4. Breakdown in the pretext tokamak

    SciTech Connect

    Benesch, J.F.

    1981-06-01

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.

  5. Enhancement of confinement in tokamaks

    SciTech Connect

    Furth, H.P.

    1986-05-01

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime.

  6. Superconducting magnet system for the TPX Tokamak

    SciTech Connect

    Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.

    1993-09-15

    The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.

  7. Control of Dust Inventory in Tokamaks

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Pitcher, C. S.; Taylor, N.; Furlan, J.

    2008-09-07

    Particles with sizes ranging from 100 nm to 100 {mu}m are produced in tokamaks by the interaction of the plasma with the first wall materials and divertor. Dust has not yet been of a major concern in existing tokamaks mainly because their quantities are small and these devices are not nuclear facilities. However, in ITER and in future reactors, they could represent operational and potential safety issues. The aim of this paper is thus to describe the dust creation processes in the tokamak environment. The diagnostics and removal techniques that are needed to be implemented to measure and minimise the dust inventory are also presented. The integration of these techniques into a tokamak environment is also discussed.

  8. Power and particle exhaust in tokamaks

    SciTech Connect

    Stambaugh, R.D.

    1998-01-01

    The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER`s nominal design positions; important directions for further research are identified.

  9. Driven-current tokamak (DCT) scoping study

    SciTech Connect

    Reid, R.L.

    1983-01-01

    The present Department of Energy (DOE) plan calls for the construction of an Engineering Test Reactor (ETR) that is to be the last major experimental fusion device prior to the commercialization of fusion power. The plasma driver of the ETR is to be either a long-pulse tokamak or a tandem mirror machine. The possibility of using the Tokamak Fusion Test Reactor (TFTR) facility to consolidate the physics and technology database for the tokamak version of the ETR has been considered. This paper addresses two of the options being considered: (1) a superconducting toroidal field (TF) coil-hydrogen plasma alternative, and (2) a superconducting or hybrid TF coil-high Q alternative. Both options assume essentially steady-state operation through the application of rf current drive. The options are evaluated on the basis of performance and cost determined by application of the Fusion Engineering Design Center (FEDC) Tokamak System Code.

  10. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  11. D-D tokamak reactor studies

    SciTech Connect

    Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

    1980-11-01

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

  12. Computational methods in tokamak transport

    SciTech Connect

    Houlberg, W.A.; Attenberger, S.E.; Lao, L.L.

    1982-06-01

    A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements.

  13. Dust measurements in tokamaks (invited)

    SciTech Connect

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.; West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.; Ratynskaia, S.

    2008-10-15

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  14. Do spherical tokamaks have a thermonuclear future?

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.

    2012-12-01

    This work has been initiated by the publication of a review by B.V.Kuteev et al., "Intense Fusion Neutron Sources" [Plasma Physics Reports 36, 281 (2010)]. It is stated that the key thesis of the above review that a spherical tokamak can be recommended for research neutron sources and for demonstration hybrid systems as an alternative to expensive "classical" tokamaks of the JET and ITER type is inconsistent. The analysis of the experimental material obtained during the last 10 years in the course of studies on the existing spherical tokamaks shows that the TIN-ST fusion neutron source spherical tokamak proposed by the authors of the review and intended, according to the authors' opinion, to replace "monsters" in view of its table-top dimensions (2 m3) and laboratory-level energetics cannot be transformed into any noticeable stationary megawatt-power neutron source competing with the existing classical tokamaks (in particular, with JET with its quasi-steady DT fusion power at a level of 5 MW). Namely, the maximum plasma current in the proposed tokamak will be not 3 MA, as the authors suppose erroneously, but, according to the present-day practice of spherical tokamaks, within 0.6-0.7 MA, which will lead to a reduction on the neutron flux by two to three orders of magnitude from the expected 5 MW. The possibility of the maintenance of the stationary process itself even in such a "weakened" spherical tokamak is very doubtful. The experience of the largest existing devices of this type (such as NSTX and MAST) has shown that they are incapable of operating even in a quasi-steady operating mode, because the discharge in them is spontaneously interrupted about 1 s after the beginning of the current pulse, although its expected duration is of up to 5 s. The nature of this phenomenon is the subject of further study of the physics of spherical tokamaks. This work deals with a critical analysis of the available experimental data concerning such tokamaks and a discussion of

  15. Tokamak Diagnostics Using Fusion Products.

    NASA Astrophysics Data System (ADS)

    Heidbrink, William Walter

    Measurements of neutrons and protons produced by the d(d,n)('3)He, d(t,n)(alpha), d(d,p)t, and d(('3)He,p)(alpha) fusion reactions are used to diagnose plasmas in the PLT and PDX tokamaks. An expression for the efficiency of proton detection is derived and confirmed experimentally. The time evolution of the ('3)He density indicates that a scoop limiter may pump ('3)He from the plasma faster than conventional limiters. The confinement of 1.0 MeV tritons and of 0.8 MeV ('3)He ions is studied by measuring the fraction of these fusion-produced ions that burn up in subsequent fusion reactions. In discharges with sawtooth activity and with B(,(phi)) > 2 T, the triton and ('3)He 'burnup' is consistent (within a factor of three) with predictions based on classical theories of ion confinement and slowing down. In discharges with large m = 2 or fishbone instabilities, the ('3)He burnup is less than classically predicted and, in PLT discharges at B(,(phi)) = 1.8 T, the triton burnup is over an order of magnitude smaller than predicted. Expressions for the energy spectrum of ions produced in beam-target fusion reactions are derived. Collimated measurements of the spectrum of 15 MeV protons produced by reactions between energetic ('3)He ions and relatively cold deuterons during fast wave minority heating indicate that the velocity distribution of fast ('3)He ions is peaked perpendicular to the tokamak magnetic field. The ion temperature profile and density of fast deuterons are measured with an array of collimated 3 MeV proton detectors. The fast ions produced by neutral beam injection and by launching lower hybrid waves are concentrated near the magnetic axis. Poloidal field measurements using 3 MeV protons also appear possible. In discharges in which the line radiation from central impurities does not decay, the plasma current profile is broader than in more typical discharges.

  16. Plasma Physics Regimes in Tokamaks with Li Walls

    SciTech Connect

    L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev

    2003-08-21

    Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.

  17. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  18. The Canberra Christmas overdoses mystery.

    PubMed

    Bammer, G; Sengoz, A

    1995-01-01

    Our investigation of a cluster of three fatal overdoses casts doubt on the conventional wisdom that overdoses result from unregulated changes in the purity of street heroin. Use of alcohol or other sedatives can make an otherwise safe dose of heroin (or other opioids) lethal. In addition users can knowingly increase their dose, usually as an indulgence. Some media reporting of this cluster of deaths was accurate, but there was also sensationalization, perpetuating stereotypes about the drug market that may be untrue. Information flow within the using community was relatively accurate, but slow, possibly because it was the holiday season. Larger studies to substantiate our findings are needed. In addition, introduction of a user-organization-based epidemiological monitoring system for overdoses would be a valuable public health measure.

  19. Microtearing modes in tokamak discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Weiland, J.; Kritz, A. H.; Luo, L.; Pankin, A. Y.

    2016-06-01

    Microtearing modes (MTMs) have been identified as a source of significant electron thermal transport in tokamak discharges. In order to describe the evolution of these discharges, it is necessary to improve the prediction of electron thermal transport. This can be accomplished by utilizing a model for transport driven by MTMs in whole device predictive modeling codes. The objective of this paper is to develop the dispersion relation that governs the MTM driven transport. A unified fluid/kinetic approach is used in the development of a nonlinear dispersion relation for MTMs. The derivation includes the effects of electrostatic and magnetic fluctuations, arbitrary electron-ion collisionality, electron temperature and density gradients, magnetic curvature, and the effects associated with the parallel propagation vector. An iterative nonlinear approach is used to calculate the distribution function employed in obtaining the nonlinear parallel current and the nonlinear dispersion relation. The third order nonlinear effects in magnetic fluctuations are included, and the influence of third order effects on a multi-wave system is considered. An envelope equation for the nonlinear microtearing modes in the collision dominant limit is introduced in order to obtain the saturation level. In the limit that the mode amplitude does not vary along the field line, slab geometry, and strong collisionality, the fluid dispersion relation for nonlinear microtearing modes is found to agree with the kinetic dispersion relation.

  20. Upgrades for the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Duval, Basil; TCV Team

    2013-10-01

    Major upgrades are being implemented on the TCV tokamak to extend its operational domain towards a burning plasma regime. The goals of obtaining high normalized plasma beta and comparable ion and electron temperatures will be achieved with the addition of a 1 MW neutral heating system and 2 MW additional third harmonic EC power. Spatial constraints together with beam occlusion required severe design optimization and the additional of a new large tangential port on the TCV vessel. For EC, the existing vertical launch mirror will be sufficient but new 1MW EC units will be employed with the legacy X3 systems modified for lateral launch. The modifications will not affect TCV's strong RT shaping and EC actuator ranges or the open divertor vacuum chamber that permits access to Snowflake divertor or doublet configurations although some wall protection enhancement is envisaged. TCV can then contribute to disentangling effects of electron-ion coupling, rotation, current and density profile control all as a function of shape in L and H-modes with ITER (or higher) values of plasma beta. Together with fast-ion physics, TCV will also be able to explore heat, particle and momentum transport and turbulence effects in electron-heat dominated discharges for Te/Ti in the (0.02 to 3) range.

  1. Tokamak x ray diagnostic instrumentation

    SciTech Connect

    Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

    1987-01-01

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

  2. Toroidal Flow in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Cole, A. J.; Hegna, C. C.

    2007-11-01

    Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial diffusion due to axisymmetric neoclassical, paleoclassical and anomalous transport are usually considered. In addition, the toroidal flow can be affected by field errors. Small, non-axisymmetric field errors arise from coil irregularities, active control coils and collective plasma magnetic distortions (e.g., NTMs, RWMs). Resonant field errors cause localized electromagnetic torques near rational surfaces in the plasma, which can lock the plasma to the wall leading to magnetic islands and reduced confinement or disruptions. Their penetration into the plasma is limited by flow-shielding effects; but they can be amplified by the plasma response at high beta. Non-resonant field errors cause magnetic pumping and radial banana drifts, and lead to toroidal flow damping over the entire plasma. Many of these processes can also produce momentum pinch and intrinsic flow effects. This poster will seek to present a coherent picture of all these effects and suggest ways they could be tested and distinguished experimentally.

  3. Helicity content and tokamak applications of helicity

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.

  4. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  5. Ripple induced trapped particle loss in tokamaks

    SciTech Connect

    White, R.B.

    1996-05-01

    The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetric orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor and International Thermonuclear Experimental Reactor equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks.

  6. Physics of Tokamak Plasma Start-up

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  7. Tokamak power systems studies, FY 1985

    SciTech Connect

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  8. Electron cyclotron emission diagnostics on KSTAR tokamak.

    PubMed

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  9. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  10. Origin of Tokamak Density Limit Scalings

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Delgado-Aparicio, L.

    2012-04-01

    The onset criterion for radiation driven islands [P. H. Rebut and M. Hugon, Plasma Physics and Controlled Nuclear Fusion Research 1984: Proc. 10th Int. Conf. London, 1984, (IAEA, Vienna, 1985), Vol. 2] in combination with a simple cylindrical model of tokamak current channel behavior is consistent with the empirical scaling of the tokamak density limit [M. Greenwald, Nucl. Fusion 28, 2199 (1988)NUFUAU0029-551510.1088/0029-5515/28/12/009]. Many other unexplained phenomena at the density limit are consistent with this novel physics mechanism.

  11. MHD stable regime of the tokamak

    SciTech Connect

    Cheng, C.Z.; Furth, H.P.; Boozer, A.H.

    1986-10-01

    A broad family of tokamak current profiles is found to be stable against ideal and resistive MHD kink modes for 1 less than or equal to q(0), with q(a) as low 2. For 0.5 less than or equal to q(0) < and q(a) > 1, current profiles can be found that are unstable only to the m = 1, n = 1 mode. A specific ''optimal'' tokamak profile can be selected from the range of stable solutions, by imposing a common upper limit on dj/dr - corresponding in ohmic equilibrium to a limitation of dT/sub e//dr by anomalous transport.

  12. Optimization of turn position of tokamak inductor

    NASA Astrophysics Data System (ADS)

    Aristov, Yu. A.; Vorobev, G. M.; Kuznetsov, A. V.

    Statement and methods of solution of the problem of optimizing turn position of tokamak induction are considered. Optimization is aimed at determination of inductor turn position, providing the minimal scattering of magnetic field in the region of chamber at any assigned value of volt-seconds. Algorithms of problem solution are described, and results of calculations for STX tokamak are presented. It is shown that development methods can be used for determining optimal position of turns of any coils of poloidal magnetic field, providing the assigned configuration and level of magnetic field.

  13. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  14. Tokamak startup: problems and scenarios related to the transient phases of ignited tokamak operations

    SciTech Connect

    Sheffield, J.

    1985-01-01

    During recent years improvements have been made to tokamak startup procedures, which are important to the optimization of ignited tokamaks. The use of rf-assisted startup and noninductive current drive has led to substantial reduction and even complete elimination of the volt-seconds used during startup, relaxing constraints on poloidal coil, vacuum vessel, and structure design. This paper reviews these and other improvements and discusses the various bulk heating techniques that may be used to ignite a D-T plasma.

  15. A need for non-tokamak approaches to magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested.

  16. Elementary Processes Underlying Alpha Channeling in Tokamaks

    SciTech Connect

    NM.J. Fisch

    2012-06-15

    Alpha channeling in tokamaks is speculative, but also extraordinarily attractive. Waves that can accomplish this effect have been identified. Key aspects of the theory now enjoy experimental confirmation. This paper will review the elementary processes of wave-particle interactions in plasma that underlie the alpha channeling effect

  17. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1981-04-01

    Ripple transport in tokamaks is discussed for the banana drift collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and the resulting transport coefficients can consequently differ by several orders of magnitude.

  18. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1982-01-01

    Ripple transport in tokamaks is discussed for the ''banana drift'' collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and consequently the resulting transport coefficients can differ by several orders of magnitude.

  19. (High beta tokamak research and plasma theory)

    SciTech Connect

    Not Available

    1990-01-01

    Our activities on High Beta Tokamak Research during the past 12 months of the present budget period can be divided into four areas: completion of kink mode studies in HBT; completion of carbon impurity transport studies in HBT; design of HBT-EP; and construction of HBT-EP. Each of these is described briefly in the sections of this progress report.

  20. UCLA Tokamak Program Close Out Report.

    SciTech Connect

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  1. Microinstabilities in weak density gradient tokamak systems

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  2. Toroidal Alfven wave stability in ignited tokamaks

    SciTech Connect

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  3. Fusion product measurements in tokamaks (invited; abstract)

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.

    1985-05-01

    Diagnostic methods and the applications of fusion product measurements in tokamaks are reviewed with emphasis on results from PLT, PDX, and TFTR. Measurements have been made using the 2.5-MeV neutron from the d(d, n)3He reaction, the 3-MeV proton from the d(d, p)t reaction, both the 3.7-MeV alpha and the 14.7-MeV proton from the d(3He, p)α reaction, and the 14-MeV neutron from the d(t, n)α reaction. The common use of these measurements is the determination of the ion temperature from the magnitude of the d-d neutron emission. For tokamak plasmas, these results are usually in good agreement with the charge exchange ion temperature. Recently, the charged fusion products have been used for high-resolution spectroscopic purposes, and emission profile measurements. Pitch angle resolution of the escaping 3-MeV proton emission has been used to determine the poloidal magnetic field inside the tokamak. Major issues in this field include the expected tritium operation on TFTR where the neutron measurements will determine when tritium will be introduced into the TFTR vessel and provide a measurement of the fusion power multiplication value (Q). The TFTR Q˜1 experiments will also provide a chance to measure the confinement of 3.5-MeV alphas in a tokamak.

  4. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  5. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect

    Parra Diaz, Felix

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  6. Diagnostics for neutral-beam-heated tokamaks

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Diagnostic techniques for neutral-beam-heated tokamak plasmas fall into three categories: (1) magnetic diagnostics for measurements of gross stored energy, (2) profile diagnostics for measurements of stored thermal and beam energy, impurity content and plasma rotation, and (3) fast time resolution diagnostics to study MHD fluctuations and micro-turbulence.

  7. Plasma-gun fueling for tokamak reactors

    SciTech Connect

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment.

  8. Stabilization of tokamak plasma by lithium streams

    SciTech Connect

    L.E. Zakharov

    2000-08-07

    The stabilization theory of free-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated. While the conventional, wall-locked, resistive wall mode can be well suppressed by the flow, a new, stream-locked mode determines the limits of the flow stabilization.

  9. Designing tokamaks to withstand electromagnetic disruption loads

    NASA Astrophysics Data System (ADS)

    Crowell, Jeffrey Arnold

    1999-11-01

    Tokamaks, the toroidal plasma confinement devices used to study fusion energy, operate by driving a multi-MA current in the plasma while creating a strong confining magnetic field. In experimental tokamaks under some conditions, the plasma can become unstable, escape its magnetic confines and rapidly cool off. On a time scale of milliseconds, the plasma current decays away in the resulting cold and highly resistive plasma. In these events, called disruptions, the rapid change in plasma current induces large currents in the surrounding conducting structures. The induced currents, flowing in the presence of a strong magnetic field, can apply substantial electromagnetic forces. Some experimental devices, such as the JET facility, have experienced extensive damage from these events. In future power reactors, even greater loads must be absorbed by components also subject to neutron embrittlement. This study models the electromagnetic and structural behavior of conceptual designs of the first generation of power-producing tokamaks to identify the components that are at risk and illuminate design options which mitigate these loads. The problem is a coupled one: the geometry and resistivity of the structure affects the induced currents while the induced currents and resulting loads place demands on the structure. Several new analytical and computational tools for the evaluation of these systems are discussed including a dual-solution technique for taking advantage of the complex electromagnetic symmetries in a typical tokamak design. The finite element method with a differential formulation and an integral method using a Green's function have been applied to 2D and 3D electromagnetic models of tokamaks. The differential formulation was found to be superior in these highly symmetric systems. The most significant design issues arise with the components most proximate to the plasma. Despite toroidal segmentation, damaging electromagnetic loads threaten the first wall and

  10. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.

    2009-05-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  11. Banana orbits in elliptic tokamaks with hole currents

    NASA Astrophysics Data System (ADS)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  12. A low aspect ratio tokamak transmutation system

    NASA Astrophysics Data System (ADS)

    Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.

    2000-03-01

    A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.

  13. The physics of tokamak start-up

    SciTech Connect

    Mueller, D.

    2013-05-15

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

  14. Models for impurity effects in tokamaks

    SciTech Connect

    Hogan, J.T.

    1980-03-01

    Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high ..beta.. and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high ..beta.. in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability.

  15. Tritium Retention and Removal in Tokamaks

    SciTech Connect

    Skinner, Charles H.

    2009-02-19

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy. Tritium is an important source term in safety assessments, it is expensive and in short supply. Tritium can be continuously retained in a tokamak by codeposition with eroded carbon or beryllium and JET and TFTR with carbon plasma facing components showed a tritium retention level that would be unacceptable in ITER or future fusion reactors. Asdex-U and Alcator C-mod have shown reduced hydrogenic retention with tungsten clad and molybdenum plasma facing components. Once the tritium inventory approaches the administrative limit, tritium must be removed to permit continued D-T plasma operations. Several candidate techniques are being considered and need to be proven at a relevant speed and efficiency in contemporary tokamaks. Projections for ITER are discussed.

  16. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  17. Properties of dc helicity injected tokamak plasmas

    SciTech Connect

    Darrow, D.S.; Ono, M.; Forest, C.B.; Greene, G.J.; Hwang, Y.S.; Park, H.K. ); Taylor, R.J.; Pribyl, P.A.; Evans, J.D.; Lai, K.F.; Liberati, J.R. )

    1990-06-01

    Several dc helicity injection experiments using an electron beam technique have been conducted on the Current Drive Experiment (CDX) (Phys. Rev. Lett. {bold 59}, 2165 (1987)) and the Continuous Current Tokamak (CCT) (Phys. Rev. Lett. {bold 63}, 2365 (1989)). The data strongly suggest that tokamak plasmas are being formed and maintained by this method. The largest currents driven to date are 1 kA in CDX ({ital q}{sub {ital a}} =5) and 6 kA in CCT ({ital q}{sub {ital a}} =3.5). An initial comparison of discharge properties with helicity theory indicates rough agreement. Current drive energy efficiencies are 9% and 23% of Ohmic efficiency in two cases analyzed. Strong radial electric fields are observed in these plasmas that cause poloidal rotation and, possibly, improved confinement.

  18. Energetics of runaway electrons during tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Riemann, J.; Smith, H. M.; Helander, P.

    2012-01-01

    In a tokamak disruption, a substantial fraction of the plasma current can be converted into runaway electrons. Although these are usually highly relativistic, their total energy is initially much smaller than that of the pre-disruption plasma. However, following a suggestion by Putvinski et al. [Plasma Phys. Controlled Fusion 39, B157 (1997)], it is shown that as the post-disruption plasma drifts toward the first wall, a non-negligible part of the energy contained in the poloidal magnetic field can be converted into kinetic energy of the runaway electrons. This process is simulated numerically, and it is found that in an ITER-like tokamak runaway electrons can gain kinetic energies up to about 70 MJ by this mechanism.

  19. The physics of tokamak start-upa)

    NASA Astrophysics Data System (ADS)

    Mueller, D.

    2013-05-01

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

  20. The Physics of Tokamak Start-up

    SciTech Connect

    D. Mueller

    2012-11-13

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

  1. Spherical Stellarator-Tokamak Hybrid Configurations

    NASA Astrophysics Data System (ADS)

    Hanson, James D.; Yuan, Ying; Gandy, Rex F.; Knowlton, Stephen F.; Doloc, Cristian; Carnevali, Antonino; Hartwell, Gregory

    1996-11-01

    We consider low-aspect ratio stellarator-tokamak hybrid configurations similar to the inclined coils configurations of Moroz(P. E. Moroz, Phys. Plasmas 2), 4269 (1995). and the Small-Aspect Ratio Toroidal Hybrid(D. B. Batchelor et al)., poster at this meeting. (SMARTH) configurations of Batchelor et al. The advantages of these configurations include a current-free q profile which increases with minor radius, (like a tokamak's), and a magnetic divertor structure which does not rotate about the magnetic axis. Our investigations center on configurations suitable to be built as a small, inexpensive exploratory device. Initial work has focused on planar coils (for ease of construction) and small numbers of toroidal coils (for ease of access). Results from field line tracing, equilibrium, and particle orbit studies will be shown.

  2. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  3. First Engineering Commissioning of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Yuanxi; Li, Jiangang; Weng, Peide; EAST Team

    2006-05-01

    Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak. The first commissioning started on Feb. 1st of 2006 and finished on March 30th of 2006 at the Institute of Plasma Physics, Chinese Academy of Sciences. It consists of leakage testing at both room temperature and low temperature, pumping down, cooling down all coils, current leads, bus bar and the thermal shielding, exciting all the coils, measuring magnetic configuration and warming up the magnets. The electromagnetic, thermal hydraulic and mechanical performance of EAST Toroidal Field (TF) and Poloidal Field (PF) magnets have also been tested. All sub-systems, including pumping system, cryogenic system, PF& TF power supply systems, magnet instrumentation system, quench detection and protection system, water cooling system, data acquisition system, main control system, plasma control system (PCS), interlock and safety system have been successfully tested.

  4. Microtearing modes in spherical and conventional tokamaks

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Pusztai, I.; Guttenfelder, W.; Fülöp, T.; Mollén, A.

    2013-06-01

    The onset and characteristics of microtearing modes (MTM) in the core of spherical (NSTX) and conventional tokamaks (ASDEX Upgrade and JET) are studied through local linear gyrokinetic simulations with GYRO (Candy and Belli 2011 General Atomics Report GA-A26818). For experimentally relevant core plasma parameters in the NSTX and ASDEX Upgrade tokamaks, in agreement with previous works, we find MTMs as the dominant linear instability. Also, for JET-like core parameters considered in our study an MTM is found as the most unstable mode. In all of these plasmas, finite collisionality is needed for MTMs to become unstable and the electron temperature gradient is found to be the fundamental drive. However, a significant difference is observed in the dependence of the linear growth rate of MTMs on electron temperature gradient. While it varies weakly and non-monotonically in JET and ASDEX Upgrade plasmas, in NSTX it increases with the electron temperature gradient.

  5. High beta plasmas in the PBX tokamak

    SciTech Connect

    Bol, K.; Buchenauer, D.; Chance, M.; Couture, P.; Fishman, H.; Fonck, R.; Gammel, G.; Grek, B.; Ida, K.; Itami, K.

    1986-04-01

    Bean-shaped configurations favorable for high ..beta.. discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present ..beta.. limit.

  6. Fast ion orbits in spherical tokamaks

    SciTech Connect

    Solano, E.R.

    1995-07-20

    In a spherical tokamak, the 1/R variation of the toroidal field is extreme, and for a given value of the safety factor a relatively low average toroidal field can be used, together with large plasma current and large plasma minor radius and elongation. The poloidal and toroidal fields are then of similar size. In consequence, the orbits of fast ions depart considerably from the guiding center orbits because of gyromotion in the small magnetic fields in the low field side.

  7. Self-Organized Stationary States of Tokamaks.

    PubMed

    Jardin, S C; Ferraro, N; Krebs, I

    2015-11-20

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  8. Neoclassical tearing modes in a tokamak

    SciTech Connect

    Hahm, T.S.

    1988-12-01

    Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation, so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive magnetohydrodynamic values. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed.

  9. Neoclassical tearing modes in a tokamak

    SciTech Connect

    Hahm, T.S.

    1988-08-01

    Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive MHD value. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed. 10 refs.

  10. Self-Organized Stationary States of Tokamaks

    SciTech Connect

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-01

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  11. Neoclassical transport in high [beta] tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2

  12. Confinement scaling and ignition in tokamaks

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  13. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  14. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  15. ECH on the MTX (Microwave Tokamak Experiment)

    SciTech Connect

    Stallard, B.W.; Byers, J.A.; Hooper, E.B.; Makowski, M.A.; Meassick, S.; Rice, B.W.; Rognlien, T.D.; Verboncoeur, J.

    1989-04-01

    The Microwave Tokamak Experiment (MTX) at LLNL is investigating the heating of high density Tokamak plasmas using an intense pulse FEL. Our first experiments, now beginning, will study the absorption and plasma heating of single FEL pulses (20 ns pulse length and peak power up to 2 GW) at a frequency of 140 GHz. A later phase of experiments also at 140 GHz will study FEL heating at 5 kHz rate for a pulse train up to 50 pulses (35 ns pulse length and peak power up to 4 GW). Future operations are planned at 250 GHz with an average power of 2 MW for a pulse train of 0.5 s. The microwave output of the FEL is transported quasi-optically to the tokamak through a window-less, evacuated pipe of 20 in. diameter, using a six mirror system. Computational modelling of the non-linear absorption for the MTX geometry predicts single-pass absorption of 40% at a density and temperature of 1.8 /times/ 10/sup 20/m/sup /minus/3/ and 1 keV, respectively. To measure plasma microwave absorption and backscatter, diagnostics are available to measure forward and reflected power (parallel wire grid beam-splitter and mirror directional couplers) and power transmitted through the plasma (segmented calorimeter and waveguide detector). Other fast diagnostics include ECE, Thompson scattering, soft x-rays, and fast magnetic probes. 8 refs., 2 figs.

  16. Management and protection system for superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Juszczyk, B.; Wojenski, A.; Zienkiewicz, P.; Kasprowicz, G.; Pozniak, K.; Romaniuk, R.

    2015-09-01

    This paper describes system for a diagnostics of a high-voltage power supply section of tokamaks. System is designed to assure reliability and safety of power supply subsystems. It is divided into two main components: remote and local. Remote part is located near tokamak, whereas local part can be localised away from the tokamak area. The remote side consists of custom, standalone devices. On the other hand, the local device is based on the uTCA.4 architecture. Components are connected with an optic fibre over a link-layer protocol which provides high throughput, low latency and transmission redundancy. All main operations ie. data processing, transmission etc. are performed on the FPGA devices. At the local side there is one device treated as a master device. It implements sort of a routing table which connects consecutive system inputs and outputs. It also provides possibility for some user defined data processing. This document contains general system overview, short description of hardware used in the project and gateware implementation.

  17. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  18. Forced Magnetic Reconnection In A Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.

    2015-11-01

    The theory of forced magnetic field reconnection induced by an externally imposed resonant magnetic perturbation usually uses a sheared slab or cylindrical magnetic field model and often focuses on the potential time-asymptotic induced magnetic island state. However, tokamak plasmas have significant magnetic geometry and dynamical plasma toroidal rotation screening effects. Also, finite ion Larmor radius (FLR) and banana width (FBW) effects can damp and thus limit the width of a nascent magnetic island. A theory that is more applicable for tokamak plasmas is being developed. This new model of the dynamics of forced magnetic reconnection considers a single helicity magnetic perturbation in the tokamak magnetic field geometry, uses a kinetically-derived collisional parallel electron flow response, and employs a comprehensive dynamical equation for the plasma toroidal rotation frequency. It is being used to explore the dynamics of bifurcation into a magnetically reconnected state in the thin singular layer around the rational surface, evolution into a generalized Rutherford regime where the island width exceeds the singular layer width, and assess the island width limiting effects of FLR and FBW polarization currents. Support by DoE grants DE-FG02-86ER53218, DE-FG02-92ER54139.

  19. Remote feedback stabilization of tokamak instabilities

    SciTech Connect

    Sen, A.K. )

    1994-05-01

    A novel remote suppressor consisting of an injected ion beam has been used for the stabilization of plasma instabilities. A collisionless curvature-driven trapped-particle instability, an [bold E][times][bold B] flute mode and an ion temperature gradient (ITG) instability have been successfully suppressed down to noise levels using this scheme. Furthermore, the first experimental demonstration of a multimode feedback stabilization with a single sensor--suppressor pair has been achieved. Two modes (an [bold E][times][bold B] flute and an ITG mode) were simultaneously stabilized with a simple state-feedback-type method where more state'' information was generated from a single-sensor Langmuir probe by appropriate signal processing. The above experiments may be considered as paradigms for controlling several important tokamak instabilities. First, feedback suppression of edge fluctuations in a tokamak with a suitable form of insulated segmented poloidal limiter sections used as Langmuir-probe-like suppressors is proposed. Other feedback control schemes are proposed for the suppression of electrostatic core fluctuations via appropriately phased ion density input from a modulated neutral beam. Most importantly, a scheme to control major disruptions in tokamaks via feedback suppression of kink (and possibly) tearing modes is discussed. This may be accomplished by using a modulated neutral beam suppressor in a feedback loop, which will supply a momentum input of appropriate phase and amplitude. Simple theoretical models predict modest levels of beam energy, current, and power.

  20. The Spherical Tokamak MEDUSA for Mexico

    NASA Astrophysics Data System (ADS)

    Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.

    2011-10-01

    The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14m, a < 0.10m, BT < 0.5T, Ip < 40kA, 3ms pulse) is currently being recomissioned at the Universidad Autónoma de Nuevo León, Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.

  1. SOL Width Scaling in the MAST Tokamak

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Counsell, Glenn; Connor, Jack; Kirk, Andrew

    2002-11-01

    Target heat loads are determined in large part by the upstream SOL heat flux width, Δ_h. Considerable effort has been made in the past to develop analytical and empirical scalings for Δh to allow reliable estimates to be made for the next-step device. The development of scalings for a large spherical tokamak (ST) such as MAST is particularly important both for development of the ST concept and for improving the robustness of scalings derived for conventional tokamaks. A first such scaling has been developed in MAST DND plasmas. The scaling was developed by flux-mapping data from the target Langmuir probe arrays to the mid-plane and fitting to key upstream parameters such as P_SOL, bar ne and q_95. In order to minimise the effects of co-linearity, dedicated campaigns were undertaken to explore the widest possible range of each parameter while keeping the remainder as fixed as possible. Initial results indicate a weak inverse dependence on P_SOL and approximately linear dependence on bar n_e. Scalings derived from consideration of theoretical edge transport models and integration with data from conventional devices is under way. The established scaling laws could be used for the extrapolations to the future machine such as Spherical Tokamak Power Plant (STPP). This work is jointly funded by Euratom and UK Department of Trade and Industry. J-W. Ahn would like to recognise the support of a grant from the British Foreign & Commonwealth Office.

  2. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  3. Progress and prospects in understanding the physics of tokamak experiments

    SciTech Connect

    Hutchinson, I.

    1992-12-01

    A whistle-stop tour of the diverse physics of tokamak plasma confinement. This talk will illustrate the way in which fusion research on tokamaks has led to important and interesting physics results, and discuss some of the scientific challenges still ahead before fusion`s potential can be established.

  4. Numerical investigations of plasma parameters in the COMPASS tokamak

    SciTech Connect

    Havlickova, E.; Zagorski, R.; Panek, R.

    2008-09-15

    A numerical investigation of plasma parameters in a diverter configuration of COMPASS tokamak is presented. The plasma parameters in the device are analyzed in the frame of the self-consistent description of the central plasma and edge region. The possibility of achieving high recycling and detached regimes in the boundary layer of the COMPASS tokamak is discussed.

  5. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  6. A simulation study of a controlled tokamak plasma

    NASA Astrophysics Data System (ADS)

    Fujii, N.; Niwa, Y.

    1980-03-01

    A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.

  7. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  8. Hybrid Fusion: The Only Viable Development Path for Tokamaks?

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2009-03-01

    The world needs a great deal of carbon free energy, and soon, for civilization to continue. Fusion's goal is to develop such a carbon free energy source. For the last 4 decades, tokamaks have been the best magnetic fusion has to offer. But what if its development stops short of commercial fusion? This paper introduces `conservative design principles' for tokamaks. These are very simple, are reasonably based in theory, and have always constrained tokamak operation. Assuming they continue to do so, it is unlikely that tokamaks will ever make it as commercial reactors. This is independent of their confinement properties. However because of the large additional gain in hybrid fusion, tokamaks reactors look like they can make it as hybrid fuel producers, and provide large scale power by mid century or shortly thereafter.

  9. Mathematical modeling plasma transport in tokamaks

    SciTech Connect

    Quiang, Ji

    1995-12-31

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  10. Electrostatic analysis of the tokamak edge plasma

    SciTech Connect

    Motley, R.W.

    1981-07-01

    The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.

  11. Electron cyclotron emission imaging in tokamak plasmas

    SciTech Connect

    Munsat, Tobin; Domier, Calvin W.; Kong, Xiangyu; Liang, Tianran; Luhmann, Jr.; Neville C.; Tobias, Benjamin J.; Lee, Woochang; Park, Hyeon K.; Yun, Gunsu; Classen, Ivo. G. J.; Donne, Anthony J. H.

    2010-07-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).

  12. Viscosity in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the 'short radial gradient scale length' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.

  13. Magnetic field measurements in tokamak plasmas

    SciTech Connect

    Feldman, U.; Seely, J.F.; Sheeley,Jr., N.R.; Suckewer, S.; Title, A.M.

    1984-11-01

    The measurement of the poloidal magnetic field in a tokamak plasma from the Zeeman splitting and polarization of the magnetic dipole radiation from heavy ions is discussed. When viewed from a direction perpendicular to the toroidal field, the effect of the poloidal field on the circularly polarized radiation is detectable using a photoelectric polarimeter. The Zeeman splittings for a number of magnetic dipole transitions with wavelengths in the range 2300--9300 A are presented. An imaging polarimeter is proposed that can measure the poloidal magnetic field with space and time resolution.

  14. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  15. Diamagnetic flux measurement in Aditya tokamak

    SciTech Connect

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-15

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  16. Neoclassical Transport Properties of Tokamak Plasmas

    SciTech Connect

    Weyssow, B.

    2004-03-15

    The classical transport theory is strictly valid for a plasma in a homogeneous and stationary magnetic field. In the '60, experiments have shown that this theory does not apply as a local theory of transport in Tokamaks. It was shown that global geometric characteristics of the confining elements have a strong influence on the transport. Three regimes of collisionality are characteristic of the neoclassical transport theory: the banana regime (the electronic diffusion coefficient increases starting from zero), the plateau regime (the diffusion coefficient is almost independent of the collisionality) and the Pfirsch-Schlueter regime (the electronic diffusion coefficient again increases with the collisionality)

  17. Self-Organized Stationary States of Tokamaks

    DOE PAGES

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-17

    We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.

  18. Nonlinear gyrokinetic equations for tokamak microturbulence

    SciTech Connect

    Hahm, T.S.

    1988-05-01

    A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.

  19. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  20. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.

  1. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  2. Constrained ripple optimization of Tokamak bundle divertors

    SciTech Connect

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.

  3. Plasma engineering analysis of Tennessee Tokamak

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Shannon, T.E.; Uckan, N.A.

    1983-01-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses dueterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. Detailed analyses are performed in the areas of (1) transport simulation using the 1-1/2-D WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control sytems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  4. Applications of fast wave in spherical tokamaks

    SciTech Connect

    Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.

    1997-04-01

    In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, the authors investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. They find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, the authors find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfven resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified.

  5. Applications of fast wave in spherical tokamaks

    SciTech Connect

    Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.

    1997-04-01

    In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, we investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. We find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, we find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfv{acute e}n resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified. {copyright} {ital 1997 American Institute of Physics.}

  6. Electrostatic Dust Detection and Removal in Tokamaks

    NASA Astrophysics Data System (ADS)

    Hensley, R.; Skinner, C. H.; Roquemore, A. L.

    2006-10-01

    The inventory of in-vessel dust particles in next-step tokamaks will increase with the rise in stored energy and pulse duration. Dust levels will need to be measured and controlled for safety reasons and to avoid plasma contamination. A novel electrostatic dust detector has been developed with a sensitivity appropriate for the carbon dust levels expected in next-step devices.^23 Higher sensitivity is desired for real-time measurements in contemporary tokamaks that have less dust. We report on results from a larger area, more sensitive detector. A 2 x 2 circuit board has two interlocking combs of copper traces spaced by 25 microns and biased at 30-50 V. The carbon test dust is delivered to the circuit board by a mesh tray vibrated at 60 Hz. The impinging dust creates a short circuit and the resulting current pulse is recorded. We will present results on the dust detection sensitivity and dust removal efficiency of these new detectors in three environments: air, vacuum, and inert gas. ^2 C. Voinier et al., J. Nucl. Mater. 346 (2005) 266-271. ^3 C. Parker et al., PPPL Report, PPPL-4169.

  7. Modular pump limiter systems for large tokamaks

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Klepper, C. C.; Mioduszewski, P. K.; McGrath, R. T.

    1987-09-01

    Long-pulse (greater than 10-s) operation of large tokamaks with high-power (greater than 10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technolgy is discussed. The relationship between modules is considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented.

  8. Modular pump limiter systems for large tokamaks

    SciTech Connect

    Uckan, T.; Klepper, C.C.; Mioduszewski, P.K.; McGrath, R.T.

    1987-09-01

    Long-pulse (>10-s) operation of large tokamaks with high-power (>10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technology is discussed. The relationship between modules are considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented. 21 refs., 12 figs.

  9. Neoclassical theory inside transport barriers in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Hsu, C. T.

    2012-02-01

    Inside the transport barriers in tokamaks, ion energy losses sometimes are smaller than the value predicted by the standard neoclassical theory. This improvement can be understood in terms of the orbit squeezing theory in addition to the sonic poloidal E ×B Mach number Up,m that pushes the tips of the trapped particles to the higher energy. In general, Up,m also includes the poloidal component of the parallel mass flow speed. These physics mechanisms are the corner stones for the transition theory of the low confinement mode (L-mode) to the high confinement mode (H-mode) in tokamaks. Here, detailed transport fluxes in the banana regime are presented using the parallel viscous forces calculated earlier. It is found, as expected, that effects of orbit squeezing and the sonic Up,m reduce the ion heat conductivity. The former reduces it by a factor of |S|3/2 and the later by a factor of R(Up ,m2)exp(-Up ,m2) with R(Up ,m2), a rational function. Here, S is the orbit squeezing factor.

  10. /sup 3/He functions in tokamak-pumped laser systems

    SciTech Connect

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  11. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    NASA Astrophysics Data System (ADS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T. H.; Wang, H. Q.

    2016-08-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew-Goldburger-Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  12. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  13. Realizing steady-state tokamak operation for fusion energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2011-03-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  14. Development of tokamak reactor system analysis code NEW-TORSAC

    NASA Astrophysics Data System (ADS)

    Kasai, Masao; Ida, Toshio; Nishikawa, Masana; Kameari, Akihisa; Nishio, Satoshi; Tone, Tatsuzo

    1987-07-01

    A systems analysis code named NEW-TORSAC (TOkamak Reactor Systems Analysis Code) has been developed by modifying the TORSAC which had been already developed by us. The NEW-TORSAC is available for tokamak reactor designs and evaluations from experimental machines to commercial reactor plants. It has functions to design tokamaks automatically from plasma parameter setting to determining configurations of reactor equipments and calculating main characteristics parameters of auxiliary systems and the capital costs. In the case of analyzing tokamak reactor plants, the code can calculate busbar energy costs. In addition to numerical output, some output of this code such as a reactor configuration, plasma equilibrium, electro-magnetic forces, etc., are graphically displayed. The code has been successfully applied to the scoping studies of the next generation machines and commercial reactor plants.

  15. Improvement of tokamak performance by injection of electrons

    SciTech Connect

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas.

  16. Neutral beam injector performance on the PLT and PDX tokamaks

    SciTech Connect

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures.

  17. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    NASA Astrophysics Data System (ADS)

    Giunta, A. S.; Henderson, S.; O'Mullane, M.; Harrison, J.; Doyle, J. G.; Summers, H. P.

    2016-09-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  18. Compact Ignition Tokamak Program: status of FEDC studies

    SciTech Connect

    Flanagan, C.A.

    1985-01-01

    Viewgraphs on the Compact Ignition Tokamak Program comprise the report. The technical areas discussed are the mechanical configuration status, magnet analysis, stress analysis, cooling between burns, TF coil joint, and facility/device layout options. (WRF)

  19. An emerging understanding of H-mode discharges in tokamaks

    SciTech Connect

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the [upsilon][sub E][sup [yields

  20. Operating tokamaks with steady-state toroidal current

    SciTech Connect

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements.

  1. Neoclassical diffusion of heavy impurities in a rotating tokamak plasma

    SciTech Connect

    Wong, K.L.; Cheng, C.Z.

    1987-08-01

    Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle simulation is carried out and the results offer a qualitative explanation for some experimental data from the Tokamak Test Reactor (TFTR). 13 refs., 2 figs.

  2. Fast ion effects on magnetic instabilities in the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Buchenauer, D. A.

    Modification and excitation of nondisruptive magnetic instabilities due to near perpendicular neutral beam injection on the PDX tokamak were made to determine the importance of these instabilities at low q. The instabilities consisted of resistive MHD modes, beam driven ideal MHD modes, and beam driven ion cyclotron modes. Evidence of enhanced transport is presented for several of these instabilities as well as comparison of the experimental results with theory. Possible consequences for reactor type tokamaks and high power auxiliary heating systems are discussed.

  3. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  4. 'Snowflake' H Mode in a Tokamak Plasma

    SciTech Connect

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-10-08

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy ({Delta}W{sub ELM}/W{sub p}) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  5. Anisotropic pressure tokamak equilibrium and stability considerations

    SciTech Connect

    Salberta, E.R.; Grimm, R.C.; Johnson, J.L.; Manickam, J.; Tang, W.M.

    1987-02-01

    Investigation of the effect of pressure anisotropy on tokamak equilibrium and stability is made with an MHD model. Realistic perpendicular and parallel pressure distributions, P/sub perpendicular/(psi,B) and P/sub parallel/(psi,B), are obtained by solving a one-dimensional Fokker-Planck equation for neutral beam injection to find a distribution function f(E, v/sub parallel//v) at the position of minimum field on each magnetic surface and then using invariance of the magnetic moment to determine its value at each point on the surface. The shift of the surfaces of constant perpendicular and parallel pressure from the flux surfaces depends strongly on the angle of injection. This shift explains the observed increase or decrease in the stability conditions. Estimates of the stabilizing effect of hot trapped ions indicates that a large fraction must be nonresonant and thus decoupled from the bad curvature before it becomes important.

  6. Instrumentation and controls of an ignited tokamak

    SciTech Connect

    Becraft, W.R.; Golzy, J.; Houlberg, W.A.; Kukielka, C.A.; Onega R.J.; Raju, G.V.S.; Stone, R.S.

    1980-10-01

    The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented.

  7. DIII-D Advanced Tokamak Research Overview

    SciTech Connect

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-12-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.

  8. Transport Bifurcation in a Rotating Tokamak Plasma

    SciTech Connect

    Highcock, E. G.; Barnes, M.; Schekochihin, A. A.; Parra, F. I.; Roach, C. M.; Cowley, S. C.

    2010-11-19

    The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.

  9. Cooldown of the Compact Ignition Tokamak

    SciTech Connect

    Keeton, D.C.

    1987-08-01

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.

  10. Fast tomographic methods for the tokamak ISTTOK

    SciTech Connect

    Carvalho, P. J.; Coelho, R.; Neto, A.; Pereira, T.; Silva, C.; Fernandes, H.; Gori, S.; Toussaint, U. v.

    2008-04-07

    The achievement of long duration, alternating current discharges on the tokamak IST-TOK requires a real-time plasma position control system. The plasma position determination based on magnetic probes system has been found to be inadequate during the current inversion due to the reduced plasma current. A tomography diagnostic has been therefore installed to supply the required feedback to the control system. Several tomographic methods are available for soft X-ray or bolo-metric tomography, among which the Cormack and Neural networks methods stand out due to their inherent speed of up to 1000 reconstructions per second, with currently available technology. This paper discusses the application of these algorithms on fusion devices while comparing performance and reliability of the results. It has been found that although the Cormack based inversion proved to be faster, the neural networks reconstruction has fewer artifacts and is more accurate.

  11. Nonlinear lower hybrid modeling in tokamak plasmas

    SciTech Connect

    Napoli, F.; Schettini, G.; Castaldo, C.; Cesario, R.

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  12. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1998-12-01

    A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}

  13. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  14. Plasma rotation in the PDX tokamak

    SciTech Connect

    Brau, K.; Bitter, M.; Goldston, R.J.; Manos, D.; McGuire, K.; Suckewer, S.

    1983-06-01

    Toroidal and poloidal rotation has been measured in the Poloidal Divertor Experiment (PDX) tokamak in ohmic- and neutral-beam-heated plasmas in a variety of discharge conditions and in both circular and diverted configurations. Rotation velocities were deduced from Doppler shifts of magnetic dipole (M1) lines and lines of optically allowed transitions in the visible and uv regions, from K/sub ..cap alpha../ emission, and also from an array of magnetic pickup loops. Poloidal and toroidal rotation velocities in ohmically heated discharges were unusually less than 3 x 10/sup 5/ cm/sec. Near the plasma edge the toroidal-rotation velocity varies with poloidal angle both before and during neutral-beam injection. No systematic poloidal rotation was observed during neutral-beam injection centered about or displaced 10 cm from the horizontal midplane, which implies that the poloidal damping time tau/sub theta/ < 0.5 tau/sub ii/, consistent with theoretical estimates.

  15. Numerical simulation of fueling in tokamaks

    SciTech Connect

    Attenberger, S.E.; Houlberg, W.A.; Milora, S.L.

    1982-04-01

    We describe the numerical simulation of fueling and particle transport in both present and future tokamak plasmas. Models for pellet ablation and plasma density behavior after pellet injection are compared with experimental results in ISX and PDX plasmas and then extended to fusion reactor conditions. The role of fast ion ablation due to intense neutral beam injection and fusion alphas is examined along with pellet size and velocity considerations. In plasmas with high pumping efficiency (which may be obtained with divertor operation), pellet injection can significantly reduce fueling rates while maintaining more flexibility in control of the density profile than afforded by gas puffing. When fueling is dominated by gas puffing or high recycle from the walls or limiter, control of the fueling and density profiles is reduced and particle fluxes to the wall increase.

  16. Numerical simulation of fueling in tokamaks

    SciTech Connect

    Attenberger, S.E.; Houlberg, W.A.; Milora, S.L.

    1981-01-01

    We describe the numerical simulation of fueling and particle transport in both present and future tokamak plasmas. Models for pellet ablation and plasma density behavior after pellet injection are compared with experimental results in ISX and PDX plasmas and then extended to fusion reactor conditions. The role of fast ion ablation due to intense neutral beam injection and fusion alphas is examined along with pellet size and velocity considerations. In plasmas with high pumping efficiency (which may be obtained with divertor operation), pellet injection can significantly reduce fuel handling requirements and interaction of the plasma with the chamber walls while maintaining more flexibility in control of the density profile than afforded by gas puffing. When fueling is dominated by gas puffing or high recycle from the walls or limiter, control of the fueling and density profiles is reduced while plasma/wall interactions increase.

  17. Control of Asymmetric Magnetic Perturbations in Tokamaks

    SciTech Connect

    Park, Jong-kyu; Schaffer, Michael J.; Menard, Jonathan E.; Boozer, Allen H.

    2007-10-03

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  18. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  19. Trail-A Tokamak RAIL Gun Limiter

    SciTech Connect

    Yu, W.S; Fillo, J.A.; Powell, J.R.; Usher, J.L.

    1984-09-01

    An attractive new limiter concept is investigated. The Tokamak RAIl Gun Limiter (TRAIL) system directs a stream of moderate velocity pellets (100 to 200 m/s) through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled, after cooling, to the injector in an electromagnetic mass accelerator. Heat fluxes of about30000 W/cm/sup 2/ can be readily accommodated by the pellets, with very low recirculating power requirements ( about0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state of the art (several kilometres per second). Accelerators injecting pellets at about1 km/s can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs.

  20. TRAIL: a tokamak rail gun limiter

    SciTech Connect

    Yu, W S; Powell, J R; Usher, J L

    1980-01-01

    An attractive new limiter concept is investigated. The TRAIL (Tokamak Rail Gun Limiter) system impacts a stream of moderate velocity pellets (100 to 200 m/sec through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled after cooling, to the injector of an E-M mass accelerator. Heat fluxes of approx. 30,000 W/cm/sup 2/ can be readily accommodated by the pellets, with very low recirculating power requirements (approx. 0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state of the art (several Km/sec). Accelerators injecting pellets at approx. 1 Km/sec can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs.

  1. TRAIL: a tokamak rail gun limiter

    SciTech Connect

    Yu, W.S.; Powell, J.R.; Usher, J.L.

    1980-01-01

    An attractive new limiter concept is investigated. The TRAIL (Tokamak Rail Gun Limiter) system impacts a stream of moderate velocity pellets (100 to 200 m/sec through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled, after cooling, to the injector in an E-M mass accelerator. Heat fluxes of approx. 30,000 W/cm/sup 2/ can be readily accommodated by the pellets, with very low recirculating power requirements (approx. 0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state-of-the-art (several km/sec). Accelerators injecting pellets at approx. 1 km/sec can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs.

  2. Dust Studies in DIII-D Tokamak

    SciTech Connect

    Rudakov, D L; West, W P; Groth, M; Yu, J H; Boedo, J A; Bray, B D; Brooks, N H; Fenstermacher, M E; Hollmann, E M; Hyatt, A W; Krasheninnikov, S I; Lasnier, C J; Moyer, R A; Pigarov, A Y; Smirnov, R; Solomon, W M; Wong, C C

    2008-04-15

    Studies of submicron dust using Mie scattering from Nd:YAG lasers and video data of micron to sub-millimeter sized dust on DIII-D tokamak have provided the first data of dust sources and transport during tokamak discharges. During normal operation on DIII-D dust observation rates are low, a few events per discharge or less. The net carbon content of the dust corresponds to a carbon atom density a few orders of magnitude below the core impurity density. Statistical analysis of Mie data collected over months of operation reveal correlation of increased dust rate with increased heating power and impulsive wall loading due to edge localized modes (ELMs) and disruptions. Generation of significant amounts of dust by disruptions is confirmed by the camera data. However, dust production by disruptions alone is insufficient to account for estimated in-vessel dust inventory in DIII-D. After an extended entry vent, thousands of dust particles are observed by cameras in the first 2-3 plasma discharges. Individual particles moving at velocities up to {approx}300 m/s, breakup of larger particles into pieces, and collisions of particles with walls are observed. After {approx}70 discharges, dust levels are reduced to a few events per discharge. In order to calibrate diagnostics and benchmark modeling, milligram amounts of micron-sized carbon dust have been injected into DIII-D discharges, leading to the core carbon density increase by a factor of 2-3. Following injection, dust trajectories in the divertor are mostly in the toroidal direction, consistent with the ion drag force. Dust from the injection is observed in the outboard midplane by a fast framing camera. The observed trajectories and velocities of the dust particles are in qualitative agreement with modeling by the 3D DustT code.

  3. Dust Studies in DIII-D Tokamak

    SciTech Connect

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Pigarov, A. Yu.; Smirnov, R.; West, W. P.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Groth, M.; Fenstermacher, M. E.; Lasnier, C. J.; Solomon, W. M.

    2008-09-07

    Studies of submicron dust using Mie scattering from Nd:YAG lasers and video data of micron to sub-millimeter sized dust on DIII-D tokamak have provided the first data of dust sources and transport during tokamak discharges. During normal operation on DIII-D dust observation rates are low, a few events per discharge or less. The net carbon content of the dust corresponds to a carbon atom density a few orders of magnitude below the core impurity density. Statistical analysis of Mie data collected over months of operation reveal correlation of increased dust rate with increased heating power and impulsive wall loading due to edge localized modes (ELMs) and disruptions. Generation of significant amounts of dust by disruptions is confirmed by the camera data. However, dust production by disruptions alone is insufficient to account for estimated in-vessel dust inventory in DIII-D. After an extended entry vent, thousands of dust particles are observed by cameras in the first 2-3 plasma discharges. Individual particles moving at velocities up to {approx}300 m/s, breakup of larger particles into pieces, and collisions of particles with walls are observed. After {approx}70 discharges, dust levels are reduced to a few events per discharge. In order to calibrate diagnostics and benchmark modeling, milligram amounts of micron-sized carbon dust have been injected into DIII-D discharges, leading to the core carbon density increase by a factor of 2-3. Following injection, dust trajectories in the divertor are mostly in the toroidal direction, consistent with the ion drag force. Dust from the injection is observed in the outboard midplane by a fast framing camera. The observed trajectories and velocities of the dust particles are in qualitative agreement with modeling by the 3D DustT code.

  4. Self-organized stationary states of tokamaks

    NASA Astrophysics Data System (ADS)

    Jardin, Stephen

    2015-11-01

    We report here on a nonlinear mechanism that forms and maintains a self-organized stationary (sawtooth free) state in tokamaks. This process was discovered by way of extensive long-time simulations using the M3D-C1 3D extended MHD code in which new physics diagnostics have been added. It is well known that most high-performance modes of tokamak operation undergo ``sawtooth'' cycles, in which the peaking of the toroidal current density triggers a periodic core instability which redistributes the current density. However, certain modes of operation are known, such as the ``hybrid'' mode in DIII-D, ASDEX-U, JT-60U and JET, and the long-lived modes in NSTX and MAST, which do not experience this cycle of instability. Empirically, it is observed that these modes maintain a non-axisymmetric equilibrium which somehow limits the peaking of the toroidal current density. The physical mechanism responsible for this has not previously been understood, but is often referred to as ``flux-pumping,'' in which poloidal flux is redistributed in order to maintain q0 >1. In this talk, we show that in long-time simulations of inductively driven plasmas, a steady-state magnetic equilibrium may be obtained in which the condition q0 >1 is maintained by a dynamo driven by a stationary marginal core interchange mode. This interchange mode, unstable because of the pressure gradient in the ultra-low shear region in the center region, causes a (1,1) perturbation in both the electrostatic potential and the magnetic field, which nonlinearly cause a (0,0) component in the loop voltage that acts to sustain the configuration. This hybrid mode may be a preferred mode of operation for ITER. We present parameter scans that indicate when this sawtooth-free operation can be expected.

  5. Plasma diagnostics for the compact ignition tokamak

    SciTech Connect

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.

  6. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  7. Tokamak foundation in USSR/Russia 1950-1990

    NASA Astrophysics Data System (ADS)

    Smirnov, V. P.

    2010-01-01

    In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER.

  8. Resistive edge mode instability in stellarator and tokamak geometries

    SciTech Connect

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-15

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  9. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  10. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    SciTech Connect

    Strait, E. J.

    2015-02-15

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error

  11. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  12. Power supplies and quench protection for the Tokamak Physics Experiment

    SciTech Connect

    Neumeyer, C.L.

    1994-07-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.

  13. Tokamak power system studies at ANL

    SciTech Connect

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-06-01

    The following features, in particular, have been examined: (a) large aspect ratio (A approx. = 6), which may ease maintenance; (b) high beta (..beta.. greater than or equal to 0.20) without indentation, which brings the maximum toroidal field down to about 6 to 7 T; (c) low toroidal current (I approx. = 4MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields they produce in the plasma. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors.

  14. Thermo-Oxidation of Tokamak Carbon Dust

    SciTech Connect

    J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

    2008-04-01

    The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

  15. Continuous tokamak operation with an internal transformer

    SciTech Connect

    Singer, C.E.; Mikkelsen, D.R.

    1982-10-01

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors.

  16. Carbonization of the DIII-D tokamak

    SciTech Connect

    Jackson, G.L.; Lippmann, S.; Petrie, T.W.; DeBoo, J.C.; Ferron, J.R.; Schissel, D.P.; Taylor, T.S. ); Winters, J. . Inst. fuer Plasmaphysik); Hill, D.N. )

    1990-12-01

    The DIII-D tokamak has been carbonized by the application of a carbon film covering all plasma facing surfaces. Carbonization was done in order to reduce the metal impurity influx and central metal accumulation especially during beam heated D{sup O} {yields} D{sup +} H-mode discharges. After carbonization, nickel impurity line radiation was reduced by a factor of 10 during the ohmic phase of the discharge and up to a factor of 30 during the H-mode phase. The reduction of metal impurities also produced a reduction of total radiated power and allowed high current operation. After carbonization, the highest plasma current in a double null divertor, and the highest stored energy ever achieved on DIII-D were observed, 3 MA and 3.6 MJ respectively. A toroidal beta, {beta}{sub T} = 5.1%, at full field, 2.1 T, was obtained. On the first day after carbonization, H-mode density profiles were more peaked than pre-carbonization discharges. 20 refs., 6 figs.

  17. Tokamak L/H mode transition

    SciTech Connect

    Tsui, K. H.; Navia, C. E.

    2012-01-15

    Through the non field-aligned rotational tokamak equilibrium of a divergence-free plasma flow with a pair of transformed plasma variables w-vector{sub *}=({mu}{rho}){sup 1/2}{nu}-vector and {mu}p{sub *}=({mu}p+w{sub *}{sup 2}/2)[K. H. Tsui, Phys. Plasmas 18, 072502 (2011)], a preliminary understanding of the L/H equilibrium transition is proposed through a feedback cycle, where the higher plasma flux due to external drives enters the rotational Grad-Shafranov equation through the velocity dependent poloidal plasma {beta} to generate the H equilibrium. This H rotational mode has the characteristics of higher normal electric field and plasma pressure. Coupled to the transport properties of E-vector x B-vector drift transport barrier leading to a higher plasma pressure, this makes the H mode a self-sustained equilibrium. The higher plasma {beta} then feeds back to the equilibrium and completes the feedback loop.

  18. Pellet imaging techniques in the ASDEX tokamak

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-11-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow {ital in} {ital situ} velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 {mu}s, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened {ital D}{sub {alpha}}, {ital D}{sub {beta}}, and {ital D}{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2{times}10{sup 17} cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of {ital D}{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational {ital q} surfaces, but instead are a result of dynamic, nonstationary, ablation process.

  19. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  20. Physics issues of high bootstrap current tokamaks

    NASA Astrophysics Data System (ADS)

    Ozeki, T.; Azumi, M.; Ishii, Y.; Kishimoto, Y.; Fu, G. Y.; Fujita, T.; Rewoldt, G.; Kikuchi, M.; Kamada, Y.; Kimura, H.; Kusama, Y.; Saigusa, M.; Ide, S.; Shirai, H.

    1997-05-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of qmin is close to the region of high $\</p>
      </li>

      </ol>  
       <div class=

  1. Thomson scattering on the Texas Experimental Tokamak

    SciTech Connect

    Porter, J.L. Jr.

    1985-01-01

    A Thomson scattering diagnostic was constructed on the Texas Experimental Tokamak (TEXT) which is capable of measuring local electron temperatures in the range 10 eV less than or equal to T/sub e/ less than or equal to 2000 eV for densities greater than or equal to 5 x 10/sup 12/ cm/sup -3/. This diagnostic has been used to study the edge region of the plasma, the scaling of the central electron temperature and Z/sub effective/ over a wide range of discharge conditions, and the evolution of the electron temperature profile during the plasma formation and during a fast current ramp initiated well into the discharge. Current diffusion was modeled during the current rise portion of the standard TEXT discharge and during discharges in which the plasma current was rapidly increased after a steady-state discharge had been established by using the measured electron temperature profiles as input to a computer code which solves the one dimensional poloidal magnetic field diffusion equation. Because of the large differences found between the predicted and measured values of the loop voltage and the quantity ..beta../sub p/ + 1/sub i//2 during the initial current rise portion of the discharge it is concluded that the plasma current penetrates faster than can be explained by classical resistive current diffusion during this portion of the discharge.

  2. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new {Delta}{prime} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon} {le} 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease {Delta}{prime}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low {beta} regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m {ge} 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code.

  3. Fast bolometric measurements on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Furno, I.; Weisen, H.; Mlynar, J.; Pitts, R. A.; Llobet, X.; Marmillod, Ph.; Pochon, G. P.

    1999-12-01

    The design and first results are presented from a bolometric diagnostic with high temporal resolution recently installed on the TCV tokamak. The system consists of two pinhole cameras viewing the plasma from above and below at the same toroidal location. Each camera is equipped with an AXUV-16ELO linear array of 16 p-n junction photodiodes, characterized by a flat spectral sensitivity from ultraviolet to x-ray energies, a high temporal response (<0.5 μs), and insensitivity to low-energy neutral particles emitted by the plasma. This high temporal resolution allows the study of transient phenomena such as fast magnetohydrodynamic (MHD) activity hitherto inaccessible with standard bolometry. In the case of purely electromagnetic radiation, good agreement has been found when comparing results from the new diagnostic with those from a standard metal foil bolometer system. This comparison has also revealed that the contribution of neutrals to the foil bolometer measurements can be extremely important under certain operating conditions, precluding the application of tomographic techniques for reconstruction of the radiation distribution.

  4. Neoclassical transport in high {beta} tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high {beta} large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high {beta} large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low {beta} values by a factor ({var_epsilon}/q{sup 2}{beta}){sup {1/2}} II. This factor is the ratio of plasma volume in the boundary layer to the volume in the core. The fraction of trapped particles on a given flux surface (f{sub t}) is also reduced by this factor so that {approximately} {sub ({var_epsilon}}/q{sup 2}{beta}){sup {1/2}}. Special attention is given to the current equation, since this is thought to be relevant at low 3 and therefore may also be relevant at high {beta}. The bootstrap current term is found to exceed the actual current by a factor of the square root of the aspect ratio.

  5. Controlling sawtooth oscillations in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.

    2011-01-01

    The sawtooth instability in tokamak plasmas results in a periodic reorganization of the core plasma. A typical sawtooth cycle consists of a quiescent period, during which the plasma density and temperature increase, followed by the growth of a helical magnetic perturbation, which in turn is followed by a rapid collapse of the central pressure. The stabilizing effects of fusion-born α particles are likely to lead to long sawtooth periods in burning plasmas. However, sawteeth with long quiescent periods have been observed to result in the early triggering of neo-classical tearing modes (NTMs) at low plasma pressure, which can, in turn, significantly degrade confinement. Consequently, recent experiments have identified various methods to deliberately control sawtooth oscillations in an attempt to avoid seeding NTMs whilst retaining the benefits of small, frequent sawteeth, such as the prevention of core impurity accumulation. Sawtooth control actuators include current drive schemes, such as electron cyclotron current drive, and tailoring the fast ion population in the plasma using neutral beam injection or ion cyclotron resonance heating.

  6. Multiple time scale methods in tokamak magnetohydrodynamics

    SciTech Connect

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.

  7. Zonal flows in tokamaks with anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-04-01

    Zonal flows (ZFs) in a tokamak plasma with anisotropic pressure are investigated. The dynamics of perpendicular and parallel pressures are determined by the Chew-Goldberger-Low double equations and low-β condition is adopted, where β is the ratio of plasma pressure to the magnetic field pressure. The dispersion relation is analytically derived and illustrates two branches of ZFs. The low frequency zonal flow (LFZF) branch becomes unstable when χ, the ratio of the perpendicular pressure to the parallel one, is greater than a threshold value χc, which is about 3.8. In the stable region, its frequency increases first and then decreases with increasing χ. For χ = 1, the frequency of LFZF agrees well with the experimental observation. For the instability, the growth rate of LFZF increases with χ. The geodesic acoustic mode branch is shown to be always stable with a frequency increasing with χ. The safety factor is shown to diminish the frequencies of both branches or the growth rate of LFZF.

  8. Impurities in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, D. P.; Bell, R. E.; Kaita, R.; Majeski, R.; Biewer, T. M.; Gray, T. K.; Tritz, K.; Widmann, K.

    2014-10-01

    The Lithium Tokamak Experiment (LTX) is designed to study the low-recycling regime through the use of close-fitting, lithium-coated, heatable shell quadrants surrounding the plasma volume. Lithium coatings can getter and bury impurities, but they can also become covered by impurity compounds. Liquefied coatings can both dissolve impurity compounds and bring them to the surface, while sputtering and evaporation rates increase strongly with temperature. Here, we use spectroscopic measurements to assess the effects of varying wall conditions on plasma impurities, mainly Li, C, and O. A passive Doppler spectroscopy system measures toroidal and poloidal impurity profiles using fixed-wavelength and variable-wavelength visible spectrometers. In addition, survey and high-resolution extreme ultraviolet spectrometers detect emission from higher charge states. Preliminary results show that fresh Li coatings generally reduced C and O emission. C emission decreased sharply following the first solid Li coatings. Inverted toroidal profiles in a discharge with solid Li coatings show peaked Li III emissivity and temperature profiles. Recently, experiments with fresh liquid coatings led to especially strong O reduction. Results from these and additional experiments will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  9. Recent progress in the tokamak edge modeling

    NASA Astrophysics Data System (ADS)

    Petravic, M.; Heifetz, D.; Heifetz, S.; Post, D.

    1984-12-01

    Tokamak edge modeling, with a particular emphasis on divertors, was reviewed in detail in 1982. At that time the emphasis was on the qualitative behavior of the scrape-off plasma and the atomic processes involved in the neutral-plasma interaction. While no detailed comparisons with the experiments were available, the data nevertheless showed all the basic features of the cool high-density regime predicted by the models. The two most important modeling developments of 1983 were the introduction of accurate magnetic geometries and the inclusion of impurity transport in the plasma equations. This made possible detailed comparisons with the PDX and ASDEX experiments which on the one hand showed remarkable agreement while on the other hand pointed to new areas of uncertainty, i.e., the plasma-wall and neutral-wall interactions. In another development, the scrape-off models are beginning to be linked to the main plasma transport in order to provide better boundary conditions for the main plasma models, and in particular to model limiters. The fully two-dimensional plasma flow models should be particularly useful in this area.

  10. Natural fueling of a tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Parker, Scott E.; Chen, Yang; Perkins, Francis W.

    2010-04-01

    A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is presented. In H-mode plasmas dominated by ion-temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward toward the core. This mechanism is due to the quasineutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection is augmented by an inward pinch of cold DT fuel. The natural fueling mechanism is investigated using the gyrokinetic turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] and is analyzed using quasilinear theory. Profiles similar to those used for conservative International Thermonuclear Experimental Reactor [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)] transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rate and energy transport. Natural fueling requires a two-component plasma and ion-ion and charge-exchange collisions set limits on this favorable effect.

  11. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  12. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Park, Jinhyung; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 1019 m-3 when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  13. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    SciTech Connect

    Seo, Seong-Heon; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Park, Jinhyung; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-15

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  14. The dynamic mutation characteristics of thermonuclear reaction in Tokamak.

    PubMed

    Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei

    2014-01-01

    The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z 2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given.

  15. Driven magnetic reconnection in the COMPASS-C tokamak

    SciTech Connect

    Morris, A.W.; Carolan, P.G.; Fitzpatrick, R.; Hender, T.C.; Todd, T.N. , Abingdon, Oxon )

    1992-02-01

    The question of the influence of nonaxisymmetric field perturbations on tokamaks is investigated. Recent experiments in the COMPASS-C tokamak (in {ital Proceedings} {ital of} {ital the} 15{ital th} {ital Symposium} {ital on} {ital Fusion} {ital Technology}, Utrecht (North-Holland, Amsterdam, 1989), Vol. 1, p. 361) with externally applied helical fields reveal that magnetic islands do not appear until the applied field exceeds a certain value, when plasma rotation and confinement are affected. A new resistive magnetohydrodynamic model including plasma rotation now provides an explanation of this threshold, and is quantitatively consistent with experimental results in Ohmic plasmas. The results indicate the tolerable error fields in future tokamaks. The effects of perturbations with various poloidal and toroidal mode numbers have been studied.

  16. Bootstrap currents in radio-frequency-driven tokamak equilibria

    SciTech Connect

    Hsiao, Ming-Yuan; Ehst, D.A.; Evans, K. Jr.

    1988-05-01

    Interest in the bootstrap current arising from neoclassical transport in tokamaks has increased recently in view of certain experimental observations. In this study, the bootstrap current is calculated for a number of rf current-driven tokamaks. Two-dimensional, self-consistent, steady-state tokamak MHD equilibria are obtained by including both the transport-driven bootstrap current and the externally driven rf current. The self-consistency is acomplished by iterating between two-dimensional MHD equilibrium calculations and the current calculations (including bootstrap and rf ray-tracing). Calculations for other reactor parameters of interest are also carried out. It is found that for reactor-grade plasmas, the bootstrap current contribution to the toroidal current is, in general, important. An approxiamte scaling law for GAMMA, based on parametric survey performed, is also obtained. 16 refs., 8 figs., 1 tab.

  17. A method for determining poloidal coil configurations for tokamak devices

    SciTech Connect

    Evans, K. Jr.

    1990-12-01

    This paper presents a method for obtaining the locations and currents of the poloidal coil systems for a tokamak, given an desirable magnetohydrodynamic equilibrium for the device. The method involves a simultaneous minimization of the match to the desired poloidal field and the stored energy in the coils, subject to the constraints necessary to achieve decoupling of the equilibrium and inductive-current-drive (ohmic-heating) systems and to achieve a given coupling of the current-drive system with the plasma. A compendium of mutual and self-inductance formulas as they apply to tokamak systems is presented, as well as examples of how the method has been used in the design of several tokamaks. Finally, a user manual for a computer code that implements this method is provided. 14 refs., 11 figs., 1 tab.

  18. Probing spherical tokamak plasmas using charged fusion products

    NASA Astrophysics Data System (ADS)

    Boeglin, Werner U.; Perez, Ramona V.; Darrow, Douglass S.; Cecconello, Marco; Klimek, Iwona; Allan, Scott Y.; Akers, Rob J.; Jones, Owen M.; Keeling, David L.; McClements, Ken G.; Scannell, Rory

    2015-11-01

    The detection of charged fusion products, such as protons and tritons resulting from D(d,p)t reactions, can be used to determine the fusion reaction rate profile in large spherical tokamak plasmas with neutral beam heating. The time resolution of a diagnostic of this type makes it possible to study the slowly-varying beam density profile, as well as rapid changes resulting from MHD instabilities. A 4-channel prototype proton detector (PD) was installed and operated on the MAST spherical tokamak in August/September 2013, and a new 6-channel system for the NSTX-U spherical tokamak is under construction. PD and neutron camera measurements obtained on MAST will be compared with TRANSP calculations, and the design of the new NSTX-U system will be presented, together with the first results from this diagnostic, if available. Supported in part by DOE DE-SC0001157.

  19. The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak

    PubMed Central

    Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei

    2014-01-01

    The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099

  20. Texas Experimental Tokamak. Technical progress report, April 1990--April 1993

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  1. Stochastic modeling of plasma mode forecasting in tokamak

    NASA Astrophysics Data System (ADS)

    Saadat, Sh.; Salem, M.; Ghoranneviss, M.; Khorshid, P.

    2012-04-01

    The structure of magnetohydrodynamic (MHD) modes has always been an interesting study in tokamaks. The mode number of tokamak plasma is the most important parameter, which plays a vital role in MHD instabilities. If it could be predicted, then the time of exerting external fields, such as feedback fields and Resonance Helical Field, could be obtained. Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average are useful models to predict stochastic processes. In this paper, we suggest using ARIMA model to forecast mode number. The ARIMA model shows correct mode number (m = 4) about 0.5 ms in IR-T1 tokamak and equations of Mirnov coil fluctuations are obtained. It is found that the recursive estimates of the ARIMA model parameters change as the plasma mode changes. A discriminator function has been proposed to determine plasma mode based on the recursive estimates of model parameters.

  2. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  3. Fractal structure of films deposited in a tokamak

    NASA Astrophysics Data System (ADS)

    Budaev, V. P.; Khimchenko, L. N.

    2007-04-01

    The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 μm showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68-0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.

  4. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  5. Accessibility of second regions of stability in tokamaks

    SciTech Connect

    Manickam, J.

    1985-12-01

    Second regions of stability to the ideal ballooning modes have been shown to exist in large-aspect-ratio circular and small-aspect-ratio bean-shaped tokamaks. We report on the existence of these second stability regions in finite-aspect-ratio dee-shaped tokamaks. We also report on the discovery of a second-stable region with respect to the n = 1 external kink mode in a bean-shaped plasma. The role of the shear and current profile in determining these regions of parameter space are discussed. 13 refs., 6 figs.

  6. Resistive demountable toroidal-field coils for tokamak reactors

    SciTech Connect

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  7. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  8. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    SciTech Connect

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-..beta.., non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated.

  9. Shear flow destabilization of a slowly rotating tokamak

    NASA Astrophysics Data System (ADS)

    Chu, M. S.

    1998-01-01

    The Kelvin-Helmholtz destabilizing effect of shear in toroidal rotation on ideal magnetohydrodynamic localized interchange is studied in a tokamak with a general geometry. The method of maximizing the growth rate given by Frieman and Rotenberg is utilized. An explicit stability criterion is given for a slowly rotating tokamak with a non-negligible shearing rate in its rotation profile. It is found that rotation shear can weaken the stabilizing effect of the magnetic field shear and also allow the coupling of the sound wave to the shear Alfvén wave which destabilizes the plasma.

  10. What is the fate of runaway positrons in tokamaks?

    SciTech Connect

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  11. Current Status and Future Technical Challenges for Tokamak Magnets

    SciTech Connect

    Martovetsky, N; Minervini, J; Okuno, K; Salpiero, E; Filatov, O

    2002-11-11

    Magnet technology for fusion in the last decade has been focusing mostly on the development of magnets for tokamaks--the most advanced fusion concept at the moment. The largest and the most complex tokamak under development is ITER. To demonstrate adequate design approaches to large magnets for ITER and to develop industrial capabilities, two large model coils and three insert coils, all using full-scale conductor, were built and tested by the international collaboration during 1994-2002. The status of the magnet technology and directions of future developments are discussed in this paper.

  12. Design and Analysis of the Thermal Shield of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  13. Linear and nonlinear kinetic-stability studies in tokamaks

    SciTech Connect

    Tang, W.M.; Chance, M.S.; Chen, L.; Krommes, J.A.; Lee, W.W.; Rewoldt, G.

    1982-09-01

    This paper presents results of theoretical investigations on important linear kinetic properties of low frequency instabilities in toroidal systems and on nonlinear processes which could significantly influence their impact on anomalous transport. Analytical and numerical methods and also particle simulations have been employed to carry out these studies. In particular, the following subjects are considered: (1) linear stability analysis of kinetic instabilities for realistic tokamak equilibria and the application of such calculations to the PDX and PLT tokamak experiments including the influence of a hot beam-ion component; (2) determination of nonlinearly saturated, statistically steady states of three interacting drift modes; and (3) gyrokinetic particle simulation of drift instabilities.

  14. Predictive modelling and simulations of internal transport barriers in tokamaks

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2001-09-01

    An Internal Transport Barrier (ITB) is a localized region inside a (tokamak) plasma where a steep temperature and/or density gradient forms due to much lower thermal and/or particle transport than in the surrounding regions. Internal transport barriers have now been observed in all large tokamaks after they were first discovered in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) in 1993. While suggesting a promising practical approach to the realization of fusion ignition conditions, this high performance regime poses a great challenge to our understanding of tokamak anomalous transport physics. In this work, the formation and evolution of internal transport barriers in tokamaks are studied through predictive transport modelling and simulations. Neoclassical and anomalous transport of particles, energy, and toroidal momentum are systematically formulated from the ensemble-averaged gyrokinetic equation, for a tokamak plasma with large toroidal flow on the order of the ion thermal speed. This formulation is then used to construct an updated Multi-Mode model (MMM) based on (1)the Weiland fluid model for the drift wave transport, (2)the Scott-Bateman model for drift-Alfvèn mode at the tokamak edge, and (3)poloidal and toroidal momentum transport models by Zhu, Horton and Sugama. The formation of internal transport barriers observed in two optimized shear discharges in the Joint European Torus (JET) and two negative central shear discharges in the Doublet III-D Tokamak (DIII-D) are reproduced in predictive transport simulations that use the updated MultiMode model embedded in the time-dependent one/one and half dimensional transport code BALDUR. The Weiland model for drift modes in the MultiMode model is implemented in combination with either the Hahm-Burrell or the Hamaguchi-Horton flow shear stabilization mechanisms, where the radial electric field is inferred from both the measured toroidal velocity profile and the poloidal velocity profile

  15. DIII-D tokamak long range plan. Revision 3

    SciTech Connect

    1992-08-01

    The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998.

  16. Steady state self-induced current in tokamak

    SciTech Connect

    Gott, Yu. V.; Yurchenko, E. I.

    2009-11-15

    A model, which may make it possible to self-consistently calculate the self-driven current in tokamaks taking into account asymmetry and bootstrap currents, is presented. It is shown that the described self-driven current can provide steady-state tokamak operation without the seed current produced with the help of additional methods. The total self-consistent, self-driven current does not depend on magnetic field magnitude and is proportional to the square root from plasma pressure. The experimental data obtained in the National Spherical Torus Experiment are satisfactorily described by this model.

  17. Simulation of EAST vertical displacement events by tokamak simulation code

    NASA Astrophysics Data System (ADS)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  18. Magnetic flux reconstruction methods for shaped tokamaks

    SciTech Connect

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  19. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  20. Modelling multi-ion plasma gun simulations of Tokamak disruptions

    SciTech Connect

    Ehst, D.A.

    1995-08-01

    The effect of impurity ions in plasma gun ablation tests of various targets is considered. Inclusion of reasonable amounts of impurity ({approximately}10%) is adequate to explain observed energy transmission and erosion measurements. The gun tests and the computer code calculations are relevant to the parameter range expected for major disruptions on large tokamaks.

  1. Stochasticity and the m = 1 mode in tokamaks. [Sawtooth oscillations

    SciTech Connect

    Izzo, R.; Monticello, D.A.; Stodiek, W.; Park, W.

    1986-05-01

    It has recently been proposed that stochasticity resulting from toroidal coupling could lead to a saturation of the m = 1 internal mode in tokamaks. We present results from the nonlinear evolution of the m = 1 mode with toroidal coupling that show that stochasticity is not enough to cause saturation of the m = 1 mode.

  2. Loop-voltage tomography in tokamaks using transient synchrotron radiation

    SciTech Connect

    Fisch, N.J.; Kritz, A.H. . Plasma Physics Lab.; Hunter Coll., New York, NY . Dept. of Physics)

    1989-07-01

    The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs.

  3. Tokamak Scenario Trajectory Optimization Using Fast Integrated Simulations

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Artaud, Jean-François; Vahala, Linda; Vahala, George

    2015-11-01

    We employ a fast integrated tokamak simulator, METIS, for optimizing tokamak discharge trajectories. METIS is based on scaling laws and simplified transport equations, validated on existing experiments and capable of simulating a full tokamak discharge in about 1 minute. Rapid free-boundary equilibrium post-processing using FREEBIE provides estimates of PF coil currents or forces. We employ several optimization strategies for optimizing key trajectories, such as Ip or heating power, of a model ITER hybrid discharge. Local and global algorithms with single or multiple objective functions show how to reach optimum performance, stationarity or minimum flux consumption. We constrain fundamental operation parameters, such as ramp-up rate, PF coils currents and forces or heating power. As an example, we demonstrate the benefit of current over-shoot for hybrid mode, consistent with previous results. This particular optimization took less than 2 hours on a single PC. Overall, we have established a powerful approach for rapid, non-linear tokamak scenario optimization, including operational constraints, pertinent to existing and future devices design and operation.

  4. The impact of improved physics on commercial tokamak reactors

    SciTech Connect

    Galambos, J.D.; Perkins, L.J.; Haney, S.; Mandrekas, J.

    1994-01-01

    Improvements in the confinement and beta capability of tokamak devices have long been a goal of the fusion program. We examine the impact of improvements in present day confinement and beta capabilities on commercial tokamak reactors. We characterize confinement with the achievable enhancement factor (H) over the ITER89 Power scaling confinement time, and beta by the Troyon coefficient g. A surprisingly narrow range of plasma confinement and beta are found to be useful in minimizing the cost of electricity for a tokamak reactor. Improvements in only one of these quantities is not useful beyond some point, without accompanying improvements in the other. For the plasma beta limited by a Troyon coefficient (g) near 4.3 (%mT/MA), confinement levels characterized by H factor enhancements of only 2 are useful for our nominal steady-state driven tokamak. These confinement levels are similar to those observed in present day experiments. If the permissible Troyon beta coefficient is near 6, the useful H factor confinement range increases to 2.5, still close to present day confinement levels. Inductively driven, pulsed reactors have somewhat increased useful ranges of confinement, relative to the steady-state cases. For a Troyon beta limit coefficient g near 4.3, H factors up to 2.5 are useful, and for g near 6, H factors up to 3 are useful.

  5. Confinement of high energy trapped particles in tokamaks

    SciTech Connect

    Goldston, R.J.; White, R.B.; Boozer, A.H.

    1981-04-01

    The banana orbits of high energy trapped particles in tokamaks are found to diffuse rapidly in the radial direction if the toroidal ripple exceeds a low critical value. During this diffusion the energy, the magnetic moment, and the value of the magnetic field strength at the banana tips are conserved.

  6. Confinement of high-energy trapped particles in tokamaks

    SciTech Connect

    Goldston, R.J.; White, R.B.; Boozer, A.H.

    1981-08-31

    The banana orbits of high-energy trapped particles in tokamaks are found to diffuse rapidly in the radial direction if the toroidal ripple exceeds a low critical value. During this diffusion the energy, the magnetic moment, and the value of the magnetic field strength at the banana tips are conserved.

  7. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  8. Solenoid-free plasma start-up in spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Raman, R.; Shevchenko, V. F.

    2014-10-01

    The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.

  9. Dynamic diagnostics of the error fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2007-07-01

    The error field diagnostics based on magnetic measurements outside the plasma is discussed. The analysed methods rely on measuring the plasma dynamic response to the finite-amplitude external magnetic perturbations, which are the error fields and the pre-programmed probing pulses. Such pulses can be created by the coils designed for static error field correction and for stabilization of the resistive wall modes, the technique developed and applied in several tokamaks, including DIII-D and JET. Here analysis is based on the theory predictions for the resonant field amplification (RFA). To achieve the desired level of the error field correction in tokamaks, the diagnostics must be sensitive to signals of several Gauss. Therefore, part of the measurements should be performed near the plasma stability boundary, where the RFA effect is stronger. While the proximity to the marginal stability is important, the absolute values of plasma parameters are not. This means that the necessary measurements can be done in the diagnostic discharges with parameters below the nominal operating regimes, with the stability boundary intentionally lowered. The estimates for ITER are presented. The discussed diagnostics can be tested in dedicated experiments in existing tokamaks. The diagnostics can be considered as an extension of the 'active MHD spectroscopy' used recently in the DIII-D tokamak and the EXTRAP T2R reversed field pinch.

  10. Gamma ray imager on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Cooper, C. M.; Taussig, D.; Eidietis, N. W.; Hollmann, E. M.; Riso, V.; Van Zeeland, M. A.; Watkins, M.

    2016-04-01

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  11. Gamma ray imager on the DIII-D tokamak.

    PubMed

    Pace, D C; Cooper, C M; Taussig, D; Eidietis, N W; Hollmann, E M; Riso, V; Van Zeeland, M A; Watkins, M

    2016-04-01

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons. PMID:27131674

  12. Conceptual Design of Alborz Tokamak Poloidal Coils System

    NASA Astrophysics Data System (ADS)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  13. Energetic-particle stabilization of ballooning modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engguist, M. G.

    1983-07-01

    Introduction of an anisotropic, highly energetic trapped-particle species into a Tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent fishbone observations on PDX.

  14. Energetic Particle Stabilization of Ballooning Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engquist, M. G.

    1983-11-01

    Introduction of an anisctropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent "fishbone" observations on PDX.

  15. Energetic particle stabilization of ballooning modes in tokamaks

    SciTech Connect

    Rosenbluth, M.N.; Tsai, S.T.; Van Dam, J.W.; Engquist, M.G.

    1983-11-21

    Introduction of an anisotropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent ''fishbone'' observations on PDX.

  16. Observation of finite-. beta. MHD phenomena in tokamaks

    SciTech Connect

    McGuire, K.M.

    1984-09-01

    Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.

  17. Gamma ray imager on the DIII-D tokamak.

    PubMed

    Pace, D C; Cooper, C M; Taussig, D; Eidietis, N W; Hollmann, E M; Riso, V; Van Zeeland, M A; Watkins, M

    2016-04-01

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  18. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  19. Bootstrap current close to magnetic axis in tokamaks

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1996-12-01

    It is shown that the bootstrap current density close to the magnetic axis in tokamaks does not vanish in simple electron-ion plasmas because the fraction of the trapped particles is finite. The magnitude of the current density could be comparable to that in the outer core region. This may reduce or even eliminate the need of the seed current.

  20. Disruption avoidance through active magnetic feedback in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto; Zanca, Paolo; Yanovskiy, Vadim; Finotti, Claudio; Manduchi, Gabriele; Piron, Chiara; Carraro, Lorella; Franz, Paolo; RFX Team

    2014-10-01

    Disruptions avoidance and mitigation is a fundamental need for a fusion relevant tokamak. In this paper a new experimental approach for disruption avoidance using active magnetic feedback is presented. This scheme has been implemented and tested on the RFX-mod device operating as a circular tokamak. RFX-mod has a very complete system designed for active mode control that has been proved successful for the stabilization of the Resistive Wall Modes (RWMs). In particular the current driven 2/1 mode, unstable when the edge safety factor, qa, is around (or even less than) 2, has been shown to be fully and robustly stabilized. However, at values of qa (qa > 3), the control of the tearing 2/1 mode has been proved difficult. These results suggested the idea to prevent disruptions by suddenly lowering qa to values around 2 where the tearing 2/1 is converted to a RWM. Contrary to the universally accepted idea that the tokamaks should disrupt at low qa, we demonstrate that in presence of a well designed active control system, tokamak plasmas can be driven to low qa actively stabilized states avoiding plasma disruption with practically no loss of the plasma internal energy.

  1. Electron-cyclotron-heating experiments in tokamaks and stellarators

    SciTech Connect

    England, A.C.

    1983-01-01

    This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.

  2. Analytic model for coaxial helicity injection in tokamak plasmas

    SciTech Connect

    Weening, R. H.

    2011-12-15

    Using a partial differential equation for the time evolution of the mean-field poloidal magnetic flux that incorporates resistivity {eta} and hyper-resistivity {Lambda} terms, an exact analytic solution is obtained for steady-state coaxial helicity injection (CHI) in force-free large aspect ratio tokamaks. The analytic mean-field Ohm's law model allows for calculation of the tokamak CHI current drive efficiency and the plasma inductances at arbitrary levels of magnetic fluctuations, or dynamo activity. The results of the mean-field model suggest that CHI approaching Ohmic efficiency is only possible in tokamaks when the size of the effective current drive boundary layer, {delta}{identical_to}({Lambda}/{eta}){sup 1/2}, becomes greater than half the size of the plasma, {delta}>a/2, with a the plasma minor radius. The electron thermal diffusivity due to magnetic fluctuation induced transport is obtained from the expression {chi}{sub e}={Lambda}/{mu}{sub 0}d{sub e}{sup 2}, with {mu}{sub 0} the permeability of free space and d{sub e} the electron skin depth, which for typical tokamak fusion plasma parameters is on the order of a millimeter. Thus, the ratio of the energy confinement time to the resistive diffusion time in a tokamak plasma driven by steady-state CHI approaching Ohmic efficiency is shown to be constrained by the relation {tau}{sub E}/{tau}{sub {eta}}<(d{sub e}/a){sup 2}{approx_equal}10{sup -6}. The mean-field model suggests that steady-state CHI can be viewed most simply as a boundary layer of stochastically wandering magnetic field lines.

  3. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  4. High power heating of magnetic reconnection in merging tokamak experimentsa)

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Tanabe, H.; Yamada, T.; Gi, K.; Watanabe, T.; , T., Ii; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-01

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R˜105. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec2 ˜ Bp2. The guide toroidal field Bt does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field Bt, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with Bp > 0.4 T will enables us to heat the plasma to the alpha heating regime: Ti > 5 keV without using any additional heating facility.

  5. On steady poloidal and toroidal flows in tokamak plasmas

    SciTech Connect

    McClements, K. G.

    2010-08-15

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B{sub {theta}/}B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B{sub {theta}/}B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  6. Controlling fusion yield in tokamaks with spin polarized fuel, and feasibility studies on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; Sandorfi, Andy M.; Smith, S. P.; Wei, Xiangdong

    2015-09-21

    The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less

  7. Controlling fusion yield in tokamaks with spin polarized fuel, and feasibility studies on the DIII-D tokamak

    SciTech Connect

    Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; Sandorfi, Andy M.; Smith, S. P.; Wei, Xiangdong

    2015-09-21

    The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here as an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.

  8. Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Barbato, E.; Bécoulet, A.; Doyle, E. J.; Fujita, T.; Gohil, P.; Imbeaux, F.; Sauter, O.; Sips, G.; ITPA Group on Transport; Internal ITB Physics; Connor, J. W.; Doyle, E. J.; Esipchuk, Yu; Fujita, T.; Fukuda, T.; Gohil, P.; Kinsey, J.; Kirneva, N.; Lebedev, S.; Litaudon, X.; Mukhovatov, V.; Rice, J.; Synakowski, E.; Toi, K.; Unterberg, B.; Vershkov, V.; Wakatani, M.; International ITB Database Working Group; Aniel, T.; Baranov, Yu F.; Barbato, E.; Bécoulet, A.; Behn, R.; Bourdelle, C.; Bracco, G.; Budny, R. V.; Buratti, P.; Doyle, E. J.; Esipchuk, Yu; Esposito, B.; Ide, S.; Field, A. R.; Fujita, T.; Fukuda, T.; Gohil, P.; Gormezano, C.; Greenfield, C.; Greenwald, M.; Hahm, T. S.; Hoang, G. T.; Hobirk, J.; Hogeweij, D.; Ide, S.; Isayama, A.; Imbeaux, F.; Joffrin, E.; Kamada, Y.; Kinsey, J.; Kirneva, N.; Litaudon, X.; Luce, T. C.; Murakami, M.; Parail, V.; Peng, Y.-K. M.; Ryter, F.; Sakamoto, Y.; Shirai, H.; Sips, G.; Suzuki, T.; Synakowski, E.; Takenaga, H.; Takizuka, T.; Tala, T.; Wade, M. R.; Weiland, J.

    2004-05-01

    Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H\\times \\beta _{\\rm N}/q^{2}_{95} , is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters. A preliminary version of this study was presented in the 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreux, Switzerland, 17 21 June 2002) [1].

  9. Fueling studies on the lithium tokamak experiment

    NASA Astrophysics Data System (ADS)

    Lundberg, Daniel Patrick

    Lithium plasma facing components reduce the flux of "recycled" particles entering the plasma edge from the plasma facing components. This results in increased external fueling requirements and provides the opportunity to control the magnitude and distribution of the incoming particle flux. It has been predicted that the plasma density profile will then be determined by the deposition profile of the external fueling, rather than dominated by the recycled particle flux. A series of experiments on the Lithium Tokamak Experiment demonstrate that lithium wall coatings facilitate control of the neutral and plasma particle inventories. With fresh lithium coatings and careful gas injection programming, over 90% of the injected particle inventory can be absorbed in the lithium wall during a discharge. Furthermore, dramatic changes in the fueling requirements and plasma parameters were observed when lithium coatings were applied. This is largely due to the elimination of water as an impurity on the plasma facing components. A Molecular Cluster Injector (MCI) was developed for the fueling of LTX plasmas. The MCI uses a supersonic nozzle, cooled to liquid nitrogen temperatures, to create the conditions necessary for molecular cluster formation. It has been predicted that molecular clusters will penetrate deeper into plasmas than gas-phase molecules via a reduced ionization cross-section and by improving the collimation of the neutral jet. Using an electron beam diagnostic, the densities of the cryogenic MCI are measured to be an order of magnitude higher than in the room-temperature jets formed with the same valve pressure. This indicates increased collimation relative to what would be expected from ideal gas dynamics alone. A systematic study of the fueling efficiencies achieved with the LTX fueling systems is presented. The fueling efficiency of the Supersonic Gas Injector (SGI) is demonstrated to be strongly dependent on the distance between the nozzle and plasma edge. The

  10. Tokamak plasma self-organization and the possibility to have the peaked density profile in ITER

    NASA Astrophysics Data System (ADS)

    Razumova, K. A.; Andreev, V. F.; Kislov, A. Ya.; Kirneva, N. A.; Lysenko, S. E.; Pavlov, Yu. D.; Shafranov, T. V.; T-10 Team; Donné, A. J. H.; Hogeweij, G. M. D.; Spakman, G. W.; Jaspers, R.; TEXTOR Team; Kantor, M.; Walsh, M.

    2009-06-01

    The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in several tokamaks with different methods of heating. It is shown that the normalized pressure profile has a universal shape for a wide class of tokamaks and regimes, if the normalized radius ρ = r/(IpR/κB)1/2 is used. The consequences of this phenomenon for low aspect ratio tokamaks, the optimal deposition of additional heating, fast velocity of heat/cold pulse propagation and the possibility of obtaining a peaked density profile in ITER are discussed.

  11. Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas

    SciTech Connect

    Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.; Lifschitz, A. F.

    2013-07-15

    A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.

  12. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.

  13. Tooling concepts for ITER tokamak assembly and remote disassembly

    SciTech Connect

    Oikawa, A.; Puhn, F.; Helary, J.L.; Shaw, R.; Friend, M.; Piec, Z.; Tachikawa, N.; Acks, M.; Basile, A.

    1995-12-31

    Since ITER has many of the characteristics of a full-scale tokamak reactor, its provisions for assembly and replaceability are relevant to a future fusion power plant. The performance of ITER is dependent on tight tolerances, mainly for the magnets and plasma facing components. The magnetic field must be highly uniform in the toroidal direction to ensure good plasma energy and particle confinement. Alignment of the plasma facing surface of the first wall and divertor target plates is required to avoid large local heat loads on the plasma facing components and, as a consequence, their erosion and contamination of the plasma with impurities. Because of the large and heavy components the major challenge of the ITER tokamak assembly is to hold such tight tolerances using guide tools, adjustable interfaces, accurate measuring tools, and specific procedures to compensate for deformation and fabrication tolerances. The assembly tooling plan also includes verification of the essential remote handling operations.

  14. Cryogenic requirements for the JT-60SA Tokamak

    NASA Astrophysics Data System (ADS)

    Michel, Frederic; Hitz, D.; Hoa, Christine; Lamaison, Valerie; Kamiya, Koji; Roussel, Pascal; Wanner, Manfred; Yoshida, Kiyoshi

    2012-06-01

    The superconducting tokamak JT-60SA is part of the Broader Approach Programmeagreed between Japan and Europe. CEA is in charge of the cryogenic system procurementincluding the Warm Compression Station, the gas storages, the Refrigerator Cold Box andthe Auxiliary Cold Box (ACB) which has to be installed on the JAEA Naka site in 2016.This paper summarizes the updated cryogenic requirements for the tokamak JT-60SAcryogenic system. The cryogenic system has a refrigeration capacity of about 9 kW equivalent at 4.5K, to supply cryopump panels at 3.7 K, superconducting magnets and cold structures at 4.4 K, HTS current leads at 50 K, and thermal shields at 80 K. This paper presents the static and variable heat loads of the different cooling loops and the results of the rmohydraulic calculations to derive the transient heat loads at the interface between the magnet system cooling loops and the Auxiliary Cold Box.

  15. Recent Results of IRAN-T1 Tokamak

    SciTech Connect

    Dorranian, D.; Ghoranneviss, M.; Salem, M. K.; Mahmoodi D, M.; Arvin, R.; Talebitaher, Alireza; Abhari, Ali; Khorshid, P.; Hojabri, A.

    2006-12-04

    In this article after introducing the IR-T1 tokamak and its diagnostic systems a brief discussion on the range of grossly stable operating conditions of its plasma by Hugill diagram is presented. Hard disruption instability is studied experimentally in the next part, which confirms that MHD behavior in small tokamaks can be characterized by a single parameter q(a), safety factor at plasma edge. Finally the characteristics of the new regime of IR-T1 are reported. By our new model of triggering different fields (toroidal, ohmic and vertical), the plasma duration time is increased up to 35 ms with Ip of about 25 kA. By modifying capacitance and charging voltage of ohmic and vertical fields the spike oscillations which was appeared in the plasma behavior is taken out. The role of cleaning the vacuum chamber and using heavier gas for glow discharge and the effect of base pressure is described in detail.

  16. 3D MHD disruptions simulations of tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua

    2008-11-01

    Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.

  17. [alpha]-particle transport-driven current in tokamaks

    SciTech Connect

    Heikkinen, J.A. ); Sipilae, S.K. )

    1995-03-01

    It is shown that the radial transport of fusion-born energetic [alpha] particles, induced by electrostatic waves traveling in one poloidal direction, is directly connected to a net momentum of [alpha] particles in the toroidal direction in tokamaks. Because the momentum change is almost independent of toroidal velocity, the energy required for the momentum generation remains small on an [alpha]-particle population sustained by an isotropic time-independent source. By numerical toroidal Monte Carlo calculations it is shown that the current carried by [alpha] particles in the presence of intense well penetrated waves can reach several mega-amperes in reactor-sized tokamaks. The current obtained can greatly exceed the neoclassical bootstrap current of the [alpha] particles.

  18. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  19. Multilayer mirror based line emission tomography for spherical Tokamaks

    SciTech Connect

    Stutman, D.; Hwang, Y.S.; Menard, J.; Choe, W.; Ono, M.; Finkenthal, M.; May, M.J.; Regan, S.P.; Soukhanovskii, V.; Moos, H.W.

    1997-01-01

    Due to their highly shaped plasma and possible poloidal asymmetry in impurity concentration, spherical Tokamaks will require tomographic reconstruction of local emissivities to assess impurity content and transport. To collect in an effective manner the data required for such reconstruction, we develop arrays of high throughput {open_quotes}mini-monochromators{close_quotes} using extreme ultraviolet multilayer mirrors as dispersive elements and filtered surface barrier diodes as detectors. We discuss monochromator optimization and show that by working at near normal incidence throughput and spectral resolution are simultaneously maximized. A system proposed for tomographic reconstruction of CV and CVI resonance emission at 33.7 and 40.5 {Angstrom} respectively, achieves 0.9 {Angstrom} spectral resolution, 2 cm spatial resolution, and 0.2 ms temporal resolution, together with good sensitivity and background rejection. Preliminary results obtained from CDX-U low aspect ratio tokamak are also presented. {copyright} {ital 1997 American Institute of Physics.}

  20. Estimation of Electron Temperature on Glass Spherical Tokamak (GLAST)

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Sadiq, M.; Shah, S. I. W.; GLAST Team

    2015-03-01

    Glass Spherical Tokamak (GLAST) is a small spherical tokamak indigenously developed in Pakistan with an insulating vacuum vessel. A commercially available 2.45 GHz magnetron is used as pre-ionization source for plasma current startup. Different diagnostic systems like Rogowski coils, magnetic probes, flux loops, Langmuir probe, fast imaging and emission spectroscopy are installed on the device. The plasma temperature inside of GLAST, at the time of maxima of plasma current, is estimated by taking into account the Spitzer resistivity calculations with some experimentally determined plasma parameters. The plasma resistance is calculated by using Ohm's law with plasma current and loop voltage as experimentally determined inputs. The plasma resistivity is then determined by using length and area of the plasma column. Finally, the average plasma electron temperature is predicted to be 12.65eV for taking neon (Ne) as a working gas.

  1. Pseudo-MHD ballooning modes in tokamak plasmas

    SciTech Connect

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant {open_quotes}pseudo-MHD{close_quotes} model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for {alpha} > s{sup 2}(2 {sup 7/3}/9) (r{sub p}/R{sub 0}) or-d{radical}{Beta}/dr > (2{sup 1/6} /3)(s/ R{sub 0q}), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas.

  2. Shape Optimization for DIII-D Advanced Tokamak Plasmas

    SciTech Connect

    C.E. Kesse; J.R. Ferron; C.M. Greenfield; J.E. Menard; T.S. Taylor

    2003-07-30

    The advanced tokamak program on DIII-D is targeting the full integration of high-beta and high-bootstrap/noninductive current fraction for long-pulse lengths and the high confinement consistent with these features. Central to achieving these simultaneously is access to the highest ideal beta limits possible to maximize the headroom for experimental operation with RWM control. A study of the ideal-MHD stability is done for plasmas modeled after DIII-D advanced tokamak plasmas, varying the plasma elongation, triangularity, and outboard squareness. The highest beta(sub)N limits reach 6-7 for the n=1 kink mode for all elongation, outer squareness values, and plasma triangularity equals 0.8.

  3. Equilibrium analysis of tokamak discharges with toroidal variation

    SciTech Connect

    Zwingmann, W.; Becoulet, M.; Moreau, Ph.; Nardon, E.

    2006-11-30

    Tokamaks provide a field structure that is almost axisymmetric around the torus axis. There are however always small toroidal variations due to the limited number of toroidal field coils, the magnetic field ripple. On the other hand, non-axisymmetric external fields are applied on purpose to ergodise the field structure close to the separatrix, to control the heat and particle transport across the plasma boundary. We present a perturbation method to calculate the magnetic field of tokamak discharges with with weak toroidal variation. The method is applied for the equilibrium reconstruction of Tore Supra discharges with toroidal ripple. The perturbation method does not rely on a flux surface representation and can therefore be applied to structures with magnetic islands. We obtain the plasma response to the field of ergodising external coils, as proposed for the ITER device.

  4. Maintenance concept development for the Compact Ignition Tokamak

    SciTech Connect

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs.

  5. On the Production of Relativistic Runaway Electrons in Damavand Tokamak

    NASA Astrophysics Data System (ADS)

    Moslehi-Fard, Mahmoud

    2013-02-01

    Experimental observations in Damavand tokamak show that hard X-ray is produced by either disruption with I p < 20 kA or by shots with I p > 20 kA. Hard X-ray also persists from the initiation of plasma discharge to the end. Occurrence of multiple spikes in hard X-ray during the discharge is evident. The propagation of hard X-ray is attributed to runaway electrons. We observe runaway electrons in two regimes with different characteristics. Regime (RADI) is similar to the observations of other Tokamak during disruption on that the plasma current is reduced abruptly and interpreted by Dreicer theory. In the regime of RADII, hard X-ray and subsequently runaway electrons are observed from starting of plasma discharge which provides the condition that the most of runaway electrons contain the toroidal plasma current. Runaway electron beam excites whistler waves and scattered electrons in velocity space and prevent growing the runaway electrons beam.

  6. Commissioning of heating neutral beams for COMPASS-D tokamak

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Belov, V.; Gorbovsky, A.; Dranichnikov, A.; Ivanov, A.; Sorokin, A.; Mishagin, V.; Abdrashitov, A.; Kolmogorov, V.; Kondakov, A.

    2012-02-15

    Two neutral beam injectors have been developed for plasma heating on COMPASS-D tokamak (Institute of Plasma Physics, Prague). The 4-electrodes multihole ion-optical system with beam focusing was chosen to provide the low divergence 300 kW power in both deuterium and hydrogen atoms. The accelerating voltage is 40 kV at extracted ion current up to 15 A. The power supply system provides the continuous and modulated mode of the beam injection at a maximal pulse length 300 ms. The optimal arrangement of the cryopanels and the beam duct elements provides sufficiently short-length beamline which reduces the beam losses. The evolution of the impurities and molecular fraction content is studied in the process of the high voltage conditioning of the newly made ion sources. Two injectors of the same type have been successfully tested and are ready for operation at tokamak in IPP, Prague.

  7. Drift-wave fluctuation in an inviscid tokamak plasma

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Rong; Mao, Jie-Jian; Tang, Xiao-Yan

    2013-11-01

    In order to describe the characterization of resistive drift-wave fluctuation in a tokamak plasma, a coupled inviscid two-dimensional Hasegawa—Wakatani model is investigated. Two groups of new analytic solutions with and without phase shift between the fluctuant density and the fluctuant potential are obtained by using the special function transformation method. It is demonstrated that the fluctuant potential shares similar spatio—temporal variations with the density. It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex, and that the fluctuation may be controlled through the adiabaticity and diffusion. By using the typical parameters in the quasi-adiabatic regime in the solutions with phase shift, it is shown that the density gradient becomes larger as the contours become dense toward the plasma edge and the contours have irregular structures, which reveal the nonuniform distribution in the tokamak edge.

  8. Testing of low Z coated limiters in tokamak fusion devices

    SciTech Connect

    Whitely, J.B.; Mullendore, A.W.; Langley, R.A.

    1980-01-01

    Extensive testing on a laboratory scale has been used to select those coatings most suitable for this environment. From this testing which included pulsed electron beam heating, low energy ion bombardment and arcing, chemical vapor deposited coating of TiB/sub 2/ and TiC on Poco graphite substrates have been selected and tested as limiters in ISX. Both limiter materials gave clean, stable, reproducible tokamak discharges the first day of operation. After one weeks exposure, the TiC limiter showed only superficial damage with no coating failure. The TiB/sub 2/ limiter had some small areas of coating failure. TiC coated graphite limiters have also been briefly tested in the tokamaks Alcator and PDX with favorable results.

  9. Internal disruptions and RHF in IR-T1 tokamak

    SciTech Connect

    Ghoranneviss, M.; Masnavi, M.; Khademian, A.

    1996-12-31

    Sawtooth oscillations are observed on IR-T1 Tokamak during low ql discharge with a disruption time of about 30--60 {micro}s. The q = 1 singular surface occurs at radius 3--3.5 cm and inverted Sawtooth from chords outside this radius. The superimposed (m = 1) oscillation with a frequency of about 19 kHz {approx} 25 kHz, according to the tokamak discharges parameters, preceding the Sawtooth oscillation. One major effect the Sawtooth oscillation is to flatten the temperature and density profiles approximately out to a mixing radius rm = {radical}2 rs,. Furthermore, by applying RHFs (L = 2 and L = 3), the Sawtooth behavior is modified. The magnitude of the weak RHFs used in the experiments did not exceed 1% of Bp. Results showed that the weak RHFs magnetic perturbation would change the MHD instabilities and the Sawtooth behavior, as well as plasma, confinement.

  10. Three-dimensional analysis of tokamaks and stellarators

    PubMed Central

    Garabedian, Paul R.

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  11. Three-dimensional equilibria in axially symmetric tokamaks

    PubMed Central

    Garabedian, Paul R.

    2006-01-01

    The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158

  12. Comparison of a radial fractional transport model with tokamak experiments

    SciTech Connect

    Kullberg, A. Morales, G. J.; Maggs, J. E.

    2014-03-15

    A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, α, is likely a function of radial position in the devices surveyed.

  13. Controls of Magnetic Islands by Pellet Injection in Tokamaks

    SciTech Connect

    Shaing, K. C.; Houlberg, Wayne A; Peng, Yueng Kay Martin

    2007-01-01

    The appearance of magnetic islands in tokamaks degrades plasma confinement. It is therefore important to control or eliminate the growth of the islands to improve the performance of a tokamak. A theory is developed to control magnetic islands using the localized pressure gradient driven bootstrap current by injecting pellets at the O-point of the island to create a peaked plasma pressure profile inside the island. This localized bootstrap current replenishes the missing equilibrium bootstrap current density that causes the island to grow in the first place. It is shown that the effect of the localized bootstrap current tends to reduce or eliminate the original drive for the growth of the island in the island evolution equation. The theory is also valid for the localized bootstrap current created by localized heating, but with much less effectiveness. A possibility of eliminating the island by controlling the equilibrium profiles is also discussed.

  14. On the bootstrap current in stellarators and tokamaks

    SciTech Connect

    Helander, P.; Geiger, J.; Maassberg, H.

    2011-09-15

    The expression for the long-mean-free-path limit of the bootstrap current in stellarators is rederived in such a way that the expansion procedure is identical to that used in the corresponding calculation for a tokamak. In addition, the first correction due to finite collisionality is calculated and shown to vanish in quasi-isodynamic configurations without net current. This correction, which is proportional to the square root of the collisionality, is found to compare well with a numerical solution of the first-order drift kinetic equation in spherical tokamak geometry. Numerically, it appears that there is a similar correction in general stellarator geometry, which however depends on the strength of the radial electric field.

  15. Control of magnetic islands by pellet injection in tokamaks

    SciTech Connect

    Shaing, K. C.; Houlberg, W. A.; Peng, M.

    2007-07-15

    The appearance of magnetic islands in tokamaks degrades plasma confinement. It is therefore important to control or eliminate the growth of the islands to improve the performance of a tokamak. A theory is developed to control magnetic islands using the localized pressure gradient driven bootstrap current by injecting pellets at the O-point of the island to create a peaked plasma pressure profile inside the island. This localized bootstrap current replenishes the missing equilibrium bootstrap current density that causes the island to grow in the first place. It is shown that the effect of the localized bootstrap current tends to reduce or eliminate the original drive for the growth of the island in the island evolution equation. The theory is also valid for the localized bootstrap current created by localized heating, but with much less effectiveness. A possibility of eliminating the island by controlling the equilibrium profiles is also discussed.

  16. Control of magnetic islands by pellet injection in tokamaks

    SciTech Connect

    Shaing, K. C.; Rome, James A; Peng, Yueng Kay Martin

    2007-01-01

    The appearance of magnetic islands in tokamaks degrades plasma confinement. It is therefore important to control or eliminate the growth of the islands to improve the performance of a tokamak. A theory is developed to control magnetic islands using the localized pressure gradient driven bootstrap current by injecting pellets at the O-point of the island to create a peaked plasma pressure profile inside the island. This localized bootstrap current replenishes the missing equilibrium bootstrap current density that causes the island to grow in the first place. It is shown that the effect of the localized bootstrap current tends to reduce or eliminate the original drive for the growth of the island in the island evolution equation. The theory is also valid for the localized bootstrap current created by localized heating, but with much less effectiveness. A possibility of eliminating the island by controlling the equilibrium profiles is also discussed. (c) 2007 American Institute of Physics.

  17. Equilibrium calculations for plasma control in CIT (Compact Ignition Tokamak)

    SciTech Connect

    Strickler, D.J.; Peng, Y-K.M. . Fusion Engineering Design Center); Pomphrey, N.; Jardin, S.C. . Plasma Physics Lab.)

    1990-01-01

    The free-boundary equilibrium code VEQ provides equilibrium data that are used by the Tokamak Simulation Code (TSC) in design and analysis of the poloidal field (PF) system for the Compact Ignition Tokamak (CIT). VEQ serves as an important design tool for locating the PF coils and defining coil current trajectories and control systems for TSC. In this report, VEQ and its role in the TSC analysis of the CIT PF system are described. Equilibrium and coil current calculations are discussed, an overview of the CIT PF system is presented, a set of reference equilibria for modeling a complete discharge in CIT is described, and the concept of a plasma shape control matrix is introduced. 9 refs., 8 figs., 7 tabs.

  18. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    SciTech Connect

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  19. On the economic prospects of nuclear fusion with tokamaks

    NASA Astrophysics Data System (ADS)

    Pfirsch, D.; Schmitter, K. H.

    1987-12-01

    A method of cost and construction energy estimation for tokamak fusion power stations conforming to the present stage of fusion development is described. The method is based on first-wall heat load constraints rather than Beta limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled Environmental Impact and Economic Prospects of Nuclear Fusion (1986). It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is derived when it is properly applied for cost estimation of advanced gas-cooled and Magnox reactors, the two examples presented by the European study to disprove it.

  20. Molecular emission in the edge plasma of T-10 tokamak

    SciTech Connect

    Zimin, A. M.; Krupin, V. A.; Troynov, V. I.; Klyuchnikov, L. A.

    2015-12-15

    The experiments on recording molecular emission in the edge plasma of the T-10 tokamak are described. To obtain reliable spectra with sufficient spectral, temporal, and spatial resolution, the optical circuit is optimized for various experimental conditions. Typical spectra measured in two sections of the tokamak are shown. It is shown that, upon varying the parameters of the discharge, the molecular spectrum not only changes significantly in intensity but also undergoes a qualitative change in the rotational and vibrational structure. For a detailed analysis, we use the Fulcher-α system (d{sup 3}Π{sub u}–a{sup 3}Σ{sub g}{sup +}) of deuterium in the wavelength range from 590 to 640 nm. The rotational temperatures of ground state X{sup 1}Σ{sub g}{sup +} and upper excited state d{sup 3}Π{sub u} are estimated by the measured spectra.

  1. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    SciTech Connect

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  2. (Injection of compact toroids for tokamak fueling and current drive)

    SciTech Connect

    Hwang, D.Q.; Rogers, J.H.; Thomas, J.C.; Evans, R.; Foley, R.; Hillyer, T.

    1991-01-01

    The experimental goals for the 1990--1991 period were the operation of the Davis Diverted Tokamak(DDT), the beat wave experiment, and the construction of the compact toroid injection experiment(CTIX). The experiment results from these areas are summarized in the posters given in the APS meeting past November. Here we shall describe the technical progress of the development of the diagnostic system for beat wave experiment, and CT injection especially in relation to the up coming injection experiments into DDT tokamak. The tokamak operation of DDT over the past year has been focused in two parameter ranges. The long pulse discharges (over 100 msec), and the low q short pulse discharges (about 10 msec). We found that the long pulse discharges required a position feedback more sophisticated than the simple passive program that we have. We are in the process of assembling this system. We also found an interesting low q(a) operating regime. Here an equilibrium can be established for a toroidal field between .5 and 1 kG. The typical plasma current is > 5kA. The density of the plasma is between 10{sup 12} and 10{sup 13} cm{sup {minus}3}. The plasma condition in these discharge are sufficiently mild that diagnostic probes can be used to measure various plasma fluctuations. We believe that this will be the regime best suited to study the interaction between the tokamak plasma and the compact toroid. A sophisticated probe system of both electrostatic and electromagnetic types similar to those used in the beat wave experiment has been designed for the up coming experiments.

  3. Note for the Mirnov signal analysis in tokamaks

    SciTech Connect

    Kikuchi, M.

    1985-05-01

    The relation between Mirnov coil signals and the current perturbation on the rational surface is examined analytically by using the approximate Green's function for the case of large aspect ratio circular tokamaks. Satellite island formation, phase modulation effect due to the poloidal variation of the field line pitch, and the shift effect of the plasma column with respect to the center of the vacuum chamber are examined. The detectability of these effects from Mirnov coil signals is discussed for TFTR.

  4. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  5. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    SciTech Connect

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.

    2011-03-18

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  6. Problems with the concept of plasma equilibrium in tokamaks

    SciTech Connect

    Carreras, B.A.

    1992-06-01

    The equilibrium condition for a magnetically confined plasma in normally formulated in terms of macroscopic equations. In these equations, the plasma pressure is assumed to be a function of the magnetic flux with continuous derivatives. However, in three- dimensional systems this is not necessarily the case. Here, we look at the case of an intrinsically three-dimensional realistic tokamak, and we discuss the possible interconnection between the equilibrium and anomalous transport.

  7. FEM (Free Electron Maser) for tokamak: Final report

    SciTech Connect

    Not Available

    1987-01-01

    This paper studies the feasibility of a microwave source for heating a tokamak reactor. The free electron maser (FEM) shows great promise for being this source. The topics covered in this paper are microwave generation with FEM, efficiency enhancement, parameter scaling, space charge scaling, beam energy spread and efficiency scaling, electron beam line with energy recovery, achromatic bend, multi-stage depressed voltage electron beam collector, and development plans. 12 refs., 10 figs., 5 tabs. (LSP)

  8. Thermally excited proton spin-flip laser emission in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.

  9. Multi-field plasma sandpile model in tokamaks and applications

    NASA Astrophysics Data System (ADS)

    Peng, X. D.; Xu, J. Q.

    2016-08-01

    A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.

  10. Drift-Wave Instabilities and Transport in Non - Tokamak Geometry

    NASA Astrophysics Data System (ADS)

    Hua, Daniel Duc

    Motivated by experimental scaling laws that suggest an improvement in the confinement time of fusion plasmas in tokamaks with elongated cross section, we search theoretically for favorable dependence on elongation for drift-wave instabilities, which may be responsible for anomalous transport in tokamaks. First, using thermodynamic methods, we derive upper bounds on thermal diffusivities for drift-wave instabilities in tokamaks but find no elongation dependence to lowest order. Also, compared with experimentally inferred ion thermal diffusivities from the DIIID tokamak, the thermodynamic bounds are as much as 100 times bigger in the plasma core. Second, utilizing a simulation code to calculate linear growth rates, we obtain mixing-length estimates of ion thermal diffusivities for a specific drift wave, the ion-temperature-gradient (ITG) mode, which becomes unstable only if the temperature gradient exceeds a finite threshold value (whereas the thermodynamic constraints allow instability for any value). We find that the simulation growth rates and the diffusivities estimated from them do decrease for increasing elongation, due to finite Larmor radius effects (which do not explicitly appear in the thermodynamic constraints). Compared with the experimentally inferred diffusivities, the simulation diffusivities are similar near the edge but are 10 times bigger in the core. However, a small adjustment in the temperature profile, within experimental and theoretical uncertainties, would produce good agreement everywhere. Therefore, we suggest that for the DIIID experiments studied, the plasma is actually very close to the ITG instability threshold in the core and farther away from threshold near the edge, but not far enough to induce the full thermodynamic level of diffusivities. This conjecture is supported by model transport calculations that reproduce the experimental diffusivity profile fairly well.

  11. Computational model of surface ablation from tokamak disruptions

    SciTech Connect

    Ehst, D.; Hassanein, A.

    1993-10-01

    Energy transfer to material surfaces is dominated by photon radiation through low temperature plasma vapors if tokamak disruptions are due to low kinetic energy particles ( < 100 eV). Simple models of radiation transport are derived and incorporated into a fast-running computer routine to model this process. The results of simulations are in fair agreement with plasma gun erosion tests on several metal targets.

  12. Viscous damping of toroidal angular momentum in tokamaks

    SciTech Connect

    Stacey, W. M.

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  13. Imaging charge exchange recombination spectroscopy on the TEXTOR tokamak

    NASA Astrophysics Data System (ADS)

    Howard, J.; Jaspers, R.; Lischtschenko, O.; Delabie, E.; Chung, J.

    2010-12-01

    We describe the application of a simple spatial-heterodyne coherence-imaging filter for 2D Doppler imaging of charge exchange recombination (CXR) emission from a heating beam in the TEXTOR tokamak. Results obtained by the CXR imaging system are found to be consistent with measurements obtained using a standard multi-channel spectrometer-based system. We describe the system, indicate possible enhancements and future applications for imaging CXRS.

  14. Edge region hydrogen line emission in the PDX tokamak

    SciTech Connect

    McNeill, D.H.; Bell, M.G.; Grek, B.; LeBlanc, B.

    1984-02-01

    Measurements of the H/sub ..cap alpha../ line shape and of the spatial distribution of the H/sub ..cap alpha../ emissivity in the PDX tokamak are interpreted in terms of molecular dissociation reactions at the plasma edge. The influx of molecules is shown to be roughly proportional to the edge emission intensity over a wide range of temperatures. The H/sub 2/ particle lifetime is estimated for various types of discharges in PDX.

  15. Edge region hydrogen line emission in the PDX tokamak

    SciTech Connect

    McNeill, D.H.; Bell, M.G.; Grek, B.; LeBlanc, B.

    1984-04-01

    Measurements of the H/sub ..cap alpha../ line shape and of the spatial distribution of H/sub ..cap alpha../ emissivity in the PDX tokamak are interpreted in terms of molecular dissociation reactions at the plasma edge. The in-flux of molecules is shown to be roughly proportional to the edge emission intensity over a wide range of temperatures. The H/sub 2/ particle lifetime is estimated for various types of discharges in PDX.

  16. Stochastic Acceleration of Dust Particles in Tokamak Edge Plasmas

    SciTech Connect

    Marmolino, C.; De Angelis, U.; Ivlev, A. V.; Morfill, G. E.

    2008-10-15

    Stochastic heating of dust particles resulting from dust charge fluctuations is considered in the conditions of the scrape-off-layer (SOL) in tokamak plasmas. It is shown that kinetic energies corresponding to velocities of {approx_equal}Km/s can be reached in times of order {approx_equal}1 ms by micron-size dust particles interacting with a background of stochastically heated nano-size dust particles.

  17. A moving finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Glasser, A.H.; Kuprat, A.P.

    1993-10-01

    Most numerical simulations of the tokamak scrapeoff layer use a mapping to flux coordinates and a piecewise equidistributed grid in those coordinates to resolve the multiple length scales and anisotropy characteristic of this problem. We have developed an alternative numerical method using simple cylindrical coordinates with a complex adaptive grid scheme. It is based on an understructured grid of traingles which move adaptively, aligning themselves with the magnetic field and concentrating in regions of sharp gradients.

  18. Key Aspects of EBW Heating and Current Drive in Tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Preinhaelter, Josef; Taylor, Gary; Vahala, Linda; Vahala, George

    2010-11-01

    Electron Bernstein wave (EBW) heating and current drive is modeled by coupled mode conversion, ray-tracing (AMR) and Fokker-Planck (LUKE) codes. Deposition and current drive profiles are determined for EBW with various injection parameters under realistic spherical tokamak conditions. There parameters are varied to investigate the robustness of the applied scenarios. The importance of relativistic corrections to EBW absorption is considered. The differences between various relativistic models are explored.

  19. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    SciTech Connect

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  20. Dust-Particle Transport in Tokamak Edge Plasmas

    SciTech Connect

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.

  1. Variational Symplectic Orbit Code in 3-D Tokamak Geometry

    NASA Astrophysics Data System (ADS)

    Ellison, Charles; Qin, Hong; Tang, William M.

    2011-10-01

    Since advanced tokamak experiments - including ITER - are long-pulse systems, it is important to develop accurate numerical methods to track plasma dynamics over an extended temporal period. When attempting to model the motion of individual particles, standard integrators (e.g. 4th order Runge-Kutta) discretize the differential equations of motion - but do not possess desired properties such as energy conservation. The variational symplectic integrator adopts instead a different approach via minimizing the action of the guiding center motion to determine iteration rules. Consequently, the Lagrangian symplectic structure is conserved, and the numerical energy error is bounded by a small number for all time-steps. In previous work, the theoretical basis for this method was introduced, but the implementation was for 2-D geometry. To address realistic experimental scenarios, the variational symplectic integrator has been implemented for 3-D tokamak geometry for the first time. Sample results will be presented and compared with those from standard Runge-Kutta-based 3-D tokamak orbit codes. This work was supported by the DOE contract # DE-AC02-09CH11466 and the DOE FES Fellowship.

  2. Performance Projections For The Lithium Tokamak Experiment (LTX)

    SciTech Connect

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-06-17

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  3. Performance projections for the lithium tokamak experiment (LTX)

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-05-01

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  4. Currents induced in tokamaks by electron cyclotron heating

    SciTech Connect

    Eldridge, O. C.

    1980-10-01

    Generation of a plasma current is predicted in association with strong electron cyclotron heating in tokamaks or in any plasma with transverse magnetic field gradients. The current predicted in present-day tokamaks is of the order of one-quarter ampere per watt, which is large enough to be detected in heating experiments in progress. The current scales linearly with electron temperature and heating power and inversely with density and major radius. The mechanism depends on the Doppler shift for electrons streaming along magnetic field lines. Electrons streaming toward the source of radiation are resonant at a larger magnetic field. When the interaction is strong, radiation incident from the high field side is absorbed before reaching the cold electron resonant surface, and, so, a unidirectional population of electrons is heated. The anisotropic electron distribution gains momentum by collisions with ions. For small tokamaks the extraordinary wave should be launched for current drive, but for reactors the ordinary wave produces a sufficiently strong interaction.

  5. Economic analyses of alpha channeling in tokamak power plants.

    SciTech Connect

    Ehst, D.A.

    1998-09-17

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.

  6. Analysis of neutral hydrogenic emission spectra in a tokamak

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.; Jaspers, R. J. E.

    2015-10-01

    Balmer-α radiation by the excitation of thermal and fast neutral hydrogenic particles has been investigated in a magnetically confined fusion device, or tokamak, from the Korea Superconducting Tokamak Advanced Research (KSTAR). From the diagnostic point of view, the emission from thermal neutrals is associated with passive spectroscopy and that from energetic neutrals that are usually injected from the outside of the tokamak to the active spectroscopy. The passive spectroscopic measurement for the thermal Balmer-α emission from deuterium and hydrogen estimates the relative concentration of hydrogen in a deuterium-fueled plasma and therefore, makes a useful tool to monitor the vacuum wall condition. The ratio of hydrogen to deuterium obtained from this measurement qualitatively correlates with the energy confinement of the plasma. The Doppler-shifted Balmer-α components from the fast neutrals features the spectrum of the motional Stark effect (MSE) which is an essential principle for the measurement of the magnetic pitch angle profile. Characterization of this active MSE spectra, especially with multiple neutral beam lines crossing along the observation line of sight, has been done for the guideline of the multi-ion-source heating beam operation and for the optimization of the narrow bandpass filters that are required for the polarimeter-based MSE diagnostic system under construction at KSTAR.

  7. Modeling of Anomalous Transport in Tokamaks with FACETS code

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Batemann, G.; Kritz, A.; Rafiq, T.; Vadlamani, S.; Hakim, A.; Kruger, S.; Miah, M.; Rognlien, T.

    2009-05-01

    The FACETS code, a whole-device integrated modeling code that self-consistently computes plasma profiles for the plasma core and edge in tokamaks, has been recently developed as a part of the SciDAC project for core-edge simulations. A choice of transport models is available in FACETS through the FMCFM interface [1]. Transport models included in FMCFM have specific ranges of applicability, which can limit their use to parts of the plasma. In particular, the GLF23 transport model does not include the resistive ballooning effects that can be important in the tokamak pedestal region and GLF23 typically under-predicts the anomalous fluxes near the magnetic axis [2]. The TGLF and GYRO transport models have similar limitations [3]. A combination of transport models that covers the entire discharge domain is studied using FACETS in a realistic tokamak geometry. Effective diffusivities computed with the FMCFM transport models are extended to the region near the separatrix to be used in the UEDGE code within FACETS. 1. S. Vadlamani et al. (2009) %First time-dependent transport simulations using GYRO and NCLASS within FACETS (this meeting).2. T. Rafiq et al. (2009) %Simulation of electron thermal transport in H-mode discharges Submitted to Phys. Plasmas.3. C. Holland et al. (2008) %Validation of gyrokinetic transport simulations using %DIII-D core turbulence measurements Proc. of IAEA FEC (Switzerland, 2008)

  8. Operation of a tokamak reactor in the radiative improved mode

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Mavrin, A. A.

    2016-03-01

    The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.

  9. Imaging polarimeter/interferometer arrays for tokamak measurements. Technical progress report FY 84. [Imaging polarimeters and interferometer arrays for tokamaks

    SciTech Connect

    Not Available

    1984-01-01

    The Task IIIB program has continued to make significant strides during the last year. Laboratory test studies continued in our development efforts on imaging polarimeter and interferometer arrays in support of the tokamak measurements carried out under Task IIIA. This work ensures that the system optics and resolution are completely understood prior to attempting actual tokamak measurements. New microbolometer designs and fabrication techniques increased their sensitivity by over an order of magnitude compared with the previous devices. In addition, the development of sensitive monolithic integrated Schottky diode detector arrays has shown rapid progress. Heterodyne noise temperature of less than 9000/sup 0/K have already been achieved at 94 GHz with extension into the submillimeter region anticipated during the coming year.

  10. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  11. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  12. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  13. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028

  14. High power heating of magnetic reconnection in merging tokamak experiments

    SciTech Connect

    Ono, Y.; Tanabe, H.; Gi, K.; Watanabe, T.; Ii, T.; Yamada, T.; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.

  15. Summary of the IEA Workshop on Alpha Physics and Tritium Issues in Large Tokamaks

    SciTech Connect

    Cheng, C.Z.; Stratton, B.; Zweben, S.J.; Pitcher, C.S.

    1993-11-01

    A brief summary is presented of the talks given during this meeting, which was held at PPPL and sponsored by the IEA (International Energy Agency) as part of the Large Tokamak collaboration. These talks are summarized into four sessions: tritium issues in large tokamaks, alpha particle simulation experiments, alpha particle theory, and alpha particle diagnostics.

  16. TSC simulation of feedback stabilization of axisymmetric modes in tokamaks using driven halo currents

    SciTech Connect

    Jardin, S.C.; Schmidt, J.A.

    1997-03-01

    The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrapeoff layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer significant advantages over the more conventional method of controlling this instability when applied in a reactor environment.

  17. Characteristics of solid-target charge-exchange analyzers for energetic ion diagnostics on tokamaks

    SciTech Connect

    Beiersdorfer, P.; Roquemore, A.L.; Kaita, R.

    1987-05-01

    Compact electrostatic charge-exchange analyzers have been constructed for installation in areas of high magnetic fields and restricted access near tokamak fusion devices. The analyzers employed carbon stripping foils, and have been calibrated for proton energies between 1 and 70 keV. They have been successfully used to study charge-exchange losses in auxiliary-heated tokamak plasmas.

  18. Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges

    SciTech Connect

    Langley, R.A.; Rowan, W.L.; Bravinec, R.V.; Nelin, K.

    1986-01-01

    The global recombination rate coefficient k/sub r/ for hydrogen has been measured in the TEXT tokamak vacuum for various surface conditions. An attempt was made to correlate the measured values of k/sub r/ with RGA data taken prior to each k/sub r/ measurement and with the power radiated during tokamak discharges produced after each k/sub r/ measurement. The results show that: k/sub r/ increases during a series of tokamak discharges, k/sub r/ is relatively insensitive to power radiated during tokamak discharges, k/sub r/ increases with the RGA measurements of mass 28 and 40 but not with mass 18. In addition, it was found that the RGA mass 18 (H/sub 2/O) signal decreased as glow discharge experiments with hydrogen were performed.

  19. Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges

    SciTech Connect

    Langley, R.A.; Rowan, W.L.; Bravenec, R.V.; Nelin, K.

    1986-10-01

    The global recombination rate coefficient k/sub r/ for hydrogen has been measured in the TEXT tokamak vacuum vessel for various surface conditions. An attempt was made to correlate the measured values of k/sub r/ with residual gas analyzer (RGA) data taken before each measurement of k/sub r/ and with the power radiated during tokamak discharges produced after each measurement of k/sub r/. The results show that k/sub r/ increases during a series of tokamak discharges, k/sub r/ is relatively insensitive to power radiated during tokamak discharges, and k/sub r/ increases with the RGA measurements of mass 28 and 40 but not with those of mass 18. In addition, it was found that the mass 18 (H/sub 2/O) signal decreases as glow discharge experiments with hydrogen were performed.

  20. A charged fusion product diagnostic for a spherical tokamak

    NASA Astrophysics Data System (ADS)

    Perez, Ramona Leticia Valenzuela

    Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are

  1. Dynamic modeling of transport and positional control of tokamaks

    SciTech Connect

    Jardin, S.C.; Pomphrey, N.; DeLucia, J.

    1985-10-01

    We describe here a numerical model of a free boundary axisymmetric tokamak plasma and its associated control systems. The plasma is modeled with a hybrid method using two-dimensional velocity and flux functions with surface-averaged MHD equations describing the evolution of the adiabatic invariants. Equations are solved for the external circuits and for the effects of eddy currents in nearby conductors. The method is verified by application to several test problems and used to simulate the formation of a bean-shaped plasma in the PBX experiment.

  2. Eikonal waves, caustics and mode conversion in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Jaun, A.; Tracy, E. R.; Kaufman, A. N.

    2007-01-01

    Ray optics is used to model the propagation of short electromagnetic plasma waves in toroidal geometry. The new RAYCON code evolves each ray independently in phase space, together with its amplitude, phase and focusing tensor to describe the transport of power along the ray. Particular emphasis is laid on caustics and mode conversion layers, where a linear phenomenon splits a single incoming ray into two. The complete mode conversion algorithm is described and tested for the first time, using the two space dimensions that are relevant in a tokamak. Applications are shown, using a cold plasma model to account for mode conversion at the ion-hybrid resonance in the Joint European Torus.

  3. Radiation−condensation instability in tokamaks with mixed impurities

    SciTech Connect

    Morozov, D. Kh.; Pshenov, A. A.

    2015-08-15

    Radiation−condensation instability (RCI) is one of the possible mechanisms behind the formation of microfaceted asymmetric radiation from the edge (MARFE) of a tokamak. It has been previously shown by the authors that RCI in carbon-seeded plasma can be stabilized using neon injection. Recently, beryllium- and tungsten-seeded plasmas became a subject of great interest. Therefore, in the present paper, RCI stability analysis of the edge plasma seeded with beryllium, tungsten, nitrogen, and carbon is performed. The influence of neutral hydrogen fluxes from the wall on the marginal stability limit is studied as well.

  4. Anomalous transport and confinement scaling studies in tokamaks

    SciTech Connect

    Tang, W.M.; Cheng, C.Z.; Krommes, J.A.; Lee, W.W.; Oberman, C.R.; Perkins, F.W.; Rewoldt, G.; Smith, R.; Bonoli, P.; Coppi, B.

    1984-09-01

    In addressing the general issue of anomalous energy transport, this paper reports on results of theoretical studies concerning: (1) the characteristics and relative strength of the dominant kinetic instabilities likely to be present under realistic tokamak operating conditions; (2) specific nonlinear processes relevant to the saturation and transport properties of drift-type instabilities; (3) the construction of semiempirical models for electron thermal transport and the scaling trends inferred from them; and (4) the application of specific anomalous transport models to simulate recent large-scale confinement experiments (TFTR and JET) and current drive experiments.

  5. Microwave Imaging Reflectometry for the Visualization of Turbulence in Tokamaks

    SciTech Connect

    E. Mazzucato

    1999-12-16

    Understanding the mechanism of anomalous transport in magnetically confined plasmas requires the use of sophisticated diagnostic tools for the measurement of short-scale turbulent fluctuations. This paper describes the conceptual design of an experimental technique for the global visualization of density fluctuations in tokamaks. The proposed method is based on microwave reflectometry and consists in using a large diameter probing beam, collecting the reflected waves with a large aperture antenna, and forming an image of the reflecting plasma layer onto a 2D array of microwave receivers. Based on results from a series of numerical simulations, the theoretical feasibility conditions of the proposed method are discussed.

  6. Resonant magnetic perturbations and edge ergodization on the COMPASS tokamak

    SciTech Connect

    Cahyna, P.; Fuchs, V.; Krlin, L.

    2008-09-15

    Results of calculations of resonant magnetic perturbation spectra on the COMPASS tokamak are presented. Spectra of the perturbations are calculated from the vacuum field of the perturbation coils. Ergodization is then estimated by applying the criterion of overlap of the resulting islands and verified by field line tracing. Results show that for the chosen configuration of perturbation coils an ergodic layer appears in the pedestal region. The ability to form an ergodic layer is similar to the theoretical results for the ELM suppression experiment at DIII-D; thus, a comparable effect on ELMs can be expected.

  7. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  8. Formation and Stability of Impurity "snakes" in Tokamak Plasmas

    SciTech Connect

    L. Delgado-Aparicio, et. al.

    2013-01-28

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried-out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q < 1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature

  9. Impurity Line Emissions in VUV Region of TCABR Tokamak

    SciTech Connect

    Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.

    2008-04-07

    Spectral emissions in the vacuum ultraviolet region from 50 nm to 320 nm have been measured on TCABR tokamak using an one meter VUV spectrometer and a MCP coupled to a CCD detector. Among the 98 emissions classified, 37 are from first order diffraction, 29 are from second order, 24 are from third order, 7 from fourth order, and one from fifth order diffraction. Main impurity lines are OII to OVII, CII to CIV, NIII to N V, FVII, besides working gas plasma hydrogen Lyman lines.

  10. The tokamak density limit: A thermo-resistive disruption mechanism

    NASA Astrophysics Data System (ADS)

    Gates, David

    2015-11-01

    A magnetic island growth mechanism based on radiative cooling of the internal island flux surfaces is shown to produce the correct physical scaling to explain one of the long standing mysteries of tokamak physics - the empirical Greenwald density limit. In this presentation we will review the phenomenology of the density limit and the correlation between the Greenwald limit and the onset threshold for radiation-driven tearing modes. The behavior of magnetic islands with a 3D electron temperature distribution which is consistent with a large ratio of radial to parallel heat conductivity - and a corresponding 3D resistivity profile - is examined for islands with near-zero net heating in the island interior. The effect of varying impurity mix on the local island onset threshold is consistent with the established experimental scalings for tokamaks at the density limit. A simple analytic theory is developed which reveals the effect of heating and cooling in the island interior as well as the effect of island asymmetry. It is shown that a new term accounting for the thermal effects of island asymmetry is a crucial addition to the Modified Rutherford Equation. The resultant model exhibits a robust onset of a rapidly growing tearing mode - consistent with the disruption mechanism observed at the density limit in tokamaks. Additionally, a fully non-linear 3D cylindrical calculation is performed that simulates the effect of net island heating / cooling by raising / suppressing the temperature in the core of the island. In both the analytic theory and the numerical simulation a sudden threshold for explosive growth is found to be due to the interaction between three distinct thermal non-linearities, which affect the island resistivity, thereby modifying the growth dynamics. Expanding on the model presented, we speculate that the mechanism described may be applicable to a much wider range of tokamak disruptions than just those near the Greenwald limit. This work is supported

  11. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    SciTech Connect

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; McKenzie-Carter, M.A.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR.

  12. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  13. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  14. Experimental study of the principles governing tokamak transport

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Gruber, O.; Lackner, K.; Murmann, H. D.; Speth, E.; Becker, G.; Bosch, H. S.; Brocken, H.; Cattanei, G.; Dorst, D.; Eberhagen, A.; Elsner, A.; Erckmann, V.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Grieger, G.; Grigull, P.; Haas, G.; Hacker, H.; Hartfuss, H. J.; Jäckel, H.; Jaenicke, R.; Janeschitz, G.; Junker, J.; Karger, F.; Kasparek, W.; Keilhacker, M.; Kick, M.; Klüber, O.; Kornherr, M.; Kroiss, H.; Kuehner, M.; Lenoci, M.; Lisitano, G.; Maassberg, M.; Mahn, C.; Marlier, S.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Müller, .; Müller, G.; Niedermeyer, H.; Ohlendorf, W.; Poschenrieder, W.; Rapp, H.; Rau, F.; Renner, H.; Riedler, H.; Ringler, H.; Sardei, F.; Schüller, P. G.; Schwörer, K.; Siller, G.; Söldner, F.; Steuer, K.-H.; Thumm, M.; Tutter, M.; Vollmer, O.; Weller, A.; Wilhelm, R.; Wobig, H.; Würsching, E.; Zippe, M.

    1986-05-01

    Both in ohmically and beam-heated L-mode discharges of ASDEX, the electron-temperature (Te) profile shape can be varied over a wide range by the choice of the safety factor qa. The power-deposition profile, on the contrary, has no effect on the Te-profile shape. In current-free WVII-A stellarator plasmas, no such invariance property is found. An independent constraint seems to fix the current distribution j(r) of the tokamak, which defines the conditions of electron heat transport.

  15. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    SciTech Connect

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-06-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses.

  16. Measuring the escaping beam ions from a tokamak plasma

    SciTech Connect

    Buchenauer, D.; Heidbrink, W.W.; Roquemore, L.; McGuire, K.

    1987-12-01

    A new technique using a silicon surface barrier (SSB) diode has been developed for measuring the escaping fast ion flux from a tokamak plasma. Calibration of the detector with an ion beam showed that at a fixed energy the diode's output current varied linearly with the incident deuteron flux. The diode was mounted inside the PDX vacuum vessel with collimating apertures designed to admit the spiraling orbits of 50-keV deuterons expelled from the plasma by MHD instabilities. Results from PDX indicated that relative measurements of the escaping fast ion flux due to several plasma instabilities could be made.

  17. A design retrospective of the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Luxon, J. L.

    2002-05-01

    The DIII-D tokamak evolved from the earlier Doublet III device in 1986. Since then, the facility has undergone a number of changes including the installation of divertor baffles and pumping chambers in the vacuum vessel, the addition of a radiation shield, the development of extensive neutral beam and RF heating systems, and the addition of a comprehensive plasma control system. The facility has become the focus of a broad fusion plasma science research programme. An integrated picture of the facility and its capabilities is presented.

  18. GAM observation in the TUMAN-3M tokamak

    NASA Astrophysics Data System (ADS)

    Bulanin, V. V.; Askinazi, L. G.; Belokurov, A. A.; Kornev, V. A.; Lebedev, V.; Petrov, A. V.; Tukachinsky, A. S.; Vildjunas, M. I.; Wagner, F.; Yashin, A. Yu

    2016-04-01

    Results of an experimental study of geodesic acoustic modes (GAM) in the TUMAN-3M tokamak are reported. With Doppler backscattering (DBS) the basic properties of the GAM such as frequency, conditions for the GAM existence and the GAM radial location have been identified. The two-frequency Doppler reflectometer system was employed to reveal an interplay between low frequency sheared poloidal rotation, ambient turbulence level and the GAM intensity. Bicoherence analysis of the DBS data evidences the presence of a nonlinear interaction between the GAM and plasma turbulence.

  19. Nonlinear tearing instabilities in tokamaks with locally flattened current profiles

    SciTech Connect

    Reiman, A.H.

    1988-07-01

    Nonlinear tearing stability is evaluated for current profiles which are linearly stabilized by flattening the current in the neighborhood of the rational surface. When marginally stable to the linear instability, these profiles remain unstable in the presence of a small but finite island. The growth of the island saturated only when the island reaches the width it would have attained in the absence of flattening. Implications are discused for proposed methods of tearing mode stabilization and for theories of the tokamak sawtooth oscillation. 19 refs., 1 fig.

  20. Tritium Experience in Large Tokamaks: Application to ITER

    SciTech Connect

    Skinner, C.H.; Gentile, C.; Hosea, J.; Mueller, D; Gentile, C.; Federici, G.; Haanges, R.

    1998-05-01

    Recent experience with the use of tritium fuel in the Tokamak Fusion Test Reactor and the Joint European Torus, together with progress in developing the technical design of the International Thermonuclear Experimental Reactor has expanded the technical knowledge base for tritium issues in fusion. This paper reports on an IEA workshop that brought together scientists and engineers to share experience and expertise on all fusion-related tritium issues. Extensive discussion periods were devoted to exploring outstanding issues and identifying potential R{ampersand}D avenues to address them. This paper summarizes the presentations, discussions, and recommendations.

  1. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  2. Ambipolarity in a tokamak with magnetic field ripple

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    2016-08-01

    In view of the recognized importance of electrostatic fields regarding turbulent transport, the radial electric field in a tokamak with magnetic field ripple is reconsidered. Terms in the ambipolarity condition involving the radial derivative of the field are derived from an extended drift-kinetic equation, including effects of second order in the gyroradius. Such terms are of interest in part because of their known importance in rotational relaxation equations for the axisymmetric case. The electric field is found to satisfy a nonlinear differential equation that is universal in a certain sense, and that implies spatial relaxation of the potential to its conventionally predicted value.

  3. Nonlinear saturation of ballooning modes in tokamaks and stellarators

    PubMed Central

    Bauer, F.; Garabedian, P.; Betancourt, O.

    1988-01-01

    The spectral code BETAS computes plasma equilibrium in a toroidal magnetic field B = [unk]s × [unk]Ψ with remarkable accuracy because the finite difference scheme employed in the radial direction allows for discontinuities of the flux function Ψ across the nested surfaces s = const. Instability of higher modes in stellarators like the Heliotron E can be detected in roughly an hour on the best supercomputers by calculating bifurcated equilibria that are defined over just one field period. The method has been validated by comparing results about nonlinear saturation of ballooning modes in tokamaks with numerical data from the PEST code. PMID:16593984

  4. Enhancement of the Bootstrap Current in a Tokamak Pedestal

    SciTech Connect

    Kagan, Grigory; Catto, Peter J.

    2010-07-23

    The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.

  5. Liquid nitrogen cooling considerations of the Compact Ignition Tokamak

    SciTech Connect

    Dabiri, A.E.

    1986-10-01

    A simple model was developed to estimate the cooldown time between pulses of toroidal field (TF) coils of the Compact Ignition Tokamak (CIT) using liquid nitrogen. Good agreement was obtained between the analysis results and those measured in the early fusion experimental devices. A cooldown time of about 1 h would reduce the TF coil temperature to about 80 K. An R and D experimental program is required to determine the actual cooldown time between pulses, an issue in the conceptual design of the CIT.

  6. Carborane films: Applications to first-wall problems in tokamaks

    SciTech Connect

    Doyle, B.L.; Walsh, D.S.; Wampler, W.R.; Hays, A.K. ); Dylla, H.F.; Manos, D.M.; Kilpatrick, S.J. . Plasma Physics Lab.)

    1990-01-01

    RF plasma-assisted CVD and sputter deposition of amorphous boron-carbon layers similar to those being used in the TFTR tokamak at the Princeton Plasma Physics Laboratory have been performed. The initial stoichiometry has been determined using Rutherford backscattering spectrometry and elastic recoil detection. Films have also been implanted with deuterium in order to determine H-isotope pumping capacity. These studies, in addition to characterizations made of layers collected on probes in TFTR, have been used to optimize the boronization parameters and to better understand the effects of boronization on TFTR. 10 refs., 3 figs.

  7. Ion plateau transport near the tokamak magnetic axis

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1998-04-01

    Conventional neoclassical transport theory does not pertain near the magnetic axis, where orbital variation of the minor radius and the poloidal field markedly change the nature of guiding-center trajectories. Instead of the conventional tokamak banana-shaped trajectories, near-axis orbits, called potato orbits, are radially wider and lead to distinctive kinetic considerations. Here it is shown that there is a plateau regime for the near-axis case; the corresponding potato-plateau ion thermal conductivity is computed. {copyright} {ital 1998 American Institute of Physics.}

  8. Poloidal flow damping with potato orbits in tokamaks

    SciTech Connect

    Shaing, K.C.

    2005-10-01

    The poloidal flow damping rate in the vicinity of the magnetic axis in tokamaks is calculated using the time-dependent plasma viscosity. It is found that the damping rate is of the order of {nu}{sub ii}/f{sub t}{sup 2}, where {nu}{sub ii} is the ion-ion collision frequency, and f{sub t} is the fraction of the trapped potatoes. The corresponding neoclassical polarization or inertia enhancement factor is [1+({sigma}{sub p}q{sup 2}/f{sub t})], where {sigma}{sub p} is a numerical number of the order of unity, and q is the safety factor.

  9. Tokamak with mechanical compression of toroidal magnetic field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.

  10. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    DOEpatents

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  11. Threshold condition for nonlinear tearing modes in tokamaks

    SciTech Connect

    Zabiego, M.F.; Callen, J.D.

    1996-03-01

    Low-mode-number tearing, mode nonlinear evolution is analyzed emphasizing the need for a threshold condition, to account for observations in tokamaks. The discussion is illustrated by two models recently introduced in the literature. The models can be compared with the available data and/or serve as a basis for planning some experiments in order to either test theory (by means of beta-limit scaling laws, as proposed in this paper) or attempt to control undesirable tearing modes. Introducing a threshold condition in the tearing mode stability analysis is found to reveal some bifurcation points and thus domains of intrinsic stability in the island dynamics operational space.

  12. Helium Refrigerator Design for Pulsed Heat Load in Tokamaks

    SciTech Connect

    Kuendig, A.; Schoenfeld, H.

    2006-04-27

    Nuclear fusion reactors of the Tokamak type will be operated in a pulsed mode requiring the helium refrigerator to remove periodically large heat loads in time steps of approximately one hour. What are the necessary steps for a refrigerator to cope with such load variations?A series of numerical simulations has been performed indicating the possibility of an active refrigerator control with low exergetic losses. A basic comparison is made between the largest existing refrigerator sizes and the size required to service for example the ITER requirements.

  13. Controlling tokamak geometry with three-dimensional magnetic perturbations

    SciTech Connect

    Bird, T. M.; Hegna, C. C.

    2014-10-15

    It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.

  14. Tokamak with liquid metal for inducing toroidal electrical field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  15. Poloidal rotation, density asymmetries and momentum confinement in tokamak experiments

    SciTech Connect

    Stacey, W.M.; Jackson, D.R.

    1992-08-01

    Poloidal rotation speeds and density asymmetries are calculated for the deuterium and dominant carbon (oxygen) impurity ions in discharges in ASDEX, DIII, ISX-B, JET, and TFTR for which {upsilon}{sub {phi}} {approximately} {upsilon}{sub th} for the ions. These poloidal rotation speeds and density asymmetries are used to evaluate the neoclassical gyroviscous model for the momentum confinement time. The rather good agreement with experimental momentum confinement times obtained over this wide range of plasma parameters provides a measure of confidence in the calculated density asymmetries and poloidal rotation, as well as arguing for a neoclassical explanation for momentum confinement in tokamaks.

  16. Resistive toroidal-field coils for tokamak reactors

    SciTech Connect

    Kalnavarns, J.; Jassby, D.L.

    1980-11-01

    This paper analyzes the optimization of the geometry of resistive TF coils of rectangular bore for tokamak fusion test reactors and practical neutron generators. In examining the trade-offs between geometric parameters and magnetic field for reactors giving a specified neutron wall loading, either the resistive power loss or the lifetime coil cost can be minimized. Aspects of cooling, magnetic stress, and construction are addressed for several reference designs. Bending moment distributions in closed form have been derived for rectangular coils on the basis of the theory of rigid frames. Candidate methods of fabrication and of implementing demountable joints are summarized.

  17. Evolution of the millimeter-wave collective Thomson scattering system of the high-field tokamak Frascati Tokamak Upgrade

    SciTech Connect

    Tartari, U.; Grosso, G.; Granucci, G.; Gandini, F.; Garavaglia, S.; Grossetti, G.; Simonetto, A.; Mellera, V.; Muzzini, V.; Lubyako, L.; Shalashov, A.; Orsitto, F. P.; Ciccone, G.; Volpe, F.

    2007-04-15

    We first describe the improved receiving system of the diagnostic experiment of millimeter-wave collective Thomson scattering being run on the Frascati Tokamak Upgrade (FTU), and then discuss some peculiar problems and new operating procedures related to the investigation of strong anomalous spectra of nonthermal origin, many-orders-of-magnitude stronger than the ion thermal feature merged in them, systematically observed in the experimentation, and finally ascribed to a perturbation of the gyrotron that generates the probing beam. Arguments in favor of a more general valence of the solutions actuated for the specific case of FTU are finally given.

  18. Evolution of the millimeter-wave collective Thomson scattering system of the high-field tokamak Frascati Tokamak Upgrade.

    PubMed

    Tartari, U; Grosso, G; Granucci, G; Gandini, F; Garavaglia, S; Grossetti, G; Simonetto, A; Mellera, V; Muzzini, V; Lubyako, L; Shalashov, A; Orsitto, F P; Ciccone, G; Volpe, F

    2007-04-01

    We first describe the improved receiving system of the diagnostic experiment of millimeter-wave collective Thomson scattering being run on the Frascati Tokamak Upgrade (FTU), and then discuss some peculiar problems and new operating procedures related to the investigation of strong anomalous spectra of nonthermal origin, many-orders-of-magnitude stronger than the ion thermal feature merged in them, systematically observed in the experimentation, and finally ascribed to a perturbation of the gyrotron that generates the probing beam. Arguments in favor of a more general valence of the solutions actuated for the specific case of FTU are finally given. PMID:17477659

  19. On resistive magnetohydrodynamic studies of sawtooth oscillations in tokamaks

    SciTech Connect

    Aydemir, A. Y. Kim, J. Y.; Park, B. H.; Seol, J.

    2015-03-15

    A fundamental requirement for the validity and accuracy of any large-scale computation is sufficiently well-resolved length and time scales relevant to the problem under study. Ironically, despite the enormous computational resources available today, poorly resolved length scales in sophisticated nonlinear calculations are not uncommon. Using the internal kink mode that is responsible for tokamak sawtooth oscillations as an example, consequences of not resolving in sufficient detail the linear and nonlinear layer widths of the resistive n = 1 mode and its nonlinear spectrum are examined. Poor radial and spectral resolution are shown to cause nonphysical, large-scale stochasticity that can be erroneously associated with a fast temperature collapse and sawtooth crash. With the assistance of a nonlinear mode coupling model, a sufficiently well-resolved toroidal spectrum is shown to require at least an order of magnitude more toroidal modes than is commonly used at dissipation levels relevant to today's tokamaks. A subgrid-scale model is introduced that helps with the spectral resolution problem by reducing the required number of degrees of freedom from that of a well-resolved direct numerical simulation.

  20. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  1. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; K. Rule; M. Viola; M. Williams; R. Strykowsky

    1999-11-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling.

  2. ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK

    SciTech Connect

    AUSTIN, ME; LOHR, J

    2002-08-01

    OAK A271 ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK. The electron cyclotron emission (ECE) heterodyne radiometer diagnostic on DIII-D has been upgraded with the addition of eight channels for a total of 40. The new, higher frequency channels allow measurements of electron temperature into the magnetic axis in discharges at maximum field, 2.15 T. The complete set now extends over the full usable range of second harmonic emission frequencies at 2.0 T covering radii from the outer edge inward to the location of third harmonic overlap on the high field side. Full coverage permits the measurement of heat pulses and magnetohydrodynamic (MHD) fluctuations on both sides of the magnetic axis. In addition, the symmetric measurements are used to fix the location of the magnetic axis in tokamak magnetic equilibrium reconstructions. Also, the new higher frequency channels have been used to determine central T{sub e} with good time resolution in low field, high density discharges using third harmonic ECE in the optically gray and optically thick regimes.

  3. Kinetic analysis of MHD ballooning modes in tokamaks

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from ..beta.. = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with ..beta.., these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-..beta..-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties.

  4. Full f gyrokinetic method for particle simulation of tokamak transport

    SciTech Connect

    Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.

    2008-05-10

    A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.

  5. Electromagnetic effects on trace impurity transport in tokamak plasmas

    SciTech Connect

    Hein, T.; Angioni, C.

    2010-01-15

    The impact of electromagnetic effects on the transport of light and heavy impurities in tokamak plasmas is investigated by means of an extensive set of linear gyrokinetic numerical calculations with the code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and of analytical derivations with a fluid model. The impurity transport is studied by appropriately separating diffusive and convective contributions, and conditions of background microturbulence dominated by both ion temperature gradient (ITG) and trapped electron modes (TEMs) are analyzed. The dominant contribution from magnetic flutter transport turns out to be of pure convective type. However it remains small, below 10% with respect to the ExB transport. A significant impact on the impurity transport due to an increase in the plasma normalized pressure parameter beta is observed in the case of ITG modes, while for TEM the overall effect remains weak. In realistic conditions of high beta plasmas in the high confinement (H-) mode with dominant ITG turbulence, the impurity diffusivity is found to decrease with increasing beta in qualitative agreement with recent observations in tokamaks. In contrast, in these conditions, the ratio of the total off-diagonal convective velocity to the diagonal diffusivity is not strongly affected by an increase in beta, particularly at low impurity charge, due to a compensation between the different off-diagonal contributions.

  6. Thermal decomposition of Ti getter films from the DITE tokamak

    SciTech Connect

    Malinowski, M.E.

    1981-04-01

    The potential application of Ti gettering in tritium-using tokamaks will result in unacceptably high in-torus tritium inventories if the tritium cannot be recovered from the Ti thin films. To help assess the feasibility of tritium recovery by outgassing such films, several samples of getter films evaporated in the DITE tokamak were thermally decomposed in vacuum. Film samples from four different azimuthal torus positions were heated at approx.1/sup 0/C s/sup -1/ and all exhibited decomposition rate peaks at 410/sup 0/ +- 10/sup 0/C; every film had been fully decomposed by the time 475/sup 0/C was reached. Separate experiments showed that isothermal desorption at temperatures as low as 350/sup 0/C was sufficient to outgas such films in 10 min. Together with previous work on clean films, the present results indicated that films which have not been as heavily contaminated as the DITE samples could be desorbed in vacuum at temperatures between 250--350/sup 0/C in acceptably short times, and demonstrate that in situ outgassing of tritided films would be feasible.

  7. Finite pressure effects on the tokamak sawtooth crash

    SciTech Connect

    Nishimura, Yasutaro

    1998-07-01

    The sawtooth crash is a hazardous, disruptive phenomenon that is observed in tokamaks whenever the safety factor at the magnetic axis is below unity. Recently, Tokamak Test Fusion Reactor (TFTR) experimental data has revealed interesting features of the dynamical pressure evolution during the crash phase. Motivated by the experimental results, this dissertation focuses on theoretical modeling of the finite pressure effects on the nonlinear stage of the sawtooth crash. The crash phase has been studied numerically employed a toroidal magnetohydrodynamic (MHD) initial value code deduced from the FAR code. For the first time, by starting from a concentric equilibrium, it has been shown that the evolution through an m/n = 1/1 magnetic island induces secondary high-n ballooning instabilities. The magnetic island evolution gives rise to convection of the pressure inside the inversion radius and builds up a steep pressure gradient across the island separatrix, or current sheet, and thereby triggers ballooning instabilities below the threshold for the axisymmetric equilibrium. Due to the onset of secondary ballooning modes, concomitant fine scale vortices and magnetic stochasticity are generated. These effects produce strong flows across the current sheet, and thereby significant modify the m = 1 driven magnetic reconnection process. The resultant interaction of the high-n ballooning modes with the magnetic reconnection process is discussed.

  8. The GBS code for tokamak scrape-off layer simulations

    NASA Astrophysics Data System (ADS)

    Halpern, F. D.; Ricci, P.; Jolliet, S.; Loizu, J.; Morales, J.; Mosetto, A.; Musil, F.; Riva, F.; Tran, T. M.; Wersal, C.

    2016-06-01

    We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.

  9. An emerging understanding of H-mode discharges in tokamaks

    SciTech Connect

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the {upsilon}{sub E}{sup {yields}} = (E {times} B)/B{sup 2} flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in {upsilon}E. The required {upsilon}E flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the {upsilon}E flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios.

  10. Feasibility study of a fission-suppressed tokamak fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Neef, W.S.; Berwald, D.H.; Garner, J.K.; Whitley, R.H.; Ghoniem, N.; Wong, C.P.C.; Maya, I.; Schultz, K.R.

    1984-12-01

    The preliminary conceptual design of a tokamak fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m/sup 2/ and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 +- 30% per fusion reaction. This results in the production of 4900 kg of /sup 233/U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW/sub e/ LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U/sub 3/O/sub 8/ depending on government financing or utility financing assumptions. Additional topics discussed in the report include the tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.

  11. Conceptual study of electron ripple injection for tokamak transport control

    SciTech Connect

    Choe, W.; Ono, M.; Chang, C.S.

    1995-08-01

    A non-intrusive method for inducing radial electric field based on electron ripple injection is under development by the Princeton CDX-U group. The radial electric field is known to play an important role in the L-H and H-VH mode transition according to the recent theoretical and experimental research. It is therefore important to develop a non-intrusive tool to control the radial electric field profile in tokamak plasmas. The present technique utilizes externally-applied local magnetic ripple fields to trap electrons at the edge, allowing them to penetrate towards the plasma center via {gradient}B and curvature drifts, causing the flux surfaces to charge up negatively. Electron cyclotron resonance heating is utilized to increase the trapped population and the electron drift velocity by raising the perpendicular energy of trapped electrons. In order to quantify the effects of cyclotron resonance heating on electrons, the temperature anisotropy of resonant electrons in a tokamak plasma is calculated. For the calculation of anisotropic temperatures, energy moments of the bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function for heated electrons are solved, assuming a moderate wave power and a constant quasilinear diffusion coefficient. Simulation using a guiding-center orbit model have been performed to understand the behavior of suprathermal electrons in the presence of ripple fields. Examples for CDX-U and ITER parameters are given.

  12. The Lithium Tokamak eXperiment (LTX) - Status and Plans

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Majeski, R.; Berzak, L.; Gray, T.; Kozub, T.; Kugel, H.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.; Ahn, J.; Doerner, R.; Maingi, R.; Soukhanovskii, V.

    2007-11-01

    The LTX is the first toroidal device with a fully non-recycling wall almost completely surrounding the plasma. Such a plasma- facing component (PFC) is expected to lead to a new plasma regime with flat Te profiles, and the LTX goal is to explore its confinement and stability. The LTX is a spherical tokamak designed to have R=40 cm, a=26 cm, Bt=3.4 kG, Ip=400 kA, Te=1 keV, and Ti=200 eV, for discharges of 100 ms or more. It contains a shell with four segments, each made of 0.375''-thick copper and a 0.0625''-thick stainless steel liner. A lithium layer, up to 100 nm thick, will be vapor deposited on the liner between shots. For a non- recycling PFC, the lithium will be kept chemically active with a shell temperature above the lithium melting point. The first tokamak experiments with large area liquid lithium PFC's used a toroidal liquid lithium limiter in the Current Drive eXperiment - Upgrade (CDX-U). To compare with CDX-U results, initial experiments will be performed with a toroidal liquid lithium ``pool'' in the lower half of the LTX shell. Assembly of LTX is complete, and preparations for plasma operations are in progress.

  13. Electron ripple injection concept for tokamak transport control

    SciTech Connect

    Choe, W.; Ono, M.; Chang, C.S.

    1996-02-01

    A non-intrusive method for inducing a radial electric field ({ital E}{sub {ital r}}) based on electron ripple injection (ERI) is under development by the Princeton CDX-U group. Since {ital E}{sub {ital r}} is known to play an important role in the L-H and H-VH mode transition, it is therefore important to develop a non-intrusive tool to control the {ital E}{sub {ital r}} profile in tokamak plasmas. The present technique utilizes externally-applied local magnetic ripple fields to trap electrons at the edge, allowing them to penetrate towards the plasma center via {nabla}{ital B} and curvature drifts, causing the flux surfaces to charge up negatively. Electron cyclotron resonance heating (ECRH) is utilized to increase the trapped population and the electron drift velocity by raising the perpendicular energy of trapped electrons. The temperature anisotropy of resonant electrons in a tokamak plasma is calculated in order to investigate effects of ECRH on electrons. Simulations using a guiding-center orbit model have been performed to understand the behavior of suprathermal electrons in the presence of ripple fields. Examples for CDX-U and ITER are given. {copyright} {ital 1996 American Institute of Physics.}

  14. The tokamak density limit: A thermo-resistive disruption mechanism

    SciTech Connect

    Gates, D. A.; Brennan, D. P.; Delgado-Aparicio, L.; White, R. B.

    2015-06-15

    The behavior of magnetic islands with 3D electron temperature and the corresponding 3D resistivity effects on growth are examined for islands with near-zero net heating in the island interior. We refer to the resulting class of non-linearities as thermo-resistive effects. In particular, the effects of varying impurity mix on the previously proposed local island onset threshold [Gates and Delgado-Aparicio, Phys. Rev. Lett. 108, 165004 (2012)] are examined and shown to be consistent with the well established experimental scalings for tokamaks at the density limit. A surprisingly simple semi-analytic theory is developed which imposes the effects of heating/cooling in the island interior as well as the effects of island geometry. For the class of current profiles considered, it is found that a new term that accounts for the thermal effects of island asymmetry is required in the modified Rutherford equation. The resultant model is shown to exhibit a robust onset of a rapidly growing tearing mode—consistent with the disruption mechanism observed at the density limit in tokamaks. A fully non-linear 3D cylindrical calculation is performed that simulates the effect of net island heating/cooling by raising/suppressing the temperature in the core of the island. In both the analytic theory and the numerical simulation, the sudden threshold for rapid growth is found to be due to an interaction between three distinct thermal non-linearities which affect the island resistivity, thereby modifying the growth dynamics.

  15. Excitation, propagation, and damping of electron Bernstein waves in tokamaks

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Schultz, S. D.

    2000-10-01

    The conventional ordinary O-mode and the extraordinary X-mode in the electron cyclotron range of frequencies are not suitable for core heating in high-β spherical tokamak plasmas, like the National Spherical Torus Experiment [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th International Atomic Energy Agency Fusion Energy Conference (International Atomic Energy Agency, Vienna, 1999), Vol. 3, p. 1135], as they are weakly damped at high harmonics of the electron cyclotron frequency. However, electron Bernstein waves (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBWs via mode conversion of either the X-mode or the O-mode. The two mode conversions are optimized in different regions of the parameter space spanned by the parallel wavelength and wave frequency. The conditions for optimized mode conversion to EBWs are evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. From geometric optics ray tracing it is found that the EBWs damp strongly near the Doppler-broadened resonance at harmonics of the electron cyclotron frequency.

  16. Overview of the EUROfusion Medium Size Tokamak program

    NASA Astrophysics Data System (ADS)

    Martin, Piero; Beurskens, Marc; Coda, Stefano; Eich, Thomas; Meyer, Hendrik; the EUROfusion MST1 Team

    2015-11-01

    As a result of the new organization of the European fusion programme, now under the umbrella of the EUROfusion Consortium, the MST (Medium Size Tokamaks) task force is in charge of executing the European science programme in the ASDEX Upgrade, TCV and MAST-U tokamaks. This paper will present an overview of the main results obtained in the 2014 campaign-where only ASDEX upgrade was operating-and the preliminary achievements of the recently started 2015/16 campaign, where also TCV will contribute. The main subjects of the experimental campaigns are (i) the development of scenarios relevant for the ITER Q=10 goal, in an all metal wall device (ii) the understanding of ELM mitigation/suppression with pellets and resonant magnetic perturbations, and in particular the effect of density versus collisionality, (iii) the understanding and optimization of methods for disruption mitigation or avoidance and runaway electrons control and (iv) the exploration of ITER and DEMO relevant scenarios with high normalized separatrix power flux, Psep / R , (Psep is the power through the separatrix, R the major radius) and tolerable target heat loads. The overview of the future programs in MST will be given. http://www.euro-fusionscipub.org/mst1

  17. DSC -- Disruption Simulation Code for Tokamaks and ITER applications

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Grubert, J. E.; Zakharov, L. E.

    2010-11-01

    Arguably the most important issue facing the further development of magnetic fusion via advanced tokamaks is to predict, avoid, or mitigate disruptions. This recently became the hottest challenging topic in fusion research because of several potentially damaging effects, which could impact the ITER device. To address this issue, two versions of a new 3D adaptive Disruption Simulation Code (DSC) will be developed. The first version will solve the ideal reduced 3D MHD model in the real geometry with a thin conducting wall structure, utilizing the adaptive meshless technique. The second version will solve the resistive reduced 3D MHD model in the real geometry of the conducting structure of the tokamak vessel and will finally be parallelized. The DSC will be calibrated against the JET disruption data and will be capable of predicting the disruption effects in ITER, as well as contributing to the development of the disruption mitigation scheme and suppression of the RE generation. The progress on the first version of the 3D DSC development will be presented.

  18. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    SciTech Connect

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

  19. Dynamic simulations of the cryogenic system of a tokamak

    NASA Astrophysics Data System (ADS)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2015-12-01

    Power generation in the next decades could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to 4.4K. The plasma works cyclically and the coil system is subjected to pulsed heat load which has to be handled by the refrigerator. By smoothing the variable loads, the refrigerator capacity can be set close to the average power; optimizing investment and operational costs. Within the “Broader Approach agreement” related to ITER project, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) is in charge of providing the cryogenic system for the Japanese tokamak (JT-60SA), that is currently under construction in Naka. The system has been designed to handle the pulsed heat loads. To prepare the acceptance tests of the cryogenic system foreseen in 2016, both dynamic modelling and experimental tests on a scaled down mock-up are of high interest for assessing pulsed load smoothing control. After explaining HELIOS (HElium Loop for hIgh lOad Smoothing) operating modes, a dynamic model is presented, with results on the pulsed heat load scenarios. All the simulations have been performed with EcosimPro® and the associated cryogenic library CRYOLIB.

  20. Suprathermal electron dynamics and MHD instabilities in a tokamak

    NASA Astrophysics Data System (ADS)

    Kamleitner, J.; Coda, S.; Decker, J.; Graves, J. P.; the TCV Team

    2015-10-01

    The dynamics of suprathermal electrons in the presence of magnetohydrodynamics (MHD) activity and the excitation of MHD modes by suprathermal electrons are studied experimentally to improve the understanding of the interaction of fast particles with MHD instabilities in a tokamak. The study focuses on three different aspects of the internal kink mode with poloidal/toroidal mode number m/n=1/1 : the sawtooth instability, electron fishbones and coupled bursts alternating with sawtooth crashes (CAS), all located where the safety factor (q) profile approaches or takes the value q=1 . New quantitative results on suprathermal electron transport and an investigation of electron acceleration during sawtooth crashes are followed by the characterization of initial electron fishbone observations on the Tokamak à configuration variable (TCV). Finally, m/n=1/1 bursts associated with the sawtooth cycle, coupled to a persisting m/n=2/1 mode and alternating with sawtooth crashes, are discussed, in particular in view of the fast electron dynamics and their role in confinement degradation and mode excitation.

  1. Multichannel interferometer/polarimeter system for the RTP tokamak

    NASA Astrophysics Data System (ADS)

    van Lammeren, A. C. A. P.; Kim, S. K.; Donné, A. J. H.

    1990-10-01

    A nine-channel interferometer/polarimeter system is designed for the RTP tokamak (Rijnhuizen Tokamak Project, a =0.16 m, R =0.72 m, BT =2.5 T, Ip ≤ 200 kA, and plasma pulse duration 200 ms). A CO2-pumped dual-cavity FIR laser system is used to obtain two FIR laser beams of λ =432 μm with a frequency difference of 1 MHz. The FIR beams are expanded by a set of parabolic mirrors. Corner-cube mixers with Schottky diodes are used as detectors. The mixers are mounted on a linear rail system, such that their positions can be easily changed. The interferometer can be operated with a maximum of 19 channels, and will be extended with a polarimeter to measure the poloidal magnetic field distribution. It will be tried to increase the accuracy of the polarimeter by modulating the polarization of the incoming beam. A scheme for polarization modulation which is based on the idea of Dodel and Kunz will be presented in this paper. This scheme has the advantage that only one set of detectors is needed to measure the electron density and current density. The complete system will be presented along with some pilot experiments concerning the polarization modulation.

  2. Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.

    2000-02-01

    Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.

  3. Two Dimensional Particle Transport in the Cct Tokamak Edge Plasma

    NASA Astrophysics Data System (ADS)

    Tynan, George Robert

    The physics of particle transport in the CCT tokamak plasma edge is studied experimentally in this dissertation. A full poloidal array of Langmuir probes is used to measure the equilibrium plasma and transport properties of the CCT edge plasma during Ohmic and H-mode discharges. During Ohmic L-mode, the equilibrium plasma density and electron temperature are found to vary on a magnetic flux surface. The equilibrium plasma distribution coincides with the distribution of particle transport. Inside the last closed flux surface, convective processes dominate particle transport. Several large convective cells are observed near the limiter radius. At and beyond the limiter radius, turbulent transport is significant. The turbulence appears to be driven by the convective plasma flows. In Ohmic L-mode-like discharges, plasma transport occurs predominantly through the low-field region of the tokamak with local bad curvature. The convective cells are destroyed at the L-H transition and replaced with a more poloidally symmetric, radially narrow jet of plasma flow at the limiter radius. The jet effectively isolates the plasma core from the scrape -off layer. The turbulence associated with the convective cells is reduced across the edge region. Radial particle transport across the limiter radius is thus inhibited and the global particle confinement is increased. The available data suggest that the residual H-mode particle transport is more poloidally symmetric.

  4. Lower hybrid current drive in a high density diverted tokamak

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Hubbard, A. E.; Shiraiwa, S.; Bonoli, P. T.; Faust, I. C.; Harvey, R. W.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Meneghini, O.; Parker, R. R.; Reinke, M. L.; Schmidt, A. E.; Smirnov, A. P.; Terry, J. L.; Whyte, D. G.; Wilson, J. R.; Wright, J. C.; Wukitch, S. J.

    2011-12-01

    Experimental observations of LHCD at high density (n¯e>1020m˜3) on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops sharply in single null discharges well below the density limit previously observed on limited tokamaks (ω/ωLH˜2). Modeling and experimental evidence suggest that the absence of LH driven fast electrons at high density may be due to collisional absorption in the scrape off layer. Experiments show that the expected current drive density dependence is recovered for inner wall limited discharges across the range of densities scanned (0.5×1020m-3

  5. Calculation of Non-ambipolar Transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Park, Jong-Kyu; Boozer, Allen; Menard, Jonathan

    2009-05-01

    Small non-axisymmetric perturbations of the magnetic field can greatly change the performance of tokamaks through non-ambipolar transport. The recently generalized analytic calculations of the non-ambipolar transport have shown that the consistency between theory and experiment can be significantly improved by two effects [J.-K. Park, et al., ``Non-ambipolar Transport by Trapped Particles in Tokamaks,'' Phys. Rev. Lett. (2009), To be published] : (1) The small fraction of trapped particles for which the bounce and precession rates of particles resonate. (2) The non-axisymmetric variation in the field strength along the perturbed magnetic field lines rather than along the unperturbed magnetic field lines. Most apparent effects can be found in toroidal momentum transport, and thus by a torodial rotational damping associated with Neoclassical Toroidal Viscosity (NTV). Various experiments for NTV rotation braking in NSTX and DIII-D will be compared with theoretical predictions, and the expected sensitivity of ITER to non-axisymmetries will be presented. Also, the effects of non-axisymmetic field on particle and heat transport will be discussed with regard to ELM suppressions. This work was supported by DOE contract DE-AC02-76CH03073 (PPPL), and DE-FG02-03ERS496 (CU).

  6. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  7. Particle confinement of pellet-fuelled tokamak plasma

    NASA Astrophysics Data System (ADS)

    Valovič, M.; Axon, K.; Garzotti, L.; Saarelma, S.; Thyagaraja, A.; Akers, R.; Gurl, C.; Kirk, A.; Lloyd, B.; Maddison, G. P.; Morris, A. W.; Patel, A.; Shibaev, S.; Scannell, R.; Taylor, D.; Walsh, M.; MAST Team

    2008-07-01

    This paper quantifies the particle confinement of pellet-fuelled plasmas as measured in the Mega Ampere Spherical Tokamak. The dataset is restricted mostly to neutral beam heated plasmas in H-mode and to shallow pellets launched from the high-field side. It is shown that the pellet deposition can be explained only by invoking the ∇B drift of the pellet ablatant. The pellet creates a zone with positive density gradient and increased temperature gradient. Simulations show that these changes could increase the level of micro-turbulence and thus enhance further the penetration of pellet-deposited particles towards the core. Post-pellet dynamics of the density profile is characterized by the pellet retention time τpel. It is shown that τpel correlates with the status of the edge transport barrier (L-mode or H-mode) and decreases rapidly for pellet deposition radius rpel approaching the plasma edge. For ELMy H-mode and pellet deposition radius of rpel ≈ 0.8a, the pellet retention time is about 20% of the energy confinement time. The fuelling requirement by the pellets for ITER and the Component Test Facility based on the spherical tokamak is discussed.

  8. Charge exchange recombination spectroscopy on the T-10 tokamak.

    PubMed

    Klyuchnikov, L A; Krupin, V A; Nurgaliev, M R; Korobov, K V; Nemets, A R; Dnestrovskij, A Yu; Tugarinov, S N; Serov, S V; Naumenko, N N

    2016-05-01

    The charge exchange recombination spectroscopy (CXRS) diagnostics on the T-10 tokamak is described. The system is based on a diagnostic neutral beam and includes three high etendue spectrometers designed for the ITER edge CXRS system. A combined two-channel spectrometer is developed for simultaneous measurements of two beam-induced spectral lines using the same lines of sight. A basic element of the combined spectrometer is a transmitting holographic grating designed for the narrow spectral region 5291 ± 100 Å. The whole CXRS system provides simultaneous measurements of two CXRS impurity spectra and Hα beam line. Ion temperature measurements are routinely provided using the C(6+) CXRS spectral line 5291 Å. Simultaneous measurements of carbon densities and one more impurity (oxygen, helium, lithium etc.) are carried out. Two light collecting systems with 9 lines of sight in each system are used in the diagnostics. Spatial resolution is up to 2.5 cm and temporal resolution of 1 ms is defined by the diagnostic neutral beam diameter and pulse duration, respectively. Experimental results are shown to demonstrate a wide range of the CXRS diagnostic capabilities on T-10 for investigation of impurity transport processes in tokamak plasma. Developed diagnostics provides necessary experimental data for studying of plasma electric fields, heat and particle transport processes, and for investigation of geodesic acoustic modes.

  9. SCALING AND MODELING STUDIES OF HIGH-BOOTSTRAP FRACTION TOKAMAKS

    SciTech Connect

    PERKINS,FW; CASPER,TA; POLITZER,PA

    2002-11-01

    OAK A271 SCALING AND MODELING STUDIES OF HIGH-BOOTSTRAP FRACTION TOKAMAKS. A theoretical framework is developed to generate tokamak equilibrium configurations for which, on one hand, the current results entirely from the bootstrap current source driven by the pressure gradient while, on the other hand, the pressure gradient is determined from the thermal conduction equation with a thermal diffusivity constructed to have properties observed in confinement experiments: gyroBohm confinement, gradients only with respect to the poloidal flux, global confinement depending only on plasma current and independent of toroidal field, a critical temperature gradient, and an overall confinement improvement with negative shear. The nondimensional method used yields eigenvalues composed of a collection of physics quantities, resulting in scaling relations among physics variables. It is found that the plasma temperature scales as T {proportional_to} P{sup 2/3}{var_epsilon}{sup -1/3}, while I{sub p} {proportional_to} n{sup 1/2}P{sup 1/3} a {var_epsilon}{sup 1/12}. The system has a solvability criterion which does not permit solutions when the confinement improves rapidly with increasing negative shear. A simplified 1-D model captures the essential physics of the coupling between bootstrap current generation and thermal conduction.

  10. Exploratory studies of tokamaks as fusion test reactors

    NASA Astrophysics Data System (ADS)

    Mau, T. K.; Conn, R. W.

    1982-06-01

    Studies have been performed to explore various plasma burn scenarios for a tokamak test reactor which could follow the next generation of large tokamak experiments. Tradeoffs between an ignited burning plasma and a sub-ignited driven plasma are examined in terms of device size and performance as a fusion engineering test facility. It is found that plasma performance levels, measured by ignition margin, amplification factor Q, and fusion power output, increase with device size, more optimistic transport scaling laws, lower magnetic field ripple, and higher Β. The performance of a generally low stress ( B 0=4 T) reference device, with major radius R=4.5 m and minor radius a=1.3 m in a D-shaped ( κ=1.6) plasma has been evaluated over a wide range of operating parameters. In particular, a moderate fusion power output of 300 MW is obtained, the driven plasma having Q≅ 10, an edge ripple of 1%, and a density ranging between 1.0 and 1.5×1014 cm-3. The same device operated at a higher general level of stress ( B 0=5.3 T) is predicted to achieve ignition, but is not required for the mission of an engineering test facility and would entail greater technical risk.

  11. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect

    Campos, A.; Skinner, C.H.

    2009-01-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  12. POLOIDAL MAGNETIC FIELD TOPOLOGY FOR TOKAMAKS WITH CURRENT HOLES

    SciTech Connect

    Puerta, Julio; Martin, Pablo; Castro, Enrique

    2009-07-26

    The appearance of hole currents in tokamaks seems to be very important in plasma confinement and on-set of instabilities, and this paper is devoted to study the topology changes of poloidal magnetic fields in tokamaks. In order to determine these fields different models for current profiles can be considered. It seems to us, that one of the best analytic descriptions is given by V. Yavorskij et al., which has been chosen for the calculations here performed. Suitable analytic equations for the family of magnetic field surfaces with triangularity and Shafranov shift are written down here. The topology of the magnetic field determines the amount of trapped particles in the generalized mirror type magnetic field configurations. Here it is found that the number of maximums and minimums of Bp depends mainly on triangularity, but the pattern is also depending of the existence or not of hole currents. Our calculations allow comparing the topology of configurations of similar parameters, but with and without whole currents. These differences are study for configurations with equal ellipticity but changing the triangularity parameters. Positive and negative triangularities are considered and compared between them.

  13. COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS

    SciTech Connect

    WALTZ,RE; CANDY,J; ROSENBLUTH,MN

    2002-09-01

    OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D {rho}*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm.

  14. Transient getter scheme for the Tokamak Fusion Test Reactor

    SciTech Connect

    Cecchi, J.L.; Cohen, S.A.; Sredniawski, J.J.

    1980-01-01

    The ability of the Tokamak Fusion Test Reactor (TFTR) to attain the largest fusion power gain depends critically on minimizing plasma contamination and controlling the densities of the reacting deuterium and tritium. Experiments on a number of tokamaks have demonstrated that gettering over an appreciable surface area (greater than or equal to 10%) of the vacuum vessel greatly facilitates both of these objectives. One particular problem in implementing a surface pumping system in TFTR, however, is a restriction on the maximum allowable tritium content of the getter. This restriction could require regeneration of the absorbed tritium after as few as 50 machine pulses. We have developed a scheme utilizing SAES Zr/Al getter modules which obviates the need for such frequent interruptions of machine operation by taking advantage of the pulsed operation of TFTR. With the Zr/Al getter at temperatures between 500/sup 0/C to 600/sup 0/C it is possible to achieve a quasi-steady state in the tritium loading where the quantity of tritium desorbed between pulses is equal to the quantity which is absorbed during a pulse. Since frequent thermal cycling is not required, this scheme also reduces the possibility of Zr/Al getter material fatigue.

  15. Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    SciTech Connect

    Parra, Felix I.; Barnes, Michael

    2011-06-15

    Two symmetries of the local nonlinear {delta}f gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.

  16. Spectroscopy of smooth deuterated carbon films redeposited from plasma discharge in the tokamak T-10

    SciTech Connect

    Svechnikov, N. Yu. Stankevich, V. G.; Lebedev, A. M.; Men'shikov, K. A.; Kolbasov, B. N.; Kriventsov, V. V.

    2006-12-15

    Smooth deuterated carbon films redeposited from a deuterium plasma discharge in the tokamak T-10 vacuum chamber have been investigated by different spectroscopic methods and temperature measurements. The photoluminescence excitation spectra of sp{sup 3}-sp{sup 2} nanostructures of tokamak films and sp{sup 2} nanostructures of fullerite C60 films are compared. The effect of defect states on the photoluminescence and its temperature quenching is discussed. It is concluded that the mechanism of thermal luminescence quenching for smooth deuterated tokamak films is close to the corresponding mechanism for amorphous a-C:H films.

  17. NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK

    SciTech Connect

    WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG; PIGLOWSKI, DA; ARIOLA, M; PIRONTI, A; SCHUSTER, E

    2002-10-01

    OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.

  18. Overview of physics research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; TCV Team

    2009-10-01

    The Tokamak à Configuration Variable (TCV) tokamak is equipped with high-power (4.5 MW), real-time-controllable EC systems and flexible shaping, and plays an important role in fusion research by broadening the parameter range of reactor relevant regimes, by investigating tokamak physics questions and by developing new control tools. Steady-state discharges are achieved, in which the current is entirely self-generated through the bootstrap mechanism, a fundamental ingredient for ITER steady-state operation. The discharge remains quiescent over several current redistribution times, demonstrating that a self-consistent, 'bootstrap-aligned' equilibrium state is possible. Electron internal transport barrier regimes sustained by EC current drive have also been explored. MHD activity is shown to be crucial in scenarios characterized by large and slow oscillations in plasma confinement, which in turn can be modified by small Ohmic current perturbations altering the barrier strength. In studies of the relation between anomalous transport and plasma shape, the observed dependences of the electron thermal diffusivity on triangularity (direct) and collisionality (inverse) are qualitatively reproduced by non-linear gyro-kinetic simulations and shown to be governed by TEM turbulence. Parallel SOL flows are studied for their importance for material migration. Flow profiles are measured using a reciprocating Mach probe by changing from lower to upper single-null diverted equilibria and shifting the plasmas vertically. The dominant, field-direction-dependent Pfirsch-Schlüter component is found to be in good agreement with theoretical predictions. A field-direction-independent component is identified and is consistent with flows generated by transient over-pressure due to ballooning-like interchange turbulence. Initial high-resolution infrared images confirm that ELMs have a filamentary structure, while fast, localized radiation measurements reveal that ELM activity first appears

  19. Toroidal and poloidal momentum transport studies in tokamaks

    NASA Astrophysics Data System (ADS)

    Tala, T.; Crombé, K.; de Vries, P. C.; Ferreira, J.; Mantica, P.; Peeters, A. G.; Andrew, Y.; Budny, R.; Corrigan, G.; Eriksson, A.; Garbet, X.; Giroud, C.; Hua, M.-D.; Nordman, H.; Naulin, V.; Nave, M. F. F.; Parail, V.; Rantamäki, K.; Scott, B. D.; Strand, P.; Tardini, G.; Thyagaraja, A.; Weiland, J.; Zastrow, K.-D.; Contributors, JET-EFDA

    2007-12-01

    The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τphi ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both in the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity χphieff/χi,eff among different tokamaks can be found. For example, the value of effective Prandtl number is typically around χphieff/χi,eff ≈ 0.2 on JET while still τE/τphi ≈ 1 holds. Perturbative NBI modulation experiments on JET have shown, however, that a Prandtl number χphi/χi of around 1 is valid if there is an additional, significant inward momentum pinch which is required to explain the amplitude and phase behaviour of the momentum perturbation. The experimental results, i.e. the high Prandtl number and pinch, are in good qualitative and to some extent also in quantitative agreement with linear gyro-kinetic simulations. In contrast to the toroidal momentum transport which is clearly anomalous, the poloidal velocity is usually believed to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly affect the calculated radial electric field and therefore the E × B flow shear and hence modify and can significantly improve the simulation predictions. Several fluid turbulence codes have been used to identify the mechanism driving the poloidal velocity to such high values. CUTIE and TRB turbulence codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly

  20. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  1. Gyrotron Performance on the 110 GHZ Installation at the DIII-D Tokamak

    SciTech Connect

    Gorelov, I.; Lohr, J.M.; Ponce, D.; Callis, R.W.; Ikezi, H.; Legg, R.A.; Tsimring, S.E.

    1999-06-01

    The 110 GHz gyrotron system on the DIII-D tokamak comprises three different gyrotrons in the 1 MW class. The individual gyrotron characteristics and the operational experience with the system are described.

  2. Laser system for high resolution Thomson scattering diagnostics on the COMPASS tokamak

    SciTech Connect

    Bohm, P.; Sestak, D.; Bilkova, P.; Aftanas, M.; Weinzettl, V.; Hron, M.; Panek, R.; Dunstan, M. R.; Naylor, G.

    2010-10-15

    A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.

  3. A Cross-Benchmarking and Validation Initiative for Tokamak 3D Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Reiman, A.; Turnbull, A.; Evans, T.; Ferraro, N.; Lazarus, E.; Breslau, J.; Cerfon, A.; Chang, C. S.; Hager, R.; King, J.; Lanctot, M.; Lazerson, S.; Liu, Y.; McFadden, G.; Monticello, D.; Nazikian, R.; Park, J. K.; Sovinec, C.; Suzuki, Y.; Zhu, P.

    2014-10-01

    We are pursuing a cross-benchmarking and validation initiative for tokamak 3D equilibrium calculations, with 11 codes participating: the linearized tokamak equilibrium codes IPEC and MARS-F, the time-dependent extended MHD codes M3D-C1, M3D, and NIMROD, the gyrokinetic code XGC, as well as the stellarator codes VMEC, NSTAB, PIES, HINT and SPEC. Dedicated experiments for the purpose of generating data for validation have been done on the DIII-D tokamak. The data will allow us to do validation simultaneously with cross-benchmarking. Initial cross-benchmarking calculations are finding a disagreement between stellarator and tokamak 3D equilibrium codes. Work supported in part by U.S. DOE under Contracts DE-ACO2-09CH11466, DE-FC02-04E854698, DE-FG02-95E854309 and DE-AC05-000R22725.

  4. The ignition physics study group supports the compact ignition tokamak and engineering test reactor programs

    SciTech Connect

    Sheffield, J.

    1987-01-01

    This report presents a collection of Vugraphs dealing with the Compact Ignition Tokamak (CIT) and the Engineering Test Reactor (ETR). The role of the Ignition Physics Study Group is defined. Several design goals are presented. (JDH)

  5. The residual zonal flow in tokamak plasmas toroidally rotating at arbitrary velocity

    SciTech Connect

    Zhou, Deng

    2014-08-15

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In our previous work [D. Zhou, Nucl. Fusion 54, 042002 (2014)], the residual zonal flow in a tokamak plasma rotating toroidally at sonic speed is found to have the same form as that of a static plasma. In the present work, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved for low speed rotation to give the expression of residual zonal flows, and the expression is then generalized for cases with arbitrary rotating velocity through interpolation. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the former simulation result for high aspect ratio tokamaks.

  6. PF coil voltage optimization for start-up scenarios in air core tokamaks

    SciTech Connect

    Albanese, R.; Martone, R.; Ambrosino, G.; Pironti, A.

    1994-09-01

    The basic features of a procedure for the optimization of the plasma scenario in an air core tokamak are presented. The method takes into account the eddy currents in the passive conducting structures. The problem is reduced to the synthesis of time-varying magnetic field. The solution of this inverse electromagnetic problem is carried out by means of an optimization procedure based on the receding horizon approach. The paper includes an example of application to the ITER tokamak.

  7. Emission in the 50-80 A region from highly ionized silver in PLT tokamak plasmas

    SciTech Connect

    Schwob, J.L.; Wouters, A.; Suckewer, S.; Cohen, S.A.; Finkenthal, M.

    1985-09-01

    The spectrum of silver emitted by Princeton Large Torus (PLT) tokamak plasmas has been recorded in the 25 to 150 A region by a multichannel time-resolving grazing-incidence spectrometer. Silver atoms have been introduced in the tokamak plasma using the laser blow-off technique. For the first time, lines emitted within the 3p-3d transitions of Ag XXIX, Ag XXX, and Ag XXXI ions, between 50 and 80 A, have been identified.

  8. Fusion reaction spectra produced by anisotropic fast ions in the PLT tokamak

    SciTech Connect

    Heidbrink, W.W.

    1984-02-01

    For beam-target fusion reactions, collimated measurements of the energy spectrum of one of the reaction products can provide information on the degree of anisotropy of the reacting beam ions. Measurements of the spectrum of 15 MeV protons produced by reactions between energetic /sup 3/He ions and relatively cold deuterons during fast wave minority heating in the PLT tokamak indicate that the velocity distribution of fast /sup 3/He ions is peaked perpendicular to the tokamak magnetic field.

  9. Problems in modeling TF ripple loss of fast alphas from a tokamak reactor

    SciTech Connect

    Hively, L.M.

    1987-01-01

    The present status of modeling TF ripple loss of fast alphas from tokamaks is summarized. The modeling issues are discussed, and several new aspects of this problem are described, including gyromotion, radial electric field, and sawtoothing. Existing models predict that TF ripple loss of fast alphas will have a low-to-moderate impact on the design of a tokamak engineering test reactor (ETR). 52 refs., 3 figs., 2 tabs.

  10. Final Technical Report: Global Field Aligned Mesh and Gyrokinetic Field Solver in a Tokamak Edge Geometry

    SciTech Connect

    Cummings, Julian C.

    2013-05-15

    This project was a collaboration between researchers at the California Institute of Technology and the University of California, Irvine to investigate the utility of a global field-aligned mesh and gyrokinetic field solver for simulations of the tokamak plasma edge region. Mesh generation software from UC Irvine was tested with specific tokamak edge magnetic geometry scenarios and the quality of the meshes and the solutions to the gyrokinetic Poisson equation were evaluated.

  11. Mode particle resonances during near-tangential neutral beam injection in large tokamaks

    SciTech Connect

    Kaita, R.; White, R.B.; Morris, A.W.; Fredrickson, E.D.; McGuire, K.M.; Medley, S.S.; Scott, S.D.

    1988-01-01

    Coherent magnetohydrodynamic modes have been observed during neutral beam injection in TFTR and JET. Periodic bursts of oscillations were detected with several plasma diagnostics, and Fokker-Planck calculations show that the populations of trapped particles in both tokamaks are sufficient to account for fishbone destabilization. Estimates of mode parameters are in reasonable agreement with the experiments, and they indicate that the fishbone mode may continue to affect the performance of intensely heated tokamaks. 13 refs., 1 fig., 1 tab.

  12. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  13. Normal-zone detection in tokamak superconducting magnets with Co- wound voltage sensors

    SciTech Connect

    Martovetsky, N.N.; Chaplin, M.R.

    1995-06-08

    This paper discusses advantages and disadvantages of different locations of co-wound voltage sensors for quench detection in tokamak magnets with a cable-in-conduit conductor. The voltage sensor locations are analyzed and estimates of the anticipated noise vs. dB/dt are derived for transverse, parallel, and self fields. The LLNL Noise Rejection Experiment, also described here, is designed to verify theoretical expectations on a copper cable exposed to these fields that will simulate the tokamak field environment.

  14. Validation of Tokamak Equilibria: Reconciling Theory and Observation Using BEAST

    NASA Astrophysics Data System (ADS)

    von Nessi, Gregory; Hole, Matthew; Svensson, Jakob

    2011-10-01

    We present a new technique for reconciling force-balance models with diagnostic observations via the statistical theory of Bayesian analysis. This method forms the backbone of a new data analysis code called BEAST (Bayesian Equilibrium Analysis and Simulation Technique) and is based on refactoring the force-balance relation into two different forward models, each associated with a 'fractional' observation, which are subsequently used in the Bayesian inference of the plasma equilibrium. By using a variant of the nested sampling algorithm, the evidence of the inferred posterior distribution is calculated and provides a relative quantification of how much the inferred equilibrium differs from a force-balance solution. Results are presented for discharges on the Mega-Ampere Spherical Tokamak (MAST), which are calculated using pickup coil, flux loop and Motional-Stark Effect (MSE) diagnostic data.

  15. Geodesic acoustic mode in toroidally rotating anisotropic tokamaks

    SciTech Connect

    Ren, Haijun

    2015-07-15

    Effects of anisotropy on the geodesic acoustic mode (GAM) are analyzed by using gyro-kinetic equations applicable to low-frequency microinstabilities in a toroidally rotating tokamak plasma. Dispersion relation in the presence of arbitrary Mach number M, anisotropy strength σ, and the temperature ration τ is analytically derived. It is shown that when σ is less than 3 + 2τ, the increased electron temperature with fixed ion parallel temperature increases the normalized GAM frequency. When σ is larger than 3 + 2τ, the increasing of electron temperature decreases the GAM frequency. The anisotropy σ always tends to enlarge the GAM frequency. The Landau damping rate is dramatically decreased by the increasing τ or σ.

  16. AC operation and runaway electron behaviour in HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Wei; Hu, Li-Qun; Zhou, Rui-Jie; Lin, Shi-Yao; Zhong, Guo-Qiang; Wang, Shao-Feng; Chen, Kai-Yun; Xu, Ping; Zhang, Ji-Zong; Ling, Bi-Li; Mao, Song-Tao; Duan, Yan-Min

    2010-06-01

    Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition and current sustainment, is described. The behaviour of runaway electrons is analysed by four HXR detectors tangentially viewing the plasma in the equatorial plane, within energy ranges 0.3-1.2 MeV and 0.3-7 MeV, separately. High energy runaway electrons (~MeV) are found to circulate predominantly in the opposite direction to the plasma current, while the number of low energy runaway electrons (~tens to hundreds of keV) circulating along the plasma current is comparable to that in the direction opposite to the plasma current. AC operation with lower hybrid current drive (LHCD) is observed to have an additional benefit of suppressing the runaway electrons if the drop of the loop voltage is large enough.

  17. Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Throumoulopoulos, George; Kuiroukidis, Apostolos; Tasso, Henri

    2015-11-01

    By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e. the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis. This work has received funding from (a) the National Programme for the Controlled Thermonuclear Fusion, Hellenic Republic, (b) Euratom research and training programme 2014-2018 under grant agreement No 633053.

  18. Results from deuterium-tritium tokamak confinement experiments

    SciTech Connect

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues.

  19. Electron temperature gradient driven instability in the tokamak boundary plasma

    SciTech Connect

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-12-15

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t{sup {minus}1/2}e{sup {gamma}mt}.

  20. Theory of self-organized critical transport in tokamak plasmas

    SciTech Connect

    Kishimoto, Y.; Tajima, T.; Horton, W.; LeBrun, M.J.; Kim, J.Y. |

    1995-07-01

    A theoretical and computational study of the ion temperature gradient and {eta}{sub i} instabilities in tokamak plasmas has been carried out. In toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose strong constraint on the drift mode fluctuations and the amciated transport, showing a self-organized characteristic. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result, the temperature relaxation is self-semilar and nonlocal, leading to a radially increasing heat diffusivity. The nonlocal transport leads to the Bohm-like diffusion scaling. The heat input regulates the deviation of the temperature gradient away from marginality. The obtained transport scalings and properties are globally consistent with experimental observations of L-mode charges.

  1. Resistive MHD studies of high-. beta. -tokamak plasmas

    SciTech Connect

    Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.

    1981-01-01

    Numerical calculations have been performed to study the MHD activity in high-..beta.. tokamaks such as ISX-B. These initial value calculations built on earlier low ..beta.. techniques, but the ..beta.. effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low ..beta.. to predominantly pressure driven modes at high ..beta.. is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment.

  2. Ballooning mode second stability region for sequences of tokamak equilibria

    SciTech Connect

    Sugiyama, L.; Mark, J. W-K.

    1980-01-01

    A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln ..gamma.. and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary.

  3. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  4. First results from gamma ray diagnostics in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, R. J.; Hu, L. Q.; Zhong, G. Q.; Cao, H. R.; Liu, G. Z.; Li, K.; Zhang, Y.; Lin, S. Y.; Zhang, J. Z.

    2016-11-01

    Gamma ray diagnostics has been developed in the EAST tokamak recently. Six BGO scintillator detectors are arranged on the down-half cross-section and pointed at the up-half cross-section of plasma, with space resolution about 15 cm and energy range from 0.3 MeV to 6 MeV. Three main gamma ray peaks in the energy spectra have been observed and are identified as the results of nuclear reactions 207Pb(n, n')207mPb, H(n, γ) D, and D(p, γ)3He, respectively. Upgrading of the system is in progress by using LaBr3(Ce) scintillator, fast photo-multiplier tubes, and a fully digital data acquisition system based on high sample frequency digitizers with digital pulse processing algorithms.

  5. Energetic ion transport by microturbulence is insignificant in tokamaks

    SciTech Connect

    Pace, D. C.; Petty, C. C.; Staebler, G. M.; Van Zeeland, M. A.; Waltz, R. E.; Austin, M. E.; Bass, E. M.; Budny, R. V.; Gorelenkova, M.; Grierson, B. A.; McCune, D. C.; Yuan, X.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Hillesheim, J. C.; Rhodes, T. L.; Wang, G.; Holcomb, C. T.; McKee, G. R.; and others

    2013-05-15

    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of E{sub b}/T{sub e}, where E{sub b} is the energetic ion energy and T{sub e} the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.

  6. Continuum kinetic modeling of the tokamak plasma edge

    DOE PAGES

    Dorf, M. A.; Dorr, M.; Rognlien, T.; Hittinger, J.; Cohen, R.

    2016-03-10

    In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less

  7. Equilibrium system analysis in a tokamak ignition experiment

    SciTech Connect

    Carrera, R.; Weldon, W.F.; Woodson, H.H.

    1989-10-01

    The objective of the IGNITEX Project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. The original concept was proposed by both physics and engineering researchers along the following line of thought. Question: Is there any theoretically simple, compact and reliable way of achieving fusion ignition according to the results of the fusion research program for the last decades Answer: Yes. An experiment to be carried out in an ohmically heated compact tokamak device with 20 T field on plasma axis. Question: Is there any practical way to carry out that experiment at low cost in the near term Answer: Yes. Using a single-turn coil magnet system with homopolar power supplies.

  8. Equilibrium system analysis in a tokamak ignition experiment. Final report

    SciTech Connect

    Carrera, R.; Weldon, W.F.; Woodson, H.H.

    1989-10-01

    The objective of the IGNITEX Project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. The original concept was proposed by both physics and engineering researchers along the following line of thought. Question: Is there any theoretically simple, compact and reliable way of achieving fusion ignition according to the results of the fusion research program for the last decades? Answer: Yes. An experiment to be carried out in an ohmically heated compact tokamak device with 20 T field on plasma axis. Question: Is there any practical way to carry out that experiment at low cost in the near term? Answer: Yes. Using a single-turn coil magnet system with homopolar power supplies.

  9. Electron heating using lower hybrid waves in the PLT tokamak

    SciTech Connect

    Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.

    1987-06-01

    Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs.

  10. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Gao, W.; Chen, Y. J.; Wu, C. R.; Zhang, L.; Huang, J.; Chang, J. F.; Yao, X. J.; Gao, W.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Guo, H. Y.

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  11. Bench Test of the Vibration Compensation Interferometer for EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Gongshun; Yang, Yao; Liu, Haiqing; Jie, Yinxian; Zou, Zhiyong; Wang, Zhengxing; Zeng, Long; Wei, Xuechao; Li, Weiming; Lan, Ting; Zhu, Xiang; Liu, Yukai; Gao, Xiang

    2016-02-01

    A visible laser-based vibration compensation interferometer has recently been designed for the EAST tokamak and the bench test has been finished. The system was optimized for its installation on EAST. The value of the final optical power before the detectors without plasma has been calculated from the component bench test result, which is quite close to the measured value. A nanometer level displacement (of the order of the laser's wavelength) has been clearly measured by a modulation of piezoelectric ceramic unit, proving the system's capability. supported by the National Magnetic Confinement Fusion Program of China (Nos. 2014GB106002, 2014GB106003, 2014GB106004) and National Natural Science Foundation of China (Nos. 11105184, 11375237, 11505238)

  12. WILDCAT: a catalyzed D-D tokamak reactor

    SciTech Connect

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-11-01

    WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.

  13. A non-inductively driven steady state tokamak reactor

    SciTech Connect

    Fenstermacher, M.E.; Devoto, R.S.; Bulmer, R.H.; Lee, J.D.; Miller, J.R.; Schultz, J.

    1988-09-20

    The physics and engineering guidelines for the ITER device are shown to lead to viable and attractive operating points for a steady state tokamak power reactor. Non-inductive current drive is provided in steady state by high energy neutral beam injection in the plasma core, lower hybrid slow waves in the outer regions of the plasma and bootstrap current. Plasma gain Q (/equivalent to/fusion power/input power) in excess of 20 and average neutron wall loading, approx. 2.0 MW/m/sup 2/ are predicted in a device with major radius, R/sub 0/ = 7.5 m and minor radius, a = 2.8 m. 15 refs., 3 figs., 3 tabs.

  14. Study of internal transport barrier triggering mechanism in tokamak plasmas

    SciTech Connect

    Dong, J.Q.; Mou, Z.Z.; Long, Y.X.; Mahajan, S.M.

    2004-12-01

    Sheared flow layers driven by magnetic energy, released in tearing-reconnection processes inherent in dissipative magnetohydrodynamics, are proposed as a triggering mechanism for the creation of the internal transport barrier (ITB) in tokamak plasmas. The double tearing mode, mediated by anomalous electron viscosity in configurations with a nonmonotonic safety factor, is investigated as an example. Particular emphasis is placed on the formation of sheared poloidal flow layers in the vicinity of the magnetic islands. A quasilinear simulation demonstrates that the sheared flows induced by the mode have desirable characteristics (lying just outside the magnetic islands), and sufficient levels required for ITB formation. A possible explanation is also proffered for the experimental observation that the transport barriers are preferentially formed in the proximity of low-order rational surfaces.

  15. Microwave polarimetry system in the CDX-U tokamak

    SciTech Connect

    Hwang, Y.S.; Fredriksen, A.; Qin, H.; Forest, C.B.; Ono, M. )

    1995-01-01

    An existing microwave interferometer system is modified to add the capability of polarimetry in the CDX-U tokamak. Though this interferometer system can scan vertically and radially, only the vertical view channel is modified to accomodate Faraday rotation measurements, with its radial scanning capability preserved. For our relatively long microwave wavelength, the signal amplitude variation due to refraction is more important than effects due to vibration. An amplitude independent design of Faraday rotation diagnostics has been developed. By using a linearly polarized beam as input and putting a rotating polarizer in the beam after the plasma, birefringency effects are minimized. A digital phase detection technique has been developed for better resolution of the Faraday rotation angle.

  16. Poloidal rotation in tokamaks with large electric field gradients

    SciTech Connect

    Hinton, F.L.; Kim, Y.

    1995-01-01

    The ion poloidal flow velocity near the plasma edge in a tokamak has been calculated by extending neoclassical theory to include orbit squeezing, which is the reduction of the ion banana widths due to radial electric field shear. The pressure gradient-driven ion parallel flow is reduced by orbit squeezing, and then no longer cancels the diamagnetic flow in its contribution to poloidal flow. This allows the poloidal flow velocity to be a significant fraction of the ion diamagnetic velocity, which can be much larger than the standard neoclassical value (proportional to the ion temperature gradient). Equations for determining the poloidal flow and radial electric field profiles self-consistently are given. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Neoclassical momentum transport in an impure rotating tokamak plasma

    SciTech Connect

    Newton, S.; Helander, P.

    2006-01-15

    It is widely believed that transport barriers in tokamak plasmas are caused by radial electric-field shear, which is governed by angular momentum transport. Turbulence is suppressed in the barrier, and ion thermal transport is comparable to the neoclassical prediction, but experimentally angular momentum transport has remained anomalous. With this motivation, the collisional transport matrix is calculated for a low collisionality plasma with collisional impurity ions. The bulk plasma toroidal rotation velocity is taken to be subsonic, but heavy impurities undergo poloidal redistribution due to the centrifugal force. The impurities give rise to off-diagonal terms in the transport matrix, which cause the plasma to rotate spontaneously. At conventional aspect ratio, poloidal impurity redistribution increases the angular momentum flux by a factor up to {epsilon}{sup -3/2} over previous predictions, making it comparable to the 'banana' regime heat flux. The flux is primarily driven by radial pressure and temperature gradients.

  18. A predictive model for the tokamak density limit

    NASA Astrophysics Data System (ADS)

    Teng, Q.; Brennan, D. P.; Delgado-Aparicio, L.; Gates, D. A.; Swerdlow, J.; White, R. B.

    2016-10-01

    The Greenwald density limit, found in all tokamak experiments, is reproduced for the first time using a phenomenologically correct model with parameters in the range of experiments. A simple model of equilibrium evolution and local power balance inside the island has been implemented to calculate the radiation-driven thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island predicts the density limit within a few percent. The density limit is found to be a local edge limit and weakly dependent on impurity densities. Results are robust to a substantial variation in model parameters within the range of experiments.

  19. The role of plasma rotation on MHD instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Varadarajan, V.; Miley, G. H.

    An improved analysis of the linear stage of the internal kink mode has been developed to include plasma rotation and finite aspect ratio effects. The linear instability growth rates are increased by the plasma rotation. A pseudo-variational, bilinear formalism is used to discretize the linear instability equations; Fourier decomposition is used in the periodic coordinate, and a mixed-finite element procedure is adopted in the radial direction. The numerical studies with the resulting PEST-like code can be used to predict the complex plasma eigenfrequencies. The finite aspect ratio results are similar to the large aspect ratio results for flow instability. The complex instability frequencies found in the 'fishbone' and TAE modes would be strong determined by the large plasma rotation velocities observed in present-day tokamak devices. These effects could be studied by using the computationally convenient bilinear form derived from the Frieman-Rotenberg equation.

  20. MINERVA: Ideal MHD stability code for toroidally rotating tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Aiba, N.; Tokuda, S.; Furukawa, M.; Snyder, P. B.; Chu, M. S.

    2009-08-01

    A new linear MHD stability code MINERVA is developed for investigating a toroidal rotation effect on the stability of ideal MHD modes in tokamak plasmas. This code solves the Frieman-Rotenberg equation as not only the generalized eigenvalue problem but also the initial value problem. The parallel computing method used in this code realizes the stability analysis of both long and short wavelength MHD modes in short time. The results of some benchmarking tests show the validity of this MINERVA code. The numerical study with MINERVA about the toroidal rotation effect on the edge MHD stability shows that the rotation shear destabilizes the intermediate wavelength modes but stabilizes the short wavelength edge localized MHD modes, though the rotation frequency destabilizes both the long and the short wavelength MHD modes.

  1. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  2. Predicting High Harmonic Ion Cyclotron Heating Efficiency in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Green, D. L.; Berry, L. A.; Chen, G.; Ryan, P. M.; Canik, J. M.; Jaeger, E. F.

    2011-09-01

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (˜kVm-1) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  3. Ion radial transport induced by ICRF waves in tokamaks

    SciTech Connect

    Chen, L.; Vaclavik, J.; Hammett, G.W.

    1987-05-01

    The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant.

  4. RF wave propagation and scattering in turbulent tokamak plasmas

    SciTech Connect

    Horton, W. Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  5. Thermo-resistive disruptions and the tokamak density limit

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Brennan, D. P.; Delgado-Aparicio, L.; Teng, Q.; White, R. B.

    2016-05-01

    The physical mechanism behind the tokamak density limit scaling is described in terms of a non-linear theory of tearing mode growth in cylindrical geometry coupled to a model for thermal transport in the island. Important new physics features of the model include: (1) island asymmetry due to finite island width in cylindrical geometry, (2) a model of radiation based on local coronal equilibrium including impurity radiation, (3) current perturbations due the perturbed resistivity, and (4) numerical solution of the cylindrical eigenfunctions and Δ' . The semi-analytic cylindrical model is then solved for a wide range of current profiles, magnetic field values, and plasma currents using reasonable assumptions for impurity densities and the Greenwald limit [M. Greenwald et al., Nucl. Fusion 28, 2199 (1988)] is reproduced. The limit is shown to be only weakly dependent on variations in the assumed parameters.

  6. Stabilization of the resistive shell mode in tokamaks

    SciTech Connect

    Fitzpatrick, R.; Aydemir, A.

    1995-02-01

    The stability of current-driven external-kink modes is investigated in a tokamak plasma surrounded by an external shell of finite electrical conductivity. According to conventional theory, the ideal mode can be stabilized by placing the shell sufficiently close to the plasma, but the non-rotating ``resistive shell mode,`` which grows on the characteristic L/R time of the shell, always persists. It is demonstrated, using both analytic and numerical techniques, that a combination of strong edge plasma rotation and dissipation somewhere inside the plasma is capable of stabilizing the resistive shell mode. This stabilization mechanism does not necessarily depend on toroidicity or presence of resonant surfaces inside the plasma.

  7. Composition And Electrical Properties Of Dust From Tokamak Compass

    SciTech Connect

    Vaverka, J.; Beranek, M.; Pavlu, J.; Richterova, I.; Vysinka, M.; Safrankova, J.; Nemecek, Z.

    2011-11-29

    In spite of the fact that fusion is a subject of the study for many years, there are still a lot of open questions. One of the interesting topics in fusion research is a presence of dust grains in reactors. In the paper, dust grains born in tokamak Compass are studied and compared with samples of a spherical geometry and well known composition. A unique experimental setup was used for investigations of charging properties of such grains and the SEM and EDX spectroscopy was applied for a study of grain composition. We focus on the secondary emission because this process plays a prominent role when a portion of energetic electrons is present in surroundings of a particular grain. It was shown that depending on the grain size and material, energetic electrons charge the grains to positive potentials comparable with the energy of impinging electrons.

  8. Advanced ICRF antenna design for R-TOKAMAK

    NASA Astrophysics Data System (ADS)

    Kako, E.; Ando, R.; Ichimura, M.; Ogawa, Y.; Amano, T.; Watari, T.

    1986-01-01

    The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For high power heating, a new type antenna called Panel heater antenna is proposed. It has a wide radiation area and is able to select a parallel wave number k. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma.

  9. Recent Sawtooth Studies on the Tokamak a Configuration Variable

    NASA Astrophysics Data System (ADS)

    Testa, Duccio; Canal, Gustavo; Coda, Stefano; Duval, Basil; Federspiel, Lucia; Felici, Federico; Gnesin, Silvano; Goodman, Timothy; Graves, Jonathan; Halpern, Federico; Janvier, Miho; Kamleitner, Josef; Karpushov, Alexander; Kim, Doohyun; Kim, Kyungjin; Pochelon, Antoine; Reimerdes, Holger; Sauter, Olivier; TCV Team

    2011-10-01

    We report recent studies performed on the Tokamak a Configuration Variable on the sawtooth instability and its relation with Tearing Modes (TMs). The primary long-term aim of this work is to provide understanding of the relation between sawteeth and TMs so that reliable real-time schemes can be devised for combined sawtooth and TM control in burning plasma experiments such as ITER. Hence, our work has focused on studying: dynamical relation between sawtooth crash and subsequent onset of TMs, sometimes leading to disruptions, as a function of the plasma shape and current profile; coupling of the low m/n modes generated at the sawtooth crash; dynamical evolution of the toroidal rotation during sawteeth; real-time control techniques for the sawtooth period using localized electron cyclotron heating and current drive; distribution function of high energy electrons generated at the sawtooth crash. Work partly funded by Fonds National Suisse Recherche Scientifique.

  10. Elements of Neoclassical Theory and Plasma Rotation in a Tokamak

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.

    2015-12-01

    The following sections are included: * Introduction * Quasineutrality condition * Diffusion in fully ionized magnetized plasma and automatic ambipolarity * Toroidal geometry and neoclassical diffusion * Diffusion and ambipolarity in toroidal plasmas * Ambipolarity and equilibrium poloidal rotation * Ambipolarity paradox and damping of poloidal rotation * Neoclassical plasma inertia * Oscillatory modes of poloidal plasma rotation * Dynamics of the toroidal momentum * Momentum diffusion in strongly collisional, short mean free path regime * Diffusion of toroidal momentum in the weak collision (banana) regime * Toroidal momentum diffusion and momentum damping from drift-kinetic theory and fluid moment equations * Comments on non-axisymmetric effects * Summary * Acknowledgments * Appendix: Trapped (banana) particles and collisionality regimes in a tokamak * Appendix: Hierarchy of moment equations * Appendix: Plasma viscosity tensor in the magnetic field: parallel viscosity, gyroviscosity, and perpendicular viscosity * Appendix: Closure relations for the flux surface averaged parallel viscosity in neoclassical (banana and plateau) regimes * References

  11. Vlasov tokamak equilibria with sheared toroidal flow and anisotropic pressure

    SciTech Connect

    Kuiroukidis, Ap; Throumoulopoulos, G. N.; Tasso, H.

    2015-08-15

    By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e., the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions, these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.

  12. Sub-Alfvenic Reduced Equations for Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Sengupta, W.; Hassam, A. B.; Antonsen, T. M.

    2015-11-01

    We present a system of reduced resistive MHD equations which are sub-Alfvenic with respect to ideal ballooning in large aspect ratio tokamak geometry. The low beta system allows dynamic evolution of full profiles. The system has the advantage that it is 2-dimensional in the transverse to º, space variables. This allows significant analytical tractability as well as ease in numerical implementation. The linearized equations are shown to reproduce Mercier modes, resistive ballooning modes, tearing modes, sound waves, GAMs, the Stringer spinup, and Rosenbluth-Hinton zonal flows. The methodology developed allows extension to drift modes as well as to a hybrid system of moment and electromagnetic sub-gyro-drift-kinetic equations. Analytical and numerical benchmarks will be presented. We show that the system, which requires Laplace equation inversion to solve for electromagnetic potentials, is implementable numerically. Work supported by DOE.

  13. Radioactive waste disposal characteristics of candidate tokamak demonstration reactors

    SciTech Connect

    Hoffman, E.A.; Stacey, W.M.; Hertel, N.E.

    1998-08-01

    Results from the current physics, materials and blanket R and D programs are combined with physics and engineering design constraints to characterize candidate tokamak demonstration plant (DEMO) designs. Blanket designs based on the principal structural materials, breeding materials and coolants being developed for the DEMO were adapted from the literature. Neutron flux and activation calculations were performed, and several radioactive waste disposal indices were evaluated, for each design. Of the primary low-activation structural materials under development in the US, it appears that vanadium and ferritic steel alloys, and possibly silicon carbide, could lead to DEMO designs which could satisfy realistic low-level waste (LLW) criteria, provided that impurities can be controlled within plausible limits. Allowable LLW concentrations are established for the limiting alloying and impurity elements. All breeding materials and neutron multipliers considered meet the LLW criterion.

  14. A Lumped Parameter Model for Feedback Studies in Tokamaks

    NASA Astrophysics Data System (ADS)

    Chance, M. S.; Chu, M. S.; Okabayashi, M.; Glasser, A. H.

    2004-11-01

    A lumped circuit model of the feedback stabilization studies in tokamaks is calculated. This work parallels the formulation by Boozer^a, is analogous to the studies done on axisymmetric modes^b, and generalizes the cylindrical model^c. The lumped circuit parameters are derived from the DCON derived eigenfunctions of the plasma, the resistive shell and the feedback coils. The inductances are calculated using the VACUUM code which is designed to calculate the responses between the various elements in the feedback system. The results are compared with the normal mode^d and the system identification^e approaches. ^aA.H. Boozer, Phys. Plasmas 5, 3350 (1998). ^b E.A. Lazarus et al., Nucl. Fusion 30, 111 (1990). ^c M. Okabayashi et al., Nucl. Fusion 38, 1607 (1998). ^dM.S. Chu et al., Nucl. Fusion 43, 441 (2003). ^eY.Q. Liu et al., Phys. Plasmas 7, 3681 (2000).

  15. Microinstability-based model for anomalous thermal confinement in tokamaks

    SciTech Connect

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed.

  16. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect

    Not Available

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.

  17. Gas-fueling studies in the PDX tokamak

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.; Budny, R.; Fonck, R.J.; Owens, D.K.; Schmidt, G.L.

    1982-08-01

    The characteristics of gas-fueling of high power discharges in the PDX tokamak have been investigated using gas-flow, neutral pressure, plasma density, and H..cap alpha.. emission measurements. The efficiency of gas-fueling was measured for various plasma configurations by comparison of the measured gas-influx rates to the particle exhaust rates inferred from particle decay time measurements. We observe that the fueling efficiency decreases significantly with increasing plasma density as the ionization length for thermal neutrals becomes shorter than the width of the boundary plasma. Gas fueling rates required to maintain a given plasma density are considerably higher (by factors of 5 to 10) for diverted discharges compared to limiter discharges. This result is attributed to a lower effective recycling coefficient for diverted plasmas. We discuss the dependence of the particle balance on the following experimentally measured parameters: the particle containment time, system-pumping speed, and neutral pressure in the vicinity of the active pumps.

  18. Impurity poloidal asymmetries and plasma rotation in the PDX Tokamak

    NASA Astrophysics Data System (ADS)

    Brau, K.

    Vertical poloidal asymmetries of carbon and oxygen in the PDX Tokamak were monitored under a variety of discharge conditions in circular plasmas. Near the edge of the plasma and in the region beyond the limiter, the asymmetries appear to be caused by local impurity recycling, variations in the length of the emitting region, and effects due to vertical ion drifts. In the case of C V impurities, the sign and magnitude of the asymmetry is in qualitative agreement with the predictions of a quasi-neoclassical fluid model of impurity transport. A two dimensional computer code is used to simulate different models of poloidal asymmetries, including: (1) poloidally asymmetric source function, (2) charge exchange recombination with neutral hydrogen, (3) poloidally asymmetric electron ensity and temperature profiles, (4) poloidally varying anomalous radial diffusion coefficient, and (5) the quasi-neoclassical fluid model.

  19. The energy balance of divertor discharges in the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Bell, M. G.; Fonck, R. J.; Grek, B.; Jaehnig, K. P.; Kaita, R.; Kaye, S. M.; McBride, T.; Mueller, D.; Owens, D. K.; Schmidt, G. L.

    1984-05-01

    The energy balance of divertor discharges in the PDX tokamak has been studied as a function of the divertor geometry, heating method, and discharge parameters. In the original open divertor geometry, energy flow to the neutralizers accounted for 50-60% of the input energy, while radiation from the main plasma accounted for 20-40%, depending on the density and the heating source. For single-null discharges in the modified closed divertor geometry, the main plasma radiation remains at a similar level, but the neutralizer deposition decreases to < 20% and radiation from the divertor scrape-off must be included to achieve energy accountability. The energy deposition width on the neutralizers is found to vary with plasma conditions in the closed geometry.

  20. Gas-fueling studies in the PDX Tokamak

    NASA Astrophysics Data System (ADS)

    Dylla, H. F.; Blanchard, W. R.; Budny, R.; Fonck, R. J.; Owens, D. K.; Schmidt, G. L.

    1982-12-01

    The characteristics of gas-fueling of high power discharges in the PDX tokamak have been investigated using gas-flow, neutral pressure, plasma density, and H α emission measurements. The efficiency of gas-fueling was measured for various plasma configurations by comparison of the measured gas-influx rates to the particle exhaust rates inferred from particle decay time measurements. We observe that the fueling efficiency decreases significantly with increasing plasma density as the ionization lenght for thermal neutrals becomes shorter than the width of the boundary plasma. Gas fueling rates required to maintain a given plasma density are considerably higher (by factors of 5-10) for diverted discharges compared to limiter discharges. This result is attributed to a lower effective recycling coefficient for diverted plasmas. We discuss the dependence of the particle balance on the following experimentally measured parameters: the particle containment time, system pumping speed, and neutral pressure in the vicinity of the active pumps.