Science.gov

Sample records for cancer cell-lines lncap

  1. Characterization of a Novel Metastatic Prostate Cancer Cell Line of LNCaP Origin

    PubMed Central

    Castanares, Mark A.; Copeland, Ben T.; Chowdhury, Wasim H.; Liu, Minzhi M.; Rodriguez, Ronald; Pomper, Martin G.; Lupold, Shawn E.; Foss, Catherine A.

    2016-01-01

    Background The LNCaP cell line was originally isolated from the lymph node of a patient with metastatic prostate cancer. Many cell lines have been derived from LNCaP by selective pressures to study different aspects of prostate cancer progression. When injected subcutaneously into male athymic nude mice, LNCaP and its derivatives rarely metastasize. Methods Here, we describe the characteristics of a new LNCaP derivative, JHU-LNCaPSM, which was generated by long term passage in normal cell culture conditions. Results Short tandem repeat (STR) analysis and genomic sequencing verified JHU-LNCaP-SM derivation from parental LNCaP cells. JHU-LNCaP-SM cells express the same mutated androgen receptor (AR) but unlike LNCaP, are no longer androgen dependent for growth. The cells demonstrate an attenuated androgen responsiveness in transcriptional assays and retain androgen sensitive expression of PSA, AR, and PSMA. Unlike parental LNCaP, JHU-LNCaP-SM cells quickly form subcutaneous tumors in male athymic nude mice, reliably metastasize to the lymph nodes and display a striking intra-tumoral and spreading hemorrhagic phenotype as tumor xenografts. Conclusions The JHU-LNCaP-SM cell line is a new isolate of LNCaP, which facilitates practical, preclinical studies of spontaneous metastasis of prostate cancer through lymphatic tissues. PMID:26499105

  2. Variations in the exome of the LNCaP prostate cancer cell line.

    PubMed

    Spans, Lien; Atak, Zeynep Kalender; Van Nieuwerburgh, Filip; Deforce, Dieter; Lerut, Evelyne; Aerts, Stein; Claessens, Frank

    2012-09-01

    The LNCaP cell line is widely used as a model for prostate cancer. However, information on protein-changing mutations, genetic heterogeneity and genetic (in)stability is largely lacking for these cells. Next-generation sequencing of the LNCaP exome revealed many single nucleotide variants (SNVs). To help identify the mutations that are most likely drivers of the oncogenic process, we developed an in silico protocol, which can be adapted for other exome analyses. We detected 1,802 non-synonymous SNVs and 218 small insertions and deletions in the LNCaP exome. We confirm the known mutations in the androgen receptor and the PTEN gene, but most other mutations remained undescribed until now. The presence of 38 out of 42 SNVs was confirmed in monoclonal as well as in polyclonal LNCaP derivatives. Moreover, most variants were also detectable in LNCaP mRNA. We provide an extensive database of genetic variations in the protein-coding part of the genome of LNCaP cells, which should be taken into consideration when using LNCaP cells or its derivatives as models for prostate cancer. From the analysis of several LNCaP-derived cultures and clones, we can confirm that the cell line is heterozygous for a large number of variants and that both the variant and the wild-type allele can be simultaneously expressed as mRNA. The fact that the SNVs in the E-cadherin, CDK4, Notch1, and PlexinB1 genes are absent in some of the subclones strongly indicates a degree of genetic instability. Copyright © 2011 Wiley Periodicals, Inc.

  3. Comparative genomic and transcriptomic analyses of LNCaP and C4-2B prostate cancer cell lines.

    PubMed

    Spans, Lien; Helsen, Christine; Clinckemalie, Liesbeth; Van den Broeck, Thomas; Prekovic, Stefan; Joniau, Steven; Lerut, Evelyne; Claessens, Frank

    2014-01-01

    The LNCaP and C4-2B cell lines form an excellent preclinical model to study the development of metastatic castration-resistant prostate cancer, since C4-2B cells were derived from a bone metastasis that grew in nude mice after inoculation with the LNCaP-derived, castration-resistant C4-2 cells. Exome sequencing detected 2188 and 3840 mutations in LNCaP and C4-2B cells, respectively, of which 1784 were found in both cell lines. Surprisingly, the parental LNCaP cells have over 400 mutations that were not found in the C4-2B genome. More than half of the mutations found in the exomes were confirmed by analyzing the RNA-seq data, and we observed that the expressed genes are more prone to mutations than non-expressed genes. The transcriptomes also revealed that 457 genes show increased expression and 246 genes show decreased expression in C4-2B compared to LNCaP cells. By combining the list of C4-2B-specific mutations with the list of differentially expressed genes, we detected important changes in the focal adhesion and ECM-receptor interaction pathways. Integration of these pathways converges on the myosin light chain kinase gene (MLCK) which might contribute to the metastatic potential of C4-2B cells. In conclusion, we provide extensive databases for mutated genes and differentially expressed genes in the LNCaP and C4-2B prostate cancer cell lines. These can be useful for other researchers using these cell models.

  4. The radiation response of androgen-refractory prostate cancer cell line C4-2 derived from androgen-sensitive cell line LNCaP.

    PubMed

    Xie, Bang-Xiang; Zhang, Hui; Yu, Lan; Wang, Jian; Pang, Bo; Wu, Rui-Qin; Qian, Xiao-Long; Li, Shan-Hu; Shi, Qing-Guo; Wang, Le-Le; Zhou, Jian-Guang

    2010-05-01

    Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therapeutic synergy between radiotherapy and androgen ablation treatment provides a promising strategy for improving the clinical outcome. Accordingly, the androgen deprivation-induced signaling pathway may also mediate radiosensitivity in PCa cells. The C4-2 cell line was derived from the androgen-sensitive LNCaP parent line under androgen-depleted condition and had acquired androgen-refractory characteristics. In our study, the response to radiation was evaluated in both LNCaP and C4-2. Results showed that C4-2 cells were more likely to survive from irradiation and appeared more aggressive in their resistance to radiation treatment compared with LNCaP, as measured by clonogenic assays and cell viability and cell cycle analyses. Gene expression analyses revealed that a set of genes involved in cell cycle arrest and DNA repair were differentially regulated in LNCaP and C4-2 in response to radiation, which was also consistent with the radiation-resistant property observed in C4-2 cells. These results strongly suggested that the radiation-resistant property may develop with progression of PCa to androgen-independent status. Not only can the LNCaP and C4-2 PCa progression model be applied for investigating androgen-refractory progression, but it can also be used to explore the development of radiation resistance in PCa.

  5. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    SciTech Connect

    Zhao, Hu; Zhu, Chen; Qin, Chao; Tao, Tao; Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin; Gu, Min; Yin, Changjun

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  6. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line.

    PubMed

    Shuba, Y M; Prevarskaya, N; Lemonnier, L; Van Coppenolle, F; Kostyuk, P G; Mauroy, B; Skryma, R

    2000-10-01

    Patch-clamp recordings were used to study ion currents induced by cell swelling caused by hypotonicity in human prostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl(-) was the primary charge carrier (termed I(Cl,swell)). The selectivity sequence of the underlying volume-regulated anion channels (VRACs) for different anions was Br(-) approximately I(-) > Cl(-) > F(-) > methanesulfonate > glutamate, with relative permeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currents as well as single-channel currents showed moderate outward rectification. Unitary VRAC conductance was determined at 9.6 +/- 1.8 pS. Conventional Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM) and DIDS (100 microM) inhibited whole cell I(Cl,swell) in a voltage-dependent manner, with the block decreasing from 39.6 +/- 9.7% and 71.0 +/- 11. 0% at +50 mV to 26.2 +/- 7.2% and 14.5 +/- 6.6% at -100 mV, respectively. Verapamil (50 microM), a standard Ca(2+) antagonist and P-glycoprotein function inhibitor, depressed the current by a maximum of 15%. Protein tyrosine kinase inhibitors downregulated I(Cl,swell) (genistein with an IC(50) of 2.6 microM and lavendustin A by 60 +/- 14% at 1 microM). The protein tyrosine phosphatase inhibitor sodium orthovanadate (500 microM) stimulated I(Cl,swell) by 54 +/- 11%. We conclude that VRACs in human prostate cancer epithelial cells are modulated via protein tyrosine phosphorylation.

  7. Evaluation of the PDT effect of Foscan and Fospeg in the LNCaP human prostate cancer cell line

    NASA Astrophysics Data System (ADS)

    Petri, A.; Kyriazi, M.; Alexandratou, E.; Rallis, M.; Gräfe, S.; Yova, D.

    2009-07-01

    In this paper the cytotoxic effect of m-THPC, Foscan®, as well as of the liposomal formulation of m-THPC, Fospeg®,(kind offer of Biolitec) were studied post PDT in the human prostate cancer cell line LNCaP. The cells were incubated for 24h with 0.15 μg/ml and 1.2 μg/ml Foscan® and Fospeg®. Irradiation was performed with a 652nm laser and energy doses 180, 360 and 540mJ/cm2. The effect was assessed by the MTT viability test 24h after irradiation. Also the intracellular localization of Foscan® and Fospeg® was monitored by using Laser Scanning Confocal Microscopy Imaging. The results showed no dark toxicity either with Foscan® or Fospeg® at any concentration. Also irradiation at each energy dose in the absence of any photosensitizer, did not affect cellular viability. The cellular death caused after Photodynamic Treatment was dependent on m-THPC concentration and formulation, as well as the delivered energy dose. Fospeg® was more effective as LD50 was achieved with 0.15μg/ml at 180mJ/cm2 while for the same cytotoxic result 1.2μg/ml Foscan® was needed. Images from confocal microscopy revealed higher fluorescence intensity in the cytoplasm after incubation with Fospeg®, than upon incubation with Foscan® under the same experimental conditions.

  8. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.

    PubMed

    Seiler, Daniel; Zheng, Junying; Liu, Gentao; Wang, Shunyou; Yamashiro, Joyce; Reiter, Robert E; Huang, Jiaoti; Zeng, Gang

    2013-09-01

    Prostate cancer stem cells (PCSC) offer theoretical explanations to many clinical and biological behaviors of the disease in human. In contrast to approaches of using side populations and cell-surface markers to isolate and characterize the putative PCSC, we hypothesize that androgen deprivation leads to functional enrichment of putative PCSC. Human prostate cancer lines LNCaP, LAPC4 and LAPC9 were depleted of androgen in cell cultures and in castrated SCID mice. The resultant androgen deprivation-resistant or castration-resistant populations, in particular in LNCaP and its derivative cell lines, displayed increased expression of pluripotency transactivators and significantly higher tumorigenicity. Individual tumor cell clones were isolated from castration-resistant bulk cultures of LNCaP (CR-LNCaP) and tested for tumorigenicity in male SCID mice under limiting dilution conditions. As few as 200 cells were able to form spheres in vitro, and generate tumors with similar growth kinetics as 10(6) LNCaP or 10(4) CR-LNCaP cells in vivo. These putative PCSC were CD44(+) /CD24(-) and lack the expression of prostate lineage proteins. When transplanted into the prostate of an intact male SCID mouse, these putative PCSC seemed to show limited differentiation into Ck5(+) , Ck8(+) , Ck5(+) /Ck8(+) , and AR(+) cells. On the other hand, stable transduction of LNCaP with retrovirus encoding Sox2 led to androgen-deprivation resistant growth and down-regulation of major prostate lineage gene products in vitro. Concurrence of overexpression of pluripotency transactivators and resistance to androgen deprivation supported the role of putative PCSC in the emergence of prostate cancer resistant to androgen deprivation. © 2013 Wiley Periodicals, Inc.

  9. Adenosine induces cell-cycle arrest and apoptosis in androgen-dependent and -independent prostate cancer cell lines, LNcap-FGC-10, DU-145, and PC3.

    PubMed

    Aghaei, Mahmoud; Karami-Tehrani, Fatemeh; Panjehpour, Mojtaba; Salami, Siamak; Fallahian, Faranak

    2012-03-01

    Adenosine has been shown to inhibit cell growth and induce apoptosis in the several cancer cells via intrinsic and extrinsic pathway. The present study was designed to understand the mechanism underlying adenosine-induced apoptosis in the DU-145, PC3, and LNcap-FGC10 human prostate cancer cells. To observe cell viability and proliferation, MTT assay, cell counting, and BrdU assay were carried out in DU-145, PC3, and LNcap-FGC10 cells. Apoptosis was assessed with the analysis of cell cycle, Hoechst 33258 staining, propidium iodide and annexin-V staining, reactive oxygen species (ROS) formation, mitochondrial membrane potential (ΔΨM) measurement, caspase-3 activity assay, Bcl-2 and Bax protein expression. Moreover, the expression of adenosine receptors and the effects of adenosine receptor (A(1) , A(2a) , and A(3) ) antagonists were examined. Adenosine significantly reduced cell proliferation in a dose-dependent manner in DU-145, PC3, and LNcap-FGC10 cell lines. Adenosine induced arrest in the cell-cycle progression in G0/G1 phase through Cdk4/cyclinD1-mediated pathway. Adenosine induced apoptosis, which was determined by morphological changes and increased sub-G1 population. Furthermore, increase of ROS, loss of MMP, activation of caspase-3, and down-regulation of Bcl-2 expression was observed. A(1) , A(2a) , A(2b) , and A(3) adenosine receptors mRNA are expressed in the cell lines. Moreover, adenosine-induced apoptosis was inhibited by MRS1220, A(3) adenosine receptor antagonist. Our results suggest that adenosine induced apoptosis in prostate cancer cells via the mitochondrial pathway and is related to the adenosine receptors. These data might suggest that adenosine could be used as an agent for the treatment of prostate cancer. Copyright © 2011 Wiley Periodicals, Inc.

  10. Phorbol ester stimulates ethanolamine release from the metastatic basal prostate cancer cell line PC3 but not from prostate epithelial cell lines LNCaP and P4E6

    PubMed Central

    Schmitt, J; Noble, A; Otsuka, M; Berry, P; Maitland, N J; Rumsby, M G

    2014-01-01

    Background: Malignancy alters cellular complex lipid metabolism and membrane lipid composition and turnover. Here, we investigated whether tumorigenesis in cancer-derived prostate epithelial cell lines influences protein kinase C-linked turnover of ethanolamine phosphoglycerides (EtnPGs) and alters the pattern of ethanolamine (Etn) metabolites released to the medium. Methods: Prostate epithelial cell lines P4E6, LNCaP and PC3 were models of prostate cancer (PCa). PNT2C2 and PNT1A were models of benign prostate epithelia. Cellular EtnPGs were labelled with [1-3H]-Etn hydrochloride. PKC was activated with phorbol ester (TPA) and inhibited with Ro31-8220 and GF109203X. D609 was used to inhibit PLD (phospholipase D). [3H]-labelled Etn metabolites were resolved by ion-exchange chromatography. Sodium oleate and mastoparan were tested as activators of PLD2. Phospholipase D activity was measured by a transphosphatidylation reaction. Cells were treated with ionomycin to raise intracellular Ca2+ levels. Results: Unstimulated cell lines release mainly Etn and glycerylphosphorylEtn (GPEtn) to the medium. Phorbol ester treatment over 3h increased Etn metabolite release from the metastatic PC3 cell line and the benign cell lines PNT2C2 and PNT1A but not from the tumour-derived cell lines P4E6 and LNCaP; this effect was blocked by Ro31-8220 and GF109203X as well as by D609, which inhibited PLD in a transphosphatidylation reaction. Only metastatic PC3 cells specifically upregulated Etn release in response to TPA treatment. Oleate and mastoparan increased GPEtn release from all cell lines at the expense of Etn. Ionomycin stimulated GPEtn release from benign PNT2C2 cells but not from cancer-derived cell lines P4E6 or PC3. Ethanolamine did not stimulate the proliferation of LNCaP or PC3 cell lines but decreased the uptake of choline (Cho). Conclusions: Only the metastatic basal PC3 cell line specifically increased the release of Etn on TPA treatment most probably by PKC activation of

  11. Synthesis and cytotoxic activities of some 2-arylnaphtho[2,3-d]oxazole-4,9-dione derivatives on androgen-dependent (LNCaP) and androgen-independent (PC3) human prostate cancer cell lines.

    PubMed

    Brandy, Yakini; Ononiwu, Innocent; Adedeji, Dolapo; Williams, Vonetta; Mouamba, Claudia; Kanaan, Yasmine; Copeland, Robert L; Wright, Dwayne A; Butcher, Ray J; Denmeade, Samuel R; Bakare, Oladapo

    2012-08-01

    The synthesis of five 2-arylnaphtho[2,3-d]oxazole-4,9-dione derivatives was accomplished by refluxing 2-amino-3-bromo-1,4-naphthoquinone with appropriate benzoyl chloride analogs at elevated temperatures. In vitro anticancer evaluation of these compounds was performed on androgen-dependent, LNCaP, and androgen-independent, PC3, human prostate cancer cell lines. In general, these compounds displayed slightly stronger cytotoxicity on the androgen-dependent LNCaP than on the androgen-independent PC3 prostate cancer cell lines. The meta-substituted 2-(3-Chloro-phenyl)-naphtho[2,3-d]oxazole-4,9-dione (10) appear to display the best cytotoxicity on both cell lines with an IC(50) of 0.03 μM on LNCaP and 0.08 μM on PC3 after 5 days of exposure.

  12. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP.

    PubMed

    Panov, Alexander; Orynbayeva, Zulfiya

    2013-01-01

    The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca²⁺ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca²⁺-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca²⁺. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.

  13. Bioenergetic and Antiapoptotic Properties of Mitochondria from Cultured Human Prostate Cancer Cell Lines PC-3, DU145 and LNCaP

    PubMed Central

    Panov, Alexander; Orynbayeva, Zulfiya

    2013-01-01

    The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca2+ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca2+-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca2+. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia. PMID:23951286

  14. The synthetic bryostatin analog Merle 23 dissects distinct mechanisms of bryostatin activity in the LNCaP human prostate cancer cell line.

    PubMed

    Kedei, Noemi; Telek, Andrea; Czap, Alexandra; Lubart, Emanuel S; Czifra, Gabriella; Yang, Dazhi; Chen, Jinqiu; Morrison, Tyler; Goldsmith, Paul K; Lim, Langston; Mannan, Poonam; Garfield, Susan H; Kraft, Matthew B; Li, Wei; Keck, Gary E; Blumberg, Peter M

    2011-06-01

    Bryostatin 1 has attracted considerable attention both as a cancer chemotherapeutic agent and for its unique activity. Although it functions, like phorbol esters, as a potent protein kinase C (PKC) activator, it paradoxically antagonizes many phorbol ester responses in cells. Because of its complex structure, little is known of its structure-function relations. Merle 23 is a synthetic derivative, differing from bryostatin 1 at only four positions. However, in U-937 human leukemia cells, Merle 23 behaves like a phorbol ester and not like bryostatin 1. Here, we characterize the behavior of Merle 23 in the human prostate cancer cell line LNCaP. In this system, bryostatin 1 and phorbol ester have contrasting activities, with the phorbol ester but not bryostatin 1 blocking cell proliferation or tumor necrosis factor alpha secretion, among other responses. We show that Merle 23 displays a highly complex pattern of activity in this system. Depending on the specific biological response or mechanistic change, it was bryostatin-like, phorbol ester-like, intermediate in its behavior, or more effective than either. The pattern of response, moreover, varied depending on the conditions. We conclude that the newly emerging bryostatin derivatives such as Merle 23 provide powerful tools to dissect subsets of bryostatin mechanism and response. Published by Elsevier Inc.

  15. The synthetic bryostatin analog Merle 23 dissects distinct mechanisms of bryostatin activity in the LNCaP human prostate cancer cell line

    PubMed Central

    Kedei, Noemi; Telek, Andrea; Czap, Alexandra; Lubart, Emanuel S.; Czifra, Gabriella; Yang, Dazhi; Chen, Jinqiu; Morrison, Tyler; Goldsmith, Paul K.; Lim, Langston; Mannan, Poonam; Garfield, Susan H.; Kraft, Matthew B.; Li, Wei; Keck, Gary E.; Blumberg, Peter M.

    2011-01-01

    Bryostatin 1 has attracted considerable attention both as a cancer chemotherapeutic agent and for its unique activity. Although it functions, like phorbol esters, as a potent protein kinase C (PKC) activator, it paradoxically antagonizes many phorbol ester responses in cells. Because of its complex structure, little is known of its structure-function relations. Merle 23 is a synthetic derivative, differing from bryostatin 1 at only four positions. However, in U-937 human leukemia cells, Merle 23 behaves like a phorbol ester and not like bryostatin 1. Here, we characterize the behavior of Merle 23 in the human prostate cancer cell line LNCaP. In this system, bryostatin 1 and phorbol ester have contrasting activities, with the phorbol ester but not bryostatin 1 blocking cell proliferation or tumor necrosis factor alpha secretion, among other responses. We show that Merle 23 displays a highly complex pattern of activity in this system. Depending on the specific biological response or mechanistic change, it was bryostatin-like, phorbol ester-like, intermediate in its behavior, or more effective than either. The pattern of response, moreover, varied depending on the conditions. We conclude that the newly emerging bryostatin derivatives such as Merle 23 provide powerful tools to dissect subsets of bryostatin mechanism and response. PMID:21458422

  16. Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3.

    PubMed

    Tata, D B; Dunn, F; Tindall, D J

    1997-05-08

    Low intensity ultrasound signals, similar to that employed in clinical therapy, are found to mediate differential gene transfer and expression of the Green Fluorescence Protein (GFP) reporter in two human prostate cancer cell lines, LnCap and PC-3. Cell suspensions in the presence or in the absence of GFP (44.5nM) were treated at 37 degrees C under a standing wave condition. Cells were exposed to either continuous wave, 932.7kHz ultrasound, or to several independent bursts, each burst comprising a 20% duty cycle (932.7kHz) sine wave. The burst "repetition" frequency was varied from 10Hz to 10kHz in several different experiments and each treatment received a net identical ultrasound energy exposure. Transient GFP expression levels in viable cells were monitored by flow cytometry. The findings revealed a strong ultrasound tone-burst frequency dependence on the transfection efficiencies. Interestingly, the ultrasound signal parameters which are routinely employed in clinical therapy did not yield any statistically significant enhancement in transfection efficiency relative to their sham counterparts.

  17. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    PubMed

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.

  18. Comparison of transcriptional response to phorbol ester, bryostatin 1, and bryostatin analogs in LNCaP and U937 cancer cell lines provides insight into their differential mechanism of action.

    PubMed

    Kedei, N; Telek, A; Michalowski, A M; Kraft, M B; Li, W; Poudel, Y B; Rudra, A; Petersen, M E; Keck, G E; Blumberg, P M

    2013-02-01

    Bryostatin 1, like the phorbol esters, binds to and activates protein kinase C (PKC) but paradoxically antagonizes many but not all phorbol ester responses. Previously, we have compared patterns of biological response to bryostatin 1, phorbol ester, and the bryostatin 1 derivative Merle 23 in two human cancer cell lines, LNCaP and U937. Bryostatin 1 fails to induce a typical phorbol ester biological response in either cell line, whereas Merle 23 resembles phorbol ester in the U937 cells and bryostatin 1 in the LNCaP cells. Here, we have compared the pattern of their transcriptional response in both cell lines. We examined by qPCR the transcriptional response as a function of dose and time for a series of genes regulated by PKCs. In both cell lines bryostatin 1 differed primarily from phorbol ester in having a shorter duration of transcriptional modulation. This was not due to bryostatin 1 instability, since bryostatin 1 suppressed the phorbol ester response. In both cell lines Merle 23 induced a pattern of transcription largely like that of phorbol ester although with a modest reduction at later times in the LNCaP cells, suggesting that the difference in biological response of the two cell lines to Merle 23 lies downstream of this transcriptional regulation. For a series of bryostatins and analogs which ranged from bryostatin 1-like to phorbol ester-like in activity on the U937 cells, the duration of transcriptional response correlated with the pattern of biological activity, suggesting that this may provide a robust platform for structure activity analysis.

  19. Comparison of transcriptional response to phorbol ester, bryostatin 1, and bryostatin analogues in LNCaP and U937 cancer cell lines provides insight into their differential mechanism of action

    PubMed Central

    Kedei, N.; Telek, A.; Michalowski, A.M.; Kraft, M.B.; Li, W.; Poudel, Y.B.; Rudra, A.; Petersen, M.E.; Keck, G.E.; Blumberg, P.M.

    2012-01-01

    Bryostatin 1, like the phorbol esters, binds to and activates protein kinase C (PKC) but paradoxically antagonizes many but not all phorbol ester responses. Previously, we have compared patterns of biological response to bryostatin 1, phorbol ester, and the bryostatin 1 derivative Merle 23 in two human cancer cell lines, LNCaP and U937. Bryostatin 1 fails to induce a typical phorbol ester biological response in either cell line, whereas Merle 23 resembles phorbol ester in the U937 cells and bryostatin 1 in the LNCaP cells. Here, we have compared the pattern of their transcriptional response in both cell lines. We examined by qPCR the transcriptional response as a function of dose and time for a series of genes regulated by PKCs. In both cell lines bryostatin 1 differed primarily from phorbol ester in having a shorter duration of transcriptional modulation. This was not due to bryostatin 1 instability, since bryostatin 1 suppressed the phorbol ester response. In both cell lines Merle 23 induced a pattern of transcription largely like that of phorbol ester although with a modest reduction at later times in the LNCaP cells, suggesting that the difference in biological response of the two cell lines to Merle 23 lies downstream of this transcriptional regulation. For a series of bryostatins and analogues which ranged from bryostatin 1-like to phorbol ester-like in activity on the U937 cells, the duration of transcriptional response correlated with the pattern of biological activity, suggesting that this may provide a robust platform for structure activity analysis. PMID:23146662

  20. Diastereomers of the Brominated Flame Retardant 1,2-Dibromo-4-(1,2 dibromoethyl)cyclohexane Induce Androgen Receptor Activation in the HepG2 Hepatocellular Carcinoma Cell Line and the LNCaP Prostate Cancer Cell Line

    PubMed Central

    Khalaf, Hazem; Larsson, Anders; Berg, Håkan; McCrindle, Robert; Arsenault, Gilles; Olsson, Per-Erik

    2009-01-01

    Background Reported incidences of prostate cancer and masculinization of animals indicate a release of compounds with androgenic properties into the environment. Large numbers of environmental pollutants have been screened to identify such compounds; however, not until recently was 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) identified as the first potent activator of the human androgen receptor (hAR). TBECH has been found in beluga whales and bird eggs and has also been found to be maternally transferred in zebrafish. Objectives In the present study we investigated interaction energies between TBECH diastereomers (α, β, γ, and δ) and the hAR, and their ability to activate the receptor and induce prostate-specific antigen (PSA) expression in vitro. Methods We performed computational modeling to determine interaction energies between the ligand and the AR ligand-binding site, and measured in vitro competitive binding assays for AR by polarization fluorometry analysis. We used enzyme-linked immunosorbent assays to determine PSA activity in LNCaP and HepG2 cells. Results We found the γ and δ diastereomers to be more potent activators of hAR than the α and β diastereomers, which was confirmed in receptor binding studies. All TBECH diastereomers induced PSA expression in LNCaP cells even though the AR present in these cells is mutated (T877A). Modeling studies of LNCaP AR revealed that TBECH diastereomers bound to the receptor with a closer distance to the key amino acids in the ligand-binding domain, indicating stronger binding to the mutated receptor. Conclusions The present study demonstrates the ability of TBECH to activate the hAR, indicating that it is a potential endocrine disruptor. PMID:20049203

  1. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  2. The effects of metformin and simvastatin on the growth of LNCaP and RWPE-1 prostate epithelial cell lines.

    PubMed

    Pennanen, Pasi; Syvälä, Heimo; Bläuer, Merja; Savinainen, Kimmo; Ylikomi, Timo; Tammela, Teuvo L J; Murtola, Teemu J

    2016-10-05

    The anti-diabetic drug metformin and cholesterol-lowering statins inhibit prostate cancer cell growth in vitro and have been linked with lowered risk of prostate cancer in epidemiological studies. We evaluated the effects of these drugs on cancerous and non-cancerous prostate epithelial cell lines. Cancer (LNCaP) and normal (RWPE-1) prostate epithelial cell lines were treated with pharmacologic concentrations of metformin and simvastatin alone and in combinations. Relative changes in cell number were measured with crystal violet staining method. Drug effects on apoptosis and cell cycle were measured with flow cytometry. We also measured changes in the activation and expression of a set of reported target proteins of metformin and statins with Western blotting. Metformin decreased the relative cell number of LNCaP cells by inducing G1 cell cycle block, autophagy and apoptosis, and slightly increased cytosolic ATP levels, whereas RWPE-1 cells were resistant to metformin. However, RWPE-1 cells were sensitive to simvastatin, which induced G2 cell cycle block, autophagy and apoptosis, and increased cytosolic ATP levels in these cells. Combination of metformin and simvastatin synergistically decreased cytosolic ATP levels, increased autophagy and instead of apoptosis, induced necrosis in LNCaP cells. Synergistic effects were not observed in RWPE-1 cells. These results suggest, that prostate cancer cells may be more vulnerable to combined growth-inhibiting effects of metformin and simvastatin compared to normal cells. The data presented here provide evidence for the potency of combined metformin and statin, also at pharmacologic concentrations, as a chemotherapeutic option for prostate cancer.

  3. Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP

    USDA-ARS?s Scientific Manuscript database

    Glyceollins are soy–derived phytoalexins that have been proposed to be candidate cancer preventive compounds. The effect of the glyceollins on prostate cancer is unknown. The present study examined the molecular effects of soy phytoalexins, glyceollins, on the human prostate cancer cell line LNCaP t...

  4. Identification of Prostate Cancer-Related Genes Using Inhibition of NMD in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2005-01-01

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Identification of Prostate Cancer -Related Genes Using W81XWH-04- 1 -0045 Inhibition of NMD in Prostate Cancer Cell...analytical filter to the prostate cancer cell lines 22RV- 1 and DU-145. Ten genes for each cell line have been selected for sequencing analysis.(Table...list of candidate genes for sequencing analysis from the LNCaP, PC3, 22RV- 1 and DU- 145 prostate cancer cell lines has been produced REPORTABLE

  5. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    SciTech Connect

    Kakoki, Katsura; Kamiyama, Haruka; Izumida, Mai; Yashima, Yuka; Hayashi, Hideki; Yamamoto, Naoki; Matsuyama, Toshifumi; Igawa, Tsukasa; Sakai, Hideki; Kubo, Yoshinao

    2014-04-25

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.

  6. Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their anti-proliferative effect on human androgen-sensitive LNCaP cell line.

    PubMed

    Cortés-Benítez, Francisco; Cabeza, Marisa; Ramírez-Apan, María Teresa; Alvarez-Manrique, Berenice; Bratoeff, Eugene

    2016-10-04

    In this study, we report the synthesis and anti-proliferative effect of a set of eight androst-4-ene-3-one derivatives with different arylcarbamoyl groups at C-17. The novel compounds were prepared from commercially available 3β-hydroxy-5-pregnen-20-one and evaluated against the androgen-sensitive human prostate adenocarcinoma LNCaP cell line. The cancerous cells were exposed to 50 μM of each compound and the proliferating agent testosterone (T) or dihydrotestosterone (DHT). The most potent compounds from this assay were further tested against the androgen-insensitive PC3 cell line. We also demonstrate the activity of these compounds on rat peripheral blood mononuclear cells for comparison. Both 17β-N-[3,5-bis(trifluoromethyl)phenylcarbamoyl]androst-4-ene-3-one (6f) and 17β-N-(1,3-thiazol-2-ylcarbamoyl)androst-4-ene-3-one (6g) exhibited a higher growth inhibitory effect than commercially available drugs finasteride, flutamide and ketoconazole on LNCaP cells in the presence and absence of androgens. In addition, 6f and 6g demonstrated high potency on PC3 cells suggesting an androgen-independent anti-proliferative effect. Moreover, the novel compounds showed a small effect on rat mononuclear cells, an indication of low toxicity.

  7. Apium graveolens Extract Inhibits Cell Proliferation and Expression of Vascular Endothelial Growth Factor and Induces Apoptosis in the Human Prostatic Carcinoma Cell Line LNCaP.

    PubMed

    Köken, Tülay; Koca, Buğra; Özkurt, Mete; Erkasap, Nilüfer; Kuş, Gökhan; Karalar, Mustafa

    2016-12-01

    Apium graveolens has been shown to inhibit the growth of a variety of cancer tissues. In this study, we investigated the anticancer effect of A. graveolens on the human prostatic carcinoma cell line LNCaP. LNCaP cells were treated with increasing concentrations of an ethanolic extract of A. graveolens ranging from 1000 to 3000 μg/mL, and viability was determined after 24 and 48 h using the XTT cell proliferation assay. The levels of cleaved poly (ADP-ribose) polymerase (PARP), one of the best biomarkers of apoptosis, were analyzed. Finally, quantitative gene expression analysis of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis, was performed using real-time reverse transcription-polymerase chain reaction. A. graveolens extract inhibited cell viability in both a time- and dose-dependent manner. Data from cleaved PARP assays suggested that A. graveolens caused induction of apoptosis in these cells. Treatment of cells with A. graveolens also resulted in downregulation of VEGF expression. This study showed that the antiproliferative effect exerted by an ethanolic extract of A. graveolens is triggered by induction of apoptosis. We also demonstrated that VEGF expression was downregulated by treatment with A. graveolens extract.

  8. Calprotectin induces cell death in human prostate cancer cell (LNCaP) through survivin protein alteration.

    PubMed

    Sattari, Mina; Pazhang, Yaghub; Imani, Mehdi

    2014-11-01

    Calprotectin (CP), an abundant heterodimeric cytosolic protein of neutrophils, conveys a variety of functions such as tumor cell growth arrest and antimicrobial activity. We investigated CP activity and its possible apoptosis-inducing mechanism of action against an antiandrogen therapy-resistance prostate cancer cell line LNCaP. Cell viability and Annexin V FITC assays were performed in order to investigate its cell death activity and apoptosis, respectively. In order to address cell death inducing mechanism(s), immunocytochemistry and immunobloting analysis, reactive oxygen species (ROS) and nitric oxide (NO) measurements were performed. The effective concentration of CP against LNCaP promoting LNCaP cell death was 200 µg/mL. ROS and NO levels of cells remarkably were enhanced following treatment with 50 and 100 µg/mL of CP, respectively. Protein expression of anti-apoptotic protein survivin was significantly decreased after administration of tumor cells with CP. Our data indicate that CP regulates the LNCaP cells viability via survivin-mediated pathway and ROS and NO enhancement. Thus, inhibition of survivin expression, enhancement of ROS and NO level by CP or other similar pharmaceutical agents might be effective in lowering the malignant proliferation of human prostate cancer cells.

  9. Antiproliferative effect of polyphenols and sterols of virgin argan oil on human prostate cancer cell lines.

    PubMed

    Bennani, H; Drissi, A; Giton, F; Kheuang, L; Fiet, J; Adlouni, A

    2007-01-01

    The aim of our study has to evaluate the antiproliferative effect of polyphenols and sterols extracted from the virgin argan oil on three human prostatic cell lines (DU145, LNCaP, and PC3). Cytotoxicity, anti-proliferative effects and nuclear morphological changes of cells were analyzed after treatment with sterols and polyphenols. The results were compared to 2-methoxyestradiol (2ME(2)) as positive control. Polyphenols and sterols of virgin argan oil and 2ME(2) exhibited a dose-response cytotoxic effect and antiproliferative action on the three tested cell lines. The antiproliferative effect of polyphenols was similar for the DU145 and LNCaP cell lines; the GI(50) (defined as the concentration inhibiting growth by 50% in comparison with the control) was respectively 73 and 70microg/ml. The antiproliferative effect of sterols was 46 and 60microg/ml as GI(50) for the DU145 and LNCaP cell lines. For the PC3 cell line, the best antiproliferative effect was obtained by argan sterols with GI(50)=43microg/ml. On the other hand, the nuclear morphology analyses have shown an increased proportion of pro-apoptotic of nuclei in LNCaP cell treated with IC(50) of polyphenols or sterols compared to control cells. Our results show for the first time the antiproliferative and pro-apoptotic effects of polyphenols and sterols extracted from virgin argan oil and confirm the antiproliferative and pro-apoptotic effects of 2ME(2) on prostate cancer cell lines. These data suggest that argan oil may be interesting in the development of new strategies for prostate cancer prevention.

  10. Thyroid cancer cell lines: an overview

    PubMed Central

    Saiselet, Manuel; Floor, Sébastien; Tarabichi, Maxime; Dom, Geneviève; Hébrant, Aline; van Staveren, Wilma C. G.; Maenhaut, Carine

    2012-01-01

    Human thyroid cancer cell lines are the most used models for thyroid cancer studies. They must be used with detailed knowledge of their characteristics. These in vitro cell lines originate from differentiated and dedifferentiated in vivo human thyroid tumors. However, it has been shown that mRNA expression profiles of these cell lines were closer to dedifferentiated in vivo thyroid tumors (anaplastic thyroid carcinoma, ATC) than to differentiated ones. Here an overview of the knowledge of these models was made. The mutational status of six human thyroid cancer cell lines (WRO, FTC133, BCPAP, TPC1, K1, and 8505C) was in line with previously reported findings for 10 genes frequently mutated in thyroid cancer. However, the presence of a BRAF mutation (T1799A: V600E) in WRO questions the use of this cell line as a model for follicular thyroid carcinoma (FTC). Next, to investigate the biological meaning of the modulated mRNAs in these cells, a pathway analysis on previously obtained mRNA profiles was performed on five cell lines. In five cell lines, the MHC class II pathway was down-regulated and in four of them, ribosome biosynthesis and translation pathways were up-regulated. mRNA expression profiles of the cell lines were also compared to those of the different types of thyroid cancers. Three datasets originating from different microarray platforms and derived from distinct laboratories were used. This meta-analysis showed a significant higher correlation between the profiles of the thyroid cancer cell lines and ATC, than to differentiated thyroid tumors (i.e., PTC or FTC) specifically for DNA replication. This already observed higher correlation was obtained here with an increased number of in vivo tumors and using different platforms. In summary, this would suggest that some papillary thyroid carcinoma or follicular thyroid carcinoma (PTC or FTC) cell lines (i.e., TPC-1) might have partially lost their original DNA synthesis/replication regulation mechanisms during

  11. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    PubMed

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  12. Antiproliferative Activities of Fagara xanthoxyloides and Pseudocedrela kotschyi Against Prostate Cancer Cell Lines

    PubMed Central

    KASSIM, OLAKUNLE O.; COPELAND, ROBERT L.; KENGUELE, HILAIRE M.; NEKHAI, SERGEI; AKO-NAI, KWASHIE A.; KANAAN, YASMINE M.

    2015-01-01

    Background/Aim Roots of Fagara zanthoxyloides and Pseudocedrela kotchyii are used as chewing sticks and as medicinal remedies for diarrhea, cough and fever in West Africa. Extracts of the two plants also possess anti-bacterial, anti-fungal and anti-malarial activities. The aim of the present study was to determine the effects of such extracts on the growth, proliferation and induction of apoptosis in four prostate cancer cell lines. Materials and Methods Androgen-independent PC3 and DU-145 and androgen-dependent LNCaP and CWR-22 prostate cancer cell lines were cultured for five days with different concentrations of the extracts and examined for growth inhibition and evidence of apoptosis. Results Irrespective of their androgen dependence, all four cancer cell lines exhibited a dose-dependent decrease in cell proliferation and viability by the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay and in induction of apoptosis. The results also show that LNCap cells were the most sensitive to the two extracts, with highest inhibition at day 3 and exhibiting the highest rate of apoptosis. Conclusion These observations suggest that F. zanthoxyloides and P. kotchyii could serve as potential chemopreventive agents in the treatment of prostate cancer. PMID:25750297

  13. Antiproliferative activities of Fagara xanthoxyloides and Pseudocedrela kotschyi against prostate cancer cell lines.

    PubMed

    Kassim, Olakunle O; Copeland, Robert L; Kenguele, Hilaire M; Nekhai, Sergei; Ako-Nai, Kwashie A; Kanaan, Yasmine M

    2015-03-01

    Roots of Fagara zanthoxyloides and Pseudocedrela kotchyii are used as chewing sticks and as medicinal remedies for diarrhea, cough and fever in West Africa. Extracts of the two plants also possess anti-bacterial, anti-fungal and anti-malarial activities. The aim of the present study was to determine the effects of such extracts on the growth, proliferation and induction of apoptosis in four prostate cancer cell lines. Materials and Methods. Androgen-independent PC3 and DU-145 and androgen-dependent LNCaP and CWR-22 prostate cancer cell lines were cultured for five days with different concentrations of the extracts and examined for growth inhibition and evidence of apoptosis. Irrespective of their androgen dependence, all four cancer cell lines exhibited a dose-dependent decrease in cell proliferation and viability by the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay and in induction of apoptosis. The results also show that LNCap cells were the most sensitive to the two extracts, with highest inhibition at day 3 and exhibiting the highest rate of apoptosis. Conclusion. These observations suggest that F. zanthoxyloides and P. kotchyii could serve as potential chemopreventive agents in the treatment of prostate cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  15. Expression and purification of TAT-NDRG2 recombinant protein and evaluation of its anti-proliferative effect on LNCaP cell line.

    PubMed

    Farokhinejad, Fahimeh; Behbahani, Abbas Behzad; Rafiei Dehbidi, Gholam Reza; Takhshid, Mohammad Ali

    2017-10-01

    N-myc downstream regulated gene2 (NDRG2) belongs to tumor suppressor protein family of NDRG. Anti-proliferative and anti-metastasis of NDRG2 overexpression has been demonstrated in a number of tumors. The aim of this study was to fuse the gene of Trans Activator of Transcription (TAT) protein transduction domain with NDRG2 gene and express and purify TAT-NDRG2 fusion protein in order to investigate the effects of TAT-NDRG2 protein on proliferation and apoptosis of LNCaP prostate carcinoma cell line. pET28a-TAT-NDRG2 and pET28a-NDRG2 plasmids were constructed and transformed into E. coli-BL21(DE3). TAT-NDRG2 and NDRG2 proteins were expressed in the bacteria, purified using affinity chromatography and verified using western blotting. The effects of TAT-NDRG2 and NDRG2 protein treatment on LNCaP cells proliferation and apoptosis were evaluated using MTT assay and AnnexinV, 7-AAD flow cytometry assay, respectively. Western blot analysis confirmed the expression and purification of TAT-NDRG2 and NDRG2 proteins. Treatment of LNCaP cells with TAT-NDRG2 protein increased cell death and induced apoptosis significantly (P < 0.05) compared to control and NDRG2 protein-treated cells. These results suggest that TAT-NDRG2 protein can be considered as a therapeutic modality for the treatment of tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  17. Alteration of glyoxalase genes expression in response to testosterone in LNCaP and PC3 human prostate cancer cells.

    PubMed

    Antognelli, Cinzia; Del Buono, Chiara; Baldracchini, Francesca; Talesa, Vincenzo; Cottini, Emanuele; Brancadoro, Celestino; Zucchi, Alessandro; Mearini, Ettore

    2007-12-01

    Glyoxalase system, a ubiquitous detoxification pathway protecting against cellular damage caused by potent cytotoxic metabolites, is involved in the regulation of cellular growth. Aberrations in the expression of glyoxalase genes in several human cancers have been reported. Recently, we described a possible regulatory effect by estrogens on glyoxalase genes in human breast cancer cell lines. This result, along with those ones regarding changes in glyoxalases activity and expression in other human hormone-regulated cancers, such as prostate cancer, has prompted us to investigate whether also androgens, whose functional role in prostate cancer pathogenesis is well known, could modulate glyoxalases gene expression. Therefore, we treated LNCaP androgen-responsive and PC3 androgen-independent human prostate cancer cell lines with testosterone at the concentrations of 1 nM and 100 nM. After a two days treatment, glyoxalases mRNA levels as well as cell proliferation were evaluated by real-time RT-PCR analysis and [3H]thymidine incorporation, respectively. Results pointed out that testosterone affects the expression of glyoxalase system genes and cell proliferation in a different manner in the two cell lines. The possibility that modulation of glyoxalase genes expression by testosterone is due to glyoxalases-mediated intracellular response mechanisms to the androgen-induced oxidative stress or to the presence of androgen response elements (ARE) in glyoxalase promoters are discussed. Knowledge regarding the regulation of glyoxalases by testosterone may provide insights into the importance of these enzymes in human prostate carcinomas in vivo.

  18. The In Vitro and In Vivo Anti-Cancer Activities of a Standardized Quassinoids Composition from Eurycoma longifolia on LNCaP Human Prostate Cancer Cells

    PubMed Central

    Tong, Kind Leng; Chan, Kit Lam; AbuBakar, Sazaly; Low, Bin Seng; Ma, Hai Qiu; Wong, Pooi Fong

    2015-01-01

    Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40) containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose) polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA) and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids composition from E

  19. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on LNCaP human prostate cancer cells.

    PubMed

    Tong, Kind Leng; Chan, Kit Lam; AbuBakar, Sazaly; Low, Bin Seng; Ma, Hai Qiu; Wong, Pooi Fong

    2015-01-01

    Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40) containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose) polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA) and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids composition from E

  20. Effect of D-allose on prostate cancer cell lines: phospholipid profiling by nanoflow liquid chromatography-tandem mass spectrometry.

    PubMed

    Jeong, Rae Ung; Lim, Sangsoo; Kim, Myoung Ok; Moon, Myeong Hee

    2011-08-01

    D-Allose, a rare, naturally occurring monosaccharide, is known to exert anti-proliferative effects on cancer cells. The effects of D-allose on the cellular membranes of hormone-refractory prostate cancer cell line (DU145), hormone-sensitive prostate cancer cell line (LNCaP), and normal prostate epithelial cells (PrEC) were studied at the molecular level by phospholipid (PL) profiling using a shotgun lipidomic method. The molecular structures of 85 PL species including 23 phosphatidylcholines, 12 phosphatidylethanolamines (PEs), 11 phosphatidylserines (PSs), 16 phosphatidylinositols, 9 phosphatidic acids (PAs), and 14 phosphatidylglycerols (PGs) were identified by data-dependent collision-induced dissociation of nanoflow liquid chromatography-tandem mass spectrometry, and the PL amounts were quantified. The addition of D-allose to prostate cancer cell lines during their growth phases had negligible or decreased effects on the relative regulation of PL species, but several new PS molecules (two for DU145 and three for LNCaP) emerged. In contrast, experiments on the PrEC cell line revealed that some high abundant species (14:0/14:0-PE, 16:2/16:0-PG, and 20:6/18:1-PA) showed significant increases in concentration. These findings support a mechanism for the anti-proliferative effect of D-allose on prostate cancer cell lines that involves the induction of programmed cell death since PS molecules are known to induce apoptosis. Principal component analysis was carried out to examine differences in PL distributions among the three cell lines promoted by D-allose.

  1. Guanylate-Binding Protein-1 protects ovarian cancer cell lines but not breast cancer cell lines from killing by paclitaxel.

    PubMed

    Tipton, Aaron R; Nyabuto, Geoffrey O; Trendel, Jill A; Mazur, Travis M; Wilson, John P; Wadi, Suzan; Justinger, Jacob S; Moore, Garret L; Nguyen, Peter T; Vestal, Deborah J

    2016-09-30

    Forced expression of the cytokine-induced large GTPase, human Guanylate-Binding Protein-1 (hGBP-1), in ovarian cancer cell lines increases resistance to paclitaxel. Elevated hGBP-1 RNA in ovarian tumors correlates with shorter recurrence-free survival. In contract, hGBP-1 is part of a gene signature predicting improved prognosis in all subtypes of breast cancers. hGBP-1 does not confer paclitaxel resistance on MCF-7 and TMX2-28 breast cancer cells. Expression of the isotype of the hGBP-1-interacting protein, PIM1, which may contribute to paclitaxel resistance when associated with hGBP-1, is different in breast and ovarian cancer cell lines. Breast cancer cell lines express the 44 kDa isoform of PIM-1, and ovarian cancer cell lines express the 33 kDa isoform. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Apoptotic effect of noscapine in breast cancer cell lines.

    PubMed

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  3. Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice

    PubMed Central

    Huynh, C K; Brodie, A M H; Njar, V C O

    2006-01-01

    In recent studies, we have identified several highly potent all-trans-retinoic acid (ATRA) metabolism blocking agents (RAMBAs). On the basis of previous effects of liarozole (a first-generation RAMBA) on the catabolism of ATRA and on growth of rat Dunning R3227G prostate tumours, we assessed the effects of our novel RAMBAs on human prostate tumour (PCA) cell lines. We examined three different PCA cell lines to determine their capacity to induce P450-mediated oxidation of ATRA. Among the three different cell lines, enhanced catabolism was detected in LNCaP, whereas it was not found in PC-3 and DU-145. This catabolism was strongly inhibited by our RAMBAs, the most potent being VN/14-1, VN/50-1, VN/66-1, and VN/69-1 with IC50 values of 6.5, 90.0, 62.5, and 90.0 nM, respectively. The RAMBAs inhibited the growth of LNCaP cells with IC50 values in the μM-range. In LNCaP cell proliferation assays, VN/14-1, VN/50-1, VN/66-1, and VN/69-1 also enhanced by 47-, 60-, 70-, and 65-fold, respectively, the ATRA-mediated antiproliferative activity. We then examined the molecular mechanism underlying the growth inhibitory properties of ATRA alone and in combination with RAMBAs. The mechanism appeared to involve the induction of differentiation, cell-cycle arrest, and induction of apoptosis (TUNEL), involving increase in Bad expression and decrease in Bcl-2 expression. Treatment of LNCaP tumours growing in SCID mice with VN/66-1 and VN/69-1 resulted in modest but statistically significant tumour growth inhibition of 44 and 47%, respectively, while treatment with VN/14-1 was unexpectedly ineffective. These results suggest that some of our novel RAMBAs may be useful agents for the treatment of prostate cancer. PMID:16449997

  4. Exometabolom analysis of breast cancer cell lines: Metabolic signature

    PubMed Central

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-01-01

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach. PMID:26293811

  5. Reliable in vitro studies require appropriate ovarian cancer cell lines

    PubMed Central

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  6. Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines.

    PubMed

    Singh, Shailesh; Singh, Rajesh; Singh, Udai P; Rai, Shesh N; Novakovic, Kristian R; Chung, Leland W K; Didier, Peter J; Grizzle, William E; Lillard, James W

    2009-11-15

    Chemokines and chemokine receptors have been shown to be involved in metastatic process of prostate cancer (PCa). In this study, we show primary PCa tissues and cell lines (LNCaP and PC3) express CXCR5, a specific chemokine receptor for CXCL13. Expression of CXCR5 was significantly higher (p < 0.001) in PCa cases than compared to normal match (NM) tissues. CXCR5 intensity correlated (R(2) = 0.97) with Gleason score. While prostate tumor tissues with Gleason scores >or= 7, displayed predominantly nuclear CXCR5 expression patterns, PCa specimens with Gleason scores cell lines expressed significantly more CXCR5 than normal prostatic epithelial cells (PrECs), and CXCR5 expression was distributed among intracellular and extracellular compartments. Functional in vitro assays showed higher migratory and invasive potentials toward CXCL13, an effect that was mediated by CXCR5. In both PCa cell lines, CXCL13 treatment increased the expression of collagenase-1 or matrix metalloproteinase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromelysin-2 (MMP-10) and stromelysin-3 (MMP-11). These data demonstrate the clinical and biological relevance of the CXCL13-CXCR5 pathway and its role in PCa cell invasion and migration.

  7. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  8. Characterization of PacMetUT1, a recently isolated human prostate cancer cell line.

    PubMed

    Troyer, D A; Tang, Y; Bedolla, R; Adhvaryu, S G; Thompson, I M; Abboud-Werner, S; Sun, L-Z; Friedrichs, W E; deGraffenried, L A

    2008-06-01

    Existing prostate cancer cell lines have limitations. Cells were characterized using Western blotting, immunohistochemistry, invasion into Matrigel, and by studying xenograft tumors. We describe a cell line (PacMetUT1) isolated from a lymph node of a 57-year-old male with prostate cancer. Compared to existing prostate cancer cell lines, the growth rate of PacMetUT1 xenograft tumors is slower with tumors occurring at injection sites and with metastases to lung and liver. Androgen receptor (AR) was detected in vivo by Western blotting and the cells responded to methyltrienolone (R1881). PacMetUT1 cells are more invasive in Matrigel than DU-145, PC-3, and LNCaP cells, and showed greater anchorage-independent growth in soft agar. The cells do not express prostate specific antigen (PSA) in vitro or in xenografts. However, the green fluorescent protein (GFP) gene was introduced and stably expressed in PacMetUT1 cells, allowing tumor imaging in vivo. Xenograft tumors show epithelial features and are positive for keratin, epithelial membrane antigen, EGF receptor, and E cadherin. In contrast, fibroblast markers vimentin, desmin, and Factor VIII, were negative. Karyotyping showed losses of 6p, 7q, 8p, 18q, and 22q, and gains of 8q and 9q; additional genetic material was observed at 2q and 12p. The PacMetUT1 cell line allows metastases to be assessed using a single animal model. Because of its slower growth, PacMetUT1 more closely mimics the human disease. Studies of tumor progression or metastasis can be conducted over a longer period of time. (c) 2008 Wiley-Liss, Inc.

  9. Investigation of Radiosensitivity Gene Signatures in Cancer Cell Lines

    PubMed Central

    Hall, John S.; Iype, Rohan; Senra, Joana; Taylor, Janet; Armenoult, Lucile; Oguejiofor, Kenneth; Li, Yaoyong; Stratford, Ian; Stern, Peter L.; O’Connor, Mark J.; Miller, Crispin J.; West, Catharine M. L.

    2014-01-01

    Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2) by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median) was investigated using Affymetrix GeneChip Exon 1.0ST (cervix) or U133A Plus2 (head and neck) arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4%) were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI), and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins. PMID:24466029

  10. Soy Isoflavones Exert Differential Effects on Androgen Responsive Genes in LNCaP Human Prostate Cancer Cells1

    PubMed Central

    Rice, Lori; Handayani, Renita; Cui, Yuehua; Medrano, Theresa; Samedi, Von; Baker, Henry; Szabo, Nancy J.; Rosser, Charles J.; Goodison, Steve; Shiverick, Kathleen T.

    2007-01-01

    The high consumption of soy isoflavones in Asian diets has been correlated to a lower incidence of clinically important cases of prostate cancer. This study characterized the effects of a soy-derived isoflavone concentrate (ISF) on growth and gene expression profiles in the LNCaP, an androgen-sensitive human prostate cancer cell line. ISF caused a dose-dependent decrease in viability (P<0.05) and DNA synthesis (P<0.01), as well as an accumulation of cells in G2/M, and G0/G1 phases of the cell cycle compared with controls. Using Affymetrix oligonucleotide DNA microarrays (U133A), we determined that ISF upregulated 80 genes and downregulated 33 genes (P<0.05) involving androgen-regulated genes and pathways controlling cell cycle, metabolism, and intracellular trafficking. Changes in the expression of the genes of interest, identified by microarrays, were validated by Western immunoblot, Northern blot, and luciferase reporter assays. Prostate-specific antigen, homeobox protein NKX3, and cyclin B mRNA were significantly reduced, whereas mRNA was significantly upregulated for p21CIP1, a major cell cycle inhibitory protein, and fatty acid and cholesterol synthesis pathway genes. ISF also significantly increased cyclin-dependent kinase inhibitor p27KIP1 and FOXO3A/FKHRL1, a forkhead transcription factor. A differential pattern of androgen-regulated genes was apparent with genes involved in prostate cancer progression being downregulated by ISF, whereas metabolism genes were upregulated. In summary, we found that ISF inhibits the growth of LNCaP cells through the modulation of cell cycle progression and the differential expression of androgen-regulated genes. Thus, ISF treatment serves to identify new therapeutic targets designed to prevent proliferation of malignant prostate cells. PMID:17374662

  11. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway.

    PubMed

    Tanaka, Yuichi; Gavrielides, M Veronica; Mitsuuchi, Yasuhiro; Fujii, Teruhiko; Kazanietz, Marcelo G

    2003-09-05

    Activation of protein kinase C (PKC) by phorbol esters or diacylglycerol mimetics induces apoptosis in androgen-dependent prostate cancer cells, an effect that involves both the activation of the classic PKC alpha and the novel PKC delta isozymes (Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caamaño, J., Ohba, M., Kuroki, T., Li, L., Yuspa, S. H., and Kazanietz, M. G. (2000) J. Biol. Chem. 275, 7574-7582 and Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohba, M., Kuroki, T., Han, K. C., Lee, J., Marquez, V. E., and Kazanietz, M. G. (2002) J. Biol. Chem. 277, 645-655). In the present study we explored the signaling events involved in this PKC-mediated effect, using the androgen-dependent LNCaP cell line as a model. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) leads to the activation of ERK1/2, p38 MAPK, and JNK in LNCaP cells. Here we present evidence that p38 MAPK, but not JNK, mediates PKC-induced apoptosis. Because LNCaP cells have hyperactivated Akt function due to PTEN inactivation, we examined whether this survival pathway could be affected by PKC activation. Interestingly, activation of PKC leads to a rapid and reversible dephosphorylation of Akt, an effect that was prevented by the pan-PKC inhibitor GF109302X and the cPKC inhibitor Gö6976. In addition, the diacylglycerol mimetic agent HK654, which selectively stimulates PKC alpha in LNCaP cells, also induced the dephosphorylation of Akt in LNCaP cells. Inactivation of Akt function by PKC does not involve the inhibition of PI3K, and it is prevented by okadaic acid, suggesting the involvement of a phosphatase 2A in PMA-induced Akt dephosphorylation. Finally, we show that, when an activated form of Akt is delivered into LNCaP cells by either transient transfection or adenoviral infection, the apoptotic effect of PMA is significantly reduced. Our results highlight a complex array of signaling pathways regulated by PKC isozymes in LNCaP prostate cancer cells

  12. Remnant lipoproteins induced proliferation of human prostate cancer cell, PC-3 but not LNCaP, via low density lipoprotein receptor.

    PubMed

    Sekine, Yoshitaka; Koike, Hidekazu; Nakano, Takamitsu; Nakajima, Katsuyuki; Takahashi, Sadao; Suzuki, Kazuhiro

    2009-07-01

    Hypertriglyceridemia has been shown to be one of the risk factors for prostate cancer. In this study, we investigated the effect of remnant lipoproteins on cell growth in prostate cancer cell lines. Remnant lipoproteins were isolated as remnant like particles (RLP) from human plasma. We used RLP for TG-rich lipoproteins and low density lipoproteins (LDL) for cholesterol-rich lipoproteins respectively and examined the effect of lipoproteins on proliferation of PC-3 and LNCaP cells using MTS assays. Moreover, we studied the effect of RLP and LDL treatment on the regulation of lipoprotein receptors in prostate cancer cells to investigate the relationship between lipoprotein-induced cell proliferation and lipoprotein receptor expression using real-time PCR, Western blotting assays and siRNA. RLP effectively induced PC-3 cell proliferation more than LDL, whereas both RLP and LDL could not induce LNCaP cell proliferation except at a higher concentration of RLP. LDL receptor (LDLr) was expressed in both prostate cancer cells but there was a sharp difference of sterol regulation between two cells. In PC-3 cells, LDL decreased the LDLr expression in some degree, but RLP did not. Meanwhile LDLr expression in LNCaP was easily downregulated by RLP and LDL. Blocking LDLr function significantly inhibited both RLP- and LDL-induced PC-3 cell proliferation. This study demonstrated that RLP-induced PC-3 cell proliferation more than LDL; however, both RLP and LDL hardly induced LNCaP cell proliferation. The differences of proliferation by lipoproteins might be involved in the regulation of LDLr expression.

  13. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    PubMed Central

    2013-01-01

    Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT

  14. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines

    SciTech Connect

    Chowdhury, Subir K.R.; Gemin, Adam; Singh, Gurmit; E-mail: gurmit.singh@hrcc.on.ca

    2005-08-12

    Most malignant cells are highly glycolytic and produce high levels of reactive oxygen species (ROS) compared to normal cells. Mitochondrial glycerophosphate dehydrogenase (mGPDH) participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis. Here, we investigate the role of mGPDH in maintaining an increased rate of glycolysis and evaluate glycerophosphate-dependent ROS production in prostate cancer cell lines (LNCaP, DU145, PC3, and CL1). Immunoblot, polarographic, and spectrophotometric analyses revealed that mGPDH abundance and activity was significantly elevated in prostate cancer cell lines when compared to the normal prostate epithelial cell line PNT1A. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production was increased 1.68- to 4.44-fold and 5- to 7-fold, respectively, in prostate cancer cell lines when compared to PNT1A cells. Overall, these data demonstrate that mGPDH is involved in maintaining a high rate of glycolysis and is an important site of electron leakage leading to ROS production in prostate cancer cells.

  15. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines.

    PubMed

    Chowdhury, Subir K R; Gemin, Adam; Singh, Gurmit

    2005-08-12

    Most malignant cells are highly glycolytic and produce high levels of reactive oxygen species (ROS) compared to normal cells. Mitochondrial glycerophosphate dehydrogenase (mGPDH) participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis. Here, we investigate the role of mGPDH in maintaining an increased rate of glycolysis and evaluate glycerophosphate-dependent ROS production in prostate cancer cell lines (LNCaP, DU145, PC3, and CL1). Immunoblot, polarographic, and spectrophotometric analyses revealed that mGPDH abundance and activity was significantly elevated in prostate cancer cell lines when compared to the normal prostate epithelial cell line PNT1A. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production was increased 1.68- to 4.44-fold and 5- to 7-fold, respectively, in prostate cancer cell lines when compared to PNT1A cells. Overall, these data demonstrate that mGPDH is involved in maintaining a high rate of glycolysis and is an important site of electron leakage leading to ROS production in prostate cancer cells.

  16. Synthesis and evaluation of naphthalene-based thiosemicarbazone derivatives as new anticancer agents against LNCaP prostate cancer cells.

    PubMed

    Altintop, Mehlika Dilek; Sever, Belgin; Özdemir, Ahmet; Kuş, Gökhan; Oztopcu-Vatan, Pinar; Kabadere, Selda; Kaplancikli, Zafer Asim

    2016-01-01

    Fourteen new naphthalene-based thiosemicarbazone derivatives were designed as anticancer agents against LNCaP human prostate cancer cells and synthesized. MTT assay indicated that compounds 6, 8 and 11 exhibited inhibitory effect on LNCaP cells. Among these compounds, 4-(naphthalen-1-yl)-1-[1-(4-hydroxyphenyl)ethylidene)thiosemicarbazide (6), which caused more than 50% death on LNCaP cells, was chosen for flow cytometric analysis of apoptosis. Flow cytometric analysis pointed out that compound 6 also showed apoptotic effect on LNCaP cells. Compound 6 can be considered as a promising anticancer agent against LNCaP cells owing to its potent cytotoxic activity and apoptotic effect.

  17. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  18. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  19. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  20. Antiproliferative Properties of Clausine-B against Cancer Cell Lines

    PubMed Central

    Wan Mohd Zain, Wan Nor I’zzah; Rahmat, Asmah; Othman, Fauziah; Yap, Taufiq Yun Hin

    2009-01-01

    Background: Clausine B, a carbazole alkaloid isolated from the stem bark of Clausena excavata, was investigated for its antiproliferative activities against five human cancer cell lines: HepG2 (hepatic cancer), MCF-7 (hormone-dependent breast cancer), MDA-MB-231 (non-hormone-dependent breast cancer), HeLa (cervical cancer), and CAOV3 (ovarian cancer). Methods: Chang liver (normal cells) was used as a control. The effect of clausine-B was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results: Clausine-B was found to be active (IC50<30 μg/mL) against four of the cancer cell lines tested. The IC50 values for these four lines were: 21.50 μg/mL (MDA-MB-231), 22.90 g/ml (HeLa), 27.00 μg/mL (CAOV3) and 28.94 μg/mL (HepG2). Clausine-B inhibited the MCF-7 cancer cell line at 52.90 μg/mL, and no IC50 value was obtained against Chang liver. Conclusion: It is possible that the phenolic group in clausine-B responsible for the antiproliferative activities found in this study. PMID:22589662

  1. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    EPA Science Inventory

    Diversity of arsenic metabolism in cultured human cancer cell lines.

    Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  2. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    EPA Science Inventory

    Diversity of arsenic metabolism in cultured human cancer cell lines.

    Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  3. Investigation of the selenium metabolism in cancer cell lines.

    PubMed

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan; Andresen, Lars; Skov, Søren; Gammelgaard, Bente

    2011-02-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 μM were incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size exclusion chromatography and ICP-MS detection. The selenium compounds exhibited large differences in their ability to induce cell death in the three cell lines and the susceptibilities of the cell lines were different. Full recovery of selenium in the cellular fractions was observed for all Se compounds except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein binding. Correlations between cell death induction and the Se compounds transformations could not be demonstrated.

  4. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment.

    PubMed

    Sieh, Shirly; Taubenberger, Anna V; Rizzi, Simone C; Sadowski, Martin; Lehman, Melanie L; Rockstroh, Anja; An, Jiyuan; Clements, Judith A; Nelson, Colleen C; Hutmacher, Dietmar W

    2012-01-01

    Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen

  5. Phenotypic Characterization of Prostate Cancer LNCaP Cells Cultured within a Bioengineered Microenvironment

    PubMed Central

    Sieh, Shirly; Taubenberger, Anna V.; Rizzi, Simone C.; Sadowski, Martin; Lehman, Melanie L.; Rockstroh, Anja; An, Jiyuan; Clements, Judith A.; Nelson, Colleen C.; Hutmacher, Dietmar W.

    2012-01-01

    Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen

  6. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  7. MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES

    SciTech Connect

    Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

    2009-05-08

    A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

  8. Drug/Cell-line Browser: interactive canvas visualization of cancer drug/cell-line viability assay datasets.

    PubMed

    Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi

    2014-11-15

    Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Limited Expression of Cytochrome P450 17α-Hydroxylase/17,20-Lyase in Prostate Cancer Cell Lines

    PubMed Central

    Jeong, Chang Wook; Yoon, Cheol Yong; Jeong, Seong Jin; Byun, Seok-Soo; Lee, Sang Eun

    2011-01-01

    Purpose Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a key enzyme in the androgen biosynthesis pathway. CYP17A1 has been focused on because of the promising results of a potent CYP17A1 inhibitor in the treatment of castration-resistant prostate cancer (CRPC). A hypothesis that intratumoral androgenesis may play a role in the progression of CRPC has recently been postulated. Thus, we evaluated whether commonly used prostate cancer cell lines express CYP17A1. Materials and Methods Androgen-sensitive LNCaP and androgen-insensitive PC-3 and DU145 cells were used. To evaluate the expression of CYP17A1 protein and RNA, we performed Western blotting and RT-PCR, respectively. Results We were unable to detect either CYP17A1 protein or RNA in any of the cell lines tested. We failed to detect any expression of CYP17A1, despite several repetitions of these techniques under different conditions. Conclusions The expression of CYP17A1 protein and RNA in LNCaP, PC-3, and DU145 cells appears to be either absent or too low for detection. The mechanism of action of abiraterone acetate, a CYP17A1 inhibitor, may be related more to adrenal androgen blockade than to intratumoral androgenesis. PMID:21860772

  10. Hedgehog signaling pathway is inactive in colorectal cancer cell lines.

    PubMed

    Chatel, Guillaume; Ganeff, Corine; Boussif, Naima; Delacroix, Laurence; Briquet, Alexandra; Nolens, Gregory; Winkler, Rosita

    2007-12-15

    The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines.

  11. Rabeprazole exhibits antiproliferative effects on human gastric cancer cell lines

    PubMed Central

    GU, MENGLI; ZHANG, YAN; ZHOU, XINXIN; MA, HAN; YAO, HANGPING; JI, FENG

    2014-01-01

    Intracellular proton extrusion in gastric cancer cells has been reported to promote cancer cell survival under acidic conditions via hydrogen/potassium adenosine triphosphatase (H+/K+-ATPase). Rabeprazole is a frequently used second-generation proton pump inhibitor (PPI) that irreversibly inactivates gastric H+/K+-ATPase. Therefore, we hypothesized that rabeprazole could reduce the viability of gastric cancer cells. In the present study, four human gastric cancer cell lines and one non-cancer gastric cell line were cultured. Cell viability, the α- and β-subunits of H+/K+-ATPase and cellular apoptosis were analyzed by dye exclusion assay, reverse transcription-polymerase chain reaction and annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The expression level of total extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and phosphorylated-ERK protein was detected by western blot analysis. Gastric cancer cell lines were more tolerant of the acidic culture media than non-cancer cells. Administration of rabeprazole led to a marked decrease in the viability of MKN-28 cells. Exposure to rabeprazole induced significant apoptosis in AGS cells. Rabeprazole completely inhibited the phosphorylation of ERK 1/2 in the MKN-28 cells, whereas the same effect was not observed in either the KATO III or MKN-45 cells. The ERK 1/2 inhibitor, PD98059, attenuated the viability of the AGS cells. A similar antiproliferative effect was observed in the rabeprazole treatment group. In addition, PD98059 and rabeprazole were able to efficaciously inhibit the phosphorylation of ERK 1/2 in the gastric cancer cells. Therefore, it was concluded that rabeprazole can attenuate the cell viability of human gastric cancer cells through inactivation of the ERK1/2 signaling pathway. The results of the present study demonstrate that rabeprazole inhibits the viability of gastric cancer cells in vitro and may serve as a novel antineoplastic agent. PMID:25202402

  12. Calcitriol and TO-901317 interact in human prostate cancer LNCaP cells.

    PubMed

    Wang, Jing-Huan; Tuohimaa, Pentti

    2008-03-17

    Vitamin D receptor (VDR) and liver X receptor (LXR) are nuclear receptors, which regulate gene transcription upon binding of their specific ligands. VDR seems to play a role in the regulation of prostate cancer cell proliferation. ATP-binding cassette transporter A1 (ABCA1) is known to be a target gene of LXR and it has been reported to be inhibited by androgen and to be involved in the regulation of LNCaP proliferation. We find that calcitriol (1 alpha,25(OH)(2)D(3)) inhibits both basal and a LXR agonist, TO-901317, induced ABCA1 mRNA expression but has no effect on the mRNA expression of ATP-binding cassette transporter G1 (ABCG1), LXR alpha nor LXR beta. TO-901317 increases both basal and calcitriol induced 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA expression and it slightly but significantly inhibits VDR mRNA expression. The inhibition of ABCA1 by calcitriol appears to be androgen-independent. Cell growth assay shows that when each of calcitriol and 5 alpha-dihydrotestosterone (DHT) was co-treated with ABCA1 blocker, glybenclamide, cell-growth is significantly decreased compared to their own treatments respectively. Our study suggests a possible interaction between calcitriol and TO-901317 in LNCaP cells. Alike DHT, the inhibition of ABCA1 by calcitriol may be involved in its regulation of LNCaP growth.

  13. Heat shock protein 70 inhibitors suppress androgen receptor expression in LNCaP95 prostate cancer cells.

    PubMed

    Kita, Kazuaki; Shiota, Masayuki; Tanaka, Masako; Otsuka, Asuka; Matsumoto, Masaki; Kato, Minoru; Tamada, Satoshi; Iwao, Hiroshi; Miura, Katsuyuki; Nakatani, Tatsuya; Tomita, Shuhei

    2017-09-01

    Androgen deprivation therapy is initially effective for treating patients with advanced prostate cancer; however, the prostate cancer gradually becomes resistant to androgen deprivation therapy, which is termed castration-resistant prostate cancer (CRPC). Androgen receptor splice variant 7 (AR-V7), one of the causes of CRPC, is correlated with resistance to a new-generation AR antagonist (enzalutamide) and poor prognosis. Heat shock protein 70 (Hsp70) inhibitor is known to decrease the levels of full-length AR (AR-FL), but little is known about its effects against CRPC cells expressing AR-V7. In this study, we investigated the effect of the Hsp70 inhibitors quercetin and VER155008 in the prostate cancer cell line LNCaP95 that expresses AR-V7, and explored the mechanism by which Hsp70 regulates AR-FL and AR-V7 expression. Quercetin and VER155008 decreased cell proliferation, increased the proportion of apoptotic cells, and decreased the protein levels of AR-FL and AR-V7. Furthermore, VER155008 decreased AR-FL and AR-V7 mRNA levels. Immunoprecipitation with Hsp70 antibody and mass spectrometry identified Y-box binding protein 1 (YB-1) as one of the molecules regulating AR-FL and AR-V7 at the transcription level through interaction with Hsp70. VER155008 decreased the phosphorylation of YB-1 and its localization in the nucleus, indicating that the involvement of Hsp70 in AR regulation might be mediated through the activation and nuclear translocation of YB-1. Collectively, these results suggest that Hsp70 inhibitors have potential anti-tumor activity against CRPC by decreasing AR-FL and AR-V7 expression through YB-1 suppression. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Definitive Molecular Cytogenetic Characterization of 15 Colorectal Cancer Cell Lines

    PubMed Central

    Knutsen, Turid; Padilla-Nash, Hesed M.; Wangsa, Danny; Barenboim-Stapleton, Linda; Camps, Jordi; McNeil, Nicole; Difilippantonio, Michael J.; Ried, Thomas

    2009-01-01

    In defining the genetic profiles in cancer, cytogenetically aberrant cell lines derived from primary tumors are important tools for the study of carcinogenesis. We here present the results of a comprehensive investigation of 15 established colorectal cancer cell lines utilizing spectral karyotyping (SKY), fluorescence in situ hybridization, and comparative genomic hybridization (CGH). Detailed karyotypic analysis by SKY on five of the lines (P53HCT116, T84, NCI-H508, NCI-H716, and SK-CO-1) are described here for the first time. The five lines with karyotypes in the diploid range and that are characterized by defects in DNA mismatch repair had a mean of 4.8 chromosomal abnormalities per line, whereas the 10 aneuploid lines exhibited complex karyotypes and a mean of 30 chromosomal abnormalities. Of the 150 clonal translocations, only eight were balanced and none were recurrent among the lines. We also reviewed the karyotypes of 345 cases of adenocarcinoma of the large intestine listed in the Mitelman Database of Chromosome Aberrations in Cancer. The types of abnormalities observed in the cell lines reflected those seen in primary tumors: there were no recurrent translocations in either tumors or cell lines, isochromosomes were the most common recurrent abnormalities, and breakpoints occurred most frequently at the centromeric/pericentromeric and telomere regions. Of the genomic imbalances detected by array CGH, 87% correlated with chromosome aberrations observed in the SKY studies. The fact that chromosome abnormalities result predominantly in copy number changes rather than specific chromosome or gene fusions, suggests this may be the major mechanism leading to carcinogenesis in colorectal cancer. PMID:19927377

  15. Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

    PubMed

    Knutsen, Turid; Padilla-Nash, Hesed M; Wangsa, Danny; Barenboim-Stapleton, Linda; Camps, Jordi; McNeil, Nicole; Difilippantonio, Michael J; Ried, Thomas

    2010-03-01

    In defining the genetic profiles in cancer, cytogenetically aberrant cell lines derived from primary tumors are important tools for the study of carcinogenesis. Here, we present the results of a comprehensive investigation of 15 established colorectal cancer cell lines using spectral karyotyping (SKY), fluorescence in situ hybridization, and comparative genomic hybridization (CGH). Detailed karyotypic analysis by SKY on five of the lines (P53HCT116, T84, NCI-H508, NCI-H716, and SK-CO-1) is described here for the first time. The five lines with karyotypes in the diploid range and that are characterized by defects in DNA mismatch repair had a mean of 4.8 chromosomal abnormalities per line, whereas the 10 aneuploid lines exhibited complex karyotypes and a mean of 30 chromosomal abnormalities. Of the 150 clonal translocations, only eight were balanced and none were recurrent among the lines. We also reviewed the karyotypes of 345 cases of adenocarcinoma of the large intestine listed in the Mitelman Database of Chromosome Aberrations in Cancer. The types of abnormalities observed in the cell lines reflected those seen in primary tumors: there were no recurrent translocations in either tumors or cell lines; isochromosomes were the most common recurrent abnormalities; and breakpoints occurred most frequently at the centromeric/pericentromeric and telomere regions. Of the genomic imbalances detected by array CGH, 87% correlated with chromosome aberrations observed in the SKY studies. The fact that chromosome abnormalities predominantly result in copy number changes rather than specific chromosome or gene fusions suggests that this may be the major mechanism leading to carcinogenesis in colorectal cancer.

  16. VMY-1-103, a dansylated analog of purvalanol B, induces caspase-3-dependent apoptosis in LNCaP prostate cancer cells.

    PubMed

    Ringer, Lymor; Sirajuddin, Paul; Yenugonda, Venkata Mahidhar; Ghosh, Anup; Divito, Kyle; Trabosh, Valerie; Patel, Yesha; Brophy, Amanda; Grindrod, Scott; Lisanti, Michael P; Rosenthal, Dean; Brown, Milton L; Avantaggiati, Maria Laura; Rodriguez, Olga; Albanese, Chris

    2010-08-15

    The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 μM, VMY-1-103 increased both the proportion of cells in G(1) and p21(CIP1) protein levels. At higher concentrations (5 μM or 10 μM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 μM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo.

  17. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    PubMed Central

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I2 statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility. PMID:27688708

  18. Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts.

    PubMed

    Venkateswaran, Vasundara; Haddad, Ahmed Q; Fleshner, Neil E; Fan, Rong; Sugar, Linda M; Nam, Rob; Klotz, Laurence H; Pollak, Michael

    2007-12-05

    Prior research suggested that energy balance and fat intake influence prostate cancer progression, but the influence of dietary carbohydrate on prostate cancer progression has not been well characterized. We hypothesized that hyperinsulinemia resulting from high intake of refined carbohydrates would lead to more rapid growth of tumors in the murine LNCaP xenograft model of prostate cancer. Athymic mice were injected subcutaneously with LNCaP human prostate cancer cells and, when tumors were palpable, were randomly assigned (n = 20 per group) to high carbohydrate-high fat or low carbohydrate-high fat diets. Body weight and tumor volume were measured weekly. After 9 weeks, serum levels of insulin and insulin-like growth factor 1 (IGF-1) were measured by enzyme immunoassay. AKT activation and the levels of the insulin receptor in tumor cells were determined by immunoblotting. The in vitro growth response of LNCaP cells to serum from mice in the two treatment groups was measured based on tetrazolium compound reduction. All statistical tests were two-sided. After 9 weeks on the experimental diets, mice on the high carbohydrate-high fat diet were heavier (mean body weight of mice on the high carbohydrate-high fat diet = 34 g versus 29.1 g on the low carbohydrate-high fat diet, difference = 4.9 g, 95% CI = 3.8 to 6.0 g; P = .003), experienced increased tumor growth (mean tumor volume in mice on high carbohydrate-high fat diet = 1695 versus 980 mm3 on low carbohydrate-high fat diet, difference = 715 mm3, 95% CI = 608 to 822 mm3; P<.001), and experienced a statistically significant increase in serum insulin and IGF-1 levels. Tumors from mice on the high carbohydrate-high fat diet had higher levels of activated AKT and modestly higher insulin receptor levels than tumors from mice on the low carbohydrate-high fat diet. Serum from mice on the high carbohydrate-high fat diet was more mitogenic for LNCaP cells in vitro than serum from mice fed the low carbohydrate-high fat diet

  19. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    USDA-ARS?s Scientific Manuscript database

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  20. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro.

    PubMed Central

    Laniado, M. E.; Lalani, E. N.; Fraser, S. P.; Grimes, J. A.; Bhangal, G.; Djamgoz, M. B.; Abel, P. D.

    1997-01-01

    Ion channels are important for many cellular functions and disease states including cystic fibrosis and multidrug resistance. Previous work in the Dunning rat model of prostate cancer has suggested a relationship between voltage-activated Na+ channels (VASCs) and the invasive phenotype in vitro. The objectives of this study were to 1) evaluate the expression of VASCs in the LNCaP and PC-3 human prostate cancer cell lines by Western blotting, flow cytometry, and whole-cell patch clamping, 2) determine their role in invasion in vitro using modified Boyden chambers with and without a specific blocker of VASCs (tetrodotoxin). A 260-kd protein representing VASCs was found only in the PC-3 cell line, and these were shown to be membrane expressed on flow cytometry. Patch clamping studies indicated that functional VASCs were present in 10% of PC-3 cells and blocking these by tetrodotoxin (600 nmol/L) reduced their invasiveness by 31% (P = 0.02) without affecting the invasiveness of the LNCaP cells. These results indicate that the reduction of invasion is a direct result of VASC blockade and not a nonspecific action of the drug. This is the first report of VASCs in a human prostatic cell line. VASCs are present in PC-3 but not LNCaP cells as determined by both protein and functional studies. Tetrodotoxin reduced the invasiveness of PC-3 but not LNCaP cells, and these data suggest that ion channels may play an important functional role in tumor invasion. Images Figure 1 PMID:9094978

  1. Volatile metabolomic signature of human breast cancer cell lines.

    PubMed

    Silva, Catarina L; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S

    2017-03-03

    Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC-MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways.

  2. Volatile metabolomic signature of human breast cancer cell lines

    PubMed Central

    Silva, Catarina L.; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.

    2017-01-01

    Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC–MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways. PMID:28256598

  3. APOPTOSIS INDUCTION OF EPIFRIEDELINOL ON HUMAN CERVICAL CANCER CELL LINE.

    PubMed

    Yang, Jie; Fa, Jing; Li, Bingxing

    2017-01-01

    Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 µg/ml). Cytotoxicity of epifriedelinol was estimated by MTT assay and induction of apoptosis was assessed by estimating the activity of caspase 3, 8 and 9 enzyme, apoptosis assay and translocation of cytochrome c. Moreover an expression of several proteins that plays role in the apoptosis process was estimated by western blot method. Result of the study suggested that treatment with epifriedelinol significantly decrease the viability count of cancerous cell in a dose perndent manner and also enhances the formation of oligonucleosome in both the cell lines. However activity of caspase enzymes and translocation of cytochrome c were enhanced after treatment with epifriedelinol. It was also observed that epifriedelinol treatment alters the ratio of pro-apoptotic to anti-apoptotic proteins and enhances the expressions of inhibitor of apoptosis proteins (IAP). Result of our study proves the anticancer activity of epifriedelinol in cervical cancer by inducing apoptosis as treatment with it enhances the production of oligonucleosomes, translocation of cytochrome c and activity caspase enzymes.

  4. Connexin 43 enhances paclitaxel cytotoxicity in colorectal cancer cell lines

    PubMed Central

    Wang, Siqi; Zhang, Shiwu; Zhao, Zhenying; Zhang, Chunze; Yang, Xiaoyun; Wang, Yijia

    2017-01-01

    Colorectal cancer has a relatively low sensitivity to paclitaxel. The purpose of this study was to investigate the role of connexin 43 (Cx43), which is a structural component of gap junctional communication (GJC), in paclitaxel cytotoxicity in colorectal cancer cells. Three colorectal cancer cell lines (HCT106, HCT116 and LoVo) were transfected with Cx43 and used to examine paclitaxel cytotoxicity. A western blot assay was used to confirm Cx43 expression in transfected cell lines as well as the expression of several proteins that are associated with paclitaxel cytotoxicity. A parachute dye-coupling assay was used to measure GJC function. An MTT assay was used to analyze the viability of paclitaxel-treated cells. Cx43 expression level and GJC function were significantly upregulated by the transfection (P<0.05). The viability of transfected cells was significantly inhibited compared with that of untransfected cells when treated with paclitaxel (20 or 80 nM) at high culture density but not at low culture density (P<0.05). Cx43 transfection significantly increased the mitotic arrest, tubulin polymerization and apoptosis effects of paclitaxel (P<0.05). It was also found that paclitaxel had an inhibitory effect on GJC function after 12 h of treatment in LoVo cells (P<0.05). These results indicate that Cx43 may serve as a target of paclitaxel chemotherapy for colorectal cancer. PMID:28810580

  5. Metronidazole decreases viability of DLD-1 colorectal cancer cell line.

    PubMed

    Sadowska, Anna; Krętowski, Rafał; Szynaka, Beata; Cechowska-Pasko, Marzanna; Car, Halina

    2013-10-01

    The aim of our study was to evaluate the impact of metronidazole (MTZ) on DLD-1 colorectal cancer cell (CRC) line. Toxicity of MTZ was determined by MTT test. Cells were incubated with MTZ used in different concentrations for 24, 48, and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. The morphological changes in human DLD-1 cell line were defined by transmission electron microscope OPTON 900. The influence of MTZ on the apoptosis of DLD-1 cell lines was detected by flow cytometry and fluorescence microscopy, while cell concentration, volume, and diameter were displayed by Scepter Cell Counter from Millipore. Our results show that cell viability was diminished in all experimental groups in comparison with the control, and the differences were statistically significant. We did not find any significant differences in [3H]-thymidine incorporation in all experimental groups and times of observation. Cytofluorimetric assays demonstrated a statistically significant increase of apoptotic rate in MTZ concentrations 10 and 50 μg/mL after 24 hours; 0.1, 10, 50, and 250 μg/mL after 48 hours; and in all concentrations after 72 hours compared with control groups. In the ultrastructural studies, necrotic or apoptotic cells were occasionally seen. In conclusion, MTZ affects human CRC cell line viability. The reduction of cell viability was consistent with the apoptotic test.

  6. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro.

    PubMed

    Lin, D L; Tarnowski, C P; Zhang, J; Dai, J; Rohn, E; Patel, A H; Morris, M D; Keller, E T

    2001-05-15

    Prostate cancer frequently metastasizes to bone. However, unlike many other tumors that produce osteolytic lesions, prostate cancer produces osteoblastic lesions through unknown mechanisms. In the current study, we explored the ability and mechanism of an osteotropic prostate cancer cell line (C4-2B) to induce mineralization. C4-2B cells were grown in promineralization media. Mineral deposition was characterized using von Kossa staining, calcium retention, alizarin red staining, Raman spectroscopy, and electron microscopy. Expression of osteoblast-related proteins was determined by RT-PCR. The nuclear level of the bone-specific transcription factor Cbfa1 was determined using western analysis and the effect of inhibiting Cbfa1 function, using a "decoy" Cbfa1 response element oligo, on mineralization was determined. The studies demonstrated that C4-2B cells, but not its nonosteotropic parent cell line LNCaP, has an osteoblastlike phenotype including production of alkaline phosphatase, osteocalcin, osteonectin, bone sialoprotein, osteoprotegerin (OPG), and OPG ligand. Most importantly, the C4-2B cells produced hydroxyapatite mineral in vitro. Furthermore, C4-2B cells expressed high nuclear levels of the bone-specific transcription factor Cbfa1, compared to LNCaP cells, which accounts for their ability to produce bone-specific proteins. Inhibition of Cbfa1, using decoy DNA Cbfa1 response elements, abrogated the ability of C4-2B to produce mineral. Finally, we determined that C4-2B cells express bone morphogenic protein-7, a known inducer of Cbfa1 expression. These data demonstrate a novel mechanism through which prostate cancer cells may directly contribute to the osteoblastic component that characterize their skeletal metastatic lesions. Prostate 47:212-221, 2001. Copyright 2001 Wiley-Liss, Inc.

  7. Bisphosphonates induce apoptosis in human breast cancer cell lines

    PubMed Central

    Senaratne, S G; Pirianov, G; Mansi, J L; Arnett, T R; Colston, K W

    2000-01-01

    Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 μM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 μM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign PMID:10780527

  8. Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice.

    PubMed

    DeMiguel, Fernando; Lee, Soo Ok; Lou, Wei; Xiao, Xiao; Pflug, Beth R; Nelson, Joel B; Gao, Allen C

    2002-07-01

    Prostate cancer frequently progresses from an initial androgen dependence to androgen independence, rendering the only effective androgen ablation therapy useless. The mechanism underlying the androgen-independent progression is unknown. Stat3, a member of the family of signal transducers and activators of transcription, is activated in numerous cancers, including prostate. This study is to investigate the role of Stat3 activation in the growth of prostate cancer cells. A constitutively active Stat3 was ectopically expressed in androgen-sensitive LNCaP prostate cancer cells and resulting stable clones expressing activated Stat3 were isolated. The effect of Stat3 activation on LNCaP cell growth in response to androgen in vitro and in vivo was examined. We show that the levels of activated Stat3 are associated with the progression of androgen-independent prostate cancer. Activation of Stat3 in androgen-sensitive LNCaP prostate cancer cells results in enhancement of tumor growth in both intact and castrated male nude mice and enhances androgen receptor-mediated prostate specific antigen expression. These findings demonstrate that intracellular signaling mediated by Stat3 can enhance the growth of androgen-sensitive human LNCaP prostate cancer cells in both intact and castrated male nude mice. Copyright 2002 Wiley-Liss, Inc.

  9. Functional features of cancer stem cells in melanoma cell lines.

    PubMed

    Zimmerer, Rüdiger M; Korn, Philippe; Demougin, Philippe; Kampmann, Andreas; Kokemüller, Horst; Eckardt, André M; Gellrich, Nils-Claudius; Tavassol, Frank

    2013-08-06

    Recent evidence suggests a subset of cells within a tumor with "stem-like" characteristics. These cells are able to transplant tumors in immunodeficient hosts. Distinct from non-malignant stem cells, cancer stem cells (CSC) show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumor cells, and resistance to chemotherapy or radiation. They are often characterized by elevated expression of stem cell surface markers, in particular CD133, and sets of differentially expressed stem cell-associated genes. CSC are usually rare in clinical specimens and hardly amenable to functional studies and gene expression profiling. In this study, a panel of heterogenous melanoma cell lines was screened for typical CSC features. Nine heterogeneous metastatic melanoma cell lines including D10 and WM115 were studied. Cell lines were phenotyped using flow cytometry and clonogenic assays were performed by limiting dilution analysis on magnetically sorted cells. Spheroidal growth was investigated in pretreated flasks. Gene expression profiles were assessed by using real-time rt-PCR and DNA microarrays. Magnetically sorted tumor cells were subcutaneously injected into the flanks of immunodeficient mice. Comparative immunohistochemistry was performed on xenografts and primary human melanoma sections. D10 cells expressed CD133 with a significantly higher clonogenic capacity as compared to CD133- cells. Na8, D10, and HBL cells formed spheroids on poly-HEMA-coated flasks. D10, Me39, RE, and WM115 cells expressed at least 2 of the 3 regulatory core transcription factors SOX2, NANOG, and OCT4 involved in the maintenance of stemness in mesenchymal stem cells. Gene expression profiling on CD133+ and CD133- D10 cells revealed 68 up- and 47 downregulated genes (+/-1.3 fold). Two genes, MGP and PROM1 (CD133), were outstandingly upregulated. CD133+ D10 cells formed tumors in NSG mice contrary to CD133- cells and CD133 expression was detected

  10. [Building Mass Spectrometry Spectral Libraries of Human Cancer Cell Lines].

    PubMed

    Faktor, J; Bouchal, P

    Cancer research often focuses on protein quantification in model cancer cell lines and cancer tissues. SWATH (sequential windowed acquisition of all theoretical fragment ion spectra), the state of the art method, enables the quantification of all proteins included in spectral library. Spectral library contains fragmentation patterns of each detectable protein in a sample. Thorough spectral library preparation will improve quantitation of low abundant proteins which usually play an important role in cancer. Our research is focused on the optimization of spectral library preparation aimed at maximizing the number of identified proteins in MCF-7 breast cancer cell line. First, we optimized the sample preparation prior entering the mass spectrometer. We examined the effects of lysis buffer composition, peptide dissolution protocol and the material of sample vial on the number of proteins identified in spectral library. Next, we optimized mass spectrometry (MS) method for spectral library data acquisition. Our thorough optimized protocol for spectral library building enabled the identification of 1,653 proteins (FDR < 1%) in 1 µg of MCF-7 lysate. This work contributed to the enhancement of protein coverage in SWATH digital biobanks which enable quantification of arbitrary protein from physically unavailable samples. In future, high quality spectral libraries could play a key role in preparing of patient proteome digital fingerprints.Key words: biomarker - mass spectrometry - proteomics - digital biobanking - SWATH - protein quantificationThis work was supported by the project MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 7. 5. 2016Accepted: 9. 6. 2016.

  11. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles.

    PubMed

    Akanda, Mushfiq H; Rai, Rajeev; Slipper, Ian J; Chowdhry, Babur Z; Lamprou, Dimitrios; Getti, Giulia; Douroumis, Dennis

    2015-09-30

    In this study retinoic acid (RTA) loaded solid lipid nanoparticles (SLNs) were optimized by tuning the process parameters (pressure/temperature) and using different lipids to develop nanodispersions with enhanced anticancer activity. The RTA-SLN dispersions were produced by high-pressure homogenization and characterized in terms of particle size, zeta potential, drug entrapment efficiency, stability, transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and in vitro drug release. Thermal and X-ray analysis showed the RTA to be in the amorphous state, whilst microscopic images revealed a spherical shape and uniform particle size distribution of the nanoparticles. Anticancer efficiency was evaluated by incubating RTA-SLNs with human prostate cancer (LNCap) cells, which demonstrated reduced cell viability with increased drug concentrations (9.53% at 200 ug/ml) while blank SLNs displayed negligible cytotoxicity. The cellular uptake of SLN showed localization within the cytoplasm of cells and flow cytometry analysis indicated an increase in the fraction of cells expressing early apoptotic markers, suggesting that the RTA loaded SLNs are able to induce apoptosis in LNCap cells. The RTA-SLN dispersions have the potential to be used for prostate anticancer treatment.

  12. The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines

    PubMed Central

    Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona

    2010-01-01

    Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977

  13. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine

    PubMed Central

    Kim, Hyun Seok; Sung, Yeo-Jin

    2015-01-01

    Since the first human cancer cell line, HeLa, was established in the early 1950s, there has been a steady increase in the number and tumor type of available cancer cell line models. Cancer cell lines have made significant contributions to the development of various chemotherapeutic agents. Recent advances in multi-omics technologies have facilitated detailed characterizations of the genomic, transcriptomic, proteomic, and epigenomic profiles of these cancer cell lines. An increasing number of studies employ the power of a cancer cell line panel to provide predictive biomarkers for targeted and cytotoxic agents, including those that are already used in clinical practice. Different types of statistical and machine learning algorithms have been developed to analyze the large-scale data sets that have been produced. However, much work remains to address the discrepancies in drug assay results from different platforms and the frequent failures to translate discoveries from cell line models to the clinic. Nevertheless, continuous expansion of cancer cell line panels should provide unprecedented opportunities to identify new candidate targeted therapies, particularly for the so-called "dark matter" group of cancers, for which pharmacologically tractable driver mutations have not been identified. PMID:26256959

  14. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.

    PubMed

    Kim, Hyun Seok; Sung, Yeo-Jin; Paik, Soonmyung

    2015-09-01

    Since the first human cancer cell line, HeLa, was established in the early 1950s, there has been a steady increase in the number and tumor type of available cancer cell line models. Cancer cell lines have made significant contributions to the development of various chemotherapeutic agents. Recent advances in multi-omics technologies have facilitated detailed characterizations of the genomic, transcriptomic, proteomic, and epigenomic profiles of these cancer cell lines. An increasing number of studies employ the power of a cancer cell line panel to provide predictive biomarkers for targeted and cytotoxic agents, including those that are already used in clinical practice. Different types of statistical and machine learning algorithms have been developed to analyze the large-scale data sets that have been produced. However, much work remains to address the discrepancies in drug assay results from different platforms and the frequent failures to translate discoveries from cell line models to the clinic. Nevertheless, continuous expansion of cancer cell line panels should provide unprecedented opportunities to identify new candidate targeted therapies, particularly for the so-called "dark matter" group of cancers, for which pharmacologically tractable driver mutations have not been identified.

  15. Increased transversions in a novel mutator colon cancer cell line.

    PubMed

    Eshleman, J R; Donover, P S; Littman, S J; Swinler, S E; Li, G M; Lutterbaugh, J D; Willson, J K; Modrich, P; Sedwick, W D; Markowitz, S D; Veigl, M L

    1998-03-05

    We describe a novel mutator phenotype in the Vaco411 colon cancer cell line which increases the spontaneous mutation rate 10-100-fold over background. This mutator results primarily in transversion base substitutions which are found infrequently in repair competent cells. Of the four possible types of transversions, only three were principally recovered. Spontaneous mutations recovered also included transitions and large deletions, but very few frameshifts were recovered. When compared to known mismatch repair defective colon cancer mutators, the distribution of mutations in Vaco411 is significantly different. Consistent with this difference, Vaco411 extracts are proficient in assays of mismatch repair. The Vaco411 mutator appears to be novel, and is not an obvious human homologue of any of the previously characterized bacterial or yeast transversion phenotypes. Several hypotheses by which this mutator may produce transversions are presented.

  16. Biomarkers in Tumorigenesis Using Cancer Cell Lines: A Systematic Review

    PubMed

    Raju K, Lizbeth; Augustine, Dominic; Rao, Roopa S; S V, Sowmya; Haragannavar, Vanishri C; Nambiar, Shwetha; Prasad, Kavitha; Awan, Kamran Habib; Patil, Shankargouda

    2017-09-27

    Cancer is a leading cause of death worldwide. Despite many research advancements in the field, the genetic changes regulating the transformation of normal oral cells into malignant cells have not been fully elucidated. Several studies have evaluated carcinogenesis at the molecular level. Cancer cell lines are commonly used in biomedical research because they provide an unlimited source of cells and represent various stages of initiation and progression of carcinogenesis in vitro. Aims: The objective of the study was to review original research articles using cancer cell lines as a tool to understand carcinogenesis and to identify the genes involved in tumor development. Additionally, we also examined the application of the genes as predictive biomarkers. Methods and Materials: Several databases, including PubMed, Google Scholar, Ebsco, and Science Direct, were searched from 1985 to December 2016 using various combinations of the following key words: “mouth neoplasm”, “cell lines”, and “tumorigenesis”. Original experimental studies published in English were included. We excluded letters to the editor, historic reviews, and unpublished data from the analysis. Results: There were 17 studies (in vitro) included in the analysis. There were 14 genes and 4 miRNAs involved in malignant transformation of oral keratinocytes into cancer cells. The most commonly studied genes were p53, cyclin D1, and hTERT. Conclusion: Additional reviews and studies are needed to identify a panel of genes specific to various potentially malignant disorders and to aid in the early detection of oral squamous cell carcinoma (OSCC) because tumorigenesis involves the mutation of multiple genes. Furthermore, improving advanced cost-effective diagnostic methods may benefit the public health sector. Creative Commons Attribution License

  17. Cancer cells (MCF-7, Colo-357, and LNCaP) viability on amorphous hydrogenated carbon nitride film deposited by dielectric barrier discharge plasma

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer; Ummanni, Ramesh; Walther, Reinhard; Schroeder, Karsten

    2009-08-01

    Atmospheric pressure dielectric barrier discharge plasma in CH{sub 4}/N{sub 2} (1:1) gas mixture has been employed to deposit amorphous hydrogenated carbon nitride (aH-CN{sub x}) film. In vitro studies with three different cancer cell lines were carried out on the coated surfaces. Preliminary biocompatibility and effect of CH{sub 4}/N{sub 2} films have been investigated by measuring cell proliferation. Three different cancer cell (MCF-7, Colo-357, and LNCaP) suspensions have been exposed on the surface of aH-CN{sub x} film to investigate the effect of deposited films on viability of cells. Results from the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H- tetrazolium, inner salt) proliferation assays indicated that the deposited aH-CN{sub x} film is cytotoxic to cancer cell lines. Time course cell viability assay indicated maximum cell death at 24 h after seeding the cells. This effect is dependant on physicochemical and mechanical properties of the deposited films. The deposited film has been characterized by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results confirm the presence of C-N, Cident toN, C-H{sub x}, C-O, N-O, overlapping NH, and OH bonds in the film.

  18. Cancer cells (MCF-7, Colo-357, and LNCaP) viability on amorphous hydrogenated carbon nitride film deposited by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Ummanni, Ramesh; Schröder, Karsten; Walther, Reinhard; Hippler, Rainer

    2009-08-01

    Atmospheric pressure dielectric barrier discharge plasma in CH4/N2 (1:1) gas mixture has been employed to deposit amorphous hydrogenated carbon nitride (aH-CNx) film. In vitro studies with three different cancer cell lines were carried out on the coated surfaces. Preliminary biocompatibility and effect of CH4/N2 films have been investigated by measuring cell proliferation. Three different cancer cell (MCF-7, Colo-357, and LNCaP) suspensions have been exposed on the surface of aH-CNx film to investigate the effect of deposited films on viability of cells. Results from the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium, inner salt) proliferation assays indicated that the deposited aH-CNx film is cytotoxic to cancer cell lines. Time course cell viability assay indicated maximum cell death at 24 h after seeding the cells. This effect is dependant on physicochemical and mechanical properties of the deposited films. The deposited film has been characterized by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results confirm the presence of C-N, C≡N, C-Hx, C-O, N-O, overlapping NH, and OH bonds in the film.

  19. Differential pathway dependency discovery associated with drug response across cancer cell lines. | Office of Cancer Genomics

    Cancer.gov

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines.

  20. Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines

    PubMed Central

    Xu, Li-Ning; Wang, Xin; Zou, Sheng-Quan

    2008-01-01

    AIM: To explore the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the growth of biliary tract cancer cell lines (gallbladder carcinoma cell line and cholangiocarcinoma cell line) in vivo and in vitro, and to investigate the perspective of histone deacetylase inhibitor in its clinical application. METHODS: The survival rates of gallbladder carcinoma cell line (Mz-ChA-l cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) treated with various doses of TSA were detected by methylthiazol tetrazolium (MTT) assay. A nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-l cell line) was successfully established, and changes in the growth of transplanted tumor after treated with TSA were measured. RESULTS: TSA could inhibit the proliferation of gallbladder carcinoma cell line (Mz-ChA-l cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) in a dose-dependent manner. After the nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-l cell line) was successfully established, the growth of cancer was inhibited in the model after treated with TSA. CONCLUSION: TSA can inhibit the growth of cholangiocarcinoma and gallbladder carcinoma cell lines in vitro and in vivo. PMID:18442209

  1. Induction of apoptosis in the LNCaP human prostate carcinoma cell line and prostate adenocarcinomas of SV40T antigen transgenic rats by the Bowman-Birk inhibitor.

    PubMed

    Tang, MingXi; Asamoto, Makoto; Ogawa, Kumiko; Naiki-Ito, Aya; Sato, Shinya; Takahashi, Satoru; Shirai, Tomoyuki

    2009-11-01

    The soybean-derived serine protease inhibitor, Bowman-Birk inhibitor (BBI), has been reported as a potent chemoprevention agent against several types of tumors. The present study was undertaken to evaluate the effects of BBI on androgen-sensitive/dependent prostate cancers using a human prostate cancer cell (LNCaP) and the transgenic rats developing adenocarcinoma of the prostate (TRAP) model. Treatment of LNCaP prostate cancer cells with 500 microg/mL BBI resulted in inhibition of viability measured on WST-1 assays, with induction of connexin 43 (Cx43) and cleaved caspase-3 protein expression. Feeding of 3% roughly prepared BBI (BBIC) to TRAP from the age 3 weeks to 13 weeks resulted in significant reduction of the relative epithelial areas within the acinus and multiplicity of the adenocarcinomas in the lateral prostate lobes. Cx43- and terminal deoxynucleotidyl transferase mediated dUTP-biotin end labeling of fragmented DNA (TUNEL)-positive apoptotic cancer cells were more frequently observed in the lateral prostates treated with BBIC than in the controls. These in vivo and in vitro results suggest that BBI possesses chemopreventive activity associated with induction of Cx43 expression and apoptosis.

  2. Proteomic Profiling of Androgen-independent Prostate Cancer Cell Lines Reveals a Role for Protein S during the Development of High Grade and Castration-resistant Prostate Cancer

    PubMed Central

    Saraon, Punit; Musrap, Natasha; Cretu, Daniela; Karagiannis, George S.; Batruch, Ihor; Smith, Chris; Drabovich, Andrei P.; Trudel, Dominique; van der Kwast, Theodorus; Morrissey, Colm; Jarvi, Keith A.; Diamandis, Eleftherios P.

    2012-01-01

    Androgen deprivation constitutes the principal therapy for advanced and metastatic prostate cancers. However, this therapeutic intervention usually results in the transition to a more aggressive androgen-independent prostate cancer. The elucidation of molecular alterations during the progression to androgen independence is an integral step toward discovering more effective targeted therapies. With respect to identifying crucial mediators of this transition, we compared the proteomes of androgen-independent (PC3, DU145, PPC1, LNCaP-SF, and 22Rv1) and androgen-dependent (LNCaP and VCaP) and/or normal prostate epithelial (RWPE) cell lines using mass spectrometry. We identified more than 100 proteins that were differentially secreted in the androgen-independent cell lines. Of these, Protein S (PROS1) was elevated in the secretomes of all of the androgen-independent prostate cancer cell lines, with no detectable secretion in normal and androgen-dependent cell lines. Using quantitative PCR, we observed significantly higher (p < 0.05) tissue expression levels of PROS1 in prostate cancer samples, further indicating its importance in prostate cancer progression. Similarly, immunohistochemistry analysis revealed elevation of PROS1 in high grade prostate cancer (Gleason grade ≥8), and further elevation in castration-resistant metastatic prostate cancer lesions. We also observed its significant (p < 0.05) elevation in high grade prostate cancer seminal plasma samples. Taken together, these results show that PROS1 is elevated in high grade and castration-resistant prostate cancer and could serve as a potential biomarker of aggressive disease. PMID:22908226

  3. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  4. Lung cancer cell lines as tools for biomedical discovery and research.

    PubMed

    Gazdar, Adi F; Girard, Luc; Lockwood, William W; Lam, Wan L; Minna, John D

    2010-09-08

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non-small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel.

  5. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines.

    PubMed

    Araújo, João R; Gonçalves, Pedro; Martel, Fátima

    2011-02-01

    Colorectal cancer (CRC) is the second most fatal and the third most diagnosed type of cancer worldwide. Despite having multifactorial causes, most CRC cases are mainly determined by dietary factors. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (fruits and vegetables) against CRC. Indeed, polyphenols have been reported to interfere with cancer initiation, promotion, and progression, acting as chemopreventive agents. The aim of this review is to summarize the main chemopreventive properties of some polyphenols (quercetin, rutin, myricetin, chrysin, epigallocatechin-3-gallate, epicatechin, catechin, resveratrol, and xanthohumol) against CRC, observed in cell culture models. From the data reviewed in this article, it can be concluded that these compounds inhibit cell growth, by inducing cell cycle arrest and/or apoptosis; inhibit proliferation, angiogenesis, and/or metastasis; and exhibit anti-inflammatory and/or antioxidant effects. In turn, these effects involve multiple molecular and biochemical mechanisms of action, which are still not completely characterized. Thus, caution is mandatory when attempting to extrapolate the observations obtained in CRC cell line studies to humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Prediction of epigenetically regulated genes in breast cancer cell lines

    SciTech Connect

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  7. Potential Utility and Limitations of Thyroid Cancer Cell Lines as Models for Studying Thyroid Cancer

    PubMed Central

    Pilli, Tania; Prasad, Kanteti V.; Jayarama, Shankar; Pacini, Furio

    2009-01-01

    Background Tumor-derived cell lines are widely used to study the mechanisms involved in thyroid carcinogenesis but recent studies have reported redundancy among thyroid cancer cell lines and identification of some “thyroid cell lines” that are likely not of thyroid origin. Summary In this review, we have summarized the uses, the limitations, and the existing problems associated with the available follicular cell-derived thyroid cancer cell lines. There are some limitations to the use of cell lines as a model to “mimic” in vivo tumors. Based on the gene expression profiles of thyroid cell lines originating from tumors of different types it has become apparent that some of the cell lines are closely related to each other and to those of undifferentiated carcinomas. Further, many cell lines have lost the expression of thyroid-specific genes and have altered karyotypes, while they exhibit activation of several oncogenes (BRAF, v-raf murine sarcoma viral oncogene homolog B1; RAS, rat sarcoma; and RET/PTC, rearranged in transformation/papillary thyroid carcinoma) and inactivation of tumor suppressor gene (TP53) which is known to be important for thyroid tumorigenesis. Conclusions A careful selection of thyroid cancer cell lines that reflect the major characteristics of a particular type of thyroid cancer being investigated could be used as a good model system to analyze the signaling pathways that may be important in thyroid carcinogenesis. Further, the review of literature also suggests that some of the limitations can be overcome by using multiple cell lines derived from the same type of tumor. PMID:20001716

  8. Is parainfluenza virus a threatening virus for human cancer cell lines?

    PubMed

    Danjoh, Inaho; Sone, Hiyori; Noda, Nahomi; Iimura, Emi; Nagayoshi, Mariko; Saijo, Kaoru; Hiroyama, Takashi; Nakamura, Yukio

    2009-08-01

    Immortalized cell lines, such as human cancer cell lines, are an indispensable experimental resource for many types of biological and medical research. However, unless the cell line has been authenticated prior to use, interpretation of experimental results may be problematic. The potential problems this may cause are illustrated by studies in which authentication of cell lines has not been carried out. For example, immortalized cell lines may unknowingly be infected with viruses that alter their characteristics. In fact, parainfluenza virus type 5 (PIV5) poses a threat to the use of immortalized cell lines in biological and medical research; PIV5 infection significantly alters cellular physiology associated with the response to interferon. If PIV5 infection is widespread in immortalized cell lines, then a very large number of published studies might have to be re-evaluated. Fortunately, analyses of a large number of immortalized cell lines indicate that PIV5 infection is not widespread.

  9. Tumor Suppressors Status in Cancer Cell Line Encyclopedia

    PubMed Central

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J.; Tatarinova, Tatiana V.

    2013-01-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss-of-function mutation, copy number (CN) loss, or loss-of-heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional “status”. This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research. PMID:23639312

  10. Tumor suppressors status in cancer cell line Encyclopedia.

    PubMed

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J; Tatarinova, Tatiana V

    2013-08-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss of function mutation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional "status". This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research.

  11. Oncogenic mutation profiling in new lung cancer and mesothelioma cell lines

    PubMed Central

    Lam, David CL; Luo, Susan Y; Deng, Wen; Kwan, Johnny SH; Rodriguez-Canales, Jaime; Cheung, Annie LM; Cheng, Grace HW; Lin, Chi-Ho; Wistuba, Ignacio I; Sham, Pak C; Wan, Thomas SK; Tsao, Sai-Wah

    2015-01-01

    Background Thoracic tumor, especially lung cancer, ranks as the top cancer mortality in most parts of the world. Lung adenocarcinoma is the predominant subtype and there is increasing knowledge on therapeutic molecular targets, namely EGFR, ALK, KRAS, and ROS1, among lung cancers. Lung cancer cell lines established with known clinical characteristics and molecular profiling of oncogenic targets like ALK or KRAS could be useful tools for understanding the biology of known molecular targets as well as for drug testing and screening. Materials and methods Five new cancer cell lines were established from pleural fluid or biopsy tissues obtained from Chinese patients with primary lung adenocarcinomas or malignant pleural mesothelioma. They were characterized by immunohistochemistry, growth kinetics, tests for tumorigenicity, EGFR and KRAS gene mutations, ALK gene rearrangement and OncoSeq mutation profiling. Results These newly established lung adenocarcinoma and mesothelioma cell lines were maintained for over 100 passages and demonstrated morphological and immunohistochemical features as well as growth kinetics of tumor cell lines. One of these new cell lines bears EML4-ALK rearrangement variant 2, two lung cancer cell lines bear different KRAS mutations at codon 12, and known single nucleotide polymorphism variants were identified in these cell lines. Discussion Four new lung adenocarcinoma and one mesothelioma cell lines were established from patients with different clinical characteristics and oncogenic mutation profiles. These characterized cell lines and their mutation profiles will provide resources for exploration of lung cancer and mesothelioma biology with regard to the presence of known oncogenic mutations. PMID:25653542

  12. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    PubMed

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-05

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line.

  13. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy.

    PubMed

    Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping

    2013-01-01

    The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.

  14. Hypermethylation of tumor-related genes in genitourinary cancer cell lines.

    PubMed Central

    Chung, W. B.; Hong, S. H.; Kim, J. A.; Sohn, Y. K.; Kim, B. W.; Kim, J. W.

    2001-01-01

    Hypermethylation of CpG island is a common mechanism for the inactivation of tumor-related genes. In the present study, we analyzed 13 genitourinary cancer cell lines for aberrant DNA methylation of 5 tumor-related genes using methylation- specific polymerase chain reaction (MSP). GSTP1 was methylated in 5 (38.5%), E-cadherin in 1 (8%), VHL in 1 (8%), and MGMT and hMLH1 in none (0%). Six out of thirteen genitourinary cancer cell lines had methylation of at least one of five genes; 5 had one gene methylated, and, 1 had two genes methylated. Methylation of these 5 genes was not detected in any of the bladder cancer cell lines. GSTP1 was methylated in all of the 3 prostate cancer cell lines. We conclude that aberrant hypermethylation may be an important mechanism for the inactivation of cancer-related genes in kidney and prostate cancer cell lines. PMID:11748358

  15. Phenotype and Genotype of Pancreatic Cancer Cell Lines

    PubMed Central

    Deer, Emily L.; Gonzalez-Hernandez, Jessica; Coursen, Jill D.; Shea, Jill E.; Ngatia, Josephat; Scaife, Courtney L.; Firpo, Matthew A.; Mulvihill, Sean J.

    2009-01-01

    The dismal prognosis of pancreatic adenocarcinoma (PA) is due in part due to a lack of molecular information regarding disease development. Established cell lines remain a useful tool for investigating these molecular events. Here we present a review of available information on commonly used PA cell lines as a resource to help investigators select the cell lines most appropriate for their particular research needs. Information on clinical history, in vitro and in vivo growth characteristics, phenotypic characteristics, such as adhesion, invasion, migration and tumorigenesis, and genotypic status of commonly altered genes (KRAS, p53, p16, and SMAD4) was evaluated. Identification of both consensus and discrepant information in the literature suggests careful evaluation before selection of cell lines and attention be given to cell line authentication. PMID:20418756

  16. Identification of transporters associated with Etoposide sensitivity of stomach cancer cell lines and methotrexate sensitivity of breast cancer cell lines by quantitative targeted absolute proteomics.

    PubMed

    Obuchi, Wataru; Ohtsuki, Sumio; Uchida, Yasuo; Ohmine, Ken; Yamori, Takao; Terasaki, Tetsuya

    2013-02-01

    Membrane transporter proteins may influence the sensitivity of cancer cells to anticancer drugs that can be recognized as substrates. The purpose of this study was to identify proteins that play a key role in the drug sensitivity of stomach and breast cancer cell lines by measuring the absolute protein expression levels of multiple transporters and other membrane proteins and examining their correlation to drug sensitivity. Absolute protein expression levels of 90 membrane proteins were examined by quantitative targeted absolute proteomics using liquid chromatography-linked tandem mass spectrometry. Among them, 11 and 14 membrane proteins, including transporters, were present in quantifiable amounts in membrane fraction of stomach cancer and breast cancer cell lines, respectively. In stomach cancer cell lines, the protein expression level of multidrug resistance-associated protein 1 (MRP1) was inversely correlated with etoposide sensitivity. MK571, an MRP inhibitor, increased both the cell-to-medium ratio of etoposide and the etoposide sensitivity of MRP1-expressing stomach cancer cell lines. In breast cancer cell lines, the protein expression level of reduced folate carrier 1 (RFC1) was directly correlated with methotrexate (MTX) sensitivity. Initial uptake rate and steady-state cell-to-medium ratio of [(3)H]MTX were correlated with both RFC1 expression level and MTX sensitivity. These results suggest that MRP1 modulates the etoposide sensitivity of stomach cancer cell lines and RFC1 modulates the MTX sensitivity of breast cancer cell lines. Our results indicate that absolute quantification of multiple membrane proteins could be a useful strategy for identification of candidate proteins involved in drug sensitivity.

  17. Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells.

    PubMed

    Sun, Ying-Hao; Gao, Xu; Tang, Yuan-Jie; Xu, Chuan-Liang; Wang, Lin-Hui

    2006-01-01

    The receptor mechanism of testosterone-induced nongenomic Ca2+ signaling in prostate cancer cells is poorly understood. In this study we investigated androgen-induced intracellular Ca2+ increases in LNCaP human prostate cancer cells with Fura-2 as a Ca2+ probe. 5alpha-dihydrotestosterone (DHT) produced fast and transient increases in intracellular Ca2+ in LNCaP cells in a concentration-dependent manner. These effects were abolished by extracellular Ca2+ removal or pretreatment with L-type Ca2+ channel inhibitors (nifedipine, verapamil, and diltiazem). Pretreatment with endoplasmic reticulum ryanodine receptor blocker (procaine) or phospholipase C inhibitor (neomycin sulfate) did not alter DHT-induced Ca2+ influx. The concentration of Ca2+ was also increased by impermeable testosterone conjugated to bovine serum albumin. Neither an antagonist of intracellular androgen receptors (cyproterone acetate) nor a protein synthesis inhibitor (cycloheximide) affected this fast Ca2+ influx. Furthermore, the effect of DHT was abolished in cells incubated with a G protein inhibitor (pertussis toxin) and a nonhydrolyzable analog of guanosine triphosphate (guanosine 5-[beta-thio]disphosphate) but not in cells incubated with the tyrosine kinase inhibitor genistein. These results indicate that androgens induced an L-type calcium channel-dependent intracellular Ca2+ increase in LNCaP prostate cancer cells. The rapid responses triggered by DHT did not appear to be mediated through classic intracellular androgen receptors, c-Src kinase-androgen receptor complex, or sex hormone-binding globulin but through a G protein-coupled receptor in LNCaP prostate cancer cells. These results may provide a new explanation for progression of prostate cancer.

  18. Bioenergetic Analysis of Ovarian Cancer Cell Lines: Profiling of Histological Subtypes and Identification of a Mitochondria-Defective Cell Line

    PubMed Central

    Dier, Usawadee; Shin, Dong-Hui; Hemachandra, L. P. Madhubhani P.; Uusitalo, Larissa M.; Hempel, Nadine

    2014-01-01

    Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that

  19. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line.

    PubMed

    Dier, Usawadee; Shin, Dong-Hui; Hemachandra, L P Madhubhani P; Uusitalo, Larissa M; Hempel, Nadine

    2014-01-01

    Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that

  20. NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines.

    PubMed

    Erbaykent-Tepedelen, Burcu; Ozmen, Besra; Varisli, Lokman; Gonen-Korkmaz, Ceren; Debelec-Butuner, Bilge; Muhammed Syed, Hamid; Yilmazer-Cakmak, Ozgur; Korkmaz, Kemal Sami

    2011-10-14

    NKX3.1 is an androgen-regulated homeobox gene that encodes a tissue-restricted transcription factor, which plays an important role in the differentiation of the prostate epithelium. Thus, the role of NKX3.1 as a functional topoisomerase I activity enhancer in cell cycle regulation and the DNA damage response (DDR) was explored in prostate cancer cell lines. As an early response to DNA damage following CPT-11 treatment, we found that there was an increase in the γH2AX(S139) foci number and that total phosphorylation levels were reduced in PC-3 cells following ectopic NKX3.1 expression as well as in LNCaP cells following androgen administration. Furthermore, upon drug treatment, the increase in ATM(S1981) phosphorylation was reduced in the presence of NKX3.1 expression, whereas DNA-PKcs expression was increased. Additionally, phosphorylation of CHK2(T68) and NBS1(S343) was abrogated by ectopic NKX3.1 expression, compared with the increasing levels in control PC-3 cells in a time-course experiment. Finally, NKX3.1 expression maintained a high cyclin D1 expression level regardless of drug treatment, while total γH2AX(S139) phosphorylation remained depleted in PC-3, as well as in LNCaP, cells. Thus, we suggest that androgen regulated NKX3.1 maintains an active DDR at the intra S progression and contributes to the chemotherapeutic resistance of prostate cancer cells to DNA damaging compounds.

  1. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells.

    PubMed

    He, Jin-Hua; Zhang, Jing-Zhi; Han, Ze-Ping; Wang, Li; Lv, Yu Bing; Li, Yu-Guang

    2014-09-10

    Prostate cancer gene expression marker 1 (PCGEM1) is a long non-coding RNA (lncRNA) overexpressed in prostate cancer (PCa) cells that promotes PCa initiation and progression, and protects against chemotherapy-induced apoptosis. The microRNA miR-145 functions as a tumor suppressor in PCa. We speculate that reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. To test this hypothesis, the interaction between PCGEM1 and miR-145 was examined using a luciferase reporter assay. Expression levels were selectively altered in LNCaP cells and noncancerous RWPE-1 prostate cells by transfection of miR-145 or small interfering RNA sequences against (siRNA) PCGEM1. Relative expression levels were detected by RT-PCR, tumor cell growth and early apoptosis by the MTT assay and flow cytometry, respectively, and tumor cell migration and invasion properties by transwell assays. The effect of siRNA PCGEM1 and miR-145 transfection on prostate cancer growth in vivo was examined in the (nu/nu) mouse model. PCGEM1 and miR-145 exhibited reciprocal regulation; downregulation of PCGEM1 expression in LNCaP cells increased expression of miR-145, while overexpression of miR-145 decreased PCGEM1 expression. Transfection of the miR-145 expression vector and siRNA PCGEM1 inhibited tumor cell proliferation, migration, and invasion, and induced early apoptosis both in vitro. In contrast, there was no effect on RWPE-1 cells. We demonstrate a reciprocal negative control relationship between PCGEM1 and miR-145 that regulates both LNCaP cell proliferation and nu/nu PCa tumor growth. The results also identify PCGEM1 and associated regulators as possible targets for PCa therapy.

  2. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    PubMed Central

    CORRÊA, NATÁSSIA C.R.; KUASNE, HELLEN; FARIA, JERUSA A.Q.A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; NONOGAKI, SUELY; ROCHA, RAFAEL M.; SILVA, GERLUZA APARECIDA BORGES; GOBBI, HELENICE; ROGATTO, SILVIA R.; GOES, ALFREDO M.; GOMES, DAWIDSON A.

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an ‘establishment’ phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. PMID:23404580

  3. Proteolytic modification of swelling-activated Cl- current in LNCaP prostate cancer epithelial cells.

    PubMed

    Vitko, Yulia V; Pogorelaya, Nelli H; Prevarskaya, Natalia; Skryma, Roman; Shuba, Yaroslav M

    2002-08-01

    The effects of intracellular application of trypsin on the Cl- current induced by hypotonic cell swelling (I(Cl,swell)) in human prostate cancer epithelial cells (LNCaP) was studied using the patch-clamp technique. In cells predialyzed with 1 mg/mL trypsin, I(Cl,swell)) developed and diminished in response to the application and withdrawal of hypotonic solution about three times faster than that in control cells. In trypsin-infused cells, I(Cl,swell)) also had about twofold higher current density and displayed considerably slowed voltage-dependent inactivation, which was quite pronounced in control cells at potentials above +60 mV. Trypsin-induced modification of I(Cl,swell)) could be prevented by coinfusion of 10 mg/mL soybean trypsin inhibitor, suggesting that proteolytic cleavage of essential intracellular structural domains of the I(Cl,swell))-carrying volume-regulated anion channel (VRAC) was responsible for this functional modification. The effect of trypsin was not dependent on the presence of intracellular ATP. We conclude that VRACs, similarly to voltage-gated Na+, K+, and Cl- channels, possess intracellular inactivation domain(s) subjected to proteolytic cleavage that may function in conformity with the classical "ball-and-chain" inactivation model.

  4. The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines.

    PubMed

    Amini, Sabrieh; Fathi, Fardin; Mobalegi, Jafar; Sofimajidpour, Heshmatollah; Ghadimi, Tayyeb

    2014-03-01

    Uncontrolled self-renewal plays a direct function in the progression of different types of carcinomas. The same molecular pathway that manages self-renewal in normal stem cells also seems to manage cancer stem cells. Here, we examine the expressions of self-renewal regulatory factors Oct4, Nanog, Sox2, nucleostemin, Zfx, Esrrb, Tcl1, Tbx3, and Dppa4 in tissue samples of colon, prostate, and bladder carcinomas as well as cancer cell lines HT-29, Caco-2, HT-1376, LNCaP, and HepG2. We used reverse transcriptase polymerase chain reaction to examine expressions of the above mentioned regulatory factors in cancer cell lines HT-29, Caco-2, HT-1376, LNCaP, and HepG2 and in 20 tumor tissue samples. Total RNA was isolated by the ISOGEN method. RNA integrity was checked by agarose gel electrophoresis and spectrophotometry. Expressions of Oct4 and nucleostemin at the protein level were determined by immunocytochemistry. A significant relationship was found between tumor grade and self-renewal gene expression. Expressions of stem cell specific marker genes were detected in all examined cancer cell lines, in 40% to 100% of bladder cancer samples, and in 60% to 100% of colon and prostate cancer samples. Oct4 expressed in 100% of tumor tissue samples. Our data show that stem cell markers Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Esrrb, Tcl1, Tbx3, and Dppa4 significantly express in cancer cell lines and cancer tissues. Hence, these markers might be useful as potential tumor markers in the diagnosis and/or prognosis of tumors.

  5. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

    PubMed

    Thebault, Stéphanie; Lemonnier, Loïc; Bidaux, Gabriel; Flourakis, Matthieu; Bavencoffe, Alexis; Gordienko, Dimitri; Roudbaraki, Morad; Delcourt, Philippe; Panchin, Yuri; Shuba, Yaroslav; Skryma, Roman; Prevarskaya, Natalia

    2005-11-25

    Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell line, LNCaP. In this study, we show that despite such expression, LNCaP cells respond to cold/menthol stimulus by membrane current (I(cold/menthol)) that shows inward rectification and high Ca(2+) selectivity, which are dramatically different properties from "classical" TRPM8-mediated I(cold/menthol). Yet, silencing of endogenous TRPM8 mRNA by either antisense or siRNA strategies suppresses both I(cold/menthol) and TRPM8 protein in LNCaP cells. We demonstrate that these puzzling results arise from TRPM8 localization not in the plasma, but in the endoplasmic reticulum (ER) membrane of LNCaP cells, where it supports cold/menthol/icilin-induced Ca(2+) release from the ER with concomitant activation of plasma membrane (PM) store-operated channels (SOC). In contrast, GFP-tagged TRPM8 heterologously expressed in HEK-293 cells target the PM. We also demonstrate that TRPM8 expression and the magnitude of SOC current associated with it are androgen-dependent. Our results suggest that the TRPM8 may be an important new ER Ca(2+) release channel, potentially involved in a number of Ca(2+)- and store-dependent processes in prostate cancer epithelial cells, including those that are important for prostate carcinogenesis, such as proliferation and apoptosis.

  6. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics.

    PubMed

    Goodspeed, Andrew; Heiser, Laura M; Gray, Joe W; Costello, James C

    2016-01-01

    Compared with normal cells, tumor cells have undergone an array of genetic and epigenetic alterations. Often, these changes underlie cancer development, progression, and drug resistance, so the utility of model systems rests on their ability to recapitulate the genomic aberrations observed in primary tumors. Tumor-derived cell lines have long been used to study the underlying biologic processes in cancer, as well as screening platforms for discovering and evaluating the efficacy of anticancer therapeutics. Multiple -omic measurements across more than a thousand cancer cell lines have been produced following advances in high-throughput technologies and multigroup collaborative projects. These data complement the large, international cancer genomic sequencing efforts to characterize patient tumors, such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Given the scope and scale of data that have been generated, researchers are now in a position to evaluate the similarities and differences that exist in genomic features between cell lines and patient samples. As pharmacogenomics models, cell lines offer the advantages of being easily grown, relatively inexpensive, and amenable to high-throughput testing of therapeutic agents. Data generated from cell lines can then be used to link cellular drug response to genomic features, where the ultimate goal is to build predictive signatures of patient outcome. This review highlights the recent work that has compared -omic profiles of cell lines with primary tumors, and discusses the advantages and disadvantages of cancer cell lines as pharmacogenomic models of anticancer therapies.

  7. In vitro comparative cytotoxic effect of Nimbolide: A limonoid from Azadirachta indica (Neem tree) on cancer cell lines and normal cell lines through MTT assay.

    PubMed

    Kashif, Muhammad; Hwang, Yawon; Hong, Gyeongmi; Kim, Gonhyung

    2017-05-01

    The present study was conducted to find the cytotoxicity in vitro of nimbolide, limonoids derivative of flowers and leaves from Azadirachta indica (neem tree) on the selected cell lines of cancer (Du-145, PC-3, A-549) and normal fibroblast cell lines (NIH3T3, CCD-18Co) using MTT assay. The cells were seeded in 96 multi-well tissue plate using different concentrations of nimbolide for 24hrs and 48hrs. The percentage of viability of cell lines was calculated by optical density obtained by micro plate reader and cytotoxic effect in term of IC50 value was determined by using linear regression analysis. The percentages of viability of cells treated with different concentrations of nimbolide were significantly lower (P<0.05) than the untreated cancer cell lines while in normal cell lines no significant difference (P>0.05) between treated and the non-treated cells was observed. Nimbolide exerted time and dose dependent cytotoxic effect on the cancer lines and mild effect on the normal cell lines. It was further confirmed through PKH 26. Results of the present study suggested nimbolide as a potent chemotherapeutic and chemopreventive agent as it exerted a more cytotoxic effect on cancer cell lines as compared with the normal cell lines. Nimbolide may be a new hope as an anticancer drug in future.

  8. A Walnut-Enriched Diet Reduces the Growth of LNCaP Human Prostate Cancer Xenografts in Nude Mice

    PubMed Central

    Tan, Dun-Xian; Manchester, Lucien C.; Korkmaz, Ahmet; Fuentes-Broto, Lorena; Hardman, W. Elaine; Rosales-Corral, Sergio A.; Qi, Wenbo

    2013-01-01

    It was investigated whether a standard mouse diet (AIN-76A) supplemented with walnuts reduced the establishment and growth of LNCaP human prostate cancer cells in nude (nu/nu) mice. The walnut-enriched diet reduced the number of tumors and the growth of the LNCaP xenografts; 3 of 16 (18.7%) of the walnut-fed mice developed tumors; conversely, 14 of 32 mice (44.0%) of the control diet-fed animals developed tumors. Similarly, the xenografts in the walnut-fed animals grew more slowly than those in the control diet mice. The final average tumor size in the walnut-diet animals was roughly one-fourth the average size of the prostate tumors in the mice that ate the control diet. PMID:23758186

  9. The expression and functional characterization of sigma (sigma) 1 receptors in breast cancer cell lines.

    PubMed

    Aydar, Ebru; Onganer, Pinar; Perrett, Rebecca; Djamgoz, Mustafa B; Palmer, Christopher P

    2006-10-28

    Sigma (sigma) receptors have been implicated in cancer. However, to date there is little molecular data demonstrating the role of sigma1 receptors in cancer. Expression of sigma1 receptors in various human cancer cell lines in comparison to non-cancerous cell lines was investigated, using real time RT-PCR and by western blotting with a sigma1 receptor specific antibody. Our results indicate that cancer cells express higher levels of sigma1 receptors than corresponding non-cancerous cells. Localization of the sigma1 receptor was investigated in MDA-MB-231 cells by immunocytochemistry and confocal microscopy, expression was visualized predominantly at the cell periphery. We have tested the effect of sigma1 and sigma2 drugs and a sigma1 receptor silencing construct on various aspects of the metastatic process on two breast cell lines of different metastatic potential and a normal breast cell line. Both sigma1 and sigma2 drugs and the sigma1 receptor silencing construct had effects on proliferation and adhesion for breast cancer cell lines, compared to a non-cancerous breast cell line. This data suggests sigma1 receptor plays a role in proliferation and adhesion of breast cancer cells. Therefore, it is likely to be a potential target for the diagnosis and therapy of breast cancer.

  10. Antagonistic interaction between bicalutamide (Casodex) and radiation in androgen-positive prostate cancer LNCaP cells.

    PubMed

    Quéro, Laurent; Giocanti, Nicole; Hennequin, Christophe; Favaudon, Vincent

    2010-03-01

    Bicalutamide (Casodex) reportedly improves high-risk prostate cancer survival as an adjuvant treatment following radiotherapy. However, biological data for the interaction between bicalutamide and ionizing radiation in concomitant association are lacking. To explore this issue, androgen-dependent (LNCaP) and -independent (DU145) human prostate cancer cells were exposed for 48 hr to 20, 40, or 80 microM bicalutamide introduced before (neoadjuvant), during (concomitant), or following (adjuvant) radiation. Growth inhibition and cytotoxicity, cell cycle distribution and expression of the prostate serum antigen (PSA) and androgen receptor (AR), were measured as endpoints. Bicalutamide-induced cytotoxic and cytostatic effects were found to be correlated with a marked G1 phase arrest and S phase depression. The drug down-regulated PSA and AR proteins and psa mRNA in LNCaP cells. However, transient up-regulation of the expression of ar mRNA was observed in the presence of 40 microM drug. DU145 cells did not express PSA and proved to be comparatively resistant to the drug from both cytostatic and cytotoxic effects. Bicalutamide dose-dependently induced a significant decrease of radiation susceptibility among drug survivors in LNCaP cells, whilst the interaction appeared to be additive in DU145 cells. The antagonistic radiation-drug interaction observed in LNCaP cells is of significance in relation to combined radiotherapy-bicalutamide treatments directed against tumors expressing the AR. The results suggest that bicalutamide is amenable to combined schedule with radiotherapy provided the drug and radiation are not given in close temporal proximity. Prostate 70: 401-411, 2010. (c) 2009 Wiley-Liss, Inc.

  11. miR-143 Induces the Apoptosis of Prostate Cancer LNCap Cells by Suppressing Bcl-2 Expression

    PubMed Central

    Ma, Zhiwei; Luo, Yizhao; Qiu, Mingxing

    2017-01-01

    Background Prostate cancer has become a serious threat to the life of patients. microRNAs are small non-coding RNA molecules that regulate the growth and apoptosis of cells. We aimed to investigate the regulation and mechanism of microRNA (miR-143) in the proliferation and apoptosis of prostate cancer LNCap cells. Material/Methods miR-143 and control scramble miRNA were synthesized and respectively transfected into LNCap cells. The proliferation and apoptosis were detected by MTT assay, flow cytometry, and caspase-3 activity assay. The intracellular expression of Bcl-2 was determined by Western blot. Further, LNCap cells were transfected with small interfering RNA (siRNA) targeting Bcl-2 (siBcl-2) or plasmid expressing Bcl-2, followed by transfection of miR-143 or control miRNA. Bcl-2 expression was detected by Western blot, and cell apoptosis was measured by caspase-3 activity assay. Results Transfection of miR-143 significantly inhibited the proliferation of LNCap cells (P=0.0073), increased the percentage of externalized phosphatidylserine (P=0.0042), activated the caspase-3 (P=0.0012), and decreased the expression of Bcl-2 (P=0.012) when compared with the control miRNA group. The expression of Bcl-2 was significantly reduced after siBcl-2 transfection. The apoptosis in the siBcl-2+miR-143 group was significantly increased compared with that in the miR-143 group (P=0.036), whereas there was no significant difference in the apoptosis between the siBcl-2+miRNA and miRNA groups. The expression of Bcl-2 was obviously higher after the transfection of Bcl-2-expressing plasmid. The apoptosis in Bcl-2+miR-143 group was significantly reduced compared with the miR-143 group (P=0.031), whereas no significant difference in the apoptosis was detected between the miRNA and Bcl-2+miRNA groups. Conclusions Transfection of miR-143 induces the apoptosis of prostate cancer LNCap cells by down-regulating Bcl-2 expression, suggesting that Bcl-2 might be a potential therapeutic

  12. Metastatic progression and gene expression between breast cancer cell lines from African American and Caucasian women

    PubMed Central

    Yancy, Haile F; Mason, Jacquline A; Peters, Sharla; Thompson, Charles E; Littleton, George K; Jett, Marti; Day, Agnes A

    2007-01-01

    African American (AA) women have a lower overall incidence of breast cancer than do Caucasian (CAU) women, but a higher overall mortality. Little is known as to why the incidence of breast cancer is lower yet mortality is higher in AA women. Many studies speculate that this is only a socio-economical problem. This investigation suggests the possibility that molecular mechanisms contribute to the increased mortality of AA women with breast cancer. This study investigates the expression of 14 genes which have been shown to play a role in cancer metastasis. Cell lines derived from AA and CAU patients were analyzed to demonstrate alterations in the transcription of genes known to be involved in cancer and the metastatic process. Total RNA was isolated from cell lines and analyzed by RT-PCR analysis. Differential expression of the 14 targeted genes between a spectrum model (6 breast cancer cell lines and 2 non-cancer breast cell lines) and a metastasis model (12 metastatic breast cancer cell lines) were demonstrated. Additionally, an in vitro comparison of the expression established differences in 5 of the 14 biomarker genes between African American and Caucasian breast cell lines. Results from this study indicates that altered expression of the genes Atp1b1, CARD 10, KLF4, Spint2, and Acly may play a role in the aggressive phenotype seen in breast cancer in African American women. PMID:17472751

  13. Evaluation of the change in sphingolipids in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 treated with arsenic trioxide.

    PubMed

    Zou, Jianhua; Ma, Xiaoqiong; Zhang, Guangji; Shen, Li; Zhou, Liting; Yu, Yu; Zhu, Fanfan; Chen, Zhe

    2015-11-01

    Arsenic trioxide (As2O3) has been found to display anticancer activity against many types of tumors and has been developed into an anticancer drug in clinical treatments. Sphingolipids are membrane lipids that participate in many signal transduction pathways. In this paper, the changes in sphingolipids of the human multiple myeloma cell line U266 and the gastric cancer cell line MGC-803 treated with arsenic trioxide were investigated using an HPLC-ESI-MS/MS method. Analytes were separated by an XBridge BEH C8 column used for Cer, HexCer, LacCer and SM chromatographic separation, and a Capcell PAK MG II C18 column was used for Sph, dhSph, S1P and dhS1P chromatographic separation and gradient elution with acetonitrile-water containing 0.1% formic acid as a mobile phase. A tandem mass spectrometer QTrap in SRM mode was employed in combination with RPLC as a detector for quantitative analysis. The ceramide/sphingolipid internal standard (IS) mixture was used to quantify the levels of sphingolipids. The distributions of sphingolipids were found to be different in the human multiple myeloma cell line U266 and the gastric cancer cell line MGC-803. Ceramide (Cer), hexosylceramide (HexCer) and dihexosylceramide (Hex2Cer) levels in U266 cell line are higher than those in MGC-803 cell line. Additionally, sphingomyelin (SM), sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (dhS1P) levels in the MGC-803 cell line are higher than those in the U266 cell line. When treated with arsenic trioxide (1-5μM iAs(III)(As(III) ions)), the levels of Hex2Cer in the human multiple myeloma cell line U266 decreased, and the levels of S1P and dhS1P in the human gastric cancer cell line MGC-803 decreased. The decrease of Hex2Cer, S1P and dhS1P in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 were observed when the concentration of iAs(III) is 1.0μM. Therefore, arsenic trioxide exhibits anti-cancer activity by altering the sphingolipid pathway in the

  14. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    PubMed Central

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna; Shoaie, Saeed; Kampf, Caroline; Uhlen, Mathias; Nielsen, Jens

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies. PMID:25640694

  15. Dihydrochalcone Compounds Isolated from Crabapple Leaves Showed Anticancer Effects on Human Cancer Cell Lines.

    PubMed

    Qin, Xiaoxiao; Xing, Yun Feng; Zhou, Zhiqin; Yao, Yuncong

    2015-11-27

    Seven dihydrochalcone compounds were isolated from the leaves of Malus crabapples, cv. "Radiant", and their chemical structures were elucidated by UV, IR, ESI-MS, ¹H-NMR and (13)C-NMR analyses. These compounds, which include trilobatin (A1), phloretin (A2), 3-hydroxyphloretin (A3), phloretin rutinoside (A4), phlorizin (A5), 6''-O-coumaroyl-4'-O-glucopyranosylphloretin (A6), and 3'''-methoxy-6''-O-feruloy-4'-O-glucopyranosyl-phloretin (A7), all belong to the phloretin class and its derivatives. Compounds A6 and A7 are two new rare dihydrochalcone compounds. The results of a MTT cancer cell growth inhibition assay demonstrated that phloretin and these derivatives showed significant positive anticancer activities against several human cancer cell lines, including the A549 human lung cancer cell line, Bel 7402 liver cancer cell line, HepG2 human ileocecal cancer cell line, and HT-29 human colon cancer cell line. A7 had significant effects on all cancer cell lines, suggesting potential applications for phloretin and its derivatives. Adding a methoxyl group to phloretin dramatically increases phloretin's anticancer activity.

  16. Distinct Small RNA Signatures in Extracellular Vesicles Derived from Breast Cancer Cell Lines

    PubMed Central

    Knutsen, Erik; Nikolaisen, Marlen Aas; Jørgensen, Tor Erik; Johansen, Steinar Daae; Perander, Maria; Seternes, Ole Morten

    2016-01-01

    Breast cancer is a heterogeneous disease, and different subtypes of breast cancer show distinct cellular morphology, gene expression, metabolism, motility, proliferation, and metastatic potential. Understanding the molecular features responsible for this heterogeneity is important for correct diagnosis and better treatment strategies. Extracellular vesicles (EVs) and their associated molecules have gained much attention as players in intercellular communication, ability to precondition specific organs for metastatic invasion, and for their potential role as circulating cancer biomarkers. EVs are released from the cells and contain proteins, DNA, and long and small RNA species. Here we show by high-throughput small RNA-sequencing that EVs from nine different breast cancer cell lines share common characteristics in terms of small RNA content that are distinct from their originating cells. Most strikingly, a highly abundant small RNA molecule derived from the nuclear 28S rRNA is vastly enriched in EVs. The miRNA profiles in EVs correlate with the cellular miRNA expression pattern, but with a few exceptions that includes miR-21. This cancer-associated miRNA is retained in breast cancer cell lines. Finally, we report that EVs from breast cancer cell lines cluster together based on their small RNA signature when compared to EVs derived from other cancer cell lines. Altogether, our data demonstrate that breast cancer cell lines manifest a specific small RNA signature in their released EVs. This opens up for further evaluation of EVs as breast cancer biomarkers. PMID:27579604

  17. Colorectal cancer cell lines lack the molecular heterogeneity of clinical colorectal tumors.

    PubMed

    Auman, James Todd; McLeod, Howard L

    2010-01-01

    Histologically similar colorectal cancers (CRCs) exhibit a wide range of outcomes, suggesting that knowledge of the molecular differences might provide insight into this heterogeneity. Cancer cell lines have been used in preclinical studies to identify gene expression alterations that influence response to chemotherapeutic agents. However, it is not clear to what extent available CRC cell lines reflect the molecular heterogeneity observed in clinical colorectal tumors. We compared genome-wide gene expression data from 22 CRC cell lines and 276 clinical colorectal tumors to determine whether the cell lines were able to represent the variability in expression profiles seen in the clinical tissues. Following mean centered data normalization, hierarchical clustering was performed on the samples using literature-derived biologic and pharmacogenomic gene sets. In general, the majority of cell lines tended to cluster together in a single group, as a subcluster within the clinical tissues, although a few cell lines showed distinct expression profiles from the majority of cell lines. The gene expression data comparison suggests that CRC cell lines do not adequately reflect the molecular heterogeneity of clinical colorectal tumors.

  18. In vitro antiproliferativeactivity of Annona reticulata roots on human cancer cell lines

    PubMed Central

    Suresh, H. M.; Shivakumar, B.; Hemalatha, K.; Heroor, S. S.; Hugar, D. S.; Rao, K. R. S. Sambasiva

    2011-01-01

    Background: The phytochemical and pharmacological activities of Annona reticulata components suggest a wide range of clinical application in lieu of cancer chemotherapy. Materials and Methods: Ethanol and aqueous extracts of roots of Annona reticulata Linn were studied for their in vitro antiproliferative activity on A-549 (human lung carcinoma), K-562 (human chronic myelogenous leukemia bone marrow), HeLa (human cervix) and MDA-MB (human adenocarcinoma mammary gland) cancer cell lines by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] colorimetric assay. Results: The ethanol extract exhibited a prominent inhibitory effect against A-549, K-562, HeLa and MDA-MB human cancer cell lines at a concentration range between 10 and 40 μg/ml, whereas the aqueous extract showed a lower activity at the same concentration. Simultaneously, the effect of the ethanol extract toward the inhibition of Vero cell line proliferation was lower in comparison with the cancer cell lines. Conclusion: The significant antiproliferative activity of the ethanol extract of Annona reticulata roots against A-549, K-562, HeLa and MDA-MB human cancer cell lines may be attributed toward the collective presence of acetogenins, alkaloids and lower inhibitory effect on Vero cell line, which suggests Annona reticulata be used as a chemopreventive agent in cancer therapy. PMID:21731389

  19. High-grade serous ovarian cancer cell lines exhibit heterogeneous responses to growth factor stimulation.

    PubMed

    Bourgeois, Danielle L; Kabarowski, Karl A; Porubsky, Veronica L; Kreeger, Pamela K

    2015-01-01

    The factors driving the onset and progression of ovarian cancer are not well understood. Recent reports have identified cell lines that are representative of the genomic pattern of high-grade serous ovarian cancer (HGSOC), in which greater than 90 % of tumors have a mutation in TP53. However, many of these representative cell lines have not been widely used so it is unclear if these cell lines capture the variability that is characteristic of the disease. We investigated six TP53-mutant HGSOC cell lines (Caov3, Caov4, OV90, OVCA432, OVCAR3, and OVCAR4) for migration, MMP2 expression, proliferation, and VEGF secretion, behaviors that play critical roles in tumor progression. In addition to comparing baseline variation between the cell lines, we determined how these behaviors changed in response to four growth factors implicated in ovarian cancer progression: HB-EGF, NRG1β, IGF1, and HGF. Baseline levels of each behavior varied across the cell lines and this variation was comparable to that seen in tumors. All four growth factors impacted cell proliferation or VEGF secretion, and HB-EGF, NRG1β, and HGF impacted wound closure or MMP2 expression in at least two cell lines. Growth factor-induced responses demonstrated substantial heterogeneity, with cell lines sensitive to all four growth factors, a subset of the growth factors, or none of the growth factors, depending on the response of interest. Principal component analysis demonstrated that the data clustered together based on cell line rather than growth factor identity, suggesting that response is dependent on intrinsic qualities of the tumor cell rather than the growth factor. Significant variation was seen among the cell lines, consistent with the heterogeneity of HGSOC.

  20. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells.

    PubMed

    Lemos, Ana Emília Goulart; Ferreira, Luciana Bueno; Batoreu, Nadia Maria; de Freitas, Paula Priscilla; Bonamino, Martin Hernan; Gimba, Etel Rodrigues Pereira

    2016-08-01

    Prostate cancer antigen 3 (PCA3) is a prostate-specific long noncoding RNA (lncRNA) involved in the control of prostate cancer (PCa) cell survival, through modulating androgen receptor (AR) signaling. To further comprehend the mechanisms by which PCA3 modulates LNCaP cell survival, we characterized the expression patterns of several cancer-related genes, including those involved in epithelial-mesenchymal transition (EMT) and AR cofactors in response to PCA3 silencing. We also aimed to develop a strategy to stably silence PCA3. Small interfering RNA (siRNA) or short hairpin RNA (shRNA) was used to knock down PCA3 in LNCaP cells. The expression of 84 cancer-related genes, as well as those coding for AR cofactors and EMT markers, was analyzed by quantitative real-time PCR (qRT-PCR). LNCaP-PCA3 silenced cells differentially expressed 16 of the 84 cancer genes tested, mainly those involved in gene expression control and cell signaling. PCA3 knockdown also induced the upregulation of several transcripts coding for AR cofactors and modulated the expression of EMT markers. LNCaP cells transduced with lentivirus vectors carrying an shRNA sequence targeting PCA3 stably downregulated PCA3 expression, causing a significant drop (60 %) in the proportion of LNCaP cells expressing the transgene. In conclusion, our data provide evidence that PCA3 silencing modulates the expression of key cancer-related genes, including those coding for AR cofactors and EMT markers. Transducing LNCaP cells with an shRNA sequence targeting PCA3 led to loss of viability of the cells, supporting the proposal of PCA3 knockdown as a putative therapeutic approach to inhibit PCa growth.

  1. Identification of circadian-related gene expression profiles in entrained breast cancer cell lines.

    PubMed

    Gutiérrez-Monreal, Miguel A; Treviño, Victor; Moreno-Cuevas, Jorge E; Scott, Sean-Patrick

    2016-01-01

    Cancer cells have broken circadian clocks when compared to their normal tissue counterparts. Moreover, it has been shown in breast cancer that disruption of common circadian oscillations is associated with a more negative prognosis. Numerous studies, focused on canonical circadian genes in breast cancer cell lines, have suggested that there are no mRNA circadian-like oscillations. Nevertheless, cancer cell lines have not been extensively characterized and it is unknown to what extent the circadian oscillations are disrupted. We have chosen representative non-cancerous and cancerous breast cell lines (MCF-10A, MCF-7, ZR-75-30, MDA-MB-231 and HCC-1954) in order to determine the degree to which the circadian clock is damaged. We used serum shock to synchronize the circadian clocks in culture. Our aim was to initially observe the time course of gene expression using cDNA microarrays in the non-cancerous MCF-10A and the cancerous MCF-7 cells for screening and then to characterize specific genes in other cell lines. We used a cosine function to select highly correlated profiles. Some of the identified genes were validated by quantitative polymerase chain reaction (qPCR) and further evaluated in the other breast cancer cell lines. Interestingly, we observed that breast cancer and non-cancerous cultured cells are able to generate specific circadian expression profiles in response to the serum shock. The rhythmic genes, suggested via microarray and measured in each particular subtype, suggest that each breast cancer cell type responds differently to the circadian synchronization. Future results could identify circadian-like genes that are altered in breast cancer and non-cancerous cells, which can be used to propose novel treatments. Breast cell lines are potential models for in vitro studies of circadian clocks and clock-controlled pathways.

  2. Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells

    PubMed Central

    Vara-Ciruelos, Diana; Ramos-Torres, Ágata; Altamirano-Dimas, Manuel; Díaz-Laviada, Inés; Rodríguez-Henche, Nieves

    2016-01-01

    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer. PMID:27627761

  3. Establishment and characterization of human non-small cell lung cancer cell lines.

    PubMed

    Li, Jiangchao; Yang, Hong; Chen, Leilei; Li, Yan; Zhu, Yinghui; Dai, Yongdong; Chen, Kai; Ai, Jiaoyu; Zeng, Tingting; Mao, Xueying; Liu, Lulu; Li, Xiaodong; Guan, Xin-Yuan

    2012-01-01

    Non-small cell lung cancer (NSCLC), a highly malignant tumor, is common in China and is associated with a very poor 5-year survival rate. To better understand the cancer biology of this disease, we report here the establishment of three new NSCLC cell lines, SCC210011, SCC211441 and ACC212102, from the tumor tissue of three NSCLC patients. By histological analysis, we found that all three cell lines displayed the typical features of endothelial cancer cells. The population doubling times of SCC210011, SCC211441 and ACC212102 cells were 42, 38 and 25 h, respectively. Our cytogenetic studies indicated that these cell lines exhibit structural and numerical chromosomal abnormalities. Furthermore, the tumorigenicity in nude mice was confirmed, and H&E staining results revealed that they resembled the primary tissue. These newly established cell lines may serve as useful models for studying the molecular pathogenesis of NSCLC.

  4. Characterization of human follicular thyroid cancer cell lines in preclinical mouse models

    PubMed Central

    Reeb, Ashley N; Ziegler, Andrea

    2016-01-01

    Follicular thyroid cancer (FTC) is the second most common type of thyroid cancers. In order to develop more effective personalized therapies, it is necessary to thoroughly evaluate patient-derived cell lines in in vivo preclinical models before using them to test new, targeted therapies. This study evaluates the tumorigenic and metastatic potential of a panel of three human FTC cell lines (WRO, FTC-238, and TT1609-CO2) with defined genetic mutations in two in vivo murine models: an orthotopic thyroid cancer model to study tumor progression and a tail vein injection model to study metastasis. All cell lines developed tumors in the orthotopic model, with take rates of 100%. Notably, WRO-derived tumors grew two to four times faster than tumors arising from the FTC-238 and TT2609-CO2 cell lines. These results mirrored those of a tail vein injection model for lung metastasis: one hundred percent of mice injected with WRO cells in the tail vein exhibited aggressive growth of bilateral lung metastases within 35 days. In contrast, tail vein injection of FTC-238 or TT2609-CO2 cells did not result in lung metastasis. Together, our work demonstrates that these human FTC cell lines display highly varied tumorigenic and metastatic potential in vivo with WRO being the most aggressive cell line in both orthotopic and lung metastasis models. This information will be valuable when selecting cell lines for preclinical drug testing. PMID:26830329

  5. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  6. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  7. Enforced expression of METCAM/MUC18 increases tumorigenesis of human prostate cancer LNCaP cells in nude mice.

    PubMed

    Wu, Guang-Jer; Wu, Mei-Whey H; Wang, Changsheng; Liu, Yuan

    2011-04-01

    Metastasis cell adhesion molecule/MUC18, a cell adhesion molecule in the Ig-like gene super family, is a key determinant in prostate cancer cell progression. However, the mechanisms by which human metastasis cell adhesion molecule/MUC18 stimulates progression are poorly understood. To investigate this and determine whether human metastasis cell adhesion molecule/MUC18 may act as a possible tumor progression gene, we studied the effect of its enforced expression on LNCaP cell tumorigenesis. We subcutaneously co-injected a metastasis cell adhesion molecule/MUC18 expressing LNCaP clone and control clones/cells with Matrigel™ into nude mice, observed tumor formation of these cells and measured tumors at different times. To understand the mechanisms we also determined the expression of several downstream key effectors of metastasis cell adhesion molecule/MUC18 in subcutaneous tumors and compared them to those in previously obtained orthotopic (prostatic) tumors. Tumors derived from human metastasis cell adhesion molecule/MUC18 expressing LNCaP clones/cells appeared about 18 days earlier than the empty vector transfected clone/cells. Enforced expression of human metastasis cell adhesion molecule/MUC18 also increased tumor take 2-fold, tumorigenicity 10 to 12-fold and final tumor weight 5-fold. Enforced expression appeared to render the cells with increased levels of the proliferation indexes Ki67 and proliferating cell nuclear antigen, the survival index phospho-AKT, and the angiogenesis indexes vascular endothelial growth factor, vascular endothelial growth factor receptor 2 and CD31. However, it did not significantly render the cells with altered levels of various apoptosis indexes. Enforced expression of human metastasis cell adhesion molecule/MUC18 increases prostate tumorigenesis in vivo and may affect the process by increasing proliferation, up-regulating the AKT survival pathway, and augmenting the angiogenic ability of prostate cancer cells. Copyright © 2011

  8. Systematic variation in gene expression patterns in human cancer cell lines

    SciTech Connect

    Ross, Douglas T.; Scherf, Uwe; Eisen, Michael B.; Perou, Charles M.; Rees, Christian; Spellman, Paul; Iyer, Vishwanath; Jeffrey, Stefanie S.; Van de Rijn, Matt; Waltham, Mark; Pergamenschikov, Alexander; Lee, Jeffrey C.F.; Lashkari, Deval; Shalon, Dari; Myers, Timothy G.; Weinstein, John N.; Botstein, David; Brown, Patrick O.

    2000-01-01

    We used cDNA micro arrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute s screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumors from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumor specimens revealed features of the expression patterns in the tumors that had recognizable counterparts in specific cell lines, reflecting the tumor, stromal and inflammatory components of the tumor tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumors in vivo.

  9. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes.

    PubMed

    Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-03-21

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.

  10. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes

    PubMed Central

    Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-01-01

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887

  11. The Broad Institute: Screening for Dependencies in Cancer Cell Lines Using Small Molecules | Office of Cancer Genomics

    Cancer.gov

    Using cancer cell-line profiling, we established an ongoing resource to identify, as comprehensively as possible, the drug-targetable dependencies that specific genomic alterations impart on human cancers. We measured the sensitivity of hundreds of genetically characterized cancer cell lines to hundreds of small-molecule probes and drugs that have highly selective interactions with their targets, and that collectively modulate many distinct nodes in cancer cell circuitry.

  12. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells.

    PubMed

    Chang, Hyun-Kyung; Shin, Mal-Soon; Yang, Hye-Young; Lee, Jin-Woo; Kim, Young-Sick; Lee, Myoung-Hwa; Kim, Jullia; Kim, Khae-Hawn; Kim, Chang-Ju

    2006-08-01

    Prostate cancer is one of the most common non-skin cancers in men. Amygdalin is one of the nitrilosides, natural cyanide-containing substances abundant in the seeds of plants of the prunasin family that have been used to treat cancers and relieve pain. In particular, D-amygdalin (D-mandelonitrile-beta-D-gentiobioside) is known to exhibit selective killing effect on cancer cells. Apoptosis, programmed cell death, is an important mechanism in cancer treatment. In the present study, we prepared the aqueous extract of the amygdalin from Armeniacae semen and investigated whether this extract induces apoptotic cell death in human DU145 and LNCaP prostate cancer cells. In the present results, DU145 and LNCaP cells treated with amygdalin exhibited several morphological characteristics of apoptosis. Treatment with amygdalin increased expression of Bax, a pro-apoptotic protein, decreased expression of Bcl-2, an anti-apoptotic protein, and increased caspase-3 enzyme activity in DU145 and LNCaP prostate cancer cells. Here, we have shown that amygdalin induces apoptotic cell death in human DU145 and LNCaP prostate cancer cells by caspase-3 activation through down-regulation of Bcl-2 and up-regulation of Bax. The present study reveals that amygdalin may offer a valuable option for the treatment of prostate cancers.

  13. Molecular characterisation of cell line models for triple-negative breast cancers.

    PubMed

    Grigoriadis, Anita; Mackay, Alan; Noel, Elodie; Wu, Pei Jun; Natrajan, Rachel; Frankum, Jessica; Reis-Filho, Jorge S; Tutt, Andrew

    2012-11-14

    Triple-negative breast cancers (BC) represent a heterogeneous subtype of BCs, generally associated with an aggressive clinical course and where targeted therapies are currently limited. Target validation studies for all BC subtypes have largely employed established BC cell lines, which have proven to be effective tools for drug discovery. Given the lines of evidence suggesting that BC cell lines are effective tools for drug discovery, we assessed the similarities between triple-negative BCs and cell lines, to identify in vitro representatives, modelling the diversity within this BC subtype. 25 BC cell lines, enriched for those lacking ER, PR and HER2 expression, were subjected to transcriptomic, genomic and epigenomic profiling analyses and comparisons were made to existing knowledge of corresponding perturbations in triple-negative BCs. Transcriptional analysis segregated ER-negative BC cell lines into three groups, displaying distinctive abundances for genes involved in epithelial-mesenchymal transition, apocrine and high-grade carcinomas. DNA copy number aberrations of triple-negative BCs were well represented in cell lines and genes with coordinately altered gene expression showed similar patterns in tumours and cell lines. Methylation events in triple-negative BCs were mostly retained in epigenomes of cell lines. Combined methylation and gene expression analyses revealed a subset of genes characteristic of the Claudin-low BC subtype, exhibiting epigenetic-regulated gene expression in BC cell lines and tumours, suggesting that methylation patterns are likely to underpin subtype-specificity. Here, we provide a comprehensive analysis of triple-negative BC features on several molecular levels in BC cell lines, thereby creating an in-depth resource to access the suitability of individual lines as experimental models for studying BC tumour biology, biomarkers and possible therapeutic targets in the context of preclinical target validation.

  14. In vitro cytotoxic activity of extracts and isolated constituents of Salvia leriifolia Benth. against a panel of human cancer cell lines.

    PubMed

    Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Bonesi, Marco; Colica, Carmela; Menichini, Francesco

    2011-06-01

    In the course of recent efforts to identify new potential antiproliferative active principles, Salvia leriifolia extracts and isolated constituents were evaluated for their cytotoxic activity against a panel of human cancer cell lines, including renal adenocarcinoma (ACHN), amelanotic melanoma (C32), colorectal adenocarcinoma (Caco-2), lung large cell carcinoma (COR-L23), malignant melanoma (A375), lung carcinoma (A549), and hepatocellular carcinoma (Huh-7D12) cells. The hexane and CH(2) Cl(2) extracts showed the strongest cytotoxic activity against the C32 cell line with IC(50) values of 11.2 and 13.6 μg/ml, respectively, and the AcOEt extract was the most active extract against the COR-L23 cell line (IC(50) of 20.9 μg/ml). Buchariol, a sesquiterpene obtained by biofractionation of the CH(2) Cl(2) extract, exhibited a higher activity than the positive control vinblastine against the C32 and A549 cell lines (IC(50) values of 2.1 and 12.6 μM, resp.). Interesting results were also obtained for naringenin, a flavonoid isolated from the AcOEt extract, which exhibited a strong cytotoxic activity against the C32, LNCaP, and COR-L23 cell lines (IC(50) values of 2.2, 7.7, and 33.4 μM, resp.), compared to vinblastine (IC(50) values of 3.3, 32.2, 50.0 μM, resp.). None of the tested compounds affected the proliferation of skin fibroblasts (142BR), suggesting a selective activity against tumor cells.

  15. Hierarchical clustering of lung cancer cell lines using DNA methylation markers.

    PubMed

    Virmani, Arvind K; Tsou, Jeffrey A; Siegmund, Kimberly D; Shen, Linda Y C; Long, Tiffany I; Laird, Peter W; Gazdar, Adi F; Laird-Offringa, Ite A

    2002-03-01

    Recent analyses of global and gene-specific methylation patterns in cancer cells have suggested that cancers from different organs demonstrate distinct patterns of CpG island hypermethylation. Although certain CpG islands are frequently methylated in many different kinds of cancer, others are methylated only in specific tumor types. Because distinct patterns of CpG island hypermethylation can be seen in tumors from different organs, it seems likely that histological subtypes of cancer within a given organ may exhibit distinct methylation patterns as well. The goal of our study was to determine whether the patterns of CpG island hypermethylation could be used to distinguish between different histological subtypes of lung cancer. We analyzed the methylation status of 23 loci in 91 lung cancer cell lines using the quantitative real-time PCR method MethyLight. Genes PTGS2 (COX2), CALCA, MTHFR, ESR1, MGMT, MYOD1, and APC showed statistically significant differences in the level of CpG island methylation between small cell lung cancer (SCLC) and non-small cell lung cancer cell lines (NSCLC). Hierarchical clustering using a panel consisting of these seven loci yielded two major groups, one of which contained 78% of the SCLC lines. Within this group, a large cluster consisted almost exclusively of SCLC cell lines. Our results show that DNA methylation patterns differ between NSCLC and SCLC cell lines and suggest that these patterns could be developed into a powerful molecular marker to achieve accurate diagnosis of lung cancer.

  16. Saw Palmetto induces growth arrest and apoptosis of androgen-dependent prostate cancer LNCaP cells via inactivation of STAT 3 and androgen receptor signaling.

    PubMed

    Yang, Yang; Ikezoe, Takayuki; Zheng, Zhixing; Taguchi, Hirokuni; Koeffler, H Phillip; Zhu, Wei-Guo

    2007-09-01

    PC-SPES is an eight-herb mixture that has an activity against prostate cancer. Recently, we purified Saw Palmetto (Serenoa repens) from PC-SPES and found that Saw Palmetto induced growth arrest of prostate cancer LNCaP, DU145, and PC3 cells with ED50s of approximately 2.0, 2.6, and 3.3 microl/ml, respectively, as measured by mitochondrial-dependent conversion of the the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Saw Palmetto induced apoptosis of LNCaP cells in a time- and dose-dependent manner as measured by TUNEL assays. Also, Saw Palmetto increased the expression of p21waf1 and p53 protein in LNCaP cells. In addition, we found that Saw Palmetto down-regulated DHT- or IL-6-induced expression of prostate specific antigen in conjunction with down-regulation of the level of androgen receptor in the nucleus as measured by Western blot analysis. Moreover, Saw Palmetto down-regulated the IL-6-induced level of the phosphorylated form of STAT 3 in LNCaP cells. Furthermore, Saw Palmetto inhibited the growth of LNCaP cells present as tumor xenografts in BALB/c nude mice without adverse effect. These results indicate that Saw Palmetto might be useful for the treatment of individuals with prostate cancer.

  17. Effect of Ocimum sanctum on Oral Cancer Cell Line: An in vitro Study.

    PubMed

    Shivpuje, Prachi; Ammanangi, Renuka; Bhat, Kishore; Katti, Sandeep

    2015-09-01

    Cancer till today remains the leading cause of death in both developed and developing countries. Plants have been beacon of therapeutic sources for curing diseases from times immemorial. Hence, the present study aimed at evaluating the antiproliferative activity of extract of Ocimum sanctum leaves on oral cancer cell line. To evaluate the antiproliferative effect and to analyze dose dependent cytotoxic activity of aqueous extract of O. sanctum leaves on KB mouth cell line. To compare the effectiveness among different variety of O. sanctum. KB cells (Mouth Epidermal Carcinoma Cells) were used for the present study. Aqueous and dry extract of O. sanctum with both dark (Krishna Tulsi) and light (Rama Tulsi) leaves were prepared in the institution. The antiproliferative and cytotoxic activity on KB cell line was evaluated by MTT assay. Statistical analysis with Mann-Whitney U-test and Wilcoxon matched pairs test was carried out. The aqueous extract of O. sanctum of both the leaves exhibited significant cytotoxic effect against oral cancer cell line. Aqueous extract of O. sanctum leaves was effective as an antiproliferative agent which caused apoptosis in oral cancer cell line. Ocimum sanctum herb which is abundantly grown in India can be used for its anticancer properties for treating oral cancer. This will not only be cost-effective but will also have less or no side effects.

  18. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    SciTech Connect

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  19. The effect of sex hormones and tamoxifen on the growth of human gastric and colorectal cancer cell lines.

    PubMed

    Harrison, J D; Watson, S; Morris, D L

    1989-06-01

    The authors studied the effect of serial concentrations of estradiol, 4-hydroxytamoxifen with estradiol, and 5-dihydrotestosterone on cell lines derived from human gastric and colorectal cancers. Significant stimulation of the gastric and 2 colorectal cell lines occurred at physiologic concentrations of estradiol. Addition of the active metabolite of the estrogen-receptor blocker/partial-agonist 4-hydroxytamoxifen had a stimulating effect on the growth rate of the gastric cell lines. The androgen, 5-dihydrotestosterone, had a modest inhibitory effect on the two gastric cell lines and two of the colorectal cell lines, and a stimulating effect on two further cell lines.

  20. Antisense oligonucleotide delivery to cancer cell lines for the treatment of different cancer types.

    PubMed

    Kilicay, Ebru; Erdal, Ebru; Hazer, Baki; Türk, Mustafa; Denkbas, Emir Baki

    2016-12-01

    Amphiphilic poly(3-hydroxylalkanoate) (PHA) copolymers find interesting applications in drug delivery. The aim of this study was to prepare nucleic acid adsorbed on (PHB-b-PEG-NH2) nanoparticle platform for gene delivery. For this purpose, PHB-b-PEG-NH2 block copolymers were synthesized via transesterification reactions. The copolymers obtained were characterized by Proton Nuclear Magnetic Resonance ((1)H-NMR), Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques. The cytotoxic, apoptotic and necrotic effects of these nanoparticles in the MDA 231 human breast cancer cell, the A549 human lung cancer cell and the L929 fibroblast cell lines were also investigated.

  1. CCL25/CCR9 Signal Promotes Migration and Invasion in Hepatocellular and Breast Cancer Cell Lines.

    PubMed

    Zhang, Ziqi; Sun, Tong; Chen, Yuxi; Gong, Shu; Sun, Xiye; Zou, Fangdong; Peng, Rui

    2016-07-01

    Cancer is one of the most lethal diseases worldwide, and metastasis is the most common cause of patients' deaths. Identification and inhibition of markers involved in metastasis process in cancer cells are promising works to block metastasis and improve prognoses of patients. Chemokines are a superfamily of small, chemotactic cytokines, whose functions are based on interaction with corresponding receptors. It has been found that one of the functions of chemokines is to regulate migration and invasion abilities of lymphocytes, as well as cancer cells. Chemokine receptor 9 (CCR9) regulates trafficking of lymphocytes and cancer cell lines when interacting with its exclusive ligand chemokine 25 (CCL25). However, the mechanisms of CCL25/CCR9 signal that regulates metastasis of cancer cells are not completely known yet. In this study, we stimulated or inhibited CCL25/CCR9 signal in breast cancer cell line (MDA-MB-231) and hepatocellular cancer cell lines (HepG2 and HUH7), and found that CCL25/CCR9 signal resulted in different promotion of migration and invasion in different cell lines. These phenomena could be explained by selective regulation of several markers of epithelial-mesenchymal transition (EMT). Our findings suggested that CCL25/CCR9 signal may provide cancer cells with chemotactic abilities through influencing several EMT markers.

  2. Mechanisms involved in biological behavior changes associated with Angptl4 expression in colon cancer cell lines.

    PubMed

    Huang, Xue-Feng; Han, Jie; Hu, Xiao-Tong; He, Chao

    2012-05-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths throughout the world. Angiopoietin-like-4 (Angptl4), a member of the angiopoietin family of secreted proteins, is frequently expressed in the perinecrotic areas of different human tumors, yet its role is still unclear in colorectal cancer. Angptl4 mRNA expression in primary colorectal cancer tissue and seven colon cancer cell lines was measured by semi-quantitative RT-PCR; the influence of Angptl4 expression on the colon cancer cell lines was investigated by either overexpression or knockdown of Angptl4 in colon cancer cell lines HCT116 and HT29, respectively. The results showed that Angptl4 mRNA is frequently expressed in human colorectal cancer tissues and cell lines. Overexpression of Angptl4 promoted cell migration, F-actin reorganization and formation of pseudopodia. Further investigation showed that high Angptl4 expression was associated with an increase in ezrin/radixin/moesin and vasodilator-stimulated phosphoprotein expression and a decrease in E-cadherin expression. These results indicate that overexpression of Angptl4 may promote invasion and metastasis in CRC.

  3. Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines.

    PubMed

    Salerno, Loredana; Pittalà, Valeria; Romeo, Giuseppe; Modica, Maria N; Marrazzo, Agostino; Siracusa, Maria A; Sorrenti, Valeria; Di Giacomo, Claudia; Vanella, Luca; Parayath, Neha N; Greish, Khaled

    2015-01-01

    Heme oxygenase (HO) is a cytoprotective enzyme that can be overexpressed in some pathological conditions, including certain cancers. In this work, novel imidazole derivatives were designed and synthesized as inhibitors of heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2). In these compounds the imidazole ring, crucial for the activity, is connected to a hydrophobic group, represented by aryloxy, benzothiazole, or benzoxazole moieties, by means of alkyl or thioalkyl chains of different length. Many of the tested compounds were potent and/or selective against one of the two isoforms of HO. Furthermore, most of the pentyl derivatives showed to be better inhibitors of HO-2 with respect to HO-1, revealing a critical role of the alkyl chain in discriminating between the two isoenzymes. Compounds which showed the better profile of HO inhibition were selected and tested to evaluate their cytotoxic properties in prostate and breast cancer cell lines (DU-145, PC3, LnCap, MDA-MB-231, and MCF-7). In these assays, aryloxyalkyl derivatives resulted more cytotoxic than benzothiazolethioalkyl ones; in particular compound 31 was active against all the cell lines tested, confirming the anti-proliferative properties of HO inhibitors and their potential use in the treatment of specific cancers.

  4. RESISTANCE TO PLATINUM-BASED CHEMOTHERAPY IN LUNG CANCER CELL LINES

    PubMed Central

    Chen, Jianli; Emara, Nashwa; Solomides, Charalambos; Parekh, Hemant; Simpkins, Henry

    2010-01-01

    Purpose A series of six lung cancer cell lines of different cell origin (including small cell and mesothelioma) were characterized immunohistochemically and the role of a series of protein candidates previously implicated in drug resistance investigated. Methods These include colony-forming and cell growth assays, immunohistochemistry, siRNA knockouts, Real Time PCR, and Western blots. Results No correlation was found with AKT, HO-1, HO-2, GRP78, 14-3-3zeta and ERCC1 levels and cisplatin nor oxaliplatin cytotoxicity but an association was observed with levels of the enzyme, dihydrodiol dehydrogenase (DDH); an enzyme previously implicated in the development of platinum resistance. The relationship appeared to hold true for those cell lines derived from lung epithelial primary tumors but not for the neuroendocrine/small cell and mesothelioma cell lines. siRNA knockouts to DDH-1 and DDH-2 were prepared with the cell line exhibiting the greatest resistance to cisplatin (A549) resulting in marked decreases in the DDH isoforms as assessed by Real Time PCR, western blot and enzymatic activity. The DDH-1 knockout was far more sensitive to cisplatin than the DDH-2 knockout. Conclusion Thus, sensitivity to cisplatin appeared to be associated with DDH levels in epithelial lung cancer cell lines with the DDH-1 isoform producing the greatest effect. Results in keeping with transfection experiments with ovarian and other cell lines. PMID:20953859

  5. Cell line name recognition in support of the identification of synthetic lethality in cancer from text

    PubMed Central

    Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo

    2016-01-01

    Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. Availability and implementation: The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. Contact: sukaew@utu.fi PMID:26428294

  6. Cell line name recognition in support of the identification of synthetic lethality in cancer from text.

    PubMed

    Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo

    2016-01-15

    The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. sukaew@utu.fi. © The Author 2015. Published by Oxford University Press.

  7. Drug treatment of cancer cell lines: a way to select for cancer stem cells?

    PubMed

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A Ivana; Mondello, Chiara

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  8. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    PubMed Central

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs. PMID:24212655

  9. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays.

    PubMed

    Li, Jun; Zhao, Wei; Akbani, Rehan; Liu, Wenbin; Ju, Zhenlin; Ling, Shiyun; Vellano, Christopher P; Roebuck, Paul; Yu, Qinghua; Eterovic, A Karina; Byers, Lauren A; Davies, Michael A; Deng, Wanleng; Gopal, Y N Vashisht; Chen, Guo; von Euw, Erika M; Slamon, Dennis; Conklin, Dylan; Heymach, John V; Gazdar, Adi F; Minna, John D; Myers, Jeffrey N; Lu, Yiling; Mills, Gordon B; Liang, Han

    2017-02-13

    Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data. Our dataset recapitulates the effects of mutated pathways on protein expression observed in patient samples, and demonstrates that proteins and particularly phosphoproteins provide information for predicting drug sensitivity that is not available from the corresponding mRNAs. We also developed a user-friendly bioinformatic resource, MCLP, to help serve the biomedical research community. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development and evaluation of topotecan loaded solid lipid nanoparticles: A study in cervical cancer cell lines.

    PubMed

    Chen, Zhao-Jie; Zhang, Zhen; Xie, Bei-Bei; Zhang, Hai-Yan

    2016-12-01

    The study aims at statistical development of solid lipid nanoparticles (SLNs) loaded with topotecan hydrochloride for avoiding the drawbacks of conventional drug therapies used in cervical cancer. Twenty SLN batches were prepared using organic solvent evaporation method to provide response surface curves. Thereafter, optimized SLNs were obtained using numeric method based on desirability functions providing maximum drug loading and appropriate particle size. Physical characterization of optimized TPH loaded SLNs was performed in terms of particle size, zeta potential, transmission and scanning electron microscopic evaluation. Cytotoxicity studies were performed against cervical cancer cell lines, including cervical squamous cell carcinoma cell line (HeLa) and human squamous cell carcinoma cell line (SiHa). Also, Swiss mouse embryo fibroblast cells (3T3-L1) and African green monkey kidney epithelial (Vero) cells were used to evaluate biocompatibility in normal cells. As pronounced from the results, optimized SLNs may provide an attractive alternative to conventional cervical cancer drug products.

  11. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  12. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of

  13. Multiple Breast Cancer Cell-Lines Derived from a Single Tumor Differ in Their Molecular Characteristics and Tumorigenic Potential

    PubMed Central

    Mosoyan, Goar; Nagi, Chandandeep; Marukian, Svetlana; Teixeira, Avelino; Simonian, Anait; Resnick-Silverman, Lois; DiFeo, Analisa; Johnston, Dean; Reynolds, Sandra R.; Roses, Daniel F.; Mosoian, Arevik

    2013-01-01

    Background Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient’s breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT) treatment. Methods Five breast cancer cell lines were derived from a single patient’s primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER), CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC). In addition, a Fuorescent In Situ Hybridization (FISH) assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. Results We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. Conclusions All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to identify mechanisms

  14. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  15. The regulation of adiponectin receptors in human prostate cancer cell lines

    SciTech Connect

    Mistry, T.; Digby, J.E.; Chen, J.; Desai, K.M.; Randeva, H.S. . E-mail: H.Randeva@warwick.ac.uk

    2006-09-29

    Obesity is a risk factor for prostate cancer, and plasma levels of the adipokine, adiponectin, are low in the former but high in the latter. Adiponectin has been shown to modulate cell proliferation and apoptosis, suggesting that adiponectin and its receptors (Adipo-R1, Adipo-R2) may provide a molecular association between obesity and prostate carcinogenesis. We show for First time, the protein distribution of Adipo-R1 and Adipo-R2 in LNCaP and PC3 cells, and in human prostate tissue. Using real-time RT-PCR we provide novel data demonstrating the differential regulation of Adipo-R1 and Adipo-R2 mRNA expression by testosterone, 5-{alpha} dihydrotestosterone, {beta}-estradiol, tumour necrosis factor-{alpha}, leptin, and adiponectin in LNCaP and PC3 cells. Our findings suggest that adiponectin and its receptors may contribute to the molecular association between obesity and prostate cancer through a complex interaction with other hormones and cytokines that also play important roles in the pathophysiology of obesity and prostate cancer.

  16. Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: a primary study

    PubMed Central

    Barh, D; Viswanathan, G

    2008-01-01

    Cervical cancer is common among women in the Indian subcontinent and the incidences and death rates are gradually increasing over the years. Several dietary phytochemicals have been reported to have growth inhibitory and apoptotic effect on HeLa and other cervical cell lines. In this study, using Hoechst 33342 staining, MTT, Annexin V-FLUOS/PI and TUNEL assays we demonstrated that Syzygium cumini extract inhibits the growth and induces apoptosis in HeLa and SiHa cervical cancer cell lines in a dose- and time-dependent manner. The phytochemical, its mode of action and safety issues are yet to be determined. PMID:22275971

  17. Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: a primary study.

    PubMed

    Barh, D; Viswanathan, G

    2008-01-01

    Cervical cancer is common among women in the Indian subcontinent and the incidences and death rates are gradually increasing over the years. Several dietary phytochemicals have been reported to have growth inhibitory and apoptotic effect on HeLa and other cervical cell lines. In this study, using Hoechst 33342 staining, MTT, Annexin V-FLUOS/PI and TUNEL assays we demonstrated that Syzygium cumini extract inhibits the growth and induces apoptosis in HeLa and SiHa cervical cancer cell lines in a dose- and time-dependent manner. The phytochemical, its mode of action and safety issues are yet to be determined.

  18. Dissimilar cytokine patterns in different human liver and colon cancer cell lines.

    PubMed

    Guerriero, Eliana; Capone, Francesca; Rusolo, Fabiola; Colonna, Giovanni; Castello, Giuseppe; Costantini, Susan

    2013-11-01

    An accurate and simultaneous estimate of cellular levels of a large cytokine number is very useful to obtain information about an organ dysfunction leading to cancer because through the understanding of the evolution of cytokine patterns we can recognize and predict the disease progression. Cancer cell lines are commonly used to study the cancer microenvironment, to analyze their chemosensitivity and carcinogenesis as well as to test in vitro the effect of molecules, such as drugs or anti-oxidants, on the inflammation status and its progression. We noted that various cell lines commonly used as a model for studies on liver and colon cancer possess different patterns of cytokines. This aspect may generate data not comparable in laboratories using different cell lines; thus, to investigate the origin of these abnormalities we compared the cell lines HepG2 and Huh7, and HT-29 and HCT-116, for liver and colon cancer, respectively. In this context we have evaluated and compared the levels of cytokines, chemokines and growth factors in the supernatants of these cellular lines. Our aim was to identify what cytokines were significantly different correlating similarities and differences to the specific inflammation status of each cellular model of cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Clinacanthus nutans Extracts Are Antioxidant with Antiproliferative Effect on Cultured Human Cancer Cell Lines.

    PubMed

    Yong, Yoke Keong; Tan, Jun Jie; Teh, Soek Sin; Mah, Siau Hui; Ee, Gwendoline Cheng Lian; Chiong, Hoe Siong; Ahmad, Zuraini

    2013-01-01

    Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100  μ g/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography-mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment.

  20. Clinacanthus nutans Extracts Are Antioxidant with Antiproliferative Effect on Cultured Human Cancer Cell Lines

    PubMed Central

    Yong, Yoke Keong; Tan, Jun Jie; Teh, Soek Sin; Mah, Siau Hui; Ee, Gwendoline Cheng Lian; Chiong, Hoe Siong; Ahmad, Zuraini

    2013-01-01

    Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100 μg/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography—mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment. PMID:23533485

  1. Large-Scale Profiling of Kinase Dependencies in Cancer Cell Lines

    PubMed Central

    Campbell, James; Ryan, Colm J.; Brough, Rachel; Bajrami, Ilirjana; Pemberton, Helen N.; Chong, Irene Y.; Costa-Cabral, Sara; Frankum, Jessica; Gulati, Aditi; Holme, Harriet; Miller, Rowan; Postel-Vinay, Sophie; Rafiq, Rumana; Wei, Wenbin; Williamson, Chris T.; Quigley, David A.; Tym, Joe; Al-Lazikani, Bissan; Fenton, Timothy; Natrajan, Rachael; Strauss, Sandra J.; Ashworth, Alan; Lord, Christopher J.

    2016-01-01

    Summary One approach to identifying cancer-specific vulnerabilities and therapeutic targets is to profile genetic dependencies in cancer cell lines. Here, we describe data from a series of siRNA screens that identify the kinase genetic dependencies in 117 cancer cell lines from ten cancer types. By integrating the siRNA screen data with molecular profiling data, including exome sequencing data, we show how vulnerabilities/genetic dependencies that are associated with mutations in specific cancer driver genes can be identified. By integrating additional data sets into this analysis, including protein-protein interaction data, we also demonstrate that the genetic dependencies associated with many cancer driver genes form dense connections on functional interaction networks. We demonstrate the utility of this resource by using it to predict the drug sensitivity of genetically or histologically defined subsets of tumor cell lines, including an increased sensitivity of osteosarcoma cell lines to FGFR inhibitors and SMAD4 mutant tumor cells to mitotic inhibitors. PMID:26947069

  2. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines

    PubMed Central

    Fan, Gaofeng; Wrzeszczynski, Kazimierz O.; Fu, Cexiong; Pappin, Darryl J.; Lucito, Robert; Tonks, Nicholas K.; Su, Gang

    2014-01-01

    Although DNA encodes the molecular instructions that underlie control of cell function, it is the proteins that are primarily responsible for implementing those instructions. Therefore, quantitative analyses of the proteome would be expected to yield insights into important candidates for the detection and treatment of disease. We present an iTRAQ (Isobaric Tagging for Relative and Absolute Quantification)-based proteomic analysis of 10 ovarian cancer cell lines and 2 normal ovarian surface epithelial cell lines. We profiled the abundance of 2659 cellular proteins, of which 1273 were common to all 12 cell lines. Of the 1273, 75 proteins exhibited elevated expression, and 164 proteins had diminished expression in the cancerous cells compared to the normal cell lines. The iTRAQ expression profiles allowed us to segregate cell lines based upon sensitivity and resistance to carboplatin. Importantly, we observed no substantial correlation between protein abundance and RNA expression or epigenetic, DNA methylation data. Furthermore, we could not discriminate between sensitivity and resistance to carboplatin on the basis of RNA expression and DNA methylation data alone. This study illustrates the importance of proteomics-based discovery for defining the basis for the carboplatin response in ovarian cancer and highlights candidate proteins, particularly involved in cellular redox regulation, homologous recombination and DNA damage repair, that otherwise could not have been predicted from whole genome and expression data sources alone. PMID:25406946

  3. Apoptotic Effects of Chrysin in Human Cancer Cell Lines

    PubMed Central

    Khoo, Boon Yin; Chua, Siang Ling; Balaram, Prabha

    2010-01-01

    Chrysin is a natural flavonoid currently under investigation due to its important biological anti-cancer properties. In most of the cancer cells tested, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells. Moreover, structure-activity relationships have revealed that the chemical structure of chrysin meets the key structural requirements of flavonoids for potent cytotoxicity in leukemia cells. It is possible that combination therapy or modified chrysin could be more potent than single-agent use or administration of unmodified chrysin. This study may help to develop ways of improving the effectiveness of chrysin in the treatment of leukemia and other human cancers in vitro. PMID:20559509

  4. Methanolic Fractions of Ornithogalum cuspidatum Induce Apoptosis in PC-3 Prostate Cancer Cell Line and WEHI-164 Fibrosarcoma Cancer Cell Line

    PubMed Central

    Asadi, Hamed; Orangi, Mona; Shanehbandi, Dariush; Babaloo, Zohreh; Delazar, Abbas; Mohammadnejad, Leila; Zare Shahneh, Fatemeh; Valiyari, Samira; Baradaran, Behzad

    2014-01-01

    Purpose: The present study, was aimed to assess the cytotoxic effects of Ornithogalum cuspidatum methanolic fractions on PC-3, prostate cancer cells and WEHI-164, Fibrosarcoma cells. Methods: Methanolic fractions of O. cuspidatum were prepared using solid phase extraction and the cells were treated with different concentrations for 12 and 24 hours. Cytotoxicity and cell viability were measured by MTT assay. ELISA was also employed to assess the histone-associated DNA fragments and the involvement of apoptotic mechanisms. Results: 10 and 20% fractions had not significant cytotoxic effects (p>0.05) but other fractions exerted growth inhibition on both cancer cell lines (p<0.05). After 24h of incubation with 40, 60, 80 and 100% fractions, the IC50 values were: 165, 85, 65 and 45μg/ml on PC-3 cells and 200, 96, 76 and 73μg/ml against WEHI-164 cell line, respectively. ELISA results also revealed that, both cell lines had undergone apoptosis. Conclusion: It is deduced that, 80% and 100% methanolic fractions had significant anti-proliferative and apoptotic impacts on PC-3 and WEHI-164 cells in vitro and could be considered for developing chemo-preventive substances. PMID:25364662

  5. Radiosensitivity of Prostate Cancer Cell Lines for Irradiation from Beta Particle-emitting Radionuclide ¹⁷⁷Lu Compared to Alpha Particles and Gamma Rays.

    PubMed

    Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik

    2016-01-01

    The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter

  6. The genetic differences between gallbladder and bile duct cancer cell lines.

    PubMed

    Saito, Soichiro; Ghosh, Mila; Morita, Keiko; Hirano, Takashi; Miwa, Masanao; Todoroki, Takeshi

    2006-11-01

    Biliary tract cancers carry dismal prognoses. It is commonly understood that chromosomal aberrations in cancer cells have prognostic and therapeutic implications. However, in biliary tract cancers the genetic changes have not yet been sufficiently studied. The aim of this study was to clarify the presence of mutations in specific chromosomal regions that are likely to harbor previously unknown genes with a significant role in the genesis of biliary tract cancer. The recently developed bacterial artificial chromosome (BAC) array comparative genomic hybridization (CGH) can facilitate detail analysis with high resolution and sensitivity. We applied this to 12 cancer cell lines of the gallbladder (GBC) and the bile duct (BDC) using a genome-wide scanning array. Cell line DNA was labeled with green colored Cy5 and reference DNA derived from normal human leucocytes was labeled with red colored Cy3. GBC, as well as BDC cell lines, have shown DNA copy number abnormalities (gain or loss). In each of the seven GBC cell lines, the DNA copy number was gained on 6p21.32 and was lost on 3p22.3, 3p14.2, 3p14.3, 4q13.1, 22q11.21, 22q11.23, respectively. In five BDC cell lines, there were DNA copy number gains on 7p21.1, 7p21.2, 17q23.2, 20q13.2 and losses were on 1p36.21, 4q25, 6q16.1, 18q21.31, 18q21.33, respectively. The largest region of gain was observed on 13q14.3-q21.32 ( approximately 11 Mb) and of loss on 18q12.2-q21.1 ( approximately 15 Mb), respectively. Both GBC and BDC cell lines have DNA copy number abnormalities of gains and/or losses on every chromosome. We were able to determine the genetic differences between gallbladder and bile duct cancer cell lines. BAC array CGH has a powerful potential application in the screening for DNA copy number abnormalities in cancer cell lines and tumors.

  7. Cancer cell line identification by short tandem repeat profiling: power and limitations.

    PubMed

    Parson, Walther; Kirchebner, Romana; Mühlmann, Roswitha; Renner, Kathrin; Kofler, Anita; Schmidt, Stefan; Kofler, Reinhard

    2005-03-01

    Cancer cell lines are used worldwide in biological research, and data interpretation depends on unambiguous attribution of the respective cell line to its original source. Short-tandem-repeat (STR) profiling (DNA fingerprinting) is the method of choice for this purpose; however, the genetic stability of cell lines under various experimental conditions is not well defined. We tested the effect of long-term culture, subcloning, and generation of drug-resistant subclones on fingerprinting profiles in four widely used leukemia cell lines. The DNA fingerprinting profile remained unaltered in two of them (U937 and K562) throughout 12 months in culture, and the vast majority of subclones derived therefrom by limiting dilution after long-term culture revealed the same profile, indicating a high degree of stability and clonotypic homogeneity. In contrast, two other cell lines (CCRF-CEM and Jurkat) showed marked alterations in DNA fingerprinting profiles during long-term culture. Limiting dilution subcloning revealed extensive clonotypic heterogeneity with subclones differing in up to eight STR loci from the parental culture. Similar heterogeneity was observed in subclones generated by selection culture for drug resistance where DNA fingerprinting proved useful in identifying possible resistance mechanisms. Thus, common tissue culture procedures may dramatically affect the fingerprinting profile of certain cell lines and thus render definition of their origin difficult.

  8. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression.

    PubMed

    Kratochvilova, Monika; Raudenska, Martina; Heger, Zbynek; Richtera, Lukas; Cernei, Natalia; Adam, Vojtech; Babula, Petr; Novakova, Marie; Masarik, Michal; Gumulec, Jaromir

    2017-05-01

    Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science?

    PubMed

    Gazdar, Adi F; Gao, Boning; Minna, John D

    2010-06-01

    Multiple cell lines (estimated at 300-400) have been established from human small cell (SCLC) and non-small cell lung cancers (NSCLC). These cell lines have been widely dispersed to and used by the scientific community worldwide, with over 8000 citations resulting from their study. However, there remains considerable skepticism on the part of the scientific community as to the validity of research resulting from their use. These questions center around the genomic instability of cultured cells, lack of differentiation of cultured cells and absence of stromal-vascular-inflammatory cell compartments. In this report we discuss the advantages and disadvantages of the use of cell lines, address the issues of instability and lack of differentiation. Perhaps the most important finding is that every important, recurrent genetic and epigenetic change including gene mutations, deletions, amplifications, translocations and methylation-induced gene silencing found in tumors has been identified in cell lines and vice versa. These "driver mutations" represented in cell lines offer opportunities for biological characterization and application to translational research. Another potential shortcoming of cell lines is the difficulty of studying multistage pathogenesis in vitro. To overcome this problem, we have developed cultures from central and peripheral airways that serve as models for the multistage pathogenesis of tumors arising in these two very different compartments. Finally the issue of cell line contamination must be addressed and safeguarded against. A full understanding of the advantages and shortcomings of cell lines is required for the investigator to derive the maximum benefit from their use. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Importance of collection in gene set enrichment analysis of drug response in cancer cell lines

    PubMed Central

    Bateman, Alain R.; El-Hachem, Nehme; Beck, Andrew H.; Aerts, Hugo J. W. L.; Haibe-Kains, Benjamin

    2014-01-01

    Gene set enrichment analysis (GSEA) associates gene sets and phenotypes, its use is predicated on the choice of a pre-defined collection of sets. The defacto standard implementation of GSEA provides seven collections yet there are no guidelines for the choice of collections and the impact of such choice, if any, is unknown. Here we compare each of the standard gene set collections in the context of a large dataset of drug response in human cancer cell lines. We define and test a new collection based on gene co-expression in cancer cell lines to compare the performance of the standard collections to an externally derived cell line based collection. The results show that GSEA findings vary significantly depending on the collection chosen for analysis. Henceforth, collections should be carefully selected and reported in studies that leverage GSEA. PMID:24522610

  11. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    PubMed

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  12. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines.

    PubMed

    Palmer, Christopher P; Mahen, Robert; Schnell, Eva; Djamgoz, Mustafa B A; Aydar, Ebru

    2007-12-01

    Lipid rafts are membrane platforms that spatially organize molecules for specific signaling pathways that regulate various cellular functions. Cholesterol is critical for liquid-ordered raft formation by serving as a spacer between the hydrocarbon chains of sphingolipids, and alterations in the cholesterol contents of the plasma membrane causes disruption of rafts. The role that sigma receptors play in cancer is not clear, although it is frequently up-regulated in human cancer cells and tissues and sigma receptors inhibit proliferation in carcinoma and melanoma cell lines, induce apoptosis in colon and mammary carcinoma cell lines, and reduce cellular adhesion in mammary carcinoma cell lines. In this study, we provide molecular and functional evidence for the involvement of the enigmatic sigma 1 receptors in lipid raft modeling by sigma 1 receptor-mediated cholesterol alteration of lipid rafts in breast cancer cell lines. Cholesterol binds to cholesterol recognition domains in the COOH terminus of the sigma 1 receptor. This binding is blocked by sigma receptor drugs because the cholesterol-binding domains form part of the sigma receptor drug-binding site, mutations of which abolish cholesterol binding. Furthermore, we outline a hypothetical functional model to explain the myriad of biological processes, including cancer, in which these mysterious receptors are involved. The findings of this study provide a biological basis for the potential therapeutic applications of lipid raft cholesterol regulation in cancer therapy using sigma receptor drugs.

  13. Establishment and characterization of two primary breast cancer cell lines from young Indian breast cancer patients: mutation analysis

    PubMed Central

    2014-01-01

    Two novel triple negative breast cancer cell lines, NIPBC-1 and NIPBC-2 were successfully established from primary tumors of two young breast cancer patients aged 39 and 38 years respectively, diagnosed as infiltrating duct carcinoma of breast. Characterization of these cell lines showed luminal origin with expression of epithelial specific antigen and cytokeratin 18 and presence of microfilaments and secretary vesicles, microvilli, tight junctions and desmosomes on ultra-structural analysis. Both the cell lines showed anchorage independent growth and invasion of matrigel coated membranes. Karyotype analysis showed aneuploidy, deletions and multiple rearrangements in chromosomes 7, 9, X and 11 and isochromosomes 17q in both the cell lines. P53 mutational analysis revealed no mutation in the coding region in both the cell lines; however NIPBC-2 cell line showed presence of heterozygous C/G polymorphism, g.417 C > G (NM_000546.5) resulting in Arg/Pro allele at codon 72 of exon 4. Screening for mutations in BRCA1&2 genes revealed presence of three heterozygous polymorphisms in exon 11 of BRCA1 and 2 polymorphisms in exons 11, and14 of BRCA2 gene in both the cell lines. Both the cell lines showed presence of CD 44+/24-breast cancer stem cells and capability of producing mammosphere on culture. The two triple negative breast cancer cell lines established from early onset breast tumors can serve as novel invitro models to study mechanisms underlying breast tumorigenesis in younger age group patients and also identification of new therapeutic modalities targeting cancer stem cells. PMID:24502646

  14. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    SciTech Connect

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a

  15. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  16. Androgen Receptor and its Splice Variant, AR-V7, Differentially Regulate FOXA1 Sensitive Genes in LNCaP Prostate Cancer Cells

    PubMed Central

    Krause, William C.; Shafi, Ayesha A.; Nakka, Manjula; Weigel, Nancy L.

    2014-01-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. PMID:25008967

  17. Alternative splicing of breast cancer associated gene BRCA1 from breast cancer cell line.

    PubMed

    Lixia, Miao; Zhijian, Cao; Chao, Shen; Chaojiang, Gu; Congyi, Zheng

    2007-01-31

    Breast cancer is the most common malignancy among women, and mutations in the BRCA1 gene produce increased susceptibility to these malignancies in certain families. In this study, the forward 1-13 exons of breast cancer associated gene BRCA1 were cloned from breast cancer cell line ZR-75-30 by RT-PCR method. Sequence analysis showed that nine BRCA1 splice forms were isolated and characterized, compared with wild-type BRCA1 gene, five splice forms of which were novel. These splice isoforms were produced from the molecular mechanism of 5' and 3' alternative splicing. All these splice forms deleting exon 11b and the locations of alternative splicing were focused on two parts:one was exons 2 and 3, and the other was exons 9 and 10. These splice forms accorded with GT-AG rule. Most these BRCA1 splice variants still kept the original reading frame. Western blot analysis indicated that some BRCA1 splice variants were expressed in ZR-75-30 cell line at the protein level. In addition, we confirmed the presence of these new transcripts of BRCA1 gene in MDA-MB-435S, K562, Hela, HLA, HIC, H9, Jurkat and human fetus samples by RT-PCR analysis. These results suggested that breast cancer associated gene BRCA1 may have unexpectedly a large number of splice variants. We hypothesized that alternative splicing of BRCA1 possibly plays a major role in the tumorigenesis of breast and/or ovarian cancer. Thus, the identification of cancer-specific splice forms will provide a novel source for the discovery of diagnostic or prognostic biomarkers and tumor antigens suitable as targets for therapeutic intervention.

  18. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.

    PubMed

    Peng, Wenjing; Zhang, Yu; Zhu, Rui; Mechref, Yehia

    2017-09-01

    Breast cancer is the leading type of cancer in women. Breast cancer brain metastasis is currently considered an issue of concern among breast cancer patients. Membrane proteins play important roles in breast cancer brain metastasis, involving cell adhesion and penetration of blood-brain barrier. To understand the mechanism of breast cancer brain metastasis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in conjunction with enrichment of membrane proteins to analyze the proteomes from five different breast cancer and a brain cancer cell lines. Quantitative proteomic data of all cell lines were compared with MDA-MB-231BR which is a brain seeking breast cancer cell line, thus representing brain metastasis characteristics. Label-free proteomics of the six cell lines facilitates the identification of 1238 proteins and the quantification of 899 proteins of which more than 70% were membrane proteins. Unsupervised principal component analysis (PCA) of the label-free proteomics data resulted in a distinct clustering of cell lines, suggesting quantitative differences in the expression of several proteins among the different cell lines. Unique protein expressions in 231BR were observed for 28 proteins. The up-regulation of STAU1, AT1B3, NPM1, hnRNP Q, and hnRNP K and the down-regulation of TUBB4B and TUBB5 were noted in 231BR relative to 231 (precursor cell lines from which 231BR is derived). These proteins might contribute to the breast cancer brain metastasis. Ingenuity pathway analysis (IPA) supported the great brain metastatic propensity of 231BR and suggested the importance of the up-regulation of integrin proteins and down-regulation of EPHA2 in brain metastasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines.

    PubMed

    Hu, Xiaolan; Lin, Shuxin; Yu, Daihua; Qiu, Shuifeng; Zhang, Xianqi; Mei, Ruhuan

    2010-12-01

    Salidroside (p-hydroxyphenethyl-beta-d-glucoside), which is present in all species of the genus Rhodiola, has been reported to have a broad spectrum of pharmacological properties. The present study, for the first time, focused on evaluating the effects of the purified salidroside on the proliferation of various human cancer cell lines derived from different tissues, and further investigating its possible molecular mechanisms. Cell viability assay and [(3)H] thymidine incorporation were used to evaluate the cytotoxic effects of salidroside on cancer cell lines, and flow cytometry analyzed the change of cell cycle distribution induced by salidroside. Western immunoblotting further studied the expression changes of cyclins (cyclin D1 and cyclin B1), cyclin-dependent kinases (CDK4 and Cdc2), and cyclin-dependent kinase inhibitors (p21(Cip1) and p27(Kip1)). The results showed that salidroside inhibited the growth of various human cancer cell lines in concentration- and time-dependent manners, and the sensitivity to salidroside was different in those cancer cell lines. Salidroside could cause G1-phase or G2-phase arrest in different cancer cell lines, meanwhile, salidroside resulted in a decrease of CDK4, cyclin D1, cyclin B1 and Cdc2, and upregulated the levels of p27(Kip1) and p21(Cip1). Taken together, salidroside could inhibit the growth of cancer cells by modulating CDK4-cyclin D1 pathway for G1-phase arrest and/or modulating the Cdc2-cyclin B1 pathway for G2-phase arrest.

  20. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies

    PubMed Central

    McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical

  1. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies.

    PubMed

    McDermott, Martina; Eustace, Alex J; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O'Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical

  2. Antiproliferative and apoptotic activities of linear furocoumarins from Notopterygium incisum on cancer cell lines.

    PubMed

    Wu, Shi-Biao; Pang, Fei; Wen, Ying; Zhang, Hong-Feng; Zhao, Zheng; Hu, Jin-Feng

    2010-01-01

    Bioassay-guided fractionation of the antiproliferative chloroform extract of the traditional Chinese medicine Qiang-Huo (Notopterygium incisum) led to the isolation of nine linear furocoumarins (1- 9). All the isolates were tested against two human cancer cell lines (HepG-2 and MCF-7) and a rat cancer cell line (C6) using the MTT assay method. Among them, notopol (1), notopterol (2), 5-[(2 E,5 Z)-7-hydroxy-3,7-dimethyl-2,5-octadienoxy]psoralene (3), and 5-[(2,5)-epoxy-3-hydroxy-3,7-dimethyl-6-octenoxy]psoralene (4) showed significant antiproliferative activity against the HepG-2 and C6 cancer cell lines, with IC(50) values of 7.7-24.8 microg/mL (5-FU: ca. 5 microg/mL). Compounds 1- 3 also showed moderate cytotoxicity against the MCF-7 cancer cell line, with IC(50) values of 39.4-61.3 microg/mL (5-FU: 17.3 microg/mL). The cell cycle-specific inhibition and apoptosis induced by compounds 1 and 2 were determined using flow cytometry. The structure-activity relationship (SAR) is briefly discussed herein. It was found that the presence of a free hydroxy at the lipophilic side chain linked to C-5 of the linear furocoumarins was essential for their in vitro antiproliferative activity. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  3. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    PubMed

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  4. Synthesis and cytotoxicity of some biurets against human breast cancer T47D cell line.

    PubMed

    Fouladdel, Shamileh; Khalaj, Ali; Adibpour, Neda; Azizi, Ebrahim

    2010-10-01

    Design, synthesis and cytotoxicity of several known and novel biurets against human breast cancer T47D cell line in comparison to doxorubicin are described. Biurets incorporating 2-methyl quinoline-4-yl and benzo[d]thiazol-2-ylthio moieties showed higher cytotoxicity and decreased cell viability in a concentration- and time-dependent manner. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. DIFFERENTIAL PATHWAY DEPENDENCY DISCOVERY ASSOCIATED WITH DRUG RESPONSE ACROSS CANCER CELL LINES.

    PubMed

    Speyer, Gil; Mahendra, Divya; Tran, Hai J; Kiefer, Jeff; Schreiber, Stuart L; Clemons, Paul A; Dhruv, Harshil; Berens, Michael; Kim, Seungchan

    2016-01-01

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines. Identified pathways and their corresponding differential dependency networks are further analyzed to discover essentiality and specificity mediators of cell line response to drugs/compounds. For analysis we use the previously published method EDDY (Evaluation of Differential DependencY). EDDY first constructs likelihood distributions of gene-dependency networks, aided by known genegene interaction, for two given conditions, for example, sensitive cell lines vs. non-sensitive cell lines. These sets of networks yield a divergence value between two distributions of network likelihoods that can be assessed for significance using permutation tests. Resulting differential dependency networks are then further analyzed to identify genes, termed mediators, which may play important roles in biological signaling in certain cell lines that are sensitive or non-sensitive to the drugs. Establishing statistical correspondence between compounds and mediators can improve understanding of known gene dependencies associated with drug response while also discovering new dependencies. Millions of compute hours resulted in thousands of these statistical discoveries. EDDY identified 8,811 statistically significant pathways leading to 26,822 compound-pathway-mediator triplets. By incorporating STITCH and STRING databases, we could construct evidence networks for 14,415 compound-pathway-mediator triplets for support. The results of this analysis are presented in a

  6. DIFFERENTIAL PATHWAY DEPENDENCY DISCOVERY ASSOCIATED WITH DRUG RESPONSE ACROSS CANCER CELL LINES *

    PubMed Central

    SPEYER, GIL; MAHENDRA, DIVYA; TRAN, HAI J.; KIEFER, JEFF; SCHREIBER, STUART L.; CLEMONS, PAUL A.; DHRUV, HARSHIL; BERENS, MICHAEL; KIM, SEUNGCHAN

    2016-01-01

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines. Identified pathways and their corresponding differential dependency networks are further analyzed to discover essentiality and specificity mediators of cell line response to drugs/compounds. For analysis we use the previously published method EDDY (Evaluation of Differential DependencY). EDDY first constructs likelihood distributions of gene-dependency networks, aided by known gene-gene interaction, for two given conditions, for example, sensitive cell lines vs. non-sensitive cell lines. These sets of networks yield a divergence value between two distributions of network likelihoods that can be assessed for significance using permutation tests. Resulting differential dependency networks are then further analyzed to identify genes, termed mediators, which may play important roles in biological signaling in certain cell lines that are sensitive or non-sensitive to the drugs. Establishing statistical correspondence between compounds and mediators can improve understanding of known gene dependencies associated with drug response while also discovering new dependencies. Millions of compute hours resulted in thousands of these statistical discoveries. EDDY identified 8,811 statistically significant pathways leading to 26,822 compound-pathway-mediator triplets. By incorporating STITCH and STRING databases, we could construct evidence networks for 14,415 compound-pathway-mediator triplets for support. The results of this analysis are presented in a

  7. Juglone, isolated from Juglans mandshurica Maxim, induces apoptosis via down-regulation of AR expression in human prostate cancer LNCaP cells.

    PubMed

    Xu, Huali; Yu, Xiaofeng; Qu, Shaochun; Sui, Dayun

    2013-06-15

    Juglone is a natural compound which has been isolated from Juglans mandshurica Maxim. Recent studies have shown that juglone had various pharmacological effects such as anti-viral, anti-bacterial and anti-cancer. However, its anti-cancer activity on human prostate cancer LNCaP cell has not been examined. Thus, the current study was designed to elucidate the molecular mechanism of apoptosis induced by juglone in androgen-sensitive prostate cancer LNCaP cells. MTT assay was performed to examine the anti-proliferative effect of juglone. Occurrence of apoptosis was detected by Hoechst 33342 staining and flow cytometry in LNCaP cells treated with juglone for 24h. The result shown that juglone inhibited the growth of LNCaP cells in a dose-dependent manner. Morphological changes of apoptotic body formation after juglone treatment were observed by Hoechst 33342 staining. This apoptotic induction was associated with loss of mitochondrial membrane potential, and caspase-3, -9 activation. Moreover, we found that juglone significantly inhibited the expression levels of androgen receptor (AR) and prostate-specific antigen (PSA) in a dose-dependent manner, as well as abrogated up-regulation of AR and PSA genes with and/or without dihydrotestosterone (DHT). Take together, our results demonstrated that juglone might induce the apoptosis in LNCaP cell via down-regulation of AR expression. Therefore, our results indicated that juglone may be a potential candidate of drug for androgen-sensitive prostate cancer. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Effects of chitin and its derivatives on human cancer cells lines.

    PubMed

    Bouhenna, M; Salah, R; Bakour, R; Drouiche, N; Abdi, N; Grib, H; Lounici, H; Mameri, N

    2015-10-01

    The present study is focused on the effect of chitin derivatives against human cancer cell lines RD and Hep2. As an outcome from this research, chitin was cytotoxic at IC50 = 400 μg/ml and 200 μg/ml against Hep2 cells and RD cells lines, respectively. Irradiated chitin had an IC50 value of 450 μg/ml for Hep2 and an IC50 of 200 μg/ml for RD. The lowest IC50 is attributed to chitosan, 300 μg/ml in Hep2 and 190 μg/ml in RD.

  9. Cell culture methods for the establishment of the NCI series of lung cancer cell lines.

    PubMed

    Oie, H K; Russell, E K; Carney, D N; Gazdar, A F

    1996-01-01

    More than 200 human small cell lung cancer and non-small cell lung cancer cell lines were established over 15 years mainly by utilizing the serum-free, hormone and growth factor supplemented, defined media HITES and ACL4. Use of modified, established cell culture techniques such as the mechanical spillout method for the releasing of cell aggregates from tumor tissue, ficoll gradient centrifugation for the separation of tumor cells from erythrocytes and tissue debris, and an apparatue consisting of a platinum tubing attached to a suction flask for removal of spent medium have greatly contributed to the success in culturing tumor cells. Characterization of these lung cancer cell lines have extended our knowledge of lung cell biology. Studies elucidating the nutritional requirements of lung cancer cell growth may be helpful for the manipulation of these tumors in patients.

  10. Phytochemicals and Cytotoxicity of Launaea procumbens on Human Cancer Cell Lines

    PubMed Central

    Rawat, Preeti; Saroj, Lokesh M.; Kumar, Anil; Singh, Tryambak D.; Tewari, SK.; Pal, Mahesh

    2016-01-01

    Background: The plant Launaea procumbens belongs to the family Asteraceae and traditionally used in the treatment rheumatism, kidney, liver dysfunctions and eye diseases. In the present study Phytochemical analysis and fractions of methanolic extract of L. procumbens leaves were tested in vitro for their cytotoxicity. Objectives: Phytochemical analysis and cytotoxic activity of methanolic extract and fractions of Launaea procumbens against four cancer cell lines K562, HeLa, MIA-Pa-Ca-2 and MCF-2 by SRB assay. Materials and Methods: Powdered leaves of Launaea procumbens were extracted sequentially with hexane, ethyl acetate, butanol and water by cold extraction. Phytochemical analysis and cytotoxicity assay were carried out for these fractions using SRB assay against four human cancer cell lines, namely leukemia (K562), cervix (HeLa), pancreatic (MIA-Pa-Ca-2) and breast (MCF-7). Results: Ethyl acetate extract exerts potent cytotoxicity against human leukemia (K562), cervix (HeLa) and breast (MCF-7) cell lines IC50 value of 25.30±0.50, 19.80±0.10 and 36.90±4.90 μg/ml respectively. Moderately cytotoxic effect found in hexane extract IC50 value of 41±8 and 48.20±0.50 μg/ml against leukemia (K562), and breast (MCF-7) cancer cell line respectively. The Chemical composition analyzed by GC-MS showed considerable differences in solvent fractions of Launaea procumbens. Conclusion: This study revealed the cytotoxic potential of ethyl acetate and hexane fractions of L. procumbens leaves on different cancer cell lines. SUMMARY Ethyl acetate and Hexane fractions of Launaea procumbens plant exhibit cytotoxicity. Among the different fractions Ethyl acetate showed relatively higher cytotoxicity.Ethyl acetate found more cytotoxic against leukemia (K 562), cervix (HeLa) and breast (MCF-7) cancer cell lines. Moderete cytotoxicity found in hexane fraction against leukemia (K 562) and breast (MCF-7) cancer cell line.GC-MS results showed L. procumbens is a rich source of 1-H

  11. Weightlessness acts on human breast cancer cell line MCF-7.

    PubMed

    Vassy, J; Portet, S; Beil, M; Millot, G; Fauvel-Lafève, F; Gasset, G; Schoevaert, D

    2003-01-01

    Because cells are sensitive to mechanical forces, weightlessness might act on stress-dependent cell changes. Human breast cancer cells MCF-7, flown in space in a Photon capsule, were fixed after 1.5, 22 and 48 h in orbit. Cells subjected to weightlessness were compared to 1 g in-flight and ground controls. Post-flight, fluorescent labeling was performed to visualize cell proliferation (Ki-67), three cytoskeleton components and chromatin structure. Confocal microscopy and image analysis were used to quantify cycling cells and mitosis, modifications of the cytokeratin network and chromatin structure. Several main phenomena were observed in weightlessness: The perinuclear cytokeratin network and chromatin structure were looser; More cells were cycling and mitosis was prolonged. Finally, cell proliferation was reduced as a consequence of a cell-cycle blockade; Microtubules were altered in many cells. The results reported in the first point are in agreement with basic predictions of cellular tensegrity. The prolongation of mitosis can be explained by an alteration of microtubules. We discuss here the different mechanisms involved in weightlessness alteration of microtubules: i) alteration of their self-organization by reaction-diffusion processes, and a mathematical model is proposed, ii) activation or deactivation of microtubules stabilizing proteins, acting on both microtubule and microfilament networks in cell cortex. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    SciTech Connect

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  13. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    PubMed Central

    Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T

    2009-01-01

    Background Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. Results We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. Conclusions All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets. PMID:19317917

  14. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line.

    PubMed

    Zhao, Qi; Caballero, Otavia L; Levy, Samuel; Stevenson, Brian J; Iseli, Christian; de Souza, Sandro J; Galante, Pedro A; Busam, Dana; Leversha, Margaret A; Chadalavada, Kalyani; Rogers, Yu-Hui; Venter, J Craig; Simpson, Andrew J G; Strausberg, Robert L

    2009-02-10

    We have identified new genomic alterations in the breast cancer cell line HCC1954, using high-throughput transcriptome sequencing. With 120 Mb of cDNA sequences, we were able to identify genomic rearrangement events leading to fusions or truncations of genes including MRE11 and NSD1, genes already implicated in oncogenesis, and 7 rearrangements involving other additional genes. This approach demonstrates that high-throughput transcriptome sequencing is an effective strategy for the characterization of genomic rearrangements in cancers.

  15. Study of Anti Cancer Property of Scrophularia striata Extract on the Human Astrocytoma Cell Line (1321)

    PubMed Central

    Ardeshiry lajimi, Abdulreza; Rezaie-Tavirani, Mostafa; Mortazavi, Seyed Alireza; Barzegar, Mansoureh; Moghadamnia, Seyed Hasan; Rezaee, Mohamad Bagher

    2010-01-01

    There are considerable efforts to identify naturally occurring substances as new drugs in cancer therapy. Many components of medicinal plants have been identified that possess substantial anticancerous properties. This prompted us to investigate the effect of Scrophularia striata (an Iranian species belonging to the Scrophulariace family) extract on the growth of astrocyte cancer cell line (1321). The 1321 cell line were seeded in 96-well culture plates in the presence and absence of various concentrations of either leaf and seed filtered and unfiltered extract of Scrophularia striata to determine their probable anticancer effects in comparison with etoposide (chemical anticancer reagent). filtered leaf extract of S. Striata showed strong anticancer effect on 1321cell line as compared to control group (cells not exposed to extracts), and even the group (adenocarcinoma gastric cell line) exposed to etoposide. Unlike the leaf extract, the seed extract activated cell proliferation in all experiments. Flow cytometry findings indicated that apoptosis is the mechanism by which the leaf extract inhibits cell proliferation. Our findings indicate that both leaves and seeds of S. Striata contain both anti cancer and cell growth enhancing agents. PMID:24381605

  16. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines.

    PubMed

    Zhu, Hong; Yang, Zhi-Bin

    2009-08-01

    The mda-7/IL-24 receptor belongs to the type II cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were amplified by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. PLC/PRF/5 and SMMC-7721 expressed IL-20R1; BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  17. Induction of resistance to Aplidin in a human ovarian cancer cell line related to MDR expression.

    PubMed

    Tognon, Gianluca; Bernasconi, Sergio; Celli, Nicola; Faircloth, Glynn T; Cuevas, Carmen; Jimeno, José; Erba, Eugenio; D'Incalci, Maurizio

    2005-12-01

    Aplidin-resistant IGROV-1/APL cells were derived from the human ovarian cancer IGROV-1 cell line by exposing the cells to increasing concentration of Aplidin for eight months, starting from a concentration of 10 nM to a final concentration of 4 microM. IGROV-1/APL cell line possesses five fold relative resistance to Aplidin. IGROV-1/APL resistant cell line shows the typical MDR phenotype: (1) increased expression of membrane-associated P-glycoprotein, (2) cross-resistance to drugs like etoposide, doxorubicin, vinblastine, vincristine, taxol, colchicin and the novel anticancer drug Yondelis (ET-743). The Pgp inhibitor cyclosporin-A restored the sensitivity of IGROV-1/APL cells to Aplidin by increasing the drug intracellular concentration. The resistance to Aplidin was not due to the other proteins, such as LPR-1 and MRP-1, being expressed at the same level in resistant and parental cell line. The finding that cells over-expressing Pgp are resistant to Aplidin was confirmed in CEM/VLB 100 cells, that was found to be 5-fold resistant to Aplidin compared to the CEM parental cell line.

  18. Flavonoids can block PSA production by breast and prostate cancer cell lines.

    PubMed

    Rosenberg Zand, Rachel S; Jenkins, David J A; Brown, Theodore J; Diamandis, Eleftherios P

    2002-03-01

    Prostatic carcinoma is the most commonly diagnosed cancer and the second leading cause of cancer death of North American men. Combined androgen blockade (CAB) is one treatment option for prostate cancer, using estrogen agonists, luteinizing hormone-releasing hormone (LHRH) agonists and non-steroidal anti-androgens such as nilutamide and cyproterone acetate. Since many of these drugs have serious side effects, many patients are searching for "natural" alternatives or complements to traditional therapy. These include phytoestrogens found in soy and other plant foods. Such compounds have only started to be evaluated for potential androgen-blocking activity. Inhibition of production of androgen-regulated proteins, including prostate-specific antigen (PSA), is one indicator of androgen blocking. The ability of 72 flavonoids and related compounds to inhibit PSA production in a breast cancer cell line, BT-474, and a prostate cancer cell line (PC-3), transfected with the human androgen receptor cDNA, PC-3(AR)(2) was examined. Twenty-two of the 72 flavonoids tested were found to significantly block PSA production by the BT-474 cell line at the highest tested concentration (10(-5) mol/l), with 17 of these compounds inhibiting production of PSA in the PC-3(AR)(2) cells as well. That several flavonoids may significantly block production of this androgen-regulated protein. It will be worthwhile to examine these compounds as possible candidates for prostate cancer prevention or management.

  19. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression.

    PubMed

    Onoda, Chihiro; Kuribayashi, Kageaki; Nirasawa, Shinya; Tsuji, Naoki; Tanaka, Maki; Kobayashi, Daisuke; Watanabe, Naoki

    2011-05-01

    The polyphenol (-)-epigallocatechin-3-gallate (EGCG) is a green tea constituent, which has been shown to inhibit cancer cell growth in vitro, in vivo and in epidemiological studies. In this study, we investigated its effects in gastric cancer cell lines. Five gastric cancer cell lines, the MKN-1, MKN-28, MKN-45, NUGC-3 and TMK-1, were found to be sensitive to EGCG treatment. Of all the cell lines tested, NUGC-3 was the most sensitive. EGCG treatment of NUGC-3 cells induced apoptosis, which was confirmed by sub-G1 analysis, caspase-Glo assay and Western blotting against cleaved PARP and cleaved caspase-3. EGCG treatment lowered survivin and increased Bax and TRAIL expression. Furthermore, EGCG induced p73 activation in NUGC-3 cells. Small interfering RNA against p73 diminished EGCG effects on survivin expression and cell viability. These results show that EGCG induces cell death in gastric cancer cells by apoptosis via inhibition of survivin expression downstream of p73. This study provides a novel mechanism whereby EGCG potentially inhibits cancer cell growth, concluding that EGCG may be a potential candidate in anti-survivin cancer therapy.

  20. [Cultivation and characterization of tumor spheres generated from human colorectal cancer cell lines].

    PubMed

    Zhou, Ji-Tao; Gong, Ri-Xiang; Chen, Xiang-Zheng; Zhou, Hai-Jun; Zhu, Ya-Jie; Liu, Su-Rui; Huang, Juan; Bi, Feng

    2009-09-01

    To study on the cultivation method for tumor spheres from colorectal cancer cell lines and identify whether resulting Colo205 spheroid cells display cancer stem cell characteristics. Lovo, Colo205 and SW480 cells were seeded in serum free medium (SFM) with EGF and bFGF. Flow cytometry analysis, cell invasion assay and xenograft experiment were applied to examine the cell surface marker expression pattern, cell invasive ability and in vivo tumorigenicity of both Colo205 spheres and parental cells. CD44 expression of tumor spheroid cells was also analyzed after cultured with serum supplemented medium by flow cytometry. CD44, Musashi-1 and Oct4 mRNA were detected in these two cells by RT-PCR. Tumor spheres could be generated from three colorectal cancer cell lines in SFM. The formation and proliferation of tumor spheres were benefited from fresh SFM, cell dissociation reagent Accutase and the floating status of cancer cells. The overwhelming majority of spheroid cells were CD44+ cells. But CD44+ cells were gradually decreased when spheres cultured with serum supplemented medium. Colo205 spheres have higher Musashi-1 and Oct4 mRNA expression, tumor-initiating capability and invasive ability compared with those of parental cells. Tumor spheres in which enrich cancer stem cells can be generated and matained from colorectal cancer cell lines in SFM on floating-culture condition.

  1. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells

    PubMed Central

    Khan, Naghma; Afaq, Farrukh; Syed, Deeba N.; Mukhtar, Hasan

    2008-01-01

    Novel dietary agents for prevention and therapy of prostate cancer (PCa) are desired. The aim of this study was to determine the effect of fisetin, a tetrahydroxyflavone, on inhibition of cell growth and induction of apoptosis in human PCa cells. Treatment of fisetin (10–60 μM, 48 h) was found to result in a decrease in the viability of LNCaP, CWR22Rυ1 and PC-3 cells but had only minimal effects on normal prostate epithelial cells as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide assay. Treatment of LNCaP cells with fisetin also resulted in G1-phase arrest that was associated with a marked decrease in the protein expression of cyclins D1, D2 and E and their activating partner cyclin-dependent kinases 2, 4 and 6 with concomitant induction of WAF1/p21 and KIP1/p27. Fisetin treatment also resulted in induction of apoptosis, poly (ADP-ribose) polymerase (PARP) cleavage, modulation in the expressions of Bcl-2 family proteins, inhibition of phosphatidyl inositol 3-kinase and phosphorylation of Akt at Ser473 and Thr308. There was also induction of mitochondrial release of cytochrome c into cytosol, downregulation of X-linked inhibitor of apoptosis protein and upregulation of second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI on treatment of cells with fisetin. Treatment of cells with fisetin also resulted in significant activation of caspases-3, -8 and -9. Pretreatment of cells with caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced activation of caspases. These data provide the first evidence that fisetin could be developed as an agent against PCa. PMID:18359761

  2. Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line

    PubMed Central

    WANG, LI; GUO, HUIJIE; LIN, CAIYU; YANG, LIUQI; WANG, XIUJIE

    2014-01-01

    Cancer stem cells (CSCs) are proposed to be responsible for tumor recurrence, metastasis and the high mortality rate of cancer patients. Isolation and identification of CSCs is crucial for basic and preclinical studies. However, as there are currently no universal markers for the isolation and identification of CSCs in any type of cancer, the method for isolating CSCs from primary cancer tissues or cell lines is costly and ineffective. In order to establish a reliable model of cervical cancer stem cells for basic and preclinical studies, the present study was designed to enrich cervical cancer CSCs using a nonadhesive culture system and to characterize their partial stemness phenotypes. Human cervical cancer cells (HeLa) were cultured using a nonadhesive culture system to generate tumor spheres. Their stemness characteristics were investigated through colony formation, tumor sphere formation, self-renewal, toluidine blue staining, chemoresistance, invasion assays, reverse transcription-polymerase chain reaction, immunofluorescence staining of putative stem cell markers, including octamer-binding transcription factor 4, SRY-box 2 and aldehyde dehydrogenase 1 family, member A1, and adipogenic differentiation induction. Typical tumor spheres were formed within 5–7 days under this nonadhesive culture system. Compared with the adherent parental HeLa cells, the colony formation capacity, self-renewal potential, light cell population, cell invasion, chemoresistance and expression of putative stem cell markers of the tumor sphere cells increased significantly, and a subpopulation of tumor sphere cells were induced into adipogenic differentiation. Using the nonadhesive culture system, a reliable model of cervical cancer stem cells was established, which is inexpensive, effective and simple compared with the ultra-low attachment serum free culture method. The stemness characteristics of the tumor sphere HeLa cells mirrored the CSC phenotypes. This CSC model may be useful

  3. Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells

    PubMed Central

    Morrison, Brian J.

    2012-01-01

    Cancer initiating cells (CICs) represent a unique cell population essential for the maintenance and growth of tumors. Most in vivo studies of CICs utilize human tumor xenografts in immunodeficient mice. These models provide limited information on the interaction of CICs with the host immune system and are of limited value in assessing therapies targeting CICs, especially immune-based therapies. To assess this, a syngeneic cancer model is needed. We examined the sphere-forming capacity of thirteen murine lung cancer cell lines and identified TC-1 and a metastatic subclone of Lewis lung carcinoma (HM-LLC) as cell lines that readily formed and maintained spheres over multiple passages. TC-1 tumorspheres were not enriched for expression of CD133 or CD44, putative CIC markers, nor did they demonstrate Hoechst 33342 side population staining or Aldefluor activity compared to adherent TC-1 cells. However, in tumorsphere culture, these cells exhibited self-renewal and long-term symmetric division capacity and expressed more Oct-4 compared to adherent cells. HM-LLC sphere-derived cells exhibited increased Oct-4, CD133, and CD44 expression, demonstrated a Hoechst 33342 side population and Aldefluor activity compared to adherent cells or a low metastatic subclone of LLC (LM-LLC). In syngeneic mice, HM-LLC sphere-derived cells required fewer cells to initiate tumorigenesis compared to adherent or LM-LLC cells. Similarly TC-1 sphere-derived cells were more tumorigenic than adherent cells in syngeneic mice. In contrast, in immunocompromised mice, less than 500 sphere or adherent TC-1 cells and less than 1,000 sphere or adherent LLC cells were required to initiate a tumor. We suggest that no single phenotypic marker can identify CICs in murine lung cancer cell lines. Tumorsphere culture may provide an alternative approach to identify and enrich for murine lung CICs. Furthermore, we propose that assessing tumorigenicity of murine lung CICs in syngeneic mice better models the

  4. Canine Prostate Cancer Cell Line (Probasco) Produces Osteoblastic Metastases In Vivo

    PubMed Central

    Simmons, Jessica K.; Dirksen, Wessel P.; Hildreth, Blake E.; Dorr, Carlee; Williams, Christina; Thomas, Rachael; Breen, Matthew; Toribio, Ramiro E.; Rosol, Thomas J.

    2014-01-01

    BACKGROUND In 2012, over 240,000 men were diagnosed with prostate cancer and over 28,000 died from the disease. Animal models of prostate cancer are vital to understanding its pathogenesis and developing therapeutics. Canine models in particular are useful due to their similarities to late-stage, castration-resistant human disease with osteoblastic bone metastases. This study established and characterized a novel canine prostate cancer cell line that will contribute to the understanding of prostate cancer pathogenesis. METHODS A novel cell line (Probasco) was derived from a mixed breed dog that had spontaneous prostate cancer. Cell proliferation and motility were analyzed in vitro. Tumor growth in vivo was studied by subcutaneous, intratibial, and intracardiac injection of Probasco cells into nude mice. Tumors were evaluated by bioluminescent imaging, Faxitron radiography, µCT, and histology. RT-PCR and genome-wide DNA copy number profiling were used to characterize the cell line. RESULTS The Probasco cells grew in vitro (over 75 passages) and were tumorigenic in nude mice. Probasco cells expressed high levels of BMP2, CDH1, MYOF, FOLH1, RUNX2, and SMAD5 modest CXCL12, SLUG, and BMP, and no PTHrP mRNA. Following intracardiac injection, Probasco cells metastasized primarily to the appendicular skeleton, and both intratibial and intracardiac injections produced osteoblastic tumors in bone. Comparative genomic hybridization demonstrated numerous DNA copy number aberrations throughout the genome, including large losses and gains in multiple chromosomes. CONCLUSIONS The Probasco prostate cancer cell line will be a valuable model to investigate the mechanisms of prostate cancer pathogenesis and osteoblastic bone metastases. PMID:25043424

  5. Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes

    PubMed Central

    Beaufort, Corine M.; Helmijr, Jean C. A.; Piskorz, Anna M.; Hoogstraat, Marlous; Ruigrok-Ritstier, Kirsten; Besselink, Nicolle; Murtaza, Muhammed; van IJcken, Wilfred F. J.; Heine, Anouk A. J.; Smid, Marcel; Koudijs, Marco J.; Brenton, James D.; Berns, Els M. J. J.; Helleman, Jozien

    2014-01-01

    Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (n = 21), Round (n = 7) and Spindle (n = 12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment

  6. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines

    PubMed Central

    Boegel, Sebastian; Löwer, Martin; Bukur, Thomas; Sahin, Ugur; Castle, John C

    2014-01-01

    Cancer cell lines are a tremendous resource for cancer biology and therapy development. These multipurpose tools are commonly used to examine the genetic origin of cancers, to identify potential novel tumor targets, such as tumor antigens for vaccine devel­opment, and utilized to screen potential therapies in preclinical studies. Mutations, gene expression, and drug sensitivity have been determined for many cell lines using next-generation sequencing (NGS). However, the human leukocyte antigen (HLA) type and HLA expression of tumor cell lines, characterizations necessary for the development of cancer vaccines, have remained largely incomplete and, such information, when available, has been distributed in many publications. Here, we determine the 4-digit HLA type and HLA expression of 167 cancer and 10 non-cancer cell lines from publically available RNA-Seq data. We use standard NGS RNA-Seq short reads from “whole transcriptome” sequencing, map reads to known HLA types, and statistically determine HLA type, heterozygosity, and expression. First, we present previously unreported HLA Class I and II genotypes. Second, we determine HLA expression levels in each cancer cell line, providing insights into HLA downregulation and loss in cancer. Third, using these results, we provide a fundamental cell line “barcode” to track samples and prevent sample annotation swaps and contamination. Fourth, we integrate the cancer cell-line specific HLA types and HLA expression with available cell-line specific mutation information and existing HLA binding prediction algorithms to make a catalog of predicted antigenic mutations in each cell line. The compilation of our results are a fundamental resource for all researchers selecting specific cancer cell lines based on the HLA type and HLA expression, as well as for the development of immunotherapeutic tools for novel cancer treatment modalities. PMID:25960936

  7. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

    PubMed

    Boegel, Sebastian; Löwer, Martin; Bukur, Thomas; Sahin, Ugur; Castle, John C

    Cancer cell lines are a tremendous resource for cancer biology and therapy development. These multipurpose tools are commonly used to examine the genetic origin of cancers, to identify potential novel tumor targets, such as tumor antigens for vaccine devel-opment, and utilized to screen potential therapies in preclinical studies. Mutations, gene expression, and drug sensitivity have been determined for many cell lines using next-generation sequencing (NGS). However, the human leukocyte antigen (HLA) type and HLA expression of tumor cell lines, characterizations necessary for the development of cancer vaccines, have remained largely incomplete and, such information, when available, has been distributed in many publications. Here, we determine the 4-digit HLA type and HLA expression of 167 cancer and 10 non-cancer cell lines from publically available RNA-Seq data. We use standard NGS RNA-Seq short reads from "whole transcriptome" sequencing, map reads to known HLA types, and statistically determine HLA type, heterozygosity, and expression. First, we present previously unreported HLA Class I and II genotypes. Second, we determine HLA expression levels in each cancer cell line, providing insights into HLA downregulation and loss in cancer. Third, using these results, we provide a fundamental cell line "barcode" to track samples and prevent sample annotation swaps and contamination. Fourth, we integrate the cancer cell-line specific HLA types and HLA expression with available cell-line specific mutation information and existing HLA binding prediction algorithms to make a catalog of predicted antigenic mutations in each cell line. The compilation of our results are a fundamental resource for all researchers selecting specific cancer cell lines based on the HLA type and HLA expression, as well as for the development of immunotherapeutic tools for novel cancer treatment modalities.

  8. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines

    PubMed Central

    Wlochowitz, Darius; Haubrock, Martin; Arackal, Jetcy; Bleckmann, Annalen; Wolff, Alexander; Beißbarth, Tim; Wingender, Edgar; Gültas, Mehmet

    2016-01-01

    Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide

  9. Synthesis of D- and L-tyrosine-chlorambucil analogs active against breast cancer cell lines.

    PubMed

    Descôteaux, Caroline; Leblanc, Valérie; Brasseur, Kevin; Gupta, Atul; Asselin, Eric; Bérubé, Gervais

    2010-12-15

    A series of D- and L-tyrosine-chlorambucil analogs was synthesized as anticancer drugs for chemotherapy of breast cancer. The novel compounds were synthesized in good yields through efficient modifications of D- and L-tyrosine. The newly synthesized compounds were evaluated for their anticancer efficacy in different hormone-dependent and hormone-independent (ER+ and ER-) breast cancer cell lines. The novel analogs showed significant in vitro anticancer activity when compared to chlorambucil. Structure-activity relationship (SAR) reveals both, the influence of the length of the spacer chain and the stereochemistry of the tyrosine moiety. Interestingly, the D- and L-tyrosinol-chlorambucil derivatives with 10 carbon atoms spacer are selective towards MCF-7 (ER+) breast cancer cell line. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. 5-Aminolevulinic acid enhances cell death under thermal stress in certain cancer cell lines.

    PubMed

    Chibazakura, Taku; Toriyabe, Yui; Fujii, Hiroshi; Takahashi, Kiwamu; Kawakami, Mariko; Kuwamura, Haruna; Haga, Hazuki; Ogura, Shun-ichiro; Abe, Fuminori; Nakajima, Motowo; Yoshikawa, Hirofumi; Tanaka, Tohru

    2015-01-01

    5-aminolevulinic acid (5-ALA) is contained in all organisms and a starting substrate for heme biosynthesis. Since administration of 5-ALA specifically leads cancer cells to accumulate protoporphyrin IX (PpIX), a potent photosensitizer, we tested if 5-ALA also serves as a thermosensitizer. 5-ALA enhanced heat-induced cell death of cancer cell lines such as HepG2, Caco-2, and Kato III, but not other cancer cell lines including U2-OS and normal cell lines including WI-38. Those 5-ALA-sensitive cancer cells, but neither U2-OS nor WI-38, accumulated intracellular PpIX and exhibited an increased reactive oxygen species (ROS) generation under thermal stress with 5-ALA treatment. In addition, blocking the PpIX-exporting transporter ABCG2 in U2-OS and WI-38 cells enhanced their cell death under thermal stress with 5-ALA. Finally, a ROS scavenger compromised the cell death enhancement by 5-ALA. These suggest that 5-ALA can sensitize certain cancer cells, but not normal cells, to thermal stress via accumulation of PpIX and increase of ROS generation.

  11. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    PubMed Central

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  12. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4

    PubMed Central

    Kim, Youn-Jung; Park, Hae-Jeong; Yoon, Seo-Hyun; Kim, Mi-Ja; Leem, Kang-Hyun; Chung, Joo-Ho; Kim, Hye-Kyung

    2005-01-01

    AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4. METHODS: Colorectal cancer cell line, SNU-C4 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. The cytotoxic effect of OPC was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylt-etrazolium bromide (MTT) assay. To find out the apoptotic cell death, 4, 6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcription-polymerase chain reaction (RT-PCR), and caspase-3 enzyme assay were performed. RESULTS: In this study, cytotoxic effect of OPC on SNU-C4 cells appeared in a dose-dependent manner. OPC treatment (100 µg/mL) revealed typical morphological apoptotic features. Additionally OPC treatment (100 µg/mL) increased level of BAX and CASPASE-3, and decreased level of BCL-2 mRNA expression. Caspase-3 enzyme activity was also significantly increased by treatment of OPC (100 µg/mL) compared with control. CONCLUSION: These data indicate that OPC caused cell death by apoptosis through caspase pathways on human colorectal cancer cell line, SNU-C4. PMID:16094708

  13. Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines.

    PubMed

    Tu, Yifan; Roberts, Louis; Shetty, Kalidas; Schneider, Sallie Smith

    2008-09-01

    Diverse compounds from many different chemical classes are currently targeted in preclinical analyses for their ability to act as both chemopreventive and chemotherapeutic agents. Phenolic phytochemicals from Rhodiola crenulata has such potential. This Rhodiola species is a perennial plant that grows in the Tundra, Siberia, and high-elevation regions of Tibet. The phenolic secondary metabolites isolated from R. crenulata were recently analyzed in a preclinical setting for their ability to treat lymphosarcomas and superficial bladder cancers. However, the effects of R. crenulata have yet to be examined for its implications in breast cancer prevention or for its chemotherapeutic abilities. Therefore this study investigated the effects of R. crenulata on breast cancer both in vivo and in vitro. Experiments using aggressive human-derived MDA-MB-231 and mouse-derived V14 breast cancer cell lines demonstrated that phenolic-enriched R. crenulata extract was capable of inhibiting the proliferation, motility, and invasion of these cells. In addition, the extracts induced autophagic-like vesicles in all cell lines, eventually leading to death of the tumor cell lines but not the immortal or normal human mammary epithelial cells. Finally, an in vivo experiment showed that phenolic-enriched dietary R. crenulata is effective in preventing the initiation of tumors and slowing down the tumor growth in mice bearing tumor grafts, thereby further demonstrating its possible potential for treatment of breast cancer progression and metastasis.

  14. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  15. Cytotoxicity screening of Melastoma malabathricum extracts on human breast cancer cell lines in vitro

    PubMed Central

    Roslen, Nurfariza Ahmad; Alewi, Nur Aizura Mat; Ahamada, Hadji; Rasad, Mohammad Syaiful Bahari Abdull

    2014-01-01

    Objective To screen the cytotoxic activity of Melastoma malabathricum (M. malabathricum) against human breast cancer cell line (MCF-7) in vitro. Methods A three steps extraction protocol using n-hexane, chloroform and methanol as the solvents systems was carried out on leaves, stems and flowers of M. malabathricum. Dimethyl sulfoxide was used in extracts dilution and serial dilutions were conducted to obtain five different extract concentrations (100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5 µg/mL and 6.25 µg/mL). The evaluation of cell growth was determined using methylene blue assay. Results Methanol extract from the leaves showed significant anticancer activity against MCF-7 cell lines with the IC50 value of 7.14 µg/ml while methanol and chloroform extract from the flowers exhibited a moderate activity towards MCF-7 cell line with the IC50 value of 33.63 µg/mL and 45.76 µg/mL respectively after 72 h of treatment. Conclusions The extracts from leaves and flowers of M. malabathricum showed promising anticancer activity toward human breast cancer cell lines with the lowest IC50 at 7.14 µg/mL while the extracts from stems showed less growth inhibition activity. PMID:25183274

  16. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    SciTech Connect

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-09-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from (14C)acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells.

  17. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression.

    PubMed

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-05-23

    Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27(kip-1) increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27(kip-1).

  18. Bosutinib reduces the efficacy of Dasatinib in triple-negative breast cancer cell lines.

    PubMed

    Tarpley, Mike; Abdissa, Temesgen T; Johnson, Gary L; Scott, John E

    2014-04-01

    Triple-negative breast cancer (TNBC) is an aggressive sub-type of breast cancer. Dasatinib and bosutinib are FDA-approved Src/Abl kinase inhibitor drugs. Dasatinib potently inhibits the proliferation of many TNBC cell lines. The cell viability/proliferation for a panel of 4 TNBC cell lines was measured by detection of cellular ATP levels and cell numbers were directly determined by automated cell counting. Bosutinib (≤1 μM) had little to no inhibitory activity on cell viability/proliferation, while dasatinib-alone generated potent IC50 values of <100 nM. Combination treatment of cells with both dasatinib and bosutinib resulted in reduced efficacy of dasatinib in all four cell lines, with two of them displaying a dramatic loss of efficacy. Direct cell counting confirmed that bosutinib enhanced cell proliferation in the presence of dasatinib. Bosutinib potently reduced the in vitro anti-proliferative efficacy of dasatinib in TNBC cell lines. We, hereby, report on a novel drug-induced loss in dasatinib sensitivity.

  19. Bosutinib Reduces the Efficacy of Dasatinib in Triple-negative Breast Cancer Cell Lines

    PubMed Central

    TARPLEY, MIKE; ABDISSA, TEMESGEN T.; JOHNSON, GARY L.; SCOTT, JOHN E.

    2014-01-01

    Background Triple-negative breast cancer (TNBC) is an aggressive sub-type of breast cancer. Dasatinib and bosutinib are FDA-approved Src/Abl kinase inhibitor drugs. Dasatinib potently inhibits the proliferation of many TNBC cell lines. Material and Methods The cell viability/proliferation for a panel of 4 TNBC cell lines was measured by detection of cellular ATP levels and cell numbers directly determined by automated cell counting. Results Bosutinib (≤1 μM) had little to no inhibitory activity on cell viability/proliferation, while dasatinib-alone generated potent IC50 values of <100 nM. Combination treatment of cells with both dasatinib and bosutinib resulted in reduced efficacy of dasatinib in all four cell lines, with two of them displaying a dramatic loss of efficacy. Direct cell counting confirmed that bosutinib enhanced cell proliferation in the presence of dasatinib. Conclusion Bosutinib potently reduced the in vitro anti-proliferative efficacy of dasatinib in TNBC cell lines. We, thereby, report on a novel drug-induced loss in dasatinib sensitivity. PMID:24692691

  20. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.

    PubMed

    Alvarez-Berríos, Merlis P; Castillo, Amalchi; Rinaldi, Carlos; Torres-Lugo, Madeline

    2014-01-01

    The proteasome inhibitor bortezomib (BZ) has shown promising results in some types of cancer, but in others it has had minimal activity. Recent studies have reported enhanced efficacy of BZ when combined with hyperthermia. However, the use of magnetic nanoparticles to induce hyperthermia in combination with BZ has not been reported. This novel hyperthermia modality has shown better potentiation of chemotherapeutics over other types of hyperthermia. We hypothesized that inducing hyperthermia via magnetic nanoparticles (MFH) would enhance the cytotoxicity of BZ in BZ-sensitive and BZ-resistant cancer cells more effectively than hyperthermia using a hot water bath (HWH). Studies were conducted using BZ in combination with MFH in two BZ-sensitive cell lines (MDA-MB-468, Caco-2), and one BZ-resistant cell line (A2780) at two different conditions, ie, 43°C for 30 minutes and 45°C for 30 minutes. These experiments were compared with combined application of HWH and BZ. The results indicate enhanced potentiation between hyperthermic treatment and BZ. MFH combined with BZ induced cytotoxicity in sensitive and resistant cell lines to a greater extent than HWH under the same treatment conditions. The observation that MFH sensitizes BZ-resistant cell lines makes this approach a potentially effective anticancer therapy platform.

  1. Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines

    PubMed Central

    Sosonkina, Nadiya; Hong, Seung-Keun; Starenki, Dmytro; Park, Jong-In

    2014-01-01

    Neuroendocrine (NE) lung tumors comprise 20–25% of all invasive lung malignancies. Currently, no effective treatments are available to cure these tumors, and it is necessary to identify a molecular alteration(s) that characterizes NE lung tumor cells. We aimed to identify a kinase mutation(s) associated with NE lung tumor by screening 517 kinase-encoding genes in human lung cancer cell lines. Our next-generation sequencing analysis of six NE lung tumor cell lines (four small cell lung cancer lines and two non-small cell lung cancer lines) and three non-NE lung tumor lines revealed various kinase mutations, including a nonsynonymous mutation in the proto-oncogene RET (c.2071G>A; p.G691S). Further evaluation of the RET polymorphism in total 15 lung cancer cell lines by capillary sequencing suggested that the frequency of the minor allele (A-allele) in NE lung tumor lines was significantly higher than its frequency in a reference population (p = 0.0001). However, no significant difference between non-NE lung tumor lines and a reference group was detected (p = 1.0). Nevertheless, neither RET expression levels were correlated with the levels of neuron-specific enolase (NSE), a key NE marker, nor vandetanib and cabozantinib, small molecule compounds that inhibit RET, affected NSE levels in lung cancer cells. Our data suggest a potential association of G691S RET polymorphism with NE lung tumor, proposing the necessity of more thorough evaluation of this possibility. The dataset of kinase mutation profiles in this report may help choosing cell line models for study of lung cancer. PMID:25530832

  2. Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line.

    PubMed

    Singh, Sarita; Verma, Mradul; Malhotra, Meenakshi; Prakash, Satya; Singh, Tryambak Deo

    2016-01-01

    Argemone mexicana Linn. (Papaveraceae) has been used as traditional medicine in India and Taiwan for the treatment of skin diseases, inflammations, bilious, fever, etc. Some alkaloids of A. mexicana have been screened for their cytotoxicity on different cancer cell lines. The study investigates potential cytotoxic effects of alkaloids isolated from aerial part of A. mexicana on SW480 human colon cancer cell line. Six alkaloids, 13-oxoprotopine, protomexicine, 8-methoxydihydrosanguinarine, dehydrocorydalmine, jatrorrhizine, and 8-oxyberberine were isolated from the methanol extract of A. mexicana. Cytotoxicity of these alkaloids was studied on SW480 human colon cancer cell line at 1, 25, 50, 75, 100, 125, 150, and 200 µg/mL for 24 and 48 h. Cells were seeded in a 96-well micro-plate at a concentration of 2 × 10(4) cells per well and MTS assay was performed to assess cytotoxicity in terms of cell viability. At 200 µg/mL, protomexicine and 13-oxoprotopine showed mild cytotoxicity (∼24-28%) whereas dehydrocorydalmine exhibited moderate cytotoxicity (∼48%). 8-Oxyberberine was mildly cytotoxic (∼27%) at 24 h but was more potent (∼76%) at 48 h. Jatrorrhizine and 8-methoxydihydrosanguinarine were most potent (∼95-100%) in inhibiting the human colon cancer cell proliferation showing complete reduction in cell viability. This is the first study on the effect of these alkaloids on SW480 human colon cancer cell line. This study indicates that some alkaloids of A. mexicana strongly inhibit the cell proliferation in human colon cancer cells, and it might be a basis for future development of a potent chemotherapeutic drug.

  3. Anticancer Effects of Extracts from the Fruit of Morinda Citrifolia (Noni) in Breast Cancer Cell Lines.

    PubMed

    Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K

    2016-03-01

    Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential. © Georg Thieme Verlag KG Stuttgart · New York.

  4. A preliminary study of side population cells in human gastric cancer cell line HGC-27.

    PubMed

    Gao, Ganglong; Sun, Zhenliang; Wenyong, Liu; Dongxia, Ye; Zhao, Runjia; Zhang, Xueli

    2015-03-16

    Cancer stem cell-like side population (SP) cells, which may be responsible for recurrence, tumor metastasis, and resistance to cancer therapy, have been identified and characterized in several types of cell lines from gastric cancer. However, there is no report on isolation of SP cells from human gastric cancer cell line HGC-27. This study aims to analyze the proportion of SP cells in HGC-27 cell line, differentiate SP from non-side population (NSP) cells, and determine whether the SP cells have certain biological properties of stem cells. (1) HGC-27 suspension was prepared and stained with Hoechst33342 and PI for flow cytometric isolation of SP (2). Differences in proliferation and stemness-related gene expression profiles (CD133, CD44, OCT-4, MDR1, EpCAM, and ABCG2) between SP and NSP cells were detected by gastric formation assay and quantitative real-time PCR (3). Oncogenicity of SP and NSP cells was determined in nude mice in vivo. (1) SP cells accounted for 0.1-1.0% of HGC-27 cells, and decreased to 0% after verapamil inhibition. Using flow cytometry, we sorted 7.5×10⁵ SP cells and most HGC-27 cells were NSP cells (2). Gastric formation assay and MTT demonstrated that there was a significant difference in proliferation between SP and NSP cells. Gene expression analysis showed that the expression of genes was significantly higher in SP cells (3). The oncogenicity experiment in nude mice revealed that 105 SP cells were able to form tumors, which demonstrated higher tumorigenicity than non-SP cells. These results collectively suggested that SP cells from HGC-27 cell line have some cancer stem cell properties and could be used for studying the pathogenesis of gastric cancer, which may contribute to discovery of novel therapeutic targets.

  5. Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues.

    PubMed

    Takahashi, Kazuto; Hosokawa, Masashi; Kasajima, Hiroyuki; Hatanaka, Kazuteru; Kudo, Kazuhiro; Shimoyama, Norihiko; Miyashita, Kazuo

    2015-09-01

    Colorectal cancer is one of the most malignant neoplasms worldwide. Fucoxanthin is a carotenoid present in the chloroplasts of brown seaweeds. In the present study, the anticancer effects of fucoxanthin and its metabolite, fucoxanthinol, on 6 colorectal cancer cell lines and 20 tissue samples from surgically resected clinical colorectal cancer specimens were examined using a collagen-gel droplet embedded culture drug sensitivity test (CD-DST). The in vitro sensitivity to fucoxanthin, fucoxanthinol and the anticancer drugs is expressed as T/C (%), where T is the absorbance of cells which stained by neutral red treated with carotenoids and C is the absorbance of non-staining cells. Fucoxanthin and fucoxanthinol decreased the T/C (%) of Caco-2, WiDr, HCT116, and DLD-1 cell lines at doses of 20 µM. Fucoxanthinol also decreased the T/C (%) of SW620 cells, while the T/C (%) of Colo205 cells was not reduced by treatment with either carotenoid. Specifically, the T/C (%) of Caco-2 and WiDr cells, which were incubated in carotenoid-free medium for 6 days following treatment with 20 µM fucoxanthinol for 24 h, was markedly decreased to 1.4±0.2 and 12.0±0.3%, respectively. Furthermore, fucoxanthin and fucoxanthinol decreased the T/C (%) in colorectal cancer tissue samples. Notably, 20 µM fucoxanthinol treatment resulted in a higher proportion of colorectal cancer samples with a T/C (%) of <50% (13/20, 65%) compared with samples treated with 20 µM fucoxanthin (2/20, 10%). The median T/C (%) value of 35.1% for the 20 cancers specimens treated with 20 µM fucoxanthinol was lower than the median T/C (%) values of 86.3% and 75.8% for those treated with fluorouracil and paclitaxel, respectively. These results suggested that fucoxanthin and fucoxanthinol may be of use as chemotherapeutic agents in colorectal cancer.

  6. The Culture of Cancer Cell Lines as Tumorspheres Does Not Systematically Result in Cancer Stem Cell Enrichment

    PubMed Central

    Calvet, Christophe Y.; André, Franck M.; Mir, Lluis M.

    2014-01-01

    Cancer stem cells (CSC) have raised great excitement during the last decade and are promising targets for an efficient treatment of tumors without relapses and metastases. Among the various methods that enable to enrich cancer cell lines in CSC, tumorspheres culture has been predominantly used. In this report, we attempted to generate tumorspheres from several murine and human cancer cell lines: B16-F10, HT-29, MCF-7 and MDA-MB-231 cells. Tumorspheres were obtained with variable efficiencies from all cell lines except from MDA-MB-231 cells. Then, we studied several CSC characteristics in both tumorspheres and adherent cultures of the B16-F10, HT-29 and MCF-7 cells. Unexpectedly, tumorspheres-forming cells were less clonogenic and, in the case of B16-F10, less proliferative than attached cells. In addition, we did not observe any enrichment in the population expressing CSC surface markers in tumorspheres from B16-F10 (CD133, CD44 and CD24 markers) or MCF-7 (CD44 and CD24 markers) cells. On the contrary, tumorspheres culture of HT-29 cells appeared to enrich in cells expressing colon CSC markers, i.e. CD133 and CD44 proteins. For the B16-F10 cell line, when 1 000 cells were injected in syngenic C57BL/6 mice, tumorspheres-forming cells displayed a significantly lower tumorigenic potential than adherent cells. Finally, tumorspheres culture of B16-F10 cells induced a down-regulation of vimentin which could explain, at least partially, the lower tumorigenicity of tumorspheres-forming cells. All these results, along with the literature, indicate that tumorspheres culture of cancer cell lines can induce an enrichment in CSC but in a cell line-dependent manner. In conclusion, extensive characterization of CSC properties in tumorspheres derived from any cancer cell line or cancer tissue must be performed in order to ensure that the generated tumorspheres are actually enriched in CSC. PMID:24586931

  7. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery.

    PubMed

    Campos, Diana; Freitas, Daniela; Gomes, Joana; Magalhães, Ana; Steentoft, Catharina; Gomes, Catarina; Vester-Christensen, Malene B; Ferreira, José Alexandre; Afonso, Luis P; Santos, Lúcio L; Pinto de Sousa, João; Mandel, Ulla; Clausen, Henrik; Vakhrushev, Sergey Y; Reis, Celso A

    2015-06-01

    Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.

  8. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

    PubMed

    Wu, Chih-Ching; Hsu, Chia-Wei; Chen, Chi-De; Yu, Chia-Jung; Chang, Kai-Ping; Tai, Dar-In; Liu, Hao-Ping; Su, Wen-Hui; Chang, Yu-Sun; Yu, Jau-Song

    2010-06-01

    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

  9. Pleomorphism and drug resistant cancer stem cells are characteristic of aggressive primary meningioma cell lines.

    PubMed

    Khan, Ishaq; Baeesa, Saleh; Bangash, Mohammed; Schulten, Hans-Juergen; Alghamdi, Fahad; Qashqari, Hanadi; Madkhali, Nawal; Carracedo, Angel; Saka, Mohamad; Jamal, Awatif; Al-Maghrabi, Jaudah; AlQahtani, Mohammed; Al-Karim, Saleh; Damanhouri, Ghazi; Saini, Kulvinder; Chaudhary, Adeel; Abuzenadah, Adel; Hussein, Deema

    2017-01-01

    Meningioma tumors arise in arachnoid membranes, and are the most reported central nervous system (CNS) tumors worldwide. Up to 20% of grade I meningioma tumors reoccur and currently predictive cancer stem cells (CSCs) markers for aggressive and drug resistant meningiomas are scarce. Meningioma tissues and primary cell lines were investigated using whole transcriptome microarray analysis, immunofluorescence staining of CSCs markers (including CD133, Sox2, Nestin, and Frizzled 9), and drug treatment with cisplatin or etoposide. Unsupervised hierarchical clustering of six meningioma samples separated tissues into two groups. Analysis identified stem cells related pathways to be differential between the two groups and indicated the de-regulation of the stem cell associated genes Reelin (RELN), Calbindin 1 (CALB1) and Anterior Gradient 2 Homolog (AGR2). Immunofluorescence staining for four tissues confirmed stemness variation in situ. Biological characterization of fifteen meningioma primary cell lines concordantly separated cells into two functionally distinct sub-groups. Pleomorphic cell lines (NG type) grew significantly faster than monomorphic cell lines (G type), had a higher number of cells that express Ki67, and were able to migrate aggressively in vitro. In addition, NG type cell lines had a lower expression of nuclear Caspase-3, and had a significantly higher number of CSCs co-positive for CD133+ Sox2+ or AGR2+ BMI1+. Importantly, these cells were more tolerant to cisplatin and etoposide treatment, showed a lower level of nuclear Caspase-3 in treated cells and harbored drug resistant CSCs. Collectively, analyses of tissues and primary cell lines revealed stem cell associated genes as potential targets for aggressive and drug resistant meningiomas.

  10. Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery

    PubMed Central

    Bocanegra, Melanie; Choi, Yoon-La; Girard, Luc; Gandhi, Jeet; Kwei, Kevin A.; Hernandez-Boussard, Tina; Wang, Pei; Gazdar, Adi F.; Minna, John D.; Pollack, Jonathan R.

    2009-01-01

    Background Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Methods Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Findings Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel

  11. Diverse effect of WWOX overexpression in HT29 and SW480 colon cancer cell lines.

    PubMed

    Nowakowska, Magdalena; Pospiech, Karolina; Lewandowska, Urszula; Piastowska-Ciesielska, Agnieszka W; Bednarek, Andrzej Kazimierz

    2014-09-01

    WW-domain-containing oxidoreductase (WWOX) is the tumour suppressor gene from the common fragile site FRA16D, whose altered expression has been observed in tumours of various origins. Its suppressive role and influence on basic cellular processes such as proliferation and apoptosis have been confirmed in many in vitro and in vivo studies. Moreover, its protein is thought to take part in the regulation of tissue morphogenesis and cell differentiation. However, its role in colon cancer formation remains unclear. The aim of this study was to characterize the influence of WWOX on the process of colon cancerogenesis, the basic features of the cancer cell and its expression profiles. Multiple biological tests, microarray experiments and quantitative reverse transcriptase (RT)-PCR were performed on two colon cancer cell lines, HT29 and SW480, which differ in morphology, expression of differentiation markers, migratory characteristics and metastasis potential and which represent negative (HT29) and low (SW480) WWOX expression levels. The cell lines were subjected to retroviral transfection, inducting WWOX overexpression. WWOX was found to have diverse effects on proliferation, apoptosis and the adhesion potential of modified cell lines. Our observations suggest that in the HT29 colon cancer cell line, increased expression of WWOX may result in the transition of cancer cells into a more normal colon epithelium phenotype, while in SW480, WWOX demonstrated well-known tumour suppressor properties. Our results also suggest that WWOX does not behave as classical tumour suppressor gene, and its influence on cell functioning is more global and complicated.

  12. Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines.

    PubMed

    Affram, Kevin; Udofot, Ofonime; Agyare, Edward

    Gemcitabine (GEM) is currently the standard option for the treatment of pancreatic cancer but its short half-life and rapid metabolism has caused for new modality for delivery of GEM. The purpose of this study was to formulate GEM loaded PEGylated thermosensitive liposomal nanoparticles (GEM-TSLnps) to increase residence time and deliver high payload of GEM to pancreatic cancer cells using mild hyperthermia (mHT). The GEM-TSLnps were formulated by thin film hydration. The cytotoxic effects of GEM and GEM-TSLnps were evaluated against human pancreatic cancer cell lines. In vitro release of GEM by TSLnps was determined at temperatures from 26°C through to 50°C. Cell viability studies, clonogenic assay, flow cytometry and confocal imaging were performed on pancreatic cancer cell lines using GEM and GEM-TSLnps + mHT. The GEM-TSLnp size was determined to be 216.10 ± 0.57 nm with entrapment efficiency of 41.10 ± 2.0%. GEM release from TSLnps was sharply increased at 42°C (60%) than at 37°C (25%), (p<0.01). In vitro cytotoxicity of GEM-TSLnps + mHT treated pancreatic cancer cell lines was significantly higher than GEM treated. The IC50 values for PANC-1, MiaPaCa-2 and BxPC-3 cells GEM-TSLnps + mHT treated were 1.2 to 3.5 fold-higher than GEM treated. Among the cell lines, GEM-TSLnps + mHT treated PANC-1 and MiaPaCa-2 cells show significantly reduced reproductive viability compared with the GEM treated cells. Flow cytometric and confocal images revealed high Rho-TSLnps cellular uptake. Our findings suggest that GEMTSLnps+ mHT can significantly enhance cytotoxic effect of GEM and could serve as a new chemotherapy modality for delivering GEM.

  13. Anticancer Potential of Cratoxylum formosum Subsp. Pruniflorum (Kurz.) Gogel Extracts Against Cervical Cancer Cell Lines.

    PubMed

    Promraksa, Bundit; Daduang, Jureerut; Khampitak, Tueanjit; Tavichakorntrakool, Ratree; Koraneekit, Amonrat; Palasap, Adisak; Tangrassameeprasert, Roongpet; Boonsiri, Patcharee

    2015-01-01

    Most northeast Thai vegetables may play roles in human health by acting as antioxidant and anticancer agents. Recent study showed that Cratoxylum formosum subsp. pruniflorum (Kurz.) Gogel. (Teawdang) could inhibit growth of liver cancer cell lines. Cervical cancer, which has human papilloma virus as its main cause, is found at high incidence in Thailand. Due to increasing drug resistance, searches for potential anticancer compounds from natural source are required. Therefore, our purpose was to evaluate the cytotoxicity of Teawdang extracts in cervical cancer cell lines. Teawdang edible parts, purchased from Khon Kaen market during July-October 2013 was extracted with organic solvent. Phenolic profiles of crude hexane (CHE), ethyl acetate (CEE), methanol (CME) and water (CWE) extracts were performed by high performance liquid chromatographic (HPLC) techniques. Their cytotoxic effects on cervical cancer cells were investigated with HPV-non infected (C-33A) and HPV-infected (HeLa and SiHa) cell lines. HPLC profiles showed that all crude extracts contained caffeine, ferulic acid and resveratrol. CME and CEE had high contents of gallic acid and quercetin. Catechin was found only in CWE. Cytotoxicity test showed that CEE had the lowest IC50 on HeLa (143.18±13.35 μg/mL) and SiHa cells (106.45±15.73 μg/mL). C-33A cells were inhibited by CWE (IC50 = 130.95±3.83 μg/mL). There were several phenolic compounds in Teawdang extracts which may have cytotoxic effects on cervical cancer cell lines. Investigation of these bioactive compounds as new sources of anticancer agents is recommended.

  14. Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines

    PubMed Central

    Affram, Kevin; Udofot, Ofonime; Agyare, Edward

    2015-01-01

    Gemcitabine (GEM) is currently the standard option for the treatment of pancreatic cancer but its short half-life and rapid metabolism has caused for new modality for delivery of GEM. The purpose of this study was to formulate GEM loaded PEGylated thermosensitive liposomal nanoparticles (GEM-TSLnps) to increase residence time and deliver high payload of GEM to pancreatic cancer cells using mild hyperthermia (mHT). The GEM-TSLnps were formulated by thin film hydration. The cytotoxic effects of GEM and GEM-TSLnps were evaluated against human pancreatic cancer cell lines. In vitro release of GEM by TSLnps was determined at temperatures from 26°C through to 50°C. Cell viability studies, clonogenic assay, flow cytometry and confocal imaging were performed on pancreatic cancer cell lines using GEM and GEM-TSLnps + mHT. The GEM-TSLnp size was determined to be 216.10 ± 0.57 nm with entrapment efficiency of 41.10 ± 2.0%. GEM release from TSLnps was sharply increased at 42°C (60%) than at 37°C (25%), (p<0.01). In vitro cytotoxicity of GEM-TSLnps + mHT treated pancreatic cancer cell lines was significantly higher than GEM treated. The IC50 values for PANC-1, MiaPaCa-2 and BxPC-3 cells GEM-TSLnps + mHT treated were 1.2 to 3.5 fold-higher than GEM treated. Among the cell lines, GEM-TSLnps + mHT treated PANC-1 and MiaPaCa-2 cells show significantly reduced reproductive viability compared with the GEM treated cells. Flow cytometric and confocal images revealed high Rho-TSLnps cellular uptake. Our findings suggest that GEMTSLnps+ mHT can significantly enhance cytotoxic effect of GEM and could serve as a new chemotherapy modality for delivering GEM. PMID:26090123

  15. Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines.

    PubMed

    Mannarreddy, Prabu; Denis, Maghil; Munireddy, Durgadevi; Pandurangan, Ranjani; Thangavelu, Kalaichelvan Puthupalayam; Venkatesan, Kaviyarasan

    2017-09-19

    The wild weed Cyperus rotundus is commonly used as traditional medicine in different parts of the world. Sequential extraction of C. rotundus rhizome with solvents of different polarity namely hexane, chloroform, ethyl acetate, methanol and water were prepared and the free radical scavenging activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Based on high antioxidant activity of methanolic extract of C. rotundus rhizome (MRCr) was further investigated for its cytotoxic effect on different human cancer cell lines-breast (MCF-7), cervical (HeLa), liver (Hep G2), prostate (PC-3), colorectal (HT-29) and normal cell line (MCF-12A) by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay evaluated as 50% inhibition of growth (IC50). Apoptosis cells were analysed by flow cytometry stained with annexin V-Fluorescein isothiocyanate conjugate (AF) and propidium iodide (PI). The cellular and nuclear changes were examined under light and fluorescent microscope using 4', 6' diamino-2-phenylindole (DAPI) stain, dual stains of AF/PI and acridine orange/ethidium bromide (AO/EB). The cytotoxic effects on the tested cancer cell lines ranged from 4.52±0.57 to 9.85±0.68μgml(-1). The migration assay was showed the inhibitory effect with MRCr. The MRCr showed significant anticancer activity against all the tested cancer cell lines and also protected the non-cancer cells. The anticancer activity suggests further elucidation for the formulation of natural pharmaceutical products in the treatment of cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Potentiation of gemcitabine by Turmeric Force in pancreatic cancer cell lines.

    PubMed

    Ramachandran, Cheppail; Resek, Anna P; Escalon, Enrique; Aviram, Anat; Melnick, Steven J

    2010-06-01

    Gemcitabine is a first line cancer drug widely used for the treatment of pancreatic cancer. However, its therapeutic efficiency is significantly limited by resistance of pancreatic cancer cells to this and other chemotherapeutic drugs. We have investigated the cytotoxic effect of Turmeric Force (TF), a supercritical and hydroethanolic extract of turmeric, alone and in combination with gemcitabine in two pancreatic carcinoma cell lines (BxPC3 and Panc-1). TF is highly cytotoxic to BxPC3 and Panc-1 cell lines with IC50 values of 1.0 and 1.22 microg/ml, respectively with superior cytotoxicity than curcumin. Gemcitabine IC50 value for both of these cell line is 0.03 microg/ml; however, 30-48% of the pancreatic cancer cells are resistant to gemcitabine even at concentrations >100 microg/ml. In comparison, TF induced cell death in 96% of the cells at 50 microg/ml. The combination of gemcitabine and TF was synergistic with IC90 levels achieved in both pancreatic cancer cell lines at lower concentrations. CalcuSyn analysis of cytotoxicity data showed that the Gemcitabine + Turmeric Force combination has strong synergism with combination index (CI) values of 0.050 and 0.183 in BxPC3 and Panc-1 lines, respectively at IC50 level. This synergistic effect is due to the increased inhibitory effect of the combination on nuclear factor-kappaB activity and signal transducer and activator of transcription factor 3 expression as compared to the single agent.

  17. Synergistic Effect of Trabectedin and Olaparib Combination Regimen in Breast Cancer Cell Lines

    PubMed Central

    Ávila-Arroyo, Sonia; Nuñez, Gema Santamaría; García-Fernández, Luis Francisco

    2015-01-01

    Purpose Trabectedin induces synthetic lethality in tumor cells carrying defects in homologous recombinant DNA repair. We evaluated the effect of concomitant inhibition of nucleotide-excision repair and poly (ADP-ribose) polymerase (PARP) activity with trabectedin and PARP inhibitors, respectively, and whether the synthetic lethality effect had the potential for a synergistic effect in breast cancer cell lines. Additionally, we investigated if this approach remained effective in BRCA1-positive breast tumor cells. Methods We have evaluated the in vitro synergistic effect of combinations of trabectedin and three different PARP inhibitors (veliparib, olaparib, and iniparib) in four breast cancer cell lines, each presenting a different BRCA1 genetic background. Antiproliferative activity, DNA damage, cell cycle perturbations and poly(ADP-ribosyl)ation were assessed by MTT assay, comet assay, flow cytometry and western blot, respectively. Results The combination of trabectedin and olaparib was synergistic in all the breast cancer cell lines tested. Our data indicated that the synergy persisted regardless of the BRCA1 status of the tumor cells. Combination treatment was associated with a strong accumulation of double-stranded DNA breaks, G2/M arrest, and apoptotic cell death. Synergistic effects were not observed when trabectedin was combined with veliparib or iniparib. Conclusion Collectively, our results indicate that the combination of trabectedin and olaparib induces an artificial synthetic lethality effect that can be used to kill breast cancer cells, independent of BRCA1 status. PMID:26770239

  18. Viability-reducing activity of Coryllus avellana L. extracts against human cancer cell lines.

    PubMed

    Gallego, Ana; Metón, Isidoro; Baanante, Isabel V; Ouazzani, Jamal; Adelin, Emilie; Palazon, Javier; Bonfill, Mercedes; Moyano, Elisabeth

    2017-02-28

    The increasing rate of cancer incidence has encouraged the search for novel natural sources of anticancer compounds. The presence of small quantities of taxol and taxanes in Corylus avellana L. has impelled new potential applications for this plant in the field of biomedicine. In the present work, the cell viability-reducing activity of stems and leaves from three different hazel trees was studiedagainst three human-derived cancer cell lines (HeLa, HepG2 and MCF-7). Both leaf and stem extracts significantly reduced viability of the three cell lines either after maceration with methanol or using taxane extraction methods. Since maceration reduced cell viability to a greater extent than taxane extraction methods, we scaled up the maceration extraction process using a method for solid/liquid extraction (Zippertex technology). Methanol leaf extracts promoted a higher reduction in viability of all cell lines assayed than stem extracts. Fractionation of methanol leaf extracts using silica gel chormatography led to the purification and identification of two compounds by HPLC-MS and NMR: (3R,5R)-3,5-dihydroxy-1,7-bis(4-hydroxyphenyl) heptane 3-O-β-d-glucopyranoside and quercetin-3-O-rhamnoside. The isolated compounds decreased viability of HeLa and HepG2 cells to a greater extent than MCF-7 cells. Our results suggest a potential use of C. avellana extracts in the pharmacotherapy of cervical cancer and hepatocarcinoma and, to a lesser extent, breast cancer.

  19. Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines

    SciTech Connect

    Lee, Won Jae; Roberts-Thomson, Sarah J.; Monteith, Gregory R. . E-mail: G.Monteith@pharmacy.uq.edu.au

    2005-11-25

    There is evidence to suggest that plasma membrane Ca{sup 2+}-ATPase (PMCA) isoforms are important mediators sssof mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184B5 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study.

  20. Profiling flavonoid cytotoxicity in human breast cancer cell lines: determination of structure-function relationships.

    PubMed

    Yadegarynia, Sina; Pham, Anh; Ng, Alex; Nguyen, Duong; Lialiutska, Tetiana; Bortolazzo, Anthony; Sivryuk, Valentin; Bremer, Martina; White, J Brandon

    2014-05-01

    Flavonoids have been shown to be cytotoxic to cancer cells. However, the mechanism of cytotoxicity has not been clearly defined. It has previously been reported that HER2/ERBB2, the estrogen receptor, progesterone receptor, and p53 were required for flavonoid induced cytotoxicity in breast cancer cell lines. We have used a panel of breast cancer cell lines, known to contain as well as be deficient in these signaling pathways, to screen fourteen different flavonoids. Comparing the cytotoxicity for all flavonoids allows us to determine if a structure-functional relationship exists between cytotoxicity and flavonoid, and if a particular signaling pathway is required for cytotoxicity. We show that several flavonoids are cytotoxic to all cell lines including primary mammary epithelial cells tested. The cytotoxic flavonoids are also able to inhibit Mitochondrial Outer Membrane Permeability while at the same time stimulate ATP levels whereas the non-cytotoxic flavonoids are not able to do this. We also show that both cytotoxic and non-cytotoxic flavonoids can transverse the cell membrane to enter MDA-MB-231 cells at different levels. Finally, all flavonoids regardless of their cytotoxicity were able to induce some form of cell cycle arrest. We conclude that for flavonoids to be strongly cytotoxic, they must possess the 2,3-double bond in the C-ring and we believe the cytotoxicity occurs through mitochondrial poisoning in both cancer and normal cells.

  1. Profiling flavonoid cytotoxicity in human breast cancer cell lines: determination of structure-function relationships.

    PubMed

    Yadegarynia, Sina; Pham, Anh; Ng, Alex; Nguyen, Duong; Lialiutska, Tetiana; Bortolazzo, Anthony; Sivryuk, Valentin; Bremer, Martina; White, J Brandon

    2012-10-01

    Flavonoids have been shown to be cytotoxic to cancer cells. However, the mechanism of cytotoxicity has not been clearly defined. It has previously been reported that HER2/ERBB2, the estrogen receptor, progesterone receptor, and p53 were required for flavonoid induced cytotoxicity in breast cancer cell lines. We have used a panel of breast cancer cell lines, known to contain as well as be deficient in these signaling pathways, to screen fourteen different flavonoids. Comparing the cytotoxicity for all flavonoids allows us to determine if a structure-functional relationship exists between cytotoxicity and flavonoid, and if a particular signaling pathway is required for cytotoxicity. We show that several flavonoids are cytotoxic to all cell lines including primary mammary epithelial cells tested. The cytotoxic flavonoids are also able to inhibit Mitochondrial Outer Membrane Permeability while at the same time stimulate ATP levels whereas the non-cytotoxic flavonoids are not able to do this. We also show that both cytotoxic and non-cytotoxic flavonoids can transverse the cell membrane to enter MDA-MB-231 cells at different levels. Finally, all flavonoids regardless of their cytotoxicity were able to induce some form of cell cycle arrest. We conclude that for flavonoids to be strongly cytotoxic, they must possess the 2,3-double bond in the C-ring and we believe the cytotoxicity occurs through mitochondrial poisoning in both cancer and normal cells.

  2. Synergistic Effect of Trabectedin and Olaparib Combination Regimen in Breast Cancer Cell Lines.

    PubMed

    Ávila-Arroyo, Sonia; Nuñez, Gema Santamaría; García-Fernández, Luis Francisco; Galmarini, Carlos M

    2015-12-01

    Trabectedin induces synthetic lethality in tumor cells carrying defects in homologous recombinant DNA repair. We evaluated the effect of concomitant inhibition of nucleotide-excision repair and poly (ADP-ribose) polymerase (PARP) activity with trabectedin and PARP inhibitors, respectively, and whether the synthetic lethality effect had the potential for a synergistic effect in breast cancer cell lines. Additionally, we investigated if this approach remained effective in BRCA1-positive breast tumor cells. We have evaluated the in vitro synergistic effect of combinations of trabectedin and three different PARP inhibitors (veliparib, olaparib, and iniparib) in four breast cancer cell lines, each presenting a different BRCA1 genetic background. Antiproliferative activity, DNA damage, cell cycle perturbations and poly(ADP-ribosyl)ation were assessed by MTT assay, comet assay, flow cytometry and western blot, respectively. The combination of trabectedin and olaparib was synergistic in all the breast cancer cell lines tested. Our data indicated that the synergy persisted regardless of the BRCA1 status of the tumor cells. Combination treatment was associated with a strong accumulation of double-stranded DNA breaks, G2/M arrest, and apoptotic cell death. Synergistic effects were not observed when trabectedin was combined with veliparib or iniparib. Collectively, our results indicate that the combination of trabectedin and olaparib induces an artificial synthetic lethality effect that can be used to kill breast cancer cells, independent of BRCA1 status.

  3. [Effect of EMP-1 gene on human esophageal cancer cell line].

    PubMed

    Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min

    2002-03-01

    EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.

  4. Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines.

    PubMed

    Dates, Centdrika R; Fahmi, Tariq; Pyrek, Sebastian J; Yao-Borengasser, Aiwei; Borowa-Mazgaj, Barbara; Bratton, Stacie M; Kadlubar, Susan A; Mackenzie, Peter I; Haun, Randy S; Radominska-Pandya, Anna

    2015-01-01

    Increased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation. In this study, steady-state mRNA levels of UGT isoforms from the 2B family were measured using qPCR in 4 breast cancer and 5 pancreatic cancer cell lines. Expression plasmids for UGT2B isoforms known to glucuronidate cellular lipids, UGT2B4, 2B7, and 2B15 were transfected into MCF-7 and Panc-1 cells, and the cytotoxic effects of these enzymes were analyzed using trypan blue exclusion, annexin V/PI staining, TUNEL assays, and caspase-3 immunohistochemistry. There was a significant decrease in cell proliferation and a significant increase in the number of dead cells after transfection with each of the 3 UGT isoforms in both cell lines. Cellular lipids were also found to be significantly decreased after transfection. The results presented here support our hypothesis and emphasize the important role UGTs can play in cellular proliferation and lipid homeostasis. Evaluating the effect of UGT expression on the lipid levels in cancer cell lines can be relevant to understanding the complex regulation of cancer cells, identifying the roles of UGTs as "lipid-controllers" in cellular homeostasis, and illustrating their suitability as targets for future clinical therapy development.

  5. 3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines.

    PubMed

    Arora, Rohit; Kumar, Rakesh; Mahajan, Jyoti; Vig, Adarsh P; Singh, Bikram; Singh, Balbir; Arora, Saroj

    2016-09-01

    The present study envisages the cytotoxic potential of 3-butenyl isothiocyanate isolated from Brassica juncea L. Czern var. Pusa Jaikisan against the human cancer cell lines viz. prostate, bone osteosarcoma, cervical, liver, neuroblastoma and breast cancer. As the compound was observed to be more effective against prostate cancer cell line, therefore, this cell line was further used to study the mechanism of cell death using neutral red assay, reactive oxygen species assay, mitochondrial membrane potential assay, microscopic and cell cycle analysis. The mechanistic analysis indicated that it induced the cell death of prostate cancer cells via apoptosis and hence made it an excellent choice as an effective anticancer compound.

  6. Modulation of cholinephosphotransferase activity in breast cancer cell lines by Ro5-4864, a peripheral benzodiazepine receptor agonist

    SciTech Connect

    Akech, Jacqueline; Roy, Somdutta Sinha; Das, Salil K. . E-mail: sdas@mmc.edu

    2005-07-22

    Changes in phospholipid and fatty acid profile are hallmarks of cancer progression. Increase in peripheral benzodiazepine receptor expression has been implicated in breast cancer. The benzodiazepine, Ro5-4864, increases cell proliferation in some breast cancer cell lines. Biosynthesis of phosphatidylcholine (PC) has been identified as a marker for cells proliferating at high rates. Cholinephosphotransferase (CPT) is the terminal enzyme for the de novo biosynthesis of PC. We have addressed here whether Ro5-4864 facilitates some cancer causing mechanisms in breast cancer. We report that cell proliferation increases exponentially in aggressive breast cancer cell lines 11-9-1-4 and BT-549 when treated with nanomolar concentrations of Ro5-4864. This increase is seen within 24 h of treatment, consistent with the cell doubling time in these cells. Ro5-4864 also upregulates c-fos expression in breast cancer cell lines 11-9-1-4 and BT-549, while expression in non-tumorigenic cell line MCF-12A was either basal or slightly downregulated. We further examined the expression of the CPT gene in breast cancer (11-9-1-4, BT-549) and non-tumorigenic cell lines (MCF-12A, MCF-12F). We found that the CPT gene is overexpressed in breast cancer cell lines compared to the non-tumorigenic cell lines. Furthermore, the activity of CPT in forming PC is increased in the breast cancer cell lines cultured for 24 h. Additionally, we examined the CPT activity in the presence of nanomolar concentrations of Ro5-4864. Biosynthesis of PC was increased in breast cancer cell lines upon treatment. We therefore propose that Ro5-4864 facilitates PC formation, a process important in membrane biogenesis for proliferating cells.

  7. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells.

    PubMed

    Hu, Hongbo; Jiang, Cheng; Li, Guangxun; Lü, Junxuan

    2005-08-01

    Methylselenol has been implicated as an active metabolite for the anticancer effect of selenium in part through the induction of cancer cell apoptosis. Since inactivation of the AKT/protein kinase B negative regulator gene PTEN (phosphatase and tensin homologue deleted on chromosome 10) is common in prostate cancer (PCa), we compared PTEN wild-type DU145 PCa cells (low basal AKT activity) with PTEN-mutant LNCaP PCa cells (high basal AKT activity) for their apoptosis responses to the methylselenol precursor methylseleninic acid (MSeA) and sodium selenite, an inorganic salt. Our results show that LNCaP cells withstood approximately 4 times higher doses of MSeA than DU145 cells, although they were slightly more sensitive than the latter to selenite-induced apoptosis. Treatment by MSeA modestly attenuated AKT phosphorylation and increased phospho-ERK1/2 in LNCaP cells. Selenite treatment increased the phosphorylation of p53 Ser15 and both kinases, but the selenite-induced apoptosis was not influenced by chemical inhibitors of either kinase. In contrast, PI3K/AKT inhibitors greatly sensitized LNCaP cells to apoptosis induced by MSeA, accompanied by increased mitochondrial release of cytochrome c and multiple caspase activation without changing p53 Ser15 phosphorylation. The apoptosis was further accentuated by extracellular signal regulated kinases 1 and 2 (ERK1/2) inhibition without further increase in cytochrome c release. The general caspase inhibitor z-VAD-fmk completely blocked MSeA-induced apoptosis when both kinases were inhibited, whereas a caspase-8 inhibitor exerted a greater protection than did a caspase-9 inhibitor. Transfection of DU145 cells with a constitutively active AKT increased their resistance to MSeA-induced apoptosis. In summary, AKT played an important role in regulating apoptosis sensitivity of LNCaP and DU145 cells to MSeA. An MSeA-induced activation of ERK1/2 in LNCaP cells also contributed to resistance to apoptosis. However, these kinases

  8. Diabetes Protects from Prostate Cancer by Downregulating Androgen Receptor: New Insights from LNCaP Cells and PAC120 Mouse Model

    PubMed Central

    Barbosa-Desongles, Anna; Hernández, Cristina; De Torres, Ines; Munell, Francina; Poupon, Marie-France; Simó, Rafael; Selva, David M.

    2013-01-01

    Type 2 diabetes has been associated with decreased risk of prostate cancer in observational studies, and this inverse association has been recently confirmed in several large cohort studies. However the mechanisms involved in this protective effect remain to be elucidated. The aim of the present study was to explore whether different features of type 2 diabetes (hyperinsulinemia, hyperglycemia and tumor necrosis factor alpha [TNF-α]) protect against the development of prostate cancer. For this purpose LNCaP cells were used for in vitro experiments and nude mice in which PAC120 (hormone-dependent human prostate cancer) xenografts had been implanted were used for in vivo examinations. We provide evidence that increasing glucose concentrations downregulate androgen receptor (AR) mRNA and protein levels through NF-κB activation in LNCaP cells. Moreover, there was a synergic effect of glucose and TNFα in downregulating the AR in LNCaP cells. By contrast, insulin had no effect on AR regulation. In vivo experiments showed that streptozotocin-induced diabetes (STZ-DM) produces tumor growth retardation and a significant reduction in AR expression in PAC120 prostate cancer mice. In conclusion, our results suggest that hyperglycemia and TNF-α play an important role in protecting against prostate cancer by reducing androgen receptor levels via NF-κB. PMID:24058525

  9. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues.

    PubMed

    Kim, Areum Daseul; Zhang, Rui; Han, Xia; Kang, Kyoung Ah; Piao, Mei Jing; Maeng, Young Hee; Chang, Weon Young; Hyun, Jin Won

    2015-09-01

    Reduced glutathione (GSH) is an abundant tripeptide present in the majority of cell types. GSH is highly reactive and is often conjugated to other molecules, via its sulfhydryl moiety. GSH is synthesized from glutamic acid, cysteine, and glycine via two sequential ATP‑consuming steps, which are catalyzed by glutamate cysteine ligase (GCL) and GSH synthetase (GSS). However, the role of GSH in cancer remains to be elucidated. The present study aimed to determine the levels of GSH and GSH synthetic enzymes in human colorectal cancer. The mRNA and protein expression levels of GSH, the catalytic subunit of GCL (GCLC) and GSS were significantly higher in the following five colon cancer cell lines: Caco‑2, SNU‑407, SNU‑1033, HCT‑116, and HT‑29, as compared with the normal colon cell line, FHC. Similarly, in 9 out of 15 patients with colon cancer, GSH expression levels were higher in tumor tissue, as compared with adjacent normal tissue. In addition, the protein expression levels of GCLC and GSS were higher in the tumor tissue of 8 out of 15, and 10 out of 15 patients with colon cancer respectively, as compared with adjacent normal tissue. Immunohistochemical analyses confirmed that GCLC and GSS were expressed at higher levels in colon cancer tissue, as compared with normal mucosa. Since GSH and GSH metabolizing enzymes are present at elevated levels in colonic tumors, they may serve as clinically useful biomarkers of colon cancer, and/or targets for anti-colon cancer drugs.

  10. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines.

    PubMed

    Vares, Guillaume; Cui, Xing; Wang, Bing; Nakajima, Tetsuo; Nenoi, Mitsuru

    2013-01-01

    Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression), which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.

  11. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines.

    PubMed

    Gallardo, Marcela; Calaf, Gloria M

    2016-09-01

    Curcumin (diferuloyl methane) is an antioxidant that exerts antiproliferative and apoptotic effects and has anti-invasive and anti-metastatic properties. Evidence strongly implicates that epithelial-mesenchymal transition (EMT) is involved in malignant progression affecting genes such as Slug, AXL and Twist1. These genes are abnormally expressed in many tumors and favor metastasis. The purpose of this study was to determine the potential effect of curcumin on EMT, migration and invasion. Triple-positive and triple-negative breast cancer cell lines for estrogen receptor (ER), progesterone receptor (PgR) and HER/neu were used: i) MCF-10F, a normal immortalized breast epithelial cell line (negative), ii) Tumor2, a malignant and tumorigenic cell line (positive) derived from Alpha5 cell line injected into the immunologically depressed mice and transformed by 60/60 cGy doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation and estrogen, and iii) a commercially available MDA-MB‑231 (negative). The effect of curcumin (30 µM for 48 h) was evaluated on expression of EMT-related genes by RT-qPCR. Results showed that curcumin decreased E-cadherin, N-cadherin, β-catenin, Slug, AXL, Twist1, Vimentin and Fibronectin protein expression, independently of the positivity of the markers in the cell lines. Curcumin also decreased migration and invasive capabilities in comparison to their own controls. It can be concluded that curcumin influenced biochemical changes associated with EMT-related genes that seems to promote such transition and are at the core of several signaling pathways that mediate the transition. Thus, it can be suggested that curcumin is able to prevent or delay cancer progression through the interruption of this process.

  12. Evaluation of apoptosis-induction by newly synthesized phthalazine derivatives in breast cancer cell lines.

    PubMed

    Arif, Jamal M; Kunhi, Muhammad; Bekhit, Adnan A; Subramanian, Manogaran P; Al-Hussein, Khalid; Aboul-Enein, Hassan Y; Al-Khodairy, Fahad M

    2006-01-01

    Newly synthesized phthalazine derivatives including copper and platinum complexes were evaluated for cytotoxicity in human breast cancer cell lines. The cells were incubated with the compounds (100 microM) for 72 h and cytotoxicity, apoptosis and DNA content were measured by flow cytometery. Our results suggest that the parent (H1-2), copper (C1-2)- and platinum (P1-2)-derivatized compounds were relatively more active in inducing apoptosis and cell killing in both human breast cancer cell lines, MDA-MB-231 cells being the more sensitive. Other compounds showed weak or no response towards these parameters except H-5 causing 40% apoptosis in MDA-MB-231 cells. Addition of copper or platinum in the structures generally reduced the apoptotic potential. Possible roles for structure activity relationships are discussed.

  13. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    NASA Astrophysics Data System (ADS)

    Coughlin, Mark F.; Fredberg, Jeffrey J.

    2013-12-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.

  14. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines.

    PubMed

    Coughlin, Mark F; Fredberg, Jeffrey J

    2013-12-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.

  15. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    PubMed Central

    Yaacob, Nik Soriani; Nengsih, Agustine; Norazmi, Mohd. Nor

    2013-01-01

    Tualang honey (TH) is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM), in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-)responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects. PMID:23476711

  16. Mono-2-ethyhexyl phthalate advancing the progression of prostate cancer through activating the hedgehog pathway in LNCaP cells.

    PubMed

    Yong, Wang; Jiao, Chen; Jianhui, Wu; Yan, Zhao; Qi, Pan; Xiu, Wang; Zuyue, Sun; Yunhui, Zhang

    2016-04-01

    Hedgehog (Hh) pathway plays a critical role in the progression of prostate cancer (PCa), the most commonly diagnosed non-cutaneous cancer in male adults. Studies showed that di-n-butyl phthalate (DBP) could interference with the Hh pathway. Di-2-ethylhexyl phthalate (DEHP), the congener of DBP, is the major plasticizer used in plastic materials that are inevitably exposed by patients with PCa. The aim of this in vitro study was to investigate whether mono-2-ethyhexyl phthalate (MEHP, the active metabolite of DEHP) could activate the Hh pathway of LNCaP cells. Results showed that the expression of the critical gene of Hh pathway PTCH and androgen-regulated gene KLK3 was significantly decreased on 3, 6 and 9 days with Hh pathway inhibitor cyclopamine's treatment. MEHP notably up-regulated the expression of PTCH with a dose-response relationship in the presence of cyclopamine, which indicate that MEHP might target on the downstream components of Hh pathway and advance the progression of PCa through activating the Hh pathway.

  17. Botulinum neurotoxin type A inhibits synaptic vesicle 2 expression in breast cancer cell lines

    PubMed Central

    Bandala, C; Cortés-Algara, AL; Mejía-Barradas, CM; Ilizaliturri-Flores, I; Dominguez-Rubio, R; Bazán-Méndez, CI; Floriano-Sánchez, E; Luna-Arias, JP; Anaya-Ruiz, M; Lara-Padilla, E

    2015-01-01

    Aim: It is known that botulinum neurotoxin type A (BoNTA) improves some kinds of cancer (e.g. prostate) and that synaptic vesicle glycoprotein 2 (SV2) is the molecular target of this neurotoxin. Besides having potential therapeutic value, this glycoprotein has recently been proposed as a molecular marker for several types of cancer. Although the mechanisms of cancer development and the improvement found with botulinum treatment are not well understood, the formation of the botulinum-SV2 complex may influence the presence and distribution of SV2 and the function of vesicles. To date, there are no reports on the possible effect of botulinum on breast cancer of unknown causes, which have a great impact on women’s health. Thus we determined the presence of SV2 in three breast cancer cell lines and the alterations found with botulinum application. Materials and methods: With and without adding 10 units of botulinum, SV2 protein expression was determined by optical densitometry in T47D, MDA-MB-231 and MDA-MB-453 cell lines and the distribution of SV2 was observed with immunochemistry (hematoxylin staining). Results: The SV2 protein was abundant in the cancer cells herein tested, and maximally so in T47D. In all three cancer cell lines botulinum diminished SV2 expression, which was found mostly in the cell periphery. Conclusion: SV2 could be a molecular marker in breast cancer. Its expression and distribution is regulated by botulinum, suggesting an interesting control mechanism for SV2 expression and a possible alternative therapy. Further studies are needed in this sense. PMID:26339411

  18. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    PubMed Central

    Damstrup, L.; Rude Voldborg, B.; Spang-Thomsen, M.; Brünner, N.; Skovgaard Poulsen, H.

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16% of the cells added to the upper chamber were able to traverse the Matrigel membrane. Expression of several matrix metalloproteases (MMP), of tissue inhibitor of MMP (TIMP) and of cathepsin B was evaluated by immunoprecipitation, Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential of SCLC cell lines. Images Figure 1 Figure 3 Figure 4 PMID:9744504

  19. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line.

    PubMed

    Oliviero, Marinelli; Romilde, Iannarelli; Beatrice, Morelli Maria; Matteo, Valisi; Giovanna, Nicotra; Consuelo, Amantini; Claudio, Cardinali; Giorgio, Santoni; Filippo, Maggi; Massimo, Nabissi

    2016-08-25

    Thyme (Thymus vulgaris) is used traditionally to prepare herbal remedies possessing expectorant, mucolytic, antitussive and antispasmodic properties. The aim of the present study was to investigate the effects of a standardized hydroalcoholic extract of thyme on primary human airway (bronchial/tracheal) epithelial cell lines in a model of lung inflammation induced by LPS. In addition, the effects of thyme extract on human lung cancer cell line (H460) were analysed. Thyme extract showed significant anti-inflammatory properties by reducing the NF-κB p65 and NF-κB p52 transcription factors protein levels followed by the decrease of pro-inflammatory cytokines (IL-1 beta and IL-8), and Muc5ac secretion in human normal bronchial and tracheal epithelial cells. Moreover, the extract showed cytotoxic effects on H460 cancer cells, modulated the release of IL-1 beta, IL-8 and down-regulated NF-κB p65 and NF-κB p52 proteins. Taken together, these results substantiated the traditional uses of thyme in the treatment of respiratory diseases. Thyme extract might be an effective treatment of chronic diseases based on inflammatory processes when hypersecretion of mucus overwhelms the ciliary clearance and obstructs airways, causing morbidity and mortality. Moreover thyme extract, evaluated in H460 lung cancer cell line, demonstrated to induce cell cytotoxicity in addition to reduce inflammatory cell signals.

  20. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines

    PubMed Central

    Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso

    2016-01-01

    AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471

  1. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response

    PubMed Central

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-01

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44% and SYNE1–SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  2. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

    PubMed

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-05

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  3. Optical Redox Ratio Differentiates Breast Cancer Cell Lines Based on Estrogen Receptor Status

    PubMed Central

    Ostrander, Julie Hanson; McMahon, Christine M.; Lem, Siya; Millon, Stacy R.; Brown, J. Quincy; Seewaldt, Victoria L.; Ramanujam, Nimmi

    2013-01-01

    Autofluorescence spectroscopy is a powerful imaging technique that exploits endogenous fluorophores. The endogenous fluorophores NADH and flavin adenine dinucleotide (FAD) are two of the principal electron donors and acceptors in cellular metabolism, respectively. The optical oxidation-reduction (redox) ratio is a measure of cellular metabolism and can be determined by the ratio of NADH/FAD. We hypothesized that there would be a significant difference in the optical redox ratio of normal mammary epithelial cells compared with breast tumor cell lines and that estrogen receptor (ER)–positive cells would have a higher redox ratio than ER-negative cells. To test our hypothesis, the optical redox ratio was determined by collecting the fluorescence emission for NADH and FAD via confocal microscopy. We observed a statistically significant increase in the optical redox ratio of cancer compared with normal cell lines (P < 0.05). Additionally, we observed a statistically significant increase in the optical redox ratio of ER(+) breast cancer cell lines. The level of ESR1 expression, determined by real-time PCR, directly correlated with the optical redox ratio (Pearson’s correlation coefficient = 0.8122, P = 0.0024). Furthermore, treatment with tamoxifen and ICI 182,870 statistically decreased the optical redox ratio of only ER(+) breast cancer cell lines. The results of this study raise the important possibility that fluorescence spectroscopy can be used to identify subtypes of breast cancer based on receptor status, monitor response to therapy, or potentially predict response to therapy. This source of optical contrast could be a potentially useful tool for drug screening in preclinical models. PMID:20460512

  4. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  5. Suvanine analogs from a Coscinoderma sp. marine sponge and their cytotoxicities against human cancer cell lines.

    PubMed

    Lee, Jeong-Woo; Lee, Hyi-Seung; Shin, Jongheon; Kang, Jong Soon; Yun, Jieun; Shin, Hee Jae; Lee, Jong Seok; Lee, Yeon-Ju

    2015-06-01

    Nine suvanine analogs including suvanine phenethylammonium salt and two new compounds were isolated from the marine sponge Coscinoderma sp., collected from Chuuk State, Federated States of Micronesia. The structures of the new compounds were elucidated by 2D NMR and HRMS analyses. Suvanine and a new analog exhibited weak but selective cytotoxicity against colon (HCT-15), lung (NCI-H23), stomach (NUGC-3), and prostate (PC-3) cancer cell lines.

  6. Fucosyltransferase activities in human pancreatic tissue: comparative study between cancer tissues and established tumoral cell lines.

    PubMed

    Mas, E; Pasqualini, E; Caillol, N; El Battari, A; Crotte, C; Lombardo, D; Sadoulet, M O

    1998-06-01

    Human pancreatic cancer is characterized by an alteration in fucose-containing surface blood group antigens such as H antigen, Lewis b, Lewis y, and sialyl-Lewis. These carbohydrate determinants can be synthesized by sequential action of alpha(2,3) sialyltransferases or alpha(1,2) fucosyltransferases (Fuc-T) and alpha(1,3/1,4) fucosyltransferases on (poly)N-acetyllactosamine chains. Therefore, the expression and the function of seven fucosyltransferases were investigated in normal and cancer pancreatic tissues and in four pancreatic carcinoma cell lines. Transcripts of FUT1, FUT2, FUT3, FUT4, FUT5, and FUT7 were detected by RT-PCR in carcinoma cell lines as well as in normal and tumoral tissues. Interestingly, the FUT6 message was only detected in tumoral tissues. Analysis of the acceptor substrate specificity for fucosyltransferases indicated that alpha(1,2) Fuc-T, alpha(1,3) Fuc-T, and alpha(1,4) Fuc-T were expressed in microsome preparations of all tissues as demonstrated by fucose incorporation into phenyl beta-d-galactoside, 2'-fucosyllactose, N-acetyllactosamine, 3'-sialyl-N-acetyllactosamine, and lacto-N-biose. However, these fucosyltransferase activities varied between tissues. A substantial decrease of alpha(1,2) Fuc-T activity was observed in tumoral tissues and cell lines compared to normal tissues. Conversely, the activity of alpha(1,4) Fuc-T, which generates Lewis a and sialyl-Lewis a structures, and that of alpha(1,3) Fuc-T, able to generate a lactodifucotetraose structure, were very important in SOJ-6 and BxPC-3 cell lines. These increases correlated with an enhanced expression of Lewis a, sialyl-Lewis a, and Lewis y on the cell surface. The activity of alpha(1,3) Fuc-T, which participates in the synthesis of the sialyl-Lewis x structure, was not significantly modified in cell lines compared to normal tissues. However, the sialyl-Lewis x antigen was expressed preferentially on the surface of SOJ-6 and BxPC-3 cell lines but was not detected on Panc-1

  7. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.

    PubMed

    Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K

    2010-08-01

    Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.

  8. Antiproliferative Evaluation of Isofuranodiene on Breast and Prostate Cancer Cell Lines

    PubMed Central

    Lambertucci, Catia; Maggi, Filippo; Papa, Fabrizio; Santinelli, Claudia

    2014-01-01

    The anticancer activity of isofuranodiene, extracted from Smyrnium olusatrum, was evaluated in human breast adenocarcinomas MDA-MB 231 and BT 474, and Caucasian prostate adenocarcinoma PC 3 cell lines by MTS assay. MTS assay showed a dose-dependent growth inhibition in the tumor cell lines after isofuranodiene treatment. The best antiproliferative activity of the isofuranodiene was found on PC 3 cells with an IC50 value of 29 μM, which was slightly less than the inhibition against the two breast adenocarcinoma cell lines with IC50 values of 59 and 55 μM on MDA-MB 231 and BT 474, respectively. Hoechst 33258 assay was performed in order to study the growth inhibition mechanism in prostate cancer cell line; the results indicate that isofuranodiene induces apoptosis. Overall, the understudy compound has a good anticancer activity especially towards the PC 3. On the contrary, it is less active on Chinese hamster ovary cells (CHO) and human embryonic kidney (HEK 293) appearing as a good candidate as a potential natural anticancer drug with low side effects. PMID:24967427

  9. Identification of Prostate Cancer-Related Genes Using Inhibition of NMD in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2007-01-01

    contains two (C)5 repeats in its open reading frame, but sequencing of the entire cDNA in LNCaP cells identified a homozygous deletion of the 857C nucleo ...together with NMD. Inhibiting NMD before blocking both transcription and NMD should result in higher basal amounts of mutant mRNA, and consequently

  10. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  11. Bracken-fern extracts induce cell cycle arrest and apoptosis in certain cancer cell lines.

    PubMed

    Roudsari, Motahhareh Tourchi; Bahrami, Ahmad Reza; Dehghani, Hesam

    2012-01-01

    Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations (200 μg/mL) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and 30 μg/mL) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

  12. Kelussia odoratissima potentiates cytotoxic effects of radiation in HeLa cancer cell line

    PubMed Central

    Hosseini, Azar; Saeidi Javadi, Shima; Fani-Pakdel, Azar; Mousavi, Seyed Hadi

    2017-01-01

    Objective: Cervical cancer is the second most common cause of death from cancer in women throughout the world. The aim of this study was to evaluate the cytotoxic activity of Kelussia odoratissima (K. odoratissima) extract associated with radiotherapy in cervical cancer cells (HeLa cell line). Materials and Methods: Different concentration of the extract (25-500µg/ml) was tested in HeLa cell lines. Cell cytotoxicity of the extract and the effects of the extract on radiation (2Gy/min)-induced damages were assessed by MTT assay. Apoptosis was assessed using flow cytometric analysis. Result: K. odoratissima decreased cell viability in HeLa cell line in a concentration and time-dependent manner. When compared to the control, K. odoratissima induced a sub-G1 peak in the flow cytometry histogram of treated cells, indicating that apoptotic cell death is involved in K. odoratissima-induced toxicity. It was also shown that K. odoratissima sensitizes cells to radiation-induced toxicity. Conclusion: Our result showed the extract increased the radiation effect. This observation may be related to the presence of active compounds such as phthalides and ferulic acid. PMID:28348969

  13. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.

    PubMed

    Tronina, Tomasz; Bartmańska, Agnieszka; Filip-Psurska, Beata; Wietrzyk, Joanna; Popłoński, Jarosław; Huszcza, Ewa

    2013-04-01

    Xanthohumol (1) and xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2″-(2'''-hydroxyisopropyl)-dihydrofurano-[4″,5″:3',4']-4',2-dihydroxy-6'-methoxy-α,β-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and xanthohumol derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. α,β-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.

  14. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.

    PubMed

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the "kinome". Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression.

  15. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines

    PubMed Central

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression. PMID:27362937

  16. Simultaneous inhibition of ATR and PARP sensitizes colon cancer cell lines to irinotecan

    PubMed Central

    Abu-Sanad, Atlal; Wang, Yunzhe; Hasheminasab, Fatemeh; Panasci, Justin; Noë, Alycia; Rosca, Lorena; Davidson, David; Amrein, Lilian; Sharif-Askari, Bahram; Aloyz, Raquel; Panasci, Lawrence

    2015-01-01

    Enhanced DNA damage repair is one mechanism involved in colon cancer drug resistance. Thus, targeting molecular components of repair pathways with specific small molecule inhibitors may improve the efficacy of chemotherapy. ABT-888 and VE-821, inhibitors of poly-ADP-ribose-polymerase (PARP) and the serine/threonine-kinase Ataxia telangiectasia related (ATR), respectively, were used to treat colon cancer cell lines in combination with the topoisomerase-I inhibitor irinotecan (SN38). Our findings show that each of these DNA repair inhibitors utilized alone at nontoxic single agent concentrations resulted in sensitization to SN38 producing a 1.4–3 fold reduction in the 50% inhibitory concentration (IC50) of SN38 in three colon cancer cell lines. When combined together, nontoxic concentrations of ABT-888 and VE-821 produced a 4.5–27 fold reduction in the IC50 of SN38 with the HCT-116 colon cancer cells demonstrating the highest sensitization as compared to LoVo and HT-29 colon cancer cells. Furthermore, the combination of all three agents was associated with maximal G2 −M arrest and enhanced DNA-damage (γH2AX) in all three colon cancer cell lines. The mechanism of this enhanced sensitization was associated with: (a) maximal suppression of SN38 induced PARP activity in the presence of both inhibitors and (b) ABT-888 producing partial abrogation of the VE-821 enhancement of SN38 induced DNA-PK phosphorylation, resulting in more unrepaired DNA damage; these alterations were only present in the HCT-116 cells which have reduced levels of ATM. This novel combination of DNA repair inhibitors may be useful to enhance the activity of DNA damaging chemotherapies such as irinotecan and help produce sensitization to this drug in colon cancer. PMID:26257651

  17. Selenium enrichment of broccoli sprout extract increases chemosensitivity and apoptosis of LNCaP prostate cancer cells

    PubMed Central

    2009-01-01

    Background Broccoli is a Brassica vegetable that is believed to possess chemopreventive properties. Selenium also shows promise as an anticancer agent. Thus, selenium enrichment of broccoli has the potential to enhance the anticancer properties of broccoli sprouts. Method Selenium-enriched broccoli sprouts were prepared using a sodium selenite solution. Their anticancer properties were evaluated in human prostate cancer cell lines and compared with those of a control broccoli sprout extract. Results Selenium-enriched broccoli sprouts were superior to normal broccoli sprouts in inhibiting cell proliferation, decreasing prostate-specific antigen secretion, and inducing apoptosis of prostate cancer cells. Furthermore, selenium-enriched broccoli sprouts but, not normal broccoli sprouts, induced a downregulation of the survival Akt/mTOR pathway. Conclusion Our results suggest that selenium-enriched broccoli sprouts could potentially be used as an alternative selenium source for prostate cancer prevention and therapy. PMID:19943972

  18. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines : Gaillardin-induced apoptosis in breast cancer cell lines.

    PubMed

    Fallahian, Faranak; Aghaei, Mahmoud; Abdolmohammadi, Mohammad Hossein; Hamzeloo-Moghadam, Maryam

    2015-12-01

    Medicinal plant extracts have been widely used for cancer treatment. Gaillardin is a natural sesquiterpene lactone that has recently been reported to have anticancer properties. The ability to induce apoptosis is an important property of a candidate anticancer drug, which discriminates between anticancer drugs and toxic compounds. The current study was therefore carried out to address the issue if Gaillardin is able to induce apoptosis in the breast cancer cell lines MCF-7 and MDA-MB-468 and to determine the underlying mechanism of its anticancer effects. Apoptosis induction by Gaillardin treatment was confirmed by annexin V-FITC/PI staining, and caspase-3,-6, and-9 activation. Using Western blot analysis, we found that Gaillardin upregulated the pro-apoptotic protein Bax and p53 and downregulated the anti-apoptotic protein Bcl-2. Moreover, the apoptotic effect of Gaillardin was also related to ROS production and loss of mitochondrial membrane potential (ΔΨm). Taken together, these results demonstrate that Gaillardin can inhibit proliferation of breast cancer cells via inducing mitochondrial apoptotic pathway and therefore, might be a promising molecule in cancer chemoprevention or chemotherapy.

  19. Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines

    PubMed Central

    Coram, Marc A.; Reddy, Anupama; Deng, Glenn; Telli, Melinda L.; Advani, Ranjana H.; Carlson, Robert W.; Mollick, Joseph A.; Sheth, Shruti; Kurian, Allison W.; Ford, James M.; Stockdale, Frank E.; Quake, Stephen R.; Pease, R. Fabian; Mindrinos, Michael N.; Bhanot, Gyan; Dairkee, Shanaz H.; Davis, Ronald W.; Jeffrey, Stefanie S.

    2012-01-01

    Background To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. Methodology/Principal Findings We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. Conclusions/Significance For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs

  20. The chemomodulatory effects of resveratrol and didox on herceptin cytotoxicity in breast cancer cell lines.

    PubMed

    Abdel-Latif, Ghada A; Al-Abd, Ahmed M; Tadros, Mariane G; Al-Abbasi, Fahad A; Khalifa, Amany E; Abdel-Naim, Ashraf B

    2015-07-09

    Herceptin is considered an essential treatment option for double negative breast cancer. Resveratrol and didox are known chemopreventive agents with potential anticancer properties. The aim of the current study is to investigate the influence of resveratrol and didox on the cytotoxicity profile of herceptin in HER-2 receptor positive and HER-2 receptor negative breast cancer cell lines (T47D and MCF-7 cell lines, respectively). The IC50's of herceptin in T47D and MCF-7 were 0.133 ± 0.005 ng/ml and 23.3795 ± 1.99 ng/ml respectively. Equitoxic combination of herceptin with resveratrol or didox in T47D significantly reduced the IC50 to 0.052 ± 0.001 and 0.0365 ± 0.001 ng/ml, respectively and similar results were obtained in MCF-7. The gene expression of BCL-xl was markedly decreased in T47D cells following treatment with herceptin/resveratrol compared to herceptin alone. Immunocytochemical staining of HER-2 receptor in T47D cells showed a significant reduction after treatment with herceptin/resveratrol combination compared to herceptin alone. On the contrary, herceptin/didox combination had no significant effect on HER-2 receptor expression. Cell cycle analysis showed an arrest at G2/M phase for both cell lines following all treatments. In conclusion, herceptin/resveratrol and herceptin/didox combinations improved the cytotoxic profile of herceptin in both T47D and MCF-7 breast cancer cell lines.

  1. Cytotoxicity of neolignans identified in Saururus chinensis towards human cancer cell lines.

    PubMed

    Hahm, Jong-Cheon; Lee, In-Kyoung; Kang, Won-Ki; Kim, Soo-Un; Ahn, Young-Joon

    2005-05-01

    The cytotoxicity of compounds derived from the aerial parts of Saururus chinensis towards 24 cancer model and six normal cell lines was examined by MTT assay and compared with those of the anticancer agents cisplatin and doxorubicin. The active principles were characterized as the neolignans manassantin A, and its erythro, erythro- and threo, erythro-epimers by spectroscopic analysis. Manassantin A was isolated from S. chinensis as a new cytotoxic principle. Its two epimers were isolated for the first time in nature. The neolignans were more active than cisplatin and doxorubicin, with IC50 values of the neolignans, cisplatin, and doxorubicin against SK-Hep-1, PC-3, DU-145, BT-20, SK-BR-3, T-47D, Hela, T98G, and SK-MEL-28 cancer cell lines, in the ranges 0.018-0.423, 1.175-7.922, and 0.131- >50 microg/mL, respectively. Manassantin A and its threo, erythro-epimer were equicytotoxic towards model cancer cell lines. threo, erythro-Manassantin A was more active than erythro, erythro-manassantin A. Additionally, these three neolignans (IC50 > 10 microg/mL) had very low cytotoxicity towards six normal cell lines, whereas cisplatin (IC50 2.846-0.825 microg/mL) and doxorubicin (IC50 5.222-0.008 microg/mL) exhibited potent cytotoxic effects. Structure-activity relationships indicate that the hydroxy moiety appears to be essential for cytotoxicity. These neolignans merit further study as potential anticancer agents or as leads.

  2. Identification and Characterization of CD133(pos) Subpopulation Cells From a Human Laryngeal Cancer Cell Line.

    PubMed

    Qiu, Hai-ou; Wang, Huifang; Che, Na; Li, Dong; Mao, Yong; Zeng, Qiao; Ge, Rongming

    2016-04-06

    Recent research indicates that CD133 are expressed in several kinds of stem cells, among which, its high expression in laryngeal carcinoma has caused wide concern. To further explore efficaciously targeting drugs to laryngeal carcinoma stem cells (CSCs), we transplanted a solid tumor from CSCs into abdominal subcutaneous tissue of nude mice, and then compared the biological characteristics of laryngeal solid tumors with or without cisplatin intervention. In this study, the expression of CD133 was detected in the Hep-2 cell line by flow cytometry. By applying magnetic cell sorting (MACS) technology, we reported the results of purifying CD133-positive cells from a Hep-2 cell line. Cell proliferation, colony formation, and tumor-forming ability were examined in vitro and in vivo to identify the marker of CSCs in Hep-2 cell line. Upon flow cytometry analysis, CD133 was expressed constantly on 40.12±1.32% in Hep-2 cell line. Cell proliferation and colony formation ability were higher in CD133-positive cells compared to CD133-negative cells, and the in vivo tumorigenesis experiment showed the same results as in vitro assay. The 2 subpopulations cells were both sensitive to DDP, among which, the effect of DPP on proliferation ability and tumor-forming ability of CD133-positive cells was obviously greater than that of CD133-negative cells. Above all, our study revealed that CD133-positive cells have properties of higher proliferation, colony formation, and tumorigenesis in Hep-2 cell line, indicating that CD133 could be a marker to characterize laryngeal cancer stem cells.

  3. Biological characteristics of side population cells in a self-established human ovarian cancer cell line

    PubMed Central

    WEI, ZHENTONG; LV, SHUANG; WANG, YISHU; SUN, MEIYU; CHI, GUANGFAN; GUO, JUN; SONG, PEIYE; FU, XIAOYU; ZHANG, SONGLING; LI, YULIN

    2016-01-01

    The aim of the present study was to establish an ovarian cancer (OC) cell line from ascites of an ovarian serous cystadenocarcinoma patient and investigate the biological characteristics of its side population (SP) cells. The OC cell line was established by isolating, purifying and subculturing primary cells from ascites of an ovarian serous cystadenocarcinoma patient (stage IIIc; grade 3). SP and non-SP (NSP) cells were isolated by fluorescence-activated cell sorting and cultured in serum-free medium and soft agar to compare the tumorsphere and colony formation capacities. Furthermore, SP and NSP cell tumorigenesis was examined by subcutaneous and intraperitoneal injection of the cells to non-obese diabetic/severe combined immune deficiency (NOD/SCID) mice. Drug resistance to cisplatin was examined by cell counting kit-8. The OC cell line was successfully established from ascites of an ovarian serous cystadenocarcinoma patient, which exhibited properties similar to primary tumors subsequent to >50 passages and >2 years of culture. The SP cell ratio was 0.38% in the OC cell line, and a similar SP cell ratio (0.39%) was observed when sorted SP cells were cultured for 3 weeks. Compared with NSP cells, SP cells exhibited increased abilities in differentiation and tumorsphere and colony formation, in addition to the formation of xenografted tumors and ascites and metastasis of the tumors in NOD/SCID mice, even at low cell numbers (3.0×103 cells). The xenografted tumors demonstrated histological features similar to primary tumors and expressed the ovarian serous cystadenocarcinoma marker CA125. In addition, SP cells demonstrated a significantly stronger drug resistance to cisplatin compared with NSP and unsorted cells, while treatment with verapamil, an inhibitor of ATP-binding cassette transporters, potently abrogated SP cell drug resistance. In conclusion, the present study verified SP cells from an established OC cell line and characterized the cells with self

  4. Proteomic Analysis of Microvesicles Released by the Human Prostate Cancer Cell Line PC-3

    PubMed Central

    Sandvig, Kirsten; Llorente, Alicia

    2012-01-01

    Cancer biomarkers are invaluable tools for cancer detection, prognosis, and treatment. Recently, microvesicles have appeared as a novel source for cancer biomarkers. We present here the results from a proteomic analysis of microvesicles released to the extracellular environment by the metastatic prostate cancer cell line PC-3. Using nanocapillary liquid chromatography-tandem mass spectrometry 266 proteins were identified with two or more peptide sequences. Further analysis showed that 16% of the proteins were classified as extracellular and that intracellular proteins were annotated in a variety of locations. Concerning biological processes, the proteins found in PC-3 cell-released microvesicles are mainly involved in transport, cell organization and biogenesis, metabolic process, response to stimulus, and regulation of biological processes. Several of the proteins identified (tetraspanins, annexins, Rab proteins, integrins, heat shock proteins, cytoskeletal proteins, 14–3-3 proteins) have previously been found in microvesicles isolated from other sources. However, some of the proteins seem to be more specific to the vesicular population released by the metastatic prostate cancer PC-3 cell line. Among these proteins are the tetraspanin protein CD151 and the glycoprotein CUB domain-containing protein 1. Interestingly, our results show these proteins are promising biomarkers for prostate cancer and therefore candidates for clinical validation studies in biological fluids. PMID:22457534

  5. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2007-03-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well in the pathogenesis of endocrine-related cancers. Previous experiments have shown that many kallikrein genes are under steroid hormone regulation in breast cancer cell lines. We here examine the coordinated expression of multiple kallikrein genes in several breast cancer cell lines after steroid hormone stimulation. Breast cancer cell lines were treated with various steroid hormones and kallikrein (KLK/hK) expression of hK3 (prostate-specific antigen, PSA), hK5, hK6, hK7, hK8, hK10, hK11, hK13, and hK14 was analyzed at the RNA level via RT-PCR and at the protein level by immunofluorometric ELISA assays. We identified several distinct hK hormone-dependent and hormone-independent expression patterns. Hormone-specific modulation of expression was seen for several kallikreins in BT-474, MCF-7, and T-47D cell lines. hK6 was specifically up-regulated upon estradiol treatment in all three cell lines whereas PSA expression was induced by dihydrotestosterone (DHT) and norgestrel stimulation in BT-474 and T-47D. hK10, hK11, hK13, and hK14 were specifically up-regulated by DHT in T-47D and by estradiol in BT-474 cells. Bioinformatic analysis of upstream proximal promoter sequences for these hKs did not identify any recognizable hormone-response elements (HREs), suggesting that the coordinated activation of these four hKs represents a unique expression "cassette", utilizing a common hormone-dependent mechanism. We conclude that groups of human hKs are coordinately expressed in a steroid hormone-dependent manner. Our data supports clinical observations linking expression of multiple hKs with breast cancer prognosis.

  6. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase.

    PubMed

    Bowles, Tawnya L; Kim, Randie; Galante, Joseph; Parsons, Colin M; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J

    2008-10-15

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is underexpressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by approximately 50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed.

  7. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase

    PubMed Central

    Bowles, Tawnya L.; Kim, Randie; Galante, Joseph; Parsons, Colin M.; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J.

    2009-01-01

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is under-expressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by ∼50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed. PMID:18661517

  8. Novel Pancreatic Cancer Cell Lines Derived from Genetically Engineered Mouse Models of Spontaneous Pancreatic Adenocarcinoma: Applications in Diagnosis and Therapy

    PubMed Central

    Souchek, Joshua J.; Mallya, Kavita; Johansson, Sonny L.; Batra, Surinder K.

    2013-01-01

    Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs. PMID:24278292

  9. Cytoskeleton alteration in MCF7R cells, a multidrug resistant human breast cancer cell line.

    PubMed

    Bichat, F; Mouawad, R; Solis-Recendez, G; Khayat, D; Bastian, G

    1997-01-01

    Various cytoskeleton modifications are associated with malignant cell transformation and have been used as prognostic factors. A human breast cancer cell line (MCF7S) and its multidrug resistant (MDR) subline (MCF7R) were characterized here for their intermediate filaments (IFs) expression (cytokeratin 8, 18, 19 and vimentin) as a function of their resistance phenotype. Modifications of these cytoskeleton molecules were analyzed by flow cytometry, immunofluorescence, electrophoresis and immunoblotting techniques. Cytokeratins 8 and 18 were similarly expressed in the cell lines. Cytokeratin 19 was expressed in the MCF7S cell line and not in the MCF7R variant, while vimentin was highly expressed in MCF7R and slightly in MCF7S. Analysis of IFs after the addition of doxorubicin (Dox) in the culture medium of MCF7S, showed an increase in cytokeratin 8 filaments. Vimentin expression in MCF7R was not modified in the presence of these different MDR modulators. Acquisition of MDR was associated with an increase and a redistribution of vimentin filaments characterized by a perinuclear polarization. These drug resistance associated changes might derive from different biological processes triggered by chemotherapy. In conclusion, this suggests that this intermediate filament could be a marker associated with chemoresistance or a marker of malignancy in certain epithelial cancers.

  10. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots.

    PubMed

    Singh, Braj R; Singh, Brahma N; Khan, W; Singh, H B; Naqvi, A H

    2012-08-01

    Cadmium sulfide (CdS) quantum dots (QDs) have raised great attention because of their superior optical properties and wide utilization in biological and biomedical studies. However, little is known about the cell death mechanisms of CdS QDs in human cancer cells. This study was designed to investigate the possible mechanisms of apoptosis induced by biosurfactant stabilized CdS QDs (denoted as "bsCdS QDs") in human prostate cancer LNCaP cells. It was also noteworthy that apoptosis correlated with reactive oxygen species (ROS) production, mitochondrial damage, oxidative stress and chromatin condensation in a dose- and time-dependent manner. Results also showed involvement of caspases, Bcl-2 family proteins, heat shock protein 70, and a cell-cycle checkpoint protein p53 in apoptosis induction by bsCdS QDs in LNCaP cells. Moreover, pro-apoptotic protein Bax was upregulated and the anti-apoptotic proteins, survivin and NF-κB were downregulated in bsCdS QDs exposed cells. Protection of N-acetyl cysteine (NAC) against ROS clearly suggested the implication of ROS in hyper-activation of apoptosis and cell death. It is encouraging to conclude that biologically stabilized CdS QDs bear the potential of its applications in biomedicine, such as tumor therapy specifically by inducing caspase-dependent apoptotic cell death of human prostate cancer LNCaP cells.

  11. Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator ΔNp63α

    PubMed Central

    Portillo-Lara, Roberto; Alvarez, Mario Moisés

    2015-01-01

    Background Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Nevertheless, the development of specific therapies against CSCs is hindered by the scarcity of these cells in prostate tissues. Suspension culture systems have been reported to enrich CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying this phenomenon have not been fully explored. Methodology/Principal Findings We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene expression profiling was then carried out using the Cancer Reference panel and the nCounter system from NanoString Technologies. This analysis revealed several upregulated transcripts that can be further explored as potential diagnostic markers or therapeutic targets. Furthermore, functional annotation analysis suggests that ΔNp63α modulates the activation of developmental pathways responsible for the increased stem identity of cells growing in suspension cultures. Conclusions/Significance We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us to better understand the molecular pathways that underlie CSC pathophysiology. This platform can be readily adapted to enrich and assay actual patient samples, in order to design patient-specific therapies that are aimed particularly against CSCs. PMID:26110651

  12. Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator ΔNp63α.

    PubMed

    Portillo-Lara, Roberto; Alvarez, Mario Moisés

    2015-01-01

    Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Nevertheless, the development of specific therapies against CSCs is hindered by the scarcity of these cells in prostate tissues. Suspension culture systems have been reported to enrich CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying this phenomenon have not been fully explored. We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene expression profiling was then carried out using the Cancer Reference panel and the nCounter system from NanoString Technologies. This analysis revealed several upregulated transcripts that can be further explored as potential diagnostic markers or therapeutic targets. Furthermore, functional annotation analysis suggests that ΔNp63α modulates the activation of developmental pathways responsible for the increased stem identity of cells growing in suspension cultures. We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us to better understand the molecular pathways that underlie CSC pathophysiology. This platform can be readily adapted to enrich and assay actual patient samples, in order to design patient-specific therapies that are aimed particularly against CSCs.

  13. Oxaliplatin induces different cellular and molecular chemoresistance patterns in colorectal cancer cell lines of identical origins

    PubMed Central

    2013-01-01

    Background Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drug’s efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drug’s clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively. Results Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells’ adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P < 0.001). The treatment with oxaliplatin caused major DNA cross-links in both parental cell lines; in Colo320R small amounts of DNA cross-links were still detectable, while in HT-29R not. We identified 441 differentially expressed genes in Colo320R and 613 in HT-29R as compared to their parental counterparts (at least 1.5 -fold up- or down- regulation, p < 0.05). More disrupted functions and pathways were detected in HT-29R cell line than in Colo320R, involving genes responsible for apoptosis inhibition, cellular proliferation and epithelial-to-mesenchymal transition. Several upstream

  14. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro.

    PubMed

    Frajese, Giovanni Vanni; Benvenuto, Monica; Fantini, Massimo; Ambrosin, Elena; Sacchetti, Pamela; Masuelli, Laura; Giganti, Maria Gabriella; Modesti, Andrea; Bei, Roberto

    2016-06-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro.

  15. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  16. Oestradiol reduces liver receptor homolog-1 mRNA transcript stability in breast cancer cell lines.

    PubMed

    Lazarus, Kyren A; Zhao, Zhe; Knower, Kevin C; To, Sarah Q; Chand, Ashwini L; Clyne, Colin D

    2013-08-30

    The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E2), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER- cells. However, the presence of LRH-1 protein in ER- cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER- breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER- compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E2, showed increased mRNA stability in ER- versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E2 treatment, this effect mediated by ERα. Our data demonstrates that in ER- cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER- cells as well as ER- tumors suggests a possible role in the development of ER- tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER- and ER+ breast cancer.

  17. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression.

    PubMed

    Habib, Fouad K; Ross, Margaret; Ho, Clement K H; Lyons, Valerie; Chapman, Karen

    2005-03-20

    The phytotherapeutic agent Serenoa repens is an effective dual inhibitor of 5alpha-reductase isoenzyme activity in the prostate. Unlike other 5alpha-reductase inhibitors, Serenoa repens induces its effects without interfering with the cellular capacity to secrete PSA. Here, we focussed on the possible pathways that might differentiate the action of Permixon from that of synthetic 5alpha-reductase inhibitors. We demonstrate that Serenoa repens, unlike other 5alpha-reductase inhibitors, does not inhibit binding between activated AR and the steroid receptor-binding consensus in the promoter region of the PSA gene. This was shown by a combination of techniques: assessment of the effect of Permixon on androgen action in the LNCaP prostate cancer cell line revealed no suppression of AR and maintenance of PSA protein expression at control levels. This was consistent with reporter gene experiments showing that Permixon failed to interfere with AR-mediated transcriptional activation of PSA and that both testosterone and DHT were equally effective at maintaining this activity. Our results demonstrate that despite Serenoa repens effective inhibition of 5alpha-reductase activity in the prostate, it did not suppress PSA secretion. Therefore, we confirm the therapeutic advantage of Serenoa repens over other 5alpha-reductase inhibitors as treatment with the phytotherapeutic agent will permit the continuous use of PSA measurements as a useful biomarker for prostate cancer screening and for evaluating tumour progression.

  18. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines.

    PubMed

    Destefanis, Michele; Viano, Marta; Leo, Christian; Gervino, Gianpiero; Ponzetto, Antonio; Silvagno, Francesca

    2015-01-01

    To date, the effects of electromagnetic fields on cell metabolism have been overlooked. The objective of the present study was to investigate the influence of extremely low frequency electromagnetic fields (ELF-EMF) over mitochondrial metabolism and the consequent impact on cancer cell growth. The effects of ELF-EMF on cancer growth were investigated in several human cancer cell lines by crystal violet assay. The modulation of mitochondrial activity was assessed by cytofluorimetric evaluation of membrane potential and by real-time quantification of mitochondrial transcription. Moreover the expression of several mitochondrial proteins and their levels in the organelle were evaluated. The long-term exposure to ELF-EMF reduced the proliferation of several cancer cell lines and the effect was associated to an increased mitochondrial activity without evident changes in ATP levels. The results of our experiments excluded a transcriptional modulation of mitochondrial respiratory complexes, rather suggesting that ELF-EMF increased the energy demand. The altered mitochondrial metabolism led to changes in mitochondrial protein profile. In fact we found a downregulated expression of mitochondrial phospho-ERK, p53 and cytochrome c. The results of the present study indicate that ELF-EMF can negatively modulate cancer cell growth increasing respiratory activity of cells and altering mitochondrial protein expression.

  19. Evaluation of nitric oxide donors impact on cisplatin resistance in various ovarian cancer cell lines.

    PubMed

    Kielbik, Michal; Szulc-Kielbik, Izabela; Nowak, Marek; Sulowska, Zofia; Klink, Magdalena

    2016-10-01

    Ovarian cancer chemoresistance, both intrinsic and acquired, is the main obstacle in improving the outcome of anticancer therapies. Therefore the development of new treatment strategies, including the use of new compounds that can support the standard therapeutics is required. Among many candidates, nitric oxide (NO) donors, agents with multivalent targeted activities in cancer cells, are worth considering. The aim of this study was evaluation of SPER/NO and DETA/NO ability to enhance cisplatin cytotoxicity against different ovarian cancer cell lines. Obtained data indicate that NO donors action varies between different cancer cell lines and is strongest in low aggressive and cisplatin sensitive cells. While statistically significant, the enhancement of cisplatin cytotoxicity by NO donors is of low magnitude. The rise in the percentage of late apoptotic/necrotic ovarian cancer cells may suggest that NO donors enhancement action might be based on the cellular ATP depletion. Nevertheless, no significant impact of the NO donors, cisplatin or their combination on the expressions of ABCB1, BIRC5 and PTEN genes has been found. Although our data puts the therapeutical potential of NO donors to aid cisplatin action in question it may also point out at the further approach to utilize these compounds in therapies.

  20. Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines.

    PubMed

    Villalobos, Xenia; Rodríguez, Laura; Solé, Anna; Lliberós, Carolina; Mencia, Núria; Ciudad, Carlos J; Noé, Véronique

    2015-08-01

    We studied the ability of polypurine reverse Hoogsteen hairpins (PPRHs) to silence a variety of relevant cancer-related genes in several human cell lines. PPRHs are hairpins formed by two antiparallel polypurine strands bound by intramolecular Hoogsteen bonds linked by a pentathymidine loop. These hairpins are able to bind to their target DNA sequence through Watson-Crick bonds producing specific silencing of gene expression. We designed PPRHs against the following genes: BCL2, TOP1, mTOR, MDM2, and MYC and tested them for mRNA levels, cytotoxicity, and apoptosis in prostate, pancreas, colon, and breast cancer cell lines. Even though all PPRHs were effective, the most remarkable results were obtained with those against BCL2 and mammalian target of rapamycin (mTOR) in decreasing cell survival and mRNA levels and increasing apoptosis in prostate, colon, and pancreatic cancer cells. In the case of TOP1, MDM2, and MYC, their corresponding PPRHs produced a strong effect in decreasing cell viability and mRNA levels and increasing apoptosis in breast cancer cells. Thus, we confirm that the PPRH technology is broadly useful to silence the expression of cancer-related genes as demonstrated using target genes involved in metabolism (DHFR), proliferation (mTOR), DNA topology (TOP1), lifespan and senescence (telomerase), apoptosis (survivin, BCL2), transcription factors (MYC), and proto-oncogenes (MDM2).

  1. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines.

    PubMed

    Lautenschlaeger, Tim; Perry, James; Peereboom, David; Li, Bin; Ibrahim, Ahmed; Huebner, Alexander; Meng, Wei; White, Julia; Chakravarti, Arnab

    2013-10-23

    Brain metastasis from breast cancer poses a major clinical challenge. Integrins play a role in regulating adhesion, growth, motility, and survival, and have been shown to be critical for metastatic growth in the brain in preclinical models. Cilengitide, an αvβ3/αvβ5 integrin inhibitor, has previously been studied as an anti-cancer drug in various tumor types. Previous studies have shown additive effects of cilengitide and radiation in lung cancer and glioblastoma cell lines. The ability of cilengitide to enhance the effects of radiation was examined preclinically in the setting of breast cancer to assess its possible efficacy in the setting of brain metastasis from breast cancer. Our panel of breast cells was composed of four cell lines: T-47D (ER/PR+, Her2-, luminal A), MCF-7 (ER/PR+, Her2-, luminal A), MDA-MB-231 (TNBC, basal B), MDA-MB-468 (TNBC, basal A). The presence of cilengitide targets, β3 and β5 integrin, was first determined. Cell detachment was determined by cell counting, cell proliferation was determined by MTS proliferation assay, and apoptosis was measured by Annexin V staining and flow cytometry. The efficacy of cilengitide treatment alone was analyzed, followed by assessment of combined cilengitide and radiation treatment. Integrin β3 knockdown was performed, followed by cilengitide and radiation treatment to test for incomplete target inhibition by cilengitide, in high β3 expressing cells. We observed that all cell lines examined expressed both β3 and β5 integrin and that cilengitide was able to induce cell detachment and reduced proliferation in our panel. Annexin V assays revealed that a portion of these effects was due to cilengitide-induced apoptosis. Combined treatment with cilengitide and radiation served to further reduce proliferation compared to either treatment alone. Following β3 integrin knockdown, radiosensitization in combination with cilengitide was observed in a previously non-responsive cell line (MDA-MB-231

  2. The human ovarian cancer cell line CABA I: A peculiar genetic evolution.

    PubMed

    Giusti, Ilaria; Cervelli, Carla; D'Ascenzo, Sandra; Di Francesco, Marianna; Ligas, Claudio; D'Alessandro, Elvira; Papola, Franco; Dolo, Vincenza

    2016-04-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian cancer cells.

  3. Apoptosis/Necrosis Induction by Ultraviolet, in ER Positive and ER Negative Breast Cancer Cell Lines

    PubMed Central

    Shokrollahi Barough, Mahdieh; Hasanzadeh, Hadi; Barati, Mehdi; Pak, Fatemeh; Kokhaei, Parviz; Rezaei-Tavirani, Mostafa

    2015-01-01

    Background: Ultraviolet (UV) light exposure has been one of the major inducers of apoptosis. UV exposure has caused pyrimidine dimers and DNA fragmentation which might lead to cell cycle arrest and apoptosis signals activation. UV induced apoptosis has investigated in MDA-MB 468 as an ER negative breast adenocarcinoma and MCF-7 as an ER positive breast cancer cell line. Apoptosis induction rate by UV might be different in these two types of cells due to different biological characteristics of the cell. Objectives: In this paper we have evaluated serial dose of UV-B exposure on ER positive and ER negative breast cancer cell lines and its effect on apoptosis or necrosis induction in these cells. Materials and Methods: MDA-MB468 and MCF-7 cell lines have cultured for 24 hours and UV exposure has carried out at 290 nm at dose of 154 J/m2 to 18 KJ/m2 using UV lamp. UV exposed cells have incubated in cell culture condition for 24 or 48 hours following UV exposure and the cells have stained and analyzed by flow cytometry for apoptosis evaluation by Annexin V/PI method. Results: Apoptosis rate (PI and Annexin V double positive cells) after 24 hours incubation was higher in 24 hours in comparison with 48 hours incubation in both cell lines. The frequency of PI positive MDA-MB 468 cells was higher than PI and Annexin V double positive cells after 48 hours. PI positive MDA-MB 468 cells were significantly higher than MCF-7 cells in 24 hours incubation time. Conclusions: The results have shown that MDA-MB 468 cells were more sensitive to UV exposure and DNA fragmentation and necrosis pathway was dominant in these cells. PMID:26855725

  4. The human ovarian cancer cell line CABA I: A peculiar genetic evolution

    PubMed Central

    GIUSTI, ILARIA; CERVELLI, CARLA; D'ASCENZO, SANDRA; DI FRANCESCO, MARIANNA; LIGAS, CLAUDIO; D'ALESSANDRO, ELVIRA; PAPOLA, FRANCO; DOLO, VINCENZA

    2016-01-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian cancer cells. PMID:26934856

  5. Differential Immune Reactivity Pattern of SW48 and SW1116 Colorectal Cancer Cell Lines with Colorectal Cancer Patients Sera

    PubMed Central

    Ghalamfarsa, Ghasem; Hosseini, Seyyed Vahid; Hamidinia, Maryam; Ghaderi, Abbas; Mahmoudi, Mahmoud; Mojtahedi, Zahra

    2017-01-01

    Background: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. It is also known as the second leading cause of deaths as the early stage detection is not yet available by current methods. So identification of biomarkers can also be functional in early diagnosis and prognosis. Materials and Methods: We examined sera from 60 CRC patients of different stages as a source of auto-antibody as well as two human CRC cell lines with different invasive capacities (SW48 and SW1116) as the source of antigens. The pattern of immune reactivity in immuneblotting tests between mentioned cell lines and CRC patients’ sera were evaluated by ImageJ software. Results: The Immune reactivity pattern of two cell lines (SW48 and SW1116) with CRC patients’ sera were different in band intensities and the most immune reactivity intensity was observed in SW48 cell lysate with sera from Stage III CRC patients. Conclusion: Due to the humoral immune response, sera from Stage III CRC patients contained autoantibodies that demonstrated higher immune reactivity. Moreover, SW48 cell line with high aggressive behavior reacted to CRC patients’ sera with greater intensity compared with less aggressive behavior cell line (SW1116). Therefore, it is required to use other techniques such as two-dimensional electrophoresis and mass spectrometry. PMID:28217651

  6. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Sterzyńska, Karolina; Zaorska, Katarzyna; Sosińska, Patrycja; Klejewski, Andrzej; Brązert, Maciej; Nowicki, Michał; Zabel, Maciej

    2016-10-18

    Multiple drug resistance (MDR) of cancer cells is the main reason of intrinsic or acquired insensitivity to chemotherapy in many cancers. In this study we used ovarian cancer model of acquired drug resistance to study development of MDR. We have developed eight drug resistant cell lines from A2780 ovarian cancer cell line: two cell lines resistant to each drug commonly used in ovarian cancer chemotherapy: cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX) and topotecan (TOP). A chemosensitivity assay - MTT was performed to assess drug cross-resistance. Quantitative real-time polymerase chain reaction and immunofluorescence were also performed to determine mRNA and protein expression of genes/proteins involved in drug resistance (P-gp, BCRP, MRP1, MRP2, MVP). Flow cytometry was used to determine the activity of drug transporters. We could observe cross-resistance between PAC- and DOX-resistant cell lines. Additionally, both PAC-resistant cell lines were cross-resistant to TOP and both TOP-resistant cell lines were cross-resistant to DOX. We observed two different mechanisms of resistance to TOP related to P-gp and BCRP expression and activity. P-gp and BCRP were also involved in DOX resistance. Expression of MRP2 was increased in CIS-resistant cell lines and increased MVP expression was observed in CIS-, PAC- and TOP-, but not in DOX-resistant cell lines. Effectiveness of TOP and DOX in second line of chemotherapy in ovarian cancer can be limited because of their cross-resistance to PAC. Moreover, cross-resistance of PAC-resistant cell line to CIS suggests that such interaction between those drugs might also be probable in clinic.

  7. Role of p16/MTS1, cyclin D1 and RB in primary oral cancer and oral cancer cell lines

    PubMed Central

    Sartor, M; Steingrimsdottir, H; Elamin, F; Gäken, J; Warnakulasuriya, S; Partridge, M; Thakker, N; Johnson, N W; Tavassoli, M

    1999-01-01

    One of the most important components of G1 checkpoint is the retinoblastoma protein (pRB110). The activity of pRB is regulated by its phosphorylation, which is mediated by genes such as cyclin D1 and p16/MTS1. All three genes have been shown to be commonly altered in human malignancies. We have screened a panel of 26 oral squamous cell carcinomas (OSCC), nine premalignant and three normal oral tissue samples as well as eight established OSCC cell lines for mutations in the p16/MTS1 gene. The expression of p16/MTS1, cyclin D1 and pRB110 was also studied in the same panel. We have found p16/MTS1 gene alterations in 5/26 (19%) primary tumours and 6/8 (75%) cell lines. Two primary tumours and five OSCC cell lines had p16/MTS1 point mutations and another three primary and one OSCC cell line contained partial gene deletions. Six of seven p16/MTS1 point mutations resulted in termination codons and the remaining mutation caused a frameshift. Western blot analysis showed absence of p16/MTS1 expression in 18/26 (69%) OSCC, 7/9 (78%) premalignant lesions and 8/8 cell lines. One cell line, H314, contained a frameshift mutation possibly resulting in a truncated p16/MTS1 protein. pRB was detected in 14/25 (56%) of OSCC but only 11/14 (78%) of these contained all or some hypophosphorylated (active) pRB. In premalignant samples, 6/8 (75%) displayed pRB, and all three normal samples and eight cell lines analysed contained RB protein. p16/MTS1 protein was undetectable in 10/11 (91%) OSCCs with positive pRB. Overexpression of cyclin D1 was observed in 9/22 (41%) OSCC, 3/9 (33%) premalignant and 8/8 (100%) of OSCC cell lines. Our data suggest p16/MTS1 mutations and loss of expression to be very common in oral cancer cell lines and less frequent in primary OSCC tumours. A different pattern of p16/MTS1 mutations was observed in OSCC compared to other cancers with all the detected p16/MTS1 mutations resulting in premature termination codons or a frameshift. The RB protein was expressed

  8. U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line

    PubMed Central

    Eskin, Ascia; Lee, Hane; Merriman, Barry; Nelson, Stanley F.

    2010-01-01

    U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer genome sequencing, we have generated greater than 30× genomic sequence coverage using a novel 50-base mate paired strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair information identified 35 interchromosomal translocation events, 1,315 structural variations (>100 bp), 191,743 small (<21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina 1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP. These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers. The sequence analysis of U87MG provides an unparalleled level of mutational

  9. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D.

    PubMed

    Gagné, Jean-Philippe; Gagné, Pierre; Hunter, Joanna M; Bonicalzi, Marie-Eve; Lemay, Jean-François; Kelly, Isabelle; Le Page, Cécile; Provencher, Diane; Mes-Masson, Anne-Marie; Droit, Amaud; Bourgais, David; Poirier, Guy G

    2005-07-01

    A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.

  10. Anti-invasive activity of diallyl disulfide through tightening of tight junctions and inhibition of matrix metalloproteinase activities in LNCaP prostate cancer cells.

    PubMed

    Shin, Dong Yeok; Kim, Gi-Young; Kim, Jung-In; Yoon, Moo Kyoung; Kwon, Taeg Kyu; Lee, Su Jae; Choi, Young-Whan; Kang, Ho Sung; Yoo, Young Hyun; Choi, Yung Hyun

    2010-09-01

    Diallyl disulfide (DADS) is a major component of an oil-soluble allyl sulfide garlic (Allium sativum) derivative, which has been shown to exert a potential for anti-cancer activity. However, the biochemical mechanisms underlying DADS-induced anti-invasiveness and anti-metastasis have not been thoroughly studied. In this study, we investigated the effect of DADS on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in human prostate carcinoma LNCaP cells. Inhibitory effects of DADS on cell motility and invasiveness were found to be associated with increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). Additionally, immunoblotting results indicated that DADS repressed the levels of the claudin proteins, which are major components of TJs that play a key role in control and selectivity of paracellular transport. Furthermore, the activities of matrix metalloproteinase (MMP)-2 and -9 in LNCaP cells were dose-dependently inhibited by treatment with DADS, and this was also correlated with a decrease in expression of their mRNA and proteins. Although further studies are needed, the present study indicates that TJs and MMPs are critical targets of DADS-induced anti-invasiveness in human prostate cancer LNCaP cells.

  11. Depletion of Jab1 inhibits proliferation of pancreatic cancer cell lines.

    PubMed

    Fukumoto, Akihisa; Tomoda, Kiichiro; Yoneda-Kato, Noriko; Nakajima, Yoshiyuki; Kato, Jun-ya

    2006-10-30

    Jab1 overexpression is observed in many human cancers, but its physiological significance remains to be investigated. We reduced the level of Jab1 expression in pancreatic cancer cell lines, MIA PaCa-2 and PANC-1 by the RNA interference and found that Jab1-knockdown resulted in impaired cell proliferation and enhanced apoptosis regardless of the genotype of the tumor suppressor p53. This growth inhibition was rescued by the introduction of siRNA-resistant mouse Jab1 cDNA. Jab1-knocked-down cells expressed a higher level of c-myc, and additional depletion of c-myc rescued cells from Jab1-knockdown-mediated growth suppression. Thus, Jab1 overexpression contributes to pancreatic cancer cell proliferation and survival. Jab1 could be a novel target in cancer therapy.

  12. [Radiosensitization effect of black garlic extract on lung cancer cell line Lewis cells].

    PubMed

    Yang, Gui-qing; Wang, Dong; Wang, Yi-shan; Wang, Yuan-yuan; Yang, Ke

    2013-08-01

    To explore the radiosensitization effect of black garlic extract (BGE) on lung cancer cell line Lewis cells. The inhibition rate of lung cancer cells after BGE action was detected by MTT. Effect of BGE combined radiotherapy on the colony formation rate was observed by cloning formation assay. Changes of the cell morphology were observed by Hoechst staining. Changes of the cell cycle were detected by flow cytometry. Real time PCR was used to detect mRNA expressions of bcl-2 and bax. BGE could have significant inhibitory action on the growth of lung cancer Lewis cells. The combination of BGE and radiotherapy (by 60Co gamma) significantly induced Lewis cells' apoptosis in G2/M stage, obviously decreased the expression of bcl-2, and up-regulated the expression of bax. BGE could sensitize the lung cancer Lewis cells to ionizing irradiation. This effect might be probably caused by changing the cell cycles and affecting expressions of bax and bcl-2.

  13. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines

    PubMed Central

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-01-01

    AIM: To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. METHODS: A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44+CD271+ expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. RESULTS: The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44+CD271+ cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE-150 stem

  14. Cytotoxic Effect of Erythroxylum suberosum Combined with Radiotherapy in Head and Neck Cancer Cell Lines.

    PubMed

    Macedo, Taysa B C; Elias, Silvia T; Torres, Hianne M; Yamamoto-Silva, Fernanda Paula; Silveira, Dâmaris; Magalhães, Pérola O; Lofrano-Porto, Adriana; Guerra, Eliete N S; Silva, Maria Alves G

    2016-01-01

    The mouth and oropharynx cancer is the 6th most common type of cancer in the world. The treatment may involve surgery, chemotherapy and radiotherapy. More than 50% of drugs against cancer were isolated from natural sources, such as Catharanthus roseus and epipodophyllotoxin, isolated from Podophyllum. The biggest challenge is to maximize the control of the disease, while minimizing morbidity and toxicity to the surrounding normal tissues. The Erythroxylum suberosum is a common plant in the Brazilian Cerrado biome and is popularly known as "cabelo-de-negro". The objective of this study was to evaluate the cytotoxic activity of Erythroxylum suberosum plant extracts of the Brazilian Cerrado biome associated with radiotherapy in human cell lines of oral and hypopharynx carcinomas. Cells were treated with aqueous, ethanolic and hexanic extracts of Erythroxylum suberosum and irradiated at 4 Gy, 6 Gy and 8 Gy. Cytotoxicity was evaluated by MTT assay and the absorbance was measured at 570 nm in a Beckman Counter reader. Cisplatin, standard chemotherapy, was used as positive control. The use of Erythroxylum suberosum extracts showed a possible radiosensitizing effect in vitro for head and neck cancer. The cytotoxicity effect in the cell lines was not selective and it is very similar to the effect of standard chemotherapy. The aqueous extract of Erythroxylum suberosum, combined with radiotherapy was the most cytotoxic extract to oral and hypopharynx carcinomas.

  15. Statin and Bisphosphonate Induce Starvation in Fast-Growing Cancer Cell Lines.

    PubMed

    Karlic, Heidrun; Haider, Florian; Thaler, Roman; Spitzer, Silvia; Klaushofer, Klaus; Varga, Franz

    2017-09-15

    Statins and bisphosphonates are increasingly recognized as anti-cancer drugs, especially because of their cholesterol-lowering properties. However, these drugs act differently on various types of cancers. Thus, the aim of this study was to compare the effects of statins and bisphosphonates on the metabolism (NADP⁺/NADPH-relation) of highly proliferative tumor cell lines from different origins (PC-3 prostate carcinoma, MDA-MB-231 breast cancer, U-2 OS osteosarcoma) versus cells with a slower proliferation rate like MG-63 osteosarcoma cells. Global gene expression analysis revealed that after 6 days of treatment with pharmacologic doses of the statin simvastatin and of the bisphosphonate ibandronate, simvastatin regulated more than twice as many genes as ibandronate, including many genes associated with cell cycle progression. Upregulation of starvation-markers and a reduction of metabolism and associated NADPH production, an increase in autophagy, and a concomitant downregulation of H3K27 methylation was most significant in the fast-growing cancer cell lines. This study provides possible explanations for clinical observations indicating a higher sensitivity of rapidly proliferating tumors to statins and bisphosphonates.

  16. JF-305, a pancreatic cancer cell line is highly sensitive to the PARP inhibitor olaparib.

    PubMed

    Yang, Xueli; Ndawula, Charles; Zhou, Haiyan; Gong, Xiaohai; Jin, Jian

    2015-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick sensor involved in the base excision repair (BER) pathway. Olaparib, a PARP inhibitor, has demonstrated antitumor activity in homologous recombination (HR)-deficient cancers. To extend this specific therapy to other types of carcinomas, a panel of 11 different cancer cells were screened in the present study. JF-305, a pancreatic cancer cell line of Chinese origin, demonstrated sensitivity to the PARP inhibitor 6(5H)-phenanthridinone. In the present study, 3 μM olaparib conferred a cell survival rate of 25% following four days of treatment. The colony formation efficiency was 83% at 10 nM, and dropped to 12% at 1 μM following seven days of treatment. Furthermore, olaparib induced cell cycle arrest in the S and G2/M phases prior to the initiation of apoptosis. Although the incidence of double-strand breaks (DSBs) was increased in the olaparib-treated JF-305 cells, the RAD51 foci were well formed at the sites of γ-H2AX recruitment, indicating an activated HR mechanism. Furthermore, tumor growth was reduced by 49.8% following 22 days of consecutive administration of 10 mg/kg olaparib in the JF-305 xenograft mouse model. In summary, the JF-305 cell line was sensitive to olaparib and provided a prospective model for the preclinical assessment of PARP inhibitors in the therapy of pancreatic cancer.

  17. Degradation of endothelial basement membrane by human breast cancer cell lines

    SciTech Connect

    Yee, C.; Shiu, R.P.

    1986-04-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of (35S)methionine-labeled and (3H)proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer.

  18. The Impaired Viability of Prostate Cancer Cell Lines by the Recombinant Plant Kallikrein Inhibitor*

    PubMed Central

    Ferreira, Joana Gasperazzo; Diniz, Paula Malloy Motta; de Paula, Cláudia Alessandra Andrade; Lobo, Yara Aparecida; Paredes-Gamero, Edgar Julian; Paschoalin, Thaysa; Nogueira-Pedro, Amanda; Maza, Paloma Korehisa; Toledo, Marcos Sergio; Suzuki, Erika; Oliva, Maria Luiza Vilela

    2013-01-01

    Prostate cancer is the most common type of cancer, and kallikreins play an important role in the establishment of this disease. rBbKIm is the recombinant Bauhinia bauhinioides kallikreins inhibitor that was modified to include the RGD/RGE motifs of the inhibitor BrTI from Bauhinia rufa. This work reports the effects of rBbKIm on DU145 and PC3 prostate cancer cell lines. rBbKIm inhibited the cell viability of DU145 and PC3 cells but did not affect the viability of fibroblasts. rBbKIm caused an arrest of the PC3 cell cycle at the G0/G1 and G2/M phases but did not affect the DU145 cell cycle, although rBbKIm triggers apoptosis and cytochrome c release into the cytosol of both cell types. The differences in caspase activation were observed because rBbKIm treatment promoted activation of caspase-3 in DU145 cells, whereas caspase-9 but not caspase-3 was activated in PC3 cells. Because angiogenesis is important to the development of a tumor, the effect of rBbKIm in this process was also analyzed, and an inhibition of 49% was observed in in vitro endothelial cell capillary-like tube network formation. In summary, we demonstrated that different properties of the protease inhibitor rBbKIm may be explored for investigating the androgen-independent prostate cancer cell lines PC3 and DU145. PMID:23511635

  19. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3).

    PubMed

    Kaplan, Fuat; Teksen, Fulya

    2016-03-01

    In this study, we studied the apoptotic and cytotoxic effects of salinomycin on human ovarian cancer cell line (OVCAR-3) as salinomycin is known as a selectively cancer stem cell killer agent. We used immortal human ovarian epithelial cell line (IHOEC) as control group. Ovarian cancer cells and ovarian epithelial cells were treated by different concentrations of salinomycin such as 0.1, 1, and 40 μM and incubated for 24, 48, and 72 h. Dimethylthiazol (MTT) cell viability assay was performed to determine cell viability and toxicity. On the other hand, the expression levels of some of the apoptosis-related genes, namely anti-apoptotic Bcl-2, apoptotic Bax, and Caspase-3 were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, Caspase-3 protein level was also determined. As a result, we concluded that incubation of human OVCAR-3 by 0.1 μM concentration of salinomycin for 24 h killed 40 % of the cancer cells by activating apoptosis but had no effect on normal cells. The apoptotic Bax gene expression was upregulated but anti-apoptotic Bcl-2 gene expression was downregulated. Active Caspase-3 protein level was increased significantly (p < 0.05).

  20. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    PubMed Central

    Pileczki, Valentina; Braicu, Cornelia; Gherman, Claudia D.; Berindan-Neagoe, Ioana

    2013-01-01

    Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death. PMID:23263670

  1. Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties

    PubMed Central

    Cassim, Shamir; Lapierre, Pascal; Bilodeau, Marc

    2017-01-01

    There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and β-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and β-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo. PMID:28152020

  2. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing

    PubMed Central

    Somasundaram, Kumaravel

    2015-01-01

    Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines. PMID:26496030

  3. Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against human cancer cell lines.

    PubMed

    Ukiya, Motohiko; Sawada, Shingo; Kikuchi, Takashi; Kushi, Yasunori; Fukatsu, Makoto; Akihisa, Toshihiro

    2013-02-01

    Seventeen steviol derivatives, i.e., 2-18, and 19 isosteviol derivatives, i.e., 19-37, were prepared from a diterpenoid glycoside, stevioside (1). Upon evaluation of the cytotoxic activities of these compounds against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK-BR-3) cancer cell lines, nine steviol derivatives, i.e., 5-9 and 11-14, and five isosteviol derivatives, i.e., 28-32, exhibited activities with single-digit micromolar IC(50) values against one or more cell lines. All of these active compounds possess C(19)-O-acyl group, and among which, ent-kaur-16-ene-13,19-diol 19-O-4',4',4'-trifluorocrotonate (14) exhibited potent cytotoxicities against four cell lines with IC(50) values in the range of 1.2-4.1 μM. Compound 14 induced typical apoptotic cell death in HL60 cells upon evaluation of the apoptosis-inducing activity by flow-cytometric analysis. These results suggested that acylation of the 19-OH group of kaurane- and beyerane-type diterpenoids might be useful for enhancement of their cytotoxicities with apoptosis-inducing activity. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Docetaxel and gemcitabine activity in NSCLC cell lines and in primary cultures from human lung cancer

    PubMed Central

    Zoli, W; Ricotti, L; Susino, M Dal; Barzanti, F; Frassineti, G L; Folli, S; Tesei, A; Bacci, F; Amadori, D

    1999-01-01

    The activity of the following drugs was investigated in two established NSCLC cell lines: docetaxel, gemcitabine, vinorelbine, paclitaxel, doxorubicin (0.01, 0.1, 1 μg ml−1), cisplatin, ifosfamide (1, 2, 3 μg ml−1) and carboplatin (2, 4, 6 μg ml−1). The cytotoxic activity was evaluated by the sulphorhodamine B assay. The two most active drugs, docetaxel and gemcitabine, used singly and in association, were investigated as a function of treatment schedule. The sequence docetaxel→gemcitabine produced only a weak synergistic interaction in RAL but a strong synergism in CAEP cells. The synergistic interaction increased in both cell lines after a 48-h washout between the drug administrations. Flow cytometric analysis showed that in docetaxel→gemcitabine sequence, docetaxel produced a block in G2/M phase and, after 48 h, provided gemcitabine with a large fraction of recovered synchronized cells in the G1/S boundary, which is the specific target phase for gemcitabine. Conversely, simultaneous treatment induced an antagonistic effect in both cell lines, and the sequential scheme gemcitabine→docetaxel produced a weak synergistic effect only in RAL cells. Moreover, the synergistic interaction disappeared when washout periods of 24 or 48 h between two drug administrations were adopted. The synergistic activity of docetaxel→ 48-h washout→gemcitabine was confirmed in 11 of 14 primary cultures, which represents an important means of validating experimental results before translating them into clinical practice. © 1999 Cancer Research Campaign PMID:10574245

  5. Phenylpropanoids from Juglans mandshurica exhibit cytotoxicities on liver cancer cell lines through apoptosis induction.

    PubMed

    Cheng, Zhuo-Yang; Yao, Guo-Dong; Guo, Rui; Huang, Xiao-Xiao; Song, Shao-Jiang

    2017-02-01

    Three new phenylpropanoids (1-3) together with six known congeners (4-9) were isolated from the bark of Juglans mandshurica Maxim using anti-hepatoma activity as a guide. Their structures were determined by comprehensive NMR and HRESIMS spectroscopic data analyses. All the isolated compounds were evaluated for their growth inhibitory activities against two kinds of liver cancer cell lines (HepG2 and Hep3B). Among them, compound 4 showed moderate cytotoxic activities against HepG2 and Hep3B cell lines with IC50 values of 58.58 and 69.87μM. Compound 5 exhibited 50% cell death rate in HepG2 and Hep3B cell lines at 63.70 and 46.45μM, respectively. Further observation of morphological changes and Western blot demonstrated that compounds 4 and 5 exhibited their cytotoxic activities through the induction of apoptosis. A structure-activity relationship study suggested that an α, β-unsaturated aldehyde might be the most important functional group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines.

    PubMed

    Nakagawa, Yoshihito; Akao, Yukihiro; Morikawa, Hiroshi; Hirata, Ichiro; Katsu, Kenichi; Naoe, Tomoki; Ohishi, Nobuko; Yagi, Kunio

    2002-03-29

    Exposure of three colon cancer cell lines, SW480, DLD-1, and COLO201, to arsenic trioxide in the medium induced a marked concentration-dependent suppression of cell growth. The intracellular contents of reduced glutathione (GSH) in these cell lines tended to be inversely correlated with the sensitivity of the cells to arsenic trioxide. Among the cell lines, SW480 cells underwent apoptosis at the low arsenic trioxide concentration of 2 microM, which was prevented by pretreatment of the cells with N-acetylcysteine and was enhanced by buthionine sulfoximine. The production of reactive oxygen intermediates which were examined by 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time after treatment with arsenic trioxide. The apoptosis was executed by the activation of caspase 3, which was shown by Western blot, enzymatic activity, and apoptosis inhibition assay. The mitochondrial membrane potential of adherent apoptotic SW480 cells and the cells from intermediate layer separated by density gradient centrifugation, both of which showed the active form of caspase 3 by Western blot analysis, was not lost. The overexpression of Bcl-2 protein in SW480 cells could not prevent the apoptosis induced by the treatment with arsenic trioxide. All these findings indicate that arsenic trioxide-induced apoptosis in SW480 cells is executed by the activation of caspase 3 without mediating by mitochondria under the overproduction of reactive oxygen species.

  7. Activity of extracts and alkaloids of thai Alstonia species against human lung cancer cell lines.

    PubMed

    Keawpradub, N; Houghton, P J; Eno-Amooquaye, E; Burke, P J

    1997-04-01

    Methanol extracts of root barks of Alstonia macrophylla, A. glaucescens, and A. scholaris, collected from Thailand, have been assessed for cytotoxic activity against two human lung cancer cell lines, MOR-P (adenocarcinoma) and COR-L23 (large cell carcinoma), using the SRB assay. Significant cytotoxic activity was exhibited by the extract of A. macrophylla on both cell lines. Activity-directed fractionation led to the isolation of a novel indole alkaloid, O-methylmacralstonine, from the most active fraction of A. macrophylla along with four known alkaloids, talcarpine, villalstonine, pleiocarpamine, and macralstonine. Structure elucidation of the novel alkaloid was based on spectroscopic methods, especially 2D-NMR. The bisindole villalstonine was found to possess pronounced activity on both cell lines with an IC50 value less than 5 muM, but was about 10(3) times less potent than vinblastine sulphate. The monomeric alkaloid, talcarpine, was found to be inactive. Pleiocarpamine, O-methylmacralstonine and macralstonine were all considerably less active than villalstonine.

  8. Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.

    PubMed

    Song, Shi-Gang; Yu, Hong-Yang; Ma, Yan-Wei; Zhang, Feng; Xu, Xiang-Ying

    2016-10-01

    The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied to evaluate the effects of X rays on the apoptosis of H358. Scratch assay and Transwell invasion assay were used to examine the effects of X-rays on the migration and invasion abilities of H358. The mRNA and protein expressions in the signal pathway were detected by real-time PCR and western blot. Assays in vitro confirmed the effects of the Numb/Notch pathway inhibitor on the radiosensitivity to lung cancer. MW167 enhanced the inhibiting effects of X-ray on the proliferation of H358 cell line. After the addition of MW167, the apoptosis rates significantly increased, but the invasion and migration abilities decreased significantly. Meanwhile, MW167 could dose-dependently promote the increase of expression of Numb, which is the upstream gene of the Numb/Notch signaling pathway, but inhibit the expression of and HES1. In vivo experiments revealed that cell proliferation was suppressed in the radiation, pathway inhibitor, and pathway inhibitor + radiation groups, and the pathway inhibitor + radiation group exhibited more active anti-tumor ability when compared with the blank group (all P < 0.05); Numb expression was up-regulated, but Notch1 and HES1 expressions were down-regulated in those three groups, and also, the pathway inhibitor + radiation group exhibited more significant alternation when compared with the blank group (all P < 0.05); cell apoptosis was promoted in those three groups, and the pathway inhibitor + radiation group showed more active apoptosis when compared with the blank group (all P < 0.05). Repression of the Numb/Notch pathway enhances the effects of radiotherapy on the radiosensitivity of the lung

  9. Exome-driven characterization of the cancer cell lines at the proteome level: the NCI-60 case study.

    PubMed

    Karpova, Maria A; Karpov, Dmitry S; Ivanov, Mark V; Pyatnitskiy, Mikhail A; Chernobrovkin, Alexey L; Lobas, Anna A; Lisitsa, Andrey V; Archakov, Alexander I; Gorshkov, Mikhail V; Moshkovskii, Sergei A

    2014-12-05

    Cancer genome deviates significantly from the reference human genome, and thus a search against standard genome databases in cancer cell proteomics fails to identify cancer-specific protein variants. The goal of this Article is to combine high-throughput exome data [Abaan et al. Cancer Res. 2013] and shotgun proteomics analysis [Modhaddas Gholami et al. Cell Rep. 2013] for cancer cell lines from NCI-60 panel to demonstrate further that the cell lines can be effectively recognized using identified variant peptides. To achieve this goal, we generated a database containing mutant protein sequences of NCI-60 panel of cell lines. The proteome data were searched using Mascot and X!Tandem search engines against databases of both reference and mutant protein sequences. The identification quality was further controlled by calculating a fraction of variant peptides encoded by the own exome sequence for each cell line. We found that up to 92.2% peptides identified by both search engines are encoded by the own exome. Further, we used the identified variant peptides for cell line recognition. The results of the study demonstrate that proteome data supported by exome sequence information can be effectively used for distinguishing between different types of cancer cell lines.

  10. Divergent control of Cav-1 expression in non-cancerous Li-Fraumeni syndrome and human cancer cell lines

    PubMed Central

    Sherif, Zaki A.; Sultan, Ahmed S.

    2013-01-01

    Li-Fraumeni syndrome (LFS) is primarily characterized by development of tumors exhibiting germ-line mutations in the p53 gene. Cell lines developed from patients of a LFS family have decreased p53 activity as evidenced by the absence of apoptosis upon etoposide treatment. To test our hypothesis that changes in gene expression beyond p53 per se are contributing to the development of tumors, we compared gene expression in non-cancerous skin fibroblasts of LFS-affected (p53 heterozygous) vs. non-affected (p53 wild-type homozygous) family members. Expression analysis showed that several genes were differentially regulated in the p53 homozygous and heterozygous cell lines. We were particularly intrigued by the decreased expression (~88%) of a putative tumor-suppressor protein, caveolin-1 (Cav-1), in the p53-mutant cells. Decreased expression of Cav-1 was also seen in both p53-knockout and p21-knockout HTC116 cells suggesting that p53 controls Cav-1 expression through p21 and leading to the speculation that p53, Cav-1 and p21 may be part of a positive auto-regulatory feedback loop. The direct relationship between p53 and Cav-1 was also tested with HeLa cells (containing inactive p53), which expressed a significantly lower Cav-1 protein. A panel of nonfunctional and p53-deficient colon and epithelial breast cancer cell lines showed undetectable expression of Cav-1 supporting the role of p53 in the control of Cav-1. However, in two aggressively metastasizing breast cancer cell lines, Cav-1 was strongly expressed suggesting a possible role in tumor metastasis. Thus, there is a divergent control of Cav-1 expression as evidenced in non-cancerous Li-Fraumeni syndrome and some aggressive human cancer cell lines. PMID:23114650

  11. Targeting LSD1 Epigenetic Signature in Castration-Recurrent Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    specific demethylase 1A), PCa(prostate cancer), CRPCa(castration recurrent PCa), DHT(dihydroxy testosterone ) 16. SECURITY CLASSIFICATION OF: 17...cell line, androgen independent DHT - dehydroxy testosterone LNCaP - androgen sensitive prostate cancer cell line LNCAP-C42 - castration...suspension were then injected subcutaneously in 200 mice (10^6 cells/mouse). Testosterone pellets were prepared in order to deliver 12.5mg of hormone per

  12. The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines

    PubMed Central

    Bandiera, Elisabetta; Todeschini, Paola; Romani, Chiara; Zanotti, Laura; Erba, Eugenio; Colmegna, Benedetta; Bignotti, Eliana; Santin, Alessandro Davide; Sartori, Enrico; Odicino, Franco Edoardo; Pecorelli, Sergio; Tassi, Renata Alessandra; Ravaggi, Antonella

    2016-01-01

    Innovative therapies in cervical cancer (CC) remain a priority. Recent data indicate that human immunodeficiency virus (HIV)-protease inhibitors used in highly active antiretroviral therapy can exert direct antitumor activities also in HIV-free preclinical and clinical models. The aim of the present study was to evaluate the antineoplastic effects of various HIV-protease inhibitors (indinavir, ritonavir and saquinavir) on primary and established CC cell lines. Two CC cell lines established in our laboratory and four commercially available CC cell lines were treated with indinavir, ritonavir and saquinavir at different concentrations and for different times. Proliferation, clonogenicity and radiosensitivity were evaluated by crystal violet staining. Proteasomal activities were assessed using a cell-based assay and immunoblotting. Cell cycle was analyzed by propidium iodide staining and flow cytometric analysis. Invasion was tested with Matrigel chambers. A t-test for paired samples was used for statistical analysis. In all cell lines, saquinavir was more effective than ritonavir in reducing cell proliferation and inhibiting proteasomal activities (P≤0.05). Conversely, indinavir exerted a negligible effect. The saquinavir concentrations required to modulate the proteasome activities were higher than those observed to be effective in inhibiting cell proliferation. In HeLa cells, saquinavir was strongly effective in inhibiting cell invasion and clonogenicity (P≤0.05) at concentrations much lower than those required to perturb proteasomal activities. Saquinavir did not contribute to increase the sensitivity of HeLa cells to X-rays. In conclusion, the present results demonstrate that saquinavir is able to significantly reduce cell proliferation, cell invasion and clonogenicity in a proteasome-independent manner in in vitro models of CC, and suggest that saquinavir could be a promising CC therapeutic agent. PMID:27698818

  13. Alterations of the exo- and endometabolite profiles in breast cancer cell lines: A mass spectrometry-based metabolomics approach.

    PubMed

    Willmann, Lucas; Schlimpert, Manuel; Hirschfeld, Marc; Erbes, Thalia; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2016-06-21

    In recent years, knowledge about metabolite changes which are characteristic for the physiologic state of cancer cells has been acquired by liquid chromatography coupled to mass spectrometry. Distinct molecularly characterized breast cancer cell lines provide an unbiased and standardized in vitro tumor model reflecting the heterogeneity of the disease. Tandem mass spectrometry is a widely applied analytical platform and highly sensitive technique for analysis of complex biological samples. Endo- and exometabolite analysis of the breast cancer cell lines MDA-MB-231, -453 and BT-474 as well as the breast epithelial cell line MCF-10A has been performed using two different analytical platforms: UPLC-ESI-Q-TOF based on a scheduled precursor list has been applied for highlighting of significant differences between cell lines and HPLC-ESI-QqQ using multiple reaction monitoring has been utilized for a targeted approach focusing on RNA metabolism and interconnected pathways, respectively. Statistical analysis enabled a clear discrimination of the breast epithelial from the breast cancer cell lines. As an effect of oxidative stress, a decreased GSH/GSSG ratio has been detected in breast cancer cell lines. The triple negative breast cancer cell line MDA-MB-231 showed an elevation in nicotinamide, 1-ribosyl-nicotinamide and NAD+ reflecting the increased energy demand in triple negative breast cancer, which has a more aggressive clinical course than other forms of breast cancer. Obtained distinct metabolite pattern could be correlated with distinct molecular characteristics of breast cancer cells. Results and methodology of this preliminary in vitro study could be transferred to in vivo studies with breast cancer patients.

  14. Differential pattern of integrin receptor expression in differentiated and anaplastic thyroid cancer cell lines.

    PubMed

    Hoffmann, S; Maschuw, K; Hassan, I; Reckzeh, B; Wunderlich, A; Lingelbach, S; Zielke, A

    2005-09-01

    Adhesion of tumor cells to the extracellular matrix (ECM) is a crucial step for the development of metastatic disease and is mediated by specific integrin receptor molecules (IRM). The pattern of metastatic spread differs substantially among the various histotypes of thyroid cancer (TC). However, IRM have only occasionally been characterized in TC until now. IRM expression was investigated in 10 differentiated (FTC133, 236, 238, HTC, HTC TSHr, XTC, PTC4.0/4.2, TPC1, Kat5) and two anaplastic TC cell lines (ATC, C643, Hth74), primary cultures of normal thyroid tissue (Thy1,3), and thyroid cancer specimens (TCS). Expression of 16 IRM (beta1-4, beta7, alpha1-6, alphaV, alphaIIb, alphaL, alphaM, alphaX) and of four IRM heterodimers (alpha2beta1, alpha5beta1, alphaVbeta3, alphaVbeta5), was analyzed by fluorescent-activated cell sorter (FACS) and immunohistochemical staining. Thyroid tumor cell adhesion to ECM proteins and their IRM expression in response to thyrotropin (TSH) was assessed. Follicular TC cell lines presented high levels of integrins alpha2, alpha3, alpha5, beta1, beta3 and low levels of alpha1, whereas papillary lines expressed a heterogenous pattern of IRM, dominated by alpha5 and beta1. ATC mainly displayed integrins alpha2, alpha3, alpha5, alpha6, beta1 and low levels of alpha1, alpha4 and alphaV. Integrin heterodimers correlated with monomer expression. Evaluation of TCS largely confirmed these results with few exceptions, namely alpha4, alpha6, and beta3. The ability of TC cell lines to adhere to purified ECM proteins correlated with IRM expression. TSH induced TC cell adhesion in a dose-dependent fashion, despite an unchanged array of IRM expression or level of a particular IRM. Thyroid carcinoma cell lines of different histogenetic background display profoundly different patterns of IRM expression that appear to correlate with tumor aggressiveness. In vitro adhesion to ECM proteins and IRM expression concur. Finally, TSH-stimulated adhesion of

  15. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    PubMed Central

    Samarghandian, Saeed; Shabestari, Mahmoud M

    2013-01-01

    Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron) in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3). Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5) cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent. PMID:24082436

  16. Cytotoxic Activity of Piper cubeba Extract in Breast Cancer Cell Lines

    PubMed Central

    Graidist, Potchanapond; Martla, Mananya; Sukpondma, Yaowapa

    2015-01-01

    This study aimed to evaluate the cytotoxicity of a crude extract of Piper cubeba against normal and breast cancer cell lines. To prepare the extract, P. cubeba seeds were ground, soaked in methanol and dichloromethane and isolated by column chromatography. Fractions were tested for cytotoxicity effects on normal fibroblast (L929), normal breast (MCF-12A) and breast cancer cell lines (MCF-7, MDA-MB-468 and MDA-MB-231). The most effective fraction was selected for DNA fragmentation assay to detect apoptotic activity. The results showed that the methanolic crude extract had a higher cytotoxic activity against MDA-MB-468 and MCF-7 than a dichloromethane crude extract. Then, the methanolic crude extract was separated into six fractions, designated A to F. Fraction C was highly active against breast cancer cell lines with an IC50 value less than 4 μg/mL. Therefore, Fraction C was further separated into seven fractions, CA to CG. The 1H-NMR profile showed that Fraction CE was long chain hydrocarbons. Moreover, Fraction CE demonstrated the highest activity against MCF-7 cells with an IC50 value of 2.69 ± 0.09 μg/mL and lower cytotoxicity against normal fibroblast L929 cells with an IC50 value of 4.17 ± 0.77 μg/mL. Finally, DNA fragmentation with a ladder pattern characteristic of apoptosis was observed in MCF-7, MDA-MB-468, MDA-MB-231 and L929 cells, but not in MCF-12A cells. PMID:25867951

  17. Cytotoxic activity of Piper cubeba extract in breast cancer cell lines.

    PubMed

    Graidist, Potchanapond; Martla, Mananya; Sukpondma, Yaowapa

    2015-04-10

    This study aimed to evaluate the cytotoxicity of a crude extract of Piper cubeba against normal and breast cancer cell lines. To prepare the extract, P. cubeba seeds were ground, soaked in methanol and dichloromethane and isolated by column chromatography. Fractions were tested for cytotoxicity effects on normal fibroblast (L929), normal breast (MCF-12A) and breast cancer cell lines (MCF-7, MDA-MB-468 and MDA-MB-231). The most effective fraction was selected for DNA fragmentation assay to detect apoptotic activity. The results showed that the methanolic crude extract had a higher cytotoxic activity against MDA-MB-468 and MCF-7 than a dichloromethane crude extract. Then, the methanolic crude extract was separated into six fractions, designated A to F. Fraction C was highly active against breast cancer cell lines with an IC50 value less than 4 μg/mL. Therefore, Fraction C was further separated into seven fractions, CA to CG. The 1H-NMR profile showed that Fraction CE was long chain hydrocarbons. Moreover, Fraction CE demonstrated the highest activity against MCF-7 cells with an IC50 value of 2.69 ± 0.09 μg/mL and lower cytotoxicity against normal fibroblast L929 cells with an IC50 value of 4.17 ± 0.77 μg/mL. Finally, DNA fragmentation with a ladder pattern characteristic of apoptosis was observed in MCF-7, MDA-MB-468, MDA-MB-231 and L929 cells, but not in MCF-12A cells.

  18. High Dose Vitamin B1 Reduces Proliferation in Cancer Cell Lines Analogous to Dichloroacetate

    PubMed Central

    Hanberry, Bradley S.; Berger, Ryan; Zastre, Jason A.

    2014-01-01

    Purpose The dichotomous effect of thiamine supplementation on cancer cell growth is characterized by growth stimulation at low doses and growth suppression at high doses. Unfortunately, how thiamine reduces cancer cell proliferation is currently unknown. Recent focuses on metabolic targets for cancer therapy have exploited the altered regulation of the thiamine-dependent enzyme pyruvate dehydrogenase (PDH). Cancer cells inactivate PDH through phosphorylation by overexpression of pyruvate dehydrogenase kinases (PDKs). Inhibition of PDKs by dichloracetate (DCA) exhibits a growth suppressive effect in many cancers. Recently it has been shown that the thiamine co-enzyme, thiamine pyrophosphate reduces PDK mediated phosphorylation of PDH. Therefore, the objective of this study was to determine if high dose thiamine supplementation reduces cell proliferation through a DCA like mechanism. Methods Cytotoxicity of thiamine and DCA were assessed in SK-N-BE and Panc-1 cancer cell lines. Comparative effects of high dose thiamine and DCA on PDH phosphorylation were measured by Western blot. The metabolic impact of PDH reactivation was determined by glucose and lactate assays. Changes in the mitochondrial membrane potential, ROS production, and caspase-3 activation were assessed to characterize the mechanism of action. Results Thiamine exhibited a lower IC50 value in both cell lines compared to DCA. Both thiamine and DCA reduced the extent of PDH phosphorylation, reduced glucose consumption, lactate production, and mitochondrial membrane potential. High dose thiamine and DCA did not increase ROS but increased caspase-3 activity. Conclusion Our findings suggest that high dose thiamine reduces cancer cell proliferation by a mechanism similar to that described for dichloroacetate. PMID:24452394

  19. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    PubMed

    Kelly, Sarah E; Di Benedetto, Altomare; Greco, Adelaide; Howard, Candace M; Sollars, Vincent E; Primerano, Donald A; Valluri, Jagan V; Claudio, Pier Paolo

    2010-04-08

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-)4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  20. Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications

    PubMed Central

    Kelly, Sarah E.; Di Benedetto, Altomare; Greco, Adelaide; Howard, Candace M.; Sollars, Vincent E.; Primerano, Donald A.; Valluri, Jagan V.; Claudio, Pier Paolo

    2010-01-01

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133(+)] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133(+) cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a (+)15-fold proliferation of the CD133(+) cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (−)4.8-fold decrease in the CD133(+)cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133(+) cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates. PMID:20386701

  1. Resistin and Visfatin Expression in HCT-116 Colorectal Cancer Cell Line

    PubMed Central

    Ghaemmaghami, Sara; Mohaddes, Seyed Mojtaba; Hedayati, Mehdi; Gorgian Mohammadi, Masumeh; Dehbashi, Golnoosh

    2013-01-01

    Adipocytokines, hormones secreted from adipose tissue, have been shown to be associated with many cancers such as breast, prostate and colorectal cancer. Recent studies have indicated that resistin and visfatin, two of these adipokines have high level plasma concentrations in colorectal cancer patients and may be promising biomarkers for colorectal cancer. The aim of this study was to identify whether the colorectal cancer cell line, HCT-116, itself is the source of these two adipokines secretion. Resistin and visfatin expression were investigated in HCT-116 by RT – PCR at mRNA level and confirmed by ELISA at protein level. Visfatin showed a high expression at both mRNA and protein levels in HCT-116. Conversely, resistin was not expressed in either cell lysate or supernatant. These results showed that HCT-116 colorectal cancer cells secrete and express visfatin endogenously. However, they are not the main source of resistin and the high level of resistin in colorectal cancer may be due to monocytes and other inflammatory cells which increase in proinflammation status of cancer. Taken together, visfatin may act on colorectal cancer cell in an autocrine manner while resistin may act in a paracrine manner. PMID:24551805

  2. Immunomediated Pan-cancer Regulation Networks are Dominant Fingerprints After Treatment of Cell Lines with Demethylation.

    PubMed

    El Baroudi, Mariama; Cinti, Caterina; Capobianco, Enrico

    2016-01-01

    Pan-cancer studies are particularly relevant not only for addressing the complexity of the inherently observed heterogeneity but also for identifying clinically relevant features that may be common to the cancer types. Immune system regulations usually reveal synergistic modulation with other cancer mechanisms and in combination provide insights on possible advances in cancer immunotherapies. Network inference is a powerful approach to decipher pan-cancer systems dynamics. The methodology proposed in this study elucidates the impacts of epigenetic treatment on the drivers of complex pan-cancer regulation circuits involving cell lines of five cancer types. These patterns were observed from differential gene expression measurements following demethylation with 5-azacytidine. Networks were built to establish associations of phenotypes at molecular level with cancer hallmarks through both transcriptional and post-transcriptional regulation mechanisms. The most prominent feature that emerges from our integrative network maps, linking pathway landscapes to disease and drug-target associations, refers primarily to a mosaic of immune-system crosslinked influences. Therefore, characteristics initially evidenced in single cancer maps become motifs well summarized by network cores and fingerprints.

  3. Immunomediated Pan-cancer Regulation Networks are Dominant Fingerprints After Treatment of Cell Lines with Demethylation

    PubMed Central

    El Baroudi, Mariama; Cinti, Caterina; Capobianco, Enrico

    2016-01-01

    Pan-cancer studies are particularly relevant not only for addressing the complexity of the inherently observed heterogeneity but also for identifying clinically relevant features that may be common to the cancer types. Immune system regulations usually reveal synergistic modulation with other cancer mechanisms and in combination provide insights on possible advances in cancer immunotherapies. Network inference is a powerful approach to decipher pan-cancer systems dynamics. The methodology proposed in this study elucidates the impacts of epigenetic treatment on the drivers of complex pan-cancer regulation circuits involving cell lines of five cancer types. These patterns were observed from differential gene expression measurements following demethylation with 5-azacytidine. Networks were built to establish associations of phenotypes at molecular level with cancer hallmarks through both transcriptional and post-transcriptional regulation mechanisms. The most prominent feature that emerges from our integrative network maps, linking pathway landscapes to disease and drug-target associations, refers primarily to a mosaic of immune-system crosslinked influences. Therefore, characteristics initially evidenced in single cancer maps become motifs well summarized by network cores and fingerprints. PMID:27147816

  4. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines

    PubMed Central

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  5. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential.

    PubMed

    Coughlin, Mark F; Bielenberg, Diane R; Lenormand, Guillaume; Marinkovic, Marina; Waghorne, Carol G; Zetter, Bruce R; Fredberg, Jeffrey J

    2013-03-01

    We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.

  6. Spirocyclic Lignans from Guaiacum (Zygophyllaceae) Induce Apoptosis in Human Breast Cancer Cell Lines

    PubMed Central

    Chavez, Kathryn J.; Feng, Xiaohong; Flanders, James A.; Rodriguez, Eloy; Schroeder, Frank C.

    2011-01-01

    We investigated the composition of extracts derived from Guaiacum spp. (Zygophyllaceae), a group of neotropical tree species with varied uses in Central- and South American traditional medicine. Activity-guided fractionation of Guaiacum heartwood extracts led to the identification of four new spirocyclic lignans, named ramonanins A-D (1-4). The ramonanins exhibit cytotoxic activity against human breast cancer cell lines with an IC50 value of 18 μM and induce cell death via apoptotic mechanisms. The ramonanins are derived from four units of coniferyl alcohol and feature an unusual spirocyclic ring system. PMID:21391655

  7. Spirocyclic lignans from Guaiacum (Zygophyllaceae) induce apoptosis in human breast cancer cell lines.

    PubMed

    Chavez, Kathryn J; Feng, Xiaohong; Flanders, James A; Rodriguez, Eloy; Schroeder, Frank C

    2011-05-27

    We investigated the composition of extracts derived from Guaiacum spp. (Zygophyllaceae), a group of neotropical tree species with varied uses in Central and South American traditional medicine. Activity-guided fractionation of Guaiacum heartwood extracts led to the identification of four new spirocyclic lignans, named ramonanins A-D (1-4). The ramonanins exhibit cytotoxic activity against human breast cancer cell lines with an IC50 value of 18 μM and induce cell death via apoptotic mechanisms. The ramonanins are derived from four units of coniferyl alcohol and feature an unusual spirocyclic ring system.

  8. Bortezomib and etoposide combinations exert synergistic effects on the human prostate cancer cell line PC-3

    PubMed Central

    ARAS, BEKIR; YERLIKAYA, AZMI

    2016-01-01

    Novel treatment modalities are urgently required for androgen-independent prostate cancer. In order to develop an alternative treatment for prostate cancer, the cytotoxic effects of the 26S proteasome inhibitor bortezomib, either alone or in combination with the two commonly used chemotherapeutic agents irinotecan and etoposide, on the human prostate cancer cell line PC-3 were evaluated in the present study. The PC-3 cell line was maintained in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and treated with various doses of bortezomib, irinotecan, etoposide or their combinations. The growth inhibitory and cytotoxic effects were determined by water-soluble tetrazolium (WST)-1 assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or iCELLigence system. The combination index values were determined by the Chou-Talalay method. The half maximal inhibitory concentration (IC50) value of bortezomib on the PC-3 cell line was determined to be 53.4 nM by WST-1 assay, whereas the IC50 values of irinotecan and etoposide were determined to be 2.1 and 26.5 µM, respectively. These results suggest that the 26S proteasome inhibitor bortezomib is more potent, compared with irinotecan and etoposide, in the androgen-insensitive and tumor protein p53-null cell line PC-3. The combined effects of bortezomib+irinotecan and bortezomib+etoposide were also tested on PC-3 cells. The effect of bortezomib+irinotecan combination was not significantly different than that produced by either monotherapy, according to the results of iCELLigence system and MTT assay. However, 40 nM bortezomib+5 µM etoposide or 40 nM bortezomib+20 µM etoposide combinations were observed to be more effective than each drug tested alone. The results of the current study suggest that bortezomib and etoposide combination may be additionally evaluated in clinical trials for the treatment of hormone-refractory prostate cancer. PMID:27123085

  9. Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.

    PubMed

    Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank

    2010-12-01

    Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration.

  10. Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak.

    PubMed

    Castilla, Carolina; Congregado, Belén; Chinchón, David; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen

    2006-10-01

    Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.

  11. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients.

    PubMed

    López-Lázaro, Miguel; Pastor, Nuria; Azrak, Sami S; Ayuso, María Jesús; Austin, Caroline A; Cortés, Felipe

    2005-11-01

    The cardiac glycosides digitoxin (1) and digoxin (3) have been used in cardiac diseases for many years. During this time several reports have suggested the possible use of digitalis in medical oncology. Several analogues of digitoxin (1) were evaluated for growth inhibition activity in three human cancer cell lines; this study showed that digitoxin (1) was the most active compound and revealed some structural features that may play a role in the growth inhibition activity of these drugs. The IC50 values for 1 (3-33 nM) were within or below the concentration range seen in the plasma of patients with cardiac disease receiving this glycoside (20-33 nM). A renal adenocarcinoma cancer cell line (TK-10) was hypersensitive to this drug, and digitoxin toxicity on these cells was mediated by apoptosis. In vitro experiments showed that 1 at 30 nM induced levels of DNA-topoisomerase II cleavable complexes similar to etoposide, a topoisomerase II poison widely used in cancer chemotherapy. Using the individual cell assay TARDIS, cells exposed to 1 for 30 min showed low but statistically significant levels of DNA-topoisomerase II cleavable complexes; however these complexes disappeared after 24 h exposure.

  12. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer.

    PubMed

    Caceres, S; Peña, L; Lacerda, L; Illera, M J; de Andres, P J; Larson, R A; Gao, H; Debeb, B G; Woodward, W A; Reuben, J M; Illera, J C

    2016-05-05

    Inflammatory breast cancer (IBC) is an aggressive type of cancer with poor survival in women. Inflammatory mammary cancer (IMC) in dogs is very similar to human IBC and it has been proposed as a good surrogate model for study the human disease. The aim was to determine if IPC-366 shared characteristics with the IBC cell line SUM149. The comparison was conducted in terms of ability to grow (adherent and nonadherent conditions), stem cell markers expression using flow cytometry, protein production using western blot and tumorigenic capacity. Our results revealed that both are capable of forming long-term mammospheres with a grape-like morphology. Adherent and nonadherent cultures exhibited fast growth in vivo. Stem cell markers expressions showed that IPC-366 and SUM149 in adherent and nonadherent conditions has mesenchymal-like characteristics, E-cadherin and N-cadherin, was higher in adherent than in nonadherent cultures. Therefore, this study determines that both cell lines are similar and IPC-366 is a good model for the human and canine disease.

  13. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-01

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  14. Establishment and characterization of a new cell line from human bladder cancer (JMSU1).

    PubMed

    Morita, T; Shinohara, N; Honma, M; Tokue, A

    1995-01-01

    A new human bladder cancer cell line designated JMSU1 has been established from malignant ascitic fluid of a 75-year-old Japanese man with bladder cancer, and maintained in culture for more than 7 years and over 240 passages. Inverted phase-contrast microscopy revealed that JMSU1 was composed of morphologically distinct cells (polygonal to spindle-shaped cells), showing morphological heterogeneity in vitro. Histological examination of xenografts showed poorly differentiated transitional cell carcinoma, resembling the original tumor. Immunohistochemical staining for cytokeratin and electron microscopic examination suggested that JMSU1 was of epithelial origin. Chromosome analysis gave a modal number of 69 with no Y chromosome. Isozyme analysis (LDH, G6PD, and NP) showed the mobility pattern of human type B. DNA fingerprint analysis demonstrated that there was no cross-culture contamination of JMSU1 during the passages. In conclusion, a newly established and well-characterized cell line, JMSU1, offers promising material for the investigation of the biological properties of bladder cancer.

  15. Synergistic Effect between Cisplatin and Sunitinib Malate on Human Urinary Bladder-Cancer Cell Lines

    PubMed Central

    Arantes-Rodrigues, Regina; Pinto-Leite, Rosário; Fidalgo-Gonçalves, Lio; Palmeira, Carlos; Santos, Lúcio; Colaço, Aura; Oliveira, Paula

    2013-01-01

    The aim of this paper is to analyse sunitinib malate in vitro ability to enhance cisplatin cytotoxicity in T24, 5637, and HT1376 human urinary bladder-cancer cell lines. Cells were treated with cisplatin (3, 6, 13, and 18 μM) and sunitinib malate (1, 2, 4, 6, and 20 μM), either in isolation or combined, over the course of 72 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, acridine orange, and monodansylcadaverine staining and flow cytometry were performed. The combination index (CI) was calculated based on the Chou and Talalay method. In isolation, cisplatin and sunitinib malate statistically (P < 0.05) decrease cell viability in all cell lines in a dose-dependent manner, with the presence of autophagic vacuoles. A cell cycle arrest in early S-phase and in G0/G1-phase was also found after exposure to cisplatin and sunitinib malate, in isolation, respectively. Treatment of urinary bladder-cancer cells with a combination of cisplatin and sunitinib malate showed a synergistic effect (CI < 1). Autophagy and apoptosis studies showed a greater incidence when the combined treatment was put into use. This hints at the possibility of a new combined therapeutic approach. If confirmed in vivo, this conjugation may provide a means of new perspectives in muscle-invasive urinary bladder cancer treatment. PMID:24369536

  16. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines

    PubMed Central

    Kim, Sebo; Sundaresan, Varsha; Zhou, Lei; Kahveci, Tamer

    2016-01-01

    One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient’s tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs. PMID:27607242

  17. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line.

    PubMed

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-10

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li(+) < Na(+) < K(+) ≈Rb(+) ≈ Cs(+). Divalent cations permeated also with the order: Ca(2+) < Ba(2+). Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  18. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  19. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    PubMed Central

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  20. Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742.

    PubMed

    Rezaie-Tavirani, Mostafa; Fayazfar, Setareh; Heydari-Keshel, Saeid; Rezaee, Mohamad Bagher; Zamanian-Azodi, Mona; Rezaei-Tavirani, Majid; Khodarahmi, Reza

    2013-01-01

    In this study, we report the effect of the essential oil of Rosa Damascena on human colon cancer cell line (SW742) and human fibroblast cells. Colon cancer is the second most common fatal malignancy. Owing to the existence of many side effects and problems related to common treatments such as surgery, chemotherapy and radiotherapy, alternative treatments are being investigated. Some herbal medicines have shown promising results against different types of cancers. Herbal medicines used have included the use naturally occurring essential oils. The essential oil of Rosa Damascena was obtained by distillation and its effect on SW742 cell-line and fibroblast cells were investigated with cell culture. The cells were cultured and different volumes of essential oil were induced to the cells. After48hincubation, cell survival was measured and using statistical analysis, the findings were evaluated and reported. This study showed that soluble part of Rosa Damascena oil increases cell proliferation in high volumes and the non-soluble component decreases cell proliferation. The effects of essential oils, such as Rosa Damascena, on cell proliferation require more thorough investigation.

  1. Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742

    PubMed Central

    Rezaie-Tavirani, Mostafa; Heydari-Keshel, Saeid; Rezaee, Mohamad Bagher; Zamanian-Azodi, Mona; Rezaei-Tavirani, Majid; Khodarahmi, Reza

    2013-01-01

    Aim In this study, we report the effect of the essential oil of Rosa Damascena on human colon cancer cell line (SW742) and human fibroblast cells. Background Colon cancer is the second most common fatal malignancy. Owing to the existence of many side effects and problems related to common treatments such as surgery, chemotherapy and radiotherapy, alternative treatments are being investigated. Some herbal medicines have shown promising results against different types of cancers. Herbal medicines used have included the use naturally occurring essential oils. Patients and methods The essential oil of Rosa Damascena was obtained by distillation and its effect on SW742 cell-line and fibroblast cells were investigated with cell culture. The cells were cultured and different volumes of essential oil were induced to the cells. After48hincubation, cell survival was measured and using statistical analysis, the findings were evaluated and reported. Results This study showed that soluble part of Rosa Damascena oil increases cell proliferation in high volumes and the non-soluble component decreases cell proliferation. Conclusion The effects of essential oils, such as Rosa Damascena, on cell proliferation require more thorough investigation. PMID:24834241

  2. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines

    NASA Astrophysics Data System (ADS)

    Netchareonsirisuk, Ponsawan; Puthong, Songchan; Dubas, Stephan; Palaga, Tanapat; Komolpis, Kittinan

    2016-11-01

    Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5-15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO3 alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC50), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84-90 %) than necrosis (8-12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.

  3. Cytotoxic effect of natural trans-resveratrol obtained from elicited Vitis vinifera cell cultures on three cancer cell lines.

    PubMed

    Fernández-Pérez, Francisco; Belchí-Navarro, Sarai; Almagro, Lorena; Bru, Roque; Pedreño, Maria A; Gómez-Ros, Laura V

    2012-12-01

    trans-Resveratrol (trans-R) has been reported to be a potential cancer chemopreventive agent. Although its cytotoxic activity against different cancer cell lines has been tested, its effect on human acute leukemia cell lines has scarcely been investigated, and only a few in vitro studies were performed using human breast epithelial cell lines. Due to its potential value for human health, demand for trans-R has rapidly increased, and new biotechnological strategies to obtain it from natural edible sources have been developed. Thus, grapevine cell cultures represent a reliable system of trans-R production since they biosynthesize trans-R constitutively or in response to elicitation. In addition, there are no studies deepen on the inhibitory effect of trans-R, produced by elicited grapevine cell cultures, on growth of human tumor cell lines. In this work, the effect of trans-R extracted from the culture medium, after elicitation of grapevine cell cultures, was tested on two human acute lymphocytic and monocytic leukemia cell lines, and one human breast cancer cell line. The effect of trans-R on cell proliferation was not only dose- and time-dependent but also cell type-dependent, as seen from the different degrees of susceptibility of cancer cell lines tested. As regards the effect of trans-R on cell cycle distribution, low trans-R concentrations increased cells in the S phase whereas a high trans-R concentration increased G₀/G₁ phase in all cell lines. Perturbation of the cell cycle at low trans-R concentrations did not correlate with the induction of cell death, whereas a high trans-R concentration, cell proliferation decreased as a result of increasing apoptosis in the three cell lines. In leukemia cells, trans-R up-regulated the expression of caspase-3 while trans-R-induced apoptosis in breast cells occur through a caspase-3-independent mechanism mediated by a down-regulation of Bcl-2.

  4. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    PubMed

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-08-21

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.

  5. Sapodilla Plum (Achras sapota) Induces Apoptosis in Cancer Cell Lines and Inhibits Tumor Progression in Mice

    PubMed Central

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K.; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C.

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  6. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines

    PubMed Central

    Kakar, Sham S.; Jala, Venkatakrishna R.; Fong, Miranda Y.

    2012-01-01

    Cisplatin derivatives are used as the mainline treatment of ovarian cancer, despite their severe side effects and development of resistance. We developed a novel combination therapy by combining cisplatin with withaferin A. Treatment of ovarian cancer cell lines with combination therapy acted synergistically to induce cell death, thus required a lower dose of cisplatin to achieve the same therapeutic effect. WFA and cisplatin combination induced cell death through the generation of reactive oxygen species (ROS) for WFA, while DNA damage for cisplatin, suggesting that cisplatin binds directly to DNA to form adducts while WFA indirectly damages DNA through ROS generation. Our results for the first time suggest that combining low dose of cisplatin with suboptimal dose of WFA can serve as a potential combination therapy for the treatment of ovarian cancer with the potential to minimize/eliminate the side effects associated with high doses of cisplatin. PMID:22713472

  7. An animal model for colon cancer metastatic cell line with enhanced metastasizing ability. Establishment and characterization.

    PubMed

    Lin, J C; Cheng, J Y; Tzeng, C C; Yeh, M Y; Meng, C L

    1991-06-01

    We have developed an animal model for colon cancer metastasis and produced a metastasizing tumor after using a microinjection technique to inject SW480 cells into the cecal wall of athymic nude mice during "minilaparotomy." After the metastatic foci formed in murine lung, an in vitro primary culture was performed and a new metastatic cancer cell line, which was designated as CC-ML3, was established. The studies included: 1) the comparison between SW 480 and CC-ML3 in morphology, growth kinetics, seeding and plating efficiency, and karyotype; and 2) carcino-embryonic antigen determination, origination, and metastatic ability of CC-ML3. The results showed that CC-ML3 was significantly different from SW480 in vitro and possessed a high metastatic potential in vivo. This newly developed animal model may thus be useful for studying the biology and pathogenesis of metastasis of human colonic cancer.

  8. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines.

    PubMed

    Michishita, M; Akiyoshi, R; Suemizu, H; Nakagawa, T; Sasaki, N; Takemitsu, H; Arai, T; Takahashi, K

    2012-08-01

    Increasing evidence suggests that diverse solid tumours arise from a small population of cells known as cancer stem cells or tumour-initiating cells. Cancer stem cells in several solid tumours are enriched for aldehyde dehydrogenase (ALDH) activity. High levels of ALDH activity (ALDH(high)) were detected in four cell lines derived from canine mammary carcinomas. ALDH(high) cells were enriched in a CD44(+)CD24(-) population having self-renewal capacity. Xenotransplantation into immunodeficient mice demonstrated that 1×10(4) ALDH(high) cells were sufficient for tumour formation in all injected mice, whereas 1×10(4) ALDH(low) cells failed to initiate any tumours. ALDH(high)-derived tumours contained both ALDH(+) and ALDH(-) cells, indicating that these cells had cancer stem cell-like properties.

  9. High-Throughput RNA Sequencing-Based Virome Analysis of 50 Lymphoma Cell Lines from the Cancer Cell Line Encyclopedia Project

    PubMed Central

    Cao, Subing; Wang, Xia; Moss, Walter N.; Concha, Monica; Lin, Zhen; O'Grady, Tina; Baddoo, Melody; Fewell, Claire; Renne, Rolf

    2014-01-01

    ABSTRACT Using high-throughput RNA sequencing data from 50 common lymphoma cell culture models from the Cancer Cell Line Encyclopedia project, we performed an unbiased global interrogation for the presence of a panel of 740 viruses and strains known to infect human and other mammalian cells. This led to the findings of previously identified infections by Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human T-lymphotropic virus type 1 (HTLV-1). In addition, we also found a previously unreported infection of one cell line (DEL) with a murine leukemia virus. High expression of murine leukemia virus (MuLV) transcripts was observed in DEL cells, and we identified four transcriptionally active integration sites, one being in the TNFRSF6B gene. We also found low levels of MuLV reads in a number of other cell lines and provided evidence suggesting cross-contamination during sequencing. Analysis of HTLV-1 integrations in two cell lines, HuT 102 and MJ, identified 14 and 66 transcriptionally active integration sites with potentially activating integrations in immune regulatory genes, including interleukin-15 (IL-15), IL-6ST, STAT5B, HIVEP1, and IL-9R. Although KSHV and EBV do not typically integrate into the genome, we investigated a previously identified integration of EBV into the BACH2 locus in Raji cells. This analysis identified a BACH2 disruption mechanism involving splice donor sequestration. Through viral gene expression analysis, we detected expression of stable intronic RNAs from the EBV BamHI W repeats that may be part of long transcripts spanning the repeat region. We also observed transcripts at the EBV vIL-10 locus exclusively in the Hodgkin's lymphoma cell line, Hs 611.T, the expression of which were uncoupled from other lytic genes. Assessment of the KSHV viral transcriptome in BCP-1 cells showed expression of the viral immune regulators, K2/vIL-6, K4/vIL-8-like vCCL1, and K5/E2-ubiquitin ligase 1 that was significantly higher than

  10. High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

    PubMed

    Cao, Subing; Strong, Michael J; Wang, Xia; Moss, Walter N; Concha, Monica; Lin, Zhen; O'Grady, Tina; Baddoo, Melody; Fewell, Claire; Renne, Rolf; Flemington, Erik K

    2015-01-01

    Using high-throughput RNA sequencing data from 50 common lymphoma cell culture models from the Cancer Cell Line Encyclopedia project, we performed an unbiased global interrogation for the presence of a panel of 740 viruses and strains known to infect human and other mammalian cells. This led to the findings of previously identified infections by Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human T-lymphotropic virus type 1 (HTLV-1). In addition, we also found a previously unreported infection of one cell line (DEL) with a murine leukemia virus. High expression of murine leukemia virus (MuLV) transcripts was observed in DEL cells, and we identified four transcriptionally active integration sites, one being in the TNFRSF6B gene. We also found low levels of MuLV reads in a number of other cell lines and provided evidence suggesting cross-contamination during sequencing. Analysis of HTLV-1 integrations in two cell lines, HuT 102 and MJ, identified 14 and 66 transcriptionally active integration sites with potentially activating integrations in immune regulatory genes, including interleukin-15 (IL-15), IL-6ST, STAT5B, HIVEP1, and IL-9R. Although KSHV and EBV do not typically integrate into the genome, we investigated a previously identified integration of EBV into the BACH2 locus in Raji cells. This analysis identified a BACH2 disruption mechanism involving splice donor sequestration. Through viral gene expression analysis, we detected expression of stable intronic RNAs from the EBV BamHI W repeats that may be part of long transcripts spanning the repeat region. We also observed transcripts at the EBV vIL-10 locus exclusively in the Hodgkin's lymphoma cell line, Hs 611.T, the expression of which were uncoupled from other lytic genes. Assessment of the KSHV viral transcriptome in BCP-1 cells showed expression of the viral immune regulators, K2/vIL-6, K4/vIL-8-like vCCL1, and K5/E2-ubiquitin ligase 1 that was significantly higher than expression of

  11. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    SciTech Connect

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  12. Antiproliferatory Effects of Crab Shell Extract on Breast Cancer Cell Line (MCF7)

    PubMed Central

    Rezakhani, Leila; Rashidi, Zahra; Mirzapur, Pegah

    2014-01-01

    Purpose Breast cancer is the most common type of cancer in women. Despite various pharmacological developments, the identification of new therapies is still required for treating breast cancer. Crab is often recommended as a traditional medicine for cancer. This study aimed to determine the in vitro effect of a hydroalcoholic crab shell extract on a breast cancer cell line. Methods In this experimental study, MCF7 breast cancer cell line was used. Crab shell was powdered and a hydroalcoholic (70° ethanol) extract was prepared. Five concentrations (100, 200, 400, 800, and 1,000 µg/mL) were added to the cells for three periods, 24, 48, and 72 hours. The viability of the cells were evaluated using trypan blue and 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell apoptosis was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling method. Nitric oxide (NO) level was assessed using the Griess method. Data were analyzed using analysis of variance, and p<0.05 was considered significant. Results Cell viability decreased depending on dose and time, and was significantly different in the groups that were treated with 400, 800, and 1,000 µg/mL doses compared to that in the control group (p<0.001). Increasing the dose significantly increased apoptosis (p<0.001). NO secretion from MCF7 cells significantly decreased in response to different concentrations of the extract in a dose- and time-dependent manner (p<0.050). Conclusion The crab shell extract inhibited the proliferation of MCF7 cells by increasing apoptosis and decreasing NO production. PMID:25320619

  13. Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines.

    PubMed

    Engel, Nadja; Ali, Iftikhar; Adamus, Anna; Frank, Marcus; Dad, Akber; Ali, Sajjad; Nebe, Barbara; Atif, Muhammad; Ismail, Muhammad; Langer, Peter; Ahmad, Viqar Uddin

    2016-07-26

    The medicinal plants Vincetoxicum arnottianum (VSM), Berberis orthobotrys (BORM), Onosma hispida (OHRM and OHAM) and Caccinia macranthera (CMM) are used traditionally in Pakistan and around the world for the treatment of various diseases including cancer, dermal infections, uterine tumor, wounds etc. The present study focuses on the investigation of the selected Pakistani plants for their potential as anticancer agents on human bone and breast cancer cell lines in comparison with non-tumorigenic control cells. The antitumor evaluation was carried out on human bone (MG-63, Saos-2) and breast cancer cell lines (MCF-7, BT-20) in contrast to non-tumorigenic control cells (POB, MCF-12A) via cell viability measurements, cell cycle analysis, Annexin V/PI staining, microscopy based methods as well as migration/invasion determination, metabolic live cell monitoring and western blotting. After the first initial screening of the plant extracts, two extracts (BORM, VSM) revealed the highest potential with regard to its antitumor activity. Both extracts caused a significant reduction of cell viability in the breast and bone cancer cells in a concentration dependent manner. The effect of VSM is achieved primarily by inducing a G2/M arrest in the cell cycle and the stabilization of the actin stress fibers leading to reduced cell motility. By contrast BORM's cytotoxic properties were caused through the lysosomal-mediated cell death pathway indicated by an upregulation of Bcl-2 expression. The antitumor evaluation of certain medicinal plants presented in this study identified the methanolic root extract of Berberis orthobotrys and the methanolic extract of Vincetoxicum arnottianum as promising sources for exhibiting the antitumor activity. Therefore, the indigenous use of the herbal remedies for the treatment of cancer and cancer-related diseases has a scientific basis. Moreover, the present study provides a base for phytochemical investigation of the plant extracts.

  14. USP2 promotes cell migration and invasion in triple negative breast cancer cell lines.

    PubMed

    Qu, Qing; Mao, Yan; Xiao, Gang; Fei, Xiaochun; Wang, Jinglong; Zhang, Yuzi; Liu, Junjun; Cheng, Guangcun; Chen, Xiaosong; Wang, Jianhua; Shen, Kunwei

    2015-07-01

    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is often associated with a poor prognosis. The aim of our study was to identify biomarkers predictive of TNBC progression. Primary TNBC breast tissue samples including four with metastasis and six without metastasis were subjected to Affymetrix GeneChip® analysis (human genome U133). Ubiquitin-specific protease 2 (USP2) was identified as an upregulated gene in the metastatic group, and its expression was analyzed by immunohistochemistry in 121 primary breast cancers, 13 paired normal tissues, and 13 paired metastatic lesions. Survival analysis was performed using the log-rank test and Cox regression hazard model. Matrigel migration and invasion assays in USP2-silenced and USP2-overexpressed breast cancer cell lines were used to investigate the mechanisms of USP2 in vitro. Positive immunostaining for USP2 was detected in breast tumors and was correlated with estrogen receptor (ER) and progesterone receptor (PR) statuses and TNBC subtype. USP2 was overexpressed in distant metastatic lesions compared with primary breast cancers. Survival analyses demonstrated that positive USP2 is a poor prognostic factor for disease-free survival. Silencing of USP2 expression decreased migration and invasion in LM2-4175 and SCP46 cells in association with the downregulation of matrix metalloproteinase-2 (MMP2) expression, whereas overexpression of USP2 in MDA-MB-468 and MDA-MB-231 cells enhanced migration and invasion and upregulated the expression of MMP2. The present study showed that USP2 expression is associated with TNBC cell line's invasiveness and poor survival of breast cancer patients and may serve as a prognostic biomarker and therapeutic target for TNBC.

  15. Mutation Screening of 1,237 Cancer Genes across Six Model Cell Lines of Basal-Like Breast Cancer

    PubMed Central

    Olsson, Eleonor; Winter, Christof; George, Anthony; Chen, Yilun; Törngren, Therese; Bendahl, Pär-Ola; Borg, Åke; Gruvberger-Saal, Sofia K.; Saal, Lao H.

    2015-01-01

    Basal-like breast cancer is an aggressive subtype generally characterized as poor prognosis and lacking the expression of the three most important clinical biomarkers, estrogen receptor, progesterone receptor, and HER2. Cell lines serve as useful model systems to study cancer biology in vitro and in vivo. We performed mutational profiling of six basal-like breast cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and HCC1937) and their matched normal lymphocyte DNA using targeted capture and next-generation sequencing of 1,237 cancer-associated genes, including all exons, UTRs and upstream flanking regions. In total, 658 somatic variants were identified, of which 378 were non-silent (average 63 per cell line, range 37–146) and 315 were novel (not present in the Catalogue of Somatic Mutations in Cancer database; COSMIC). 125 novel mutations were confirmed by Sanger sequencing (59 exonic, 48 3’UTR and 10 5’UTR, 1 splicing), with a validation rate of 94% of high confidence variants. Of 36 mutations previously reported for these