Science.gov

Sample records for cancer cells initiate

  1. [Cancer initiating cell theory: popularity and controversies].

    PubMed

    Chen, Hua; Huang, Qiang; Dong, Jun; Lan, Qing

    2006-06-01

    The cancer stem cell model proposes that most tumors are derived from a single cell that is transformed into a cancer-initiating cell (cancer stem cell). Cancer stem cells have the capacity to proliferate, differentiate, and form tumors in vivo. However, the origin of cancer stem cells remains controversial. Normal stem cells are regarded as an ideal candidate for the origin of cancer stem cells when take similar characters and signaling pathways between them into consideration. In addition,cell fusion is an important physiologic process during development and tissue repair,and is closely related to several fundamental features of tumors,and thus could be involved in the development of cancer stem cells.

  2. Therapeutic implications of Cancer Initiating Cells.

    PubMed

    Scopelliti, Alessandro; Cammareri, Patrizia; Catalano, Veronica; Saladino, Vitanna; Todaro, Matilde; Stassi, Giorgio

    2009-08-01

    Until few years ago, all neoplastic cells within a tumour were suggested to have tumorigenic capacity, but recent evidences hint to the possibility that such feature is confined to a subset of Cancer Initiating Cells (CICs), also called Cancer Stem Cells (CSCs). These cells are the reservoir of the heterogeneous populations of differentiated cancer cells constituting the tumour bulk. Mechanisms shared with somatic stem cells, such as quiescence, self-renewal ability, asymmetric division and multidrug resistance, allow to these cells to drive tumour growth and to evade conventional therapy. Here, we give a brief overview on the origin of CICs, the mechanisms involved in chemoresistance and therapeutic implications. Current cancer treatments, based on the assumption that tumour cell population responds homogeneously, have been developed to eradicate proliferating cells. The new model of tumorigenesis entails significant therapeutic implications, in fact if a small fraction of CICs survives conventional therapy it may lead to recurrence after month or years of apparent remission. Selective targeting of CICs could eliminate the tumour from the root, overcoming the emergence of clones capable of evading traditional therapy and increasing overall disease free survival.

  3. Radiosensitivity of Cancer Initiating Cells and Normal Stem Cells

    PubMed Central

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-01-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (e.g. a lack of response, partial response or non-permanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of re-populating the tumor after sub-curative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that employ cell surface markers to identify cancer initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed. PMID:19249646

  4. Reprogramming bladder cancer cells for studying cancer initiation and progression.

    PubMed

    Iskender, Banu; Izgi, Kenan; Canatan, Halit

    2016-10-01

    The induced pluripotent stem cell (iPSC) technology is the forced expression of specific transcription factors in somatic cells resulting in transformation into self-renewing, pluripotent cells which possess the ability to differentiate into any type of cells in the human body. While malignant cells could also be reprogrammed into iPSC-like cells with lower efficiency due to the genetic and epigenetic barriers in cancer cells, only a limited number of cancer cell types could be successfully reprogrammed until today. In the present study, we aimed at reprogramming two bladder cancer cell lines HTB-9 and T24 using a non-integrating Sendai virus (SeV) system. We have generated six sub-clones using distinct combinations of four factors-OCT4, SOX2, KLF4 and c-MYC-in two bladder cancer cell lines. Only a single sub-clone, T24 transduced with 4Fs, gave rise to iPSC-like cells. Bladder cancer cell-derived T24 4F cells represent unique features of pluripotent cells such as epithelial-like morphology, colony-forming ability, expression of pluripotency-associated markers and bearing the ability to differentiate in vitro. This is the first study focusing on the reprogramming susceptibility of two different bladder cancer cell lines to nuclear reprogramming. Further molecular characterisation of T24 4F cells could provide a better insight for biomarker research in bladder carcinogenesis and could offer a valuable tool for the development of novel therapeutic approaches in bladder carcinoma.

  5. Immunological Targeting of Tumor Initiating Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    clinically using well-accepted immuno-competent animal models. 2) Keywords: Prostate Cancer , Lymphocyte, Vaccine , Antibody 3) Overall Project Summary...generating a novel prostate cancer vaccine aimed at targeting the castration resistant epithelial cells left behind after initial androgen ablation. 6...of origin for prostate cancer . Nature 461:495-500. 2. Drake,C.G., E.J.Lipson, and J.R.Brahmer. 2014. Breathing new life into immunotherapy

  6. Immune responses to human cancer stem-like cells/cancer-initiating cells.

    PubMed

    Hirohashi, Yoshihiko; Torigoe, Toshihiko; Tsukahara, Tomohide; Kanaseki, Takayuki; Kochin, Vitaly; Sato, Noriyuki

    2016-01-01

    Cancer stem-like cells (CSC)/cancer-initiating cells (CIC) are defined as minor subpopulations of cancer cells that are endowed with properties of higher tumor-initiating ability, self-renewal ability and differentiation ability. Accumulating results of recent studies have revealed that CSC/CIC are resistant to standard cancer therapies, including chemotherapy, radiotherapy and molecular targeting therapy, and eradiation of CSC/CIC is, thus, critical to cure cancer. Cancer immunotherapy is expected to become the "fourth" cancer therapy. Cytotoxic T lymphocytes (CTL) play an essential role in immune responses to cancers, and CTL can recognize CSC/CIC in an antigen-specific manner. CSC/CIC express several tumor-associated antigens (TAA), and cancer testis (CT) antigens are reasonable sources for CSC/CIC-targeting immunotherapy. In this review article, we discuss CSC/CIC recognition by CTL, regulation of immune systems by CSC/CIC, TAA expression in CSC/CIC, and the advantages of CSC/CIC-targeting immunotherapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  7. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment.

  8. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    PubMed Central

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  9. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  10. Obesity promotes colonic stem cell expansion during cancer initiation

    PubMed Central

    DeClercq; McMurray, DN; Chapkin, RS

    2015-01-01

    There is an urgent need to elucidate the mechanistic links between obesity and colon cancer. Convincing evidence for the role of Lgr5+stem cells in colon tumorigenesis has been established, however, the influence of obesity on stem cell maintenance is unknown. We assessed the effects of high fat (HF) feeding on colonic stem cell maintenance during cancer initiation (AOM induced) and the responsiveness of stem cells to adipokine signaling pathways. The number of colonic GFP+stem cells was significantly higher in the AOM-injected HF group compared to the LF group. The Lgr5+stem cells of the HF fed mice exhibited statistically significant increases in cell proliferation and decreases in apoptosis in response to AOM injection compared to the LF group. Colonic organoid cultures from lean mice treated with an adiponectin receptor agonist exhibited a reduction in Lgr5-GPF+stem cell number and an increase in apoptosis, however this response was diminished in the organoid cultures from obese mice. These results suggest that the responsiveness of colonic stem cells to adiponectin in diet-induced obesity is impaired and may contribute to the stem cell accumulation observed in obesity. PMID:26455770

  11. Obesity promotes colonic stem cell expansion during cancer initiation.

    PubMed

    DeClercq, V; McMurray, D N; Chapkin, R S

    2015-12-28

    There is an urgent need to elucidate the mechanistic links between obesity and colon cancer. Convincing evidence for the role of Lgr5(+) stem cells in colon tumorigenesis has been established; however, the influence of obesity on stem cell maintenance is unknown. We assessed the effects of high fat (HF) feeding on colonic stem cell maintenance during cancer initiation (AOM induced) and the responsiveness of stem cells to adipokine signaling pathways. The number of colonic GFP(+) stem cells was significantly higher in the AOM-injected HF group compared to the LF group. The Lgr5(+) stem cells of the HF fed mice exhibited statistically significant increases in cell proliferation and decreases in apoptosis in response to AOM injection compared to the LF group. Colonic organoid cultures from lean mice treated with an adiponectin receptor agonist exhibited a reduction in Lgr5-GPF(+) stem cell number and an increase in apoptosis; however, this response was diminished in the organoid cultures from obese mice. These results suggest that the responsiveness of colonic stem cells to adiponectin in diet-induced obesity is impaired and may contribute to the stem cell accumulation observed in obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells

    PubMed Central

    Morrison, Brian J.

    2012-01-01

    Cancer initiating cells (CICs) represent a unique cell population essential for the maintenance and growth of tumors. Most in vivo studies of CICs utilize human tumor xenografts in immunodeficient mice. These models provide limited information on the interaction of CICs with the host immune system and are of limited value in assessing therapies targeting CICs, especially immune-based therapies. To assess this, a syngeneic cancer model is needed. We examined the sphere-forming capacity of thirteen murine lung cancer cell lines and identified TC-1 and a metastatic subclone of Lewis lung carcinoma (HM-LLC) as cell lines that readily formed and maintained spheres over multiple passages. TC-1 tumorspheres were not enriched for expression of CD133 or CD44, putative CIC markers, nor did they demonstrate Hoechst 33342 side population staining or Aldefluor activity compared to adherent TC-1 cells. However, in tumorsphere culture, these cells exhibited self-renewal and long-term symmetric division capacity and expressed more Oct-4 compared to adherent cells. HM-LLC sphere-derived cells exhibited increased Oct-4, CD133, and CD44 expression, demonstrated a Hoechst 33342 side population and Aldefluor activity compared to adherent cells or a low metastatic subclone of LLC (LM-LLC). In syngeneic mice, HM-LLC sphere-derived cells required fewer cells to initiate tumorigenesis compared to adherent or LM-LLC cells. Similarly TC-1 sphere-derived cells were more tumorigenic than adherent cells in syngeneic mice. In contrast, in immunocompromised mice, less than 500 sphere or adherent TC-1 cells and less than 1,000 sphere or adherent LLC cells were required to initiate a tumor. We suggest that no single phenotypic marker can identify CICs in murine lung cancer cell lines. Tumorsphere culture may provide an alternative approach to identify and enrich for murine lung CICs. Furthermore, we propose that assessing tumorigenicity of murine lung CICs in syngeneic mice better models the

  13. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy

    PubMed Central

    Poillet-Perez, Laura; Despouy, Gilles; Delage-Mourroux, Régis; Boyer-Guittaut, Michaël

    2014-01-01

    Cancer formation is a complex and highly regulated multi-step process which is highly dependent of its environment, from the tissue to the patient. This complexity implies the development of specific treatments adapted to each type of tumor. The initial step of cancer formation requires the transformation of a healthy cell to a cancer cell, a process regulated by multiple intracellular and extracellular stimuli. The further steps, from the anarchic proliferation of cancer cells to form a primary tumor to the migration of cancer cells to distant organs to form metastasis, are also highly dependent of the tumor environment but of intracellular molecules and pathways as well. In this review, we will focus on the regulatory role of reactive oxygen species (ROS) and autophagy levels during the course of cancer development, from cellular transformation to the formation of metastasis. These data will allow us to discuss the potential of this molecule or pathway as putative future therapeutic targets. PMID:25590798

  14. Spermine accelerates hypoxia-initiated cancer cell migration.

    PubMed

    Tsujinaka, Shingo; Soda, Kuniyasu; Kano, Yoshihiko; Konishi, Fumio

    2011-02-01

    Polyamine levels are elevated in the organs and tissues of cancer patients due to increased synthesis and active intercellular transport in cancer cells. Because increased polyamine levels are associated with poor prognosis, the effect of polyamines on the malignant potential of cancer cells was investigated. Highly metastatic colon cancer cells (HT-29) were cultured under either normoxia (21% O2) or hypoxia (2% O2) for 48 h with 0, 100, or 500 µM spermine, one of the natural polyamines with the strongest biological activity. Spermine supplementation ameliorated MTT metabolism of hypoxic cancer cells in a dose-dependent manner, but had no effect on cells cultured under normoxia. Hypoxia decreased cancer cell CD44 and E-cadherin expression, while CD44 expression further decreased by spermine in a dose-dependent manner. By comparing cells cultured under normoxia with increasing amounts of spermine, we found that CD44 expression decreased by 11% (0 µM spermine), 14% (100 µM), and 18% (500 µM), and was accompanied by comparable decreases in CD44 mRNA levels. Martigel invasion assay showed that hypoxia increased the number of invading cells, and spermine further enhanced the hypoxia-induced increase in the number of invading cells in a dose-dependent manner. The numbers of invading cells cultured with 0, 100, and 500 µM spermine under hypoxia were 2.3, 2.8, and 3.2 times greater, respectively, compared to cells with 0 µM spermine under normoxia. Increased extracellular spermine enhances the invasion potential of cancer cells under hypoxia.

  15. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24

    PubMed Central

    Bhutia, Sujit K.; Das, Swadesh K.; Azab, Belal; Menezes, Mitchell E.; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival. PMID:23720015

  16. YAP/TEAD Co-Activator Regulated Pluripotency and Chemoresistance in Ovarian Cancer Initiated Cells

    PubMed Central

    Yu, Chao; Chang, Ting; Fan, Heng-Yu

    2014-01-01

    Recent evidence suggests that some solid tumors, including ovarian cancer, contain distinct populations of stem cells that are responsible for tumor initiation, growth, chemo-resistance, and recurrence. The Hippo pathway has attracted considerable attention and some investigators have focused on YAP functions for maintaining stemness and cell differentiation. In this study, we successfully isolated the ovarian cancer initiating cells (OCICs) and demonstrated YAP promoted self-renewal of ovarian cancer initiated cell (OCIC) through its downstream co-activator TEAD. YAP and TEAD families were required for maintaining the expression of specific genes that may be involved in OCICs' stemness and chemoresistance. Taken together, our data first indicate that YAP/TEAD co-activator regulated ovarian cancer initiated cell pluripotency and chemo-resistance. It proposed a new mechanism on the drug resistance in cancer stem cell that Hippo-YAP signal pathway might serve as therapeutic targets for ovarian cancer treatment in clinical. PMID:25369529

  17. YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells.

    PubMed

    Xia, Yan; Zhang, Yin-Li; Yu, Chao; Chang, Ting; Fan, Heng-Yu

    2014-01-01

    Recent evidence suggests that some solid tumors, including ovarian cancer, contain distinct populations of stem cells that are responsible for tumor initiation, growth, chemo-resistance, and recurrence. The Hippo pathway has attracted considerable attention and some investigators have focused on YAP functions for maintaining stemness and cell differentiation. In this study, we successfully isolated the ovarian cancer initiating cells (OCICs) and demonstrated YAP promoted self-renewal of ovarian cancer initiated cell (OCIC) through its downstream co-activator TEAD. YAP and TEAD families were required for maintaining the expression of specific genes that may be involved in OCICs' stemness and chemoresistance. Taken together, our data first indicate that YAP/TEAD co-activator regulated ovarian cancer initiated cell pluripotency and chemo-resistance. It proposed a new mechanism on the drug resistance in cancer stem cell that Hippo-YAP signal pathway might serve as therapeutic targets for ovarian cancer treatment in clinical.

  18. Pulmonary Embolism as the Initial Manifestation of Large Cell Lung Cancer

    PubMed Central

    Kim, Jin Kook; Lee, Sang Moo; Kim, Hyeon Tae; Uh, Sootaek; Chung, Yeontae; Kim, Yong Hoon; Park, Choonsik; Jin, So Young; Lee, Dong Hwa

    1992-01-01

    Lung cancer is known as a risk factor of pulmonary embolism. We experienced a case of pulmonary embolism combined with pleural effusion and pleuritic chest pain as the initial manifestation of large cell lung cancer, which is a relatively rare cell type of lung cancer in Korea. We report it with a review of the literature. PMID:1339079

  19. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    PubMed

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  20. Putative cancer-initiating stem cells in cell culture models for molecular subtypes of clinical breast cancer

    PubMed Central

    TELANG, NITIN

    2015-01-01

    Cancer-initiating stem cells (CISC) represent a minor subpopulation of heterogeneous breast cancer. CISC are responsible for the acquired resistance to conventional chemoendocrine therapy and eventual relapse observed in patients with breast cancer. Certain molecular subtypes of clinical breast cancer that exhibit differential expression of genes coding for hormone and growth factor receptors differ in their response to conventional chemoendocrine therapy and targeted therapeutic inhibitors. Thus, the development of reliable cell culture models for CISC may provide a valuable experimental approach for the study of stem cell-targeted therapy for the treatment of breast cancer. The present study utilized optimized cell culture systems as experimental models for different molecular subtypes of clinical breast cancer, including luminal A, human epidermal growth factor receptor (HER)-2-enriched and triple negative breast cancer. Biomarker end points, including control of homeostatic growth, cancer risk and drug resistance, were quantitatively analyzed in the selected models. The results of the analyses indicated that, compared with the non-tumorigenic controls, the cell models representing the aforementioned molecular subtypes of clinical breast cancer exhibited aberrant cell cycle progression, downregulated cellular apoptosis and loss of control of homeostatic growth, as evidenced by hyperproliferation. Additionally, these models displayed persistent cancer risk, as indicated by their high incidence and frequency of anchorage-independent (AI) colony formation in vitro and their tumor development capacity in vivo. Furthermore, in the presence of maximum cytostatic drug concentrations, the drug-resistant phenotypes isolated from the parental drug-sensitive cell lines representing luminal A, HER-2-enriched and triple negative breast cancer exhibited an 11.5, 5.0 and 6.2 fold increase in cell growth, and a 5.6, 5.4 and 4.4 fold increase in the number of AI colonies

  1. Putative cancer-initiating stem cells in cell culture models for molecular subtypes of clinical breast cancer.

    PubMed

    Telang, Nitin

    2015-12-01

    Cancer-initiating stem cells (CISC) represent a minor subpopulation of heterogeneous breast cancer. CISC are responsible for the acquired resistance to conventional chemoendocrine therapy and eventual relapse observed in patients with breast cancer. Certain molecular subtypes of clinical breast cancer that exhibit differential expression of genes coding for hormone and growth factor receptors differ in their response to conventional chemoendocrine therapy and targeted therapeutic inhibitors. Thus, the development of reliable cell culture models for CISC may provide a valuable experimental approach for the study of stem cell-targeted therapy for the treatment of breast cancer. The present study utilized optimized cell culture systems as experimental models for different molecular subtypes of clinical breast cancer, including luminal A, human epidermal growth factor receptor (HER)-2-enriched and triple negative breast cancer. Biomarker end points, including control of homeostatic growth, cancer risk and drug resistance, were quantitatively analyzed in the selected models. The results of the analyses indicated that, compared with the non-tumorigenic controls, the cell models representing the aforementioned molecular subtypes of clinical breast cancer exhibited aberrant cell cycle progression, downregulated cellular apoptosis and loss of control of homeostatic growth, as evidenced by hyperproliferation. Additionally, these models displayed persistent cancer risk, as indicated by their high incidence and frequency of anchorage-independent (AI) colony formation in vitro and their tumor development capacity in vivo. Furthermore, in the presence of maximum cytostatic drug concentrations, the drug-resistant phenotypes isolated from the parental drug-sensitive cell lines representing luminal A, HER-2-enriched and triple negative breast cancer exhibited an 11.5, 5.0 and 6.2 fold increase in cell growth, and a 5.6, 5.4 and 4.4 fold increase in the number of AI colonies

  2. Tumour-initiating cells vs. cancer 'stem' cells and CD133: What's in the name?

    SciTech Connect

    Neuzil, Jiri; E-mail: j.neuzil@griffith.edu.au; Stantic, Marina; Zobalova, Renata; Chladova, Jaromira; Wang, Xiufang; Prochazka, Lubomir; Dong, Lanfeng; Andera, Ladislav; Ralph, Stephen J.

    2007-04-20

    Recent evidence suggests that a subset of cells within a tumour have 'stem-like' characteristics. These tumour-initiating cells, distinct from non-malignant stem cells, show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumour cells, resistance to chemotherapy or radiation, and they are often characterised by elevated expression of the stem cell surface marker CD133. Understanding the molecular biology of the CD133{sup +} cancer cells is now essential for developing more effective cancer treatments. These may include drugs targeting organelles, such as mitochondria or lysosomes, using highly efficient and selective inducers of apoptosis. Alternatively, agents or treatment regimens that enhance sensitivity of these therapy-resistant 'tumour stem cells' to the current or emerging anti-tumour drugs would be of interest as well.

  3. The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer

    PubMed Central

    Krogan, Nevan J.; Lippman, Scott; Agard, David A.; Ashworth, Alan; Ideker, Trey

    2017-01-01

    Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, called The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these Cancer Cell Maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. PMID:26000852

  4. New promising drug targets in cancer- and metastasis-initiating cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2010-01-01

    The unique properties of cancer- and metastasis-initiating cells endowed with a high self-renewal and aberrant differentiation potential (including their elevated expression levels of anti-apoptotic factors, multidrug transporters, and DNA repair and detoxifying enzymes) might be associated with their resistance to current clinical cancer therapies and disease recurrence. The eradication of cancer- and metastasis-initiating cells by molecular targeting of distinct deregulated signaling elements that might contribute to their sustained growth, survival, and treatment resistance, therefore, is of immense therapeutic interest. These novel targeted approaches should improve the efficacy of current therapeutic treatments against highly aggressive, metastatic, recurrent, and lethal cancers. PMID:20338259

  5. Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar

    PubMed Central

    Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E.; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J.; Langley, Robert R.

    2011-01-01

    An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44+ and CD133+ and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice. PMID:21514446

  6. Selection of brain metastasis-initiating breast cancer cells determined by growth on hard agar.

    PubMed

    Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J; Langley, Robert R

    2011-05-01

    An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44(+) and CD133(+) and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice.

  7. Targeting cancer-initiating cell drug-resistance: a roadmap to a new-generation of cancer therapies?

    PubMed

    Alama, Angela; Orengo, Anna Maria; Ferrini, Silvano; Gangemi, Rosaria

    2012-05-01

    The occurrence of drug resistance in oncology accounts for treatment failure and relapse of diverse tumor types. Cancers contain cells at various stages of differentiation together with a limited number of 'cancer-initiating cells' able to self-renew and divide asymmetrically, driving tumorigenesis. Cancer-initiating cells display a range of self-defense systems that include almost all mechanisms of drug-resistance. Different molecular pathways and markers, identified in this malignant sub-population, are becoming targets for novel compounds and for monoclonal antibodies, which may be combined with conventional drugs. These interventions might eliminate drug-resistant cancer-initiating cells and lead to remission or cure of cancer patients.

  8. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells

    PubMed Central

    Lee, Hsin-chung; Ling, Qing-Dong; Yu, Wan-Chun; Hung, Chunh-Ming; Kao, Ta-Chun; Huang, Yi-Wei; Higuchi, Akon

    2013-01-01

    Purpose We evaluated the higher levels of carcinoembryonic antigen (CEA) secreted by the LoVo human colon carcinoma cells in a medium containing anticancer drugs. Drug-resistant LoVo cells were analyzed by subcutaneously xenotransplanting them into mice. The aim of this study was to evaluate whether the drug-resistant cells isolated in this study were cancer-initiating cells, known also as cancer stem cells (CSCs). Methods The production of CEA was investigated in LoVo cells that were cultured with 0–10 mM of anticancer drugs, and we evaluated the increase in CEA production by the LoVo cells that were stimulated by anticancer drug treatment. The expression of several CSC markers in LoVo cells treated with anticancer drugs was also evaluated. Following anticancer drug treatment, LoVo cells were injected subcutaneously into the flanks of severe combined immunodeficiency mice in order to evaluate the CSC fraction. Results Production of CEA by LoVo cells was stimulated by the addition of anticancer drugs. Drug-resistant LoVo cells expressed lower levels of CSC markers, and LoVo cells treated with any of the anticancer drugs tested did not generate tumors within 8 weeks from when the cells were injected subcutaneously into severe combined immunodeficiency mice. These results suggest that the drug-resistant LoVo cells have a smaller population of CSCs than the untreated LoVo cells. Conclusion Production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs. The drug-resistant subpopulation of LoVo colon cancer cells could stimulate the production of CEA, but these cells did not act as CSCs in in vivo tumor generation experiments. PMID:23818760

  9. Cancer initiating-cells are enriched in the CA9 positive fraction of primary cervix cancer xenografts

    PubMed Central

    Marie-Egyptienne, Delphine Tamara; Chaudary, Naz; Kalliomäki, Tuula; Hedley, David William; Hill, Richard Peter

    2017-01-01

    Numerous studies have suggested that Cancer Initiating Cells (CIC) can be identified/enriched in cell populations obtained from solid tumors based on the expression of cell surface marker proteins. We used early passage primary cervix cancer xenografts to sort cells based on the expression of the intrinsic hypoxia marker Carbonic Anhydrase 9 (CA9) and tested their cancer initiation potential by limiting dilution assay. We demonstrated that CICs are significantly enriched in the CA9+ fraction in 5/6 models studied. Analyses of the expression of the stem cell markers Oct4, Notch1, Sca-1 & Bmi1 showed a trend toward an increase in the CA9+ populations, albeit not significant. We present evidence that enhanced autophagy does not play a role in the enhanced growth of the CA9+ cells. Our study suggests a direct in vivo functional link between hypoxic cells and CICs in primary cervix cancer xenografts. PMID:27901496

  10. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    PubMed Central

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  11. Heterogeneity of tumor cells in terms of cancer-initiating cells

    PubMed Central

    Morii, Eiichi

    2016-01-01

    Tumors derive from a single cell clone but consist of heterogeneous cell subpopulations with diverse features and functions. A limited number of subclones with a selective advantage can initiate tumors when inoculated into immunocompromised mice, and are called cancer-initiating cells (CICs). CICs can be isolated from the bulk of tumors on the basis of their characteristics, such as high reagent efflux, degradation of reactive oxygen species, and aldehyde dehydrogenase (ALDH) activity. Under normal conditions, new CICs are produced by existing CICs rather than non-CICs. However, under stress conditions, non-CICs can occasionally produce CICs, a phenomenon known as plasticity. The dynamic exchange between CICs and non-CICs may enable tumors to survive under unfavorable conditions. CICs are located in a small portion of tumors. This suggests that microenvironmental factors induce or inhibit the CIC phenotype, which might be regulated by intercellular signaling between tumor cells. This review describes isolation of CICs from tumor cell populations and the microenvironmental factors that regulate CIC phenotypes in uterine cancer and lymphoma. PMID:28190919

  12. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  13. Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer

    PubMed Central

    Ai, Chun-Zhi; Jiang, Shan; Xu, Shan-Shan; Niu, Min; Wang, Xiang-Zhen; Zhong, Gen-Shen; Lu, Xi-Feng; Xue, Yu; Tian, Shaoqi; Li, Guangyao; Tang, Shaojun; Jiang, Yi-Zhou

    2017-01-01

    Bladder cancer is the most common urologic malignancy in China, with an increase of the incidence and mortality rates over past decades. Recent studies suggest that bladder tumors are maintained by a rare fraction of cells with stem cell proprieties. Targeting these bladder tumor initiating cell (TICs) population can overcome the drug-resistance of bladder cancer. However, the molecular and genetic mechanisms regulating TICs in bladder cancer remain poorly defined. Jarid2 is implicated in signaling pathways regulating cancer cell epithelial-mesenchymal transition, and stem cell maintenance. The goal of our study was to examine whether Jarid2 plays a role in the regulation of TICs in bladder cancer. We found that knockdown of Jarid2 was able to inhibit the invasive ability and sphere-forming capacity in bladder cancer cells. Moreover, knockdown of Jarid2 reduced the proportion of TICs and impaired the tumorigenicity of bladder cancer TICs in vivo. Conversely, ectopic overexpression of Jarid2 promoted the invasive ability and sphere-forming capacity in bladder cancer cells. Mechanistically, reduced Jarid2 expression led to the upregulation of p16 and H3K27me3 level at p16 promoter region. Collectively, we provided evidence that Jarid2 via modulation of p16 is a putative novel therapeutic target for treating malignant bladder cancer. PMID:28445934

  14. Nuclear-Shell Biopolymers Initiated by Telomere Elongation for Individual Cancer Cell Imaging and Drug Delivery.

    PubMed

    Zhang, Zhen; Jiao, Yuting; Zhu, Mengting; Zhang, Shusheng

    2017-04-04

    Here, we propose a strategy for unique nuclear-shell biopolymers initiated by telomere elongation for telomerase activity detection and precise drug delivery to individual cancer cells. Telomerase-triggered DNA rolling-circle amplification (RCA) is used to assemble nuclear-shell biopolymers with signal molecules for selective cancer cell recognition and efficient drug delivery to targeted individual cells. This strategy not only should allow the creation of clustered 5-carboxyfluorescein (FAM)-fluorescence spots in response to human-telomerase activity in individual cancer cells but also could efficiently deliver drugs to reduce the undesired death of healthy cells. These findings offer new opportunities to improve the efficacy of cancer cell imaging and therapy.

  15. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells

    PubMed Central

    Noto, A; Raffa, S; De Vitis, C; Roscilli, G; Malpicci, D; Coluccia, P; Di Napoli, A; Ricci, A; Giovagnoli, M R; Aurisicchio, L; Torrisi, M R; Ciliberto, G; Mancini, R

    2013-01-01

    In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These

  16. Matrix Metalloproteinase-10 Is Required for Lung Cancer Stem Cell Maintenance, Tumor Initiation and Metastatic Potential

    PubMed Central

    Tseng, I-Chu; Walsh, Michael P.; Batra, Jyotica; Radisky, Evette S.; Murray, Nicole R.; Fields, Alan P.

    2012-01-01

    Matrix metalloproteinases (Mmps) stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2) in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC). Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10−/− mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells. PMID:22545096

  17. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  18. Biomechanical profile of cancer stem-like/tumor-initiating cells derived from a progressive ovarian cancer model.

    PubMed

    Babahosseini, Hesam; Ketene, Alperen N; Schmelz, Eva M; Roberts, Paul C; Agah, Masoud

    2014-07-01

    We herein report, for the first time, the mechanical properties of ovarian cancer stem-like/tumor-initiating cells (CSC/TICs). The represented model is a spontaneously transformed murine ovarian surface epithelial (MOSE) cell line that mimics the progression of ovarian cancer from early/non-tumorigenic to late/highly aggressive cancer stages. Elastic modulus measurements via atomic force microscopy (AFM) illustrate that the enriched CSC/TICs population (0.32±0.12kPa) are 46%, 61%, and 72% softer (P<0.0001) than their aggressive late-stage, intermediate, and non-malignant early-stage cancer cells, respectively. Exposure to sphingosine, an anti-cancer agent, induced an increase in the elastic moduli of CSC/TICs by more than 46% (0.47±0.14kPa, P<0.0001). Altogether, our data demonstrate that the elastic modulus profile of CSC/TICs is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton architecture of cells. These findings increase the chance for obtaining distinctive cell biomechanical profiles with the intent of providing a means for effective cancer detection and treatment control. This novel study utilized atomic force microscopy to demonstrate that the elastic modulus profile of cancer stem cell-like tumor initiating cells is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton of these cells. These findings pave the way to the development of unique means for effective cancer detection and treatment control. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. CD44 and EpCAM: cancer-initiating cell markers.

    PubMed

    Marhaba, Rachid; Klingbeil, Pamela; Nuebel, Tobias; Nazarenko, Irina; Buechler, Markus W; Zoeller, Margot

    2008-12-01

    Embryonic stem cells are immortal, can self renew, and differentiate into all cells of the body. The adult organism maintains adult stem cells in regenerative organs that can differentiate into all cells of the respective organ. Virchow's hypothesis that cancer may arise from embryonic-like cells has received strong support, as it was demonstrated that tumors contain few cells, known as cancer stem or cancer-initiating cells (CIC), that account for primary and metastatic tumor growth. CIC are mostly defined by expression of CIC-markers that are associated and correlated with the potential of CIC to grow in xenogeneic mice. CIC marker profiles have been elaborated for many tumors, with several markers as CD24, CD44, CD133, CD166, EpCAM, and some integrins, being expressed by tumors of different histological type. Their function in promoting CIC maintenance and activity is largely unknown. The fate of stem cells, determined by their position, is minutely regulated by few adjacent cells creating a niche. CIC also require a niche, mostly for settlement and growth in distant organs. This so called pre-metastatic niche is initiated by the primary tumor before metastasizing cell arrival. How do CIC prepare the pre-metastatic niche? Cancer cells secrete a matrix that serves a cross-talk with surrounding tissues. Additionally, cancer cells can abundantly deliver exosomes, which function as long-distance intercellular communicators. Studies on a rat pancreatic adenocarcinoma support our hypothesis that tumor-derived matrix and exosomes are the main actors in forming the pre-metastatic niche with CIC markers being engaged in matrix preparation and/or exosome delivery.

  20. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer.

    PubMed

    Hillebrand, Larissa E; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-09-06

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45-, showed a high tumorigenicity compared to non-CD24+CD90+CD45- cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45- TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45- cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45- cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas.

  1. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer

    PubMed Central

    Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-01-01

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270

  2. Constitutive expression and activation of stress response genes in cancer stem-like cells/tumour initiating cells: potent targets for cancer stem cell therapy.

    PubMed

    Torigoe, Toshihiko; Hirohashi, Yoshihiko; Yasuda, Kazuyo; Sato, Noriyuki

    2013-08-01

    Cancer stem-like cells (CSCs)/tumour-initiating cells (TICs) are defined as the small population of cancer cells that have stem cell-like phenotypes and high capacity for tumour initiation. These cells may have a huge impact in the field of cancer therapy since they are extremely resistant to standard chemoradiotherapy and thus are likely to be responsible for disease recurrence after therapy. Therefore, extensive efforts are being made to elucidate the pathological and molecular properties of CSCs/TICs and, with this information, to establish efficient anti-CSC/TIC targeting therapies. This review considers recent findings on stress response genes that are preferentially expressed in CSCs/TICs and their roles in tumour-promoting properties. Implications for a novel therapeutic strategy targeting CSCs/TICs are also discussed.

  3. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo.

    PubMed

    Zimmerer, Rüdiger M; Matthiesen, Peter; Kreher, Fritjof; Kampmann, Andreas; Spalthoff, Simon; Jehn, Philipp; Bittermann, Gido; Gellrich, Nils-Claudius; Tavassol, Frank

    2016-03-01

    Tumor angiogenesis is essential for tumor growth and metastasis, and is regulated by a complex network of various types of cells, chemokines, and stimulating factors. In contrast to sprouting angiogenesis, tumor angiogenesis is also influenced by hypoxia, inflammation, and the attraction of bone-marrow-derived cells. Recently, cancer stem cells have been reported to mimic vascularization by differentiating into endothelial cells and inducing vessel formation. In this study, the influence of cancer stem cells on initial angiogenesis was evaluated for the metastatic melanoma cell line D10. Following flow cytometry, CD133+ and CD133- cells were isolated using magnetic cell separation and different cell fractions were transferred to porcine gelatin sponges, which were implanted into the dorsal skinfold chamber of immunocompromised mice. Angiogenesis was analyzed based on microvessel density over a 10-day period using in vivo fluorescence microscopy, and the results were verified using immunohistology. CD133+ D10 cells showed a significant induction of early angiogenesis in vivo, contrary to CD133- D10 cells, unsorted D10 cells, and negative control. Neovascularization was confirmed by visualizing endothelial cells by immunohistology using an anti-CD31 antibody. Because CD133+ cells are rare in clinical specimens and hardly amenable to functional assays, the D10 cell line provides a suitable model to study the angiogenic potential of putative cancer stem cells and the leukocyte-endothelial cell interaction in the dorsal skinfold chamber in vivo. This cancer stem cell model might be useful in the development and evaluation of therapeutic agents targeting tumors.

  4. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis.

    PubMed

    Colombo, Michela; Mirandola, Leonardo; Reidy, Adair; Suvorava, Natallia; Konala, Venu; Chiaramonte, Raffaella; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Nugyen, Diane D; Dalhbeck, Scott; Cobos, Everardo; Figueroa, Jose A; Chiriva-Internati, Maurizio

    2015-03-01

    Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.

  5. IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER

    PubMed Central

    Wei, Wei; Lewis, Michael T.

    2015-01-01

    Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646

  6. Identifying and targeting tumor-initiating cells in the treatment of breast cancer.

    PubMed

    Wei, Wei; Lewis, Michael T

    2015-06-01

    Breast cancer is the most common cancer in women (excluding skin cancer), and it is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - because of traits that tumor cells possess before treatment - or acquired - because of traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes the existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSCs). TICs have the capacity to self-renew and to generate new tumors that consist entirely of clonally derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies and that they can survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow, which results in disease relapse. It has also been hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative for achieving a cure. In the present review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear to be important for TIC function and may represent promising therapeutic targets. © 2015 Society for Endocrinology.

  7. Targeting tumour-initiating cells to improve the cure rates for triple-negative breast cancer.

    PubMed

    Stratford, Anna L; Reipas, Kristen; Maxwell, Christopher; Dunn, Sandra E

    2010-07-26

    Tumour recurrence is one of the biggest challenges in breast cancer management because it affects 25-30% of women with breast cancer and the tumours are often incurable. Women with triple-negative breast cancer (TNBC--lacking expression of the oestrogen receptor, progesterone receptor and the receptor HER2/ERBB2) have the highest rates of early recurrence relative to other breast cancer subtypes. Early recurrence might be due to tumour-initiating cells (TICs), which are resistant to conventional therapies, can remain dormant and can subsequently give rise to secondary tumours. In breast cancer, TICs are identified by the cell-surface markers CD44+/CD24-/EpCAM+ and/or possess ALDH1 enzyme activity. This subpopulation has the ability to self-renew, grow as mammospheres and initiate tumour formation. Fuelling the problem of relapse is the fact that chemotherapy and radiation can induce or select for TICs; this was reported in preclinical models and more recently in women being treated for breast cancer. Thus, new therapeutic agents for TNBC are presently being sought to overcome this problem. Here we review the roles of receptor tyrosine kinases, signalling intermediates and transcription factors in sustaining the TIC subpopulation. Particular emphasis is placed on targeting these molecules in order to eliminate and/or prevent the induction of TICs and ultimately reduce the frequency of TNBC recurrence.

  8. The EMT universe: space between cancer cell dissemination and metastasis initiation.

    PubMed

    Ombrato, Luigi; Malanchi, Ilaria

    2014-01-01

    Tumor metastasis, the cause of more than 90% of cancer cell mortality, is a multistep process by which tumor cells disseminate from their primary site via local invasion and intravasation into blood or lymphatic vessels and reach secondary distant sites, where they survive and reinitiate tumor growth. Activation of a developmental program called the epithelial-to-mesenchymal transition (EMT) has been shown to be a very efficient strategy adopted by epithelial cancer cells to promote local invasion and dissemination at distant organs. Remarkably, the activation of EMT programs in epithelial cells correlates with the appearance of stemness. This finding suggests that the EMT process also drives the initial cancer cell colonization at distant sites. However, recent studies support the concept that its reverse program, a mesenchymal-to-epithelial transition, is required for efficient metastatic colonization and that EMT is not necessarily associated with stemness. This review analyzes the conflicting experimental evidence linking epithelial plasticity to stemness in the light of an "EMT gradient model," according to which the outcome of EMT program activation in epithelial cells would be bimodal: coupled to stemness during initial activation, but when forced to reach an advanced mesenchymal status, it would become incompatible with stem cell abilities.

  9. miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/ tumor initiating cell properties.

    PubMed

    Lichner, Zsuzsanna; Saleh, Carol; Subramaniam, Venkateswaran; Seivwright, Annetta; Prud'homme, Gerald Joseph; Yousef, George Makram

    2015-03-20

    Renal cell carcinoma (RCC) is an aggressive disease, with 35% chance of metastasis. The 'cancer stem cell' hypothesis suggests that a subset of cancer cells possess stem cell properties and is crucial in tumor initiation, metastasis and treatment resistance. We isolated RCC spheres and showed that they exhibit cancer stem cell/ tumor initiating cell-like properties including the formation of self-renewing spheres, high tumorigenicity and the ability to differentiate to cell types of the original tumor. Spheres showed increased expression of stem cell-related transcription factors and mesenchymal markers. miRNAs were differentially expressed between RCC spheres and their parental cells. Inhibition of miR-17 accelerated the formation of RCC spheres which shared molecular characteristics with the spontaneous RCC spheres. Target prediction pointed out TGFβ pathway activation as a possible mechanism to drive RCC sphere formation. We demonstrate that miR-17 overexpression interferes with the TGFβ-EMT axis and hinders RCC sphere formation; and validated TGFBR2 as a direct and biologically relevant target during this process. Thus, a single miRNA may have an impact on the formation of highly tumorigenic cancer spheres of kidney cancer.

  10. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  11. Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer

    PubMed Central

    Hallett, Robin M.; Girgis-Gabardo, Adele; Gwynne, William D.; Giacomelli, Andrew O.; Bisson, Jennifer N.P.; Jensen, Jeremy E.; Dvorkin-Gheva, Anna; Hassell, John A.

    2016-01-01

    Accumulating data suggests that the initiation and progression of human breast tumors is fueled by a rare subpopulation of tumor cells, termed breast tumor-initiating cells (BTIC), which resist radiotherapy and chemotherapy. Consequently, therapies that abrogate BTIC activity are needed to achieve durable cures for breast cancer patients. To identify such therapies we used a sensitive assay to complete a high-throughput screen of small molecules, including approved drugs, with BTIC-rich mouse mammary tumor cell populations. We found that inhibitors of the serotonin reuptake transporter (SERT) and serotonin receptors, which include approved drugs used to treat mood disorders, were potent inhibitors of mouse BTIC activity as determined by functional sphere-forming assays and the initiation of tumor formation by transplant of drug-exposed tumor cells into syngeneic mice. Moreover, sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), synergized with docetaxel (Taxotere) to shrink mouse breast tumors in vivo. Hence drugs targeting the serotonergic system might be repurposed to treat breast cancer patients to afford more durable breast cancer remissions. PMID:27447971

  12. miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/tumor initiating cell properties

    PubMed Central

    Lichner, Zsuzsanna; Saleh, Carol; Subramaniam, Venkateswaran; Seivwright, Annetta; Prud'homme, Gerald Joseph; Yousef, George Makram

    2015-01-01

    Renal cell carcinoma (RCC) is an aggressive disease, with 35% chance of metastasis. The ‘cancer stem cell’ hypothesis suggests that a subset of cancer cells possess stem cell properties and is crucial in tumor initiation, metastasis and treatment resistance. We isolated RCC spheres and showed that they exhibit cancer stem cell/tumor initiating cell-like properties including the formation of self-renewing spheres, high tumorigenicity and the ability to differentiate to cell types of the original tumor. Spheres showed increased expression of stem cell-related transcription factors and mesenchymal markers.  miRNAs were differentially expressed between RCC spheres and their parental cells. Inhibition of miR-17 accelerated the formation of RCC spheres which shared molecular characteristics with the spontaneous RCC spheres. Target prediction pointed out TGFβ pathway activation as a possible mechanism to drive RCC sphere formation. We demonstrate that miR-17 overexpression interferes with the TGFβ-EMT axis and hinders RCC sphere formation; and validated TGFBR2 as a direct and biologically relevant target during this process. Thus, a single miRNA may have an impact on the formation of highly tumorigenic cancer spheres of kidney cancer. PMID:25011053

  13. Neutrophils support lung colonization of metastasis-initiating breast cancer cells

    PubMed Central

    Wculek, Stefanie K.; Malanchi, Ilaria

    2015-01-01

    Despite progress in the development of drugs efficiently targeting cancer cells, treatments of metastatic tumours are often ineffective. The now well established dependency of cancer cells on their microenvironment1 suggests that targeting the non-cancer cell component of the tumour might form the basis for the development of novel therapeutic approaches. However, the as yet poorly characterised contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumourigenesis is still controversial2-4. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissue by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacologic inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression. PMID:26649828

  14. Neutrophils support lung colonization of metastasis-initiating breast cancer cells.

    PubMed

    Wculek, Stefanie K; Malanchi, Ilaria

    2015-12-17

    Despite progress in the development of drugs that efficiently target cancer cells, treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However, the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression.

  15. Five-Membered Ring Peroxide Selectively Initiates Ferroptosis in Cancer Cells.

    PubMed

    Abrams, Rachel P; Carroll, William L; Woerpel, K A

    2016-05-20

    A 1,2-dioxolane (FINO2) was identified as a lead compound from a screen of organic peroxides. FINO2 does not induce apoptosis, but instead initiates ferroptosis, an iron-dependent, oxidative cell death pathway. Few compounds are known to induce primarily ferroptosis. In contrast to the perceived instability of peroxides, FINO2 was found to be thermally stable to at least 150 °C. FINO2 was more potent in cancer cells than nonmalignant cells of the same type. One of the enantiomers was found to be more responsible for the observed activity.

  16. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A

    PubMed Central

    Lotti, Fiorenza; Jarrar, Awad M.; Pai, Rish K.; Hitomi, Masahiro; Lathia, Justin; Mace, Adam; Gantt, Gerald A.; Sukhdeo, Kumar; DeVecchio, Jennifer; Vasanji, Amit; Leahy, Patrick; Hjelmeland, Anita B.

    2013-01-01

    Many solid cancers display cellular hierarchies with self-renewing, tumorigenic stemlike cells, or cancer-initiating cells (CICs) at the apex. Whereas CICs often exhibit relative resistance to conventional cancer therapies, they also receive critical maintenance cues from supportive stromal elements that also respond to cytotoxic therapies. To interrogate the interplay between chemotherapy and CICs, we investigated cellular heterogeneity in human colorectal cancers. Colorectal CICs were resistant to conventional chemotherapy in cell-autonomous assays, but CIC chemoresistance was also increased by cancer-associated fibroblasts (CAFs). Comparative analysis of matched colorectal cancer specimens from patients before and after cytotoxic treatment revealed a significant increase in CAFs. Chemotherapy-treated human CAFs promoted CIC self-renewal and in vivo tumor growth associated with increased secretion of specific cytokines and chemokines, including interleukin-17A (IL-17A). Exogenous IL-17A increased CIC self-renewal and invasion, and targeting IL-17A signaling impaired CIC growth. Notably, IL-17A was overexpressed by colorectal CAFs in response to chemotherapy with expression validated directly in patient-derived specimens without culture. These data suggest that chemotherapy induces remodeling of the tumor microenvironment to support the tumor cellular hierarchy through secreted factors. Incorporating simultaneous disruption of CIC mechanisms and interplay with the tumor microenvironment could optimize therapeutic targeting of cancer. PMID:24323355

  17. A Mathematical-Biological Joint Effort to Investigate the Tumor-Initiating Ability of Cancer Stem Cells

    PubMed Central

    Fornari, Chiara; Beccuti, Marco; Lanzardo, Stefania; Conti, Laura; Balbo, Gianfranco; Cavallo, Federica; Calogero, Raffaele A.; Cordero, Francesca

    2014-01-01

    The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by combining mathematical modeling and experimental data to understand tumor dynamics and to generate new experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression, which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth, and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred from the available biological data and these dependencies were used to characterize the dynamics of cancer subpopulations during the initial phase of ErbB2+ mammary cancer progression. PMID:25184361

  18. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    PubMed Central

    2012-01-01

    Background Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Methods Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. Results CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). Conclusions We characterized a self-renewing subpopulation of CICs found among four well known human

  19. New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence

    PubMed Central

    Mimeault, M.; Batra, S.K.

    2010-01-01

    Summary Accumulating lines of experimental evidence have revealed that the malignant transformation of multipotent tissue-resident adult stem/progenitor cells into cancer stem/progenitor cells endowed with a high self-renewal capacity and aberrant multilineage differentiation potential may be at origin of the most types of human aggressive and recurrent cancers. Based on new cancer stem/progenitor cell concepts of carcinogenesis, it is suggested that a small subpopulation of highly tumorigenic and migrating cancer stem/progenitor cells, also designated as cancer- and metastasis-initiating cells, can provide critical roles for primary tumor growth, metastases at distant tissues and organs, treatment resistance and disease relapse. Particularly, cancer initiation and progression to locally invasive and metastatic stages is often associated with a persistent activation of distinct developmental signaling pathways in these immature cells during epithelial-mesenchymal transition program. The signaling cascades that are often deregulated in cancer stem/progenitor cells include hedgehog, epidermal growth factor receptor (EGFR), Wnt/β-catenin, NOTCH, polycomb gene product BMI-1 and/or stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4). Importantly, the results from recent investigations have also indicated that different cancer subtypes may harbor distinct subsets and/or number of cancer-initiating cells during cancer progression as well as before or after therapy initiation and disease recurrence. Therefore, the identification of the molecular transforming events that frequently occur in cancer- and metastasis-initiating cells versus their differentiated progenies is of immense interest to develop new targeting approach for improving current therapies against aggressive, metastatic, recurrent and lethal cancers. PMID:20552555

  20. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression

    PubMed Central

    Madka, Venkateshwar; Brewer, Misty; Ritchie, Rebekah L.; Lightfoot, Stan; Kumar, Gaurav; Sadeghi, Michael; Patlolla, Jagan Mohan R.; Yamada, Hiroshi Y.; Cruz-Monserrate, Zobeida; May, Randal; Houchen, Courtney W.; Steele, Vernon E.; Rao, Chinthalapally V.

    2015-01-01

    Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes. Genetic ablation of cyclo-oxygenase-2 (COX-2) decreased DclK1 in GEM. Induction of inflammation/pancreatitis with cerulein in GEM mice increased DclK1, and the novel dual COX/5-lipoxygenase (5-LOX) inhibitor licofelone reduced it. Dietary licofelone significantly inhibited the incidence of PDAC and carcinoma in situ with significant inhibition of pancreatic CSCs. Licofelone suppressed pancreatic tumor COX-2 and 5-LOX activities and modulated miRNAs characteristic of CSC and inflammation in correlation with PDAC inhibition. These results offer a preclinical proof of concept to target the inflammation initiation to inhibit cancer stem cells early for improving the treatment of pancreatic cancers, with immediate clinical implications for repositioning dual COX/5-LOX inhibitors in human trials for high risk patients. PMID:25906749

  1. Is sphere assay useful for the identification of cancer initiating cells of the ovary?

    PubMed

    Martínez-Serrano, María José; Caballero-Baños, Miguel; Vilella, Ramon; Vidal, Laura; Pahisa, Jaume; Martínez-Roman, Sergio

    2015-01-01

    Current evidence suggests that the presence of tumor-initiating cells (TICs) in epithelial ovarian cancer (EOC) has a role in chemoresistance and relapse. Surface markers such as CD44(+)/CD24(-), CD117(+), and CD133(+) expression have been reported as potential markers for TICs related to ovarian cancer and tumorigenic cell lines. In this study, we have investigated if spheroid forms are TIC specific or whether they can also be produced by somatic stem cells from healthy tissue in vitro. In addition, we also investigated the specificity of surface markers to identify TICs from papillary serous EOC patients. Cells were obtained from fresh tumors from 10 chemotherapy-naive patients with EOC, and cells from ovarian and tubal epithelium were obtained from 5 healthy menopausal women undergoing surgery for benign pathology and cultured in standard and in selective medium. Cells forming nonadherent spheroids were considered TICs, and the adherent cells were considered as non-TIC-like. Percentages of CD24(+), CD44(+), CD117(+), CD133(+), and vascular endothelial growth factor receptor (VEGF-R)(+) cell surface markers were analyzed by flow cytometry. Four of 10 EOC cell tissues were excluded from the study. Tumor cells cultured in selective medium developed spheroid forms after 1 to 7 weeks in 5 of 6 EOC patients. No spheroid forms were observed in cultures of cells from healthy women. Unlike previously published data, low levels of CD24(+), CD44(+), CD117(+), and VEGF-R(+) expression were observed in spheroid cells, whereas expression of CD133(+) was moderate but higher in adherent cells from papillary serous EOC cells in comparison with adherent cells from controls. Papillary serous EOC contains TICs that form spheroids with low expression of CD44(+), CD24(+), CD117(+) and VEGF-R(+). Further research is required to find specific surface markers to identify papillary serous TICs.

  2. Aminopeptidase A initiates tumorigenesis and enhances tumor cell stemness via TWIST1 upregulation in colorectal cancer

    PubMed Central

    Chuang, Hui-Yu; Jiang, Jeng-Kae; Yang, Muh-Hwa; Wang, Hsei-Wei; Li, Ming-Chun; Tsai, Chan-Yen; Jhang, Yau-Yun; Huang, Jason C.

    2017-01-01

    Metastasis accounts for the high mortality rate associated with colorectal cancer (CRC), but metastasis regulators are not fully understood. To identify a novel gene involved in tumor metastasis, we used oligonucleotide microarrays, transcriptome distance analyses, and machine learning algorithms to determine links between primary and metastatic colorectal cancers. Aminopeptidase A (APA; also known as ENPEP) was selected as our focus because its relationship with colorectal cancer requires clarification. Higher APA mRNA levels were observed in patients in advanced stages of cancer, suggesting a correlation between ENPEP and degree of malignancy. Our data also indicate that APA overexpression in CRC cells induced cell migration, invasion, anchorage-independent capability, and mesenchyme-like characteristics (e.g., EMT markers). We also observed TWIST induction in APA-overexpressing SW480 cells and TWIST down-regulation in HT29 cells knocked down with APA. Both APA silencing and impaired APA activity were found to reduce migratory capacity, cancer anchorage, stemness properties, and drug resistance in vitro and in vivo. We therefore suggest that APA enzymatic activity affects tumor initiation and cancer malignancy in a TWIST-dependent manner. Results from RT-qPCR and the immunohistochemical staining of specimens taken from CRC patients indicate a significant correlation between APA and TWIST. According to data from SurvExpress analyses of TWIST1 and APA mRNA expression profiles, high APA and TWIST expression are positively correlated with poor CRC prognosis. APA may act as a prognostic factor and/or therapeutic target for CRC metastasis and recurrence. PMID:28177885

  3. VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating cells.

    PubMed

    Jang, Kibeom; Kim, Minsoon; Gilbert, Candace A; Simpkins, Fiona; Ince, Tan A; Slingerland, Joyce M

    2017-03-01

    The angiogenic factor, VEGFA, is a therapeutic target in ovarian cancer (OVCA). VEGFA can also stimulate stem-like cells in certain cancers, but mechanisms thereof are poorly understood. Here, we show that VEGFA mediates stem cell actions in primary human OVCA culture and OVCA lines via VEGFR2-dependent Src activation to upregulate Bmi1, tumor spheres, and ALDH1 activity. The VEGFA-mediated increase in spheres was abrogated by Src inhibition or SRC knockdown. VEGFA stimulated sphere formation only in the ALDH1(+) subpopulation and increased OVCA-initiating cells and tumor formation in vivo through Bmi1. In contrast to its action in hemopoietic malignancies, DNA methyl transferase 3A (DNMT3A) appears to play a pro-oncogenic role in ovarian cancer. VEGFA-driven Src increased DNMT3A leading to miR-128-2 methylation and upregulation of Bmi1 to increase stem-like cells. SRC knockdown was rescued by antagomir to miR-128. DNMT3A knockdown prevented VEGFA-driven miR-128-2 loss, and the increase in Bmi1 and tumor spheres. Analysis of over 1,300 primary human OVCAs revealed an aggressive subset in which high VEGFA is associated with miR-128-2 loss. Thus, VEGFA stimulates OVCA stem-like cells through Src-DNMT3A-driven miR-128-2 methylation and Bmi1 upregulation.

  4. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression

    PubMed Central

    Lee, Jong Hun; Khor, Tin Oo; Shu, Limin; Su, Zheng-Yuan; Fuentes, Francisco; Kong, Ah-Ng Tony

    2013-01-01

    Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2–Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including

  5. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer

    PubMed Central

    Pasparakis, Manolis

    2015-01-01

    The importance of mesenchymal cells in inflammation and/or neoplastic transformation is well recognized, but their role in the initiation of these processes, particularly in the intestine, remains elusive. Using mouse models of colorectal cancer, we show that IKKβ in intestinal mesenchymal cells (IMCs) is critically involved in colitis-associated, but not spontaneous tumorigenesis. We further demonstrate that IMC-specific IKKβ is involved in the initiation of colitis-associated cancer (CAC), as in its absence mice develop reduced immune cell infiltration, epithelial cell proliferation, and dysplasia at the early stages of the disease. At the molecular level, these effects are associated with decreased early production of proinflammatory and protumorigenic mediators, including IL-6, and reduced STAT3 activation. Ex vivo IKKβ-deficient IMCs show defective responses to innate immune stimuli such as LPS, as shown by decreased NF-κB signaling and reduced expression of important NF-κB target genes. Collectively, our results reveal a hitherto unknown role of mesenchymal IKKβ in driving inflammation and enabling carcinogenesis in the intestine. PMID:26621453

  6. miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer.

    PubMed

    Wang, Xijun; Guo, Hongmei; Yao, Banjamin; Helms, Julia

    2017-03-27

    Oral tongue squamous cell carcinoma (TSCC) is one of the most lethal cancers within the oral cavity and its prognosis remains dismal due to the paucity of effective therapeutic targets. The formation of cancer-initiating cells (CICs) and epithelial-mesenchymal transition (EMT) are pivotal events involved in the dismal prognosis. They have been shown to be related to the resistance to cisplatin treatment. In the present study, we showed that TRIM14 induced formation of cancer-initiating cells and EMT in TSCC SCC25 cells. Its overexpression promoted cisplatin resistance in the SCC25 cells. We found that overexpression of miR-15b suppressed TRIM14 and inhibited CIC phenotypes in the SCC25 cells. Moreover, overexpression of miR-15b promoted mesenchymal-epithelial transition (MET) in the SCC25 cells and sensitized cisplatin-resistant SCC25 (SCC25-res) cells to cisplatin. Thus, we conclude that miR-15b inhibited cancer stem cell phenotypes and its restoration reversed the chemoresistance of cisplatin by targeting TRIM14 in TSCC. Elucidating the molecular mechanism of EMT and cancer stem cells in TSCC may further aid in the understanding of the pathogenesis and progression of the disease, and offer novel targets for the discovery of new drugs.

  7. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  8. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells.

    PubMed

    Cuyàs, Elisabet; Corominas-Faja, Bruna; Martín, María Muñoz-San; Martin-Castillo, Begoña; Lupu, Ruth; Brunet, Joan; Bosch-Barrera, Joaquim; Menendez, Javier A

    2017-05-23

    Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.

  9. Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy.

    PubMed

    Maccalli, Cristina; Parmiani, Giorgio; Ferrone, Soldano

    2017-04-01

    Cancer-initiating cells (CICs) represent a relatively rare subpopulation of cells endowed with self-renewal, stemness properties, tumorigenicity in immunodeficient mice, and resistance to standard therapies as well as to immunotherapy. Here, we review the biological and immunological characteristics of CICs with special focus on the immunomodulating mechanisms they utilize to escape from immunosurveillance. The recently developed immunotherapeutic strategies have yielded remarkable clinical results in many types of tumors, indicating that indeed a patient's immune system can mount an immune response, which is effective in controlling tumor growth. However, a high proportion of patients is resistant or acquires resistance to these therapeutic strategies. The latter findings may reflect, at least in some cases, the inability of the immunotherapeutic strategies used to eradicate CICs. The CICs that escape immune recognition and destruction may give rise to new tumors in the same organ site or through the metastatic colonization in other anatomic sites. Identification of novel therapeutic approaches that can eradicate CICs is a major challenge in the cancer therapy area. An improved understanding of the interactions of CICs with immune system and with tumor microenvironment may contribute to optimize the available therapies and to design novel combination treatments for cancer therapy.

  10. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy

    PubMed Central

    Sullivan, James P.; Minna, John D.; Shay, Jerry W.

    2010-01-01

    The discovery of rare tumor cells with stem cell features first in leukemia and later in solid tumors has emerged as an important area in cancer research. It has been determined that these stem-like tumor cells, termed cancer stem cells, are the primary cellular component within a tumor that drives disease progression and metastasis. In addition to their stem-like ability to self-renew and differentiate, cancer stem cells are also enriched in cells resistant to conventional radiation therapy and to chemotherapy. The immediate implications of this new tumor growth paradigm not only require a re-evaluation of how tumors are initiated, but also on how tumors should be monitored and treated. However, despite the relatively rapid pace of cancer stem cell research in solid tumors such as breast, brain, and colon cancers, similar progress in lung cancer remains hampered in part due to an incomplete understanding of lung epithelial stem cell hierarchy and the complex heterogeneity of the disease. In this review, we provide a critical summary of what is known about the role of normal and malignant lung stem cells in tumor development, the progress in characterizing lung cancer stem cells and the potential for therapeutically targeting pathways of lung cancer stem cell self-renewal. PMID:20094757

  11. RGD-modifided oncolytic adenovirus exhibited potent cytotoxic effect on CAR-negative bladder cancer-initiating cells.

    PubMed

    Yang, Y; Xu, H; Shen, J; Yang, Y; Wu, S; Xiao, J; Xu, Y; Liu, X-Y; Chu, L

    2015-05-14

    Cancer-initiating cell (CIC) is critical in cancer development, maintenance and recurrence. The reverse expression pattern of coxsackie and adenovirus receptor (CAR) and αν integrin in bladder cancer decreases the infection efficiency of adenovirus. We constructed Arg-Gly-Asp (RGD)-modified oncolytic adenovirus, carrying EGFP or TNF-related apoptosis-inducing ligand (TRAIL) gene (Onco(Ad).RGD-hTERT-EGFP/TRAIL), and applied them to CAR-negative bladder cancer T24 cells and cancer-initiating T24 sphere cells. Onco(Ad).RGD-hTERT-EGFP had enhanced infection ability and cytotoxic effect on T24 cells and T24 sphere cells, but little cytoxicity on normal urothelial SV-HUC-1 cells compared with the unmodified virus Onco(Ad).hTERT-EGFP. Notably, Onco(Ad).RGD-hTERT-TRAIL induced apoptosis in T24 cells and T24 sphere cells. Furthermore, it completely inhibited xenograft initiation established by the oncolytic adenovirus-pretreated T24 sphere cells, and significantly suppressed tumor growth by intratumoral injection. These results provided a promising therapeutic strategy for CAR-negative bladder cancer through targeting CICs.

  12. Novel Therapies Against Aggressive and Recurrent Epithelial Cancers by Molecular Targeting Tumor- and Metastasis-Initiating Cells and Their Progenies

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2010-01-01

    A growing body of experimental evidence has revealed that the highly tumorigenic cancer stem/progenitor cells endowed with stem cell-like properties might be responsible for initiation and progression of numerous aggressive epithelial cancers into locally invasive, metastatic and incurable disease states. The malignant transformation of tissue-resident adult stem/progenitor cells or their progenies into tumorigenic and migrating cancer stem/progenitor cells and their resistance to current cancer therapies have been associated with their high expression levels of specific oncogenic products and drug resistance-associated molecules. In this regard, we describe the tumorigenic cascades that are frequently activated in cancer stem/progenitor cells versus their differentiated progenies during the early and late stages of the epithelial cancer progression. The emphasis is on the growth factor signaling pathways involved in the malignant behavior of prostate and pancreatic cancer stem/progenitor cells and their progenies. Of clinical interest, the potential molecular therapeutic targets to eradicate the tumor- and metastasis-initiating cells and their progenies and develop new effective combination therapies against locally advanced and metastatic epithelial cancers are also described. PMID:20184544

  13. CD20 Antibody-Conjugated Immunoliposomes for Targeted Chemotherapy of Melanoma Cancer Initiating Cells.

    PubMed

    Song, Hao; Su, Xiao; Yang, Kaixuan; Niu, Fangfang; Li, Jun; Song, Jinjing; Chen, Huaiwen; Li, Bohua; Li, Wei; Qian, Weizhu; Cao, Xuesong; Guo, Shangjing; Dai, Jianxin; Feng, Si-Shen; Guo, Yajun; Yin, Chuan; Gao, Jie

    2015-11-01

    Cancer initiating cells (CIC) are tumorigenic cancer cells that have properties similar to normal stem cells. CD20 is a phenotype of melanoma CIC that is responsible for melanoma drug resistance. Vincristine (VCR) is commonly used in melanoma therapy; however, it has been found ineffective against CIC. To target CD20+ melanoma CIC, we prepared VCR-containing immunoliposomes that were conjugated to CD20 antibodies (VCR-Lip-CD20). The drug release profile and the antibody-mediated targeting of the immunoliposomes were optimized to target CD20+ melanoma CIC. The immunoliposomes had desirable particle size (163 nm), drug encapsulation efficiency (91.8%), and drug release profile. We demonstrated that these immunoliposomes could successfully target more than 55% of CD20+ Chinese Hamster Ovary cells (CHO-CD20) even when the CHO-CD20 cells accounted for only 0.1% of a mixed population of CHO-CD20 and CHO cells. After treating WM266-4 melanoma mammospheres for 96 h, the ICo values of the drug delivered in VCR-Lip-CD20, VCR-Lip (VCR liposomes), and VCR were found to be 53.42, 98.99, and 99.09 μg/mL, respectively, suggesting that VCR-Lip-CD20 was 1.85 times more effective than VCR-Lip and VCR. VCR-Lip-CD20 could almost completely remove the tumorigenic ability of WM266-4 mammospheres in vivo, and showed the best therapeutic effect in WM266-4 melanoma xenograft mice. Significantly, VCR-Lip-CD20 could selectively kill CD20+ melanoma CIC in populations of WM266-4 cells both in vitro and in vivo. We demonstrated that VCR-Lip-CD20 has the potential to efficiently target and kill CD20+ melanoma CIC.

  14. Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells.

    PubMed

    Dubash, Taronish D; Hoffmann, Christopher M; Oppel, Felix; Giessler, Klara M; Weber, Sarah; Dieter, Sebastian M; Hüllein, Jennifer; Zenz, Thorsten; Herbst, Friederike; Scholl, Claudia; Weichert, Wilko; Werft, Wiebke; Benner, Axel; Schmidt, Manfred; Schneider, Martin; Glimm, Hanno; Ball, Claudia R

    2016-02-28

    Within primary colorectal cancer (CRC) a subfraction of all tumor-initiating cells (TIC) drives long-term progression in serial xenotransplantation. It has been postulated that efficient maintenance of TIC activity in vitro requires serum-free spheroid culture conditions that support a stem-like state of CRC cells. To address whether tumorigenicity is indeed tightly linked to such a stem-like state in spheroids, we transferred TIC-enriched spheroid cultures to serum-containing adherent conditions that should favor their differentiation. Under these conditions, primary CRC cells did no longer grow as spheroids but formed an adherent cell layer, up-regulated colon epithelial differentiation markers, and down-regulated TIC-associated markers. Strikingly, upon xenotransplantation cells cultured under either condition equally efficient formed serially transplantable tumors. Clonal analyses of individual lentivirally marked TIC clones cultured under either culture condition revealed no systematic differences in contributing clone numbers, indicating that phenotypic differentiation does not select for few individual clones adapted to unfavorable culture conditions. Our results reveal that CRC TIC can be propagated under conditions previously thought to induce their elimination. This phenotypic plasticity allows addressing primary human CRC TIC properties in experimental settings based on adherent cell growth.

  15. MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation.

    PubMed

    Yasuda, Kazuyo; Hirohashi, Yoshihiko; Kuroda, Takafumi; Takaya, Akari; Kubo, Terufumi; Kanaseki, Takayuki; Tsukahara, Tomohide; Hasegawa, Tadashi; Saito, Tsuyoshi; Sato, Noriyuki; Torigoe, Toshihiko

    2016-04-15

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH(high)) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver and kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH(high) population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation

    SciTech Connect

    Yasuda, Kazuyo; Hirohashi, Yoshihiko; Kuroda, Takafumi; Takaya, Akari; Kubo, Terufumi; Kanaseki, Takayuki; Tsukahara, Tomohide; Hasegawa, Tadashi; Saito, Tsuyoshi; Sato, Noriyuki; Torigoe, Toshihiko

    2016-04-15

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH{sup high}) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver and kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH{sup high} population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.

  17. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    PubMed Central

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  18. A convenient and effective strategy for the enrichment of tumor-initiating cell properties in prostate cancer cells.

    PubMed

    Zhang, Yiming; Huang, Yiqiang; Jin, Zhong; Li, Xiezhao; Li, Bingkun; Xu, Peng; Huang, Peng; Liu, Chunxiao

    2016-09-01

    Stem-like prostate cancer (PrCa) cells, also called PrCa stem cells (PrCSCs) or PrCa tumor-initiating cells (PrTICs), are considered to be involved in the mediation of tumor metastasis and may be responsible for the poor prognosis of PrCa patients. Currently, the methods for PrTIC sorting are mainly based on cell surface marker or side population (SP). However, the rarity of these sorted cells limits the investigation of the molecular mechanisms and therapeutic strategies targeting PrTICs. For PrTIC enrichment, we induced cancer stem cell (CSC) properties in PrCa cells by transducing three defined factors (OCT3/4, SOX2, and KLF4), followed by culture with conventional serum-containing medium. The CSC properties in the transduced cells were evaluated by proliferation, cell cycle, SP assay, drug sensitivity technology, in vivo tumorigenicity, and molecular marker analysis of PrCSCs compared with parental cells and spheroids. After culture with serum-containing medium for 8 days, the PrCa cells transduced with the three factors showed significantly enhanced CSC properties in terms of marker gene expression, sphere formation, chemoresistance to docetaxel, and tumorigenicity. The percentage of CD133(+)/CD44(+) cells was ninefold higher in the transduced cell population than in the adherent PC3 cell population (2.25 ± 0.62 vs. 0.25 ± 0.12 %, respectively), and the SP increased to 1.22 ± 0.18 % in the transduced cell population, but was undetectable in the adherent population. This method can be used to obtain abundant PrTIC material and enables a complete understanding of PrTIC biology and development of novel therapeutic agents targeting PrTICs.

  19. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer.

    PubMed

    Wei, Wei; Tweardy, David J; Zhang, Mei; Zhang, Xiaomei; Landua, John; Petrovic, Ivana; Bu, Wen; Roarty, Kevin; Hilsenbeck, Susan G; Rosen, Jeffrey M; Lewis, Michael T

    2014-10-01

    In breast cancer, a subset of tumor-initiating cells (TIC) or "cancer stem cells" are thought to be responsible for tumor maintenance, treatment resistance, and disease recurrence. While current breast cancer stem cell markers (e.g., CD44(high) /CD24(low/neg) , ALDH positive) have allowed enrichment for such cells, they are not universally expressed and may actually identify distinct TIC subpopulations in the same tumor. Thus, additional markers of functional stem cells are needed. The STAT3 pathway is a critical regulator of the function of normal stem cells, and evidence is accumulating for its important role in breast cancer stem cells. However, due to the lack of a method for separating live cells based on their level of STAT3 activity, it remains unknown whether STAT3 functions in the cancer stem cells themselves, or in surrounding niche cells, or in both. To approach this question, we constructed a series of lentiviral fluorescent (enhanced green fluorescent protein, EGFP) reporters that enabled flow cytometric enrichment of cells differing in STAT3-mediated transcriptional activity, as well as in vivo/in situ localization of STAT3 responsive cells. Using in vivo claudin-low cell line xenograft models of human breast cancer, we found that STAT3 signaling reporter activity (EGFP(+) ) is associated with a subpopulation of cancer cells enriched for mammosphere-forming efficiency, as well as TIC function in limiting dilution transplantation assays compared to negative or unsorted populations. Our results support STAT3 signaling activity as another functional marker for human breast cancer stem cells thus making it an attractive therapeutic target for stem-cell-directed therapy in some breast cancer subtypes. © AlphaMed Press.

  20. Dietary Regulation of PTEN Signaling and Mammary Tumor Initiating Cells: Implications for Breast Cancer Prevention

    DTIC Science & Technology

    2011-01-01

    predisposition to breast cancer and could help design better dietary guidelines early in life. Based on extensive evidence supporting a role for cancer...than their American counterparts (1). Our laboratory has shown that dietary exposure to soy protein isolate (SPI) protects against breast cancer in...Wnt-Tg mice were shown to originate from cancer stem cells (CD24+Thy1+) (9). Therefore, we hypothesize that dietary soy protein isolate protects

  1. Global cancer research initiative

    PubMed Central

    Love, Richard R

    2010-01-01

    Cancer is an increasing problem for low- and middle-income countries undergoing an epidemiologic transition from dominantly acute communicable disease to more frequent chronic disease with increased public health successes in the former domain. Progress against cancer in high-income countries has been modest and has come at enormous expense. There are several well-conceived global policy and planning initiatives which, with adequate political will, can favorably impact the growing global cancer challenges. Most financial resources for cancer, however, are spent on diagnosis and management of patients with disease in circumstances where specific knowledge about effective approaches is significantly limited, and the majority of interventions, other than surgery, are not cost-effective in resource-limited countries by global standards. In summary, how to intervene effectively on a global scale for the majority of citizens who develop cancer is poorly defined. In contrast to technology-transfer approaches, markedly increased clinical research activities are more likely to benefit cancer sufferers. In these contexts, a global cancer research initiative is proposed, and mechanisms for realizing such an effort are suggested. PMID:21188101

  2. Identification of CD166 as a Surface Marker for Enriching Prostate Stem/Progenitor and Cancer Initiating Cells

    PubMed Central

    Wang, Shunyou; Tran, Linh M.; Goldstein, Andrew S.; Lawson, Devon; Chen, Donghui; Li, Yunfeng; Guo, Changyong; Zhang, Baohui; Fazli, Ladan; Gleave, Martin; Witte, Owen N.; Garraway, Isla P.; Wu, Hong

    2012-01-01

    New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics. PMID:22880034

  3. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells.

    PubMed

    Orellana, Renan; Kato, Sumie; Erices, Rafaela; Bravo, María Loreto; Gonzalez, Pamela; Oliva, Bárbara; Cubillos, Sofía; Valdivia, Andrés; Ibañez, Carolina; Brañes, Jorge; Barriga, María Isabel; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Castellon, Enrique; Hidalgo, Patricia; Trigo, Cesar; Panes, Olga; Pereira, Jaime; Mezzano, Diego; Cuello, Mauricio A; Owen, Gareth I

    2015-04-15

    An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.

  4. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    NASA Astrophysics Data System (ADS)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  5. Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors.

    PubMed

    Shenoy, Anitha K; Fisher, Robert C; Butterworth, Elizabeth A; Pi, Liya; Chang, Lung-Ji; Appelman, Henry D; Chang, Myron; Scott, Edward W; Huang, Emina H

    2012-10-01

    Ulcerative colitis (UC) increases the risk of colorectal cancer (CRC), but the mechanisms involved in colitis-to-cancer transition (CCT) are not well understood. CCT may involve a inflammation-dysplasia-carcinoma progression sequence compared with the better characterized adenoma-carcinoma progression sequence associated with sporadic CRC. One common thread may be activating mutations in components of the Wnt/β-catenin signaling pathway, which occur commonly as early events in sporadic CRC. To examine this hypothesis, we evaluated possible associations between Wnt/β-catenin signaling and CCT based on the cancer stem cell (CSC) model. Wnt/β-catenin immunostaining indicated that UC patients have a level of Wnt-pathway-active cells that is intermediate between normal colon and CRC. These UC cells exhibiting activation of the Wnt pathway constituted a major subpopulation (52% + 7.21) of the colonic epithelial cells positive for aldehyde dehydrogenase (ALDH), a putative marker of precursor colon CSC (pCCSC). We further fractionated this subpopulation of pCCSC using a Wnt pathway reporter assay. Over successive passages, pCCSCs with the highest Wnt activity exhibited higher clonogenic and tumorigenic potential than pCCSCs with the lowest Wnt activity, thereby establishing the key role of Wnt activity in driving CSC-like properties in these cells. Notably, 5/20 single cell injections of high-Wnt pCCSC resulted in tumor formation, suggesting a correlation with CCT. Attenuation of Wnt/β-catenin in high-Wnt pCCSC by shRNA-mediated downregulation or pharmacological inhibition significantly reduced tumor growth rates. Overall, the results of our study indicates (i) that early activation of Wnt/β-catenin signaling is critical for CCT and (ii) that high levels of Wnt/β-catenin signaling can further demarcate high-ALDH tumor-initiating cells in the nondysplastic epithelium of UC patients. As such, our findings offer plausible diagnostic markers and therapeutic target in the

  6. Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis

    PubMed Central

    Feng, Dingqing; Yan, Keqin; Zhou, Ying; Liang, Haiyan; Liang, Jing; Zhao, Weidong; Dong, Zhongjun; Ling, Bin

    2016-01-01

    The human papillomavirus (HPV) oncoproteins E6 and E7 are risk factors that are primarily responsible for the initiation and progression of cervical cancer, and they play a key role in immortalization and transformation by reprogramming differentiating host epithelial cells. It is unclear how cervical epithelial cells transform into tumor-initiating cells (TICs). Here, we observed that the germ stem cell protein Piwil2 is expressed in pre-cancerous and malignant lesions of the cervix and cervical cancer cell lines with the exception of the non-HPV-infected C33a cell line. Knockdown of Piwil2 by shRNA led to a marked reduction in proliferation and colony formation, in vivo tumorigenicity, chemo-resistance, and the proportion of cancer stem-like cells. In contrast, Piwil2 overexpression induced malignant transformation of HaCaT cells and the acquisition of tumor-initiating capabilities. Gene-set enrichment analysis revealed embryonic stem cell (ESC) identity, malignant biological behavior, and specifically, activation targets of the cell reprogramming factors c-Myc, Klf4, Nanog, Oct4, and Sox2 in Piwil2-overexpressing HaCaT cells. We further confirmed that E6 and E7 reactivated Piwil2 and that E6 and E7 overexpression resulted in a similar gene-set enrichment pattern as Piwil2 overexpression in HaCaT cells. Moreover, Piwil2 overexpression or E6 and E7 activation induced H3K9 acetylation but reduced H3K9 trimethylation, which contributed to the epigenetic reprogramming and ESC signature maintenance, as predicted previously. Our study demonstrates that Piwil2, reactivated by the HPV oncoproteins E6 and E7, plays an essential role in the transformation of cervical epithelial cells to TICs via epigenetics-based cell reprogramming. PMID:27602489

  7. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation.

    PubMed

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-04-18

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.

  8. Optimization of the tissue source, malignancy, and initial substrate of tumor cell-derived matrices to increase cancer cell chemoresistance against 5-fluorouracil.

    PubMed

    Hoshiba, Takashi; Tanaka, Masaru

    2015-02-13

    The low chemoresistance of in vitro cancer cells inhibits the development of new anti-cancer drugs. Thus, development of a new in vitro culture system is required to increase the chemoresistance of in vitro cancer cells. Tumor cell-derived matrices have been reported to increase the chemoresistance of in vitro cancer cells. However, it remains unclear how tissue sources and the malignancy of cells used for the preparation of matrices affect the chemoresistance of tumor cell-derived matrices. Moreover, it remains unclear how the initial substrates used for the preparation of matrices affect the chemoresistance. In this study, we compared the effects of tissue sources and the malignancy of tumor cells, as well as the effect of the initial substrates on chemoresistance against 5-fluorouracil (5-FU). The chemoresistance of breast and colon cancer cells against 5-FU increased on matrices prepared with cells derived from the corresponding original tissues with higher malignancy. Moreover, the chemoresistance against 5-FU was altered on matrices prepared using different initial substrates that exhibited different characteristics of protein adsorption. Taken together, these results indicated that the appropriate selection of tissue sources, malignancy of tumor cells, and initial substrates used for matrix preparation is important for the preparation of tumor cell-derived matrices for chemoresistance assays.

  9. A mathematical model of cancer stem cell driven tumor initiation: implications of niche size and loss of homeostatic regulatory mechanisms.

    PubMed

    Gentry, Sara N; Jackson, Trachette L

    2013-01-01

    Hierarchical organized tissue structures, with stem cell driven cell differentiation, are critical to the homeostatic maintenance of most tissues, and this underlying cellular architecture is potentially a critical player in the development of a many cancers. Here, we develop a mathematical model of mutation acquisition to investigate how deregulation of the mechanisms preserving stem cell homeostasis contributes to tumor initiation. A novel feature of the model is the inclusion of both extrinsic and intrinsic chemical signaling and interaction with the niche to control stem cell self-renewal. We use the model to simulate the effects of a variety of types and sequences of mutations and then compare and contrast all mutation pathways in order to determine which ones generate cancer cells fastest. The model predicts that the sequence in which mutations occur significantly affects the pace of tumorigenesis. In addition, tumor composition varies for different mutation pathways, so that some sequences generate tumors that are dominated by cancerous cells with all possible mutations, while others are primarily comprised of cells that more closely resemble normal cells with only one or two mutations. We are also able to show that, under certain circumstances, healthy stem cells diminish due to the displacement by mutated cells that have a competitive advantage in the niche. Finally, in the event that all homeostatic regulation is lost, exponential growth of the cancer population occurs in addition to the depletion of normal cells. This model helps to advance our understanding of how mutation acquisition affects mechanisms that influence cell-fate decisions and leads to the initiation of cancers.

  10. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer

    PubMed Central

    Strietz, Juliane; Stepputtis, Stella S.; Vannier, Corinne; Kim, Mihee M.; Castro, David J.; Au, Qingyan; Boerries, Melanie; Busch, Hauke; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Bronsert, Peter; Kuster, Bernhard; Stickeler, Elmar; Brabletz, Thomas; Oshima, Robert G.; Maurer, Jochen

    2016-01-01

    Cancers are heterogeneous by nature. While traditional oncology screens commonly use a single endpoint of cell viability, altering the phenotype of tumor-initiating cells may reveal alternative targets that regulate cellular growth by processes other than apoptosis or cell division. We evaluated the impact of knocking down expression of 420 kinases in bi-lineage triple-negative breast cancer (TNBC) cells that express characteristics of both myoepithelial and luminal cells. Knockdown of ERN1 or ALPK1 induces bi-lineage MDA-MB-468 cells to lose the myoepithelial marker keratin 5 but not the luminal markers keratin 8 and GATA3. In addition, these cells exhibit increased β-casein production. These changes are associated with decreased proliferation and clonogenicity in spheroid cultures and anchorage-independent growth assays. Confirmation of these assays was completed in vivo, where ERN1- or ALPK1-deficient TNBC cells are less tumorigenic. Finally, treatment with K252a, a kinase inhibitor active on ERN1, similarly impairs anchorage-independent growth of multiple breast cancer cell lines. This study supports the strategy to identify new molecular targets for types of cancer driven by cells that retain some capacity for normal differentiation to a non-tumorigenic phenotype. ERN1 and ALPK1 are potential targets for therapeutic development. PMID:27829216

  11. Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells.

    PubMed

    Yu, Xiaojun; Zheng, Bo'an; Chai, Rui

    2014-12-12

    Dysregulation of protein synthesis is emerging as a major contributory factor in cancer development. eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 (eukaryotic translation initiation factor 3) family, which is essential for initiation of protein synthesis in eukaryotic cells. Acquaintance with eIF3D is little since it has been identified as a dispensable subunit of eIF3 complex. Recently, eIF3D was found to embed somatic mutations in human colorectal cancers, indicating its importance for tumour progression. To further probe into its action in colon cancer, we utilized lentivirus-mediated RNA interference to knock down eIF3D expression in one colon cancer cell line HCT116. Knockdown of eIF3D in HCT116 cells significantly inhibited cell proliferation and colony formation in vitro. Flow cytometry analysis indicated that depletion of eIF3D led to cell-cycle arrest in the G2/M phase, and induced an excess accumulation of HCT116 cells in the sub-G1 phase representing apoptotic cells. Signalling pathways responsible for cell growth and apoptosis have also been found altered after eIF3D silencing, such as AMPKα (AMP-activated protein kinase alpha), Bad, PRAS40 [proline-rich Akt (PKB) substrate of 40 kDa], SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase), GSK3β and PARP [poly(ADP-ribose) polymerase]. Taken together, these findings suggest that eIF3D might play an important role in colon cancer progression.

  12. Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19+- liver cells deficient for p53 and Rb

    PubMed Central

    Govaert, Klaas M; van Vuuren, Luciel D; Nantasanti, Sathidpak; Nijkamp, Maarten W; Pandit, Shusil K; Tooten, Peter CJ; Koster, Mirjam H; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain

    2016-01-01

    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis. We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice. We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells. These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site. PMID:27323406

  13. Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19+- liver cells deficient for p53 and Rb.

    PubMed

    Matondo, Ramadhan B; Toussaint, Mathilda Jm; Govaert, Klaas M; van Vuuren, Luciel D; Nantasanti, Sathidpak; Nijkamp, Maarten W; Pandit, Shusil K; Tooten, Peter Cj; Koster, Mirjam H; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain

    2016-08-23

    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis.We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice.We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells.These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site.

  14. Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model

    PubMed Central

    Peek, Elizabeth M; Li, David R; Zhang, Hanwei; Kim, Hyun Pyo; Zhang, Baohui; Garraway, Isla P; Chin, Arnold I

    2012-01-01

    The development of new cancer therapeutics would benefit from incorporating efficient tumor models that mimic human disease. We have developed a subcutaneous bladder tumor regeneration system that recapitulates primary human bladder tumor architecture by recombining benign human fetal bladder stromal cells with SW780 bladder carcinoma cells. As a first step, SW780 cells were seeded in ultra low attachment cultures in order to select for sphere-forming cells, the putative cancer stem cell (CSC) phenotype. Spheroids were combined with primary human fetal stromal cells or vehicle control and injected subcutaneously with Matrigel into NSG mice. SW780 bladder tumors that formed in the presence of stroma showed accelerated growth, muscle invasion, epithelial to mesenchymal transition (EMT), decreased differentiation, and greater activation of growth pathways compared to tumors formed in the absence of fetal stroma. Tumors grown with stroma also demonstrated a greater similarity to typical malignant bladder architecture, including the formation of papillary structures. In an effort to determine if cancer cells from primary tumors could form similar structures in vivo using this recombinatorial approach, putative CSCs, sorted based on the CD44+CD49f+ antigenic profile, were collected and recombined with fetal bladder stromal cells and Matrigel prior to subcutaneous implantation. Retrieved grafts contained tumors that exhibited the same structure as the original primary human tumor. Primary bladder tumor regeneration using human fetal bladder stroma may help elucidate the influences of stroma on tumor growth and development, as well as provide an efficient and accessible system for therapeutic testing. PMID:23226620

  15. Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model.

    PubMed

    Peek, Elizabeth M; Li, David R; Zhang, Hanwei; Kim, Hyun Pyo; Zhang, Baohui; Garraway, Isla P; Chin, Arnold I

    2012-01-01

    The development of new cancer therapeutics would benefit from incorporating efficient tumor models that mimic human disease. We have developed a subcutaneous bladder tumor regeneration system that recapitulates primary human bladder tumor architecture by recombining benign human fetal bladder stromal cells with SW780 bladder carcinoma cells. As a first step, SW780 cells were seeded in ultra low attachment cultures in order to select for sphere-forming cells, the putative cancer stem cell (CSC) phenotype. Spheroids were combined with primary human fetal stromal cells or vehicle control and injected subcutaneously with Matrigel into NSG mice. SW780 bladder tumors that formed in the presence of stroma showed accelerated growth, muscle invasion, epithelial to mesenchymal transition (EMT), decreased differentiation, and greater activation of growth pathways compared to tumors formed in the absence of fetal stroma. Tumors grown with stroma also demonstrated a greater similarity to typical malignant bladder architecture, including the formation of papillary structures. In an effort to determine if cancer cells from primary tumors could form similar structures in vivo using this recombinatorial approach, putative CSCs, sorted based on the CD44(+)CD49f(+) antigenic profile, were collected and recombined with fetal bladder stromal cells and Matrigel prior to subcutaneous implantation. Retrieved grafts contained tumors that exhibited the same structure as the original primary human tumor. Primary bladder tumor regeneration using human fetal bladder stroma may help elucidate the influences of stroma on tumor growth and development, as well as provide an efficient and accessible system for therapeutic testing.

  16. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  17. Tumor-derived mesenchymal stem cells and orthotopic site increase the tumor initiation potential of putative mouse mammary cancer stem cells derived from MMTV-PyMT mice.

    PubMed

    Lanza, Denise Grant; Ma, Jun; Guest, Ian; Uk-Lim, Chang; Glinskii, Anna; Glinsky, Gennadi; Sell, Stewart

    2012-12-01

    The ability to transplant mammary cancer stem cells, identified by the phenotype CD24(+)CD29(+)CD49f(+)Sca-1(low), is dependent on the microenvironment in which the cells are placed. Using the MMTV-PyMT mouse model of mammary cancer, we now report two methods of tumor growth enhancement: contributions of tumor stroma in the form of tumor-derived mesenchymal stem cells and orthotopic vs. heterotopic transplantation sites. To support evidence of stem cell function, tumor-derived mesenchymal stem cells differentiated into adipocyte- and osteocyte-like cells after culture in specific medium. Co-injection of tumor-initiating cells with tumor-derived mesenchymal stem cells significantly increased tumor initiation compared to subcutaneous injection of TICs alone; co-injection also allowed tumor initiation with a single TIC. Interestingly, we observed the formation of sarcomas after co-injections of tumor-derived mesenchymal stem cells or mouse embryonic fibroblasts with TICs; sarcomas are not observed in spontaneous MMTV-PyMT tumors and rarely observed in injections of TICs alone. Tumor initiation was also significantly increased in the orthotopic injection site compared to heterotopic injections. We conclude that tumor stroma and orthotopic sites both enhance tumor initiation by mammary cancer stem cells.

  18. Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer

    PubMed Central

    Ooi, Aik T.; Mah, Vei; Nickerson, Derek W.; Gilbert, Jennifer L.; Ha, Vi Luan; Hegab, Ahmed E.; Horvath, Steve; Alavi, Mohammad; Maresh, Erin L.; Chia, David; Gower, Adam C.; Lenburg, Marc E.; Spira, Avrum; Solis, Luisa M.; Wistuba, Ignacio I.; Walser, Tonya C.; Wallace, William D.; Dubinett, Steven M.; Goodglick, Lee; Gomperts, Brigitte N.

    2010-01-01

    Smoking is the most important known risk factor for the development of lung cancer. Tobacco exposure results in chronic inflammation, tissue injury and repair. A recent hypothesis argues for a stem/progenitor cell involved in airway epithelial repair that may be a tumor-initiating cell in lung cancer, and which may be associated with recurrence and metastasis. We used immunostaining, quantitative real-time PCR, Western blots and lung cancer tissue microarrays to identify subpopulations of airway epithelial stem/progenitor cells under steady state conditions, normal repair, aberrant repair with premalignant lesions and lung cancer and their correlation with injury and prognosis. We identified a population of keratin 14 (K14)-expressing progenitor epithelial cells that was involved in repair after injury. Dysregulated repair resulted in persistence of K14+ cells in the airway epithelium in premalignant lesions. The presence of K14+ cells in non-small cell lung cancer (NSCLC) samples predicted poorer outcomes. This was especially true in smokers where the presence of K14+ cells in NSCLC was predictive of metastasis. The presence of K14+ progenitor airway epithelial cells in NSCLC predicted a poor prognosis and this predictive value was strongest in smokers, where it also correlated with metastasis. This suggests that reparative K14+ progenitor cells may be tumor-initiating cells in this subgroup of smokers with NSCLC. PMID:20710044

  19. Mel-18 controls the enrichment of tumor-initiating cells in SP fraction in mouse breast cancer.

    PubMed

    Janakiraman, Harinarayanan; Nobukiyo, Asako; Inoue, Hiroko; Kanno, Masamoto

    2011-06-01

    Side population (SP) cell analysis has been used to identify and isolate a minor population of cells with stem cell properties in normal tissues and in many cancers including breast cancer cells. However, the molecular mechanisms that operate in tumor-initiating cells (TICs) in SP fraction remain unclear. The Polycomb group genes, including Bmi1 and Mel-18, have been implicated in the maintenance of hematopoietic stem cells (HSCs) and suggested to be oncogenic and tumor suppressive, respectively, in breast cancer. In this study, we determined the critical role of Mel-18 in the enrichment mechanisms of TICs with the SP phenotype in a mouse breast cancer cell line, MMK3, that was established from a breast cancer developed spontaneously in Mel-18+/- mice. The Mel-18 protein expression level significantly correlates to the percentage of SP fraction in the mouse breast cancer cell line MMK3 series. The comparison between MMK3V3 (V3) cells containing one copy of the Mel-18 gene and MMK3S2 (S2) cells having twice the amount of Mel-18 expression clearly demonstrates the above relationship. Similar results obtained with the percentage of ALDH+ cells in V3 and S2 further confirmed the correlation between protein expression level of Mel-18 and the TICs. More importantly, transplantation of SP and non-SP cells of V3 and S2 cells into the NOD/SCID mice clearly showed that the heterozygous level of Mel-18 leads to the disappearance of enrichment of TICs into SP fraction in vivo. Stem cell pathway focused gene expression profiling of V3 and S2 cells revealed that the genes Abcg2, Aldh1a1 and Dhh were highly down-regulated in V3 compared to S2. These results indicate that the precise Mel-18 expression level controls TIC enrichment mechanisms through the regulation of channel molecule of Abcg2 and functional TIC marker of Aldhlal. In conclusion, our findings revealed the significance of fine-tuning mechanisms for Mel-18 protein expression level in the maintenance of TIC into SP

  20. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer.

    PubMed

    Wang, Shu Qian; Liu, Yu; Yao, Min Ya; Jin, Jing

    2016-10-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma.

  1. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer

    PubMed Central

    2016-01-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma. PMID:27550487

  2. The isolation and characterization of renal cancer initiating cells from human Wilms' tumour xenografts unveils new therapeutic targets†

    PubMed Central

    Pode-Shakked, Naomi; Shukrun, Rachel; Mark-Danieli, Michal; Tsvetkov, Peter; Bahar, Sarit; Pri-Chen, Sara; Goldstein, Ronald S; Rom-Gross, Eithan; Mor, Yoram; Fridman, Edward; Meir, Karen; Simon, Amos; Magister, Marcus; Kaminski, Naftali; Goldmacher, Victor S; Harari-Steinberg, Orit; Dekel, Benjamin

    2013-01-01

    There are considerable differences in tumour biology between adult and paediatric cancers. The existence of cancer initiating cells/cancer stem cells (CIC/CSC) in paediatric solid tumours is currently unclear. Here, we show the successful propagation of primary human Wilms' tumour (WT), a common paediatric renal malignancy, in immunodeficient mice, demonstrating the presence of a population of highly proliferative CIC/CSCs capable of serial xenograft initiation. Cell sorting and limiting dilution transplantation analysis of xenograft cells identified WT CSCs that harbour a primitive undifferentiated – NCAM1 expressing – “blastema” phenotype, including a capacity to expand and differentiate into the mature renal-like cell types observed in the primary tumour. WT CSCs, which can be further enriched by aldehyde dehydrogenase activity, overexpressed renal stemness and genes linked to poor patient prognosis, showed preferential protein expression of phosphorylated PKB/Akt and strong reduction of the miR-200 family. Complete eradication of WT in multiple xenograft models was achieved with a human NCAM antibody drug conjugate. The existence of CIC/CSCs in WT provides new therapeutic targets. PMID:23239665

  3. The isolation and characterization of renal cancer initiating cells from human Wilms' tumour xenografts unveils new therapeutic targets.

    PubMed

    Pode-Shakked, Naomi; Shukrun, Rachel; Mark-Danieli, Michal; Tsvetkov, Peter; Bahar, Sarit; Pri-Chen, Sara; Goldstein, Ronald S; Rom-Gross, Eithan; Mor, Yoram; Fridman, Edward; Meir, Karen; Simon, Amos; Magister, Marcus; Kaminski, Naftali; Goldmacher, Victor S; Harari-Steinberg, Orit; Dekel, Benjamin

    2013-01-01

    There are considerable differences in tumour biology between adult and paediatric cancers. The existence of cancer initiating cells/cancer stem cells (CIC/CSC) in paediatric solid tumours is currently unclear. Here, we show the successful propagation of primary human Wilms' tumour (WT), a common paediatric renal malignancy, in immunodeficient mice, demonstrating the presence of a population of highly proliferative CIC/CSCs capable of serial xenograft initiation. Cell sorting and limiting dilution transplantation analysis of xenograft cells identified WT CSCs that harbour a primitive undifferentiated-NCAM1 expressing-"blastema" phenotype, including a capacity to expand and differentiate into the mature renal-like cell types observed in the primary tumour. WT CSCs, which can be further enriched by aldehyde dehydrogenase activity, overexpressed renal stemness and genes linked to poor patient prognosis, showed preferential protein expression of phosphorylated PKB/Akt and strong reduction of the miR-200 family. Complete eradication of WT in multiple xenograft models was achieved with a human NCAM antibody drug conjugate. The existence of CIC/CSCs in WT provides new therapeutic targets.

  4. Drug-tolerant cancer cells show reduced tumor-initiating capacity: depletion of CD44 cells and evidence for epigenetic mechanisms.

    PubMed

    Yan, Hong; Chen, Xin; Zhang, Qiuping; Qin, Jichao; Li, Hangwen; Liu, Can; Calhoun-Davis, Tammy; Coletta, Luis Della; Klostergaard, Jim; Fokt, Izabela; Skora, Stanislaw; Priebe, Waldemar; Bi, Yongyi; Tang, Dean G

    2011-01-01

    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44(+) cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many "stemness" genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44(+) tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms.

  5. CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer

    PubMed Central

    Li, Chong; Liu, Shengwu; Yan, Ruping; Han, Ning; Wong, Kwok-Kin; Li, Lei

    2017-01-01

    Cancer stem cells (CSCs) are considered one of the key contributors to chemoresistance and tumor recurrence. Therefore, the precise identification of reliable CSC markers and clarification of the intracellular signaling involved in CSCs remains a great challenge in fields relating to cancer biology. Here, we implemented a novel chemoresistant prostate cancer patient-derived xenograft (PDX) model in NOD/SCID mice and identified CD54 as a candidate gene among the most highly enriched gene expression profiles in prostate tumors exposed to chronic cisplatin administration. Additional in vitro and in vivo assays showed that CD54 played a critical role in the self-renewal and tumorigenesis of prostate CSCs. Moreover, silencing CD54 greatly reduced the tumorigenesis of prostate cancers both in vitro and in vivo and significantly extended the survival time of tumor-bearing mice in a prostate cancer xenograft model. Dissection of the molecular mechanism revealed that the p38-Notch1 axis was the main downstream signaling pathway in CD54-mediated regulation of CSCs in prostate cancers. Together, these results established that CD54 could be a novel reliable prostate CSC marker and provided a new potential therapeutic target in prostate cancer via CD54-Notch1 signaling. PMID:28042317

  6. Flavone initiates a hierarchical activation of the caspase-cascade in colon cancer cells.

    PubMed

    Erhart, L M; Lankat-Buttgereit, B; Schmidt, H; Wenzel, U; Daniel, H; Göke, R

    2005-05-01

    There is emerging evidence that dietary factors can prevent cancer by affecting the process of carcinogenesis. Flavonoids present in vegetarian food possess antioxidant activities, have scavenging effects on activated carcinogens and mutagens, affect cell cycle progression and alter gene and protein expression. We report here that flavone, the core structure of the flavone subgroup, potently inhibits proliferation and induces apoptosis in HCT-116 colon cancer cells. Flavone induces the activation of caspases 2, 3, 8, 9 and 10 and a decrease of mitochondrial anti-apoptotic Bcl(2) protein expression. Further analysis revealed that caspase 10 activation is mediated via caspase 1. Additionally, treatment with flavone results in release of the mitochondrial apoptosis-inducing factor (AIF), the key trigger of caspase-independent apoptosis, into the cytosol. In summary, our data show that flavone induces apoptosis in a caspase-dependent and -independent manner.

  7. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  8. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells

    PubMed Central

    Wang, Zhe; von Au, Anja; Schnölzer, Martina; Hackert, Thilo; Zöller, Margot

    2016-01-01

    Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model. A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells. Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake. PMID:27419629

  9. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells.

    PubMed

    Wang, Zhe; von Au, Anja; Schnölzer, Martina; Hackert, Thilo; Zöller, Margot

    2016-08-23

    Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model.A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells.Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake.

  10. Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells.

    PubMed

    Morita, Rena; Nishizawa, Satoshi; Torigoe, Toshihiko; Takahashi, Akari; Tamura, Yasuaki; Tsukahara, Tomohide; Kanaseki, Takayuki; Sokolovskaya, Alice; Kochin, Vitaly; Kondo, Toru; Hashino, Satoshi; Asaka, Masahiro; Hara, Isao; Hirohashi, Yoshihiko; Sato, Noriyuki

    2014-04-01

    The aim of the present study was to establish cancer stem-like cell/cancer-initiating cell (CSC/CIC)-targeting immunotherapy. The CSC/CIC are thought to be essential for tumor maintenance, recurrence and distant metastasis. Therefore they are reasonable targets for cancer therapy. In the present study, we found that a heat shock protein (HSP) 40 family member, DnaJ (Hsp40) homolog, subfamily B, member 8 (DNAJB8), is preferentially expressed in CSC/CIC derived from colorectal cancer (CRC) cells rather than in non-CSC/CIC. Overexpression of DNAJB8 enhanced the expression of stem cell markers and tumorigenicity, indicating that DNAJB8 has a role in CRC CSC/CIC. A DNAJB8-specific cytotoxic T lymphocyte (CTL) response could be induced by a DNAJB8-derived antigenic peptide. A CTL clone specific for DNAJB8 peptide showed higher killing activity to CRC CSC/CIC compared with non-CSC/CIC, and CTL adoptive transfer into CRC CSC/CIC showed an antitumor effect in vivo. Taken together, the results indicate that DNAJB8 is expressed and has role in CRC CSC/CIC and that DNAJB8 is a novel target of CRC CSC/CIC-targeting immunotherapy.

  11. Quality of care of patients with non-small-cell lung cancer: a report of a performance improvement initiative.

    PubMed

    Hirsch, Fred R; Jotte, Robert M; Berry, Carolyn A; Mencia, William A; Stowell, Stephanie A; Gardner, Allison J

    2014-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. In recent years, significant advancements have been made in the molecular characterization of tumors, and the availability of new agents to treat non-small-cell lung cancer has increased. Despite these achievements, optimal care of patients with this condition remains less than ideal. Although national quality measures and guideline recommendations provide the necessary framework for patient care, routine self-assessment of adherence to these measures is required for physician practice improvement. To this end, a performance improvement initiative that met national continuing medical education standards was designed. Focusing on non-small-cell lung cancer patient care, oncologists underwent a three-step process that included a self-assessment of predetermined performance measures, the development and implementation of an actionable plan for improvement, and a second round of assessment to measure practice change. A total of 440 unique patient charts were reviewed by 22 practicing oncologists. Participants demonstrated high baseline performance levels of established quality measures, such as inclusion of the patient's pathology report and assessment of smoking history. Significant gains were observed in the areas of supportive care, including assessment of the patient's emotional well-being and the use of molecular markers in diagnostic and treatment decision making. Data from this study support the value of performance improvement initiatives to help increase physician delivery of evidence-based care to patients.

  12. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction.

    PubMed

    Liu, Chia-Ming; Peng, Chih-Yu; Liao, Yi-Wen; Lu, Ming-Yi; Tsai, Meng-Lun; Yeh, Jung-Chun; Yu, Chuan-Hang; Yu, Cheng-Chia

    2017-01-01

    Cancer stem cells (CSCs) are deemed as the driving force of tumorigenesis in oral squamous cell carcinomas (OSCCs). In this study, we investigated the chemotherapeutic effect of sulforaphane, a dietary component from broccoli sprouts, on targeting OSCC-CSCs. The effect of sulforaphane on normal oral epithelial cells (SG) and sphere-forming OSCC-CSCs isolated from SAS and GNM cells was examined. ALDH1 activity and CD44 positivity of OSCC-CSCs with sulforaphane treatment was assessed by flow cytometry analysis. In vitro and in vivo tumorigenicity assays of OSCC-CSCs with sulforaphane treatment were presented. We observed that the sulforaphane dose-dependently eliminated the proliferation rate of OSCC-CSCs, whereas the inhibition on SG cells proliferation was limited. Cancer stemness properties including self-renewal, CD44 positivity, and ALDH1 activity were also decreased in OSCC-CSCs with different doses of sulforaphane treatment. Moreover, sulforaphane treatment of OSCC-CSCs decreased the migration, invasion, clonogenicity, and in vivo tumorigenicity of xenograghts. Sulforaphane treatment resulted in a dose-dependent increase in the levels of tumor suppressive miR200c. These lines of evidence suggest that sulforaphane can suppress the cancer stemness and tumor-initiating properties in OSCC-CSCs both in vitro and in vivo. Copyright © 2016. Published by Elsevier B.V.

  13. Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumor-initiating cells.

    PubMed

    Damelin, Marc; Geles, Kenneth G; Follettie, Maximillian T; Yuan, Ping; Baxter, Michelle; Golas, Jonathon; DiJoseph, John F; Karnoub, Maha; Huang, Shuguang; Diesl, Veronica; Behrens, Carmen; Choe, Sung E; Rios, Carol; Gruzas, Janet; Sridharan, Latha; Dougher, Maureen; Kunz, Arthur; Hamann, Philip R; Evans, Deborah; Armellino, Douglas; Khandke, Kiran; Marquette, Kimberly; Tchistiakova, Lioudmila; Boghaert, Erwin R; Abraham, Robert T; Wistuba, Ignacio I; Zhou, Bin-Bing S

    2011-06-15

    Poorly differentiated tumors in non-small cell lung cancer (NSCLC) have been associated with shorter patient survival and shorter time to recurrence following treatment. Here, we integrate multiple experimental models with clinicopathologic analysis of patient tumors to delineate a cellular hierarchy in NSCLC. We show that the oncofetal protein 5T4 is expressed on tumor-initiating cells and associated with worse clinical outcome in NSCLC. Coexpression of 5T4 and factors involved in the epithelial-to-mesenchymal transition were observed in undifferentiated but not in differentiated tumor cells. Despite heterogeneous expression of 5T4 in NSCLC patient-derived xenografts, treatment with an anti-5T4 antibody-drug conjugate resulted in complete and sustained tumor regression. Thus, the aggressive growth of heterogeneous solid tumors can be blocked by therapeutic agents that target a subpopulation of cells near the top of the cellular hierarchy.

  14. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling.

    PubMed

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Perin, Tiziana; Piccoli, Erica; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-08-15

    Inflammation is clinically linked to cancer but the mechanisms are not fully understood. Surgery itself elicits a range of inflammatory responses, suggesting that it could represent a perturbing factor in the process of local recurrence and/or metastasis. Post-surgery wound fluids (WF), drained from breast cancer patients, are rich in cytokines and growth factors, stimulate the in vitro growth of breast cancer cells and are potent activators of the STAT transcription factors. We wondered whether STAT signaling was functionally involved in the response of breast cancer cells to post-surgical inflammation. We discovered that WF induced the enrichment of breast cancer cells with stem-like phenotypes, via activation of STAT3. In vitro, WF highly stimulated mammosphere formation and self-renewal of breast cancer cells. In vivo, STAT3 signaling was critical for breast cancer cell tumorigenicity and for the formation of local relapse after surgery. Overall, we demonstrate here that surgery-induced inflammation promotes stem-like phenotypes and tumor-initiating abilities of breast cancer cells. Interfering with STAT3 signaling with a peri-surgical treatment was sufficient to strongly suppress this process. The understanding of the crosstalk between breast tumor-initiating cells and their microenvironment may open the way to successful targeting of these cells in their initial stages of growth and be eventually curative.

  15. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling

    PubMed Central

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Perin, Tiziana; Piccoli, Erica; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-01-01

    Inflammation is clinically linked to cancer but the mechanisms are not fully understood. Surgery itself elicits a range of inflammatory responses, suggesting that it could represent a perturbing factor in the process of local recurrence and/or metastasis formation. Post-surgery wound fluids (WF), drained from breast cancer patients, are rich in cytokines and growth factors, stimulate the in vitro growth of breast cancer cells and are potent activators of the STAT transcription factors. We wondered whether STAT signaling was functionally involved in the response of breast cancer cells to post-surgical inflammation. We discovered that WF induced the enrichment of breast cancer cells with stem-like phenotypes, via activation of STAT3. In vitro, WF highly stimulated mammosphere formation and self-renewal of breast cancer cells. In vivo, STAT3 signaling was critical for breast cancer cell tumorigenicity and for the formation of local relapse after surgery. Overall, we demonstrate here that surgery-induced inflammation promotes stem-like phenotypes and tumor-initiating abilities of breast cancer cells. Interfering with STAT3 signaling with a peri-surgical treatment is sufficient to strongly suppress this process. The understanding of the crosstalk between breast tumor-initiating cells and their microenvironment may open the way to successful targeting of these cells in their initial stages of growth and be eventually curative. PMID:25026286

  16. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer.

    PubMed

    Schwab, Luciana P; Peacock, Danielle L; Majumdar, Debeshi; Ingels, Jesse F; Jensen, Laura C; Smith, Keisha D; Cushing, Richard C; Seagroves, Tiffany N

    2012-01-07

    Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although no differences in primary tumor end point size were observed. Using a refined model system, we investigated whether HIF-1α is directly implicated in the regulation of tumor-initiating cells (TICs) in breast cancer. Mammary tumor epithelial cells were created from MMTV-PyMT mice harboring conditional alleles of Hif1a, followed by transduction ex vivo with either adenovirus β-galactosidase or adenovirus Cre to generate wild-type (WT) and HIF-1α-null (KO) cells, respectively. The impact of HIF-1α deletion on tumor-initiating potential was investigated using tumorsphere assays, limiting dilution transplantation and gene expression analysis. Efficient deletion of HIF-1α reduced primary tumor growth and suppressed lung metastases, prolonging survival. Loss of HIF-1α led to reduced expression of markers of the basal lineage (K5/K14) in cells and tumors and of multiple genes involved in the epithelial-to-mesenchymal transition. HIF-1α also enhanced tumorsphere formation at normoxia and hypoxia. Decreased expression of several genes in the Notch pathway as well as Vegf and Prominin-1 (CD133)was observed in response to Hif1a deletion. Immunohistochemistry confirmed that CD133 expression was reduced in KO cells and in tumorspheres. Tumorsphere formation was enhanced in CD133hi versus CD133neg cells sorted from PyMT tumors. Limiting dilution transplantation of WT and KO tumor cells into immunocompetent recipients revealed > 30-fold enrichment of TICs in WT cells. These results demonstrate

  17. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer

    PubMed Central

    2012-01-01

    Introduction Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although no differences in primary tumor end point size were observed. Using a refined model system, we investigated whether HIF-1α is directly implicated in the regulation of tumor-initiating cells (TICs) in breast cancer. Methods Mammary tumor epithelial cells were created from MMTV-PyMT mice harboring conditional alleles of Hif1a, followed by transduction ex vivo with either adenovirus β-galactosidase or adenovirus Cre to generate wild-type (WT) and HIF-1α-null (KO) cells, respectively. The impact of HIF-1α deletion on tumor-initiating potential was investigated using tumorsphere assays, limiting dilution transplantation and gene expression analysis. Results Efficient deletion of HIF-1α reduced primary tumor growth and suppressed lung metastases, prolonging survival. Loss of HIF-1α led to reduced expression of markers of the basal lineage (K5/K14) in cells and tumors and of multiple genes involved in the epithelial-to-mesenchymal transition. HIF-1α also enhanced tumorsphere formation at normoxia and hypoxia. Decreased expression of several genes in the Notch pathway as well as Vegf and Prominin-1 (CD133)was observed in response to Hif1a deletion. Immunohistochemistry confirmed that CD133 expression was reduced in KO cells and in tumorspheres. Tumorsphere formation was enhanced in CD133hi versus CD133neg cells sorted from PyMT tumors. Limiting dilution transplantation of WT and KO tumor cells into immunocompetent recipients revealed > 30-fold enrichment of TICs in WT cells

  18. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.

  19. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

    PubMed Central

    Lee, John K.; Phillips, John W.; Smith, Bryan A.; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F.; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G.; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Shokat, Kevan M.; Gustafson, W. Clay; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    SUMMARY MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  20. Mitochondrial structure alteration in human prostate cancer cells upon initial interaction with a chemopreventive agent phenethyl isothiocyanate.

    PubMed

    Xue, Chengsen; Pasolli, Hilda A; Piscopo, Irene; Gros, Daniel J; Liu, Christina; Chen, Yamei; Chiao, Jen Wei

    2014-03-31

    Phenethyl isothiocyanate (PEITC), present naturally in cruciferous vegetables, is a chemopreventive agent. It blocks initiation and post-initiation progression of carcinogenesis. Mechanism study in human prostate cancer cells revealed that PEITC is a dual inhibitor of aberrant DNA hypermethylation and histone deacetylases, reactivating silenced genes and regulating the androgen-mediated growth of tumor cells. The identity of the cellular organelle that initially interacts with PEITC has not been fully described. Human prostate cancer LNCaP cells were exposed to PEITC and the effects on cellular fine structure examined by transmission electron microscopic studies. Alteration of mitochondrial membrane potential and cytochrome c release were evaluated as early events of apoptosis, and the TUNEL method for quantifying apoptotic cells. Mitochondria were isolated for determining their protein expression. Ultrastructural analyses have revealed condensed mitochondria and a perturbed mitochondrial cristae structure, which assumed a rounded and dilated shape within 4-hours of PEITC contact, and became more pronounced with longer PEITC exposure. They presented as the most prominent intracellular alterations in the early hours. Mitochondria structure alterations were demonstrated, for the first time, with the isothiocyanates. An increase in the number of smooth endoplasmic reticulum and vacuoles were also noted that is consistent with the presence of autophagy. Early events of apoptosis were detected, with cytochrome c released along with the appearance of mitochondrial alteration. Mitochondrial membrane potential was disrupted within 18 hours of PEITC exposure, preceding the appearance of apoptotic cells with DNA strand breaks. In parallel, the expression of the mitochondrial class III ß-tubulin in the outer membrane, which associates with the permeability transition pore, was significantly reduced as examined with isolated mitochondria. Mitochondria may represent the

  1. Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and Src activity using an active component of Antrodia cinnamomea mycelia

    PubMed Central

    Chan, Ik-On; Chen, Chin-Chu; Sheu, Sen-Je; Lin, Ting-wei; Chou, Shiu-Huey; Liu, Chung-Ji; Lee, Te-Chang; Lo, Jeng-Fan

    2016-01-01

    Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs. PMID:27682875

  2. Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and src activity using an active component of antrodia cinnamomea mycelia.

    PubMed

    Chang, Ching-Wen; Chen, Yu-Syuan; Chen, Chien-Chih; Chan, Ik-On; Chen, Chin-Chu; Sheu, Sen-Je; Lin, Ting-Wei; Chou, Shiu-Huey; Liu, Chung-Ji; Lee, Te-Chang; Lo, Jeng-Fan

    2016-11-08

    Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs.

  3. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells

    PubMed Central

    Zhu, Pingping; Wang, Yanying; Wu, Jiayi; Huang, Guanling; Liu, Benyu; Ye, Buqing; Du, Ying; Gao, Guangxia; Tian, Yong; He, Lei; Fan, Zusen

    2016-01-01

    Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence and heterogeneity of hepatocellular carcinoma (HCC). However, the biology of hepatic CSCs remains largely undefined. Through analysis of transcriptome microarray data, we identify a long noncoding RNA (lncRNA) called lncBRM, which is highly expressed in liver CSCs and HCC tumours. LncBRM is required for the self-renewal maintenance of liver CSCs and tumour initiation. In liver CSCs, lncBRM associates with BRM to initiate the BRG1/BRM switch and the BRG1-embedded BAF complex triggers activation of YAP1 signalling. Moreover, expression levels of lncBRM together with YAP1 signalling targets are positively correlated with tumour severity of HCC patients. Therefore, lncBRM and YAP1 signalling may serve as biomarkers for diagnosis and potential drug targets for HCC. PMID:27905400

  4. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer

    PubMed Central

    Gupta, Harshita B.; Clark, Curtis A.; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S.; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J.

    2017-01-01

    As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor initiating cells (TIC) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TIC express more PD-L1 versus non-TIC. Silencing PD-L1 in B16 and ID8agg cells by shRNA (“PD-L1lo”) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression, and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885

  5. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation.

    PubMed

    Coradini, Danila; Oriana, Saro

    2014-02-01

    During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.

  6. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation.

    PubMed

    Shukla, Sanjeev; Gupta, Sanjay

    2008-05-15

    Apigenin, a plant flavone, potentially activates wild-type p53 and induces apoptosis in cancer cells. We conducted detailed studies to understand its mechanism of action. Exposure of human prostate cancer 22Rv1 cells, harboring wild-type p53, to growth-suppressive concentrations (10-80 microM) of apigenin resulted in the stabilization of p53 by phosphorylation on critical serine sites, p14ARF-mediated downregulation of MDM2 protein, inhibition of NF-kappaB/p65 transcriptional activity, and induction of p21/WAF-1 in a dose- and time-dependent manner. Apigenin at these doses resulted in ROS generation, which was accompanied by rapid glutathione depletion, disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, and apoptosis. Interestingly, we observed accumulation of a p53 fraction to the mitochondria, which was rapid and occurred between 1 and 3 h after apigenin treatment. All these effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine, p53 inhibitor pifithrin-alpha, and enzyme catalase. Apigenin-mediated p53 activation and apoptosis were further attenuated by p53 antisense oligonucleotide treatment. Exposure of cells to apigenin led to a decrease in the levels of Bcl-XL and Bcl-2 and increase in Bax, triggering caspase activation. Treatment with the caspase inhibitors Z-VAD-FMK and DEVD-CHO partially rescued these cells from apigenin-induced apoptosis. In vivo, apigenin administration demonstrated p53-mediated induction of apoptosis in 22Rv1 tumors. These results indicate that apigenin-induced apoptosis in 22Rv1 cells is initiated by a ROS-dependent disruption of the mitochondrial membrane potential through transcriptional-dependent and -independent p53 pathways.

  7. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells.

    PubMed

    Gil, Margaret; Komorowski, Marcin P; Seshadri, Mukund; Rokita, Hanna; McGray, A J Robert; Opyrchal, Mateusz; Odunsi, Kunle O; Kozbor, Danuta

    2014-11-15

    Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in the progression of ovarian cancer through enhancement of tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer-initiating cells (CICs). In this study, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44, as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that i.p. delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival compared with oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reduced expression of ascitic CXCL12 and vascular endothelial growth factor, and decreases in i.p. numbers of endothelial and myeloid cells, as well as plasmacytoid dendritic cells. These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ(+)/IL-10(+) tumor-infiltrating T lymphocytes, as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice, leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire.

  8. CXCL12/CXCR4 Blockade by Oncolytic Virotherapy Inhibits Ovarian Cancer Growth by Decreasing Immunosuppression and Targeting Cancer Initiating Cells1

    PubMed Central

    Gil, Margaret; Komorowski, Marcin P.; Seshadri, Mukund; Rokita, Hanna; McGray, A. J Robert; Opyrchal, Mateusz; Odunsi, Kunle O.; Kozbor, Danuta

    2014-01-01

    Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in progression of ovarian cancer by enhancing tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer initiating cells (CICs). Here, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44 as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that intraperitoneal delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival over that mediated by oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reductions in expression of ascitic CXCL12 and VEGF, and decreases in intraperitoneal numbers of endothelial and myeloid cells as well as plasmacytoid dendritic cells (pDCs). These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ+/IL-10+ tumor-infiltrating T lymphocytes as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally-infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire. PMID:25320277

  9. New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells

    PubMed Central

    2010-01-01

    Background Growing evidence suggests that the majority of tumors are organized hierarchically, comprising a population of tumor-initiating, or cancer stem cells (CSCs) responsible for tumor development, maintenance and resistance to drugs. Previously we have shown that the CD133high/CD44high fraction of colon cancer cells is different from their bulk counterparts at the functional, morphological and genomic levels. In contrast to the majority of colon cancer cells expressing moderate levels of CD133, CD44 and CD166, cells with a high combined expression of CD133 and CD44 possessed several characteristic stem cell features, including profound self-renewal capacity in vivo and in vitro, and the ability to give rise to different cell phenotypes. The present study was undertaken for two aims: a) to determine stem cell-related genomic characteristics of floating 3D multicellular spheroids induced by CD133high/CD44high colon cancer cells; and b) to evaluate CSC-specific alterations induced by new-generation taxoid SB-T-1214. Results Selected CSC phenotype was isolated from three independent invasive colon cancer cell lines, HCT116, HT29 and DLD-1. A stem cell-specific PCR array assay (SABiosciences) revealed that colonospheres induced by purified CD133high/CD44high expressing cells display profound up-regulation of stem cell-related genes in comparison with their bulk counterparts. The FACS analysis has shown that the 3D colonospheres contained some minority cell populations with high levels of expression of Oct4, Sox2, Nanog and c-Myc, which are essential for stem cell pluripotency and self-renewal. Single administration of the SB-T-1214 at concentration 100 nM-1 μM for 48 hr not only induced growth inhibition and apoptotic cell death in these three types of colon cancer spheroids in 3D culture, but also mediated massive inhibition of the stem cell-related genes and significant down-regulation of the pluripotency gene expression. PCR array and FACS data were confirmed

  10. The potential role of COX-2 in cancer stem cell-mediated canine mammary tumor initiation: an immunohistochemical study.

    PubMed

    Huang, Jian; Zhang, Di; Xie, Fuqiang; Lin, Degui

    2015-01-01

    Increasing evidence suggests that cancer stem cells (CSCs) are responsible for tumor initiation and maintenance. Additionally, it is becoming apparent that cyclooxygenase (COX) signaling is associated with canine mammary tumor development. The goals of the present study were to investigate COX-2 expression patterns and their effect on CSC-mediated tumor initiation in primary canine mammary tissues and tumorsphere models using immunohistochemistry. Patterns of COX-2, CD44, octamer-binding transcription factor (Oct)-3/4, and epidermal growth factor receptor (EGFR) expression were examined in malignant mammary tumor (MMT) samples and analyzed in terms of clinicopathological characteristics. COX-2 and Oct-3/4 expression was higher in MMTs compared to other histological samples with heterogeneous patterns. In MMTs, COX-2 expression correlated with tumor malignancy features. Significant associations between COX-2, CD44, and EGFR were observed in low-differentiated MMTs. Comparative analysis showed that the levels of COX-2, CD44, and Oct-3/4 expression varied significantly among TSs of three histological grades. Enhanced COX-2 staining was consistently observed in TSs. Similar levels of staining intensity were found for CD44 and Oct-3/4, but EGFR expression was weak. Our findings indicate the potential role of COX-2 in CSC-mediated tumor initiation, and suggest that COX-2 inhibition may help treat canine mammary tumors by targeting CSCs.

  11. [Three-dimensional conformal radiotherapy for locoregionally recurrent non-small cell lung cancer after initial radiotherapy].

    PubMed

    Wang, Ying-jie; Wang, Lü-hua; Lü, Ji-ma; Zhao, Lu-jun; Xiao, Ze-fen; Zhang, Hong-xing; Feng, Qin-fu; Zhang, Zhong; Yin, Wei-bo

    2006-03-01

    To evaluate the feasibility, therapeutic effects and normal tissue complications of three-dimensional conformal radiotherapy (3DCRT) for locoregionally recurrent non-small cell lung cancer after initial radiotherapy. Between August 1999 and August 2003, 27 such patients were treated with 3DCRT after initial radiotherapy. This series consisted of 25 men and 2 women with a median age of 64 years. Radiotherapy was delivered at 2 Gy per fraction, 5 fractions per week, to a median dose of 50 Gy. Treatment results and normal tissue complications were assessed with WHO and RTOG/EORTC criteria. Based upon a median follow-up time of 20.6 months, 25 patients (92.6%) completed the planned 3DCRT treatment. Their clinical symptom relief rate was 79.1%, and the response rate was 59.3% with a complete remission rate of 14.8% (4/27), partial remission rate of 44.4% (12/27). The overall 1- and 2-year survival (OS) rates were 73.8% and 25.4% with a median survival time (MST) of 20 months. The 1- and 2-year local progression free survival (LPFS) rates were both 88.8%. Grade 2 and grade 3 acute radiation pneumonitis developed in 7.4% (2/27) and 11.1% (3/27). Grade 2 late radiation pneumonitis developed in 11.1% (3/27). 3DCRT is feasible and advisable for locoregionally recurrent non-small-cell lung cancer, giving a good immediate tumor response and acceptable normal tissue complications.

  12. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    ERIC Educational Resources Information Center

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  13. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    ERIC Educational Resources Information Center

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  14. Dietary Regulation of PTEN Signaling and Mammary Tumor Initiating Cells: Implications for Breast Cancer Prevention

    DTIC Science & Technology

    2012-01-01

    results in decreased latency of tumor formation in MMTV-Wnt1 transgenic mice (Wnt1-Tg) (7). Stem cell renewal is a tightly regulated process ...luminal epithelial (ductal and alveolar ) and myoepithelial cells (6). Self-renewal is an intrinsic property of stem cells that allow their m plate...are in the process of collecti aintenance and propagation. A mammosphere assay has been developed based on the ability of a small population of

  15. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity

    PubMed Central

    Kim, Jiyoung; Villadsen, René; Sørlie, Therese; Fogh, Louise; Grønlund, Signe Z.; Fridriksdottir, Agla J.; Kuhn, Irene; Rank, Fritz; Wielenga, Vera Timmermans; Solvang, Hiroko; Edwards, Paul A. W.; Børresen-Dale, Anne-Lise; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2012-01-01

    The majority of human breast cancers exhibit luminal epithelial differentiation. However, most aggressive behavior, including invasion and purported cancer stem cell activity, are considered characteristics of basal-like cells. We asked the following questions: Must luminal-like breast cancer cells become basal-like to initiate tumors or to invade? Could luminally differentiated cells within a basally initiated hierarchy also be tumorigenic? To answer these questions, we used rare and mutually exclusive lineage markers to isolate subsets of luminal-like and basal-like cells from human breast tumors. We enriched for populations with or without prominent basal-like traits from individual tumors or single cell cloning from cell lines and recovered cells with a luminal-like phenotype. Tumor cells with basal-like traits mimicked phenotypic and functional behavior associated with stem cells assessed by gene expression, mammosphere formation and lineage markers. Luminal-like cells without basal-like traits, surprisingly, were fully capable of initiating invasive tumors in NOD SCID gamma (NSG) mice. In fact, these phenotypically pure luminal-like cells generated larger and more invasive tumors than their basal-like counterparts. The tumorigenicity and invasive potential of the luminal-like cancer cells relied strongly on the expression of the gene GCNT1, which encodes a key glycosyltransferase controlling O-glycan branching. These findings demonstrate that basal-like cells, as defined currently, are not a requirement for breast tumor aggressiveness, and that within a single tumor there are multiple “stem-like” cells with tumorigenic potential casting some doubt on the hypothesis of hierarchical or differentiative loss of tumorigenicity. PMID:22454501

  16. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    PubMed Central

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  17. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  18. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  19. Human adult stem cells as the target cells for the initiation of carcinogenesis and for the generation of "cancer stem cells".

    PubMed

    Trosko, James E

    2008-11-01

    The inference to stem cells has been found in ancient myths and the concept of stem cells has existed in the fields of plant biology, developmental biology and embryology for decades. In the field of cancer research, the stem cell theory was one of the earliest hypotheses on the origin of a cancer from a single cell. However, an opposing hypothesis had it that an adult differentiated somatic cell could "de-differentiate" to become a cancer cell. Only within the last decade, via the "cloning" of Dolly, the sheep, did the field of stem cell biology really trigger an exciting revolution in biological research. The isolation of human embryonic stem cells has created a true revolution in the life sciences that has led to the hope that these human stem cells could lead to (a) basic science understanding of gene regulation during differentiation and development; (b) stem cell therapy; (c) gene therapy via stem cells; (d) the use of stem cells for drug discovery; (e) screening for toxic effects of chemicals; and (f) understand the aging and diseases of aging processes.

  20. MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2

    PubMed Central

    Xu, Guodong; Shao, Guofeng; Pan, Qiaoling; Sun, Lebo; Zheng, Dawei; Li, Minghui; Li, Ni; Shi, Huoshun; Ni, Yiming

    2017-01-01

    MicroRNAs (miRNAs) play a critical role in cancer development and progression. Bioinformatics analyses has identified eukaryotic translation initiation factor 5A2 (eIF5A2) as a target of miR-9. In this study, we attempted to determine whether miR-9 regulates non-small cell lung cancer (NSCLC) cell invasion and migration by targeting eIF5A2 We examined eIF5A2 expression using reverse transcription-quantitative PCR (RT-qPCR) and subsequently transfected A549 and NCI-H1299 NSCLC cells with a miR-9 mimic or miR-9 inhibitor to determine the migration and invasive capability of the cells via wound healing assay and Transwell invasion assay, respectively. E-cadherin and vimentin expression was detected with western blotting. The miR-9 mimic significantly reduced NSCLC cell invasive and metastatic ability, and the miR-9 inhibitor enhanced NSCLC cell migration activity, increasing the number of migrated cells. There was no significant difference between the negative control siRNA and miR-9 mimic groups after knockdown of eIF5A2; western blotting showed that miR-9 regulated E-cadherin and vimentin expression. These data show that miR-9 regulates NSCLC cell invasion and migration through regulating eIF5A2 expression. Taken together, our findings suggest that the mechanism of miR-9-regulated NSCLC cell invasion and migration may be related to epithelial-mesenchymal transition. PMID:28337276

  1. Equol, an Isoflavone Metabolite, Regulates Cancer Cell Viability and Protein Synthesis Initiation via c-Myc and eIF4G*

    PubMed Central

    de la Parra, Columba; Borrero-Garcia, Luis D.; Cruz-Collazo, Ailed; Schneider, Robert J.; Dharmawardhane, Suranganie

    2015-01-01

    Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes. PMID:25593313

  2. Metastasis initiating cells in primary prostate cancer tissues from transurethral resection of the prostate (TURP) predicts castration-resistant progression and survival of prostate cancer patients.

    PubMed

    Li, Qinlong; Li, Quanlin; Nuccio, Jill; Liu, Chunyan; Duan, Peng; Wang, Ruoxiang; Jones, Lawrence W; Chung, Leland W K; Zhau, Haiyen E

    2015-09-01

    We previously reported that the activation of RANK and c-Met signaling components in both experimental mouse models and human prostate cancer (PC) specimens predicts bone metastatic potential and PC patient survival. This study addresses whether a population of metastasis-initiating cells (MICs) known to express a stronger RANKL, phosphorylated c-Met (p-c-Met), and neuropilin-1 (NRP1) signaling network than bystander or dormant cells (BDCs) can be detected in PC tissues from patients subjected to transurethral resection of the prostate (TURP) for urinary obstruction prior to the diagnosis of PC with or without prior hormonal manipulation, and whether the relative abundance of MICs over BDCs could predict castration-resistant progression and PC patient survival. We employed a multiplexed quantum-dot labeling (mQDL) protocol to detect and quantify MICs and BDCs at the single cell level in TURP tissues obtained from 44 PC patients with documented overall survival and castration resistance status. PC tissues with a higher number of MICs and an activated RANK signaling network, including increased expression of RANKL, p-c-Met, and NRP1 compared to BDCs, were found to correlate with the development of castration resistance and overall survival. The assessment of PC cells with MIC and BDC phenotypes in primary PC tissues from hormone-naïve patients can predict the progression to castration resistance and the overall survival of PC patients. © 2015 Wiley Periodicals, Inc.

  3. Metastasis Initiating Cells in Primary Prostate Cancer Tissues From Transurethral Resection of the Prostate (TURP) Predicts Castration-Resistant Progression and Survival of Prostate Cancer Patients

    PubMed Central

    Li, Qinlong; Li, Quanlin; Nuccio, Jill; Liu, Chunyan; Duan, Peng; Wang, Ruoxiang; Jones, Lawrence W.; Chung, Leland W. K.; Zhau, Haiyen E.

    2016-01-01

    BACKGROUND We previouslyreported that the activation of RANK and c-Met signaling components in both experimental mouse models and human prostate cancer (PC) specimens predicts bone metastatic potential and PC patient survival. This study addresses whether a population of metastasis-initiating cells (MICs) known to express a stronger RANKL, phosphorylated c-Met (p-c-Met), and neuropilin-1 (NRP1) signaling network than bystander or dormant cells (BDCs) can be detected in PC tissues from patients subjected to transurethral resection of the prostate (TURP) for urinary obstruction prior to the diagnosis of PC with or without prior hormonal manipulation, and whether the relative abundance of MICs over BDCs could predict castration-resistant progression and PC patient survival. METHODS We employed a multiplexed quantum-dot labeling (mQDL) protocol to detect and quantify MICs and BDCs at the single cell level in TURP tissues obtained from 44 PC patients with documented overall survival and castration resistance status. RESULTS PC tissues with a higher number of MICs and an activated RANK signaling network, including increased expression of RANKL, p-c-Met, and NRP1 compared to BDCs, were found to correlate with the development of castration resistance and overall survival. CONCLUSIONS The assessment of PC cells with MIC and BDC phenotypes in primary PC tissues from hormone-naïve patients can predict the progression to castration resistance and the overall survival of PC patients. PMID:25990623

  4. Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation

    PubMed Central

    Paik, Daniel Y.; Janzen, Deanna M.; Schafenacker, Amanda M.; Velasco, Victor S.; Shung, May S.; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N.; Memarzadeh, Sanaz

    2015-01-01

    The reproductive role of the fallopian tube is to transport the sperm and egg. The tube is positioned to act as a bridge between the ovary where the egg is released and the uterus where implantation occurs. Throughout reproductive years the fallopian tube epithelium undergoes repetitive damage and regeneration. Although a reservoir of adult epithelial stem cells must exist to replenish damaged cells, they remain unidentified. Here we report isolation of a subset of basally located human fallopian tube epithelia (FTE) that lack markers of ciliated (β-tubulin; TUBB4) or secretory (PAX8) differentiated cells. These undifferentiated cells expressed cell surface antigens: epithelial cell adhesion molecule (EPCAM), CD44, and integrin alpha-6 (ITGA6). This fallopian tube epithelial subpopulation was five-fold enriched for cells capable of clonal growth and self renewal suggesting that they contain the fallopian tube epithelial stem-like cells (FTESC). A two-fold enrichment of the FTESC was found in the distal compared to the proximal end of the tube. The distal fimbriated end of the fallopian tube is a well characterized locus for initiation of serous carcinomas. An expansion of the cells expressing markers of FTESC was detected in tubal intraepithelial carcinomas (TIC) and in fallopian tubes from patients with invasive serous cancer. These findings suggest that FTESC may play a role in the initiation of serous tumors. Characterization of these stem-like cells will provide new insight into how the fallopian tube epithelia regenerate, respond to injury and may initiate cancer. PMID:22911892

  5. Microenvironment-Modulated Metastatic CD133+/CXCR4+/EpCAM- Lung Cancer-Initiating Cells Sustain Tumor Dissemination and Correlate with Poor Prognosis.

    PubMed

    Bertolini, Giulia; D'Amico, Lucia; Moro, Massimo; Landoni, Elena; Perego, Paola; Miceli, Rosalba; Gatti, Laura; Andriani, Francesca; Wong, Donald; Caserini, Roberto; Tortoreto, Monica; Milione, Massimo; Ferracini, Riccardo; Mariani, Luigi; Pastorino, Ugo; Roato, Ilaria; Sozzi, Gabriella; Roz, Luca

    2015-09-01

    Metastasis is the main reason for lung cancer-related mortality, but little is known about specific determinants of successful dissemination from primary tumors and metastasis initiation. Here, we show that CD133(+)/CXCR4(+) cancer-initiating cells (CIC) directly isolated from patient-derived xenografts (PDX) of non-small cell lung cancer are endowed with superior ability to seed and initiate metastasis at distant organs. We additionally report that CXCR4 inhibition successfully prevents the increase of cisplatin-resistant CD133(+)/CXCR4(+) cells in residual tumors and their metastatization. Immunophenotypic analysis of lung tumor cells intravenously injected or spontaneously disseminated to murine lungs demonstrated the survival advantage and increased colonization ability of a specific subset of CD133(+)/CXCR4(+) with reduced expression of epithelial cell adhesion molecule (EpCAM(-)), which also shows the greatest in vitro invasive potential. We next prove that recovered disseminated cells from lungs of PDX-bearing mice enriched for CD133(+)/CXCR4(+)/EpCAM(-) CICs are highly tumorigenic and metastatic. Importantly, microenvironment stimuli eliciting epithelial-to-mesenchymal transition, including signals from cancer-associated fibroblasts, are able to increase the dissemination potential of lung cancer cells through the generation of the CD133(+)/CXCR4(+)/EpCAM(-) subset. These findings also have correlates in patient samples where disseminating CICs are enriched in metastatic lymph nodes (20-fold, P = 0.006) and their detection in primary tumors is correlated with poor clinical outcome (disease-free survival: P = 0.03; overall survival: P = 0.05). Overall, these results highlight the importance of specific cellular subsets in the metastatic process, the need for in-depth characterization of disseminating tumor cells, and the potential of therapeutic strategies targeting both primary tumor and tumor-microenvironment interactions.

  6. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells.

    PubMed

    Riggi, Nicolò; Suvà, Mario-Luca; De Vito, Claudio; Provero, Paolo; Stehle, Jean-Christophe; Baumer, Karine; Cironi, Luisa; Janiszewska, Michalina; Petricevic, Tanja; Suvà, Domizio; Tercier, Stéphane; Joseph, Jean-Marc; Guillou, Louis; Stamenkovic, Ivan

    2010-05-01

    Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.

  7. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells

    PubMed Central

    Riggi, Nicolò; Suvà, Mario-Luca; De Vito, Claudio; Provero, Paolo; Stehle, Jean-Christophe; Baumer, Karine; Cironi, Luisa; Janiszewska, Michalina; Petricevic, Tanja; Suvà, Domizio; Tercier, Stéphane; Joseph, Jean-Marc; Guillou, Louis; Stamenkovic, Ivan

    2010-01-01

    Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%–90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype. PMID:20382729

  8. Predictors of post-recurrence survival in patients with non-small-cell lung cancer initially completely resected.

    PubMed

    Takahashi, Yusuke; Horio, Hirotoshi; Hato, Tai; Harada, Masahiko; Matsutani, Noriyuki; Kawamura, Masafumi

    2015-07-01

    Despite recent progress in diagnostic technology and therapeutic approaches to non-small-cell lung cancer (NSCLC), 30-75% of patients develop tumour recurrence after resection. However, the details of post-recurrence survival (PRS) are not well understood. We aimed to investigate the predictors of PRS in patients with NSCLC initially completely resected. A series of 568 NSCLC patients who had undergone complete resection between 2000 and 2009 were evaluated retrospectively. Patients who had developed recurrent NSCLC after complete resection were subjected to the current analysis. We examined PRS using the Kaplan-Meier method and multivariate Cox regression analyses. Of the 568 patients, 138 (24.3%) were identified as having disease recurrence. The 2-year and 5-year PRS rates were 44.6 and 25.9%, respectively, while the median PRS time was 22.5 months. Non-adenocarcinoma histology [hazard ratio (HR) = 2.825, 95% confidence interval (CI): 1.825-4.367, P < 0.001], serum carcinoembryonic antigen (CEA) at recurrence ≥5.0 mg/dl (HR = 2.205, 95% CI: 1.453-3.344, P < 0.001) and no systemic chemotherapy (HR = 2.137, 95% CI: 1.304-3.247, P = 0.002) were independent prognostic factors for PRS. The current results showed that non-adenocarcinoma histology, elevated serum CEA at recurrence and no systemic chemotherapy were independent unfavourable post-recurrence prognostic factors. The current data can be informative for patient follow-up after complete resection and further clinical investigation may give us more information about PRS and accurate treatment strategy for recurrent NSCLC after initial complete resection. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context.

    PubMed

    Monteagudo, Ángel; Santos, José

    2014-01-01

    We used a cellular automaton model for cancer growth simulation at cellular level, based on the presence of different cancer hallmarks acquired by the cells. The presence of the hallmarks in each of the cells determines cell mitotic and apoptotic behaviors. Depending on the presence of the different hallmarks and some associated parameters of the hallmarks, the system can evolve to different dynamics. We used the cellular automaton model to inspect the capability of different hallmarks to generate tumor growth in different conditions, using this study in a cancer stem cell context to analyze the capability of the hallmarks to tumor regrowth in different circumstances.

  10. A comparison of 3 on-line nomograms with the detection of primary circulating prostate cells to predict prostate cancer at initial biopsy.

    PubMed

    Murray, N P; Fuentealba, C; Reyes, E; Jacob, O

    2017-05-01

    The use of nomograms which include the PSA may improve the predictive power of obtaining a prostate biopsy (PB) positive for cancer. We compare the use of three on-line nomagrams with the detection of primary malignant circulating prostate cells (CPCs) to predict the results of an initial PB in men with suspicion of prostate cancer. Consecutive men with suspicion of prostate cancer underwent a 12 core TRUS prostate biopsy; age, total serum PSA, percent free PSA, family history, ethnic origin and prostate ultrasound results were used for risk assessment using the online nomograms. Mononuclear cells were obtained by differential gel centrifugation from 8ml of blood and CPCs were identified using double immunomarcation with anti-PSA and anti-P504S. A CPC was defined as a cell expressing PSA and P504S and defined as negative/positive. Biopsies were classified as cancer/no-cancer. Areas under the curve (AUC) for each parameter were calculated and compared and diagnostic yields were calculated. 1,223 men aged>55 years participated, 467 (38.2%) had a biopsy positive for cancer of whom 114/467 (24.4%) complied with the criteria for active observation. Area under the curve analysis showed CPC detection to be superior (p<0.001), avoiding 57% of potential biopsies while missing 4% of clinically significant prostate cancers. The CPC detection was superior to the nomograms in predicting the presence of prostate cancer at initial biopsy; its high negative predictive value potentially reduces the number of biopsies while missing few significant cancers, being superior to the nomograms in this aspect. Being a positive/negative test the detection of CPCs avoids defining a cutoff value which may differ between populations. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Pancreatic cancer stem cells.

    PubMed

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever.

  12. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    DTIC Science & Technology

    2012-07-01

    VL. Protein Microarray Analysis of Mammary Epithelial Cells from Obese and Non- Obese Women at High-Risk for Breast Cancer . Cancer Epidemiol...from Obese and Non- Obese Women at High-Risk for Breast Cancer . Cancer Epidemiol Biomarkers Prevention. 20:476-482, 2011 (cover article). PMID...Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham

  13. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness

    PubMed Central

    Gill, David J.; Tham, Keit Min; Chia, Joanne; Wang, Shyi Chyi; Steentoft, Catharina; Clausen, Henrik; Bard-Chapeau, Emilie A.; Bard, Frederic A.

    2013-01-01

    Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N-acetylgalactosamine-transferases (GalNAc-Ts) drives high Tn levels in cancer cell lines and in 70% of malignant breast tumors. This process stimulates cell adhesion to the extracellular matrix, as well as migration and invasiveness. The GalNAc-Ts lectin domain, mediating high-density glycosylation, is critical for these effects. Interfering with the lectin domain function inhibited carcinoma cell migration in vitro and metastatic potential in mice. We also show that stimulation of cell migration is dependent on Tn-bearing proteins present in lamellipodia of migrating cells. Our findings suggest that relocation of GalNAc-Ts to the endoplasmic reticulum frequently occurs upon cancerous transformation to enhance tumor cell migration and invasiveness through modification of cell surface proteins. PMID:23912186

  14. Antisense oligonucleotide targeting eukaryotic translation initiation factor 4E reduces growth and enhances chemosensitivity of non-small-cell lung cancer cells.

    PubMed

    Thumma, S C; Jacobson, B A; Patel, M R; Konicek, B W; Franklin, M J; Jay-Dixon, J; Sadiq, A; De, A; Graff, J R; Kratzke, R A

    2015-08-01

    Elevated levels of eukaryotic translation initiation factor 4E (eIF4E) enhance translation of many malignancy-related proteins, such as vascular endothelial growth factor (VEGF), c-Myc and osteopontin. In non-small-cell lung cancer (NSCLC), levels of eIF4E are significantly increased compared with normal lung tissue. Here, we used an antisense oligonucleotide (ASO) to inhibit the expression of eIF4E in NSCLC cell lines. eIF4E levels were significantly reduced in a dose-dependent manner in NSCLC cells treated with eIF4E-specific ASO (4EASO) compared with control ASO. Treatment of NSCLC cells with the 4EASO resulted in decreased cap-dependent complex formation, decreased cell proliferation and increased sensitivity to gemcitabine. At the molecular level, repression of eIF4E with ASO resulted in decreased expression of the oncogenic proteins VEGF, c-Myc and osteopontin, whereas expression of β-actin was unaffected. Based on these findings, we conclude that eIF4E-silencing therapy alone or in conjunction with chemotherapy represents a promising approach deserving of further investigation in future NSCLC clinical trials.

  15. A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression

    PubMed Central

    Casado-Medrano, Victoria; Barrio-Real, Laura; García-Rostán, Ginesa; Baumann, Matti; Rocks, Oliver; Caloca, María J.

    2016-01-01

    β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression. PMID:27058424

  16. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells

    PubMed Central

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  17. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  18. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection.

    PubMed

    Fridman, Rafael; Benton, Gabriel; Aranoutova, Irina; Kleinman, Hynda K; Bonfil, R Daniel

    2012-05-17

    This protocol requires 2-4 h and presents a method for injecting tumor cells, cancer stem cells or dispersed biopsy material into subcutaneous or orthotopic locations within recipient mice. The tumor cells or biopsy are mixed with basement membrane matrix proteins (CultrexBME or Matrigel) at 4 °C and then injected into recipient animals at preferred anatomical sites. Tumor cells can also be co-injected with additional cell types, such as fibroblasts, stromal cells, endothelial cells and so on. Details are given on appropriate cell numbers, handling and concentration of the basement membrane proteins, recipient animals, injection location and techniques. This procedure enables the growth of tumors from cells or biopsy material (tumor graft) with greater efficiency of take and growth, and with retention of the primary tumor phenotype based on histology. Co-injection with additional cell types provides more physiological models of human cancers for use in drug screening and studying cancer biology.

  19. Identification of human brain tumour initiating cells.

    PubMed

    Singh, Sheila K; Hawkins, Cynthia; Clarke, Ian D; Squire, Jeremy A; Bayani, Jane; Hide, Takuichiro; Henkelman, R Mark; Cusimano, Michael D; Dirks, Peter B

    2004-11-18

    The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

  20. Attenuation of cancer-initiating cells stemness properties by abrogating S100A4 calcium binding ability in head and neck cancers

    PubMed Central

    Cheng, Li-Hao; Hung, Kai-Feng; Huang, Tung-Fu; Hsieh, Hsin-Pei; Wang, Shu-Ying; Huang, Chih-Yang; Lo, Jeng-Fan

    2016-01-01

    S100A4 is a calcium-binding protein capable of promoting epithelial-mesenchymal transition. Previously, we have demonstrated that S100A4 is required to sustain the head and neck cancer-initiating cells (HN-CICs) subpopulation. In this study, to further investigate the molecular mechanism, we established the head and neck squamous cell carcinoma (HNSCC) cell lines stably expressing mutant S100A4 proteins with defective calcium-binding sites on either N-terminal (NM) or C-terminal (CM), or a deletion of the last 15 amino-acid residues (CD). We showed that the NM, CM and CD harboring sphere cells that were enriched with HN-CICs population exhibited impaired stemness and malignant properties in vitro, as well as reduced tumor growth ability in vivo. Mechanistically, we demonstrated that mutant S100A4 proteins decreased the promoter activity of Nanog, likely through inhibition of p53. Moreover, the biophysical analyses of purified recombinant mutant S100A4 proteins suggest that both NM and CM mutant S100A4 were very similar to the WT S100A4 with subtle difference on the secondary structure, and that the CD mutant protein displayed the unexpected monomeric form in the solution phase. Taken together, our results suggest that both the calcium-binding ability and the C-terminal region of S100A4 are important for HN-CICs to sustain its stemness property and malignancy, and that the mechanism could be mediated by repressing p53 and subsequently activating the Nanog expression. PMID:27793047

  1. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor initiating cells

    PubMed Central

    Xie, Han; Hanai, Jun-ichi; Ren, Jian-Guo; Kats, Lev; Burgess, Kerri; Bhargava, Parul; Signoretti, Sabina; Billiard, Julia; Duffy, Kevin J.; Grant, Aaron; Wang, Xiaoen; Lorkiewicz, Pawel K.; Schatzman, Sabrina; Bousamra, Michael; Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W.M.; Pandolfi, Pier Paolo; Sukhatme, Vikas P.; Seth, Pankaj

    2014-01-01

    Summary The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the inter-conversion of pyruvate and lactate, is upregulated in human cancers and is associated with aggressive tumor outcomes. Here we use a novel inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by re-activation of mitochondrial function in vitro but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC including cancer stem cell-dependent drug resistant tumors. PMID:24726384

  2. RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells.

    PubMed

    Wang, Zheng; Chen, Jinxian; Sun, Jianhua; Cui, Zhe; Wu, Hui

    2012-06-26

    A key factor underlying the control of the cellular growth, size and proliferation involves the regulation of the total protein synthesis. Most often, the initial stages of mRNA translation are rate limiting, which involves a group of eukaryotic translation initiation factors (EIFs). Research advances focused on the inhibition of their expression and activity hold the key to the initiation and progression of tumor and tumor prognosis. We performed RNA interference (RNAi) with the lentivirus vector system to silence the EIF3B gene using the colon cancer cell strain SW1116. The negative control included the normal target cells infected with the negative control virus whereas the knockdown cells included the normal target cells transfected with the RNAi target virus. We tested the inhibition resulting from the decreased expression of EIF3B gene on the proliferation rate of SW1116 cells, including the cell cycle, apoptosis and clonability. Compared with the negative control, the impact of EIF3B gene expression in SW1116 cells on the levels of mRNA and protein in the knockdown group, was significantly inhibited (P < 0.01). Furthermore, the cell proliferation rate and clonability were also significantly inhibited (P < 0.01). The apoptosis rate increased significantly (P < 0.05). A significant decrease in the number of cells in the G1 phase (P < 0.01) and significant increases in S (P < 0.01) and G2 phases (P < 0.05) were observed. The silencing of EIF3B gene expression inhibits the proliferation of colon cancer cells.

  3. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  4. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  5. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  6. Spatial Moran models, II: cancer initiation in spatially structured tissue

    PubMed Central

    Foo, J; Leder, K

    2016-01-01

    We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947

  7. Small-molecule targeting of translation initiation for cancer therapy

    PubMed Central

    Aktas, Bertal H.; Qiao, Yuan; Ozdelen, Esra; Schubert, Roland; Sevinc, Sema; Harbinski, Fred; Grubissich, Luciano; Singer, Samuel; Halperin, Jose A.

    2013-01-01

    Translation initiation plays a critical role in the regulation of cell growth and tumorigenesis. We report here that inhibiting translation initiation through induction of eIF2α phosphorylation by small-molecular-weight compounds restricts the availability of the eIF2·GTP·Met-tRNAi ternary complex and abrogates the proliferation of cancer cells in vitro and tumor growth in vivo. Restricting the availability of the ternary complex preferentially down-regulates the expression of growth-promoting proteins and up-regulates the expression of ER stress response genes in cancer cells as well as in tumors excised from either animal models of human cancer or cancer patients. These findings provide the first direct evidence for translational control of gene-specific expression by small molecules in vivo and indicate that translation initiation factors are bona fide targets for development of mechanism-specific anti-cancer agents. PMID:24091475

  8. Metformin Inhibits Androgen-Induced IGF-IR Up-Regulation in Prostate Cancer Cells by Disrupting Membrane-Initiated Androgen Signaling

    PubMed Central

    Malaguarnera, Roberta; Sacco, Antonella; Morcavallo, Alaide; Squatrito, Sebastiano; Migliaccio, Antimo; Morrione, Andrea; Maggiolini, Marcello

    2014-01-01

    We have previously demonstrated that, in prostate cancer cells, androgens up-regulate IGF-I receptor (IGF-IR) by inducing cAMP-response element-binding protein (CREB) activation and CREB-dependent IGF-IR gene transcription through androgen receptor (AR)-dependent membrane-initiated effects. This IGF-IR up-regulation is not blocked by classical antiandrogens and sensitizes cells to IGF-I-induced biological effects. Metformin exerts complex antitumoral functions in various models and may inhibit CREB activation in hepatocytes. We, therefore, evaluated whether metformin may affect androgen-dependent IGF-IR up-regulation. In the AR+ LNCaP prostate cancer cells, we found that metformin inhibits androgen-induced CRE activity and IGF-IR gene transcription. CRE activity requires the formation of a CREB-CREB binding protein-CREB regulated transcription coactivator 2 (CRTC2) complex, which follows Ser133-CREB phosphorylation. Metformin inhibited Ser133-CREB phosphorylation and induced nuclear exclusion of CREB cofactor CRTC2, thus dissociating the CREB-CREB binding protein-CRTC2 complex and blocking its transcriptional activity. Similarly to metformin action, CRTC2 silencing inhibited IGF-IR promoter activity. Moreover, metformin blocked membrane-initiated signals of AR to the mammalian target of rapamycin/p70S6Kinase pathway by inhibiting AR phosphorylation and its association with c-Src. AMPK signals were also involved to some extent. By inhibiting androgen-dependent IGF-IR up-regulation, metformin reduced IGF-I-mediated proliferation of LNCaP cells. These results indicate that, in prostate cancer cells, metformin inhibits IGF-I-mediated biological effects by disrupting membrane-initiated AR action responsible for IGF-IR up-regulation and suggest that metformin could represent a useful adjunct to the classical antiandrogen therapy. PMID:24437490

  9. Reprogramming of retinoblastoma cancer cells into cancer stem cells.

    PubMed

    Yue, Fengming; Hirashima, Kanji; Tomotsune, Daihachiro; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2017-01-22

    Retinoblastoma is the most common intraocular malignancy in pediatric patients. It develops rapidly in the retina and can be fatal if not treated promptly. It has been proposed that a small population of cancer cells, termed cancer stem cells (CSCs), initiate tumorigenesis from immature tissue stem cells or progenitor cells. Reprogramming technology, which can convert mature cells into pluripotent stem cells (iPS), provides the possibility of transducing malignant cancer cells back to CSCs, a type of early stage of cancer. We herein took advantage of reprogramming technology to induce CSCs from retinoblastoma cancer cells. In the present study, the 4 Yamanaka transcription factors, Oct4, Sox2, Klf4 and c-myc, were transduced into retinoblastoma cells (Rbc51). iPS-like colonies were observed 15 days after transduction and showed significantly enhanced CSC properties. The gene and protein expression levels of pluripotent stem cell markers (Tra-1-60, Oct4, Nanog) and cancer stem cell markers (CD133, CD44) were up-regulated in transduced Rbc51 cells compared to control cells. Moreover, iPS-like CSCs could be sorted using the Magnetic-activated cell sorting (MACS) method. A sphere formation assay demonstrated spheroid formation in transduced Rbc51 cells cultured in serum free media, and these spheroids could be differentiated into Pax6-, Nestin-positive neural progenitors and rhodopsin- and recoverin-positive mature retinal cells. The cell viability after 5-Fu exposure was higher in transduced Rbc51 cells. In conclusion, CSCs were generated from retinoblastoma cancer cells using reprogramming technology. Our novel method can generate CSCs, the study of which can lead to better understanding of cancer-specific initiation, cancer epigenetics, and the overlapping mechanisms of cancer development and pluripotent stem cell behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy

    PubMed Central

    Gonzalez, Nela Klein; Wennhold, Kerstin; Balkow, Sandra; Kondo, Eisei; Bölck, Birgit; Weber, Tanja; Garcia-Marquez, Maria; Grabbe, Stephan; Bloch, Wilhelm; von Bergwelt-Baildon, Michael; Shimabukuro-Vornhagen, Alexander

    2015-01-01

    There has been a growing interest in the use of B cells for cancer vaccines, since they have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated B (CD40B) cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. Dynamic interactions of human antigen-presenting cells (APCs) and T cells were observed by time-lapse video microscopy. The migratory and chemoattractant potential of CD40B cells was analyzed in vitro and in vivo using flow cytometry, standard transwell migration assays, and imaging of fluorescently labeled murine CD40B cells. Murine CD40B cells show migratory features similar to human CD40B cells. They express important lymph node homing receptors which were functional and induced chemotaxis of T cells in vitro. Striking differences were observed with regard to interactions of human APCs with T cells. CD40B cells differ from DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived and sequential interactions with T cells. In vivo, CD40B cells are home to the secondary lymphoid organs where they accumulate in the B cell zone before traveling to the B/T cell boundary. Moreover, intravenous (i.v.) administration of murine CD40B cells induced an antigen-specific cytotoxic T cell response. Taken together, this data show that CD40B cells home secondary lymphoid organs where they physically interact with T cells to induce antigen-specific T cell responses, thus underscoring their potential as cellular adjuvant for cancer immunotherapy. PMID:26405608

  11. Rebamipide attenuates Helicobacter pylori CagA-induced self-renewal capacity via modulation of β-catenin signaling axis in gastric cancer-initiating cells.

    PubMed

    Kang, Dong Woo; Noh, Yu Na; Hwang, Won Chan; Choi, Kang-Yell; Min, Do Sik

    2016-08-01

    Rebamipide, a mucosal-protective agent, is used clinically for treatment of gastritis and peptic ulcers induced by Helicobacter pylori (H. pylori) which is associated with increased risk of gastric cancer. Although rebamipide is known to inhibit the growth of gastric cancer cells, the action mechanisms of rebamipide in gastric carcinogenesis remains elusive. Here, we show that rebamipide suppresses H. pylori CagA-induced β-catenin and its target cancer-initiating cells (C-IC) marker gene expression via upregulation of miRNA-320a and -4496. Rebamipide attenuated in vitro self-renewal capacity of H. pylori CagA-infected gastric C-IC via modulation of miRNA-320a/-4496-β-catenin signaling axis. Moreover, rebamipide enhanced sensitivity to chemotherapeutic drugs in CagA-expressed gastric C-IC. Furthermore, rebamipide suppressed tumor-initiating capacity of gastric C-IC, probably via suppression of CagA-induced C-IC properties. These data provide novel insights for the efficacy of rebamipide as a chemoprotective drug against H. pylori CagA-induced carcinogenic potential. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells.

    PubMed

    Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Del Barco, Sonia; Martin-Castillo, Begoña; Menendez, Javier A

    2011-04-01

    We here demonstrate that the anti-diabetic drug metformin interacts synergistically with the anti-HER2 monoclonal antibody trastuzumab (Tzb; Herceptin™) to eliminate stem/progenitor cell populations in HER2-gene-amplified breast carcinoma cells. When using the mammosphere culture technique, graded concentrations of single-agent metformin (range 50-1,000 μmol/l) were found to dose-dependently reduce the number of mammospheres formed by SKBR3 (a Tzb-naïve model), SKBR3 TzbR (a model of acquired auto-resistance to Tzb) and JIMT-1 (a model of refractoriness to Tzb and other HER2-targeted therapies ab initio) HER2-overexpressing breast cancer cells. Single-agent Tzb likewise reduced mammosphere-forming efficiency (MSFE) in Tzb-naïve SKBR3 cells, but it failed to significantly decrease MSFE in Tzb-resistant SKBR3 TzbR and JIMT-1 cells. Of note, CD44-overexpressing Tzb-refractory SKBR3 TzbR and JIMT-1 cells retained an exquisite sensitivity to single-agent metformin. Concurrent combination of metformin with Tzb synergistically reduced MSFE as well as the size of mammospheres in Tzb-refractory SKBR3 TzbR and JIMT-1 cells. Flow cytometry analyses confirmed that metformin and Tzb functioned synergistically to down-regulate the percentage of Tzb-refractory JIMT-1 cells displaying the CD44(pos)/CD24(neg/low) stem/progenitor immunophenotype. Given that MSFE and mammosphere size are indicators of stem self-renewal and progenitor cell proliferation, respectively, our current findings reveal for the first time that: (a) Tzb refractoriness in HER2 overexpressors can be explained in terms of Tzb-resistant/CD44-overexpressing/tumor-initiating stem cells; (b) metformin synergistically interacts with Tzb to suppress self-renewal and proliferation of cancer stem/progenitor cells in HER2-positive carcinomas.

  13. The impact of the RBM4-initiated splicing cascade on modulating the carcinogenic signature of colorectal cancer cells

    PubMed Central

    Lin, Jung-Chun; Lee, Yuan-Chii; Liang, Yu-Chih; Fann, Yang C.; Johnson, Kory R.; Lin, Ying-Ju

    2017-01-01

    A growing body of studies has demonstrated that dysregulated splicing profiles constitute pivotal mechanisms for carcinogenesis. In this study, we identified discriminative splicing profiles of colorectal cancer (CRC) cells compared to adjacent normal tissues using deep RNA-sequencing (RNA-seq). The RNA-seq results and cohort studies indicated a relatively high ratio of exon 4-excluded neuro-oncological ventral antigen 1 (Nova1−4) and intron 2-retained SRSF6 (SRSF6+intron 2) transcripts in CRC tissues and cell lines. Nova1 variants exhibited differential effects on eliminating SRSF6 expression in CRC cells by inducing SRSF6+intron 2 transcripts which were considered to be the putative target of alternative splicing-coupled nonsense-mediated decay mechanism. Moreover, the splicing profile of vascular endothelial growth factor (VEGF)165/VEGF165b transcripts was relevant to SRSF6 expression, which manipulates the progression of CRC calls. These results highlight the novel and hierarchical role of an alternative splicing cascade that is involved in the development of CRC. PMID:28276498

  14. Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model.

    PubMed

    Dave, Bhuvanesh; Landis, Melissa D; Tweardy, David J; Chang, Jenny C; Dobrolecki, Lacey E; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F; Hilsenbeck, Susan G; Liu, Dan; Lewis, Michael T

    2012-01-01

    Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.

  15. Selective Small Molecule Stat3 Inhibitor Reduces Breast Cancer Tumor-Initiating Cells and Improves Recurrence Free Survival in a Human-Xenograft Model

    PubMed Central

    Dave, Bhuvanesh; Landis, Melissa D.; Dobrolecki, Lacey E.; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F.; Hilsenbeck, Susan G.; Liu, Dan; Lewis, Michael T.; Tweardy, David J.; Chang, Jenny C.

    2012-01-01

    Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24−/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24−/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors. PMID:22879872

  16. Tumor-Initiating Cells and Methods of Use

    NASA Technical Reports Server (NTRS)

    Hlatky, Lynn (Inventor)

    2014-01-01

    Provided herein are an isolated or enriched population of tumor initiating cells derived from normal cells, cells susceptible to neoplasia, or neoplastic cells. Methods of use of the cells for screening for anti-hyperproliferative agents, and use of the cells for animal models of hyperproliferative disorders including metastatic cancer, diagnostic methods, and therapeutic methods are provided.

  17. Small Cell Lung Cancer

    PubMed Central

    Kalemkerian, Gregory P.; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura QM; Downey, Robert J.; Gandhi, Leena; Ganti, Apar Kishor P.; Govindan, Ramaswamy; Grecula, John C.; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W.; Merritt, Robert E.; Moran, Cesar A.; Niell, Harvey B.; O’Malley, Janis; Patel, Jyoti D.; Ready, Neal; Rudin, Charles M.; Williams, Charles C.; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted. PMID:23307984

  18. Small cell lung cancer.

    PubMed

    Kalemkerian, Gregory P; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura Qm; Downey, Robert J; Gandhi, Leena; Ganti, Apar Kishor P; Govindan, Ramaswamy; Grecula, John C; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W; Merritt, Robert E; Moran, Cesar A; Niell, Harvey B; O'Malley, Janis; Patel, Jyoti D; Ready, Neal; Rudin, Charles M; Williams, Charles C; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted.

  19. Essential oil of Cephalotaxus griffithii needle inhibits proliferation and migration of human cervical cancer cells: involvement of mitochondria-initiated and death receptor-mediated apoptosis pathways.

    PubMed

    Moirangthem, Dinesh Singh; Laishram, Surbala; Rana, Virendra Singh; Borah, Jagat Chandra; Talukdar, Narayan Chandra

    2015-01-01

    This study was conducted to determine the effect of Cephalotaxus griffithii needle essential oil (CGNO) on proliferation and migration of human cervical cancer (HCC) cells. CGNO treatment decreased the viability of all the tested HCC (HeLa, ME-180 and SiHa) cells. Morphological and DNA fragmentation analysis of CGNO-treated HeLa cells indicated the involvement of apoptosis in inducing HCC cell death. CGNO increased mitochondrial membrane depolarisation and upregulated the expression of caspase-9, caspase-8, caspase-3 and cleaved-PARP. The activity of caspase-8 and caspase-9 was also significantly increased. Wound healing and transwell migration assay demonstrated that CGNO significantly inhibited the migration of HeLa cells to close a scratched wound and also inhibited their migration through filter towards a chemotactic stimulus. Taken together, these results indicated that CGNO inhibited the proliferation and migration of HCC cells. Of note, CGNO induced HeLa cell death through mitochondria-initiated and death receptor-mediated apoptosis pathway.

  20. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    PubMed

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  1. "A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies"

    PubMed Central

    2012-01-01

    Background The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis. Methods Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC). Results Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 103 cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples. Conclusions

  2. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  3. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  4. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  5. A Tumor initiating cell-enriched prognostic signature for HER2+:ERα- breast cancer; rationale, new features, controversies and future directions.

    PubMed

    Liu, Jeff C; Egan, Sean E; Zacksenhaus, Eldad

    2013-08-01

    The high intra- and inter-tumor heterogeneity of many types of cancers, including breast cancer (BC), poses great challenge to development of subtype-specific prognosis. In BC, the classification of tumors as either ERα+ (Luminal A and Luminal B), HER2+ (ERα+ or ERα-) or triple-negative (TNBC)(Basal-like, claudin-low) guides both prognostication and therapy. Indeed, prognostic signatures for ERα+ BC are being incorporated into clinical use. However, these signatures distinguish between luminal A (low risk) and Luminal B (high risk) BC; signatures that identify low/high risk patients with luminal B BC are yet to be developed. Likewise, no signature is in clinical use for HER2+ or TNBC. The major obstacles to development of robust signatures stem from diversity of BC, clonal evolution and heterogeneity within each subtype. We have recently generated a prognostic signature for HER2+:ERα- BC based on the identification of genes that were differentially expressed in a tumor-initiating cell (TIC)-enriched fraction versus non-TIC fraction from a mouse model of HER2+ BC (MMTV-Hers/Neu). Here we describe the rationale behind development of this prognosticator, and present new features of the signature, including elevated PI3K pathway activity and low TNFalpha and IFNgamma signaling in high-risk tumors. In addition, we address controversies in the field such as whether random gene expression signatures significantly associate with cancer outcome. Finally, we suggest a guideline for development of prognostic signatures and discuss future directions.

  6. The potential origin of glioblastoma initiating cells

    PubMed Central

    Chesler, David A.; Berger, Mitchell S.; Quinones-Hinojosa, Alfredo

    2013-01-01

    Despite intensive clinical and laboratory research and effort, Glioblastoma remains the most common and invariably lethal primary cancer of the central nervous system. The identification of stem cell and lineage-restricted progenitor cell populations within the adult human brain in conjunction with the discovery of stem-like cells derived from gliomas which are themselves tumorigenic and have been shown to have properties of self-renewal and multipotency, has led to the hypothesis that this population of cells may represent glioma initiating cells. Extensive research characterizing the anatomic distribution and phenotype of neural stem cells in the adult brain, and the genetic underpinnings needed for malignant transformation may ultimately lead to the identification of the cellular origin for glioblastoma. Defining the cellular origin of this lethal disease may ultimately provide new therapeutic targets and modalities finally altering an otherwise bleak outcome for patients with glioblastoma. PMID:22202053

  7. Immunotargeting of cancer stem cells

    PubMed Central

    Gąbka-Buszek, Agnieszka; Jankowski, Jakub; Mackiewicz, Andrzej

    2015-01-01

    Cancer stem cells (CSCs) represent a distinctive population of tumour cells that control tumour initiation, progression, and maintenance. Their influence is great enough to risk the statement that successful therapeutic strategy must target CSCs in order to eradicate the disease. Because cancer stem cells are highly resistant to chemo- and radiotherapy, new tools to fight against cancer have to be developed. Expression of antigens such as ALDH, CD44, EpCAM, or CD133, which distinguish CSCs from normal cells, together with CSC immunogenicity and relatively low toxicity of immunotherapies, makes immune targeting of CSCs a promising approach for cancer treatment. This review will present immunotherapeutic approaches using dendritic cells, T cells, pluripotent stem cells, and monoclonal antibodies to target and eliminate CSCs. PMID:25691822

  8. BRACHYURY confers cancer stem cell characteristics on colorectal cancer cells.

    PubMed

    Sarkar, Debalina; Shields, Brian; Davies, Melanie L; Müller, Jürgen; Wakeman, Jane A

    2012-01-15

    Cancer stem cells (CSCs) are initiating cells in colorectal cancer (CRC). Colorectal tumours undergo epithelial to mesenchymal transition (EMT)-like processes at the invasive front, enabling invasion and metastasis, and recent studies have linked this process to the acquisition of stem cell-like properties. It is of fundamental importance to understand the molecular events leading to the establishment of cancer initiating cells and how these mechanisms relate to cellular transitions during tumourigenesis. We use an in vitro system to recapitulate changes in CRC cells at the invasive front (mesenchymal-like cells) and central mass (epithelial-like cells) of tumours. We show that the mesoderm inducer BRACHYURY is expressed in a subpopulation of CRC cells that resemble invasive front mesenchymal-like cells, where it acts to impose characteristics of CSCs in a fully reversible manner, suggesting reversible formation and modulation of such cells. BRACHYURY, itself regulated by the oncogene β-catenin, influences NANOG and other 'stemness' markers including a panel of markers defining CRC-CSC whose presence has been linked to poor patient prognosis. Similar regulation of NANOG through BRACHYURY was observed in other cells lines, suggesting this might be a pathway common to cancer cells undergoing mesenchymal transition. We suggest that BRACHYURY may regulate NANOG in mesenchymal-like CRC cells to impose a 'plastic-state', allowing competence of cells to respond to signals prompting invasion or metastasis.

  9. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?

    PubMed Central

    Sabharwal, Simran S.; Schumacker, Paul T.

    2015-01-01

    Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy. PMID:25342630

  10. Upregulation of miR-137 reverses sorafenib resistance and cancer-initiating cell phenotypes by degrading ANT2 in hepatocellular carcinoma.

    PubMed

    Lu, Ai-Qing; Lv, Bin; Qiu, Fei; Wang, Xiao-Yun; Cao, Xiao-Hua

    2017-04-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. More than 80% of patients with HCC are not good candidates for curative surgical resection due to advanced liver cirrhosis caused by underlying chronic hepatitis virus (B or C) infection. Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced HCC. Although, sorafenib currently sets the new standard for advanced HCC treatment, tumor response rates are usually quite low. An understanding of the underlying mechanisms for sorafenib resistance is critical. In the present study, we found that adenine nucleotide translocator 2 (ANT2) was upregulated in sorafenib‑resistant HCC Huh7 cells (Huh7-R) and its overexpression promoted sorafenib resistance. ANT2 induced the formation of cancer-initiating cell (CIC) phenotypes and promoted metastasis-associated traits in the Huh7 cells. Silencing of miR-137 upregulated ANT2 protein expression in the Huh7 cells. miR-137 was downregulated in the Huh7-R cells, compared with that in the Huh7 cells and its restoration reversed sorafenib resistance in the Huh7-R cells. Restoration of miR-137 inhibited formation of CIC traits and attenuated the abilities of migration and invasion in the Huh7-R cells. Moreover, we demonstrated that high-intensity focused ultrasound (HIFU) in unresectable HCC upregulated serum miR-137. Combining HIFU and sorafenib may be a wise option for advanced and unresectable HCC.

  11. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Cancer.gov

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  12. Readministration of EGFR Tyrosine Kinase Inhibitor in Non-small Cell Lung Cancer Patients after Initial Failure, What Affects its Efficacy?

    PubMed Central

    Zhao, Ze-Rui; li, Wei; Long, Hao

    2014-01-01

    Few therapeutic options are available for non-small cell lung cancer (NSCLC) after failure to primary epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Since TKI rechallenge is one of the most common salvage approaches in clinical practice, we sought to identify the independent factors that associated with 2nd progression progression-free survival (PFS) and overall survival (OS). Seventy-two consecutive EGFR-mutated NSCLC patients with TKI retreatment after initial failure were retrospectively analyzed in this study. Univariate survival analysis and Cox proportional hazards regression model was used to determine if EGFR-TKIs readministration is tolerable as well as efficacious for a certain group of patients. PMID:25104233

  13. Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α

    PubMed Central

    Baer, Romain; Cintas, Célia; Dufresne, Marlène; Cassant-Sourdy, Stéphanie; Schönhuber, Nina; Planque, Laetitia; Lulka, Hubert; Couderc, Bettina; Bousquet, Corinne; Garmy-Susini, Barbara; Vanhaesebroeck, Bart; Pyronnet, Stéphane; Saur, Dieter; Guillermet-Guibert, Julie

    2014-01-01

    Increased PI 3-kinase (PI3K) signaling in pancreatic ductal adenocarcinoma (PDAC) correlates with poor prognosis, but the role of class I PI3K isoforms during its induction remains unclear. Using genetically engineered mice and pharmacological isoform-selective inhibitors, we found that the p110α PI3K isoform is a major signaling enzyme for PDAC development induced by a combination of genetic and nongenetic factors. Inactivation of this single isoform blocked the irreversible transition of exocrine acinar cells into pancreatic preneoplastic ductal lesions by oncogenic Kras and/or pancreatic injury. Hitting the other ubiquitous isoform, p110β, did not prevent preneoplastic lesion initiation. p110α signaling through small GTPase Rho and actin cytoskeleton controls the reprogramming of acinar cells and regulates cell morphology in vivo and in vitro. Finally, p110α was necessary for pancreatic ductal cancers to arise from Kras-induced preneoplastic lesions by increasing epithelial cell proliferation in the context of mutated p53. Here we identify an in vivo context in which p110α cellular output differs depending on the epithelial transformation stage and demonstrate that the PI3K p110α is required for PDAC induced by oncogenic Kras, the key driver mutation of PDAC. These data are critical for a better understanding of the development of this lethal disease that is currently without efficient treatment. PMID:25452273

  14. Cell phones and cancer

    MedlinePlus

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  15. Human Cancer Models Initiative | Office of Cancer Genomics

    Cancer.gov

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  16. Adenovirus E4orf4 protein-induced death of p53-/- H1299 human cancer cells follows a G1 arrest of both tetraploid and diploid cells due to a failure to initiate DNA synthesis.

    PubMed

    Cabon, Lauriane; Sriskandarajah, Neera; Mui, Melissa Z; Teodoro, Jose G; Blanchette, Paola; Branton, Philip E

    2013-12-01

    The adenovirus E4orf4 protein selectively kills human cancer cells independently of p53 and thus represents a potentially promising tool for the development of novel antitumor therapies. Previous studies suggested that E4orf4 induces an arrest or a delay in mitosis and that both this effect and subsequent cell death rely largely on an interaction with the B55 regulatory subunit of protein phosphatase 2A. In the present report, we show that the death of human H1299 lung carcinoma cells induced by expression of E4orf4 is typified not by an accumulation of cells arrested in mitosis but rather by the presence of both tetraploid and diploid cells that are arrested in G1 because they are unable to initiate DNA synthesis. We believe that these E4orf4-expressing cells eventually die by various processes, including those resulting from mitotic catastrophe.

  17. Mitochondria: An intriguing target for killing tumour-initiating cells.

    PubMed

    Yan, Bing; Dong, Lanfeng; Neuzil, Jiri

    2016-01-01

    Tumour-initiating cells (TICs) play a pivotal role in cancer initiation, metastasis and recurrence, as well as in resistance to therapy. Therefore, development of drugs targeting TICs has become a focus of contemporary research. Mitochondria have emerged as a promising target of anti-cancer therapies due to their specific role in cancer metabolism and modulation of apoptotic pathways. Mitochondria of TICs possess special characteristics, some of which can be utilised to design drugs specifically targeting these cells. In this paper, we will review recent research on TICs and their mitochondria, and introduce drugs that kill these cells by way of mitochondrial targeting.

  18. Sulindac and Celecoxib regulate cell cycle progression by p53/p21 up regulation to induce apoptosis during initial stages of experimental colorectal cancer.

    PubMed

    Vaish, Vivek; Rana, Chandan; Piplani, Honit; Vaiphei, Kim; Sanyal, Sankar Nath

    2014-03-01

    In the present study we have elaborated the putative mechanisms could be followed by the non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib in the regulation of cell cycle checkpoints along with tumor suppressor proteins to achieve their chemopreventive effects in the initial stages of experimental colorectal cancer. Male Sprague-Dawley rats were administered with 1,2-dimethylhydrazine dihydrochloride (DMH) to produce early stages of colorectal carcinogenesis. The mRNA expression profiles of various target genes were analyzed by RT-PCR and validated by quantitative real-time PCR, whereas protein expression was analyzed by Western blotting. Nuclear localization of transcription factors or other nuclear proteins was analyzed by electrophoretic mobility shift assay and immunofluorescence. Flowcytometry was performed to analyze the differential apoptotic events and cell cycle regulation. Molecular docking studies with different target proteins were also performed to deduce the various putative mechanisms of action followed by Sulindac and Celecoxib. We observed that DMH administration has abruptly increased the proliferation of colonic cells which is macroscopically visible in the form of multiple plaque lesions and co-relates with the disturbed molecular mechanisms of cell cycle regulation. However, co-administration of NSAIDs has shown regulatory effects on cell cycle checkpoints via induction of various tumor suppressor proteins. We may conclude that Sulindac and Celecoxib could possibly follow p53/p21 mediated regulation of cell proliferation, where down regulation of NF-κB signaling and activation of PPARγ might serve as important additional events in vivo.

  19. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).

    PubMed

    Kampa, Marilena; Notas, George; Pelekanou, Vassiliki; Troullinaki, Maria; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Lavrentaki, Katerina; Castanas, Elias

    2012-08-01

    The complexity of estrogen actions mainly relies to the presence of different identified receptors (ERα, ERβ, their isoforms, and GPR30/GPER) and their discrete cellular distribution. Depending on the localization of the receptor that mediates estrogen effects, nuclear and extra-nuclear actions have been described. The latter can trigger a number of signaling events leading also to transcriptional modifications. In an attempt to clarify the nature of the receptor(s) involved in the membrane initiated effect of estrogens on gene expression, we performed a whole transcriptome analysis of breast cancer cell lines with different receptor profiles (T47D, MCF7, MDA-MB-231, SK-BR-3). A pharmacological approach was conducted with the use of estradiol (E(2)) or membrane-impermeable E(2)-BSA in the absence or presence of a specific ERα-β or GPR30/GPER antagonist. Our results clearly show that in addition to the ERα isoforms and/or GPR30/GPER that mainly mediate the transcriptional effect of E(2)-BSA, there is a specific transcriptional signature (found in T47D and MCF-7 cells) suggesting the presence of an unidentified membrane ER element (ERx). Analysis of its signature and phenotypic verification revealed that important cell function such as apoptosis, transcriptional regulation, and growth factor signaling are associated with ERx. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Distinctive properties of metastasis-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Kang, Yibin

    2016-01-01

    Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies. PMID:27083997

  1. Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activation and diminished cell cycle arrest

    PubMed Central

    Lundholm, L; Hååg, P; Zong, D; Juntti, T; Mörk, B; Lewensohn, R; Viktorsson, K

    2013-01-01

    Increasing evidence suggests that tumor-initiating cells (TICs), also called cancer stem cells, are partly responsible for resistance to DNA-damaging treatment. Here we addressed if such a phenotype may contribute to radio- and cisplatin resistance in non-small cell lung cancer (NSCLC). We showed that four out of eight NSCLC cell lines (H125, A549, H1299 and H23) possess sphere-forming capacity when cultured in stem cell media and three of these display elevated levels of CD133. Indeed, sphere-forming NSCLC cells, hereafter called TICs, showed a reduced apoptotic response and increased survival after irradiation (IR), as compared with the corresponding bulk cell population. Decreased cytotoxicity and apoptotic signaling manifested by diminished poly (ADP-ribose) polymerase (PARP) cleavage and caspase 3 activity was also evident in TICs after cisplatin treatment. Neither radiation nor cisplatin resistance was due to quiescence as H125 TICs proliferated at a rate comparable to bulk cells. However, TICs displayed less pronounced G2 cell cycle arrest and S/G2-phase block after IR and cisplatin, respectively. Additionally, we confirmed a cisplatin-refractory phenotype of H125 TICs in vivo in a mouse xenograft model. We further examined TICs for altered expression or activation of DNA damage repair proteins as a way to explain their increased radio- and/or chemotherapy resistance. Indeed, we found that TICs exhibited increased basal γH2AX (H2A histone family, member X) expression and diminished DNA damage-induced phosphorylation of DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia-mutated (ATM), Krüppel-associated protein 1 (KAP1) and monoubiquitination of Fanconi anemia, complementation group D2 (FANCD2). As a proof of principle, ATM inhibition in bulk cells increased their cisplatin resistance, as demonstrated by reduced PARP cleavage. In conclusion, we show that reduced apoptotic response, altered DNA repair signaling and cell cycle perturbations in NSCLC

  2. Cancer stem cells in human gastrointestinal cancer.

    PubMed

    Taniguchi, Hiroaki; Moriya, Chiharu; Igarashi, Hisayoshi; Saitoh, Anri; Yamamoto, Hiroyuki; Adachi, Yasushi; Imai, Kohzoh

    2016-11-01

    Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the main causes of cancer-related deaths. Gastrointestinal cancers are the most common malignancies and still the most frequent cause of cancer-related mortality worldwide. Because gastrointestinal CSCs are also thought to be resistant to conventional therapies, an effective and novel cancer treatment is imperative. The first reported CSCs in a gastrointestinal tumor were found in colorectal cancer in 2007. Subsequently, CSCs were reported in other gastrointestinal cancers, such as esophagus, stomach, liver, and pancreas. Specific phenotypes could be used to distinguish CSCs from non-CSCs. For example, gastrointestinal CSCs express unique surface markers, exist in a side-population fraction, show high aldehyde dehydrogenase-1 activity, form tumorspheres when cultured in non-adherent conditions, and demonstrate high tumorigenic potential in immunocompromised mice. The signal transduction pathways in gastrointestinal CSCs are similar to those involved in normal embryonic development. Moreover, CSCs are modified by the aberrant expression of several microRNAs. Thus, it is very difficult to target gastrointestinal CSCs. This review focuses on the current research on gastrointestinal CSCs and future strategies to abolish the gastrointestinal CSC phenotype. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. A prospective randomized comparison of radiation therapy plus lonidamine versus radiation therapy plus placebo as initial treatment of clinically localized but nonresectable nonsmall cell lung cancer

    SciTech Connect

    Scarantino, C.W.; McCunniff, A.J.; Evans, G.; Young, C.W.; Paggiarino, D.A.

    1994-07-30

    The purpose was, by means of a multicenter, prospective randomized, placebo-controlled study, to assess the impact of adding the radiation-enhancing agent lonidamine to standard {open_quotes}curative-intent{close_quotes} radiation therapy upon overall survival, progression-free survival, and local progression-free survival of patients with clinically localized but nonresectable nonsmall cell lung cancer. Lonidamine, or the lonidamine-placebo, was administered at a dose of 265 mg/m{sup 2} in three divided daily doses. Drug therapy began 2 days prior to the initiation of radiation therapy and continued until progression of disease mandated a change in therapy. The radiation therapy dose was 55-60 Gy, at a daily dose of 1.8 Gy and five treatments per week. Patients with clinical Stage II or III nonsmall cell lung cancer were stratified within the treatment center, and within two histologic strata: epidermoid vs. other nonsmall cell cancers. A total of 310 patients were enlisted on study, 152 on the placebo arm and 158 on the lonidamine arm. The median survival durations were 326 and 392 days for the placebo and lonidamine-treated groups respectively, p = 0.41 for a comparison of the survival curves. Median progression-free survival and median local progression-free survival durations were 197 days and 341 days for placebo + radiation therapy vs. 230 days and 300 days for lonidamine + radiation therapy; p-values for the respective curves were 0.75 and 0.42. Although there were proportionately more lonidamine-treated patients than placebo-treated patients demonstrating continued local control in excess of 12 months, the numbers of patients still at risk after 24 months were too small for meaningful statistical analysis. This multicenter Phase III study failed to demonstrate a significant advantage in the lonidamine-treated population in overall patient survival, in progression-free survival, or in the median duration of local control. 25 refs., 3 figs., 3 tabs.

  4. [Markers of prostate cancer stem cells: research advances].

    PubMed

    Wang, Shun-Qi; Huang, Sheng-Song

    2013-12-01

    Prostate cancer is one of the most seriously malignant diseases threatening men's health, and the mechanisms of its initiation and progression are not yet completely understood. Recent years have witnessed distinct advances in researches on prostate cancer stem cells in many aspects using different sources of materials, such as human prostate cancer tissues, human prostate cancer cell lines, and mouse models of prostate cancer. Prostate cancer stem cell study offers a new insight into the mechanisms of the initiation and progression of prostate cancer and contributes positively to its treatment. This article presents an overview on the prostate cancer stem cell markers utilized in the isolation and identification of prostate cancer stem cells.

  5. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-15-1-0095 TITLE: Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...pathways in ovarian stem cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT

  6. Second-line paclitaxel in non-small cell lung cancer initially treated with cisplatin: a study by the European Lung Cancer Working Party

    PubMed Central

    Berghmans, T; Lafitte, J J; Lecomte, J; Alexopoulos, C G; Van Cutsem, O; Giner, V; Efremidis, A; Berchier, M C; Collon, T; Meert, A P; Scherpereel, A; Ninane, V; Leclercq, N; Paesmans, M; Sculier, J P

    2007-01-01

    In the context of a phase III trial comparing in advanced non-small cell lung cancer (NSCLC) sequential to conventional administration of cisplatin-based chemotherapy and paclitaxel, we evaluated the activity of paclitaxel as second-line chemotherapy and investigated any relation of its efficacy with the type of failure after cisplatin. Patients received three courses of induction GIP (gemcitabine, ifosfamide, cisplatin). Non-progressing patients were randomised between three further courses of GIP or three courses of paclitaxel. Second-line paclitaxel was given to patients with primary failure (PF) to GIP and to those progressing after randomisation to further GIP (secondary failure or SF). One hundred sixty patients received second-line paclitaxel. Response rates were 7.7% for PF and 11.6% for SF (P=0.42). Median survival times (calculated from paclitaxel start) were 4.1 and 7.1 months for PF and SF (P=0.002). In multivariate analysis, three variables were independently associated with better survival: SF (hazard ratio (HR)=1.55, 95% confidence interval (CI) 1.08–2.22; P=0.02), normal haemoglobin level (HR=1.56, 95% CI 1.08–2.26; P=0.02) and minimal weight loss (HR=1.79, 95% CI 1.26–2.55; P=0.001). Paclitaxel in NSCLC patients, whether given for primary or for SF after cisplatin-based chemotherapy, demonstrates activity similar to other drugs considered active as second-line therapy. PMID:17473825

  7. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  8. Liver cancer stem cells.

    PubMed

    Sell, Stewart; Leffert, Hyam L

    2008-06-10

    In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.

  9. Using Human Stem Cells to Study the Role of the Stroma in the Initiation of Prostate Cancer

    DTIC Science & Technology

    2011-03-01

    hESCs to pre- differentiate into endoderm, or use for recombination experiments . All routine karyotyping and identification of pluripotent cell...these experimental procedures as outlined in the r esearch plan, previously published by D’Amour and colleagues (4, 5). This challenging procedure...staining and flow cytometry for use in recombination experiments . c. Generation of tissue recombinants of endoderm-derived hESCs together with

  10. N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial–mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation

    PubMed Central

    Yang, Jinsong; Yu, Haogang; Shen, Mo; Wei, Wei; Xia, Lihong; Zhao, Peng

    2014-01-01

    Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eIF5A2 is involved in chemoresistance to doxorubicin-based bladder cancer treatment. BIU-87, J82, and UM-UC-3 bladder cancer cells were transfected with eIF5A2 siRNA or negative control siRNA before incubation with doxorubicin alone or doxorubicin plus GC7 for 48 h. Doxorubicin cytotoxicity was enhanced by GC7 in BIU-87, J82, and UM-UC-3 cells. It significantly inhibited activity of eIF5A2, suppressed doxorubicin-induced epithelial–mesenchymal transition in BIU-87 cells, and promoted mesenchymal–epithelial transition in J82 and UM-UC-3 cells. Knockdown of eIF5A2 sensitized bladder cancer cells to doxorubicin, prevented doxorubicin-induced EMT in BIU-87 cells, and encouraged mesenchymal–epithelial transition in J82 and UM-UC-3 cells. Combination therapy with GC7 may enhance the therapeutic efficacy of doxorubicin in bladder cancer by inhibiting eIF5A2 activation and preventing epithelial–mesenchymal transition. PMID:24262005

  11. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  12. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  13. Salivary Gland Cancer Stem Cells

    PubMed Central

    Adams, April; Warner, Kristy; Nör, Jacques E.

    2013-01-01

    Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies. PMID:23810400

  14. Cancer stem cells: a potential target for cancer therapy.

    PubMed

    Qiu, Hong; Fang, Xiaoguang; Luo, Qi; Ouyang, Gaoliang

    2015-09-01

    Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.

  15. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2.

    PubMed

    Overcash, Ryan F; Chappell, Vesna A; Green, Thomas; Geyer, Christopher B; Asch, Adam S; Ruiz-Echevarría, Maria J

    2013-01-01

    The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2), is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s) involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT) to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs) in the 5'-untranslated region (5'-UTR) of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR), we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER) stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5'-UTR of TMEFF2.

  16. Androgen Signaling Promotes Translation of TMEFF2 in Prostate Cancer Cells via Phosphorylation of the α Subunit of the Translation Initiation Factor 2

    PubMed Central

    Overcash, Ryan F.; Chappell, Vesna A.; Green, Thomas; Geyer, Christopher B.; Asch, Adam S.; Ruiz-Echevarría, Maria J.

    2013-01-01

    The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2), is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s) involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT) to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs) in the 5′-untranslated region (5′-UTR) of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR), we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER) stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5′-UTR of TMEFF2. PMID:23405127

  17. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells.

    PubMed

    Zhang, Yanrong; Pang, Long; Ma, Chao; Tu, Qin; Zhang, Rui; Saeed, Elray; Mahmoud, Abd Elaal; Wang, Jinyi

    2014-03-18

    Photodynamic therapy (PDT) is a noninvasive and light-activated method for cancer treatment. Two of the vital parameters that govern the efficiency of PDT are the light irradiation to the photosensitizer and visual detection of the selective accumulation of the photosensitizer in malignant cells. Herein, we prepared an integrated nanoplatform for targeted PDT and imaging of cancer cells using folic acid and horseradish peroxidase (HRP)-bifunctionalized semiconducting polymer dots (FH-Pdots). In the FH-Pdots, meta-tetra(hydroxyphenyl)-chlorin (m-THPC) was used as photosensitizer to produce cytotoxic reactive oxygen species (ROS); fluorescent semiconducting polymer poly[2-methoxy-5-((2-ethylhexyl)oxy)-p-phenylenevinylene] was used as light antenna and hydrophobic matrix for incorporating m-THPC, and amphiphilic Janus dendrimer was used as a surface functionalization agent to conjugate HRP and aminated folic acid onto the surface of FH-Pdots. Results indicated that the doped m-THPC can be simultaneously excited by the on-site luminol-H2O2-HRP chemiluminescence system through two paths. One is directly through chemiluminescence resonance energy transfer (CRET), and the other is through CRET and subsequent fluorescence resonance energy transfer. In vitro PDT and specificity studies of FH-Pdots using a standard transcriptional and translational assay against MCF-7 breast cancer cells, C6 glioma cells, and NIH 3T3 fibroblast cells demonstrated that cell viability decreased with increasing concentration of FH-Pdots. At the same concentration of FH-Pdots, the decrease in cell viability was positively relevant with increasing folate receptor expression. Results from in vitro fluorescence imaging exhibited that more FH-Pdots were internalized by cancerous MCF-7 and C6 cells than by noncancerous NIH 3T3 cells. All the results demonstrate that the designed semiconducting FH-Pdots can be used as an integrated nanoplatform for targeted PDT and on-site imaging of cancer cells.

  18. N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation.

    PubMed

    Yang, Jinsong; Yu, Haogang; Shen, Mo; Wei, Wei; Xia, Lihong; Zhao, Peng

    2014-02-01

    Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eIF5A2 is involved in chemoresistance to doxorubicin-based bladder cancer treatment. BIU-87, J82, and UM-UC-3 bladder cancer cells were transfected with eIF5A2 siRNA or negative control siRNA before incubation with doxorubicin alone or doxorubicin plus GC7 for 48 h. Doxorubicin cytotoxicity was enhanced by GC7 in BIU-87, J82, and UM-UC-3 cells. It significantly inhibited activity of eIF5A2, suppressed doxorubicin-induced epithelial-mesenchymal transition in BIU-87 cells, and promoted mesenchymal-epithelial transition in J82 and UM-UC-3 cells. Knockdown of eIF5A2 sensitized bladder cancer cells to doxorubicin, prevented doxorubicin-induced EMT in BIU-87 cells, and encouraged mesenchymal-epithelial transition in J82 and UM-UC-3 cells. Combination therapy with GC7 may enhance the therapeutic efficacy of doxorubicin in bladder cancer by inhibiting eIF5A2 activation and preventing epithelial-mesenchymal transition. © 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. Spectral biopsy for skin cancer diagnosis: initial clinical results

    NASA Astrophysics Data System (ADS)

    Moy, Austin J.; Feng, Xu; Nguyen, Hieu T. M.; Zhang, Yao; Sebastian, Katherine R.; Reichenberg, Jason S.; Tunnell, James W.

    2017-02-01

    Skin cancer is the most common form of cancer in the United States and is a recognized public health issue. Diagnosis of skin cancer involves biopsy of the suspicious lesion followed by histopathology. Biopsies, which involve excision of the lesion, are invasive, at times unnecessary, and are costly procedures ( $2.8B/year in the US). An unmet critical need exists to develop a non-invasive and inexpensive screening method that can eliminate the need for unnecessary biopsies. To address this need, our group has reported on the continued development of a noninvasive method that utilizes multimodal spectroscopy towards the goal of a "spectral biopsy" of skin. Our approach combines Raman spectroscopy, fluorescence spectroscopy, and diffuse reflectance spectroscopy to collect comprehensive optical property information from suspicious skin lesions. We previously described an updated spectral biopsy system that allows acquisition of all three forms of spectroscopy through a single fiber optic probe and is composed of off-the-shelf OEM components that are smaller, cheaper, and enable a more clinic-friendly system. We present initial patient data acquired with the spectral biopsy system, the first from an extensive clinical study (n = 250) to characterize its performance in identifying skin cancers (basal cell carcinoma, squamous cell carcinoma, and melanoma). We also present our first attempts at analyzing this initial set of clinical data using statistical-based models, and with models currently being developed to extract biophysical information from the collected spectra, all towards the goal of noninvasive skin cancer diagnosis.

  20. Basal cell cancer (image)

    MedlinePlus

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  1. Eukaryotic translation initiation factors and cancer.

    PubMed

    Ali, Muhammad Umar; Ur Rahman, Muhammad Saif; Jia, Zhenyu; Jiang, Cao

    2017-06-01

    Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.

  2. Pancreatic cancer stem cells: fact or fiction?

    PubMed

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  3. CDC20 maintains tumor initiating cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  4. Proteasome expression and activity in cancer and cancer stem cells.

    PubMed

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  5. Harnessing the apoptotic programs in cancer stem-like cells.

    PubMed

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  6. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  7. AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128

    PubMed Central

    Eterno, V.; Zambelli, A.; Villani, L.; Tuscano, A.; Manera, S.; Spitaleri, A.; Pavesi, L.; Amato, A.

    2016-01-01

    AurkA overexpression was previously found in breast cancer and associated to its ability in controlling chromosome segregation during mitosis, however whether it may affect breast cancer cells, endorsed with stem properties (BCICs), is still unclear. Surprisingly, a strong correlation between AurkA expression and β-catenin localization in breast cancer tissues suggested a link between AurkA and Wnt signaling. In our study, AurkA knock-down reduced wnt3a mRNA and suppressed metastatic signature of MDA-MB-231 cells. As a consequence, the amount of BCICs and their migratory capability dramatically decreased. Conversely, wnt3a mRNA stabilization and increased CD44+/CD24low/− subpopulation was found in AurkA-overexpressing MCF7 cells. In vivo, AurkA-overexpressing primary breast cancer cells showed higher tumorigenic properties. Interestingly, we found that AurkA suppressed the expression of miR-128, inhibitor of wnt3a mRNA stabilization. Namely, miR-128 suppression realized after AurkA binding to Snail. Remarkably, a strong correlation between AurkA and miR-128 expression in breast cancer tissues confirmed our findings. This study provides novel insights into an undisclosed role for the kinase AurkA in self-renewal and migration of BCICs affecting response to cancer therapies, metastatic spread and recurrence. In addition, it suggests a new therapeutic strategy taking advantage of miR-128 to suppress AurkA-Wnt3a signaling. PMID:27341528

  8. Targeting cancer stem cells: a new therapy to cure cancer patients.

    PubMed

    Hu, Yapeng; Fu, Liwu

    2012-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. They have been identified in blood, breast, brain, colon, melanoma, pancreatic, prostate, ovarian, lung cancers and so on. It is often considered to be associated with chemo-resistance and radio-resistance that lead to the failure of traditional therapies. Most therapies are directed at the fast growing tumor mass but not the slow dividing cancer stem cells. Eradicating cancer stem cells, the root of cancer origin and recurrence, has been thought as a promising approach to improve cancer survival or even to cure cancer patients. Understanding the characteristics of cancer stem cells will help to develop novel therapies to eliminate the initiating cancer stem cell, and the relevant patents on the cancer stem cell and cancer therapy by cancer stem cells will be discussed.

  9. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation.

    PubMed

    Fantozzi, Anna; Gruber, Dorothea C; Pisarsky, Laura; Heck, Chantal; Kunita, Akiko; Yilmaz, Mahmut; Meyer-Schaller, Nathalie; Cornille, Karen; Hopfer, Ulrike; Bentires-Alj, Mohamed; Christofori, Gerhard

    2014-03-01

    An epithelial-mesenchymal transition (EMT) underlies malignant tumor progression and metastatic spread by enabling cancer cells to depart from the primary tumor, invade surrounding tissue, and disseminate to distant organs. EMT also enriches for cancer stem cells (CSC) and increases the capacity of cancer cells to initiate and propagate tumors upon transplantation into immune-deficient mice, a major hallmark of CSCs. However, the molecular mechanisms promoting the tumorigenicity of cancer cells undergoing an EMT and of CSCs have remained widely elusive. We here report that EMT confers efficient tumorigenicity to murine breast cancer cells by the upregulated expression of the proangiogenic factor VEGF-A and by increased tumor angiogenesis. On the basis of these data, we propose a novel interpretation of the features of CSCs with EMT-induced, VEGF-A-mediated angiogenesis as the connecting mechanism between cancer cell stemness and tumor initiation.

  10. N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation.

    PubMed

    Liu, Yu; Liu, Rongrong; Fu, Peifen; Du, Feiya; Hong, Yun; Yao, Minya; Zhang, Xianning; Zheng, Shusen

    2015-01-01

    Approximately 30% of breast cancer does not express the estrogen receptor (ER), which is necessary for endocrine-based therapy approaches. Many studies demonstrated that eukaryotic translation initiation factor 5A2 (eIF5A2) serves as a proliferation-related oncogene in tumorigenic processes. The present study used cell viability assays, EdU incorporation assays, western blot, and immunofluorescence to explore whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eIF5A2 activation, exerts synergistic cytotoxicity with doxorubicin in breast cancer. We found that GC7 enhanced doxorubicin cytotoxicity in ER-negative HCC1937 cells but had little effect in ER-positive MCF-7 and Bcap-37 cells. Administration of GC7 reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in ER-negative breast cancer cells. Knockdown of eIF5A2 by siRNA inhibited the doxorubicin-induced EMT in ER-negative HCC1937 cells. These data demonstrated that GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in estrogen negative breast cancer cells by preventing EMT through inhibition of eIF5A2 activation. © 2015 S. Karger AG, Basel.

  11. An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location

    PubMed Central

    Norton, Kerri-Ann; Popel, Aleksander S.

    2014-01-01

    It is very important to understand the onset and growth pattern of breast primary tumours as well as their metastatic dissemination. In most cases, it is the metastatic disease that ultimately kills the patient. There is increasing evidence that cancer stem cells are closely linked to the progression of the metastatic tumour. Here, we investigate stem cell seeding to an avascular tumour site using an agent-based stochastic model of breast cancer metastatic seeding. The model includes several important cellular features such as stem cell symmetric and asymmetric division, migration, cellular quiescence, senescence, apoptosis and cell division cycles. It also includes external features such as stem cell seeding frequency and location. Using this model, we find that cell seeding rate and location are important features for tumour growth. We also define conditions in which the tumour growth exhibits decremented and exponential growth patterns. Overall, we find that seeding, senescence and division limit affect not only the number of stem cells, but also their spatial and temporal distribution. PMID:25185580

  12. Colorectal cancer stem cells.

    PubMed

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  13. Physician-Initiated Stop-Smoking Program for Patients Receiving Treatment for Early-Stage Cancer

    ClinicalTrials.gov

    2015-10-06

    Bladder Cancer; Breast Cancer; Colorectal Cancer; Head and Neck Cancer; Lung Cancer; Lymphoma; Prostate Cancer; Testicular Germ Cell Tumor; Tobacco Use Disorder; Unspecified Adult Solid Tumor, Protocol Specific

  14. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Cancer.gov

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  15. An automated approach to improve efficacy in detecting residual malignant cancer cell for facilitating prognostic assessment of leukemia: an initial study

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Lu, Xianglan; Tan, Maxine; Li, Shibo; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to investigate the feasibility of applying automatic interphase FISH cells analysis method for detecting the residual malignancy of post chemotherapy leukemia patients. In the experiment, two clinical specimens with translocation between chromosome No. 9 and 22 or No. 11 and 14 were selected from the patients underwent leukemia diagnosis and treatment. The entire slide of each specimen was first digitalized by a commercial fluorescent microscope using a 40× objective lens. Then, the scanned images were processed by a computer-aided detecting (CAD) scheme to identify the analyzable FISH cells, which is accomplished by applying a series of features including the region size, Brenner gradient and maximum intensity. For each identified cell, the scheme detected and counted the number of the FISH signal dots inside the nucleus, using the adaptive threshold of the region size and distance of the labeled FISH dots. The results showed that the new CAD scheme detected 8093 and 6675 suspicious regions of interest (ROI) in two specimens, among which 4546 and 3807 ROI contain analyzable interphase FISH cell. In these analyzable ROIs, CAD selected 334 and 405 residual malignant cancer cells, which is substantially more than those visually detected in a cytogenetic laboratory of our medical center (334 vs. 122, 405 vs. 160). This investigation indicates that an automatic interphase FISH cell scanning and CAD method has the potential to improve the accuracy and efficiency of the prognostic assessment for leukemia and other genetic related cancer patients in the future.

  16. Squamous cell cancer (image)

    MedlinePlus

    ... relatively slow-growing. It is more likely than basal cell cancer to spread (metastasize) to other locations, including internal organs. Treatment usually involves surgical removal of the tumor along ...

  17. On the nature of the tumor-initiating cell.

    PubMed

    Lara-Padilla, Eleazar; Caceres-Cortes, Julio Roberto

    2012-01-01

    Certain aspects of tumors that may influence areas of basic biology and medicine are reviewed. The hypothesis that malignant stem cells evolve from normal stem cells, is considered. Information is being accumulated on the possibility that certain cell populations that can be propagated as cell lines in vitro can produce cells with features of differentiated cells in addition to others that maintain the line and, in some cases may also initiate tumor formation in vivo. Up to the present time, there is evidence to show that cancer stem cells persist in many cell lines. Tyrosine kinase inhibition produces combinations of autophagy and apoptosis in the human erythroleukemia cell line TF-1 hinting at a heterotypic aggregation of cells containing cancer stem cells. Finally, the mechanisms of cancer development, invasion and metastasis are operatively defined. The purpose of this paper is to review some of the salient features of cancer stem cells in support of the proposal that research in neoplasia be increased. Rather than presenting details of various studies, we have attempted to indicate general areas in which work has been done or is in progress. It is hoped that this survey of the subject will demonstrate a variety of opportunities for additional research in human neoplasia.

  18. Sonic Hedgehog-GLI Family Zinc Finger 1 Signaling Pathway Promotes the Growth and Migration of Pancreatic Cancer Cells by Regulating the Transcription of Eukaryotic Translation Initiation Factor 5A2.

    PubMed

    Xu, Xuanfu; Liu, Hua; Zhang, Hui; Dai, Weiqi; Guo, Chuanyong; Xie, Chuangao; Wei, Shumei; He, Shengli; Xu, Xiaorong

    2015-11-01

    The Hh (hedgehog) signaling pathway is still waiting for further studies because its downstream molecular mechanism remains elusive. Because EIF5A2 (eukaryotic translation initiation factor 5A2) gene was up-regulated upon Gli1 (GLI family zinc finger 1) in pancreatic cancer (PC) cells, we speculated that this pathway might promote tumor progression through regulating EIF5A2. We investigated regulation effect of Hh signaling pathway to EIF5A2 gene transcription by Gli1 knockdown or overexpression in PC cell lines first. Then, the regulation mechanism of Gli1 to EIF5A2 gene was studied at transcription level. Finally, we studied cancer-promoting effects of Gli1-dependent EIF5A2 in PC cells. The data showed that Gli1 up-regulated expression of EIF5A2 by promoting transcription via cis-acting elements in PC cells. Moreover, vimentin gene was up-regulated significantly by sonic hedgehog (SHh)/Gli1 expression increasing, and E-cadherin was significantly reduced. The EIF5A2 knockdown partially reversed cell proliferation and migration induced by artificial SHh overexpression and inhibited epithelial mesenchymal transition process in PC cells with SHh overexpression (P < 0.05). Our data establish a novel transcription mechanism of Gli1 to EIF5A2 gene in cis-regulatory manner in PC cells. Thus, EIF5A2 oncogene effect could be incorporated into cancer-promoting molecular network upon Hh signaling pathway.

  19. Modulation of T Cell Activation by Malignant Melanoma Initiating Cells

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Natasha Y.; Zhan, Qian; Hoerning, André; Robles, Susanne C.; Zhou, Jun; Hodi, F. Stephen; Spagnoli, Giulio C.; Murphy, George F.; Frank, Markus H.

    2010-01-01

    Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. This raises the possibility that only a restricted minority of tumorigenic malignant cells might possess the phenotypic and functional characteristics to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis, by demonstrating that tumorigenic ABCB5+ malignant melanoma-initiating cells (MMICs) possess the capacity to preferentially inhibit interleukin (IL)-2-dependent T cell activation and to support, in a B7.2-dependent manner, regulatory T (Treg) cell induction. Compared to melanoma bulk populations, ABCB5+ MMICs expressed lower levels of the major histocompatibility complex (MHC) class I, showed aberrant positivity for MHC class II, and exhibited lower expression levels of the melanoma-associated antigens (MAAs) MART-1, ML-IAP, NY-ESO-1, and MAGE-A. In addition, tumorigenic ABCB5+ subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1 in both established melanoma xenografts and clinical tumor specimens in vivo. In immune activation assays, ABCB5+ melanoma cells inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5− populations. Moreover, coculture with ABCB5+ MMICs increased, in a B7.2 signalling-dependent manner, CD4+CD25+FoxP3+ Treg cell abundance and IL-10 production by mitogen-activated PBMCs. Consistent with these findings, ABCB5+ melanoma subsets also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T cell-modulatory functions of ABCB5+ melanoma subpopulations and suggest specific roles for MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance. PMID:20068175

  20. Cancer Stem Cells: Repair Gone Awry?

    PubMed Central

    Rangwala, Fatima; Omenetti, Alessia; Diehl, Anna Mae

    2011-01-01

    Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh), that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors. PMID:21188169

  1. Effect of dose of thoracic irradiation on recurrence in patients with limited stage small cell lung cancer. Initial results of a Canadian Multicenter Randomized Trial

    SciTech Connect

    Coy, P.; Hodson, I.; Payne, D.G.; Evans, W.K.; Feld, R.; MacDonald, A.S.; Osoba, D.; Pater, J.L.

    1988-02-01

    Patients with limited stage small cell lung cancer were initially randomized to receive either three courses of Cyclophosphamide, Adriamycin, and Vincristine (CAV) followed by three courses of VP-16 and Cis-platin (VP-PT) or six courses of alternating CAV and VP-PT. Responding patients received prophylactic cranial radiation (PCI) after three courses of chemotherapy (CT) and loco-regional thoracic radiation (LRTR) after six courses. No maintenance chemotherapy was given. Patients receiving LRTR were randomized to receive either 25 Gy in ten fractions over 2 weeks (SD) or 37.5 Gy in 15 fractions over 3 weeks (HD). In both arms the pre-chemotherapy disease was treated with a 2 cm margin around the primary tumor volume. The mediastinum was included in the treatment volume and the supraclavicular nodes were also included if involved originally. The spinal cord was shielded after 32 Gy. Of the 333 patients enrolled by the time the trial closed in October 1984, 168 were eventually randomized to LRTR and are eligible for response assessment. The overall response rate after combined RT and CT was 94% (CR 67%, PR 27%). The CR rate for SD was 65% and for HD 69%. The combined treatment was well tolerated by most patients. Forty-nine percent of HD patients developed dysphagia compared to 26% of those SD (p less than 0.01). At the time of this analysis the median duration of follow-up since randomization to radiotherapy is 30 months. The median local progression-free survival on HD is 49 weeks. On SD it is 38 weeks (p = 0.05, one sided). The actuarial incidence of local progression by 2 years is 69% on HD and 80% on LD. There is as yet no significant difference in overall survival between the two arms. It appears that HD radiotherapy as administered in this study may have an impact on local control, but it is too early to determine if this will translate into a survival benefit.

  2. CRCHD Launches National Colorectal Cancer Outreach and Screening Initiative

    Cancer.gov

    The NCI CRCHD launches National Screen to Save Colorectal Cancer Outreach and Screening Initiative which aims to increase colorectal cancer screening rates among racially and ethnically diverse and rural communities.

  3. Capturing Changes in the Brain Microenvironment during Initial Steps of Breast Cancer Brain Metastasis

    PubMed Central

    Lorger, Mihaela; Felding-Habermann, Brunhilde

    2010-01-01

    Brain metastases are difficult to treat and mostly develop late during progressive metastatic disease. Patients at risk would benefit from the development of prevention and improved treatments. This requires knowledge of the initial events that lead to brain metastasis. The present study reveals cellular events during the initiation of brain metastasis by breast cancer cells and documents the earliest host responses to incoming cancer cells after carotid artery injection in immunodeficient and immunocompetent mouse models. Our findings capture and characterize heterogeneous astrocytic and microglial reactions to the arrest and extravasation of cancer cells in the brain, showing immediate and drastic changes in the brain microenvironment on arrival of individual cancer cells. We identified reactive astrocytes as the most active host cell population that immediately localizes to individual invading tumor cells and continuously associates with growing metastatic lesions. Up-regulation of matrix metalloproteinase-9 associated with astrocyte activation in the immediate vicinity of extravasating cancer cells might support their progression. Early involvement of different host cell types indicates environmental clues that might codetermine whether a single cancer cell progresses to macrometastasis or remains dormant. Thus, information on the initial interplay between brain homing tumor cells and reactive host cells may help develop strategies for prevention and treatment of symptomatic breast cancer brain metastases. PMID:20382702

  4. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis.

    PubMed

    Lorger, Mihaela; Felding-Habermann, Brunhilde

    2010-06-01

    Brain metastases are difficult to treat and mostly develop late during progressive metastatic disease. Patients at risk would benefit from the development of prevention and improved treatments. This requires knowledge of the initial events that lead to brain metastasis. The present study reveals cellular events during the initiation of brain metastasis by breast cancer cells and documents the earliest host responses to incoming cancer cells after carotid artery injection in immunodeficient and immunocompetent mouse models. Our findings capture and characterize heterogeneous astrocytic and microglial reactions to the arrest and extravasation of cancer cells in the brain, showing immediate and drastic changes in the brain microenvironment on arrival of individual cancer cells. We identified reactive astrocytes as the most active host cell population that immediately localizes to individual invading tumor cells and continuously associates with growing metastatic lesions. Up-regulation of matrix metalloproteinase-9 associated with astrocyte activation in the immediate vicinity of extravasating cancer cells might support their progression. Early involvement of different host cell types indicates environmental clues that might codetermine whether a single cancer cell progresses to macrometastasis or remains dormant. Thus, information on the initial interplay between brain homing tumor cells and reactive host cells may help develop strategies for prevention and treatment of symptomatic breast cancer brain metastases.

  5. Oxygen Enhancement Ratio in Radiation-Induced Initial DSBs by an Optimized Flow Cytometry-based Gamma-H2AX Analysis in A549 Human Cancer Cells.

    PubMed

    Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2017-08-22

    High-linear energy transfer (LET) heavy ions cause higher therapeutic effects than low-LET radiation due to lower dependency on oxygen concentration in tumor cell killing. The lethality after irradiation largely depends on DNA double-strand breaks (DSBs), however the detailed LET dependency for DSB induction under oxic and hypoxic conditions has not been reported. Therefore, we evaluated the oxygen enhancement ratio (OER) of heavy ion-induced DSB induction using a highly-optimized flow cytometry-based method of γ-H2AX detection. Non-small cell lung cancer (NSCLC) A549 cells were exposed to X-ray, carbon-ion and iron-ion radiations under oxic or hypoxic condition. As a DSB marker, the γ-H2AX signal was measured 1 h postirradiation and analyzed by flow cytometry. DSB slope values were calculated as DSB induction per Gy. Our method was able to detect high-LET radiation-induced DSBs even from clustered DNA damage sites. We also showed a decrease in OER value in an LET-dependent manner regardless of radiation type. In summary, we demonstrated a simple, quick and highly-optimized flow cytometry-based method of DSB analysis that detects DSBs induced by heavy-ion radiation for hypoxic and nonhypoxic cancer cells. Our study may provide a useful biological basis for heavy-ion radiotherapy.

  6. Culture and isolation of brain tumor initiating cells.

    PubMed

    Lenkiewicz, Monika; Li, Na; Singh, Sheila K

    2009-10-01

    This unit describes protocols for the culture and isolation of brain tumor initiating cells (BTIC). The cancer stem cell (CSC) hypothesis suggests that tumors are maintained exclusively by a rare fraction of cells that have stem cell properties. We applied culture conditions and assays originally used for normal neural stem cells (NSCs) in vitro to a variety of brain tumors. The BTIC were isolated by fluorescence activated cell sorting for the neural precursor cell surface marker CD133. Only the CD133(+) brain tumor fraction contains cells capable of sphere formation and sustained self-renewal in vitro, and tumor initiation in NOD-SCID mouse brains. Therefore, CD133(+) BTICs satisfy the definition of cancer stem cells in that they are able to generate a replica of the patient's tumor and they exhibit self-renewal ability through serial retransplantation. This established that only a rare subset of brain tumor cells with stem cell properties are tumor-initiating, and, in this unit, we describe their culture and isolation.

  7. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers.

    PubMed

    Bhargava, Arpit; Mishra, Dinesh K; Jain, Subodh K; Srivastava, Rupesh K; Lohiya, Nirmal K; Mishra, Pradyumna K

    2016-11-01

    We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.

  8. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  9. Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer

    PubMed Central

    Landen, Charles N.; Goodman, Blake; Katre, Ashwini A.; Steg, Adam D.; Nick, Alpa M.; Stone, Rebecca L.; Miller, Lance D.; Mejia, Pablo Vivas; Jennings, Nicolas B.; Gershenson, David M.; Bast, Robert C.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2010-01-01

    Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression, in whom the percent of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 v 13.81 months, p<0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared to chemotherapy alone (a 74–90% reduction, p<0.015). These data demonstrate that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity, but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer. PMID:20889728

  10. Inflammation and cancer stem cells.

    PubMed

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Ambe, Chenwi M; Ray, Satyajit; Kim, Bo-Kyu; Koizumi, Tomotake; Wiegand, Gordon W; Hari, Danielle; Mullinax, John E; Jaiswal, Kshama R; Garfield, Susan H; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S; Avital, Itzhak

    2013-01-01

    Stem-like cancer cells contribute to cancer initiation and maintenance. Stem cells can self-renew by asymmetric cell division (ACD). ACD with non-random chromosomal cosegregation (ACD-NRCC) is one possible self-renewal mechanism. There is a paucity of evidence supporting ACD-NRCC in human cancer. Our aim was to investigate ACD-NRCC and its potential interactions with the cancer niche (microenvironment) in gastrointestinal cancers. We used DNA double and single labeling approaches with FACS to isolate live cells undergoing ACD-NRCC. Gastrointestinal cancers contain rare subpopulations of cells capable of ACD-NRCC. ACD-NRCC was detected preferentially in subpopulations of cells previously suggested to be stem-like/tumor-initiating cancer cells. ACD-NRCC was independent of cell-to-cell contact, and was regulated by the cancer niche in a heat-sensitive paracrine fashion. Wnt pathway genes and proteins are differentially expressed in cells undergoing ACD-NRCC vs. symmetric cell division. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in suppression of ACD-NRCC. However, using a Wnt-agonist did not increase the relative proportion of cells undergoing ACD-NRCC. Gastrointestinal cancers contain subpopulations of cells capable of ACD-NRCC. Here we show for the first time that ACD-NRCC can be regulated by the Wnt pathway, and by the cancer niche in a paracrine fashion. However, whether ACD-NRCC is exclusively associated with stem-like cancer cells remains to be determined. Further study of these findings might generate novel insights into stem cell and cancer biology. Targeting the mechanism of ACD-NRCC might engender novel approaches for cancer therapy.

  12. Targeting Signaling Pathways in Cancer Stem Cells for Cancer Treatment

    PubMed Central

    Zhong, Li

    2017-01-01

    The Wnt, Hedgehog, and Notch pathways are inherent signaling pathways in normal embryogenesis, development, and hemostasis. However, dysfunctions of these pathways are evident in multiple tumor types and malignancies. Specifically, aberrant activation of these pathways is implicated in modulation of cancer stem cells (CSCs), a small subset of cancer cells capable of self-renewal and differentiation into heterogeneous tumor cells. The CSCs are accountable for tumor initiation, growth, and recurrence. In this review, we focus on roles of Wnt, Hedgehog, and Notch pathways in CSCs' stemness and functions and summarize therapeutic studies targeting these pathways to eliminate CSCs and improve overall cancer treatment outcomes. PMID:28356914

  13. Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells

    PubMed Central

    Mina, Marco; Magi, Shigeyuki; Jurman, Giuseppe; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Arner, Erik; Forrest, Alistair R. R.; Carninci, Piero; Hayashizaki, Yoshihide; Daub, Carsten O.; Okada-Hatakeyama, Mariko; Furlanello, Cesare

    2015-01-01

    The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors. PMID:26179713

  14. Colon cancer stem cells: implications in carcinogenesis

    PubMed Central

    Sanders, Matthew A.; Majumdar, Adhip P. N.

    2014-01-01

    The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may not be effective against the cancer stem cells that are responsible for recurrence. In recent years great progress has been made in identifying markers of both normal and malignant colon stem cells. Proteins proposed as colon cancer stem cell markers include CD133, CD44, CD166, ALDH1A1, Lgr5, and several others. In this review we consider the evidence for these proteins as colon cancer stem cell markers and as prognostic indicators of colon cancer survival. Additionally, we discuss potential functions of these proteins and the implications this may have for development of therapies that target colon cancer stem cells. PMID:21196254

  15. Interfacial geometry dictates cancer cell tumorigenicity

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  16. Tobacco Use Initiation | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    PubMed Central

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Summary Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. PMID:25025713

  18. Initial basal cell carcinomas diagnosed in the National Campaign for Skin Cancer Prevention are smaller than those identified by the conventional medical referral system*

    PubMed Central

    Wakiyama, Thweicyka Pinheiro; França, Maria Laura Marconi; Carvalho, Larissa Pierri; Marques, Mariangela Esther Alencar; Miot, Hélio Amante; Schmitt, Juliano Vilaverde

    2017-01-01

    BACKGROUND Basal cell carcinoma is the malignant tumor most often diagnosed in the National Campaign for Skin Cancer Prevention (NCSCP). Little is known about the profile of these lesions compared to the profile of lesions diagnosed by conventional routes of public dermatological care. OBJECTIVE To identify if basal cell carcinomas identified in prevention campaigns and referred to surgery are smaller than those routinely removed in a same medical institution. METHODS Cross-sectional study including tumors routed from 2011-2014 campaigns and 84 anatomopathological reports of outpatients. RESULTS The campaigns identified 223 individuals with suspicious lesions among 2,531 examinations (9%), with 116 basal cell carcinomas removed. Anatomopathological examinations revealed that the primary lesions identified in the national campaigns were smaller than those referred to surgery by the conventional routes of public health care (28 [13-50] x 38 [20-113] mm2, p <0.01). On the other hand, after a mean follow-up of 15.6 ± 10.3 months, 31% of cases identified in campaigns showed new basal cell carcinoma lesions. STUDY LIMITATIONS Retrospective study and inaccuracies in the measurements of the lesions. CONCLUSIONS The NCSCP promotes an earlier treatment of basal cell carcinomas compared to patients referred to surgery by the conventional routes of public health care, which can result in lower morbidity rates and better prognosis. PMID:28225952

  19. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  20. Low white blood cell count and cancer

    MedlinePlus

    Neutropenia and cancer; Absolute neutrophil count and cancer; ANC and cancer ... A person with cancer can get a low white blood cell count from the cancer or from treatment for the cancer. Cancer may ...

  1. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    PubMed Central

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  2. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment.

    PubMed

    Willis, Rudolph E

    2016-09-14

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.

  3. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    SciTech Connect

    Wolfe, Adam R.; Atkinson, Rachel L.; Reddy, Jay P.; Debeb, Bisrat G.; Larson, Richard; Li, Li; Masuda, Hiroko; Brewer, Takae; Atkinson, Bradley J.; Brewster, Abeena; Ueno, Naoto T.; Woodward, Wendy A.

    2015-04-01

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  4. An immunosurveillance mechanism controls cancer cell ploidy.

    PubMed

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  5. Incidence and Timing of Cancer in HIV-Infected Individuals Following Initiation of Combination Antiretroviral Therapy

    PubMed Central

    Yanik, Elizabeth L.; Napravnik, Sonia; Cole, Stephen R.; Achenbach, Chad J.; Gopal, Satish; Olshan, Andrew; Dittmer, Dirk P.; Kitahata, Mari M.; Mugavero, Michael J.; Saag, Michael; Moore, Richard D.; Mayer, Kenneth; Mathews, W. Christopher; Hunt, Peter W.; Rodriguez, Benigno; Eron, Joseph J.

    2013-01-01

    Background Cancer is an important cause of morbidity and mortality in individuals infected with human immunodeficiency virus (HIV), but patterns of cancer incidence after combination antiretroviral therapy (ART) initiation remain poorly characterized. Methods We evaluated the incidence and timing of cancer diagnoses among patients initiating ART between 1996 and 2011 in a collaboration of 8 US clinical HIV cohorts. Poisson regression was used to estimate incidence rates. Cox regression was used to identify demographic and clinical characteristics associated with cancer incidence after ART initiation. Results At initiation of first combination ART among 11 485 patients, median year was 2004 (interquartile range [IQR], 2000–2007) and median CD4 count was 202 cells/mm3 (IQR, 61–338). Incidence rates for Kaposi sarcoma (KS) and lymphomas were highest in the first 6 months after ART initiation (P < .001) and plateaued thereafter, while incidence rates for all other cancers combined increased from 416 to 615 cases per 100 000 person-years from 1 to 10 years after ART initiation (average 7% increase per year; 95% confidence interval, 2%–13%). Lower CD4 count at ART initiation was associated with greater risk of KS, lymphoma, and human papillomavirus–related cancer. Calendar year of ART initiation was not associated with cancer incidence. Conclusions KS and lymphoma rates were highest immediately following ART initiation, particularly among patients with low CD4 cell counts, whereas other cancers increased with time on ART, likely reflecting increased cancer risk with aging. Our results underscore recommendations for earlier HIV diagnosis followed by prompt ART initiation along with ongoing aggressive cancer screening and prevention efforts throughout the course of HIV care. PMID:23735330

  6. Incidence and timing of cancer in HIV-infected individuals following initiation of combination antiretroviral therapy.

    PubMed

    Yanik, Elizabeth L; Napravnik, Sonia; Cole, Stephen R; Achenbach, Chad J; Gopal, Satish; Olshan, Andrew; Dittmer, Dirk P; Kitahata, Mari M; Mugavero, Michael J; Saag, Michael; Moore, Richard D; Mayer, Kenneth; Mathews, W Christopher; Hunt, Peter W; Rodriguez, Benigno; Eron, Joseph J

    2013-09-01

    Cancer is an important cause of morbidity and mortality in individuals infected with human immunodeficiency virus (HIV), but patterns of cancer incidence after combination antiretroviral therapy (ART) initiation remain poorly characterized. We evaluated the incidence and timing of cancer diagnoses among patients initiating ART between 1996 and 2011 in a collaboration of 8 US clinical HIV cohorts. Poisson regression was used to estimate incidence rates. Cox regression was used to identify demographic and clinical characteristics associated with cancer incidence after ART initiation. At initiation of first combination ART among 11 485 patients, median year was 2004 (interquartile range [IQR], 2000-2007) and median CD4 count was 202 cells/mm(3) (IQR, 61-338). Incidence rates for Kaposi sarcoma (KS) and lymphomas were highest in the first 6 months after ART initiation (P < .001) and plateaued thereafter, while incidence rates for all other cancers combined increased from 416 to 615 cases per 100 000 person-years from 1 to 10 years after ART initiation (average 7% increase per year; 95% confidence interval, 2%-13%). Lower CD4 count at ART initiation was associated with greater risk of KS, lymphoma, and human papillomavirus-related cancer. Calendar year of ART initiation was not associated with cancer incidence. KS and lymphoma rates were highest immediately following ART initiation, particularly among patients with low CD4 cell counts, whereas other cancers increased with time on ART, likely reflecting increased cancer risk with aging. Our results underscore recommendations for earlier HIV diagnosis followed by prompt ART initiation along with ongoing aggressive cancer screening and prevention efforts throughout the course of HIV care.

  7. Tumor-Initiating Cells: Emerging Biophysical Methods of Isolation

    PubMed Central

    Cermeño, Efraín A.; García, Andrés J.

    2016-01-01

    The discovery and subsequent isolation of tumor-initiating cells (TICs), a small population of highly tumorigenic and drug-resistant cancer cells also called cancer stem cells (CSCs), have revolutionized our understanding of cancer. TICs are isolated using various methodologies, including selection of surface marker expression, ALDH activity, suspension culture, and chemotherapy/drug resistance. These methods have several drawbacks, including their variability, lack of robustness and scalability, and low specificity. Alternative methods of purification take advantage of biophysical properties of TICs including their adhesion and stiffness. This review will provide a brief overview of TIC biology as well as review the most important methods of TIC isolation with a focus on biophysical methods of TIC purification. PMID:27141429

  8. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  9. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  10. Colon cancer: cancer stem cells markers, drug resistance and treatment.

    PubMed

    Kozovska, Zuzana; Gabrisova, Veronika; Kucerova, Lucia

    2014-10-01

    Malignant tumours consist of heterogeneous populations of tumour cells. Cancer stem cells (CSC) represent a population of cells within a tumour with highly tumorigenic and chemoresistant properties. These cells may be identified by the expression of CSC markers. There are several key stem cells markers specified for colon cancer: CD133, CD44, ALDH1, ALCAM. These days, a major obstacle to effective cancer management is development of a multidrug resistance (MDR). The principal mechanism responsible for development of MDR phenotype is the over-expression of ABC transporters. Tumours and relapsing tumours after therapy are drived by subpopulations of tumour cells with aggressive phenotype resistant to chemotherapeutics. These cells are called CSC or tumour-initiating cells (TIC). Here we outline recent information about MDR of colon cancer and CSC markers. We have focused on novel therapeutic strategies which have been developed to prevent or overcome MDR. One such strategy is a combination of chemotherapy and modulators of MDR pumps or chemotherapy and monoclonal antibodies against vascular endothelial growth factor VEGF. Colon cancer is characterized by the presence of colon CSC expressing specific stem cell markers. The divergent presence of these markers can help to adjust personalized therapy. The review provides a detailed overview of resistance of colon cancer cells and discusses how the presence of CSC markers can influence therapy and prognosis of patients.

  11. Initial surgical management of thyroid cancer.

    PubMed

    Witt, Robert L

    2008-01-01

    The rapid increase in the rate of papillary thyroid cancer is likely caused by improved surveillance. A significant trend toward total thyroidectomy for low-risk differentiated thyroid cancer is present in the United States after a paradigm shift from treatment of macroscopic disease to the treatment of macroscopic and microscopic disease by increasingly sensitive tests. Compelling arguments for thyroid lobectomy and total thyroidectomy for low-risk thyroid cancer remain. The relatively small number of deaths from thyroid cancer, the small number of clinical thyroid cancers, and the huge number of incidental thyroid cancers are indicative of how little we understand the biology of this disease. Clinical medicine awaits biologic markers to refine treatment recommendations.

  12. Initiation of Breast Cancer: Activated Catechol Estrogens

    DTIC Science & Technology

    1999-06-01

    cancer. The CE are identified and quantified by HPLC with multichannel electrochemical detection after extraction from tissue. We have obtained...cancer by mutating critical genes [1]. Depurinating adducts are lost from DNA by hydrolysis of the glycosidic bond, leaving apurinic sites, which if...women with and without breast cancer. CE were to be quantified by gas chromatography/mass spectrometry (GC/MS) analysis after extraction from tissue

  13. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway.

    PubMed

    Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen

    2017-03-15

    Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.

  14. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation.

    PubMed

    Youssef, Khalil Kass; Lapouge, Gaëlle; Bouvrée, Karine; Rorive, Sandrine; Brohée, Sylvain; Appelstein, Ornella; Larsimont, Jean-Christophe; Sukumaran, Vijayakumar; Van de Sande, Bram; Pucci, Doriana; Dekoninck, Sophie; Berthe, Jean-Valery; Aerts, Stein; Salmon, Isabelle; del Marmol, Véronique; Blanpain, Cédric

    2012-12-01

    Basal cell carcinoma, the most frequent human skin cancer, arises from activating hedgehog (HH) pathway mutations; however, little is known about the temporal changes that occur in tumour-initiating cells from the first oncogenic hit to the development of invasive cancer. Using an inducible mouse model enabling the expression of a constitutively active Smoothened mutant (SmoM2) in the adult epidermis, we carried out transcriptional profiling of SmoM2-expressing cells at different times during cancer initiation. We found that tumour-initiating cells are massively reprogrammed into a fate resembling that of embryonic hair follicle progenitors (EHFPs). Wnt/ β-catenin signalling was very rapidly activated following SmoM2 expression in adult epidermis and coincided with the expression of EHFP markers. Deletion of β-catenin in adult SmoM2-expressing cells prevents EHFP reprogramming and tumour initiation. Finally, human basal cell carcinomas also express genes of the Wnt signalling and EHFP signatures.

  15. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  16. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  17. Cancer stem cells: the lessons from pre-cancerous stem cells

    PubMed Central

    Gao, Jian-Xin

    2008-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not contradictory to the CSC hypothesis but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respect to their phenotype, differentiation and tumourigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumour stromal components such as tumour vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumour-initiating cells (TIC) → pCSC → CSC → cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) → pre-cancerous lesions (pCSC) → malignant lesions (CSC → cancer). The embryonic stem (ES) cell and germ line stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC → pCSC → CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC cannot be made at this time. However, this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer. PMID:18053092

  18. Therapeutic strategies targeting cancer stem cells

    PubMed Central

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-01-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  19. Mesangial cells initiate compensatory tubular cell hypertrophy.

    PubMed

    Sinuani, I; Beberashvili, I; Averbukh, Z; Cohn, M; Gitelman, I; Weissgarten, J

    2010-01-01

    Unilateral nephrectomy results in compensatory renal growth, in which both the size and the functional capacity of the remaining kidney are increased. The functional adaptation to the removal of the contralateral kidney consists mostly of an increase in the glomerular filtration rate of the remaining kidney, and hypertrophy of cells comprising the nephron, mainly of the proximal tubular cells. Although the phenomenon of single kidney hypertrophy has been known for the past thousand years and despite intensive research over the past century, the mechanism of this process still remains unclear. The present article reviews the role of mesangial cells in compensatory renal hypertrophy. 2010 S. Karger AG, Basel.

  20. Cancer stem cell metabolism: a potential target for cancer therapy.

    PubMed

    Deshmukh, Abhijeet; Deshpande, Kedar; Arfuso, Frank; Newsholme, Philip; Dharmarajan, Arun

    2016-11-08

    Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells.This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy.

  1. The California stem cell initiative: persuasion, politics, and public science.

    PubMed

    Adelson, Joel W; Weinberg, Joanna K

    2010-03-01

    The California Institute for Regenerative Medicine (CIRM) was created by a California ballot initiative to make stem cell research a constitutional right, in response to Bush administration restrictions on stem cell research. The initiative created a taxpayer-funded, multibillion-dollar institution, intended to advance public health by developing cures and treatments for diabetes, cancer, paralysis, and other conditions. The initiative has been highly controversial among stakeholders and watchdog groups concerned with organizational transparency, accountability, and the ethics of stem cell research. We interviewed major stakeholders-both supporters and opponents-and analyzed documents and meeting notes. We found that the CIRM has overcome start-up challenges, been selectively influenced by criticism, and adhered to its core mission.

  2. The California Stem Cell Initiative: Persuasion, Politics, and Public Science

    PubMed Central

    Weinberg, Joanna K.

    2010-01-01

    The California Institute for Regenerative Medicine (CIRM) was created by a California ballot initiative to make stem cell research a constitutional right, in response to Bush administration restrictions on stem cell research. The initiative created a taxpayer-funded, multibillion-dollar institution, intended to advance public health by developing cures and treatments for diabetes, cancer, paralysis, and other conditions. The initiative has been highly controversial among stakeholders and watchdog groups concerned with organizational transparency, accountability, and the ethics of stem cell research. We interviewed major stakeholders—both supporters and opponents—and analyzed documents and meeting notes. We found that the CIRM has overcome start-up challenges, been selectively influenced by criticism, and adhered to its core mission. PMID:20075315

  3. The AURORA initiative for metastatic breast cancer.

    PubMed

    Zardavas, D; Maetens, M; Irrthum, A; Goulioti, T; Engelen, K; Fumagalli, D; Salgado, R; Aftimos, P; Saini, K S; Sotiriou, C; Campbell, P; Dinh, P; von Minckwitz, G; Gelber, R D; Dowsett, M; Di Leo, A; Cameron, D; Baselga, J; Gnant, M; Goldhirsch, A; Norton, L; Piccart, M

    2014-11-11

    Metastatic breast cancer is one of the leading causes of cancer-related mortality among women in the Western world. To date most research efforts have focused on the molecular analysis of the primary tumour to dissect the genotypes of the disease. However, accumulating evidence supports a molecular evolution of breast cancer during its life cycle, with metastatic lesions acquiring new molecular aberrations. Recognising this critical gap of knowledge, the Breast International Group is launching AURORA, a large, multinational, collaborative metastatic breast cancer molecular screening programme. Approximately 1300 patients with metastatic breast cancer who have received no more than one line of systemic treatment for advanced disease will, after giving informed consent, donate archived primary tumour tissue, as well as will donate tissue collected prospectively from the biopsy of metastatic lesions and blood. Both tumour tissue types, together with a blood sample, will then be subjected to next generation sequencing for a panel of cancer-related genes. The patients will be treated at the discretion of their treating physicians per standard local practice, and they will be followed for clinical outcome for 10 years. Alternatively, depending on the molecular profiles found, patients will be directed to innovative clinical trials assessing molecularly targeted agents. Samples of outlier patients considered as 'exceptional responders' or as 'rapid progressors' based on the clinical follow-up will be subjected to deeper molecular characterisation in order to identify new prognostic and predictive biomarkers. AURORA, through its innovative design, will shed light onto some of the unknown areas of metastatic breast cancer, helping to improve the clinical outcome of breast cancer patients.

  4. [Autophagy contributes to the initiation of pancreatic cancer].

    PubMed

    Iovanna, Juan L

    2017-03-01

    The pancreatic adenocarcinoma initiation results from the interaction of genetic events combined with multiple other factors. Among the genetic alterations that contribute to the pathogenesis of this disease, the mutation of the KRAS oncogene is required but not sufficient to trigger this cancer. Pancreatitis, an inflammatory disease, facilitates and accelerates the transformation of pancreatic cells when the KRAS oncogene is mutated. Of note, the repertoire of molecular mediators of pancreatitis which are responsible of the promotion of KRAS-mediated transformation is not completely defined. Importantly, autophagy has been proposed as one of the cellular mechanisms contributing to pancreatic carcinogenesis, especially in the initial phases, in which the oncogene KRAS appears to play its leading role. In addition, autophagy is strongly induced during pancreatitis. Although some aspects of autophagy in pancreatic cancer development are not completely established, we can affirm that overexpression of VMP1, an inducer of autophagy which is specifically activated in pancreas during pancreatitis, improves the development of pancreatic precancerous lesions PanINs when the oncogene KRAS is mutated. In addition, inhibition of the autophagic flux with chloroquine inhibits the KRAS pro-tumor effect in the pancreas. In conclusion, activation of expression of VMP1 improves the pro-tumor role of KRAS in pancreas.

  5. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    PubMed

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  6. The Function of Neuroendocrine Cells in Prostate Cancer

    DTIC Science & Technology

    2012-04-01

    Award Number: W81XWH-11-1-0227 TITLE: The Function of Neuroendocrine Cells in Prostate Cancer ...REPORT TYPE Annual Report 3. DATES COVERED 1 April 2011 – 31 March 2012 4. TITLE AND SUBTITLE The Function of Neuroendocrine Cells in Prostate Cancer ...initiation and progression of human prostate cancer Scope: 1) Use a pten null mouse prostate cancer model to determine if ablation of NE cells by

  7. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation.

    PubMed

    Li, Hao; Liu, Yaodong; Jiao, Yumin; Guo, Anchen; Xu, Xiaoxue; Qu, Xianjun; Wang, Shuo; Zhao, Jizong; Li, Ye; Cao, Yong

    2016-01-01

    Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been widely studied as a promising candidate for cancer prevention and treatment. Whether resveratrol could enhance the sensitivity of glioblastoma-initiating cells to temozolomide therapy has not yet been reported. Here, using patient-derived glioblastoma-initiating cell lines, we found that resveratrol sensitized glioblastoma-initiating cells to temozolomide both in vitro and in vivo. Furthermore, we showed that resveratrol enhanced glioblastoma-initiating cells to temozolomide-induced apoptosis through DNA double-stranded breaks/pATM/pATR/p53 pathway activation, and promoted glioblastoma-initiating cell differentiation involving p-STAT3 inactivation. Our results propose that temozolomide and resveratrol combination strategy may be effective in the management of glioblastoma patients, particularly for those patients who have been present with a high abundance of glioblastoma-initiating cells in their tumors and show slight responsiveness to temozolomide.

  8. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    PubMed

    Mahller, Yonatan Y; Williams, Jon P; Baird, William H; Mitton, Bryan; Grossheim, Jonathan; Saeki, Yoshinaga; Cancelas, Jose A; Ratner, Nancy; Cripe, Timothy P

    2009-01-01

    Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  9. Two initiation sites of early detection of colon cancer revealed by localization of pERK1/2 in the nuclei or in aggregates at the perinuclear region of the tumor cells.

    PubMed

    Amsterdam, Abraham; Shezen, Elias; Raanan, Calanit; Schreiber, Letizia; Slilat, Yasmin; Fabrikant, Yakov; Melzer, Ehud; Seger, Rony

    2013-07-01

    We have used human specimens and antibodies to pERK1/2 to detect early development of colon cancer using indirect immunocytochemistry. Two distinct sites were stained; one at the tip of the colon crypts and the other in the stromal tissue associated with the colonic tissue. These foci represent early stages of colon cancer initiation sites as established by enhanced Kirsten Rat Sarcoma Virus (KRAS) and the lack of p53 staining. The enhanced KRAS coincides with the initiation of tumor growth revealed by pERK1/2, both in the tip of the colon crypts, as well as in the stromal initiation site of the colon tumors. Foci of pERK1/2 staining were also detected in 50% of stromal tissue and tips of colon crypts, which were classified as normal tissues, adjacent to the malignant tissue according to general morphology. However, in colon specimens, where no malignancy was observed, no accumulation of pERK1/2 was observed. The staining of pERK1/2 at the stromal foci of the apparently non-malignant tissue appeared as aggregates in the perinuclear region, while in the colon epithelium it appeared in the cell nuclei. In low-grade colon cancer that was still free of induced mutated p53, staining of pERK1/2 was prominent in the cell nuclei, both in the stroma tissue and the tip of the colon crypts. In the intermediate stage, that exhibited significant p53 staining, only a fraction of p53-free tumor cells was labeled with pERK1/2 antibody, while in high-grade tumors, all cells of tumors were labeled with antibodies to p53, but not with antibodies to pERK1/2. We suggest that the down regulation in pERK1/2 labeling is due to the mitogenic capacity of the tumor cells, which are shifted from being driven by nuclear pERK1/2 to mutated p53 expression. We also found that the cytoplasm of low grade tumors was positive for epiregulin, while this labeling decreased in high-grade tumors. We found that the tumors arising from the stroma demonstrated poor structural differentiation, while the

  10. Cancer stem cells: a stride towards cancer cure?

    PubMed

    Sengupta, Amitava; Cancelas, Jose A

    2010-10-01

    Despite major refinements in cancer therapy drugs, our progress at increasing the cure rates of most cancers has been hampered by high relapse rates. A possible biological explanation of the high frequency of relapse and resistance to currently available drugs has been provided by the cancer stem cell (CSC) proposition. Basically, the CSC theory hypothesizes the presence of a hierarchically organized, relatively rare population of cells that is responsible for tumor initiation, self-renewal and maintenance, mutation accumulation and therapy resistance. Since first postulated by John Dick, multiple reports have provided support for this hypothesis by isolating (more or less) rare cell populations, where the ability to initiate tumors in vivo has been demonstrated. Most progress and stronger data supporting this theory are found predominantly in myelogenous leukemias, whose study has benefited from over half-a-century progress in our understanding of the normal hierarchical organization of hematopoiesis. This review, however, also analyzes the advancement in the quantitative and functional analysis of solid tumor stem cells and in the analysis of the tumor microenvironment as specialized, nurturing niches for CSCs. Overall, this review intends to briefly summarize most of the evidences that support the CSC theory and the apparent contradictions, if not skepticism from the scientific community, about its validity for all forms of cancer, or alternatively on just a few cancers initiated by a limited number of somatic or germinal mutations. (c) 2010 Wiley-Liss, Inc.

  11. Interleukin-6 Prevents the Initiation but Enhances the Progression of Lung Cancer.

    PubMed

    Qu, Zhaoxia; Sun, Fan; Zhou, Jingjiao; Li, Liwen; Shapiro, Steven D; Xiao, Gutian

    2015-08-15

    Recent studies suggest that high expression of the proinflammatory cytokine IL6 is associated with poor survival of lung cancer patients. Accordingly, IL6 has been a target of great interest for lung cancer therapy. However, the role of IL6 in lung cancer has not been determined yet. Here, we demonstrate that IL6 plays opposite roles in the initiation and growth of lung cancer in a mouse model of lung cancer induced by the K-Ras oncogene. We find that compared with wild-type mice, IL6-deficient mice developed much more lung tumors after an activating mutant of K-Ras was induced in the lungs. However, lung tumors developed in IL6-deficient mice were significantly smaller. Notably, both the lung tumor-suppressing and -promoting functions of IL6 involve its ability in activating the transcription factor STAT3. IL6/STAT3 signaling suppressed lung cancer initiation through maintaining lung homeostasis, regulating lung macrophages, and activating cytotoxic CD8 T cells under K-Ras oncogenic stress, whereas it promoted lung cancer cell growth through inducing the cell proliferation regulator cyclin D1. These studies reveal a previously unexplored role of IL6/STAT3 signaling in maintaining lung homeostasis and suppressing lung cancer induction. These studies also significantly improve our understanding of lung cancer and provide a molecular basis for designing IL6/STAT3-targeted therapies for this deadliest human cancer.

  12. Interleukin-6 prevents the initiation but enhances the progression of lung cancer

    PubMed Central

    Qu, Zhaoxia; Sun, Fan; Zhou, Jingjiao; Li, Liwen; Shapiro, Steven D.; Xiao, Gutian

    2015-01-01

    Recent studies suggest that high expression of the pro-inflammatory cytokine interleukin-6 (IL-6) is associated with poor survival of lung cancer patients. Accordingly, IL-6 has been a target of great interest for lung cancer therapy. However, the role of IL-6 in lung cancer has not been determined yet. Here, we demonstrate that IL-6 plays opposite roles in the initiation and growth of lung cancer in a mouse model of lung cancer induced by the K-Ras oncogene. We find that compared to wild type mice, IL-6 deficient mice developed much more lung tumors after an activating mutant of K-Ras was induced in the lungs. However, lung tumors developed in IL-6 deficient mice were significantly smaller. Notably, both the lung tumor-suppressing and -promoting functions of IL-6 involve its ability in activating the transcription factor STAT3. IL-6/STAT3 signaling suppressed lung cancer initiation through maintaining lung homeostasis, regulating lung macrophages and activating cytotoxic CD8 T cells under K-Ras oncogenic stress, whereas it promoted lung cancer cell growth through inducing the cell proliferation regulator Cyclin D1. These studies reveal a previously unexplored role of IL-6/STAT3 signaling in maintaining lung homeostasis and suppressing lung cancer induction. These studies also significantly improve our understanding of lung cancer and provide a molecular basis for designing IL-6/STAT3-targeted therapies for this deadliest human cancer. PMID:26122841

  13. Optimizing initial chemotherapy for metastatic pancreatic cancer.

    PubMed

    Mantripragada, Kalyan C; Safran, Howard

    2016-05-01

    The two combination chemotherapy regimens FOLFIRINOX and gemcitabine plus nab-paclitaxel represent major breakthroughs in the management of metastatic pancreatic cancer. Both regimens showed unprecedented survival advantage in the setting of front-line therapy. However, their application for treatment of patients in the community is challenging because of significant toxicities, thus limiting potential benefits to a narrow population of patients. Modifications to the dose intensity or schedule of those regimens improve their tolerability, while likely retaining survival advantage over single-agent chemotherapy. Newer strategies to optimize these two active regimens in advanced pancreatic cancer are being explored that can help personalize treatment to individual patients.

  14. Stochastic elimination of cancer cells.

    PubMed Central

    Michor, Franziska; Nowak, Martin A; Frank, Steven A; Iwasa, Yoh

    2003-01-01

    Tissues of multicellular organisms consist of stem cells and differentiated cells. Stem cells divide to produce new stem cells or differentiated cells. Differentiated cells divide to produce new differentiated cells. We show that such a tissue design can reduce the rate of fixation of mutations that increase the net proliferation rate of cells. It has, however, no consequence for the rate of fixation of neutral mutations. We calculate the optimum relative abundance of stem cells that minimizes the rate of generating cancer cells. There is a critical fraction of stem cell divisions that is required for a stochastic elimination ('wash out') of cancer cells. PMID:14561289

  15. Hallmarks of cancer stem cell metabolism.

    PubMed

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-06-14

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome.

  16. Hallmarks of cancer stem cell metabolism

    PubMed Central

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-01-01

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome. PMID:27219018

  17. Sister Mary Joseph's nodule as initial pancreatic cancer manifestation.

    PubMed

    Vallejo Bernad, Cristina; Casamayor Franco, María Carmen; Hakim Alonso, Sofía

    2017-02-01

    We report the case of an 85-year-old female patient who presented with umbilical pain associated with an indurated growth, the whole being apparently consistent with incarcerated umbilical hernia, which prompted an urgent surgical procedure for its removal. The pathology study revealed dermal infiltration by a malignancy. Gland tumor cells expressed an immunohistochemical profile initially consistent with a pancreatic origin. In view of these findings a CT scan was performed, which revealed a pancreatic tail tumor as well as multiple hepatic metastasis. Skin metastasis is a rare sign usually reflecting a carcinoma of unknown origin. Umbilical skin metastasis, called Sister Mary Joseph´s nodule, reflect an intra-abdominal tumor, being pancreatic cancer strange.

  18. Cancer stem cells and personalized cancer nanomedicine.

    PubMed

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  19. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  20. Targeting cancer stem cell lines as a new treatment of human cancer.

    PubMed

    Giuffrida, D; Rogers, I M

    2010-11-01

    Many studies have demonstrated that most cancers are clonal and are maintained by a cancer stem cell. Cancer stem cells have been identified in blood, breast, brain, lungs, gastrointestinal, prostate and ovarian cancer. Under normal homeostasis tissue specific stem cell division would be under strict control. When proliferation becomes independent of normal cellular controls, cancer develops. Studies indicate that cancer stem cells maintain their ability to differentiate, which explains the variety of cell types observed in tumors. Most therapies are directed at the fast growing tumor mass but not the slow dividing cancer stem cells and therefore the cancer is not eradicated. Understanding the process of transformation from a highly regulated stem cell to a cancer stem cell requires an understanding of genetic and epigenetic processes as well as having an understanding of the stem cell niche and the interaction of the stem cells with supportive cells in the niche. Current research is helping us to understand stem cells and stem cell regulation and in turn this will help to develop novel therapies to eliminate cancer and the initiating cancer stem cell. The relevant patents on the stem cell regulation and cancer therapy by stem cells are discussed.

  1. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    PubMed

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  2. Tight Junctions: A Barrier to the Initiation and Progression of Breast Cancer?

    PubMed Central

    Brennan, Kieran; Offiah, Gozie; McSherry, Elaine A.; Hopkins, Ann M.

    2010-01-01

    Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression. PMID:19920867

  3. Recombinant immunotoxins in targeted cancer cell therapy.

    PubMed

    Reiter, Y

    2001-01-01

    Targeted cancer therapy in general and immunotherapy in particular combines rational drug design with the progress in understanding cancer biology. This approach takes advantage of our recent knowledge of the mechanisms by which normal cells are transformed into cancer cells, thus using the special properties of cancer cells to device novel therapeutic strategies. Recombinant immunotoxins are excellent examples of such processes, combining the knowledge of antigen expression by cancer cells with the enormous developments in recombinant DNA technology and antibody engineering. Recombinant immunotoxins are composed of a very potent protein toxin fused to a targeting moiety such as a recombinant antibody fragment or growth factor. These molecules bind to surface antigens specific for cancer cells and kill the target cells by catalytic inhibition of protein synthesis. Recombinant immunotoxins are developed for solid tumors and hematological malignancies and have been characterized intensively for their biological activity in vitro on cultured tumor cell lines as well as in vivo in animal models of human tumor xenografts. The excellent in vitro and in vivo activities of recombinant immunotoxins have lead to their preclinical development and to the initiation of clinical trail protocols. Recent trail results have demonstrated potent clinical efficacy in patients with malignant diseases that are refractory to traditional modalities of cancer treatment: surgery, radiation therapy, and chemotherapy. The results demonstrate that such strategies can be developed into a separate modality of cancer treatment with the basic rationale of specifically targeting cancer cells on the basis of their unique surface markers. Efforts are now being made to improve the current molecules and to develop new agents with better clinical efficacy. This can be achieved by development of novel targeting moieties with improved specificity that will reduce toxicity to normal tissues. In this review

  4. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  5. Ovarian tumor-initiating cells display a flexible metabolism

    PubMed Central

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. PMID:25172556

  6. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2013-09-01

    system, 3) whether Beacon® Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment plans...enroll a combined total of up to 40 subjects from both centers. Task 4. Hypofractionated Radiotherapy in Patients with Favorable Risk Prostate...Cancer Using the Calypso® 4D Localization System. . The original hypofractionated trial listed under this task has been removed and replaced

  7. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2010-09-01

    Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment plans which are more beam on...centers. Task 4. A Hypofractionated IMRT Therapy in Patients with Favorable Risk Prostate Cancer Using the Calypso® 4D Localization System: A...Feasibility Study. We are awaiting the preliminary results from the RTOG 0415, which is a similar hypofractionated study (not using the Calypso

  8. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2011-09-01

    whether Beacon® Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment plans which...both centers. Task 4. A Hypofractionated IMRT Therapy in Patients with Favorable Risk Prostate Cancer Using the Calypso® 4D Localization System...A Feasibility Study. We are awaiting the preliminary results from the RTOG 0415, which is a similar hypofractionated study (not using the

  9. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2016-09-01

    continence during radiation therapy for prostate cancer. * *Waggoner A, Brown M, Tinnel B, Halligan J, Brand T, Brooks J, Ninneman S, Hughs G...Gossweiler M, Waggoner A, Huang R, Ninneman S, Hughs G, Wendt S, Brown M, Tinnel B, Macdonald D. (8-9 February 2013). Anorectal angle is associated...Therapy Symposium, Orlando, FL. * Gossweiler M, Waggoner A, Huang R, Ninneman S, Hughs G, Wendt S, Brown M, Tinnel B, Macdonald D. (2013, April

  10. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  11. The European initiative for quality management in lung cancer care.

    PubMed

    Blum, Torsten G; Rich, Anna; Baldwin, David; Beckett, Paul; De Ruysscher, Dirk; Faivre-Finn, Corinne; Gaga, Mina; Gamarra, Fernando; Grigoriu, Bogdan; Hansen, Niels C G; Hubbard, Richard; Huber, Rudolf Maria; Jakobsen, Erik; Jovanovic, Dragana; Konsoulova, Assia; Kollmeier, Jens; Massard, Gilbert; McPhelim, John; Meert, Anne-Pascale; Milroy, Robert; Paesmans, Marianne; Peake, Mick; Putora, Paul-Martin; Scherpereel, Arnaud; Schönfeld, Nicolas; Sitter, Helmut; Skaug, Knut; Spiro, Stephen; Strand, Trond-Eirik; Taright, Samya; Thomas, Michael; van Schil, Paul E; Vansteenkiste, Johan F; Wiewrodt, Rainer; Sculier, Jean-Paul

    2014-05-01

    Lung cancer is the commonest cause of cancer-related death worldwide and poses a significant respiratory disease burden. Little is known about the provision of lung cancer care across Europe. The overall aim of the Task Force was to investigate current practice in lung cancer care across Europe. The Task Force undertook four projects: 1) a narrative literature search on quality management of lung cancer; 2) a survey of national and local infrastructure for lung cancer care in Europe; 3) a benchmarking project on the quality of (inter)national lung cancer guidelines in Europe; and 4) a feasibility study of prospective data collection in a pan-European setting. There is little peer-reviewed literature on quality management in lung cancer care. The survey revealed important differences in the infrastructure of lung cancer care in Europe. The European guidelines that were assessed displayed wide variation in content and scope, as well as methodological quality but at the same time there was relevant duplication. The feasibility study demonstrated that it is, in principle, feasible to collect prospective demographic and clinical data on patients with lung cancer. Legal obligations vary among countries. The European Initiative for Quality Management in Lung Cancer Care has provided the first comprehensive snapshot of lung cancer care in Europe.

  12. Adaptive immune cells temper initial innate responses.

    PubMed

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2007-10-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells. Lymphocyte-deficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1-deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25-Foxp3- or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses.

  13. Adaptive immune cells temper initial innate responses

    PubMed Central

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2008-01-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells1–4. Lymphocytedeficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1–deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25−Foxp3− or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses. PMID:17891146

  14. In Vivo Correlation of Glucose Metabolism, Cell Density and Microcirculatory Parameters in Patients with Head and Neck Cancer: Initial Results Using Simultaneous PET/MRI

    PubMed Central

    Kubiessa, Klaus; Boehm, Andreas; Barthel, Henryk; Kluge, Regine; Kahn, Thomas; Sabri, Osama; Stumpp, Patrick

    2015-01-01

    Objective To demonstrate the feasibility of simultaneous acquisition of 18F-FDG-PET, diffusion-weighted imaging (DWI) and T1-weighted dynamic contrast-enhanced MRI (T1w-DCE) in an integrated simultaneous PET/MRI in patients with head and neck squamous cell cancer (HNSCC) and to investigate possible correlations between these parameters. Methods 17 patients that had given informed consent (15 male, 2 female) with biopsy-proven HNSCC underwent simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE. SUVmax, SUVmean, ADCmean, ADCmin and Ktrans, kep and ve were measured for each tumour and correlated using Spearman’s ρ. Results Significant correlations were observed between SUVmean and Ktrans (ρ = 0.43; p ≤ 0.05); SUVmean and kep (ρ = 0.44; p ≤ 0.05); Ktrans and kep (ρ = 0.53; p ≤ 0.05); and between kep and ve (ρ = -0.74; p ≤ 0.01). There was a trend towards statistical significance when correlating SUVmax and ADCmin (ρ = -0.35; p = 0.08); SUVmax and Ktrans (ρ = 0.37; p = 0.07); SUVmax and kep (ρ = 0.39; p = 0.06); and ADCmean and ve (ρ = 0.4; p = 0.06). Conclusion Simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE in patients with HNSCC is feasible and allows depiction of complex interactions between glucose metabolism, microcirculatory parameters and cellular density. PMID:26270054

  15. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery.

    PubMed

    Zhou, Bin-Bing S; Zhang, Haiying; Damelin, Marc; Geles, Kenneth G; Grindley, Justin C; Dirks, Peter B

    2009-10-01

    The hypothesis that cancer is driven by tumour-initiating cells (popularly known as cancer stem cells) has recently attracted a great deal of attention, owing to the promise of a novel cellular target for the treatment of haematopoietic and solid malignancies. Furthermore, it seems that tumour-initiating cells might be resistant to many conventional cancer therapies, which might explain the limitations of these agents in curing human malignancies. Although much work is still needed to identify and characterize tumour-initiating cells, efforts are now being directed towards identifying therapeutic strategies that could target these cells. This Review considers recent advances in the cancer stem cell field, focusing on the challenges and opportunities for anticancer drug discovery.

  16. Differential roles of STAT3 in the initiation and growth of lung cancer.

    PubMed

    Zhou, J; Qu, Z; Yan, S; Sun, F; Whitsett, J A; Shapiro, S D; Xiao, G

    2015-07-01

    Signal transducer and activator of transcription 3 (STAT3) is linked to multiple cancers, including pulmonary adenocarcinoma. However, the role of STAT3 in lung cancer pathogenesis has not been determined. Using lung epithelial-specific inducible knockout strategies, we demonstrate that STAT3 has contrasting roles in the initiation and growth of both chemically and genetically induced lung cancers. Selective deletion of lung epithelial STAT3 in mice before cancer induction by the smoke carcinogen, urethane, resulted in increased lung tissue damage and inflammation, K-Ras oncogenic mutations and tumorigenesis. Deletion of lung epithelial STAT3 after establishment of lung cancer inhibited cancer cell proliferation. Simultaneous deletion of STAT3 and expression of oncogenic K-Ras in mouse lung elevated pulmonary injury, inflammation and tumorigenesis, but reduced tumor growth. These studies indicate that STAT3 prevents lung cancer initiation by maintaining pulmonary homeostasis under oncogenic stress, whereas it facilitates lung cancer progression by promoting cancer cell growth. These studies also provide a mechanistic basis for targeting STAT3 to lung cancer therapy.

  17. PML targeting eradicates quiescent leukaemia-initiating cells

    PubMed Central

    Ito, Keisuke; Bernardi, Rosa; Morotti, Alessandro; Matsuoka, Sahoko; Saglio, Giuseppe; Ikeda, Yasuo; Rosenblatt, Jacalyn; Avigan, David E.; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2009-01-01

    The existence of a small population of ‘cancer initiating cells (CICs)’ responsible for tumour maintenance has been firmly demonstrated in leukaemia. This concept is currently being tested in solid tumours. Leukaemia-initiating cells (LICs), particularly those which are in a quiescent state, are thought to be resistant to chemotherapy and targeted therapies resulting in disease relapse. Chronic myeloid leukaemia (CML) is a paradigmatic haematopietic stem cell (HSC) disease in which the LIC pool is not eradicated by current therapy, leading to disease relapse upon drug discontinuation. Here we define the critical role of the promyelocytic leukaemia protein (PML) tumour suppressor in HSC maintenance and present a new therapeutic approach for targeting quiescent LICs and possibly CICs by pharmacological inhibition of PML. PMID:18469801

  18. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  19. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    PubMed

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.

  20. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation

    PubMed Central

    Saha, Subbroto Kumar; Lee, Soo Bin; Won, Jihye; Choi, Hye Yeon; Kim, Kyeongseok; Yang, Gwang-Mo; Abdal Dayem, Ahmed

    2017-01-01

    Inadequate or excessive nutrient consumption leads to oxidative stress, which may disrupt oxidative homeostasis, activate a cascade of molecular pathways, and alter the metabolic status of various tissues. Several foods and consumption patterns have been associated with various cancers and approximately 30–35% of the cancer cases are correlated with overnutrition or malnutrition. However, several contradictory studies are available regarding the association between diet and cancer risk, which remains to be elucidated. Concurrently, oxidative stress is a crucial factor for cancer progression and therapy. Nutritional oxidative stress may be induced by an imbalance between antioxidant defense and pro-oxidant load due to inadequate or excess nutrient supply. Oxidative stress is a physiological state where high levels of reactive oxygen species (ROS) and free radicals are generated. Several signaling pathways associated with carcinogenesis can additionally control ROS generation and regulate ROS downstream mechanisms, which could have potential implications in anticancer research. Cancer initiation may be modulated by the nutrition-mediated elevation in ROS levels, which can stimulate cancer initiation by triggering DNA mutations, damage, and pro-oncogenic signaling. Therefore, in this review, we have provided an overview of the relationship between nutrition, oxidative stress, and cancer initiation, and evaluated the impact of nutrient-mediated regulation of antioxidant capability against cancer therapy. PMID:28714931

  1. DNA repair: the culprit for tumor-initiating cell survival?

    PubMed

    Mathews, Lesley A; Cabarcas, Stephanie M; Farrar, William L

    2011-06-01

    The existence of "tumor-initiating cells" (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population. © Springer Science+Business Media, LLC 2011

  2. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-09-01

    2006) Capacity of the Golgi Apparatus for Cargo Transport Prior to Complete Assembly. Mol.Biol.Cell, 17, 4105-4117. Parmender P. Mehta, Ph.D... Golgi -resident protein [31], Giantin, a Golgi -associated structural protein [32] and Caveolin 2 (Cav-2) [30], which are the makers for the secretory...endocytic itinerary of this mutant? We wished to investigate whether or not it traffics to the cell surface via endoplasmic reticulum and Golgi and

  3. Cancer stem cells: controversies in multiple myeloma.

    PubMed

    Brennan, Sarah K; Matsui, William

    2009-11-01

    Increasing data suggest that the initiation, relapse, and progression of human cancers are driven by specific cell populations within an individual tumor. However, inconsistencies have emerged in precisely defining phenotypic markers that can reliably identify these "cancer stem cells" in nearly every human malignancy studied to date. Multiple myeloma, one of the first tumors postulated to be driven by a rare population of cancer stem cells, is no exception. Similar to other diseases, controversy surrounds the exact phenotype and biology of multiple myeloma cells with the capacity for clonogenic growth. Here, we review the studies that have led to these controversies and discuss potential reasons for these disparate findings. Moreover, we speculate how these inconsistencies may be resolved through studies by integrating advancements in both myeloma and stem cell biology.

  4. Incidence of brain metastasis at initial presentation of lung cancer

    PubMed Central

    Villano, J. Lee; Durbin, Eric B.; Normandeau, Chris; Thakkar, Jigisha P.; Moirangthem, Valentina; Davis, Faith G.

    2015-01-01

    Background No reliable estimates are available on the incidence of brain metastasis (BM) in cancer patients. This information is valuable for planning patient care and developing measures that may prevent or decrease the likelihood of metastatic brain disease. Methods We report the first population-based analysis on BM incidence at cancer diagnosis using the Kentucky Cancer Registry (KCR) and Alberta Cancer Registry (ACR). All cancer cases with BM were identified from KCR and ACR, with subsequent focus on metastases from lung primaries; the annual number of BMs at initial presentation was derived. Comparisons were made between Kentucky and Alberta for the stage and site of organ involvement of lung cancer. Results Low incidence of BM was observed in the United States until mandatory reporting began in 2010. Both the KCR and ACR recorded the highest incidence of BM from lung cancer, with total BM cases at initial presentation occurring at 88% and 77%, respectively. For lung cancer, stage IV was the most common stage at presentation for both registries and ranged from 45.9% to 57.2%. When BM from lung was identified, the most common synchronous organ site of metastasis was osseous, occurring at 28.4%. Conclusion Our analysis from the Kentucky and Alberta cancer registries similarly demonstrated the aggressive nature of lung cancer and its propensity for BM at initial presentation. Besides widespread organ involvement, no synchronous organ site predicted BM in lung cancer. BM is a common and important clinical outcome, and use of registry data is becoming more available. PMID:24891450

  5. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    PubMed

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer.

  6. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression.

    PubMed

    McConkey, David J; Lee, Sangkyou; Choi, Woonyoung; Tran, Mai; Majewski, Tadeusz; Lee, Sooyong; Siefker-Radtke, Arlene; Dinney, Colin; Czerniak, Bogdan

    2010-01-01

    Urothelial cancer has served as one of the most important sources of information about the mutational events that underlie the development of human solid malignancies. Although "field effects" that affect the entire bladder mucosa appear to initiate disease, tumors develop along 2 distinct biological "tracks" that present vastly different challenges for clinical management. Recent whole genome methodologies have facilitated even more rapid progress in the identification of the molecular mechanisms involved in bladder cancer initiation and progression. Specifically, whole organ mapping combined with high resolution, high throughput SNP analyses have identified a novel class of candidate tumor suppressors ("forerunner genes") that localize near more familiar tumor suppressors but are disrupted at an earlier stage of cancer development. Furthermore, whole genome comparative genomic hybridization (CGH) and mRNA expression profiling have demonstrated that the 2 major subtypes of urothelial cancer (papillary/superficial and non-papillary/muscle-invasive) are truly distinct molecular entities, and in recent work our group has discovered that muscle-invasive tumors express molecular markers characteristic of a developmental process known as "epithelial-to-mesenchymal transition" (EMT). Emerging evidence indicates that urothelial cancers contain subpopulations of tumor-initiating cells ("cancer stem cells") but the phenotypes of these cells in different tumors are heterogeneous, raising questions about whether or not the 2 major subtypes of cancer share a common precursor. This review will provide an overview of these new insights and discuss priorities for future investigation.

  7. Cancer stem cells as a target population for drug discovery.

    PubMed

    Bouvard, Claire; Barefield, Colleen; Zhu, Shoutian

    2014-09-01

    Cancer stem cells (CSCs) have been identified in a growing list of malignancies and are believed to be responsible for cancer initiation, metastasis and relapse following certain therapies, even though they may only represent a small fraction of the cells in a given cancer. Like somatic stem cells and embryonic stem cells, CSCs are capable of self-renewal and differentiation into more mature, less tumorigenic cells that make up the bulk populations of cancer cells. Elimination of CSCs promises intriguing therapeutic potential and this concept has been adopted in preclinical drug discovery programs. Herein we will discuss the progress of these efforts, general considerations in practice, major challenges and possible solutions.

  8. Cancer stem cells: a metastasizing menace!

    PubMed

    Bandhavkar, Saurabh

    2016-04-01

    Cancer is one of the leading causes of death worldwide, and is estimated to be a reason of death of more than 18 billion people in the coming 5 years. Progress has been made in diagnosis and treatment of cancer; however, a sound understanding of the underlying cell biology still remains an unsolved mystery. Current treatments include a combination of radiation, surgery, and/or chemotherapy. However, these treatments are not a complete cure, aimed simply at shrinking the tumor and in majority of cases, there is a relapse of tumor. Several evidences suggest the presence of cancer stem cells (CSCs) or tumor-initiating stem-like cells, a small population of cells present in the tumor, capable of self-renewal and generation of differentiated progeny. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. As a result, increasing attention has been given to CSC research to resolve the therapeutic problems related to cancer. Progress in this field of research has led to the development of novel strategies to treat several malignancies and has become a hot topic of discussion. In this review, we will briefly focus on the main characteristics, therapeutic implications, and perspectives of CSCs in cancer therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  9. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  10. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  11. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  12. Carcinoma Initiation via Rb Tumor Suppressor Inactivation: A Versatile Approach to Epithelial Subtype-Dependent Cancer Initiation in Diverse Tissues

    PubMed Central

    Song, Yurong; Gilbert, Debra; O’Sullivan, T. Norene; Yang, Chunyu; Pan, Wenqi; Fathalizadeh, Alisan; Lu, Lucy; Haines, Diana C.; Martin, Philip L.; Van Dyke, Terry

    2013-01-01

    Carcinomas arise in a complex microenvironment consisting of multiple distinct epithelial lineages surrounded by a variety of stromal cell types. Understanding cancer etiologies requires evaluating the relationship among cell types during disease initiation and through progression. Genetically engineered mouse (GEM) models facilitate the prospective examination of early oncogenic events, which is not possible in humans. Since most solid tumors harbor aberrations in the RB network, we developed an inducible GEM approach for the establishment and assessment of carcinoma initiation in a diverse range of epithelial tissues and subtypes upon inactivation of RB-mediated tumor suppression (RB-TS). The system allows independent assessment of epithelial subtypes that express either cytokeratins (K) 18 or 19. By Cre-dependent expression of a protein that dominantly inactivates RB and functionally redundant proteins p107 and p130, neoplasia could be initiated in either K18 or K19 expressing cells of numerous tissues. By design, because only a single pathway aberration was engineered, carcinomas developed stochastically only after long latency. Hence, this system, which allows for directed cell type-specific carcinoma initiation, facilitates further definition of events that can progress neoplasms to aggressive cancers via engineered, carcinogen-induced and/or spontaneous evolution. PMID:24312475

  13. Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis

    PubMed Central

    Strell, Carina; Rundqvist, Helene

    2012-01-01

    Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed. PMID:22509805

  14. Mechanisms of Cancer Cell Dormancy – Another Hallmark of Cancer?

    PubMed Central

    Yeh, Albert C.; Ramaswamy, Sridhar

    2015-01-01

    Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biological level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biological insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately down-regulate the Ras/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. PMID:26354021

  15. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ovarian tumor-initiating cells display a flexible metabolism

    SciTech Connect

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  17. Stem cells in normal mammary gland and breast cancer.

    PubMed

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  18. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo.

    PubMed

    Saha, Achinto; Blando, Jorge; Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-05-03

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer.

  19. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo

    PubMed Central

    Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-01-01

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer. PMID:26910370

  20. Therapeutic Targeting of Alternative Translation Initiation in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    investigation within the next 6 months. Cell type specific cancer cell killing of the prototype oncolytic poliovirus , PVS-RIPO, depends on selective...demanded by FDA. 15. SUBJECT TERMS Translation, eIF4E, eIF4G, IRES, Cancer, Poliovirus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...genetically recombinant poliovirus . Moreover, my work has laid the groundwork for correlative testing and efficacy studies of a vast array of protein kinase

  1. Rectal prolapse as initial clinical manifestation of colon cancer.

    PubMed

    Chen, C-W; Hsiao, C-W; Wu, C-C; Jao, S-W

    2008-04-01

    Rectal prolapse as the initial clinical manifestation of colorectal cancer is uncommon. We describe the case of a 75-year-old woman who was diagnosed as having adenocarcinoma of the sigmoid colon after presenting with complete rectal prolapse. The tumor caused rectosigmoid intussusception and then it prolapsed out through the anus. She underwent rectosigmoidectomy and rectopexy. The postoperative course was uneventful. The relationship between colorectal cancer and rectal prolapse has not been clearly established. This case report describes an unusual presentation of colorectal cancer. It suggests that rectal prolapse can present as the initial symptom of colorectal cancer and may also be a presenting feature of the occult intra-abdominal pathology. The importance of adequate investigation such as colonoscopy should be emphasized in patients who develop a new onset of rectal prolapse.

  2. Microfluidic cell fragmentation for mechanical phenotyping of cancer cells

    PubMed Central

    Kamyabi, Nabiollah; Vanapalli, Siva A.

    2016-01-01

    Circulating tumor cells (CTCs) shed from the primary tumor undergo significant fragmentation in the microvasculature, and very few escape to instigate metastases. Inspired by this in vivo behavior of CTCs, we report a microfluidic method to phenotype cancer cells based on their ability to arrest and fragment at a micropillar-based bifurcation. We find that in addition to cancer cell size, mechanical properties determine fragmentability. We observe that highly metastatic prostate cancer cells are more resistant to fragmentation than weakly metastatic cells, providing the first indication that metastatic CTCs can escape rupture and potentially initiate secondary tumors. Our method may thus be useful in identifying phenotypes that succumb to or escape mechanical trauma in microcirculation. PMID:27042246

  3. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  4. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  5. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  6. Cancer stem cells in head and neck cancer

    PubMed Central

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called “cells that start the tumor,” represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  7. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    PubMed

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.

  8. Culture and Isolation of Brain Tumor Initiating Cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Singh, Sheila K

    2015-08-03

    Brain tumors are typically composed of heterogeneous cells that exhibit distinct phenotypic characteristics and proliferative potentials. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. This unit describes protocols for the culture and isolation BTICs. We applied culture conditions and assays originally used for normal neural stem cells (NSCs) in vitro to a variety of brain tumors. Using fluorescence-activated cell sorting for the neural precursor cell surface marker CD133/CD15, BTICs can be isolated and studied prospectively. Isolation of BTICs from GBM bulk tumor will enable examination of dissimilar morphologies, self-renewal capacities, tumorigenicity, and therapeutic sensitivities. As cancer is also considered a disease of unregulated self-renewal and differentiation, an understanding of BTICs is fundamental to understanding tumor growth. Ultimately, it will lead to novel drug discovery approaches that strategically target the functionally relevant BTIC population. Copyright © 2015 John Wiley & Sons, Inc.

  9. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    PubMed Central

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  10. Contemporary Renal Cell Cancer Epidemiology

    PubMed Central

    Chow, Wong-Ho; Devesa, Susan S.

    2010-01-01

    We analyzed renal cell cancer incidence patterns in the United States and reviewed recent epidemiologic evidence with regard to environmental and host genetic determinants of renal cell cancer risk. Renal cell cancer incidence rates continued to rise among all racial/ethnic groups in the United States, across all age groups, and for all tumor sizes, with the most rapid increases for localized stage disease and small tumors. Recent cohort studies confirmed the association of smoking, excess body weight, and hypertension with an elevated risk of renal cell cancer, and suggested that these factors can be modified to reduce the risk. There is increasing evidence for an inverse association between renal cell cancer risk and physical activity and moderate intake of alcohol. Occupational exposure to TCE has been positively associated with renal cell cancer risk in several recent studies, but its link with somatic mutations of the VHL gene has not been confirmed. Studies of genetic polymorphisms in relation to renal cell cancer risk have produced mixed results, but genome-wide association studies with larger sample size and a more comprehensive approach are underway. Few epidemiologic studies have evaluated risk factors by subtypes of renal cell cancer defined by somatic mutations and other tumor markers. PMID:18836333

  11. Regulation of breast cancer stem cell features.

    PubMed

    Czerwinska, Patrycja; Kaminska, Bozena

    2015-01-01

    Cancer stem cells (CSCs) are rare, tumour-initiating cells that exhibit stem cell properties: capacity of self-renewal, pluripotency, highly tumorigenic potential, and resistance to therapy. Cancer stem cells have been characterised and isolated from many cancers, including breast cancer. Developmental pathways, such as the Wnt/β-catenin, Notch/γ-secretase/Jagged, Shh (sonic hedgehog), and BMP signalling pathways, which direct proliferation and differentiation of normal stem cells, have emerged as major signalling pathways that contribute to the self-renewal of stem and/or progenitor cells in a variety of organs and cancers. Deregulation of these signalling pathways is frequently linked to an epithelial-mesenchymal transition (EMT), and breast CSCs often possess properties of cells that have undergone the EMT process. Signalling networks mediated by microRNAs and EMT-inducing transcription factors tie the EMT process to regulatory networks that maintain "stemness". Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, which allows an assessment on how embryonic and normal tissue stem cells are deregulated during cancerogenesis to give rise to CSCs. Epigenetic-based mechanisms are reversible, and the possibility of "resetting" the abnormal cancer epigenome by applying pharmacological compounds targeting epigenetic enzymes is a promising new therapeutic strategy. Chemoresistance of CSCs is frequently driven by various mechanisms, including aberrant expression/activity of ABC transporters, aldehyde dehydrogenase and anti-oncogenic proteins (i.e. BCL2, B-cell lymphoma-2), enhanced DNA damage response, activation of pro-survival signalling pathways, and epigenetic deregulations. Despite controversy surrounding the CSC hypothesis, there is substantial evidence for their role in cancer, and a number of drugs intended to specifically target CSCs have entered clinical trials.

  12. PERSPECTIVES ON CANCER STEM CELLS IN OSTEOSARCOMA

    PubMed Central

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2012-01-01

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  13. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells

    PubMed Central

    Dayem, Ahmed Abdal; Choi, Hye-Yeon; Kim, Jung-Hyun; Cho, Ssang-Goo

    2010-01-01

    The term ‘‘oxidative stress” refers to a cell’s state characterized by excessive production of reactive oxygen species (ROS) and oxidative stress is one of the most important regulatory mechanisms for stem, cancer, and cancer stem cells. The concept of cancer stem cells arose from observations of similarities between the self-renewal mechanism of stem cells and that of cancer stem cells, but compared to normal stem cells, they are believed to have no control over the cell number. ROS have been implicated in diverse processes in various cancers, and generally the increase of ROS in cancer cells is known to play an important role in the initiation and progression of cancer. Additionally, ROS have been considered as the most significant mutagens in stem cells; when elevated, blocking self-renewal and at the same time, serving as a signal stimulating stem cell differentiation. Several signaling pathways enhanced by oxidative stress are suggested to have important roles in tumorigenesis of cancer or cancer stem cells and the self-renewal ability of stem or cancer stem cells. It is now well established that mitochondria play a prominent role in apoptosis and increasing evidence supports that apoptosis and autophagy are physiological phenomena closely linked with oxidative stress. This review elucidates the effect and the mechanism of the oxidative stress on the regulation of stem, cancer, and cancer stem cells and focuses on the cell signaling cascades stimulated by oxidative stress and their mechanism in cancer stem cell formation, as very little is known about the redox status in cancer stem cells. Moreover, we explain the link between ROS and both of apoptosis and autophagy and the impact on cancer development and treatment. Better understanding of this intricate link may shed light on mechanisms that lead to better modes of cancer treatment. PMID:24281098

  14. Cancer stem cells in surgery

    PubMed Central

    D’ANDREA, V.; GUARINO, S.; DI MATTEO, F.M.; SACCÀ, M. MAUGERI; DE MARIA, R.

    2014-01-01

    The Cancer Stem Cells (CSC) hypothesis is based on three fundamental ideas: 1) the similarities in the mechanisms that regulate self-renewal of normal stem cells and cancer cells; 2) the possibility that tumour cells might arise from normal stem cells; 3) the notion that tumours might contain ‘cancer stem cells’ - rare cells with indefinite proliferative potential that drive the formation and growth of tumours. The roles for cancer stem cells have been demonstrated for some cancers, such as cancers of the hematopoietic system, breast, brain, prostate, pancreas and liver. The attractive idea about cancer stem cell hypothesis is that it could partially explain the concept of minimal residual disease. After surgical macroscopically zero residual (R0) resections, even the persistence of one single cell nestling in one of the so called “CSCs niches” could give rise to distant relapse. Furthermore the metastatic cells can remain in a “dormant status” and give rise to disease after long period of apparent disease free. These cells in many cases have acquired resistance traits to chemo and radiotherapy making adjuvant treatment vain. Clarifying the role of the cancer stem cells and their implications in the oncogenesis will play an important role in the management of cancer patient by identifying new prospective for drugs and specific markers to prevent and monitoring relapse and metastasis. The identification of the niche where the CSCs reside in a dormant status might represent a valid instrument to follow-up patients also after having obtained a R0 surgical resection. What we believe is that if new diagnostic instruments were developed specifically to identify the localization and status of activity of the CSCs during tumor dormancy, this would lead to impressive improvement in the early detection and management of relapse and metastasis. PMID:25644725

  15. [Targeted molecular therapy based on advanced cancer stem cell model].

    PubMed

    Hirao, Atsushi

    2015-08-01

    Improvement of cell purification and transplantation techniques have contributed to the identification of cell populations known as tumor-initiating cells (TICs). Although it was hypothesized that tumors are organized as hierarchies of tumor cells that are sustained by rare TICs, like normal tissue stem cells, there are several controversies towards such cancer stem cell model, e.g. reversible change of stem cell like population based on epigenetic changes, clonal genetic evolution and problems in xenotransplantation system. Despite complexity in cancer stem cell models, studies in cancer stem cell field have revealed that there are close relationship between cancer malignancy and stem cell properties, called "stemness". Understanding molecular mechanisms for controlling stemness would contribute to establishment of novel diagnostics or therapeutics for cancer.

  16. An integrated multidisciplinary model describing initiation of cancer and the Warburg hypothesis

    PubMed Central

    2013-01-01

    Background In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation. Model Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise. Specifically, we discuss how an analog of non-equilibrium Rayleigh-Benard convection can result in glycolytic oscillations and cause a cell to become locked into a higher-entropy state characteristic of cancer. Conclusions A quantitative model is presented that attributes the well-known Warburg effect to a biophysical mechanism driven by a convective disturbance in the cell. Contrary to current understanding, this effect may precipitate cancer development, rather than follow from it, providing new insights into carcinogenesis, cancer treatment, and prevention. PMID:23758735

  17. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a tumor but spare the stem-like cells, allowing the tumor to re-grow once chemotherapy is stopped. If, however, the cancer-initiating cells could be successfully targeted, cancer recurrence could be prevented.

  18. Nanotechniques Inactivate Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  19. Isolation of melanoma tumor-initiating cells from surgical tissues.

    PubMed

    Boiko, Alexander D

    2013-01-01

    A new model of cancer progression has been put forward that predicts existence of tumor stem cells (TSCs) in the heterogeneous bulk tumor mass that self-renew, are resistant to chemo- and radiotherapies, and sustain tumor growth during the course of its progression or relapse (Ailles and Weissman, Curr Opin Biotechnol 18:460-466, 2007; Chan et al., Proc Natl Acad Sci U S A 106:14016-14021, 2009; D'Angelo and Wicha, Prog Mol Biol Transl Sci 95:113-158, 2010; O'Brien, Semin Radiat Oncol 19:71-77, 2009; Park et al., Mol Ther 17:219-230, 2009). Using most advanced methods of cell purification and transplantation, our laboratory and another independent study identified melanoma stem cells as CD271(NFGR/p75)+ cells from surgical human specimens (Boiko et al., Nature 466:133-137, 2010; Civenni et al., Cancer Res 71:3098-3109, 2011). Here we describe in great detail an approach for isolating tumor-initiating cells from freshly resected melanomas (Boiko et al., Nature 466:133-137, 2010).

  20. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    PubMed

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT.

  1. NK Cells and Cancer Immunoediting.

    PubMed

    Guillerey, Camille; Smyth, Mark J

    2016-01-01

    Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.

  2. Antitumor Immunity and Cancer Stem Cells

    PubMed Central

    Schatton, Tobias; Frank, Markus H.

    2010-01-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244

  3. Antitumor immunity and cancer stem cells.

    PubMed

    Schatton, Tobias; Frank, Markus H

    2009-09-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5(+) MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy.

  4. 76 FR 66932 - The National Cancer Institute (NCI) Announces the Initiation of a Public Private Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Initiation of a Public Private Industry Partnership on Translation of Nanotechnology in Cancer (TONIC) To Promote Translational Research and Development Opportunities of Nanotechnology-Based Cancer Solutions AGENCY: National Cancer Institute (NCI), Office of Cancer Nanotechnology Research (OCNR), National...

  5. Minnesota Colorectal Cancer Initiative: successful development and implementation of a community-based colorectal cancer registry.

    PubMed

    Rothenberger, David A; Dalberg, Deanna L; Leininger, Anna

    2004-10-01

    The aim of the Minnesota Colorectal Cancer Initiative is to implement risk-specific interventions to decrease colorectal cancer morbidity and mortality by 1) assisting clinicians to identify and educate individuals and families at high and increased risk for colorectal cancer; 2) providing professional and community education; 3) maintaining a database to evaluate the effectiveness of preventive intervention strategies; and 4) facilitating colorectal cancer research. Two physician groups and the University Cancer Center founded the Minnesota Colorectal Cancer Initiative as a not-for-profit organization. Health care organizations, pharmaceutical companies, a consulting firm, and other practice groups provide continuing financial and other support. A database registry, risk-assessment survey, and consent document were developed and then were approved by an institutional review board. A trial enrollment was conducted. Minnesota Colorectal Cancer Initiative services are available to the public. Participants are actively recruited through member organizations. Minnesota Colorectal Cancer Initiative assesses hereditary risk and will document family history in the medical record on request. A personally targeted reply letter reviews risk factors and recommends specific screening and surveillance strategies for participants and their family members, and when appropriate, provides information regarding genetic counseling and testing services. Minnesota Colorectal Cancer Initiative services are free to participants. Since 1999, Minnesota Colorectal Cancer Initiative has sent individually tailored reply letters providing risk-specific information about colorectal cancer to 717 participants and more than 3200 of their first-degree and second-degree relatives. More than 200 families, previously unidentified as having histories suggestive of hereditary colorectal cancer (attenuated familial polyposis and hereditary nonpolyposis colorectal cancer), have been identified; genetic

  6. MicroRNA reins in embryonic and cancer stem cells.

    PubMed

    Mallick, Bibekanand; Chakrabarti, Jayprokas; Ghosh, Zhumur

    2011-01-01

    MicroRNAs represents a new layer of gene regulation in stem cells by controlling the molecular mechanisms involved in modulating stem cell fate and behavior. Such a role of microRNA is seen in embryonic stem cell as well, maintaining a delicate balance between survival, proliferation, and self-renewal signals. Further, dysregulation of stem cell self-renewal is a likely requirement for the initiation and formation of cancer stem cells that probably pose resistance to current cancer treatments. In fact, the precise mechanism that regulates embryonic as well as cancer stem cell self-renewal and pluripotency remains largely unknown. Understanding the miRNA related stem cell biology and pathways offers great promise for improving stem cell mediated regenerative therapy as well as cancer therapies. Here we summarize some of the emerging evidences demonstrating the role of these molecular switches in embryonic and cancer stem cells.

  7. Cancer Stem Cells: A Novel Paradigm for Cancer Prevention and Treatment

    PubMed Central

    Subramaniam, D.; Ramalingam, S.; Houchen, C.W.; Anant, S.

    2010-01-01

    Cancer is the second leading cause for mortality in US only after heart disease and lacks a good or effective therapeutic paradigm. Despite the emergence of new, targeted agents and the use of various therapeutic combinations, none of the treatment options available is curative in patients with advanced cancer. A growing body of evidence is supporting the idea that human cancers can be considered as a stem cell disease. Malignancies are believed to originate from a fraction of cancer cells that show self renewal and pluripotency and are capable of initiating and sustaining tumor growth. The cancer-initiating cells or cancer stem cells were originally identified in hematological malignancies but is now being recognized in several solid tumors. The hypothesis of stem cell-driven tumorigenesis raises questions as to whether the current treatments, most of which require rapidly dividing cells are able to efficiently target these slow cycling tumorigenic cells. Recent characterization of cancer stem cells should lead to the identification of key signaling pathways that may make cancer stem cells vulnerable to therapeutic interventions that target drug-effluxing capabilities, anti-apoptotic mechanisms, and induction of differentiation. Dietary phytochemicals possess anti-cancer properties and represent a promising approach for the prevention and treatment of many cancers. PMID:20370703

  8. Renal cell cancer and exposure to gasoline: A review

    SciTech Connect

    McLaughlin, J.K.

    1993-12-01

    A review of the epidemiology of renal cell cancer is presented. Risk factors for renal cell cancer such as cigarette smoking, obesity, diet, and use of analgesics and prescription diuretics are examined. Although uncommon, occupational risk factors are also reviewed. Studies examining gasoline exposure and renal cell cancer are evaluated, including investigations recently presented at a meeting on this topic. Overall, most studies find no link between gasoline exposure and renal cell cancer; moreover, the experimental evidence that initiated the health concern is no longer considered relevant to humans. Positive associations, however, reported in two recent studies prevent a firm conclusion of no risk for this exposure. 48 refs.

  9. Isolation of canine mammary cells with stem cell properties and tumour-initiating potential.

    PubMed

    Cocola, C; Anastasi, P; Astigiano, S; Piscitelli, E; Pelucchi, P; Vilardo, L; Bertoli, G; Beccaglia, M; Veronesi, M C; Sanzone, S; Barbieri, O; Reinbold, R A; Luvoni, G C; Zucchi, I

    2009-07-01

    Recent data suggest that mammary carcinogenesis may be driven by cancer stem cells (CSCs) derived from mutated adult stem cells, which have acquired aberrant cell self-renewal or by progenitor cells that have acquired the capacity for cell self-renewal. Spontaneous mammary cancers in cats and dogs are important models for the understanding of human breast cancer and may represent alternative species model systems that can significantly contribute to the study of human oncogenesis. With the goal of identifying markers for isolating human breast CSCs, we have generated a canine model system to isolate and characterize normal and CSCs from dog mammary gland. Insight into the hierarchical organization of canine tumours may contribute to the development of universal concepts in oncogenesis by CSCs. Cells with stem cell properties were isolated from normal and tumoural canine breast tissue and propagated as mammospheres and tumourspheres in long-term non-adherent culture conditions. We showed that cells obtained from spheres that display self-renewing properties, have multi-lineage differentiation potential, could generate complex branched tubular structures in vitro and form tumours in NOD/SCID mice. We analysed these cells for the expression of human stem and CSC markers and are currently investigating the tumour-initiating properties of these cells and the hierarchical organization of normal and neoplastic canine mammary tissue.

  10. Population dynamics of cancer cells with cell state conversions

    PubMed Central

    Zhou, Da; Wu, Dingming; Li, Zhe; Qian, Minping; Zhang, Michael Q.

    2015-01-01

    Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed very recently. Here we present a general population model of cancer cells by integrating conventional cell divisions with direct conversions between different cell states, namely, not only can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate into CSCs by cell state conversion. Our theoretical model is validated when applying the model to recent experimental data. It is also found that the transient increase in CSCs proportion initiated from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is required especially for the transient dynamics. The theoretical analysis also gives the condition such that our general model can be equivalently reduced into a simple Markov chain with only cell state transitions keeping the same cell proportion dynamics. PMID:26085954

  11. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells.

    PubMed

    Lawson, Devon A; Bhakta, Nirav R; Kessenbrock, Kai; Prummel, Karin D; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-10-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated

  12. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding

    PubMed Central

    Erb, Ulrike; Zöller, Margot

    2015-01-01

    Tspan8 and CD151 are metastasis-promoting tetraspanins and a knockdown (kd) of Tspan8 or CD151 and most pronounced of both tetraspanins affects the metastatic potential of the rat pancreatic adenocarcinoma line ASML. Approaching to elaborate the underlying mechanism, we compared ASMLwt, -CD151kd and/or Tspan8kd clones. We focused on tumor exosomes, as exosomes play a major role in tumor progression and tetraspanins are suggested to be engaged in exosome targeting. ASML-CD151/Tspan8kd cells poorly metastasize, but regain metastatic capacity, when rats are pretreated with ASMLwt, but not ASML-CD151kd and/or -Tspan8kd exosomes. Both exosomal CD151 and Tspan8 contribute to host matrix remodelling due to exosomal tetraspanin-integrin and tetraspanin-protease associations. ASMLwt exosomes also support stroma cell activation with upregulation of cytokines, cytokine receptors and proteases and promote inflammatory cytokine expression in hematopoietic cells. Finally, CD151-/Tspan8-competent exosomes support EMT gene expression in poorly-metastatic ASML-CD151/Tspan8kd cells. These effects are not seen or are weakened using ASML-CD151kd or -Tspan8kd exosomes, which is at least partly due to reduced binding/uptake of CD151- and/or Tspan8-deficient exosomes. Thus, CD151- and Tspan8-competent tumor exosomes support matrix degradation, reprogram stroma and hematopoietic cells and drive non-metastatic ASML-CD151/Tspan8kd cells towards a motile phenotype. PMID:25544774

  13. [Cell cycle regulation in cancer stem cells].

    PubMed

    Takeishi, Shoichiro

    2015-05-01

    In addition to the properties of self-renewal and multipotency, cancer stem cells share the characteristics of their distinct cell cycle status with somatic stem cells. Cancer stem cells (CSCs) are maintained in a quiescent state with this characteristic conferring resistance to anticancer therapies that target dividing cells. Elucidation of the mechanisms of CSC quiescence might therefore be expected to provide further insight into CSC behaviors and lead to the elimination of cancer. This review summarizes several key regulators of the cell cycle in CSCs as well as attempts to define future challenges in this field, especially from the point of view of the application of our current understandings to the clinical medicine.

  14. Health initiatives for the prevention of skin cancer.

    PubMed

    Greinert, Rüdiger; Breitbart, Eckhard W; Mohr, Peter; Volkmer, Beate

    2014-01-01

    Skin cancer is the most frequent type of cancer in white population worldwide. However, because the most prominent risk factor-solar UV-radiation and/or artificial UV from sunbeds-is known, skin cancer is highly preventable be primary prevention. This prevention needs, that the public is informed by simple and balanced messages about the possible harms and benefits of UV-exposure and how a person should behave under certain conditions of UV-exposure. For this purpose information and recommendations for the public must be age- and target-group specific to cover all periods of life and to reach all sub-groups of a population, continuously. There is a need that political institutions together with Health Institutions and Societies (e.g., European Commission, WHO, EUROSKIN, ICNIRP, etc.), which are responsible for primary prevention of skin cancer, find a common language to inform the public, in order not to confuse it. This is especially important in connection with the ongoing Vitamin D debate, where possible positive effects of UV have to be balanced with the well known skin cancer risk of UV. A continuously ongoing evaluation of interventions and programs in primary prevention is a pre-requisite to assess the effectiveness of strategies. There is surely no "no message fits all" approach, but balanced information in health initiatives for prevention of skin cancer, which use evidence-base strategies, will further be needed in the future to reduce the incidence, morbidity and mortality skin cancer.

  15. Drug treatment of cancer cell lines: a way to select for cancer stem cells?

    PubMed

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A Ivana; Mondello, Chiara

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  16. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    PubMed Central

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs. PMID:24212655

  17. Gene expression profiles of prostate cancer stem cells isolated by aldehyde dehydrogenase activity assay.

    PubMed

    Nishida, Sachiyo; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Kitamura, Hiroshi; Takahashi, Akari; Masumori, Naoya; Tsukamoto, Taiji; Sato, Noriyuki

    2012-07-01

    Prostate cancer cells include a small population of cancer stem-like/cancer initiating cells, which have roles in cancer initiation and progression. Recently aldehyde dehydrogenase activity was used to isolate stem cells of various cancer and normal cells. We evaluated the aldehyde dehydrogenase activity of the human prostate cancer cell line 22Rv1 (ATCC®) with the ALDEFLUOR® assay and determined its potency as prostate cancer stem-like/cancer initiating cells. The human prostate cancer cell line 22Rv1 was labeled with ALDEFLUOR reagent and analyzed by flow cytometry. ALDH1(high) and ALDH1(low) cells were isolated and tumorigenicity was evaluated by xenograft transplantation into NOD/SCID mice. Tumor sphere forming ability was evaluated by culturing in a floating condition. Invasion capability was evaluated by the Matrigel™ invasion assay. Gene expression profiling was assessed by microarrays and reverse transcriptase-polymerase chain reaction. ALDH1(high) cells were detected in 6.8% of 22Rv1 cells, which showed significantly higher tumorigenicity than ALDH1(low) cells in NOD/SCID mice (p < 0.05). Gene expression profiling revealed higher expression of the stem cell related genes PROM1 and NKX3-1 in ALDH1(high) cells than in ALDH1(low) cells. ALDH1(high) cells also showed higher invasive capability and sphere forming capability than ALDH1(low) cells. Results indicate that cancer stem-like/cancer initiating cells are enriched in the ALDH1(high) population of the prostate cancer cell line 22Rv1. This approach may provide a breakthrough to further clarify prostate cancer stem-like/cancer initiating cells. To our knowledge this is the first report of cancer stem-like/cancer initiating cells of 22Rv1 using the aldehyde dehydrogenase activity assay. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines.

    PubMed

    Vares, Guillaume; Cui, Xing; Wang, Bing; Nakajima, Tetsuo; Nenoi, Mitsuru

    2013-01-01

    Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression), which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.

  19. Ionizing Radiation in Glioblastoma Initiating Cells

    PubMed Central

    Rivera, Maricruz; Sukhdeo, Kumar; Yu, Jennifer

    2013-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a median survival of 12–15 months with treatment consisting of surgical resection followed by ionizing radiation (IR) and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem cell-like properties termed GBM initiating cells (GICs). Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR) to result in a faster rate of double-strand break (DSB) repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF) receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of GBM. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies. PMID:23579692

  20. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells.

    PubMed Central

    Gonzalez-Gronow, M; Grenett, H E; Weber, M R; Gawdi, G; Pizzo, S V

    2001-01-01

    Both plasminogen (Pg) activation and matrix metalloproteinases (MMPs) are involved in the proteolytic degradation of extracellular matrix components, a requisite event for malignant cell metastasis. The highly invasive 1-LN human prostate tumour cell line synthesizes and secretes large amounts of Pg activators and MMPs. We demonstrate here that the Pg type 2 (Pg 2) receptor in these cells is composed primarily of the membrane glycoprotein dipeptidyl peptidase IV (DPP IV). Pg 2 has six glycoforms that differ in their sialic acid content. Only the highly sialylated Pg 2gamma, Pg 2delta and Pg 2epsilon glycoforms bind to DPP IV via their carbohydrate chains and induce a Ca(2+) signalling cascade; however, Pg 2epsilon alone is also able to significantly stimulate expression of MMP-9. We further demonstrate that the Pg-mediated invasive activity of 1-LN cells is dependent on the availability of Pg 2epsilon. This is the first demonstration of a direct association between the expression of MMP-9 and the Pg activation system. PMID:11284727

  1. Drugs Approved for Kidney (Renal Cell) Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs ... that are not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) ...

  2. Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: initial feasibility study.

    PubMed

    Jeong, Shin Young; Hwang, Mi-Hye; Kim, Jung Eun; Kang, Sungmin; Park, Jeong Chan; Yoo, Jeongsoo; Ha, Jeoung-Hee; Lee, Sang-Woo; Ahn, Byeong-Cheol; Lee, Jaetae

    2011-01-01

    Radioiodine (RI) such as (131)I or (124)I, can generate luminescent emission and be detected with an optical imaging (OI) device. To evaluate the possibility of a novel Cerenkov luminescence imaging (CLI) for application in thyroid research, we performed feasibility studies of CLI by RI in the thyroid gland and human anaplastic thyroid carcinoma cells expressing sodium iodide symporter gene (ARO-NIS). For in vitro study, FRTL-5 and ARO-NIS were incubated with RI, and the luminometric and CLI intensity was measured with luminometer and OI device. Luminescence intensity was compared with the radioactivity measured with γ-counter. In vivo CLI of the thyroid gland was performed in mice after intravenous injection of RI with and without thyroid blocking. Mice were implanted with ARO-NIS subcutaneously, and CLI was performed with injection of (124)I. Small animal PET or γ-camera imaging was also performed. CLI intensities of thyroid gland and ARO-NIS were quantified, and compared with the radioactivities measured from nuclear images (NI). Luminometric assay and OI confirmed RI uptake in the cells in a dose-dependent manner, and luminescence intensity was well correlated with radioactivity of the cells. CLI clearly demonstrated RI uptake in thyroid gland and xenografted ARO-NIS cells in mice, which was further confirmed by NI. A strong positive correlation was observed between CLI intensity and radioactivity assessed by NI. We successfully demonstrated dual molecular imaging of CLI and NI using RI both in vitro and in vivo. CLI can provide a new OI strategy in preclinical thyroid studies.

  3. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression.

    PubMed

    Tafani, Marco; Sansone, Luigi; Limana, Federica; Arcangeli, Tania; De Santis, Elena; Polese, Milena; Fini, Massimo; Russo, Matteo A

    2016-01-01

    The presence of ROS is a constant feature in living cells metabolizing O2. ROS concentration and compartmentation determine their physiological or pathological effects. ROS overproduction is a feature of cancer cells and plays several roles during the natural history of malignant tumor. ROS continuously contribute to each step of cancerogenesis, from the initiation to the malignant progression, acting directly or indirectly. In this review, we will (a) underline the role of ROS in the pathway leading a normal cell to tumor transformation and progression, (b) define the multiple roles of ROS during the natural history of a tumor, (c) conciliate many conflicting data about harmful or beneficial effects of ROS, (d) rethink the importance of oncogene and tumor suppressor gene mutations in relation to the malignant progression, and (e) collocate all the cancer hallmarks in a mechanistic sequence which could represent a "physiological" response to the initial growth of a transformed stem/pluripotent cell, defining also the role of ROS in each hallmark. We will provide a simplified sketch about the relationships between ROS and cancer. The attention will be focused on the contribution of ROS to the signaling of HIF, NFκB, and Sirtuins as a leitmotif of cancer initiation and progression.

  4. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression

    PubMed Central

    Sansone, Luigi; Limana, Federica; Arcangeli, Tania; De Santis, Elena; Polese, Milena; Fini, Massimo; Russo, Matteo A.

    2016-01-01

    The presence of ROS is a constant feature in living cells metabolizing O2. ROS concentration and compartmentation determine their physiological or pathological effects. ROS overproduction is a feature of cancer cells and plays several roles during the natural history of malignant tumor. ROS continuously contribute to each step of cancerogenesis, from the initiation to the malignant progression, acting directly or indirectly. In this review, we will (a) underline the role of ROS in the pathway leading a normal cell to tumor transformation and progression, (b) define the multiple roles of ROS during the natural history of a tumor, (c) conciliate many conflicting data about harmful or beneficial effects of ROS, (d) rethink the importance of oncogene and tumor suppressor gene mutations in relation to the malignant progression, and (e) collocate all the cancer hallmarks in a mechanistic sequence which could represent a “physiological” response to the initial growth of a transformed stem/pluripotent cell, defining also the role of ROS in each hallmark. We will provide a simplified sketch about the relationships between ROS and cancer. The attention will be focused on the contribution of ROS to the signaling of HIF, NFκB, and Sirtuins as a leitmotif of cancer initiation and progression. PMID:26798421

  5. Trends in initial management of prostate cancer in New Hampshire.

    PubMed

    Ingimarsson, Johann P; Celaya, Maria O; Laviolette, Michael; Rees, Judy R; Hyams, Elias S

    2015-06-01

    Prostate cancer management strategies are evolving with increased understanding of the disease. Specifically, there is emerging evidence that "low-risk" cancer is best treated with observation, while localized "high-risk" cancer requires aggressive curative therapy. In this study, we evaluated trends in management of prostate cancer in New Hampshire to determine adherence to evidence-based practice. From the New Hampshire State Cancer Registry, cases of clinically localized prostate cancer diagnosed in 2004-2011 were identified and classified according to D'Amico criteria. Initial treatment modality was recorded as surgery, radiation therapy, expectant management, or hormone therapy. Temporal trends were assessed by Chi-square for trend. Of 6,203 clinically localized prostate cancers meeting inclusion criteria, 34, 30, and 28% were low-, intermediate-, and high-risk disease, respectively. For low-risk disease, use of expectant management (17-42%, p < 0.001) and surgery (29-39%, p < 0.001) increased, while use of radiation therapy decreased (49-19 %, p < 0.001). For intermediate-risk disease, use of surgery increased (24-50%, p < 0.001), while radiation decreased (58-34%, p < 0.001). Hormonal therapy alone was rarely used for low- and intermediate-risk disease. For high-risk patients, surgery increased (38-47%, p = 0.003) and radiation decreased (41-38%, p = 0.026), while hormonal therapy and expectant management remained stable. There are encouraging trends in the management of clinically localized prostate cancer in New Hampshire, including less aggressive treatment of low-risk cancer and increasing surgical treatment of high-risk disease.

  6. Liver cancer stem cell markers: Progression and therapeutic implications.

    PubMed

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-04-07

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets.

  7. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis.

    PubMed

    Moon, Hee-Sun; Kim, Boyun; Gwak, HyeRan; Suh, Dong Hoon; Song, Yong Sang

    2016-04-01

    Metformin, an oral biguanide for the treatment of type II diabetes, has been shown to have anticancer effects in ovarian cancer. Energy starvation induced by metformin causes endoplasmic reticulum stress-mediated unfolded protein response (UPR) and autophagy. UPR and autophagy act as a survival or death mechanism in cells. In this study, we observed that metformin-induced apoptosis was relieved by autophagy and the PERK/eIF2α pathway in ovarian cancer cells, but not in peripheral blood mononuclear cells (PBMC) or 'normal' ovarian surface epithelial cells (OSE). Increased PARP cleavage and increased LC3B-II with ATG5-ATG12 complex suggested the induction of apoptosis and autophagy, respectively, in metformin-treated ovarian cancer cells. Accumulation of acidic vacuoles in the cytoplasm and downregulation of p62 further supported late-stage autophagy. Interestingly, metformin induced interdependent activation between autophagy and the UPR, especially the PERK/eIF2α pathway. Inhibition of autophagy-induced PERK inhibition, and vice versa, were demonstrated using small molecular inhibitors (PERK inhibitor I, GSK2606414; autophagy inhibitor, 3-MA, and BafA1). Moreover, autophagy and PERK activation protected ovarian cancer cells against metformin-induced apoptosis. Metformin treatment in the presence of inhibitors of PERK and autophagy, however, had no cytotoxic effects on OSE or PBMC. In conclusion, these results suggest that inhibition of autophagy and PERK can enhance the selective anticancer effects of metformin on ovarian cancer cells. © 2015 Wiley Periodicals, Inc.

  8. Proteomic analysis of cancer stem cells in human prostate cancer cells

    SciTech Connect

    Lee, Eun-Kyung; Cho, Hyungdon; Kim, Chan-Wha

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  9. Vertebral Metastasis as the Initial Manifestation of Colon Cancer.

    PubMed

    Jain, Tushina; Williams, Renee; Liechty, Benjamin; Ann Chen, Lea

    2016-08-01

    Oncology guidelines currently recommend against performing colonoscopies in the workup of adenocarcinoma of unknown primary unless colonic malignancy is otherwise suggested by clinical signs or symptoms. We present 2 cases of metastatic colonic adenocarcinoma that presented only with neurologic symptoms from vertebral metastasis. Although bony metastases are a rare presentation of colon cancer and colonoscopy is not warranted in the initial workup of adenocarcinoma of unknown primary, we describe these cases as a reminder that bony metastases do not rule out a colon cancer diagnosis.

  10. Vertebral Metastasis as the Initial Manifestation of Colon Cancer

    PubMed Central

    Jain, Tushina; Williams, Renee; Liechty, Benjamin

    2016-01-01

    Oncology guidelines currently recommend against performing colonoscopies in the workup of adenocarcinoma of unknown primary unless colonic malignancy is otherwise suggested by clinical signs or symptoms. We present 2 cases of metastatic colonic adenocarcinoma that presented only with neurologic symptoms from vertebral metastasis. Although bony metastases are a rare presentation of colon cancer and colonoscopy is not warranted in the initial workup of adenocarcinoma of unknown primary, we describe these cases as a reminder that bony metastases do not rule out a colon cancer diagnosis. PMID:27807574

  11. Mesenchymal stem cell secretome and regenerative therapy after cancer.

    PubMed

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T; Donnenberg, Vera S; Donnenberg, Albert D

    2013-12-01

    Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus

  12. Cancer stem cells in osteosarcoma.

    PubMed

    Brown, Hannah K; Tellez-Gabriel, Marta; Heymann, Dominique

    2017-02-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. [Laparoscopic distal gastrectomy for gastric cancer: initial experience].

    PubMed

    Berrospi, Francisco; Celis, Juan; Ruíz, Eloy; Payet, Eduardo; Chávez, Iván; Young, Frank

    2008-01-01

    To report the initial experience with the laparoscopy-assisted distal gastrectomy (LADG) with D2 lymphadenectomy for gastric cancer. Between May 2006 and May 2007, 29 consecutive GC patients with gastric cancer underwent LADG with D2 lymphadenectomy. The operation consisted in a laparoscopic time to perform lymphadenectomy and mobilization of the distal stomach, followed by a minilaparotomy for exteriorization of the specimen and construction of a hand sewn anastomosis. Twenty-nine patients underwent LADG with D2 lymphadenectomy for gastric cancer. Mean age was 58.2 years. Mean operative time was 287.4 min. Mean number of lymph nodes resected was 42.6. Twelve patients were early gastric cancer, and seventeen were advanced gastric cancer. Mean proximal and distal resection margin were 5.8 cm and 3.5 cm, respectively. Resection margins were negative in all cases. Mean number of lymph nodes resected was 42.6. Thirty-day morbidity rate was 10.3 %. There were no postoperative deaths.CONCLUSION. The short-term results of our LADG with D2 lymphadenectomy for the treatment of gastric cancer shows that a radical surgery, in terms of resection margins and lymphadenectomy, can be done with low morbidity.

  14. Short-form Ron is a novel determinant of ovarian cancer initiation and progression

    PubMed Central

    Moxley, Katherine M.; Wang, Luyao; Welm, Alana L.; Bieniasz, Magdalena

    2016-01-01

    Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment. PMID:27551332

  15. Nano-discs Destroy Cancer Cells

    SciTech Connect

    2010-01-01

    A new technique, designed with the potential to treat brain cancers, is under study at Argonne National Laboratory and the University of Chicago Medical Center. The micron-sized magnetic materials, with vortex-like arrangements of spins, were successfully interfaced with Glioblastoma multiforme (GBM) cancer cells. The microdisks are gold-coated and biofunctionalized with a cancer-targeting antibody. The antibody recognizes unique receptors on the cancer cells and attaches to them (and them alone), leaving surrounding healthy cells unaffected during treatment. Under application of an alternative magnetic field, the magnetic vortices shift, leading to oscillatory motion of the disks and causing the magneto-mechanic stimulus to be transmitted directly to the cancer cell. Probably because of the damage to the cancer cell membrane, this results in cellular signal transduction and amplification, causing initiation of apoptosis (programmed cell death or "cell suicide"). Manifestation of apoptosis is of clinical significance because the malignant cells are known to be almost "immortal" (due to suppressed apoptosis), and, consequently, highly resistant to conventional (chemo- and radio-) therapies. Due to unique properties of the vortex microdisks, an extremely high spin-vortex-induced cytotoxicity effect can be caused by application of unprecedentedly weak magnetic fields. An alternative magnetic field as slow as about 10s Hertz (for comparison, 60 Hertz in a electrical outlet) and as small as less than 90 Oersteds (which is actually less than the field produced by a magnetized razor blade) applied only for 10 minutes was sufficient to cause ~90% cancer cell destruction in vitro. The study has only been conducted in cells in a laboratory; animal trials are being planned. Watch a news clip of the story from ABC-7 News: http://abclocal.go.com/wls/story?section=news/health&id=7245605 More details on this study can be found in the original research paper: Biofunctionalized

  16. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    PubMed

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  17. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  18. Dynamic regulation of cancer stem cells and clinical challenges.

    PubMed

    Ni, Chao; Huang, Jian

    2013-04-01

    A small population of cancer cells referred to as cancer stem cells (CSCs) have received particular attention, as they have been revealed to acquire stem cell-like properties and become the main cause of tumor propagation, metastasis and drug resistance. The CSC theory of tumor formation was believed to follow the hierarchical model initially, and therefore many CSC-targeted therapy methods were expected to cure cancer by eradicating CSCs. However, subsequent CSC research has revealed that rather than a distinct entity, the CSC is a dynamic status that can be continually dedifferentiated from progenitor or differentiated cancer cells. Elucidation of this bidirectional transition mechanism would help perfect the CSC theory and be of great value in the development of more effective anti-cancer drugs. Here, we reviewed the mechanisms of reciprocal conversion between non-CSCs and CSCs. Moreover, several approaches of target CSCs and non-CSCs together with unbiased eradication of all cancer cells are also discussed.

  19. Metabolic Syndrome and Aggressive Prostate Cancer at Initial Diagnosis.

    PubMed

    Di Francesco, Simona; Tenaglia, Raffaele L

    2017-07-01

    Links between metabolic syndrome and prostate cancer after androgen deprivation therapy are emerging. The aim of the research was to investigate the association of metabolic syndrome and aggressive prostate malignancy, at initial diagnosis, without the influence of hormonal treatment. Retrospective analysis of 133 patients with prostate tumor diagnosis between 2007 and 2009 was conducted. Patients with prostate cancer were subdivided in 2 groups according to Gleason score: Gleason score≥7 as high-grade prostate tumor (Group 1) and <7 (Group 2) as low-grade prostate tumor. Metabolic syndrome was defined according to International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute definition. Metabolic syndrome was significantly associated with aggressive prostate cancer (OR 1.87, p<0.05) and a reduced risk of low-grade prostate cancer (OR 0.53, p<0.05) at initial diagnosis, without the influence of endocrine therapy. In our study, patients with metabolic syndrome were more likely to present with more aggressive prostate carcinoma vs. patients without metabolic syndrome. Further research should elucidate these relations in larger samples to confirm these associations and to stabilize future prevention and therapeutic strategies. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective.

    PubMed

    Naushad, Shaik Mohammad; Reddy, Cheruku Apoorva; Kumaraswami, Konda; Divyya, Shree; Kotamraju, Srigiridhar; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadha Rao; Kutala, Vijay Kumar

    2014-03-01

    Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by

  1. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells.

    PubMed

    Torquato, Heron F V; Goettert, Márcia I; Justo, Giselle Z; Paredes-Gamero, Edgar J

    2017-04-01

    Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.

  2. The DNA aptamer binds stemness-enriched cancer cells in pancreatic cancer.

    PubMed

    Kim, Yoon-Jin; Lee, Hee Seung; Jung, Dawoon E; Kim, Jeong Mi; Song, Si Young

    2017-04-01

    Pancreatic cancer remains one of the most common and lethal cancers. Most patients (80%) present with inoperable advanced pancreatic cancer at initial diagnosis, and their early diagnosis is a significant unmet challenge. Recent studies indicate that cancer, including pancreatic cancer, is initiated and propagated by cancer stem cells (CSCs). CSCs are responsible not only for the pathogenesis of cancer but also for the heterogeneity, malignant degree, anticancer therapy resistance, and recurrence of tumors. Therefore, the identification of CSCs may be a crucial stepping stone for overcoming this disastrous pancreatic cancer. Here, we investigated pancreatic CSC-associated aptamers as a novel tool for diagnosis and therapeutic agents. Aptamers that bind to stemness-enriched cancer cells in pancreatic cancer were developed by modified Cell-SELEX method. Positive selection was performed by the sphere cells generated by pancreatic cancer cell line, HPAC, and then the aptamer pool was negatively selected by pancreatic normal cell line, HPDE. Aptamers 1 and 146 showing high specificity upon the KD values with 22.18 and 22.62 nM were selected. These 2 aptamers were validated by binding to HPAC sphere cells and to HPDE cells, and both aptamers showed specificity to HPAC sphere cells only. Aptamer-positive cells showed high expression levels of CSC-associated genes compared with the aptamer-negative cells by FACS analysis. The colocalization of CD44, CD24, ESA, and CD133 was also observed in the aptamer-positive cells by confocal microscopy. In the present study, these 2 pancreatic CSC-associated aptamers may be potential candidates for novel diagnostic markers, CSC-targeting drug delivery, or circulating tumor cell detection.

  3. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    PubMed

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-02

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  4. Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds

    PubMed Central

    Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin

    2011-01-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962

  5. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  6. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  7. Squamous cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  8. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  9. Stem cell origin of cancer and differentiation therapy.

    PubMed

    Sell, Stewart

    2004-07-01

    Our forefathers in pathology, on observing cancer tissue under the microscope in the mid-19th century, noticed the similarity between embryonic tissue and cancer, and suggested that tumors arise from embryo-like cells [Recherches dur le Traitement du Cancer, etc. Paris. (1829); Editoral Archiv fuer pathologische Anatomie und Physiologie und fuer klinische Medizin 8 (1855) 23]. The concept that adult tissues contain embryonic remnants that generally lie dormant, but that could be activated to become cancer was later formalized by Cohnheim [Path. Anat. Physiol. Klin. Med. 40 (1867) 1-79; Virchows Arch. 65 (1875) 64] and Durante [Arch. Memori ed Osservazioni di Chirugia Practica 11 (1874) 217-226], as the "embryonal rest" theory of cancer. An updated version of the embryonal rest theory of cancer is that cancers arise from tissue stem cells in adults. Analysis of the cellular origin of carcinomas of different organs indicates that there is, in each instance, a determined stem cell required for normal tissue renewal that is the most likely cell of origin of carcinomas [Lab. Investig. 70 (1994) 6-22]. In the present review, the nature of normal stem cells (embryonal, germinal and somatic) is presented and their relationships to cancer are further expanded. Cell signaling pathways shared by embryonic cells and cancer cells suggest a possible link between embryonic cells and cancer cells. Wilm's tumors (nephroblastomas) and neuroblastomas are presented as possible tumors of embryonic rests in children. Teratocarcinoma is used as the classic example of the totipotent cancer stem cell which can be influenced by its environment to differentiate into a mature adult cell. The observation that "promotion" of an epidermal cancer may be accomplished months or even years after the initial exposure to carcinogen ("initiation"), implies that the original carcinogenic event occurs in a long-lived epithelial stem cell population. The cellular events during hepatocarcinogenesis

  10. Controversial role of mast cells in skin cancers.

    PubMed

    Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni

    2017-01-01

    Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.

  11. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    PubMed

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation.

  12. Linking genomic reorganization to tumor initiation via the giant cell cycle

    PubMed Central

    Niu, N; Zhang, J; Zhang, N; Mercado-Uribe, I; Tao, F; Han, Z; Pathak, S; Multani, A S; Kuang, J; Yao, J; Bast, R C; Sood, A K; Hung, M-C; Liu, J

    2016-01-01

    To investigate the mechanisms underlying our recent paradoxical finding that mitotically incapacitated and genomically unstable polyploid giant cancer cells (PGCCs) are capable of tumor initiation, we labeled ovarian cancer cells with α-tubulin fused to green fluorescent protein, histone-2B fused to red fluorescent protein and FUCCI (fluorescent ubiquitination cell cycle indicator), and tracked the spatial and time-dependent change in spindle and chromosomal dynamics of PGCCs using live-cell fluorescence time-lapse recording. We found that single-dose (500 nm) treatment with paclitaxel paradoxically initiated endoreplication to form PGCCs after massive cell death. The resulting PGCCs continued self-renewal via endoreplication and further divided by nuclear budding or fragmentation; the small daughter nuclei then acquired cytoplasm, split off from the giant mother cells and acquired competency in mitosis. FUCCI showed that PGCCs divided via truncated endoreplication cell cycle (endocycle or endomitosis). Confocal microscopy showed that PGCCs had pronounced nuclear fragmentation and lacked expression of key mitotic proteins. PGCC-derived daughter cells were capable of long-term proliferation and acquired numerous new genome/chromosome alterations demonstrated by spectral karyotyping. These data prompt us to conceptualize a giant cell cycle composed of four distinct but overlapping phases, initiation, self-renewal, termination and stability. The giant cell cycle may represent a fundamental cellular mechanism to initiate genomic reorganization to generate new tumor-initiating cells in response to chemotherapy-induced stress and contributes to disease relapse. PMID:27991913

  13. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies

    PubMed Central

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field. PMID:27994667

  14. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies.

    PubMed

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field.

  15. Implementation of a performance improvement initiative in colorectal cancer care.

    PubMed

    Marshall, John L; Cartwright, Thomas H; Berry, Carolyn A; Stowell, Stephanie A; Miller, Sara C

    2012-09-01

    In the United States, colorectal cancer (CRC) is the third leading cause of cancer after breast and prostate cancer. Numerous improvement programs have been implemented to increase CRC screening rates, but few have focused on improving the care and management of patients with a diagnosis of this malignancy. As national medical organizations focus on quality of care, efforts are necessary to provide clinicians the opportunity for self-assessment and methods for practice improvement. With this goal in mind, a national continuing medical education-certified performance improvement initiative was conceived. THE INITIATIVE CONSISTED OF THREE STAGES: First, participants self-assessed their performance of predetermined topic measures through a review of patient charts. The topic areas included patient safety and supportive care, evidence-based surveillance, and evidenced-based treatment and were derived from current guidelines and other successful quality-improvement initiatives. Second, an actionable plan for practice improvement was developed in at least one of the three topic areas. Third, after a period of self-improvement, participants reassessed their performance of the same topic measures to determine tangible changes in patient care. A total of 540 patient charts were reviewed by 27 clinicians. Notable results showed large gains in areas of supportive care, such as quantitative pain assessments and emotional well-being evaluations, which traditionally have been a minor focus of other quality-improvement initiatives. Participants also showed tangible improvements in the performance of leading measures of quality care. These findings support the need for continued efforts toward performance improvement in both established and emerging areas of CRC patient care.

  16. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    PubMed

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines.

    PubMed

    Michishita, M; Akiyoshi, R; Suemizu, H; Nakagawa, T; Sasaki, N; Takemitsu, H; Arai, T; Takahashi, K

    2012-08-01

    Increasing evidence suggests that diverse solid tumours arise from a small population of cells known as cancer stem cells or tumour-initiating cells. Cancer stem cells in several solid tumours are enriched for aldehyde dehydrogenase (ALDH) activity. High levels of ALDH activity (ALDH(high)) were detected in four cell lines derived from canine mammary carcinomas. ALDH(high) cells were enriched in a CD44(+)CD24(-) population having self-renewal capacity. Xenotransplantation into immunodeficient mice demonstrated that 1×10(4) ALDH(high) cells were sufficient for tumour formation in all injected mice, whereas 1×10(4) ALDH(low) cells failed to initiate any tumours. ALDH(high)-derived tumours contained both ALDH(+) and ALDH(-) cells, indicating that these cells had cancer stem cell-like properties.

  18. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells.

    PubMed

    Liang, Yi; Zhong, Zhendong; Huang, Yijun; Deng, Wen; Cao, Junxia; Tsao, George; Liu, Quentin; Pei, Duanqing; Kang, Tiebang; Zeng, Yi-Xin

    2010-02-12

    The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.

  19. Initial steps of metastasis: cell invasion and endothelial transmigration.

    PubMed

    van Zijl, Franziska; Krupitza, Georg; Mikulits, Wolfgang

    2011-01-01

    Metastasis is the leading cause of cancer mortality. The metastatic cascade represents a multi-step process which includes local tumor cell invasion, entry into the vasculature followed by the exit of carcinoma cells from the circulation and colonization at the distal sites. At the earliest stage of successful cancer cell dissemination, the primary cancer adapts the secondary site of tumor colonization involving the tumor-stroma crosstalk. The migration and plasticity of cancer cells as well as the surrounding environment such as stromal and endothelial cells are mandatory. Consequently, the mechanisms of cell movement are of utmost relevance for targeted intervention of which three different types have been reported. Tumor cells can migrate either collectively, in a mesenchymal or in an amoeboid type of movement and intravasate the blood or lymph vasculature. Intravasation by the interaction of tumor cells with the vascular endothelium is mechanistically poorly understood. Changes in the epithelial plasticity enable carcinoma cells to switch between these types of motility. The types of migration may change depending on the intervention thereby increasing the velocity and aggressiveness of invading cancer cells. Interference with collective or mesenchymal cell invasion by targeting integrin expression or metalloproteinase activity, respectively, resulted in an amoeboid cell phenotype as the ultimate exit strategy of cancer cells. There are little mechanistic details reported in vivo showing that the amoeboid behavior can be either reversed or efficiently inhibited. Future concepts of metastasis intervention must simultaneously address the collective, mesenchymal and amoeboid mechanisms of cell invasion in order to advance in anti-metastatic strategies as these different types of movement can coexist and cooperate. Beyond the targeting of cell movements, the adhesion of cancer cells to the stroma in heterotypic circulating tumor cell emboli is of paramount

  20. Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer

    PubMed Central

    Zhao, Jiangang; Li, Jiahui; Schlößer, Hans A.; Popp, Felix; Popp, Marie Christine; Alakus, Hakan; Jauch, Karl-Walter

    2017-01-01

    Cancer stem cells (CSCs) have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer. PMID:28845161

  1. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability

    PubMed Central

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM. PMID:27589691

  2. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability.

    PubMed

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-10-11

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM.

  3. Leptin and Cancer: From Cancer Stem Cells to Metastasis (Preprint)

    DTIC Science & Technology

    2011-01-01

    1 Endocrine-Related Cancer Commentary Leptin and Cancer: From Cancer Stem Cells to Metastasis Jiyoung Park 1 and Philipp E. Scherer...REPORT DATE JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Leptin And Cancer: From Cancer Stem Cells To...interest. Recently several groups have addressed the functional roles of leptin , an adipocyte-derived adipokine, for mammary tumor progression. In this

  4. Metformin inhibits RANKL and sensitizes cancer stem cells to denosumab.

    PubMed

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Bosch-Barrera, Joaquim; Menendez, Javier A

    2017-06-03

    The increased propensity of BRCA1 mutation carriers to develop aggressive breast tumors with stem-like properties begins to be understood in terms of osteoprotegerin (OPG)-unrestricted cross-talk between RANKL-overproducing progesterone-sensor cells and cancer-initiating RANK(+) responder cells that reside within pre-malignant BRCA1(mut/+) breast epithelial tissue. We recently proposed that, in the absence of hormone influence, cancer-initiating cells might remain responsive to RANKL stimulation, and hence to the therapeutic effects of the anti-RANKL antibody denosumab because genomic instability induced by BRCA1 haploinsufficiency might suffice to cell-autonomously hyperactivate RANKL gene expression. Here we report that the biguanide metformin prevents BRCA1 haploinsufficiency-driven RANKL gene overexpression, thereby disrupting an auto-regulatory feedback control of RANKL-addicted cancer stem cell-like states within BRCA1(mut/-) cell populations. Moreover, metformin treatment elicits a synergistic decline in the breast cancer-initiating cell population and its self-renewal capacity in BRCA1-mutated basal-like breast cancer cells with bone metastasis-initiation capacity that exhibit primary resistance to denosumab in mammosphere assays. The specific targeting of RANKL/RANK signaling with denosumab is expected to revolutionize prevention and treatment strategies currently available for BRCA1 mutation carriers. Our findings provide a rationale for new denosumab/metformin combinatorial strategies to clinically manage RANKL-related breast oncogenesis and metastatic progression.

  5. Pancreatic Cancer Stem Cells and Therapeutic Approaches.

    PubMed

    Ercan, Gulinnaz; Karlitepe, Ayfer; Ozpolat, Bulent

    2017-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest human cancers, with 1-5% 5-year survival rates (~6-month median survival duration) despite therapy; thus, PDAC represents an unmet therapeutic challenge. PDAC is the major histological subtype, comprising 90% of all pancreatic cancers. It is a highly complex and aggressive malignancy, presenting with early local invasion and metastasis, and is resistant to most therapies, all of which are believed to contribute to its extremely poor prognosis. PDAC is characterized by molecular alterations, including mutations of K-RAS (~90% of cases), TP53, transforming growth factor-β, Hedgehog, WNT and NOTCH signaling pathways. Given that cancer stem cells have a crucial role not only in tumor initiation and progression, but also in drug resistance and relapse or recurrence of various cancer types, they may be excellent targets for effective novel therapeutic approaches. Here, we reviewed recent therapeutic strategies targeting pancreatic cancer stem cells using chemotherapeutics and targeted drugs, non-coding RNAs (i.e., siRNA and miRNAs), immunotherapy, and natural compounds. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    SciTech Connect

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E.

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells dur