Science.gov

Sample records for cancer gene targets

  1. Cancer gene therapy targeting cellular apoptosis machinery.

    PubMed

    Jia, Lin-Tao; Chen, Si-Yi; Yang, An-Gang

    2012-11-01

    The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.

  2. Targeting tumor suppressor genes for cancer therapy.

    PubMed

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  3. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  4. Targeting Radiotherapy to Cancer by Gene Transfer

    PubMed Central

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer with low molecular weight radiopharmaceuticals. PMID:12721515

  5. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1998-08-01

    AD AWARD NUMBER DAMD17-97-1-7232 TITLE: Targeted Gene Therapy for Breast Cancer PRINCIPAL INVESTIGATOR: Jinha M. Park CONTRACTING ORGANIZATION...FUNDING NUMBERS Targeted Gene Therapy for Breast Cancer DAMD17-97-1-7232 6. AUTHOR(S) Jinha M. Park 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...of surface mAb has been internalized by receptor-mediated endocytosis. These mAbs show promise in the specific delivery of gene therapy vectors

  6. Transcriptional Targeting in Cancer Gene Therapy

    PubMed Central

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future. PMID:12721516

  7. Gene expression profiling for targeted cancer treatment.

    PubMed

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  8. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  9. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2005-06-01

    or transduced son, WI). A mouse monoclonal anti-human VEGF with 100 multiplicities of infection (MOI) of rAAV-sFlt-l. receptor-1 (FIt-1 receptor...only partial amounts of the cancer patients correlate with advanced and metastatic deficient protein/enzyme for phenotypic correction of disease and...activity of matrix metalloproteinase. Cancer Res 2000;60: 4- sulfatase to the retinal pigment epithelium of feline mucopolysacchar- 5410-3. idosis VI. J Gene Med 2002;4:613-321.

  10. Nanoparticle-based targeted gene therapy for lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  11. Identification of Targetable FGFR Gene Fusions in Diverse Cancers

    PubMed Central

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nick; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J.; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P.; Siddiqui, Javed; Tomlins, Scott A.; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H.; Feng, Felix Y.; Zalupski, Mark M.; Talpaz, Moshe; Pienta, Kenneth J.; Rhodes, Daniel R.; Robinson, Dan R.; Chinnaiyan, Arul M.

    2013-01-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2 including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR gene fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Due to the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts which incorporate transcriptome analysis for gene fusions are poised to identify rare, targetable FGFR fusions across diverse cancer types. PMID:23558953

  12. Cell Targeting in Anti-Cancer Gene Therapy

    PubMed Central

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene therapy research and its application in relation to anti-cancer treatment. PMID:22977356

  13. Identification of targetable FGFR gene fusions in diverse cancers.

    PubMed

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nickolay; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P; Siddiqui, Javed; Tomlins, Scott A; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H; Feng, Felix Y; Zalupski, Mark M; Talpaz, Moshe; Pienta, Kenneth J; Rhodes, Daniel R; Robinson, Dan R; Chinnaiyan, Arul M

    2013-06-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.

  14. Gene expression profiling in bladder cancer identifies potential therapeutic targets

    PubMed Central

    Hussain, Syed A.; Palmer, Daniel H.; Syn, Wing-Kin; Sacco, Joseph J.; Greensmith, Richard M.D.; Elmetwali, Taha; Aachi, Vijay; Lloyd, Bryony H.; Jithesh, Puthen V.; Arrand, John; Barton, Darren; Ansari, Jawaher; Sibson, D. Ross; James, Nicholas D.

    2017-01-01

    Despite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation. PMID:28259975

  15. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  16. Targeting MicroRNAs in Cancer Gene Therapy

    PubMed Central

    Ji, Weidan; Sun, Bin; Su, Changqing

    2017-01-01

    MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer. PMID:28075356

  17. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2004-06-01

    From the studies performed during the last one year, we determined the effects of AAV-mediated anti-angiogenic gene therapy as a combination therapy...angiogenic gene therapy in combination with chemotherapy. In the next year, we will determine whether such a combination therapy would provide regression of established tumors.

  18. Molecular pathways: targeting ETS gene fusions in cancer.

    PubMed

    Feng, Felix Y; Brenner, J Chad; Hussain, Maha; Chinnaiyan, Arul M

    2014-09-01

    Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNAPK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions. ©2014 American Association for Cancer Research.

  19. Viroreplicative Gene Therapy Targeted to Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    University of Southern California. Principles of the Helsinki Declaration were followed. For immunization and prophylactic vaccination exper- iments 6 to 8...drug 5- fluorouracil (5FU), as RCR vectors using this suicide gene have moved forward to Phase I clinical trials for the treatment of patients...proceeding to human clinical trials , we have modified the original vector back bone of Logg et al. [13], and inserted various forms of the cytosine deaminase

  20. Single molecule targeted sequencing for cancer gene mutation detection

    PubMed Central

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W.; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  1. Cancer-targeted BikDD gene therapy elicits protective antitumor immunity against lung cancer.

    PubMed

    Sher, Yuh-Pyng; Liu, Shih-Jen; Chang, Chun-Mien; Lien, Shu-Pei; Chen, Chien-Hua; Han, Zhenbo; Li, Long-Yuan; Chen, Jin-Shing; Wu, Cheng-Wen; Hung, Mien-Chie

    2011-04-01

    Targeted cancer-specific gene therapy is a promising strategy for treating metastatic lung cancer, which is a leading cause of lung cancer-related deaths. Previously, we developed a cancer-targeted gene therapy expression system with high tumor specificity and strong activity that selectively induced lung cancer cell killing without affecting normal cells in immunocompromised mice. Here, we found this cancer-targeted gene therapy, SV-BikDD, composed of the survivin promoter in the VP16-GAL4-WPRE integrated systemic amplifier system to drive the apoptotic gene BikDD, not only caused cytotoxic effects in cancer cells but also elicited a cancer-specific cytotoxic T lymphocyte response to synergistically increase the therapeutic effect and further develop an effective systemic antitumoral immunity against rechallenges of tumorigenic dose of parental tumor cells inoculated at distant sites in immunocompetent mice. In addition, this cancer-targeted gene therapy does not elicit an immune response against normal tissues, but CMV-BikDD treatment does. The therapeutic vector could also induce proinflammatory cytokines to activate innate immunity and provide some benefits in antitumor gene therapy. Thus, this study provides a promising strategy with benefit of antitumoral immune response worthy of further development in clinical trials for treating lung cancer via cancer-targeted gene therapy.

  2. Rationale for stimulator of interferon genes-targeted cancer immunotherapy.

    PubMed

    Rivera Vargas, Thaiz; Benoit-Lizon, Isis; Apetoh, Lionel

    2017-02-17

    The efficacy of checkpoint inhibitor therapy illustrates that cancer immunotherapy, which aims to foster the host immune response against cancer to achieve durable anticancer responses, can be successfully implemented in a routine clinical practice. However, a substantial proportion of patients does not benefit from this treatment, underscoring the need to identify alternative strategies to defeat cancer. Despite the demonstration in the 1990's that the detection of danger signals, including the nucleic acids DNA and RNA, by dendritic cells (DCs) in a cancer setting is essential for eliciting host defence, the molecular sensors responsible for recognising these danger signals and eliciting anticancer immune responses remain incompletely characterised, possibly explaining the disappointing results obtained so far upon the clinical implementation of DC-based cancer vaccines. In 2008, STING (stimulator of interferon genes), was identified as a protein that is indispensable for the recognition of cytosolic DNA. The central role of STING in controlling anticancer immune responses was exemplified by observations that spontaneous and radiation-induced adaptive anticancer immunity was reduced in the absence of STING, illustrating the potential of STING-targeting for cancer immunotherapy. Here, we will discuss the relevance of manipulating the STING signalling pathway for cancer treatment and integrating STING-targeting based strategies into combinatorial therapies to obtain long-lasting anticancer immune responses.

  3. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    PubMed Central

    Fillat, Cristina; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano

    2011-01-01

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed. PMID:24212620

  4. Identification of novel androgen receptor target genes in prostate cancer

    PubMed Central

    Jariwala, Unnati; Prescott, Jennifer; Jia, Li; Barski, Artem; Pregizer, Steve; Cogan, Jon P; Arasheben, Armin; Tilley, Wayne D; Scher, Howard I; Gerald, William L; Buchanan, Grant; Coetzee, Gerhard A; Frenkel, Baruch

    2007-01-01

    Background The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1) – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general

  5. Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Transdisciplinary Research in Epigenetics and Cancer Journal Clubs and Transdisciplinary Science Meetings, biweekly and monthly 3. To gain expertise...Target Genes in Prostate and Prostate Cancer PRINCIPAL INVESTIGATOR: Laura Lamb CONTRACTING ORGANIZATION: Washington University...TITLE AND SUBTITLE Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer 5a. CONTRACT NUMBER Genes in

  6. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  7. Stress sensor Gadd45 genes as therapeutic targets in cancer.

    PubMed

    Cretu, Alexandra; Sha, Xiaojin; Tront, Jennifer; Hoffman, Barbara; Liebermann, Dan A

    2009-01-01

    Gadd45 genes have been implicated in stress signaling responses to various physiological or environmental stressors, resulting in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated up to date suggests that Gadd45 proteins function as stress sensors, mediating their activity through a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. Disregulated expression of Gadd45 has been observed in multiple types of solid tumors as well as in hematopoietic malignancies. Also, evidence has accumulated that Gadd45 proteins are intrinsically associated with the response of tumor cells to a variety of cancer therapeutic agents. Thus, Gadd45 proteins may represent a novel class of targets for therapeutic intervention in cancer. Additional research is needed to better understand which of the Gadd45 stress response functions may be targeted for chemotherapeutic drug design in cancer therapy.

  8. Targeting metastatic cancer from the inside: a new generation of targeted gene delivery vectors enables personalized cancer vaccination in situ.

    PubMed

    Gordon, Erlinda M; Levy, John P; Reed, Rebecca A; Petchpud, W Nina; Liu, Liqiong; Wendler, Carlan B; Hall, Frederick L

    2008-10-01

    The advent of pathotropic (disease-seeking) targeting technologies, combined with advanced gene delivery vectors, provides a unique opportunity for the systemic delivery of immunomodulatory cytokine genes to remote sites of cancer metastasis. When injected intravenously, such pathotropic nanoparticles seek out and accumulate selectively at sites of tumor invasion and neo-angiogenesis, resulting in enhanced gene delivery, and thus cytokine production, within the tumor nodules. Used in conjunction with a primary tumoricidal agent (e.g., Rexin-G) that exposes tumor neoantigens, the tumor-targeted immunotherapy vector is intended to promote the recruitment and activation of host immune cells into the metastastic site(s), thereby initiating cancer immunization in situ. In this study, we examine the feasibility of cytokine gene delivery to cancerous lesions in vivo using intravenously administered pathotropically targeted nanoparticles bearing the gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF; i.e., Reximmune-C). In vitro, transduction of target cancer cells with Reximmune-C resulted in the quantitative production of bioactive and immunoreactive GM-CSF protein. In tumor-bearing nude mice, intravenous infusions of Reximmune-C-induced GM-CSF production by transduced cancer cells and paracrine secretion of the cytokine within the tumor nodules, which promoted the recruitment of host mononuclear cells, including CD40+ B cells and CD86+ dendritic cells, into the tumors. With the first proofs of principle established in preclinical studies, we generated an optimized vector configuration for use in advanced clinical trial designs, and extended the feasibility studies to the clinic. Targeted delivery and localized expression of the GM-CSF transgene was confirmed in a patient with metastatic cancer, as was the recruitment of significant tumor-infiltrating lymphocytes (TILs). Taken together, these studies provide the first demonstrations of cytokine gene

  9. Pharmacological aspects of targeting cancer gene therapy to endothelial cells.

    PubMed

    Sedlacek, H H

    2001-03-01

    Targeting cancer gene therapy to endothelial cells seems to be a rational approach, because (a) a clear correlation exists between proliferation of tumor vessels and tumor growth and malignancy, (b) differences of cell membrane structures between tumor endothelial cells and normal endothelial cells exist which could be used for targeting of vectors and (c) tumor endothelial cells are accessible to vector vehicles in spite of the peculiarities of the transvascular and interstitial blood flow in tumors. Based on the knowledge on the pharmacokinetics of macromolecules it can be concluded that vectors targeting tumor endothelial cells should own a long blood residence time after intravascular application. This precondition seems to be fulfilled best by vectors exhibiting a slight anionic charge. A long blood residence time would allow the formation of a high amount of complexes between tumor endothelial cells and vector particles. Such high amount of complexes should enable a high transfection rate of tumor endothelial cells. In view of their pharmacokinetic behavior nonviral vectors seem to be more suitable for in vivo targeting tumor endothelial cells than viral vectors. Specific binding of nonviral vectors to tumor endothelial cells should be enhanced by multifunctional ligands and the transduction efficiency should be improved by cationic carriers. Effector genes should encode proteins potent enough to induce reactions which eliminate the tumor tissue. To be effective to that degree such proteins should induce self-amplifying antitumor reactions. Examples for proteins which have the potential to induce such self-amplifying tumor reactions are proteins endowed with antiangiogenic and antiproliferative activity, enzymes which convert prodrugs into drugs and possibly also proteins which induce embolization of tumor vessels. The pharmacological data for such examples are discussed in detail.

  10. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  11. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    PubMed

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  12. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    PubMed

    Vashisht, Shikha; Bagler, Ganesh

    2012-01-01

    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  13. An Approach for the Identification of Targets Specific to Bone Metastasis Using Cancer Genes Interactome and Gene Ontology Analysis

    PubMed Central

    Vashisht, Shikha; Bagler, Ganesh

    2012-01-01

    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a ‘Cancer Genes Network’, a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of ‘Cancer Genes Network’, have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer. PMID:23166660

  14. Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics.

    PubMed

    Linehan, W Marston; Pinto, Peter A; Srinivasan, Ramaprasad; Merino, Maria; Choyke, Peter; Choyke, Lynda; Coleman, Jonathan; Toro, Jorge; Glenn, Gladys; Vocke, Cathy; Zbar, Bert; Schmidt, Laura S; Bottaro, Donald; Neckers, Len

    2007-01-15

    Recent advances in understanding the kidney cancer gene pathways has provided the foundation for the development of targeted therapeutic approaches for patients with this disease. Kidney cancer is not a single disease; it includes a number of different types of renal cancers, each with different histologic features, a different clinical course, a different response to therapy, and different genes causing the defects. Most of what is known about the genetic basis of kidney cancer has been learned from study of the inherited forms of kidney cancer: von Hippel Lindau (VHL gene), hereditary papillary renal carcinoma (c-Met gene), Birt Hogg Dubé (BHD gene), and hereditary leiomyomatosis renal cell cancer (fumarate hydratase gene). These Mendelian single-gene syndromes provide a unique opportunity to evaluate the effectiveness of agents that target the VHL, c-Met, BHD, and fumarate hydratase pathways.

  15. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products.

  16. Systems Pharmacology‐Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes

    PubMed Central

    Fang, J; Cai, C; Wang, Q; Lin, P

    2017-01-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration‐approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. PMID:28294568

  17. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies.

    PubMed

    Zhu, Qing-Ge; Zhang, Shi-Ming; Ding, Xiao-Xiao; He, Bing; Zhang, Hu-Qin

    2017-08-22

    Lung cancer is one of the most common causes of cancer-related death in the world. The large number of lung cancer cases is non-small cell lung cancer (NSCLC), which approximately accounting for 75% of lung cancer. Over the past years, our comprehensive knowledge about the molecular biology of NSCLC has been rapidly enriching, which has promoted the discovery of driver genes in NSCLC and directed FDA-approved targeted therapies. Of course, the targeted therapies based on driver genes provide a more exact option for advanced non-small cell lung cancer, improving the survival rate of patients. Now, we will review the landscape of driver genes in NSCLC including the characteristics, detection methods, the application of target therapy and challenges.

  18. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment

    PubMed Central

    Parker, Brittany C.; Zhang, Wei

    2013-01-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients. PMID:24206917

  19. MicroRNA and target gene expression based clustering of oral cancer, precancer and normal tissues.

    PubMed

    Roy, Roshni; Singh, Richa; Chattopadhyay, Esita; Ray, Anindita; Sarkar, Navonil De; Aich, Ritesh; Paul, Ranjan Rashmi; Pal, Mousumi; Roy, Bidyut

    2016-11-15

    Development of oral cancer is usually preceded by precancerous lesion. Despite histopathological diagnosis, development of disease specific biomarkers continues to be a promising field of study. Expression of miRNAs and their target genes was studied in oral cancer and two types of precancer lesions to look for disease specific gene expression patterns. Expression of miR-26a, miR-29a, miR-34b and miR-423 and their 11 target genes were determined in 20 oral leukoplakia, 20 lichen planus and 20 cancer tissues with respect to 20 normal tissues using qPCR assay. Expression data were, then, used for cluster analysis of normal as well as disease tissues. Expression of miR-26a and miR-29a was significantly down regulated in leukoplakia and cancer tissues but up regulated in lichen planus tissues. Expression of target genes such as, ADAMTS7, ATP1B1, COL4A2, CPEB3, CDK6, DNMT3a and PI3KR1 was significantly down regulated in at least two of three disease types with respect to normal tissues. Negative correlations between expression levels of miRNAs and their targets were observed in normal tissues but not in disease tissues implying altered miRNA-target interaction in disease state. Specific expression profile of miRNAs and target genes formed separate clusters of normal, lichen planus and cancer tissues. Our results suggest that alterations in expression of selected miRNAs and target genes may play important roles in development of precancer to cancer. Expression profiles of miRNA and target genes may be useful to differentiate cancer and lichen planus from normal tissues, thereby bolstering their role in diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Transcription Factor-MicroRNA-Target Gene Networks Associated with Ovarian Cancer Survival and Recurrence

    PubMed Central

    Delfino, Kristin R.; Rodriguez-Zas, Sandra L.

    2013-01-01

    The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs), transcription factors (TFs), and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value <0.05) with ovarian cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients. PMID:23554906

  1. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    PubMed

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  2. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy.

    PubMed

    Takahashi, Shu; Kato, Kazunori; Nakamura, Kiminori; Nakano, Rika; Kubota, Kazuishi; Hamada, Hirofumi

    2011-04-01

    In adenovirus-derived gene therapy, one of the problems is the difficulty in specific targeting. We have recently demonstrated that monoclonal antibody (mAb) libraries screened by fiber-modified adenovirus vector (Adv-FZ33), which is capable of binding to immunoglobulin-G (IgG), provide a powerful approach for the identification of suitable target antigens for prostate cancer therapy. Hybridoma libraries from mice immunized with androgen-dependent prostate cancer cell line LNCaP were screened and mAb were selected. Through this screening, we obtained one mAb, designated LNI-29, that recognizes a glycoprotein with an apparent molecular mass of 100 kD. It was identified as neural cell adhesion molecule 2 (NCAM2). Some prostate and breast cancer cell lines highly expressed NCAM2 whereas normal prostate cell lines expressed NCAM2 at low levels. In contrast to the low efficiency of gene transduction by Adv-FZ33 with a control antibody, LNI-29-mediated Adv-FZ33 infection induces high rates of gene delivery in NCAM2-positive cancers. NCAM2-mediated therapeutic gene transduction of uracil phosphoribosyltransferase (UPRT) had a highly effective cytotoxic effect on NCAM2-positive cancer cells, whereas it had less of an effect in cases with a control antibody. In conclusion, NCAM2 should be a novel gene therapy target for the treatment of prostate and breast cancer.

  3. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  4. Roles of Wnt Target Genes in the Journey of Cancer Stem Cells

    PubMed Central

    Kim, Jee-Heun; Park, So-Yeon; Jun, Youngsoo; Kim, Ji-Young; Nam, Jeong-Seok

    2017-01-01

    The importance of Wnt/β-catenin signaling in cancer stem cells (CSCs) has been acknowledged; however, the mechanism through which it regulates the biological function of CSCs and promotes cancer progression remains elusive. Hence, to understand the intricate mechanism by which Wnt controls stemness, the specific downstream target genes of Wnt were established by analyzing the genetic signatures of multiple types of metastatic cancers based on gene set enrichment. By focusing on the molecular function of Wnt target genes, the biological roles of Wnt were interpreted in terms of CSC dynamics from initiation to metastasis. Wnt signaling participates in cancer initiation by generating CSCs from normal stem cells or non-CSCs and augmenting persistent growth at the primary region, which is resistant to anti-cancer therapy. Moreover, it assists CSCs in invading nearby tissues and in entering the blood stream, during which the negative feedback of the Wnt signaling pathway maintains CSCs in a dormant state that is suitable for survival. When CSCs arrive at distant organs, another burst of Wnt signaling induces CSCs to succeed in re-initiation and colonization. This comprehensive understanding of Wnt target genes provides a plausible explanation for how Wnt allows CSCs variation during cancer progression. PMID:28757546

  5. Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines.

    PubMed

    Villalobos, Xenia; Rodríguez, Laura; Solé, Anna; Lliberós, Carolina; Mencia, Núria; Ciudad, Carlos J; Noé, Véronique

    2015-08-01

    We studied the ability of polypurine reverse Hoogsteen hairpins (PPRHs) to silence a variety of relevant cancer-related genes in several human cell lines. PPRHs are hairpins formed by two antiparallel polypurine strands bound by intramolecular Hoogsteen bonds linked by a pentathymidine loop. These hairpins are able to bind to their target DNA sequence through Watson-Crick bonds producing specific silencing of gene expression. We designed PPRHs against the following genes: BCL2, TOP1, mTOR, MDM2, and MYC and tested them for mRNA levels, cytotoxicity, and apoptosis in prostate, pancreas, colon, and breast cancer cell lines. Even though all PPRHs were effective, the most remarkable results were obtained with those against BCL2 and mammalian target of rapamycin (mTOR) in decreasing cell survival and mRNA levels and increasing apoptosis in prostate, colon, and pancreatic cancer cells. In the case of TOP1, MDM2, and MYC, their corresponding PPRHs produced a strong effect in decreasing cell viability and mRNA levels and increasing apoptosis in breast cancer cells. Thus, we confirm that the PPRH technology is broadly useful to silence the expression of cancer-related genes as demonstrated using target genes involved in metabolism (DHFR), proliferation (mTOR), DNA topology (TOP1), lifespan and senescence (telomerase), apoptosis (survivin, BCL2), transcription factors (MYC), and proto-oncogenes (MDM2).

  6. Ets-1 regulates its target genes mainly by DNA methylation in human ovarian cancer.

    PubMed

    Wan, S M; Peng, P; Guan, T

    2013-11-01

    Ovarian cancer is the second most common gynaecological cancer worldwide, and its molecular mechanism has not been completely understood. Ets-1 is a member of the Ets transcription family and can play important roles in the regulation of extracellular matrix remodelling, invasion, angiogenesis and drug resistance in several malignancies, including ovarian cancer. In the current study, we downloaded two datasets from Gene Expression Omnibus database and sought to explore the regulation mechanism of Ets-1 in ovarian cancer by computational analysis of gene expression profiles. Microarray analysis identified a total of 548 genes that were regulated by Ets-1 in ovarian cancer. Functional annotation of these genes revealed that Ets-1 may be involved in several biological processes, both physiological and pathological, such as system development, response to stimulus, vascular endothelial growth factor (VEGF) production, morphogenesis, cell proliferation, cell adhesion and signal transduction. Further, DNA methylation analysis of the DEGs found that 26.5% (145) of them were differentially methylated genes in ovarian cancer. Our results provide insight into the mechanism of Ets-1 regulating the transcription of its target genes in the complex and multistep process of ovarian cancer progression.

  7. Highly Expressed Genes in Rapidly Proliferating Tumor Cells as New Targets for Colorectal Cancer Treatment.

    PubMed

    Bazzocco, Sarah; Dopeso, Higinio; Carton-Garcia, Fernando; Macaya, Irati; Andretta, Elena; Chionh, Fiona; Rodrigues, Paulo; Garrido, Miriam; Alazzouzi, Hafid; Nieto, Rocio; Sanchez, Alex; Schwartz, Simo; Bilic, Josipa; Mariadason, John M; Arango, Diego

    2015-08-15

    The clinical management of colorectal cancer patients has significantly improved because of the identification of novel therapeutic targets such as EGFR and VEGF. Because rapid tumor proliferation is associated with poor patient prognosis, here we characterized the transcriptional signature of rapidly proliferating colorectal cancer cells in an attempt to identify novel candidate therapeutic targets. The doubling time of 52 colorectal cancer cell lines was determined and genome-wide expression profiling of a subset of these lines was assessed by microarray analysis. We then investigated the potential of genes highly expressed in cancer cells with faster growth as new therapeutic targets. Faster proliferation rates were associated with microsatellite instability and poorly differentiated histology. The expression of 1,290 genes was significantly correlated with the growth rates of colorectal cancer cells. These included genes involved in cell cycle, RNA processing/splicing, and protein transport. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protoporphyrinogen oxidase (PPOX) were shown to have higher expression in faster growing cell lines and primary tumors. Pharmacologic or siRNA-based inhibition of GAPDH or PPOX reduced the growth of colon cancer cells in vitro. Moreover, using a mouse xenograft model, we show that treatment with the specific PPOX inhibitor acifluorfen significantly reduced the growth of three of the seven (42.8%) colon cancer lines investigated. We have characterized at the transcriptomic level the differences between colorectal cancer cells that vary in their growth rates, and identified novel candidate chemotherapeutic targets for the treatment of colorectal cancer. ©2015 American Association for Cancer Research.

  8. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    PubMed Central

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for

  9. Stem cells' guided gene therapy of cancer: New frontier in personalized and targeted therapy.

    PubMed

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells' guided gene therapy. Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we discuss

  10. Using Pharmacogenomic Databases for Discovering Patient-Target Genes and Small Molecule Candidates to Cancer Therapy

    PubMed Central

    Belizário, José E.; Sangiuliano, Beatriz A.; Perez-Sosa, Marcela; Neyra, Jennifer M.; Moreira, Dayson F.

    2016-01-01

    With multiple omics strategies being applied to several cancer genomics projects, researchers have the opportunity to develop a rational planning of targeted cancer therapy. The investigation of such numerous and diverse pharmacogenomic datasets is a complex task. It requires biological knowledge and skills on a set of tools to accurately predict signaling network and clinical outcomes. Herein, we describe Web-based in silico approaches user friendly for exploring integrative studies on cancer biology and pharmacogenomics. We briefly explain how to submit a query to cancer genome databases to predict which genes are significantly altered across several types of cancers using CBioPortal. Moreover, we describe how to identify clinically available drugs and potential small molecules for gene targeting using CellMiner. We also show how to generate a gene signature and compare gene expression profiles to investigate the complex biology behind drug response using Connectivity Map. Furthermore, we discuss on-going challenges, limitations and new directions to integrate molecular, biological and epidemiological information from oncogenomics platforms to create hypothesis-driven projects. Finally, we discuss the use of Patient-Derived Xenografts models (PDXs) for drug profiling in vivo assay. These platforms and approaches are a rational way to predict patient-targeted therapy response and to develop clinically relevant small molecules drugs. PMID:27746730

  11. MicroRNA-373 functions as an oncogene and targets YOD1 gene in cervical cancer

    SciTech Connect

    Wang, Luo-Qiao; Zhang, Yue; Yan, Huan; Liu, Kai-Jiang Zhang, Shu

    2015-04-10

    miR-373 was reported to be elevated in several tumors; however, the role of miR-373 in cervical cancer has not been investigated. In this study we aimed to investigate the role of miR-373 in tumorigenicity of cervical cancer cells in vivo and in vitro. The expression of miR-373 was investigated using real-time reverse transcription-polymerase chain reaction assay in 45 cervical specimens and cervical cancer cell lines. The role of miR-373 in tumorigenicity of cervical cancer cells was assessed by cell proliferation, colony formation in vitro as well as tumor growth assays in vivo with the overexpression of miR-373 or gene silencing. The functional target gene of miR-373 in cervical cancer cells was identified using integrated bioinformatics analysis, gene expression arrays, and luciferase assay. We founded that the expression of miR-373 is upregulated in human cervical cancer tissues and cervical carcinoma cell lines when compared to the corresponding noncancerous tissues. Ectopic overexpression of miR-373 in human cervical cancer cells promoted cell growth in vitro and tumorigenicity in vivo, whereas silencing the expression of miR-373 decreased the rate of cell growth. YOD1 was identified as a direct and functional target of miR-373 in cervical cancer cells. Expression levels of miR-373 were inversely correlated with YOD1 levels in human cervical cancer tissues. RNAi-mediated knockdown of YOD1 phenocopied the proliferation-promoting effect of miR-373. Moreover, overexpression of YOD1 abrogated miR-373-induced proliferation of cervical cancer cells. These results demonstrate that miR-373 increases proliferation by directly targeting YOD1, a new potential therapeutic target in cervical cancer. - Highlights: • The expression of miR-373 is upregulated in human cervical cancer tissues. • miR-373 effects as oncogenic miRNA in cervical cancer in vitro and in vivo. • miR-373 increases proliferation of cervical cancer cells by directly targeting YOD1.

  12. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets

    PubMed Central

    2012-01-01

    Background Altered networks of gene regulation underlie many complex conditions, including cancer. Inferring gene regulatory networks from high-throughput microarray expression data is a fundamental but challenging task in computational systems biology and its translation to genomic medicine. Although diverse computational and statistical approaches have been brought to bear on the gene regulatory network inference problem, their relative strengths and disadvantages remain poorly understood, largely because comparative analyses usually consider only small subsets of methods, use only synthetic data, and/or fail to adopt a common measure of inference quality. Methods We report a comprehensive comparative evaluation of nine state-of-the art gene regulatory network inference methods encompassing the main algorithmic approaches (mutual information, correlation, partial correlation, random forests, support vector machines) using 38 simulated datasets and empirical serous papillary ovarian adenocarcinoma expression-microarray data. We then apply the best-performing method to infer normal and cancer networks. We assess the druggability of the proteins encoded by our predicted target genes using the CancerResource and PharmGKB webtools and databases. Results We observe large differences in the accuracy with which these methods predict the underlying gene regulatory network depending on features of the data, network size, topology, experiment type, and parameter settings. Applying the best-performing method (the supervised method SIRENE) to the serous papillary ovarian adenocarcinoma dataset, we infer and rank regulatory interactions, some previously reported and others novel. For selected novel interactions we propose testable mechanistic models linking gene regulation to cancer. Using network analysis and visualization, we uncover cross-regulation of angiogenesis-specific genes through three key transcription factors in normal and cancer conditions. Druggabilty analysis

  13. New Approaches for Cancer Treatment: Antitumor Drugs Based on Gene-Targeted Nucleic Acids

    PubMed Central

    Patutina, O.A.; Mironova, N.L.; Vlassov, V.V.

    2009-01-01

    Currently, the main way to fight cancer is still chemotherapy. This method of treatment is at the height of its capacity, so, setting aside the need for further improvements in traditional treatments for neoplasia, it is vital to develop now approaches toward treating malignant tumors. This paper reviews innovational experimental approaches to treating malignant malformations based on the use of gene-targeted drugs, such as antisense oligonucleotides (asON), small interfering RNA (siRNA), ribozymes, and DNAzymes, which can all inhibit oncogene expression. The target genes for these drugs are thoroughly characterized, and the main results from pre-clinical and first-step clinical trials of these drugs are presented. It is shown that the gene-targeted oligonucleotides show considerable variations in their effect on tumor tissue, depending on the target gene in question. The effects range from slowing and stopping the proliferation of tumor cells to suppressing their invasive capabilities. Despite their similarity, not all the antisense drugs targeting the same region of the mRNA of the target-gene were equally effective. The result is determined by the combination of the drug type used and the region of the target-gene mRNA that it complements. PMID:22649602

  14. NIH tools facilitate matching cancer drugs with gene targets

    Cancer.gov

    A new study details how a suite of web-based tools provides the research community with greatly improved capacity to compare data derived from large collections of genomic information against thousands of drugs. By comparing drugs and genetic targets, re

  15. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer.

    PubMed

    Rao, Chinthalapally V; Asch, Adam S; Yamada, Hiroshi Y

    2017-01-01

    The incidence of liver cancer has increased in recent years. Worldwide, liver cancer is common: more than 600000 related deaths are estimated each year. In the USA, about 27170 deaths due to liver cancer are estimated for 2016. Liver cancer is highly resistant to conventional chemotherapy and radiotherapy. For all stages combined, the 5-year survival rate is 15-17%, leaving much to be desired for liver cancer prevention and therapy. Heterogeneity, which can originate from genomic instability, is one reason for poor outcome. About 80-90% of liver cancers are hepatocellular carcinoma (HCC), and recent cancer genome sequencing studies have revealed frequently mutated genes in HCC. In this review, we discuss the cause of the tumor heterogeneity based on the functions of genes that are frequently mutated in HCC. We overview the functions of the genes that are most frequently mutated (e.g. TP53, CTNNB1, AXIN1, ARID1A and WWP1) that portray major pathways leading to HCC and identify the roles of these genes in preventing genomic instability. Notably, the pathway analysis suggested that oxidative stress management may be critical to prevent accumulation of DNA damage and further mutations. We propose that both chromosome instability (CIN) and microsatellite instability (MIN) are integral to the hepatic carcinogenesis process leading to heterogeneity in HCC and that the pathways leading to heterogeneity may be targeted for prognosis, prevention and treatment.

  16. Global identification of genes targeted by DNMT3b for epigenetic silencing in lung cancer.

    PubMed

    Teneng, I; Tellez, C S; Picchi, M A; Klinge, D M; Yingling, C M; Snider, A M; Liu, Y; Belinsky, S A

    2015-01-29

    The maintenance cytosine DNA methyltransferase DNMT1 and de novo methyltransferase DNMT3b cooperate to establish aberrant DNA methylation and chromatin complexes to repress gene transcription during cancer development. The expression of DNMT3b was constitutively increased 5-20-fold in hTERT/CDK4-immortalized human bronchial epithelial cells (HBECs) before treatment with low doses of tobacco carcinogens. Overexpression of DNMT3b increased and accelerated carcinogen-induced transformation. Genome-wide profiling of transformed HBECs identified 143 DNMT3b-target genes, many of which were transcriptionally regulated by the polycomb repressive complex 2 (PRC2) complex and silenced through aberrant methylation in non-small-cell lung cancer cell lines. Two genes studied in detail, MAL and OLIG2, were silenced during transformation, initially through enrichment for H3K27me3 and H3K9me2, commonly methylated in lung cancer, and exert tumor suppressor effects in vivo through modulating cancer-related pathways. Re-expression of MAL and OLIG2 to physiological levels dramatically reduced the growth of lung tumor xenografts. Our results identify a key role for DNMT3b in the earliest stages of initiation and provide a comprehensive catalog of genes targeted for silencing by this methyltransferase in non-small-cell lung cancer.

  17. Viral Etiology Relationship between Human Papillomavirus and Human Breast Cancer and Target of Gene Therapy.

    PubMed

    Yan, Chen; Teng, Zhi Ping; Chen, Yun Xin; Shen, Dan Hua; Li, Jin Tao; Zeng, Yi

    2016-05-01

    To explore the viral etiology of human breast cancer to determine whether there are novel molecular targets for gene therapy of breast cancer and provide evidence for the research of gene therapy and vaccine development for breast cancer. PCR was used to screen HPV16 and HPV18 oncogenes E6 and E7 in the SKBR3 cell line and in 76 paraffin embedded breast cancer tissue samples. RNA interference was used to knock down the expression of HPV18 E6 and E7 in SKBR3 cells, then the changes in the expression of cell-cycle related proteins, cell viability, colony formation, metastasis, and cell cycle progression were determined. HPV18 oncogenes E6 and E7 were amplified and sequenced from the SKBR3 cells. Of the patient samples, 6.58% and 23.68% were tested to be positive for HPV18 E6 and HPV18 E7. In the cell culture models, the knockdown of HPV18 E6 and E7 inhibited the proliferation, metastasis, and cell cycle progression of SKBR3 cell. The knockdown also clearly affected the expression levels of cell cycle related proteins. HPV was a contributor to virus caused human breast cancer, suggesting that the oncogenes in HPV were potential targets for gene therapy of breast cancer. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Gene expression profiling based identification of cell surface targets for developing multimeric ligands in pancreatic cancer

    PubMed Central

    Balagurunathan, Yoganand; Morse, David L.; Hostetter, Galen; Shanmugam, Vijayalakshmi; Stafford, Phillip; Shack, Sonsoles; Pearson, John; Trissal, Maria; Demeure, Michael J.; Von Hoff, Daniel D.; Hruby, Victor J.; Gillies, Robert J.; Han, Haiyong

    2008-01-01

    Multimeric ligands are ligands that contain multiple binding domains that simultaneously target multiple cell surface proteins. Due to cooperative binding, multimeric ligands can have high avidity for cells (tumor) expressing all targeting proteins and only show minimal binding to cells (normal tissues) expressing none or only some of the targets. Identifying combinations of targets that concurrently express in tumor cells, but not in normal cells is a challenging task. Here, we describe a novel approach for identifying such combinations using genome-wide gene expression profiling followed by immunohistochemistry. We first generated a database of mRNA gene expression profiles for 28 pancreatic cancer specimens and 103 normal tissue samples representing 28 unique tissue/cell types using DNA microarrays. The expression data for genes that encode proteins with cell surface epitopes were then extracted from the database and analyzed using a novel multivariate rule-based computational approach to identify gene combinations that are expressed at an efficient binding level in tumors, but not in normal tissues. These combinations were further ranked according to the proportion of tumor samples that expressed the sets at efficient levels. Protein expression of the genes contained in the top ranked combinations was confirmed using immunohistochemistry on a pancreatic tumor tissue and normal tissue microarrays. Co-expression of targets was further validated by their combined expression in pancreatic cancer cell lines using immunocytochemistry. These validated gene combinations thus encompass a list of cell surface targets that can be used to develop multimeric ligands for the imaging and treatment of pancreatic cancer. PMID:18765825

  19. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    PubMed

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer. ©2015 American Association for Cancer Research.

  20. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci.

    PubMed

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan; Hazelett, Dennis; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bogdanova, Natalia; Brinton, Louise; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Dansonka-Mieszkowska, Agnieszka; Doherty, Jennifer Anne; Dörk, Thilo; Dürst, Matthias; Eccles, Diana; Fasching, Peter A; Flanagan, James; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Heitz, Florian; Hildebrandt, Michelle A T; Høgdall, Estrid; Høgdall, Claus K; Huntsman, David G; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Levine, Douglas A; Li, Qiyuan; Lissowska, Jolanta; Lu, Karen H; Lubiński, Jan; Massuger, Leon F A G; McGuire, Valerie; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Permuth, Jennifer B; Phelan, Catherine; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rossing, Mary Anne; Salvesen, Helga B; Schildkraut, Joellen M; Sellers, Thomas A; Sherman, Mark; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa; Terry, Kathryn L; Tworoger, Shelley S; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P; Lawrenson, Kate

    2017-02-14

    Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10(-5) (including six with P<5 × 10(-8)). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC.

  1. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    PubMed

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-01-23

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicates that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. This article is protected by copyright. All rights reserved.

  2. Multiple-to-Multiple Relationships between MicroRNAs and Target Genes in Gastric Cancer

    PubMed Central

    Hashimoto, Yutaka; Akiyama, Yoshimitsu; Yuasa, Yasuhito

    2013-01-01

    MicroRNAs (miRNAs) act as transcriptional regulators and play pivotal roles in carcinogenesis. According to miRNA target databases, one miRNA may regulate many genes as its targets, while one gene may be targeted by many miRNAs. These findings indicate that relationships between miRNAs and their targets may not be one-to-one. However, many reports have described only a one-to-one, one-to-multiple or multiple-to-one relationship between miRNA and its target gene in human cancers. Thus, it is necessary to determine whether or not a combination of some miRNAs would regulate multiple targets and be involved in carcinogenesis. To find some groups of miRNAs that may synergistically regulate their targets in human gastric cancer (GC), we re-analyzed our previous miRNA expression array data and found that 50 miRNAs were up-regulated on treatment with 5-aza-2'-deoxycytidine in a GC cell line. The “TargetScan” miRNA target database predicted that some of these miRNAs have common target genes. We also referred to the GEO database for expression of these common target genes in human GCs, which might be related to gastric carcinogenesis. In this study, we analyzed two miRNA combinations, miR-224 and -452, and miR-181c and -340. Over-expression of both miRNA combinations dramatically down-regulated their target genes, DPYSL2 and KRAS, and KRAS and MECP2, respectively. These miRNA combinations synergistically decreased cell proliferation upon transfection. Furthermore, we revealed that these miRNAs were down-regulated through promoter hypermethylation in GC cells. Thus, it is likely that the relationships between miRNAs and their targets are not one-to-one but multiple-to-multiple in GCs, and that these complex relationships may be related to gastric carcinogenesis. PMID:23667495

  3. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets.

    PubMed

    Grade, Marian; Hummon, Amanda B; Camps, Jordi; Emons, Georg; Spitzner, Melanie; Gaedcke, Jochen; Hoermann, Patrick; Ebner, Reinhard; Becker, Heinz; Difilippantonio, Michael J; Ghadimi, B Michael; Beissbarth, Tim; Caplen, Natasha J; Ried, Thomas

    2011-03-01

    Genes that are highly overexpressed in tumor cells can be required for tumor cell survival and have the potential to be selective therapeutic targets. In an attempt to identify such targets, we combined a functional genomics and a systems biology approach to assess the consequences of RNAi-mediated silencing of overexpressed genes that were selected from 140 gene expression profiles from colorectal cancers (CRCs) and matched normal mucosa. In order to identify credible models for in-depth functional analysis, we first confirmed the overexpression of these genes in 25 different CRC cell lines. We then identified five candidate genes that profoundly reduced the viability of CRC cell lines when silenced with either siRNAs or short-hairpin RNAs (shRNAs), i.e., HMGA1, TACSTD2, RRM2, RPS2 and NOL5A. These genes were further studied by systematic analysis of comprehensive gene expression profiles generated following siRNA-mediated silencing. Exploration of these RNAi-specific gene expression signatures allowed the identification of the functional space in which the five genes operate and showed enrichment for cancer-specific signaling pathways, some known to be involved in CRC. By comparing the expression of the RNAi signature genes with their respective expression levels in an independent set of primary rectal carcinomas, we could recapitulate these defined RNAi signatures, therefore, establishing the biological relevance of our observations. This strategy identified the signaling pathways that are affected by the prominent oncogenes HMGA1 and TACSTD2, established a yet unknown link between RRM2 and PLK1 and identified RPS2 and NOL5A as promising potential therapeutic targets in CRC.

  4. Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector.

    PubMed

    Hajitou, Amin

    2010-01-01

    Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies.

  5. A folate receptor-targeted lipoplex delivering interleukin-15 gene for colon cancer immunotherapy.

    PubMed

    Liang, Xiao; Luo, Min; Wei, Xia-Wei; Ma, Cui-Cui; Yang, Yu-Han; Shao, Bin; Liu, Yan-Tong; Liu, Ting; Ren, Jun; Liu, Li; He, Zhi-Yao; Wei, Yu-Quan

    2016-08-09

    Interleukin-15 has been implicated as a promising cytokine for cancer immunotherapy, while folate receptor α (FRα) has been shown to be a potentially useful target for colon cancer therapy. Herein, we developed F-PLP/pIL15, a FRα-targeted lipoplex loading recombinant interleukin-15 plasmid (pIL15) and studied its antitumor effects in vivo using a CT26 colon cancer mouse model. Compared with control (normal saline) treatment, F-PLP/pIL15 significantly suppressed tumor growth in regard to tumor weight (P < 0.001) and reduced tumor nodule formation (P < 0.001). Moreover, when compared to other lipoplex-treated mice, F-PLP/pIL15-treated mice showed higher levels of IL15 secreted in the serum (P < 0.001) and ascites (P < 0.01). These results suggested that the targeted delivery of IL15 gene might be associated with its in vivo antitumor effects, which include inducing tumor cell apoptosis, inhibiting tumor proliferation and promoting the activation of immune cells such as T cells and natural killer cells. Furthermore, hematoxylin and eosin staining of vital organs following F-PLP/pIL15 treatment showed no detectable toxicity, thus indicating that intraperitoneal administration may be a viable route of delivery. Overall, these results suggest that F-PLP/pIL15 may serve as a potential targeting preparation for colon cancer therapy.

  6. A folate receptor-targeted lipoplex delivering interleukin-15 gene for colon cancer immunotherapy

    PubMed Central

    Liang, Xiao; Luo, Min; Wei, Xia-Wei; Ma, Cui-Cui; Yang, Yu-Han; Shao, Bin; Liu, Yan-Tong; Liu, Ting; Ren, Jun; Liu, Li; He, Zhi-Yao; Wei, Yu-Quan

    2016-01-01

    Interleukin-15 has been implicated as a promising cytokine for cancer immunotherapy, while folate receptor α (FRα) has been shown to be a potentially useful target for colon cancer therapy. Herein, we developed F-PLP/pIL15, a FRα-targeted lipoplex loading recombinant interleukin-15 plasmid (pIL15) and studied its antitumor effects in vivo using a CT26 colon cancer mouse model. Compared with control (normal saline) treatment, F-PLP/pIL15 significantly suppressed tumor growth in regard to tumor weight (P < 0.001) and reduced tumor nodule formation (P < 0.001). Moreover, when compared to other lipoplex-treated mice, F-PLP/pIL15-treated mice showed higher levels of IL15 secreted in the serum (P < 0.001) and ascites (P < 0.01). These results suggested that the targeted delivery of IL15 gene might be associated with its in vivo antitumor effects, which include inducing tumor cell apoptosis, inhibiting tumor proliferation and promoting the activation of immune cells such as T cells and natural killer cells. Furthermore, hematoxylin and eosin staining of vital organs following F-PLP/pIL15 treatment showed no detectable toxicity, thus indicating that intraperitoneal administration may be a viable route of delivery. Overall, these results suggest that F-PLP/pIL15 may serve as a potential targeting preparation for colon cancer therapy. PMID:27438147

  7. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    PubMed

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma.

  8. TBLR1 as an AR coactivator selectively activates AR target genes to inhibit prostate cancer growth

    PubMed Central

    Daniels, Garrett; Li, Yirong; Gellert, Lan Lin; Zhou, Albert; Melamed, Jonathan; Wu, Xinyu; Zhang, Xinming; Zhang, David; Meruelo, Daniel; Logan, Susan K.; Basch, Ross; Lee, Peng

    2014-01-01

    Androgen Receptor (AR), a steroid hormone receptor, is critical for prostate cancer growth. However, activation of AR by androgens can also lead to growth suppression and differentiation. Transcriptional cofactors play an important role in this switch between proliferative and anti-proliferative AR target gene programs. TBLR1, a core component of the nuclear receptor corepressor (NCoR) complex, shows both co-repressor and co-activator activities on nuclear receptors, but little is known about its effects on AR and prostate cancer. We characterized TBLR1 as a coactivator of AR in prostate cancer cells and the activation is both phosphorylation and 19S proteosome dependent. We showed that TBLR1 physically interacts with AR and directly occupies the androgen response elements of affected AR target genes in an androgen-dependent manner. TBLR1 is primarily localized in the nucleus in benign prostate cells and nuclear expression is significantly reduced in prostate cancer cells in culture. Similarly, in human tumor samples, the expression of TBLR1 in the nucleus is significantly reduced in the malignant glands compared to the surrounding benign prostatic glands (p<0.005). Stable ectopic expression of nuclear TBLR1 leads to androgen-dependent growth suppression of prostate cancer cells in vitro and in vivo by selective activation of androgen regulated genes associated with differentiation (e.g. KRT18) and growth suppression (e.g. NKX3.1), but not cell proliferation of the prostate. Understanding the molecular switches involved in the transition from AR dependent growth promotion to AR dependent growth suppression will lead to more successful prostate cancer treatments. PMID:24243687

  9. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types

    PubMed Central

    Sartore-Bianchi, Andrea; Siena, Salvatore

    2016-01-01

    The tropomyosin receptor kinase (Trk) receptor family comprises 3 transmembrane proteins referred to as Trk A, B and C (TrkA, TrkB and TrkC) receptors that are encoded by the NTRK1, NTRK2 and NTRK3 genes, respectively. These receptor tyrosine kinases are expressed in human neuronal tissue and play an essential role in the physiology of development and function of the nervous system through activation by neurotrophins. Gene fusions involving NTRK genes lead to transcription of chimeric Trk proteins with constitutively activated or overexpressed kinase function conferring oncogenic potential. These genetic abnormalities have recently emerged as targets for cancer therapy, because novel compounds have been developed that are selective inhibitors of the constitutively active rearranged proteins. Developments in this field are being aided by next generation sequencing methods as tools for unbiased gene fusions discovery. In this article, we review the role of NTRK gene fusions across several tumour histologies, and the promises and challenges of targeting such genetic alterations for cancer therapy. PMID:27843590

  10. Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells

    PubMed Central

    Canine, Brenda. F.; Wang, Yuhua; Hatefi, Arash

    2010-01-01

    A novel multi-domain biopolymer was designed and genetically engineered with the purpose to target and transfect cancer cells. The biopolymer contains at precise locations: 1) repeating units of arginine and histidine to condense pDNA and lyse endosome membranes, 2) a HER2 targeting affibody to target cancer cells, 3) a pH responsive fusogenic peptide to destabilize endosome membranes and enhance endosomolytic activity of histidine residues, and 4) a nuclear localization signal to enhance translocation of pDNA towards the cell nucleus. The results demonstrated that the biopolymer was able to condense pDNA into nanosize particles, protect pDNA from serum endonucleases, target HER2 positive cancer cells but not HER2 negative ones, efficiently disrupt endosomes, and effectively reach the cell nucleus of target cells to mediate gene expression. To reduce potential toxicity and enhance biodegradability, the biopolymer was designed to be susceptible to digestion by endogenous furin enzymes inside the cells. The results revealed no significant biopolymer related toxicity as determined by impact on cell viability. PMID:19379785

  11. Identification of vitamin D3 target genes in human breast cancer tissue.

    PubMed

    Sheng, Lei; Anderson, Paul H; Turner, Andrew G; Pishas, Kathleen I; Dhatrak, Deepak J; Gill, Peter G; Morris, Howard A; Callen, David F

    2016-11-01

    Multiple epidemiological studies have shown that high vitamin D3 status is strongly associated with improved breast cancer survival. To determine the molecular pathways influenced by 1 alpha, 25-dihydroxyvitamin D3 (1,25D) in breast epithelial cells we isolated RNA from normal human breast and cancer tissues treated with 1,25D in an ex vivo explant system. RNA-Seq revealed 523 genes that were differentially expressed in breast cancer tissues in response to 1,25D treatment, and 127 genes with altered expression in normal breast tissues. GoSeq KEGG pathway analysis revealed 1,25D down-regulated cellular metabolic pathways and enriched pathways involved with intercellular adhesion. The highly 1,25D up-regulated target genes CLMN, SERPINB1, EFTUD1, and KLK6were selected for further analysis and up-regulation by 1,25D was confirmed by qRT-PCR analysis in breast cancer cell lines and in a subset of human clinical samples from normal and cancer breast tissues. Ketoconazole potentiated 1,25D-mediated induction of CLMN, SERPINB1, and KLK6 mRNA through inhibition of 24-hydroxylase (CYP24A1) activity. Elevated expression levels of CLMN, SERPINB1, and KLK6 are associated with prolonged relapse-free survival for breast cancer patients. The major finding of the present study is that exposure of both normal and malignant breast tissue to 1,25D results in changes in cellular adhesion, metabolic pathways and tumor suppressor-like pathways, which support epidemiological data suggesting that adequate vitamin D3 levels may improve breast cancer outcome.

  12. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus

    PubMed Central

    Yang, Yu; Xu, Haineng; Huang, Weidan; Ding, Miao; Xiao, Jing; Yang, Dongmei; Li, Huaguang; Liu, Xin-Yuan; Chu, Liang

    2015-01-01

    Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors-defined serum-free medium. A549 sphere cells displayed CSC properties, including chemo-resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55-EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55-TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55-TRAIL. In the A549 sphere cells xenograft models, ZD55-TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs. PMID:25683371

  13. New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy.

    PubMed

    Cereda, Vittore; Poole, Diane J; Palena, Claudia; Das, Sudipto; Bera, Tapan K; Remondo, Cinzia; Gulley, James L; Arlen, Philip M; Yokokawa, Junko; Pastan, Ira; Schlom, Jeffrey; Tsang, Kwong Y

    2010-01-01

    New gene expressed in prostate (NGEP) is a prostate-specific gene encoding either a small cytoplasmic protein (NGEP-S) or a larger polytopic membrane protein (NGEP-L). NGEP-L expression is detectable only in prostate cancer, benign prostatic hyperplasia and normal prostate. We have identified an HLA-A2 binding NGEP epitope (designated P703) which was used to generate T cell lines from several patients with localized and metastatic prostate cancer. These T cell lines were able to specifically lyse HLA-A2 and NGEP-expressing human tumor cells. NGEP-P703 tetramer binding assays demonstrated that metastatic prostate cancer patients had a higher frequency of NGEP-specific T cells when compared with healthy donors. Moreover, an increased frequency of NGEP-specific T cells was detected in the peripheral blood mononuclear cells of prostate cancer patients post-vaccination with a PSA-based vaccine, further indicating the immunogenicity of NGEP. These studies thus identify NGEP as a potential target for T cell-mediated immunotherapy of prostate cancer.

  14. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer.

    PubMed

    Moradian Tehrani, Rana; Verdi, Javad; Noureddini, Mahdi; Salehi, Rasoul; Salarinia, Reza; Mosalaei, Meysam; Simonian, Miganosh; Alani, Behrang; Ghiasi, Moosa Rahimi; Jaafari, Mahmoud Reza; Mirzaei, Hamed Reza; Mirzaei, Hamed

    2017-07-13

    One of the important strategies for the treatment of cancer is gene therapy which has the potential to exclusively eradicate malignant cells, without any damage to the normal tissues. Gene-directed enzyme prodrug therapy (GDEPT) is a two-step gene therapy approach, where a suicide gene is directed to tumor cells. The gene encodes an enzyme that expressed intracellularly where it is able to convert a prodrug into cytotoxic metabolites. Various delivery systems have been developed to achieve the appropriate levels of tumor restricted expression of chemotherapeutic drugs. Nowadays, mesenchymal stem cells (MSCs) have been drawing great attention as cellular vehicles for gene delivery systems. Inherent characteristics of MSCs make them particularly attractive gene therapy tools in cell therapy. They have been used largely for their remarkable homing property toward tumor sites and availability from many different adult tissues and show anti-inflammatory actions in some cases. They do not stimulate proliferative responses of lymphocytes, suggests that MSCs have low immunogenicity and could avoid immune rejection. This review summarizes the current state of knowledge about genetically modified MSCs that enable to co-transduce a variety of therapeutic agents including suicide genes (i.e., cytosine deaminase, thymidine kinase) in order to exert potent anti-carcinogenesis against various tumors growth. Moreover, we highlighted the role of exosomes released from MSCs as new therapeutic platform for targeting various therapeutic agents. © 2017 Wiley Periodicals, Inc.

  15. Altered expression of PTCH and HHIP in gastric cancer through their gene promoter methylation: novel targets for gastric cancer.

    PubMed

    Song, Yu; Tian, Ye; Zuo, Yun; Tu, Jian-Cheng; Feng, Yu-Fang; Qu, Chen-Jiang

    2013-04-01

    Human hedgehog-interacting protein (HHIP) and protein patched homolog (PTCH) are two negative regulators of the hedgehog signal, however, the mechanism of action in gastric cancer is unknown. Methylation of TSG promoters has been considered as a causative mechanism of tumorigenesis. In the present study, we first determined the expression of PTCH and HHIP mRNA and protein in gastric cancer tissues and adjacent normal tissues, and then detected methylation of the two genes to associate their expression and gene promoter methylation in gastric cancer. Expression in gastric cancer tissues and the cancer cells (AGS) were evaluated by reverse transcription-PCR (RT-PCR), qRT-PCR and IHC, while the methylation expression was valued by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). Cell viability and apoptosis were analyzed by MTT assay and flow cytometry following treatment with 5-aza-dc. Results showed that PTCH and HHIP expression was reduced in gastric cancer tissues that were not associated with clinical features. Moreover, methylation of the promoters was reversely correlated with the expression. Following treatment with 5-aza-dc, AGS reduced cell viability and induced apoptosis, which is associated with upregulation of HHIP expression. The data demonstrated that loss of expression of HHIP and PTCH is associated with the methylation of gene promoters. In addition, 5-aza-dc-induced apoptosis correlated with the upregulation of HHIP expression in AGS. The findings demonstrated that the PTCH and HHIP genes may be novel targets for the control of gastric cancer.

  16. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    PubMed Central

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  17. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer.

    PubMed

    Neveu, Bertrand; Jain, Pallavi; Têtu, Bernard; Wu, Lily; Fradet, Yves; Pouliot, Frédéric

    2016-01-12

    Targeting specifically primary prostate cancer (PCa) cells for immune therapy, gene therapy or molecular imaging is of high importance. The PCA3 long non-coding RNA is a unique PCa biomarker and oncogene that has been widely studied. This gene has been mainly exploited as an accurate diagnostic urine biomarker for PCa detection. In this study, the PCA3 promoter was introduced into a new transcriptional amplification system named the 3-Step Transcriptional Amplification System (PCA3-3STA) and cloned into type 5 adenovirus. PCA3-3STA activity was highly specific for PCa cells, ranging between 98.7- and 108.0-fold higher than that for benign primary prostate epithelial or non-PCa cells, respectively. In human PCa xenografts, PCA3-3STA displayed robust bioluminescent signals at levels that are sufficient to translate to positron emission tomography (PET)-based reporter imaging. Remarkably, when freshly isolated benign or cancerous prostate biopsies were infected with PCA3-3STA, the optical signal produced from primary PCa biopsies was significantly higher than from benign prostate biopsies (4.4-fold, p < 0.0001). PCA3-3STA therefore represents a PCa-specific expression system with the potential to target, with high accuracy, primary or metastatic PCa epithelial cells for imaging, vaccines, or gene therapy.

  18. Analysis of Deregulated microRNAs and Their Target Genes in Gastric Cancer

    PubMed Central

    Kupcinskas, Juozas; Link, Alexander; Kiudelis, Gediminas; Jonaitis, Laimas; Jarmalaite, Sonata; Kupcinskas, Limas; Malfertheiner, Peter; Skieceviciene, Jurgita

    2015-01-01

    Background MicroRNAs (miRNAs) are widely studied non-coding RNAs that modulate gene expression. MiRNAs are deregulated in different tumors including gastric cancer (GC) and have potential diagnostic and prognostic implications. The aim of our study was to determine miRNA profile in GC tissues, followed by evaluation of deregulated miRNAs in plasma of GC patients. Using available databases and bioinformatics methods we also aimed to evaluate potential target genes of confirmed differentially expressed miRNA and validate these findings in GC tissues. Methods The study included 51 GC patients and 51 controls. Initially, we screened miRNA expression profile in 13 tissue samples of GC and 12 normal gastric tissues with TaqMan low density array (TLDA). In the second stage, differentially expressed miRNAs were validated in a replication cohort using qRT-PCR in tissue and plasma samples. Subsequently, we analyzed potential target genes of deregulated miRNAs using bioinformatics approach, determined their expression in GC tissues and performed correlation analysis with targeting miRNAs. Results Profiling with TLDA revealed 15 deregulated miRNAs in GC tissues compared to normal gastric mucosa. Replication analysis confirmed that miR-148a-3p, miR-204-5p, miR-223-3p and miR-375 were consistently deregulated in GC tissues. Analysis of GC patients’ plasma samples showed significant down-regulation of miR-148a-3p, miR-375 and up-regulation of miR-223-3p compared to healthy subjects. Further, using bioinformatic tools we identified targets of replicated miRNAs and performed disease-associated gene enrichment analysis. Ultimately, we evaluated potential target gene BCL2 and DNMT3B expression by qRT-PCR in GC tissue, which correlated with targeting miRNA expression. Conclusions Our study revealed miRNA profile in GC tissues and showed that miR-148a-3p, miR-223-3p and miR-375 are deregulated in GC plasma samples, but these circulating miRNAs showed relatively weak diagnostic

  19. The down-regulated ING5 expression in lung cancer: A potential target of gene therapy

    PubMed Central

    Zhao, Shuang; Yang, Xue-feng; Shen, Dao-fu; Gao, Yang; Shi, Shuai; Wu, Ji-cheng; Liu, Hong-xu; Sun, Hong-zhi; Su, Rong-jian; Zheng, Hua-chuan

    2016-01-01

    ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. We found that ING5 overexpression not only inhibited proliferation, migration, and invasion, but also induced G2 arrest, differentiation, autophagy, apoptosis, glycolysis and mitochondrial respiration in lung cancer cells. ING5 transfection up-regulated the expression of Cdc2, ATG13, ATG14, Beclin-1, LC-3B, AIF, cytochrome c, Akt1/2/3, ADFP, PFK-1 and PDPc, while down-regulated the expression of Bcl-2, XIAP, survivin,β-catenin and HXK1. ING5 transfection desensitized cells to the chemotherapy of MG132, paclitaxel, and SAHA, which paralleled with apoptotic alteration. ING5 overexpression suppressed the xenograft tumor growth by inhibiting proliferation and inducing apoptosis. ING5 expression level was significantly higher in normal tissue than that in lung cancer at both protein and mRNA levels. Nuclear ING5 expression was positively correlated with ki-67 expression and cytoplasmic ING5 expression. Cytoplasmic ING5 expression was positively associated with lymph node metastasis, and negatively with age, lymphatic invasion or CPP32 expression. ING5 expression was different in histological classification: squamous cell carcinoma > adenocarcinoma > large cell carcinoma > small cell carcinoma. Taken together, our data suggested that ING5 downregulation might involved in carcinogenesis, growth, and invasion of lung cancer and could be considered as a promising marker to gauge the aggressiveness of lung cancer. It might be employed as a potential target for gene therapy of lung cancer. PMID:27409347

  20. Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer.

    PubMed

    McBride, John W; Massey, Ashley S; McCaffrey, J; McCrudden, Cian M; Coulter, Jonathan A; Dunne, Nicholas J; Robson, Tracy; McCarthy, Helen O

    2016-03-16

    Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles <100 nm and were capable of transfecting PC-3 metastatic prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine(®) 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Targeted Therapy for Cancer

    Cancer.gov

    Targeted therapy is a type of cancer treatment that targets the changes in cancer cells that help them grow, divide, and spread. Learn how targeted therapy works against cancer and about side effects that may occur.

  2. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy.

    PubMed

    Sainio, Annele; Järveläinen, Hannu

    2014-01-01

    Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.

  3. Gene transfer vectors targeted to human prostate cancer: do we need better preclinical testing systems?

    PubMed

    Maitland, Norman; Chambers, Karen; Georgopoulos, Lindsay; Simpson-Holley, Martha; Leadley, Regina; Evans, Helen; Essand, Magnus; Danielsson, Angelika; van Weerden, Wytske; de Ridder, Corrina; Kraaij, Robert; Bangma, Chris H

    2010-07-01

    Destruction of cancer cells by genetically modified viral and nonviral vectors has been the aim of many research programs. The ability to target cytotoxic gene therapies to the cells of interest is an essential prerequisite, and the treatment has always had the potential to provide better and more long-lasting therapy than existing chemotherapies. However, the potency of these infectious agents requires effective testing systems, in which hypotheses can be explored both in vitro and in vivo before the establishment of clinical trials in humans. The real prospect of off-target effects should be eliminated in the preclinical stage, if current prejudices against such therapies are to be overcome. In this review we have set out, using adenoviral vectors as a commonly used example, to discuss some of the key parameters required to develop more effective testing, and to critically assess the current cellular models for the development and testing of prostate cancer biotherapy. Only by developing models that more closely mirror human tissues will we be able to translate literature publications into clinical trials and hence into acceptable alternative treatments for the most commonly diagnosed cancer in humans.

  4. Experimental study of antiangiogenic gene therapy targeting VEGF in oral cancer.

    PubMed

    Okada, Yasuo; Ueno, Hikaru; Katagiri, Masataka; Oneyama, Takahiro; Shimomura, Kana; Sakurai, Satoshi; Mataga, Izumi; Moride, Michiko; Hasegawa, Hitoshi

    2010-02-01

    It is well known that tumor angiogenesis plays an important role in local growth and metastasis of oral cancer; therefore, inhibiting angiogenesis is considered to be effective for treating oral cancer. This study aimed to investigate the effectiveness of systemically available antiangiogenic gene therapy targeting vascular endothelial growth factor (VEGF), which is one of the most important angiogenesis accelerators. We administered a soluble form of VEGF receptor-expressing gene incorporated into adenovirus (AdVEGF-ExR) intraperitoneally to nude mice to which oral cancer cell lines (SAS, HSC-3, and Ca9-22) had been transplanted subcutaneously in vivo to inhibit angiogenesis and tumor proliferation. Then, we measured tumor volumes over time, and tumors were enucleated and examined histopathologically and immunohistologically at 28 days after AdVEGF-ExR administration. Compared to the controls to which we administered AdLacZ or saline, significant antiproliferative effects were observed (P < 0.05) in the AdVEGF-ExR administration group, and extensive tumor necrosis was found histopathologically. Immunohistochemical analysis with CD34 (NU-4A1) revealed tumor angiogenesis was suppressed significantly (P < 0.05), and that with ssDNA revealed apoptosis induction was significantly high (P < 0.05) in the AdVEGF-ExR group. However, analysis with Ki-67 (MIB-1) revealed tumor proliferative capacity was not significantly different between the groups. Consequently, we consider that AdVEGF-ExR administration achieved tumor growth suppression by inhibiting angiogenesis and inducing apoptosis, but not by inhibiting the proliferative capacity of tumor cells. Neither topical administration of a soluble form of VEGF receptor (sVEGFR) to the tumor nor a megadose was needed to achieve this inhibition effect. These results suggest gene therapy via sVEGFR would be an effective oral cancer therapy and benefit future clinical applications.

  5. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy

    NASA Astrophysics Data System (ADS)

    Li, Yan; Dai, Yu; Zhang, Xiaojin; Chen, Jihua

    2017-07-01

    MicroRNAs (miRNAs), small non-coding RNAs, play an important role in modulating cell proliferation, migration, and differentiation. Since miRNAs can regulate multiple cancer-related genes simultaneously, regulating miRNAs could target a set of related oncogenic genes or pathways. Owing to their reduced immune response and low toxicity, miRNAs with small size and low molecular weight have become increasingly promising therapeutic drugs in cancer therapy. However, one of the major challenges of miRNAs-based cancer therapy is to achieve specific, effective, and safe delivery of therapeutic miRNAs into cancer cells. Here we provide a strategy using three-layered polyplex with folic acid as a targeting group to systemically deliver miR-210 into breast cancer cells, which results in breast cancer growth being inhibited.

  6. Tumor Vascular Targeted Delivery of Polymer-conjugated Adenovirus Vector for Cancer Gene Therapy

    PubMed Central

    Yao, Xinglei; Yoshioka, Yasuo; Morishige, Tomohiro; Eto, Yusuke; Narimatsu, Shogo; Kawai, Yasuaki; Mizuguchi, Hiroyuki; Gao, Jian-Qing; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2011-01-01

    Previously, we generated a cancer-specific gene therapy system using adenovirus vectors (Adv) conjugated to polyethylene glycol (Adv-PEG). Here, we developed a novel Adv that targets both tumor tissues and tumor vasculatures after systemic administration by conjugating CGKRK tumor vasculature homing peptide to the end of a 20-kDa PEG chain (Adv-PEGCGKRK). In a primary tumor model, systemic administration of Adv-PEGCGKRK resulted in ~500- and 100-fold higher transgene expression in tumor than that of unmodified Adv and Adv-PEG, respectively. In contrast, the transgene expression of Adv-PEGCGKRK in liver was about 400-fold lower than that of unmodified Adv, and was almost the same as that of Adv-PEG. We also demonstrated that transgene expression with Adv-PEGCGKRK was enhanced in tumor vessels. Systemic administration of Adv-PEGCGKRK expressing the herpes simplex virus thymidine kinase (HSVtk) gene (Adv-PEGCGKRK-HSVtk) showed superior antitumor effects against primary tumors and metastases with negligible side effects by both direct cytotoxic effects and inhibition of tumor angiogenesis. These results indicate that Adv-PEGCGKRK has potential as a prototype Adv with suitable efficacy and safety for systemic cancer gene therapy against both primary tumors and metastases. PMID:21673661

  7. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    PubMed

    Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian

    2013-01-01

    In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  8. In silico study of breast cancer associated gene 3 using LION Target Engine and other tools.

    PubMed

    León, Darryl A; Cànaves, Jaume M

    2003-12-01

    Sequence analysis of individual targets is an important step in annotation and validation. As a test case, we investigated human breast cancer associated gene 3 (BCA3) with LION Target Engine and with other bioinformatics tools. LION Target Engine confirmed that the BCA3 gene is located on 11p15.4 and that the two most likely splice variants (lacking exon 3 and exons 3 and 5, respectively) exist. Based on our manual curation of sequence data, it is proposed that an additional variant (missing only exon 5) published in a public sequence repository, is a prediction artifact. A significant number of new orthologs were also identified, and these were the basis for a high-quality protein secondary structure prediction. Moreover, our research confirmed several distinct functional domains as described in earlier reports. Sequence conservation from multiple sequence alignments, splice variant identification, secondary structure predictions, and predicted phosphorylation sites suggest that the removal of interaction sites through alternative splicing might play a modulatory role in BCA3. This in silico approach shows the depth and relevance of an analysis that can be accomplished by including a variety of publicly available tools with an integrated and customizable life science informatics platform.

  9. Impact of Pre-Analytical Variables on Cancer Targeted Gene Sequencing Efficiency

    PubMed Central

    Araujo, Luiz H.; Timmers, Cynthia; Shilo, Konstantin; Zhao, Weiqiang; Zhang, Jianying; Yu, Lianbo; Natarajan, Thanemozhi G.; Miller, Clinton J.; Yilmaz, Ayse Selen; Liu, Tom; Amann, Joseph; Lapa e Silva, José Roberto; Ferreira, Carlos Gil; Carbone, David P.

    2015-01-01

    Tumor specimens are often preserved as formalin-fixed paraffin-embedded (FFPE) tissue blocks, the most common clinical source for DNA sequencing. Herein, we evaluated the effect of pre-sequencing parameters to guide proper sample selection for targeted gene sequencing. Data from 113 FFPE lung tumor specimens were collected, and targeted gene sequencing was performed. Libraries were constructed using custom probes and were paired-end sequenced on a next generation sequencing platform. A PCR-based quality control (QC) assay was utilized to determine DNA quality, and a ratio was generated in comparison to control DNA. We observed that FFPE storage time, PCR/QC ratio, and DNA input in the library preparation were significantly correlated to most parameters of sequencing efficiency including depth of coverage, alignment rate, insert size, and read quality. A combined score using the three parameters was generated and proved highly accurate to predict sequencing metrics. We also showed wide read count variability within the genome, with worse coverage in regions of low GC content like in KRAS. Sample quality and GC content had independent effects on sequencing depth, and the worst results were observed in regions of low GC content in samples with poor quality. Our data confirm that FFPE samples are a reliable source for targeted gene sequencing in cancer, provided adequate sample quality controls are exercised. Tissue quality should be routinely assessed for pre-analytical factors, and sequencing depth may be limited in genomic regions of low GC content if suboptimal samples are utilized. PMID:26605948

  10. Synthesis of Bisethylnorspermine Lipid Prodrug as Gene Delivery Vector Targeting Polyamine Metabolism in Breast Cancer

    PubMed Central

    Dong, Yanmei; Zhu, Yu; Li, Jing; Zhou, Qing-Hui; Wu, Chao; Oupický, David

    2013-01-01

    Progress in the development of nonviral gene delivery vectors continues to be hampered by low transfection activity and toxicity. Here we proposed to develop a lipid prodrug based on a polyamine analogue bisethylnorspermine (BSP) that can function dually as gene delivery vector and, after intracellular degradation, as active anticancer agent targeting dysregulated polyamine metabolism. We synthesized a prodrug of BSP (LS-BSP) capable of intracellular release of BSP using thiolytically sensitive dithiobenzyl carbamate linker. Biodegradability of LS-BSP contributed to decreased toxicity compared with nondegradable control L-BSP. BSP showed a strong synergistic enhancement of cytotoxic activity of TNF-related apoptosis-inducing ligand (TRAIL) in human breast cancer cells. Decreased enhancement of TRAIL activity was observed for LS-BSP when compared with BSP. LS-BSP formed complexes with plasmid DNA and mediated transfection activity comparable to DOTAP and L-BSP. Our results show that BSP-based vectors are promising candidates for combination drug/gene delivery. PMID:22545813

  11. Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy.

    PubMed

    Yao, Xing-Lei; Yoshioka, Yasuo; Ruan, Gui-Xin; Chen, Yu-Zhe; Mizuguchi, Hiroyuki; Mukai, Yohei; Okada, Naoki; Gao, Jian-Qing; Nakagawa, Shinsaku

    2012-08-13

    We have previously developed a novel adenovirus vector (Adv) that targeted tumor tissues/vasculatures after systemic administration. The surface of this Adv is conjugated with CGKRK tumor homing peptide by the cross-linking reaction of polyethyleneglycol (PEG). In this study, we showed that the condition of PEG modification was important to minimize the gene expression in normal tissues after systemic treatment. When Adv was modified only with PEG-linked CGKRK, its luciferase expression was enhanced even in the liver tissue, as well as the tumor tissue. However, in the reaction with the mixture of non-cross-linking PEG and PEG-linked CGKRK, we found out that the best modification could suppress its gene expression in the liver, without losing that in the tumor. We also studied the internalization mechanisms of CGKRK-conjugated Adv. Results suggested that there is a specific interaction of the CGKRK peptide with a receptor at the cell surface enabling efficient internalization of CGKRK-conjugated Adv. The presence of cell-surface heparan sulfate is important receptor for the cellular binding and uptake of CGKRK-conjugated Adv. Moreover, macropinocytosis-mediated endocytosis is also important in endocytosis of CGKRK-conjugated Adv, aside from clathrin-mediated and caveolae-mediated endocytosis. These results could help evaluate the potentiality of CGKRK-conjugated Adv as a prototype vector with suitable efficacy and safety for systemic cancer gene therapy.

  12. Identification of colorectal cancer-restricted microRNAs and their target genes based on high-throughput sequencing data

    PubMed Central

    Chang, Jing; Huang, Liya; Cao, Qing; Liu, Fang

    2016-01-01

    To identify potential key microRNAs (miRNAs) and their target genes for colorectal cancer (CRC). High-throughput sequencing data of miRNA expression and gene expression (ID: GSE46622) were downloaded from Gene Expression Omnibus, including matched colon tumor, normal colon epithelium, and liver metastasis tissues from eight CRC patients. Paired t-test and NOISeq separately were utilized to identify differentially expressed miRNAs (DE-miRNAs) and genes. Then, target genes with differential expression and opposite expression trends were identified for DE-miRNAs. Combined with tumor suppressor gene, tumor-associated gene, and TRANSFAC databases, CRC-restricted miRNAs were screened out based on miRNA-target pairs. Compared with normal tissues, there were 56 up- and 37 downregulated miRNAs in metastasis tissues, as well as eight up- and 30 downregulated miRNAs in tumor tissues. miRNA-1 was downregulated in tumor and metastasis tissues, while its target oncogenes TWIST1 and GATA4 were upregulated. Besides, miRNA-let-7f-1-3p was downregulated in tumor tissues, which also targeted TWIST1. In addition, miRNA-133b and miRNA-4458 were downregulated in tumor tissues, while their common target gene DUSP9 was upregulated. Conversely, miRNA-450-b-3p was upregulated in metastasis tissues, while its target tumor suppressor gene CEACAM7 showed downregulation. The identified CRC-restricted miRNAs might be implicated in cancer progression via their target genes, suggesting their potential usage in CRC treatment. PMID:27069368

  13. Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy.

    PubMed

    Park, Yeonah; Kang, Eunah; Kwon, Oh-Joon; Hwang, Taewon; Park, Hongkwan; Lee, Jung Min; Kim, Jung Hyun; Yun, Chae-Ok

    2010-11-20

    For effective cancer gene therapy, systemic administration of tumor-targeting adenoviral (Ad) complexes is critical for delivery to both primary and metastatic lesions. Electrospinning was used to generate nanocomplexes of Ad, chitosan, poly(ethylene glycol) (PEG), and folic acid (FA) for effective FA receptor-expressing tumor-specific transduction. The chemical structure of the Ad/chitosan-PEG-FA nanocomplexes was characterized by NMR and FT-IR, and the diameter and surface charge were analyzed by dynamic light scattering and zeta potentiometry, respectively. The average size of Ad/chitosan-PEG-FA nanocomplexes was approximately 140 nm, and the surface charge was 2.1 mV compared to -4.9 mV for naked Ad. Electron microscopy showed well-dispersed, individual Ad nanocomplexes without aggregation or degradation. Ad/chitosan nanocomplexes retained biological activity without impairment of the transduction efficiency of naked Ad. The transduction efficiency of Ad/chitosan-PEG-FA was increased as a function of FA ratio in FA receptor-expressing KB cells, but not in FA receptor-negative U343 cells, demonstrating FA receptor-targeted viral transduction. In addition, the transduction efficiency of Ad/chitosan-PEG-FA was 57.2% higher than chitosan-encapsulated Ad (Ad/chitosan), showing the superiority of FA receptor-mediated endocytosis for viral transduction. The production of inflammatory cytokine, IL-6 from macrophages was significantly reduced by Ad/chitosan-PEG-FA nanocomplexes, implying the potential for use in systemic administration. These results clearly demonstrate that cancer cell-targeted viral transduction by Ad/chitosan-PEG-FA nanocomplexes can be used effectively for metastatic tumor treatment with reduced immune reaction against Ad.

  14. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. In silico Analysis of Combinatorial microRNA Activity Reveals Target Genes and Pathways Associated with Breast Cancer Metastasis

    PubMed Central

    Dombkowski, Alan A.; Sultana, Zakia; Craig, Douglas B.; Jamil, Hasan

    2011-01-01

    This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. Aberrant microRNA activity has been reported in many diseases, and studies often find numerous microRNAs concurrently dysregulated. Most target genes have binding sites for multiple microRNAs, and mounting evidence indicates that it is important to consider their combinatorial effect on target gene repression. A recent study associated the coincident loss of expression of six microRNAs with metastatic potential in breast cancer. Here, we used a new computational method, miR-AT!, to investigate combinatorial activity among this group of microRNAs. We found that the set of transcripts having multiple target sites for these microRNAs was significantly enriched with genes involved in cellular processes commonly perturbed in metastatic tumors: cell cycle regulation, cytoskeleton organization, and cell adhesion. Network analysis revealed numerous target genes upstream of cyclin D1 and c-Myc, indicating that the collective loss of the six microRNAs may have a focal effect on these two key regulatory nodes. A number of genes previously implicated in cancer metastasis are among the predicted combinatorial targets, including TGFB1, ARPC3, and RANKL. In summary, our analysis reveals extensive combinatorial interactions that have notable implications for their potential role in breast cancer metastasis and in therapeutic development. PMID:21552493

  16. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer.

    PubMed

    Sachdeva, M; Sachdeva, N; Pal, M; Gupta, N; Khan, I A; Majumdar, M; Tiwari, A

    2015-11-01

    Although varied drugs and therapies have been developed for lung cancer treatment, in the past 5 years overall survival rates have not improved much. It has also been reported that lung cancer is diagnosed in most of the patients when it is already in the advanced stages with heterogeneous tumors where single therapy is mostly ineffective. A combination of therapies are being administered and specific genes in specific tissues are targeted while protecting normal cell, but most of the therapies face drawbacks for the development of resistance against them and tumor progression. Therefore, therapeutic implications for various therapies need to be complemented by divergent strategies. This review frames utilization of CRISPR/Cas9 for molecular targeted gene therapy leading to long-term repression and activation or inhibition of molecular targets linked to lung cancer, avoiding the cycles of therapy.

  17. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    PubMed

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  18. Highly Specific Targeting of the TMPRSS2/ERG Fusion Gene in Prostate Cancer Using Liposomal Nanotechnology

    DTIC Science & Technology

    2012-06-01

    time due to elimination by reticuloendothelial system. To increase stability and blood circulation half- life coating nanoparticles with polymers such...ERG fusion gene in prostate cancer using liposomal nanotechnology PRINCIPAL INVESTIGATOR: Bulent Ozpolat, M.D., Ph.D...fusion gene in prostate cancer using liposomal nanotechnology 5b. GRANT NUMBER W81XWH-09-1-0385 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  19. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    PubMed

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  20. Promising Nanocarriers for PEDF Gene Targeting Delivery to Cervical Cancer Cells Mediated by the Over-expressing FRα.

    PubMed

    Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong

    2016-08-31

    Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer.

  1. Analysis of candidate target genes for mononucleotide repeat mutation in microsatellite instability-high (MSI-H) endometrial cancer.

    PubMed

    Kawaguchi, Makiko; Banno, Kouji; Yanokura, Megumi; Kobayashi, Yusuke; Kishimi, Arisa; Ogawa, Seiji; Kisu, Iori; Nomura, Hiroyuki; Hirasawa, Akira; Susumu, Nobuyuki; Aoki, Daisuke

    2009-11-01

    Microsatellite instability (MSI) is an indicator of DNA instability and is caused by abnormalities in DNA mismatch repair (MMR) genes such as hMLH1, hMSH2 and hMSH6. MSI occurs frequently in endometrial cancer (in approximately 30% of cases), and accumulation of gene mutations due to MSI may therefore have a major role in the mechanism of malignant transformation. However, a responsible target gene has not been identified in endometrial cancer. In this study, we analyzed mutations in 11 cancer-related genes with mononucleotide repeats susceptible to MSI in a coding region [hMSH3 (A8), hMSH6 (C8), TGF-beta RII (A10), MBD4 (A10), BAX (G8), PTEN (A6 in exon 7), HDAC2 (A9), EPHB2 (A9), Caspase-5 (A10), TCF-4 (A9) and Axin2 (G7)] in 22 patients with MSI-H sporadic endometrial cancer. Mutations in hMSH6 (C8) and TGF-beta RII (A10) were found most frequently, at rates of 36.3% (8/22) each. Mutations of BAX (G8) and TCF-4 (A9), which are common in MSI-positive colorectal cancer, occurred at rates of 22.7 and 0%, respectively, which suggests that the MSI target gene may differ between endometrial and colorectal cancers. Mutations in hMSH6 (C8) were correlated with reduced protein expression (p=0.042) and patients with these mutations had significantly more mutations in mononucleotide repeats in other cancer-related genes compared to patients without hMSH6 (C8) mutations (p=0.042). This suggests the possibility of a novel cascade in carcinogenesis of endometrial cancer in which MSI mutates hMSH6 (C8), increases gene instability, and leads to accumulation of mutations in other cancer-related genes. To our knowledge, this is the first report to show that hMSH6 (C8) has an important role as an MSI target gene in sporadic endometrial cancer.

  2. REC8 is a novel tumor suppressor gene epigenetically robustly targeted by the PI3K pathway in thyroid cancer.

    PubMed

    Liu, Dingxie; Shen, Xiaopei; Zhu, Guangwu; Xing, Mingzhao

    2015-11-17

    The role of the PI3K pathway in human cancer has been well established, but much of its molecular mechanism, particularly the epigenetic aspect, remains to be defined. We hypothesized that aberrant methylation and hence altered expression of certain unknown important genes induced by the genetically activated PI3K pathway signaling is a major epigenetic mechanism in human tumorigenesis. Through a genome-wide search for such genes that were epigenetically controlled by the PI3K pathway in thyroid cancer cells, we found a wide range of genes with broad functions epigenetically targeted by the PI3K pathway. The most prominent among these genes was REC8, classically known as a meiotic-specific gene, which we found to be robustly down-regulated by the PI3K pathway through hypermethylation. REC8 hypermethylation was strongly associated with genetic alterations and activities of the PI3K pathway in thyroid cancer cell lines, thyroid cancer tumors, and some other human cancers; it was also associated with poor clinicopathological outcomes of thyroid cancer, including advanced disease stages and patient mortality. Demethylating the hypermethylated REC8 gene restored its expression in thyroid cancer cells in which the PI3K pathway was genetically over-activated and induced expression of REC8 protein inhibited the proliferation and colony formation of these cells. These findings are consistent with REC8 being a novel major bona fide tumor suppressor gene and a robust epigenetic target of the PI3K pathway. Aberrant inactivation of REC8 through hypermethylation by the PI3K pathway may represent an important mechanism mediating the oncogenic functions of the PI3K pathway.

  3. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    PubMed

    Ryland, Georgina L; Bearfoot, Jennifer L; Doyle, Maria A; Boyle, Samantha E; Choong, David Y H; Rowley, Simone M; Tothill, Richard W; Gorringe, Kylie L; Campbell, Ian G

    2012-01-01

    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  4. MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

    PubMed Central

    Doyle, Maria A.; Boyle, Samantha E.; Choong, David Y. H.; Rowley, Simone M.; Tothill, Richard W.; Gorringe, Kylie L.; Campbell, Ian G.

    2012-01-01

    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3′-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3′-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3′-untranslated regions are thus uncommon in ovarian cancer. PMID:22536442

  5. Transcriptome Analysis Identifies the Dysregulation of Ultraviolet Target Genes in Human Skin Cancers.

    PubMed

    Shen, Yao; Kim, Arianna L; Du, Rong; Liu, Liang

    2016-01-01

    Exposure to ultraviolet radiation (UVR) is a major risk factor for both melanoma and non-melanoma skin cancers. In addition to its mutagenic effect, UVR can also induce substantial transcriptional instability in skin cells affecting thousands of genes, including many cancer genes, suggesting that transcriptional instability may be another important etiological factor in skin photocarcinogenesis. In this study, we performed detailed transcriptomic profiling studies to characterize the kinetic changes in global gene expression in human keratinocytes exposed to different UVR conditions. We identified a subset of UV-responsive genes as UV signature genes (UVSGs) based on 1) conserved UV-responsiveness of this subset of genes among different keratinocyte lines; and 2) UV-induced persistent changes in their mRNA levels long after exposure. Interestingly, 11 of the UVSGs were shown to be critical to skin cancer cell proliferation and survival. Through computational Gene Set Enrichment Analysis, we demonstrated that a significant portion of the UVSGs were dysregulated in human skin squamous cell carcinomas, but not in other human malignancies. This highlights the potential and specificity of the UVSGs in clinical diagnosis of UV damage and stratification of skin cancer risk.

  6. Transcriptome Analysis Identifies the Dysregulation of Ultraviolet Target Genes in Human Skin Cancers

    PubMed Central

    Shen, Yao; Kim, Arianna L.; Du, Rong; Liu, Liang

    2016-01-01

    Exposure to ultraviolet radiation (UVR) is a major risk factor for both melanoma and non-melanoma skin cancers. In addition to its mutagenic effect, UVR can also induce substantial transcriptional instability in skin cells affecting thousands of genes, including many cancer genes, suggesting that transcriptional instability may be another important etiological factor in skin photocarcinogenesis. In this study, we performed detailed transcriptomic profiling studies to characterize the kinetic changes in global gene expression in human keratinocytes exposed to different UVR conditions. We identified a subset of UV-responsive genes as UV signature genes (UVSGs) based on 1) conserved UV-responsiveness of this subset of genes among different keratinocyte lines; and 2) UV-induced persistent changes in their mRNA levels long after exposure. Interestingly, 11 of the UVSGs were shown to be critical to skin cancer cell proliferation and survival. Through computational Gene Set Enrichment Analysis, we demonstrated that a significant portion of the UVSGs were dysregulated in human skin squamous cell carcinomas, but not in other human malignancies. This highlights the potential and specificity of the UVSGs in clinical diagnosis of UV damage and stratification of skin cancer risk. PMID:27643989

  7. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer.

    PubMed

    Li, Zibiao; Liu, Xuan; Chen, Xiaohong; Chua, Ming Xuan; Wu, Yun-Long

    2017-07-01

    Deregulation of anti-apoptosis Bcl-2 protein expression was a key feature in human cancers with therapeutic resistance. Nuclear receptor Nur77 could induce the conformation change of Bcl-2 protein and converted it into an apoptosis inducer by "enemy to friend" strategy. However, the safe and effective delivery of this gene to combat therapeutic resistant cancer remained largely unexplored. In this report, we designed an amphiphilic cationic MPEG-PCL-PEI-FA copolymer, comprising biocompatible and hydrophilic methoxy-poly(ethylene glycol) (MPEG), biodegradable and hydrophobic poly(ε-caprolactone) (PCL), cationic poly(ethylene imine) (PEI) segments, and folic acid (FA) as targeting group, as a high efficient Nur77 gene carrier to folate receptor (FR) highly expressed and therapeutic resistant HeLa/Bcl-2 cancer cells. Interestingly, due to the incorporation of PCL and PEG segments, this MPEG-PCL-PEI-FA copolymer showed less toxicity but better gene transfection efficiency than non-viral gene carrier gold standard PEI (25kDa). This might be due to the formation of micelles to stabilize polyplex for enhanced gene transfection ability. More importantly, MPEG-PCL-PEI-FA copolymer exhibited excellent growth inhibition ability on therapeutic resistant HeLa/Bcl-2 cancer cells, which was FR overexpressed HeLa cervical cancer cells with high expression of Bcl-2 protein, thanks to its FA induced targeting ability, high gene transfection efficiency, and low cytotoxicity. This work signifies the first time that cationic amphiphilic MPEG-PCL-PEI-FA copolymers could be utilized for the gene delivery to therapeutic resistant cancer cells with high expression of anti-apoptosis Bcl-2 protein and the positive results are encouraging for the further design of polymeric platforms for combating drug resistant tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. mRNA export protein THOC5 as a tool for identification of target genes for cancer therapy.

    PubMed

    Tran, Doan Duy Hai; Saran, Shashank; Koch, Alexandra; Tamura, Teruko

    2016-04-10

    Recent evidence indicates that mRNA export is selective, giving priority to a subset of mRNAs that control diverse biological processes including cell proliferation, differentiation, stress response, and cell survival as well as tumor development. The depletion of a member of the mRNA export complex, the THO complex, impairs the expression of only a subset of genes, but causes dramatic changes in phenotype, such as cell cycle inhibition, abnormal differentiation, and importantly apoptosis of stem cells and cancer cells but not normal epithelial cells, hepatocytes, or fibroblasts. Recent exosome sequence data revealed that over 100 driver gene mutations with a number of signaling pathways are involved in human cancer formation, indicating that multiple signaling pathways will need to be inhibited for cancer therapy. In this review we firstly describe a basic feature and function of the mRNA export complex, THO, secondly, the biological alteration upon depletion of a member of the THO complex in normal and cancer cells, and thirdly, identification of its target genes. Finally we describe our recent data on selection of targeting candidates from THOC5 dependent genes for application in cancer therapy.

  9. Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools.

    PubMed

    Canturk, Kemal Murat; Ozdemir, Muhsin; Can, Cavit; Öner, Setenay; Emre, Ramazan; Aslan, Huseyin; Cilingir, Oguz; Ciftci, Evrim; Celayir, Fatih Mehmet; Aldemir, Ozgur; Özen, Mustafa; Artan, Sevilhan

    2014-12-01

    Despite the association of several miRNAs with bladder cancer, little is known about the miRNAs' regulatory networks. In this study, we aimed to construct potential networks of bladder-cancer-related miRNAs and their known target genes using miRNA expression profiling and bioinformatics tools and to investigate potential key molecules that might play roles in bladder cancer regulatory networks. Global miRNA expression profiles were obtained using microarray followed by RT-qPCR validation using two randomly selected miRNAs. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of three selected KEGG pathways were visualized by Cytoscape software. We finally gained 19 deregulated miRNAs, including 5 ups- and 14 down regulated in 27 bladder-cancer tissue samples and 8 normal urothelial tissue samples. The enrichment results of deregulated miRNAs and known target genes showed that most pathways were related to cancer or cell signaling pathways. We determined the hub CDK6, BCL2, E2F3, PTEN, MYC, RB, and ERBB3 target genes and hub hsa-let-7c, hsa-miR-195-5p, hsa-miR-141-3p, hsa-miR-26a-5p, hsa-miR-23b-3p, and hsa-miR-125b-5p miRNAs of the constructed networks. These findings provide new insights into the bladder cancer regulatory networks and give us a hypothesis that hsa-let-7c, hsa-miR-195-5p, and hsa-miR-125b-5p, along with CDK4 and CDK6 genes might exist in the same bladder cancer pathway. Particularly, hub miRNAs and genes might be potential biomarkers for bladder cancer clinics.

  10. miRNA-Target Gene Regulatory Networks: A Bayesian Integrative Approach to Biomarker Selection with Application to Kidney Cancer

    PubMed Central

    Chekouo, Thierry; Stingo, Francesco C.; Doecke, James D.; Do, Kim-Anh

    2015-01-01

    Summary The availability of cross-platform, large-scale genomic data has enabled the investigation of complex biological relationships for many cancers. Identification of reliable cancer-related biomarkers requires the characterization of multiple interactions across complex genetic networks. MicroRNAs are small non-coding RNAs that regulate gene expression; however, the direct relationship between a microRNA and its target gene is difficult to measure. We propose a novel Bayesian model to identify microRNAs and their target genes that are associated with survival time by incorporating the microRNA regulatory network through prior distributions. We assume that biomarkers involved in regulatory networks are likely associated with survival time. We employ non-local prior distributions and a stochastic search method for the selection of biomarkers associated with the survival outcome. We use KEGG pathway information to incorporate correlated gene effects within regulatory networks. Using simulation studies, we assess the performance of our method, and apply it to experimental data of kidney renal cell carcinoma (KIRC) obtained from The Cancer Genome Atlas. Our novel method validates previously identified cancer biomarkers and identifies biomarkers specific to KIRC progression that were not previously discovered. Using the KIRC data, we confirm that biomarkers involved in regulatory networks are more likely to be associated with survival time, showing connections in one regulatory network for five out of six such genes we identified. PMID:25639276

  11. Properties and evaluation of quaternized chitosan/lipid cation polymeric liposomes for cancer-targeted gene delivery.

    PubMed

    Liang, Xiaofei; Li, Xiaoyu; Chang, Jin; Duan, Yourong; Li, Zonghai

    2013-07-09

    Development of high-stability and efficient nonviral vectors with low cytoxicity is important for targeted tumor gene therapy. In this study, cationic polymeric liposomes (CPLs), with similar lipid bilayer structure and high thermal stability, were prepared from polymeric surfactants of quaternized (carboxymethyl)chitosan with different carbon chains (dodecyl, tetradecyl, hexadecyl, and octadecyl). By comparing different factors that influence gene delivery, tetradecyl-quaternized (carboxymethy)chitosan (TQCMC) CPLs, with suitable size (184.4 ± 17.1 nm), ζ potentials (27.5 ± 4.9 mV), and productivity for synthesis TQCMC (weight yield 13.1%), were selected for gene transfection evaluation in various cancer cell lines. Although TQCMC CPLs have lower gene transfection efficiency compared with cationic liposomes (Lipofectamine 2000) in vitro, they displayed higher reporter gene delivery ability for cancer tissues (bearing U87 and SMMC-7721 tumors) in vivo after intravenous injection. TQCMC CPLs also have lower cell cytotoxicity and lower cytokine production or liver injury for BALB/c mice. We conclude that the CPLs are promising gene delivery systems that may be used to target various cancers.

  12. Differential expression of microRNAs and their target genes in non-small-cell lung cancer.

    PubMed

    Lee, Hui-Young; Han, Seon-Sook; Rhee, Hwanseok; Park, Jung Hoon; Lee, Jae Seung; Oh, Yeon-Mok; Choi, Sun Shim; Shin, Seung-Ho; Kim, Woo Jin

    2015-03-01

    MicroRNAs (miRNAs) are single‑stranded RNA species that constitute a class of non‑coding RNAs, and are emerging as key regulators of gene expression. Since each miRNA is capable of regulating multiple genes, miRNAs are attractive markers for studies of coordinated gene expression. In this study, we investigated miRNA expression profiling using a massively parallel sequencing technique to compare non‑small‑cell lung cancer (NSCLC) tissue and normal lung tissue. Lung cancer tissue and normal lung tissue were obtained from nine NSCLC patients. RNA isolated from these samples was processed using RNA sequencing (RNA Seq) and the HiSeq 2000 system. Differentially expressed miRNAs and mRNAs were analyzed using a t‑test. We selected target pairs that showed a negative correlation among significantly differentially expressed miRNAs and their putative target mRNAs using miRBase Targets. The differences in the expression levels of 222 miRNAs and 1,597 genes were statistically significant, as indicated by an absolute fold change ≥1.5 and P<0.05. miR‑577, miR‑301b, miR‑944, miR‑891a and miR‑615‑3p were generally upregulated, and miR‑338‑3p was generally downregulated. miRNA‑mRNA target pair analysis revealed that 49 miRNAs had 696 target mRNAs. There were significantly differentially expressed miRNAs and mRNAs between lung cancer and normal tissue. Further investigation of miRNAs and their target genes is warranted to better understand NSCLC.

  13. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  14. Selective biophysical interactions of surface modified nanoparticles with cancer cell lipids improve tumor targeting and gene therapy.

    PubMed

    Sharma, Blanka; Peetla, Chiranjeevi; Adjei, Isaac M; Labhasetwar, Vinod

    2013-07-01

    Targeting gene- or drug-loaded nanoparticles (NPs) to tumors and ensuring their intratumoral retention after systemic administration remain key challenges to improving the efficacy of NP-based therapeutics. Here, we investigate a novel targeting approach that exploits changes in lipid metabolism and cell membrane biophysics that occur during malignancy. We hypothesized that modifications to the surface of NPs that preferentially increase their biophysical interaction with the membrane lipids of cancer cells will improve intratumoral retention and in vivo efficacy upon delivery of NPs loaded with a therapeutic gene. We have demonstrated that different surfactants, incorporated onto the NPs' surface, affect the biophysical interactions of NPs with the lipids of cancer cells and normal endothelial cells. NPs surface modified with didodecyldimethylammoniumbromide (DMAB) demonstrated greater interaction with cancer cell lipids, which was 6.7-fold greater than with unmodified NPs and 5.5-fold greater than with endothelial cell lipids. This correlated with increased uptake of DMAB-modified NPs with incubation time by cancer cells compared to other formulations of NPs and to uptake by endothelial cells. Upon systemic injection, DMAB-NPs demonstrated a 4.6-fold increase in tumor accumulation compared to unmodified NPs which also correlated to improved efficacy of p53 gene therapy. Characterization of the biophysical interactions between NPs and lipid membranes of tumors or other diseased tissues/organs may hold promise for engineering targeted delivery of therapeutics.

  15. Targeted Therapies for Kidney Cancer

    MedlinePlus

    ... Kidney Cancer Targeted Therapies for Kidney Cancer Biologic Therapy (Immunotherapy) for Kidney Cancer Chemotherapy for Kidney Cancer Pain Control for Kidney Cancer Treatment ... Cancer Information Cancer Prevention & Detection Cancer Basics ...

  16. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24

    PubMed Central

    Bhutia, Sujit K.; Das, Swadesh K.; Azab, Belal; Menezes, Mitchell E.; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival. PMID:23720015

  17. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy

    PubMed Central

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-01-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6, heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. PMID:26177264

  18. Progress and problems with the use of suicide genes for targeted cancer therapy.

    PubMed

    Karjoo, Zahra; Chen, Xuguang; Hatefi, Arash

    2016-04-01

    Among various gene therapy methods for cancer, suicide gene therapy attracts a special attention because it allows selective conversion of non-toxic compounds into cytotoxic drugs inside cancer cells. As a result, therapeutic index can be increased significantly by introducing high concentrations of cytotoxic molecules to the tumor environment while minimizing impact on normal tissues. Despite significant success at the preclinical level, no cancer suicide gene therapy protocol has delivered the desirable clinical significance yet. This review gives a critical look at the six main enzyme/prodrug systems that are used in suicide gene therapy of cancer and familiarizes readers with the state-of-the-art research and practices in this field. For each enzyme/prodrug system, the mechanisms of action, protein engineering strategies to enhance enzyme stability/affinity and chemical modification techniques to increase prodrug kinetics and potency are discussed. In each category, major clinical trials that have been performed in the past decade with each enzyme/prodrug system are discussed to highlight the progress to date. Finally, shortcomings are underlined and areas that need improvement in order to produce clinical significance are delineated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. pH-sensitive siRNA Nanovector for Targeted Gene Silencing and Cytotoxic Effect in Cancer Cells

    PubMed Central

    Mok, Hyejung; Veiseh, Omid; Fang, Chen; Kievit, Forrest M.; Wang, Freddy Y.; Park, James O.; Zhang, Miqin

    2010-01-01

    A small interfering RNA (siRNA) nanovector with dual targeting specificity and dual therapeutic effect is developed for targeted cancer imaging and therapy. The nanovector is comprised of an iron oxide magnetic nanoparticle core coated with three different functional molecules: polyethyleneimine (PEI), siRNA, and chlorotoxin (CTX). The primary amine group of PEI is blocked with citraconic anhydride that is removable at acidic conditions, not only to increase its biocompatibility at physiological conditions but also to elicit a pH-sensitive cytotoxic effect in the acidic tumor microenvironment. The PEI is covalently immobilized on the nanovector via a disulfide linkage that is cleavable after cellular internalization of the nanovector. CTX as a tumor-specific targeting ligand and siRNA as a therapeutic payload are conjugated on the nanovector via a flexible and hydrophilic PEG linker for targeted gene silencing in cancer cells. With a size of ~ 60 nm, the nanovector exhibits long-term stability and good magnetic property for magnetic resonance imaging. The multifunctional nanovector exhibits both significant cytotoxic and gene silencing effects at acidic pH conditions for C6 glioma cells, but not at physiological pH conditions. Our results suggest that this nanovector system could be safely used as a potential therapeutic agent for targeted treatment of glioma as well as other cancers. PMID:20722417

  20. Global Oct4 target gene analysis reveals novel downstream PTEN and TNC genes required for drug-resistance and metastasis in lung cancer

    PubMed Central

    Tang, Yen-An; Chen, Chi-Hsin; Sun, H. Sunny; Cheng, Chun-Pei; Tseng, Vincent S.; Hsu, Han-Shui; Su, Wu-Chou; Lai, Wu-Wei; Wang, Yi-Ching

    2015-01-01

    Overexpression of Oct4, a stemness gene encoding a transcription factor, has been reported in several cancers. However, the mechanism by which Oct4 directs transcriptional program that leads to somatic cancer progression remains unclear. In this study, we provide mechanistic insight into Oct4-driven transcriptional network promoting drug-resistance and metastasis in lung cancer cell, animal and clinical studies. Through an integrative approach combining our Oct4 chromatin-immunoprecipitation sequencing and ENCODE datasets, we identified the genome-wide binding regions of Oct4 in lung cancer at promoter and enhancer of numerous genes involved in critical pathways which promote tumorigenesis. Notably, PTEN and TNC were previously undefined targets of Oct4. In addition, novel Oct4-binding motifs were found to overlap with DNA elements for Sp1 transcription factor. We provided evidence that Oct4 suppressed PTEN in an Sp1-dependent manner by recruitment of HDAC1/2, leading to activation of AKT signaling and drug-resistance. In contrast, Oct4 transactivated TNC independent of Sp1 and resulted in cancer metastasis. Clinically, lung cancer patients with Oct4 high, PTEN low and TNC high expression profile significantly correlated with poor disease-free survival. Our study reveals a critical Oct4-driven transcriptional program that promotes lung cancer progression, illustrating the therapeutic potential of targeting Oc4 transcriptionally regulated genes. PMID:25609695

  1. Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer

    PubMed Central

    Heinonen, Henna; Nieminen, Anni; Saarela, Matti; Kallioniemi, Anne; Klefström, Juha; Hautaniemi, Sampsa; Monni, Outi

    2008-01-01

    Background The 70 kDa ribosomal protein S6 kinase (RPS6KB1), located at 17q23, is amplified and overexpressed in 10–30% of primary breast cancers and breast cancer cell lines. p70S6K is a serine/threonine kinase regulated by PI3K/mTOR pathway, which plays a crucial role in control of cell cycle, growth and survival. Our aim was to determine p70S6K and PI3K/mTOR/p70S6K pathway dependent gene expression profiles by microarrays using five breast cancer cell lines with predefined gene copy number and gene expression alterations. The p70S6K dependent profiles were determined by siRNA silencing of RPS6KB1 in two breast cancer cell lines overexpressing p70S6K. These profiles were further correlated with gene expression alterations caused by inhibition of PI3K/mTOR pathway with PI3K inhibitor Ly294002 or mTOR inhibitor rapamycin. Results Altogether, the silencing of p70S6K altered the expression of 109 and 173 genes in two breast cancer cell lines and 67 genes were altered in both cell lines in addition to RPS6KB1. Furthermore, 17 genes including VTCN1 and CDKN2B showed overlap with genes differentially expressed after PI3K or mTOR inhibition. The gene expression signatures responsive to both PI3K/mTOR pathway and p70S6K inhibitions revealed previously unidentified genes suggesting novel downstream targets for PI3K/mTOR/p70S6K pathway. Conclusion Since p70S6K overexpression is associated with aggressive disease and poor prognosis of breast cancer patients, the potential downstream targets of p70S6K and the whole PI3K/mTOR/p70S6K pathway identified in our study may have diagnostic value. PMID:18652687

  2. Human Gene Control by Vital Oncogenes: Revisiting a Theoretical Model and Its Implications for Targeted Cancer Therapy

    PubMed Central

    Willis, Rudolph E.

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  3. Targeting the MET gene for the treatment of non-small-cell lung cancer.

    PubMed

    Gelsomino, F; Facchinetti, F; Haspinger, E R; Garassino, M C; Trusolino, L; De Braud, F; Tiseo, M

    2014-02-01

    Recently, a better understanding of the specific mechanisms of oncogene addiction has led to the development of antitumor strategies aimed at blocking these abnormalities in different malignancies, including lung cancer. These abnormalities trigger constitutive activation of tyrosine kinase receptors (RTKs) involved in fundamental cell mechanisms such as proliferation, survival, differentiation and migration, and consequently the aberrant signaling of RTKs leads to cancer growth and survival. The inhibition of aberrant RTKs and downstream signaling pathways has opened the door to the targeted therapy era. In non-small-cell lung cancer (NSCLC), molecular research has allowed the discrimination of different aberrant RTKs in lung cancer tumorigenesis and progression, and thus the identification of several targetable oncogenic drivers. Following the development of small molecules (gefitinib/erlotinib and crizotinib) able to reversibly inhibit the epidermal growth factor receptor (EGFR) and signaling pathways mediated by anaplastic lymphoma kinase (ALK), respectively, the MET signaling pathway has also been recognized as a potential target. Moreover, according to current knowledge, MET could be considered both as a secondary oncogenic mechanism and as a prognostic factor. Several therapeutic strategies for inhibiting activated hepatocyte growth factor receptor (HGFR) and the subsequent downstream signaling transduction have been improved in order to block tumor growth. This review will focus on the MET pathway and its role in resistance to EGFR TK (tyrosine kinase) inhibitors, the different strategies of its inhibition, and the potential approaches to overcoming acquired resistance.

  4. TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth.

    PubMed

    Daniels, Garrett; Li, Yirong; Gellert, Lan Lin; Zhou, Albert; Melamed, Jonathan; Wu, Xinyu; Zhang, Xinming; Zhang, David; Meruelo, Daniel; Logan, Susan K; Basch, Ross; Lee, Peng

    2014-02-01

    Androgen receptor (AR), a steroid hormone receptor, is critical for prostate cancer growth. However, activation of AR by androgens can also lead to growth suppression and differentiation. Transcriptional cofactors play an important role in this switch between proliferative and anti-proliferative AR target gene programs. Transducin β-like-related protein 1 (TBLR1), a core component of the nuclear receptor corepressor complex, shows both corepressor and coactivator activities on nuclear receptors, but little is known about its effects on AR and prostate cancer. We characterized TBLR1 as a coactivator of AR in prostate cancer cells and determined that the activation is dependent on both phosphorylation and 19S proteosome. We showed that TBLR1 physically interacts with AR and directly occupies the androgen-response elements of the affected AR target genes in an androgen-dependent manner. TBLR1 is primarily localized in the nucleus in benign prostate cells and nuclear expression is significantly reduced in prostate cancer cells in culture. Similarly, in human tumor samples, the expression of TBLR1 in the nucleus is significantly reduced in the malignant glands compared with the surrounding benign prostatic glands (P<0.005). Stable ectopic expression of nuclear TBLR1 leads to androgen-dependent growth suppression of prostate cancer cells in vitro and in vivo by selective activation of androgen-regulated genes associated with differentiation (e.g. KRT18) and growth suppression (e.g. NKX3-1), but not cell proliferation of the prostate cancer. Understanding the molecular switches involved in the transition from AR-dependent growth promotion to AR-dependent growth suppression will lead to more successful treatments for prostate cancer.

  5. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes.

    PubMed

    Ponente, Manfredi; Campanini, Letizia; Cuttano, Roberto; Piunti, Andrea; Delledonne, Giacomo A; Coltella, Nadia; Valsecchi, Roberta; Villa, Alessandra; Cavallaro, Ugo; Pattini, Linda; Doglioni, Claudio; Bernardi, Rosa

    2017-02-23

    Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients.

  6. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes

    PubMed Central

    Ponente, Manfredi; Campanini, Letizia; Cuttano, Roberto; Piunti, Andrea; Delledonne, Giacomo A.; Coltella, Nadia; Valsecchi, Roberta; Villa, Alessandra

    2017-01-01

    Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients. PMID:28239645

  7. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers

    PubMed Central

    Kwon, Se-Young; Moon, Changjong; Kim, Kwonseop; Lee, Keesook; Lee, Sang-Jin; Hemmi, Silvio; Joo, Young-Eun; Kim, Min Soo; Jung, Chaeyong

    2016-01-01

    CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients. PMID:27203670

  8. Uveal melanoma hepatic metastases mutation spectrum analysis using targeted next-generation sequencing of 400 cancer genes.

    PubMed

    Luscan, A; Just, P A; Briand, A; Burin des Roziers, C; Goussard, P; Nitschké, P; Vidaud, M; Avril, M F; Terris, B; Pasmant, E

    2015-04-01

    Uveal melanoma (UM) is the most common malignant tumour of the eye. Diagnosis often occurs late in the course of disease, and prognosis is generally poor. Recently, recurrent somatic mutations were described, unravelling additional specific altered pathways in UM. Targeted next-generation sequencing (NGS) can now be applied to an accurate and fast identification of somatic mutations in cancer. The aim of the present study was to characterise the mutation pattern of five UM hepatic metastases with well-defined clinical and pathological features. We analysed the UM mutation spectrum using targeted NGS on 409 cancer genes. Four previous reported genes were found to be recurrently mutated. All tumours presented mutually exclusive GNA11 or GNAQ missense mutations. BAP1 loss-of-function mutations were found in three UMs. SF3B1 missense mutations were found in the two UMs with no BAP1 mutations. We then searched for additional mutation targets. We identified the Arg505Cys mutation in the tumour suppressor FBXW7. The same mutation was previously described in different cancer types, and FBXW7 was recently reported to be mutated in UM exomes. Further studies are required to confirm FBXW7 implication in UM tumorigenesis. Elucidating the molecular mechanisms underlying UM tumorigenesis holds the promise for novel and effective targeted UM therapies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Targeted therapies for cancer

    MedlinePlus

    ... nih.gov/pubmed/23589545 . Kummar S, Murgo AJ, Tomaszewski JE, Doroshow JH. Therapeutic targeting of cancer cells: Era of molecularly targeted agents. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, ...

  10. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene.

    PubMed

    Li, Liang-Qing; Yang, Yang; Chen, Hui; Zhang, Lin; Pan, Dun; Xie, Wen-Jun

    2016-06-07

    Cancer cells usually utilize glucose as a carbon source for aerobic glycolysis, which is named as ``Warburg effect''. Recent studies have shown that MicroRNAs (miRNAs), a class of short and non-coding RNAs, play a role in the regulation of metabolic reprograming in cancer cells. In the present study, we report that miR-181b negatively regulates glycolysis in gastric cancer cells. Over-expression of miR-181b mimics reduces the glucose uptake and lactate production, while increasing the cellular ATP levels in NCI-N87 and MGC80-3 cells. At the molecular level, miR-181b directly inhibits the expression level of hexokinase 2 (HK2), a key enzyme that catalyzes the first step of glycolysis, through targeting its 3'-untranslated region. In addition, miR-181b represses cell proliferation and migration and is dramatically down-regulated in human gastric cancers. Therefore, our data disclose a novel function of miR-181b in reprogramming the metabolic process in gastric cancer.

  11. Evaluation of a multi-functional nanocarrier for targeted breast cancer iNOS gene therapy.

    PubMed

    McCarthy, Helen O; Zholobenko, Alek V; Wang, Yuhua; Canine, Brenda; Robson, Tracy; Hirst, David G; Hatefi, Arash

    2011-02-28

    The present study determines whether the novel designer biomimetic vector (DBV) can condense and deliver the cytotoxic iNOS gene to breast cancer cells to achieve a therapeutic effect. We have previously shown the benefits of iNOS for cancer gene therapy but the stumbling block to future development has been the delivery system. The DBV was expressed, purified and complexed with the iNOS gene. The particle size and charge were determined via dynamic light scattering techniques. The toxicity of the DBV/iNOS nanoparticles was quantified using the cell toxicity and clonogenic assays. Over expression of iNOS was confirmed via Western blotting and Griess test. The DBV delivery system fully condensed the iNOS gene with nanoparticles less than 100nm. Transfection with the DBV/iNOS nanoparticles resulted in a maximum of 62% cell killing and less than 20% clonogenicity. INOS overexpression was confirmed and total nitrite levels were in the range of 18μM. We report for the first time that the DBV can successfully deliver iNOS and achieve a therapeutic effect. There is significant cytotoxicity coupled with evidence of a bystander effect. We conclude that the success of the DBV fusion protein in the delivery of iNOS in vitro is worthy of future in vivo experiments.

  12. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  13. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance

    PubMed Central

    Ventelä, Sami; Sittig, Eleonora; Mannermaa, Leni; Mäkelä, Juho-Antti; Kulmala, Jarmo; Löyttyniemi, Eliisa; Strauss, Leena; Cárpen, Olli; Toppari, Jorma; Grénman, Reidar; Westermarck, Jukka

    2015-01-01

    Radiotherapy is a mainstay for treatment of many human cancer types, including head and neck squamous cell carcinoma (HNSCC). Thereby, it is clinically very relevant to understand the mechanisms determining radioresistance. Here, we identify CIP2A as an Oct4 target gene and provide evidence that they co-operate in radioresistance. Oct4 positively regulates CIP2A expression both in testicular cancer cell lines as well as in embryonic stem cells. To expand the relevance of these findings we show that Oct4 and CIP2A are co-expressed in CD24 positive side-population of patient-derived HNSCC cell lines. Most importantly, all Oct4 positive HNSCC patient samples were CIP2A positive and this double positivity was linked to poor differentiation level, and predicted for decreased patient survival among radiotherapy treated HNSCC patients. Oct4 and CIP2A expression was also linked with increased aggressiveness and radioresistancy in HNSCC cell lines. Together we demonstrate that CIP2A is a novel Oct4 target gene in stem cells and in human cancer cell lines. Clinically these results suggest that diagnostic evaluation of HNSCC tumors for Oct4 or Oct4/CIP2A positivity might help to predict HNSCC tumor radioresistancy. These results also identify both Oct4 and CIP2A as potential targets for radiosensitation. PMID:25474139

  14. Distinct gene expression profiles of proximal and distal colorectal cancer: implications for cytotoxic and targeted therapy.

    PubMed

    Maus, M K H; Hanna, D L; Stephens, C L; Astrow, S H; Yang, D; Grimminger, P P; Loupakis, F; Hsiang, J H; Zeger, G; Wakatsuki, T; Barzi, A; Lenz, H-J

    2015-08-01

    Colorectal cancer (CRC) is a heterogeneous disease with genetic profiles and clinical outcomes dependent on the anatomic location of the primary tumor. How location has an impact on the molecular makeup of a tumor and how prognostic and predictive biomarkers differ between proximal versus distal colon cancers is not well established. We investigated the associations between tumor location, KRAS and BRAF mutation status, and the messenger RNA (mRNA) expression of proteins involved in major signaling pathways, including tumor growth (epidermal growth factor receptor (EGFR)), angiogenesis (vascular endothelial growth factor receptor 2 (VEGFR2)), DNA repair (excision repair cross complement group 1 (ERCC1)) and fluoropyrimidine metabolism (thymidylate synthase (TS)). Formalin-fixed paraffin-embedded tumor specimens from 431 advanced CRC patients were analyzed. The presence of seven different KRAS base substitutions and the BRAF V600E mutation was determined. ERCC1, TS, EGFR and VEGFR2 mRNA expression levels were detected by reverse transcriptase-PCR. BRAF mutations were significantly more common in the proximal colon (P<0.001), whereas KRAS mutations occurred at similar frequencies throughout the colorectum. Rectal cancers had significantly higher ERCC1 and VEGFR2 mRNA levels compared with distal and proximal colon tumors (P=0.001), and increased TS levels compared with distal colon cancers (P=0.02). Mutant KRAS status was associated with lower ERCC1, TS, EGFR and VEGFR2 gene expression in multivariate analysis. In a subgroup analysis, this association remained significant for all genes in the proximal colon and for VEGFR2 expression in rectal cancers. The mRNA expression patterns of predictive and prognostic biomarkers, as well as associations with KRAS and BRAF mutation status depend on primary tumor location. Prospective studies are warranted to confirm these findings and determine the underlying mechanisms.

  15. Distinct Gene Expression Profiles of Proximal and Distal Colorectal Cancer: Implications for Cytotoxic and Targeted Therapy

    PubMed Central

    Maus, Martin K.H.; Hanna, Diana L.; Stephens, Craig L.; Astrow, Stephanie H.; Yang, Dongyun; Grimminger, Peter P.; Loupakis, Fotios; Hsiang, Jack H.; Zeger, Gary; Wakatsuki, Takeru; Barzi, Afsaneh; Lenz, Heinz-Josef

    2014-01-01

    Colorectal cancer (CRC) is a heterogeneous disease with genetic profiles and clinical outcomes dependent on the anatomic location of the primary tumor. How location impacts the molecular makeup of a tumor and how prognostic and predictive biomarkers differ between proximal versus distal colon cancers is not well established. We investigated the associations between tumor location, KRAS and BRAF mutation status, and the mRNA expression of proteins involved in major signaling pathways, including tumor growth (EGFR), angiogenesis (VEGFR2), DNA repair (ERCC1) and fluoropyrimidine metabolism (TS). FFPE tumor specimens from 431 advanced CRC patients were analyzed. The presence of 7 different KRAS base substitutions and the BRAF V600E mutation was determined. ERCC1, TS, EGFR and VEGFR2 mRNA expression levels were detected by RT-PCR. BRAF mutations were significantly more common in the proximal colon (p<0.001), whereas KRAS mutations occurred at similar frequencies throughout the colorectum. Rectal cancers had significantly higher ERCC1 and VEGFR2 mRNA levels compared to distal and proximal colon tumors (p=0.001), and increased TS levels compared to distal colon cancers (p=0.02). Mutant KRAS status was associated with lower ERCC1, TS, EGFR, and VEGFR2 gene expression in multivariate analysis. In a subgroup analysis, this association remained significant for all genes in the proximal colon and for VEGFR2 expression in rectal cancers. The mRNA expression patterns of predictive and prognostic biomarkers as well as associations with KRAS and BRAF mutation status depend on primary tumor location. Prospective studies are warranted to confirm these findings and determine the underlying mechanisms. PMID:25532759

  16. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    PubMed

    Haviland, Rachel; Eschrich, Steven; Bloom, Gregory; Ma, Yihong; Minton, Susan; Jove, Richard; Cress, W Douglas

    2011-01-01

    Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down-regulating expression

  17. Constitutive expression of Wnt/β‑catenin target genes promotes proliferation and invasion of liver cancer stem cells.

    PubMed

    Chen, Wei; Zhang, Yu-Wei; Li, Yang; Zhang, Jian-Wen; Zhang, Tong; Fu, Bin-Sheng; Zhang, Qi; Jiang, Nan

    2016-04-01

    Wnt/β‑catenin is an important signaling pathways involved in the tumorgenesis, progression and maintenance of cancer stem cells (CSCs). In the present study, the role of Wnt/β‑catenin signaling in CSC‑mediated tumorigenesis and invasion in liver CSCs was investigated. A small population of cancer stem‑like side population (SP) cells (3.6%) from liver cancer samples were identified. The cells were highly resistant to drug treatment due to the enhanced expression of drug efflux pumps, such as ABC subfamily G member 2, multidrug resistance protein 1 and ATP‑binding cassette subfamily B member 5. Furthermore, using TOPflash and reverse transcription‑quantitative polymerase chain reaction analysis, Wnt/β‑catenin signaling and the transcriptional regulation of Wnt/β‑catenin target genes including dickkopf Wnt signaling pathway inhibitor 1, axis inhibition protein 2 and cyclin D1 were observed to be markedly upregulated in liver cancer SP cells. As a consequence, SP cells possessed infinite cell proliferation potential and the ability to generating tumor spheres. In addition, upon reducing Wnt/β‑catenin signaling, the rates of proliferation, tumor sphere formation and tumor invasion of SP cells were markedly reduced. Therefore, these data suggest that Wnt/β‑catenin signaling is a potential therapeutic target to reduce CSC‑mediated tumorigenicity and invasion in liver cancer.

  18. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6

    PubMed Central

    Draper, Lindsey M.; Kwong, Mei Li; Gros, Alena; Stevanović, Sanja; Tran, Eric; Kerkar, Sid; Raffeld, Mark; Rosenberg, Steven A.; Hinrichs, Christian S.

    2015-01-01

    Purpose The E6 and E7 oncoproteins of HPV-associated epithelial cancers are in principle ideal immunotherapeutic targets, but evidence that T cells specific for these antigens can recognize and kill HPV+ tumor cells is limited. We sought to determine if TCR gene engineered T cells directed against an HPV oncoprotein can successfully target HPV+ tumor cells. Experimental design T cell responses against the HPV-16 oncoproteins were investigated in a patient with an ongoing 22-month disease-free interval after her second resection of distant metastatic anal cancer. T cells genetically engineered to express an oncoprotein-specific TCR from this patient’s tumor-infiltrating T cells were tested for specific reactivity against HPV+ epithelial tumor cells. Results We identified, from an excised metastatic anal cancer tumor, T cells that recognized an HLA-A*02:01-restricted epitope of HPV-16 E6. The frequency of the dominant T cell clonotype from these cells was approximately 400-fold greater in the patient’s tumor than in her peripheral blood. T cells genetically engineered to express the TCR from this clonotype displayed high avidity for an HLA-A*02:01-restricted epitope of HPV-16, and they showed specific recognition and killing of HPV-16+ cervical, and head and neck cancer cell lines. Conclusion These findings demonstrate that HPV-16+ tumors can be targeted by E6-specific TCR gene engineered T cells, and they provide the foundation for a novel cellular therapy directed against HPV-16+ malignancies including cervical, oropharyngeal, anal, vulvar, vaginal, and penile cancers. PMID:26429982

  19. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin.

    PubMed

    Toropainen, Sari; Malinen, Marjo; Kaikkonen, Sanna; Rytinki, Miia; Jääskeläinen, Tiina; Sahu, Biswajyoti; Jänne, Olli A; Palvimo, Jorma J

    2015-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor that plays a central role in the development and growth of prostate carcinoma. PIAS1 is an AR- and SUMO-interacting protein and a putative transcriptional coregulator overexpressed in prostate cancer. To study the importance of PIAS1 for the androgen-regulated transcriptome of VCaP prostate cancer cells, we silenced its expression by RNAi. Transcriptome analyses revealed that a subset of the AR-regulated genes is significantly influenced, either activated or repressed, by PIAS1 depletion. Interestingly, PIAS1 depletion also exposed a new set of genes to androgen regulation, suggesting that PIAS1 can mask distinct genomic loci from AR access. In keeping with gene expression data, silencing of PIAS1 attenuated VCaP cell proliferation. ChIP-seq analyses showed that PIAS1 interacts with AR at chromatin sites harboring also SUMO2/3 and surrounded by H3K4me2; androgen exposure increased the number of PIAS1-occupying sites, resulting in nearly complete overlap with AR chromatin binding events. PIAS1 interacted also with the pioneer factor FOXA1. Of note, PIAS1 depletion affected AR chromatin occupancy at binding sites enriched for HOXD13 and GATA motifs. Taken together, PIAS1 is a genuine chromatin-bound AR coregulator that functions in a target gene selective fashion to regulate prostate cancer cell growth. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  1. Non-small cell lung cancer as a target disease for herpes simplex type 1 thymidine kinase-ganciclovir gene therapy.

    PubMed

    Määttä, Ann-Marie; Tenhunen, Anni; Pasanen, Tiina; Meriläinen, Outi; Pellinen, Riikka; Mäkinen, Kimmo; Alhava, Esko; Wahlfors, Jarmo

    2004-04-01

    Lung cancer is a group of diseases that are difficult to cure and new treatment modalities, like gene therapy are actively tested to find alternatives for currently used strategies. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) method is one of the most frequently utilized forms of gene therapy and it has been tested on lung cancer, but no systematic study with comparison of different lung cancer types has been published. In this study, we examined in vitro and in vivo how good targets non-small cell lung cancer (NSCLC) cell lines representing adenocarcinoma, squamous cell lung cancer and large cell lung cancer are for adenovirus-mediated HSV-TK/GCV gene therapy. By using an adenovirus vector carrying a fusion gene of HSV-TK and green fluorescent protein (GFP), we found that: a) adenoviruses were efficient gene transfer vehicles for all types of NSCLCs; b) all adenocarcinoma and large cell lung cancer cells were good targets for HSV-TK/GCV therapy, whereas one of the squamous cell carcinoma cell lines was not responsive to the treatment; c) bystander effect played a major role in the success of this gene therapy form; d) subcutaneous tumors representing all three NSCLC types were efficiently treated with adenovirus-mediated HSV-TK/GCV gene therapy. In summary, this form of gene therapy appeared to be efficient treatment for human NSCLC and these results warrant further studies with primary lung cancer cells and orthotopic lung tumor models.

  2. Constitutive expression and activation of stress response genes in cancer stem-like cells/tumour initiating cells: potent targets for cancer stem cell therapy.

    PubMed

    Torigoe, Toshihiko; Hirohashi, Yoshihiko; Yasuda, Kazuyo; Sato, Noriyuki

    2013-08-01

    Cancer stem-like cells (CSCs)/tumour-initiating cells (TICs) are defined as the small population of cancer cells that have stem cell-like phenotypes and high capacity for tumour initiation. These cells may have a huge impact in the field of cancer therapy since they are extremely resistant to standard chemoradiotherapy and thus are likely to be responsible for disease recurrence after therapy. Therefore, extensive efforts are being made to elucidate the pathological and molecular properties of CSCs/TICs and, with this information, to establish efficient anti-CSC/TIC targeting therapies. This review considers recent findings on stress response genes that are preferentially expressed in CSCs/TICs and their roles in tumour-promoting properties. Implications for a novel therapeutic strategy targeting CSCs/TICs are also discussed.

  3. Targeted Therapies for Lung Cancer

    PubMed Central

    Larsen, Jill E.; Cascone, Tina; Gerber, David E.; Heymach, John V.; Minna, John D.

    2012-01-01

    Although lung cancer remains the leading cancer killer in the United States, recently a number of developments indicate future clinical benefit. These include evidence that computed tomography–based screening decreases lung cancer mortality, the use of stereotactic radiation for early-stage tumors, the development of molecular methods to predict chemotherapy sensitivity, and genome-wide expression and mutation analysis data that have uncovered oncogene “addictions” as important therapeutic targets. Perhaps the most significant advance in the treatment of this challenging disease is the introduction of molecularly targeted therapies, a term that currently includes monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The development of effective targeted therapeutics requires knowledge of the genes and pathways involved and how they relate to the biologic behavior of lung cancer. Drugs targeting the epidermal growth factor receptor, anaplastic lymphoma kinase, and vascular endothelial growth factor are now U.S. Food and Drug Administration approved for the treatment of advanced non-small cell lung cancer. These agents are generally better tolerated than conventional chemotherapy and show dramatic efficacy when their use is coupled with a clear understanding of clinical data, mechanism, patient selection, drug interactions, and toxicities. Integrating genome-wide tumor analysis with drug- and targeted agent-responsive phenotypes will provide a wealth of new possibilities for lung cancer–targeted therapeutics. Ongoing research efforts in these areas as well as a discussion of emerging targeted agents being evaluated in clinical trials are the subjects of this review. PMID:22157296

  4. Dual-Targeting Nanoparticles for In Vivo Delivery of Suicide Genes to Chemotherapy-Resistant Ovarian Cancer Cells.

    PubMed

    Cocco, Emiliano; Deng, Yang; Shapiro, Erik M; Bortolomai, Ileana; Lopez, Salvatore; Lin, Ken; Bellone, Stefania; Cui, Jiajia; Menderes, Gulden; Black, Jonathan D; Schwab, Carlton L; Bonazzoli, Elena; Yang, Fan; Predolini, Federica; Zammataro, Luca; Altwerger, Gary; de Haydu, Christopher; Clark, Mitchell; Alvarenga, Julio; Ratner, Elena; Azodi, Masoud; Silasi, Dan-Arin; Schwartz, Peter E; Litkouhi, Babak; Saltzman, W Mark; Santin, Alessandro D

    2017-02-01

    Ovarian cancer is the most lethal gynecologic cancer. Claudin-3 and -4, the receptors for Clostridium perfringens enterotoxin (CPE), are overexpressed in more than 70% of these tumors. Here, we synthesized and characterized poly(lactic-co-glycolic-acid) (PLGA) nanoparticles (NPs) modified with the carboxy-terminal-binding domain of CPE (c-CPE-NP) for the delivery of suicide gene therapy to chemotherapy-resistant ovarian cancer cells. As a therapeutic payload, we generated a plasmid encoding for the diphtheria toxin subunit-A (DT-A) under the transcriptional control of the p16 promoter, a gene highly differentially expressed in ovarian cancer cells. Flow cytometry and immunofluorescence demonstrated that c-CPE-NPs encapsulating the cytomegalovirus (CMV) GFP plasmid (CMV GFP c-CPE-NP) were significantly more efficient than control NPs modified with a scrambled peptide (CMV GFP scr-NP) in transfecting primary chemotherapy-resistant ovarian tumor cell lines in vitro (P = 0.03). Importantly, c-CPE-NPs encapsulating the p16 DT-A vector (p16 DT-A c-CPE-NP) were significantly more effective than control p16 DT-A scr-NP in inducing ovarian cancer cell death in vitro (% cytotoxicity: mean ± SD = 32.9 ± 0.15 and 7.45 ± 7.93, respectively, P = 0.03). In vivo biodistribution studies demonstrated efficient transfection of tumor cells within 12 hours after intraperitoneal injection of CMV GFP c-CPE-NP in mice harboring chemotherapy-resistant ovarian cancer xenografts. Finally, multiple intraperitoneal injections of p16 DT-A c-CPE-NP resulted in a significant inhibition of tumor growth compared with control NP in chemotherapy-resistant tumor-bearing mice (P = 0.041). p16 DT-A c-CPE-NP may represent a novel dual-targeting therapeutic approach for the selective delivery of gene therapy to chemotherapy-resistant ovarian cancer cells. Mol Cancer Ther; 16(2); 323-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing Using Multifunctional pRNA Nanoparticles.

    PubMed

    Zhang, Yijuan; Leonard, Marissa; Shu, Yi; Yang, Yongguang; Shu, Dan; Guo, Peixuan; Zhang, Xiaoting

    2017-01-24

    Most breast cancers express estrogen receptor (ER) α, and the antiestrogen drug tamoxifen has been widely used for their treatment. Unfortunately, up to half of all ERα-positive tumors have intrinsic or acquired endocrine therapy resistance. Our recent studies revealed that the ER coactivator Mediator Subunit 1 (MED1) plays a critical role in tamoxifen resistance through cross-talk with HER2. Herein, we assembled a three-way junction (3-WJ) pRNA-HER2apt-siMED1 nanoparticle to target HER2-overexpressing human breast cancer via an HER2 RNA aptamer to silence MED1 expression. We found that these ultracompact RNA nanoparticles are very stable under RNase A, serum, and 8 M urea conditions. These nanoparticles specifically bound to HER2-overexpressing breast cancer cells, efficiently depleted MED1 expression, and significantly decreased ERα-mediated gene transcription, whereas point mutations of the HER2 RNA aptamer on these nanoparticles abolished such functions. The RNA nanoparticles not only reduced the growth, metastasis, and mammosphere formation of the HER2-overexpressing breast cancer cells but also sensitized them to tamoxifen treatment. These biosafe nanoparticles efficiently targeted and penetrated into HER2-overexpressing tumors after systemic administration in orthotopic xenograft mouse models. In addition to their ability to greatly inhibit tumor growth and metastasis, these nanoparticles also led to a dramatic reduction in the stem cell content of breast tumors when combined with tamoxifen treatment in vivo. Overall, we have generated multifunctional RNA nanoparticles that specifically targeted HER2-overexpressing human breast cancer, silenced MED1, and overcame tamoxifen resistance.

  6. The predicted target gene validation, function, and prognosis studies of miRNA-22 in colorectal cancer tissue.

    PubMed

    Li, Bo; Li, Bai; Sun, Hongyan; Zhang, Haishan

    2017-03-01

    MicroRNAs are known as small, non-coding, and single-stranded RNAs which can regulate cell proliferation, differentiation, and apoptosis and involve in the development of tumors. In this study, colorectal cancer tissue morphological change in different prognosis in patients was observed by hematoxylin and eosin staining. Thereafter, differentially expressed miR-22 and TIAM1 gene were detected using quantitative polymerase chain reaction and western blot in different colorectal cancer tissues. Meanwhile, luciferase reporter gene system was used to verify the relationship between miR-22 and TIAM1. Eventually, the survival curve was plotted according to follow-up records of patients with colorectal cancer and the expression levels of miR-22 and TIAM1 in different tumor tissues. The hematoxylin and eosin results showed the poor pathological features in the 1-year survival group. The expression level of miR-22 was upregulated and TIAM1 was inhibited, correlating with the extension of patients' survival time. Our results indicated that miR-22 and TIAM1 might play a regulatory role in the occurrence and development of colorectal cancer which were consistent with the survival curve analysis results. Furthermore, the luciferase in miR-22 co-transfected with pmiR-RB-REPORT- TIAM1 group was significantly lower than pmiR-RB-REPORT- TIAM1-mut and Si groups. Collectively, these data suggest that miR-22 may suppress the expression of its target gene TIAM1. The low miR-22 level or the high TIAM1 level will indicate the poor prognosis in colorectal cancer patients.

  7. Conventional murine gene targeting.

    PubMed

    Zimmermann, Albert G; Sun, Yue

    2013-01-01

    Murine gene knockout models engineered over the last two decades have continued to demonstrate their potential as invaluable tools in understanding the role of gene function in the context of normal human development and disease. The more recent elucidation of the human and mouse genomes through sequencing has opened up the capability to elucidate the function of every human gene. State-of-the-art mouse model generation allows, through a multitude of experimental steps requiring careful standardization, gene function to be reliably and predictably ablated in a live model system. The application of these standardized methodologies to directly target gene function through murine gene knockout has to date provided comprehensive and verifiable genetic models that have contributed tremendously to our understanding of the cellular and molecular pathways underlying normal and disease states in humans. The ensuing chapter provides an overview of the latest steps and procedures required to ablate gene function in a murine model.

  8. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter–Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth

    PubMed Central

    Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W. K.; Hsieh, Chia-Ling

    2016-01-01

    Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor–promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter–driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers. PMID:27054343

  9. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    PubMed

    Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W K; Hsieh, Chia-Ling

    2016-01-01

    Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  10. A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets.

    PubMed

    Gao, Ruli; Cao, Chunxia; Zhang, Min; Lopez, Maria-Cecilia; Yan, Yuanqing; Chen, Zirong; Mitani, Yoshitsugu; Zhang, Li; Zajac-Kaye, Maria; Liu, Bin; Wu, Lizi; Renne, Rolf; Baker, Henry V; El-Naggar, Adel; Kaye, Frederic J

    2014-12-30

    MYB activation is proposed to underlie development of adenoid cystic cancer (ACC), an aggressive salivary gland tumor with no effective systemic treatments. To discover druggable targets for ACC, we performed global mRNA/miRNA analyses of 12 ACC with matched normal tissues, and compared these data with 14 mucoepidermoid carcinomas (MEC) and 11 salivary adenocarcinomas (ADC). We detected a unique ACC gene signature of 1160 mRNAs and 22 miRNAs. MYB was the top-scoring gene (18-fold induction), however we observed the same signature in ACC without detectable MYB gene rearrangements. We also found 4 ACC tumors (1 among our 12 cases and 3 from public databases) with negligible MYB expression that retained the same ACC mRNA signature including over-expression of extracellular matrix (ECM) genes. Integration of this signature with somatic mutational analyses suggests that NOTCH1 and RUNX1 participate with MYB to activate ECM elements including the VCAN/HAPLN1 complex. We observed that forced MYB-NFIB expression in human salivary gland cells alters cell morphology and cell adhesion in vitro and depletion of VCAN blocked tumor cell growth of a short-term ACC tumor culture. In summary, we identified a unique ACC signature with parallel MYB-dependent and independent biomarkers and identified VCAN/HAPLN1 complexes as a potential target.

  11. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes.

    PubMed

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5'→3', 3' →5' or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically.Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm.

  12. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes

    PubMed Central

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B.

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5′→3′, 3′ →5′ or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically. Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm PMID:27515825

  13. Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery?

    PubMed

    Harrington, Kevin; Alvarez-Vallina, Luis; Crittenden, Marka; Gough, Michael; Chong, Heung; Diaz, Rosa Maria; Vassaux, Georges; Lemoine, Nicholas; Vile, Richard

    2002-07-20

    Systemic administration of currently manufactured viral stocks has not so far achieved sufficient circulating titers to allow therapeutic targeting of metastatic disease. This is due to low initial viral titers, immune inactivation, nonspecific adhesion, and loss of particles. One way to exploit the elegant molecular manipulations that have been made to increase vector targeting is to protect these vectors until they reach the local sites of tumor growth. Various cell types home preferentially to tumors and can be loaded with the constructs required to produce targeted vectors. Here we discuss the potential of using such cell carriers to chaperone precious vectors directly to the tumors. The vectors can incorporate mechanisms to achieve tumor site-inducible expression, along with tumor cell-specific expression of the therapeutic gene and/or replicating viral genomes that would be released at the tumor. In this way, the great advances that have so far been made with the engineering of vector tropisms might be genuinely exploited and converted into clinical benefit.

  14. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    SciTech Connect

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Wu, Ming-Fang; Jan, Ming-Shiou; Tang, Sheau-Chung; Lin, Yu-Wen; Hsu, Chung-Ping; Ko, Jiunn-Liang

    2012-09-15

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  15. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy.

    PubMed

    Tse, Chun Hing; Hwang, Harry C; Goldstein, Lynn C; Kandalaft, Patricia L; Wiley, Jesse C; Kussick, Steven J; Gown, Allen M

    2011-11-01

    The ratio of human epidermal growth factor receptor 2 (HER2) to CEP17 by fluorescent in situ hybridization (FISH) with the centromeric probe CEP17 is used to determine HER2 gene status in breast cancer. Increases in CEP17 copy number have been interpreted as representing polysomy 17. However, pangenomic studies have demonstrated that polysomy 17 is rare. This study tests the hypothesis that the use of alternative chromosome 17 reference genes might more accurately assess true HER2 gene status. In all, 171 patients with breast cancer who had HER2 FISH that had increased mean CEP17 copy numbers (> 2.6) were selected for additional chromosome 17 studies that used probes for Smith-Magenis syndrome (SMS), retinoic acid receptor alpha (RARA), and tumor protein p53 (TP53) genes. A eusomic copy number exhibited in one or more of these loci was used to calculate a revised HER2-to-chromosome-17 ratio by using the eusomic gene locus as the reference. Of 132 cases classified as nonamplified on the basis of their HER2:CEP17 ratios, 58 (43.9%) were scored as amplified by using alternative chromosome 17 reference gene probes, and 13 (92.9%) of 14 cases scored as equivocal were reclassified as amplified. Among the cases with mean HER2 copy number of 4 to 6, 41 (47.7%) of 86 had their HER2 gene status upgraded from nonamplified to amplified, and four (4.7%) of 86 were upgraded from equivocal to amplified. Our results support the findings of recent pangenomic studies that true polysomy 17 is uncommon. Additional FISH studies that use probes to the SMS, RARA, and TP53 genes are an effective way to determine the true HER2 amplification status in patients with polysomy 17 and they have important potential implications for guiding HER2-targeted therapy in breast cancer.

  16. Thyroid Hormone Status Interferes with Estrogen Target Gene Expression in Breast Cancer Samples in Menopausal Women

    PubMed Central

    Conde, Sandro José; Luvizotto, Renata de Azevedo Melo; de Síbio, Maria Teresa; Nogueira, Célia Regina

    2014-01-01

    We investigated thyroid hormone levels in menopausal BrC patients and verified the action of triiodothyronine on genes regulated by estrogen and by triiodothyronine itself in BrC tissues. We selected 15 postmenopausal BrC patients and a control group of 18 postmenopausal women without BrC. We measured serum TPO-AB, TSH, FT4, and estradiol, before and after surgery, and used immunohistochemistry to examine estrogen and progesterone receptors. BrC primary tissue cultures received the following treatments: ethanol, triiodothyronine, triiodothyronine plus 4-hydroxytamoxifen, 4-hydroxytamoxifen, estrogen, or estrogen plus 4-hydroxytamoxifen. Genes regulated by estrogen (TGFA, TGFB1, and PGR) and by triiodothyronine (TNFRSF9, BMP-6, and THRA) in vitro were evaluated. TSH levels in BrC patients did not differ from those of the control group (1.34 ± 0.60 versus 2.41 ± 1.10 μU/mL), but FT4 levels of BrC patients were statistically higher than controls (1.78 ± 0.20 versus 0.95 ± 0.16 ng/dL). TGFA was upregulated and downregulated after estrogen and triiodothyronine treatment, respectively. Triiodothyronine increased PGR expression; however 4-hydroxytamoxifen did not block triiodothyronine action on PGR expression. 4-Hydroxytamoxifen, alone or associated with triiodothyronine, modulated gene expression of TNFRSF9, BMP-6, and THRA, similar to triiodothyronine treatment. Thus, our work highlights the importance of thyroid hormone status evaluation and its ability to interfere with estrogen target gene expression in BrC samples in menopausal women. PMID:24701358

  17. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation

    PubMed Central

    Lin, Chang-Te; Tung, Chun-Liang; Shen, Cheng-Huang; Tsai, Hsin-Tzu; Yang, Wen-Horng; Chang, Hung-I; Chen, Syue-Yi; Tzai, Tzong-Shin

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) can control a transcriptional factor forkhead box P3 (Foxp3) protein expression in T lymphocyte differentiation through proteasome-mediated degradation. In this study, we unveil a reverse regulatory mechanism contributing to bladder cancer progression; Foxp3 expression attenuates HIF-1α degradation. We first demonstrated that Foxp3 expression positively correlates with the metastatic potential in T24 cells and can increase the expression of HIF-1α-target genes, such as vascular endothelial growth factor (VEGF) and glucose transporter (GLUT). Foxp3 protein can bind with HIF-1α, particularly under hypoxia. In vivo ubiquination assay demonstrated that Foxp3 can decrease HIF-1α degradation in a dose-dependent manner. Knocking-down of Foxp3 expression blocks in vivo tumor growth in mice and prolongs mice's survival, which is associated with von Willebrand factor expression. Thirty-three of 145 (22.8 %) bladder tumors exhibit Foxp3 expression. Foxp3 expression is an independent predictor for disease progression in superficial bladder cancer patients (p = 0.032), associated with less number of intratumoral CD8+ lymphocyte. The metaanalysis from 2 published datasets showed Foxp3 expression is positively associated with GLUT−4, −9, and VEGF-A, B-, D expression. This reverse post-translational regulation of HIF-1α protein by Foxp3 provides a new potential target for developing new therapeutic strategy for bladder cancer. PMID:27557492

  18. BTG1 expression correlates with pathogenesis, aggressive behaviors and prognosis of gastric cancer: a potential target for gene therapy.

    PubMed

    Zheng, Hua-chuan; Li, Jing; Shen, Dao-fu; Yang, Xue-feng; Zhao, Shuang; Wu, Ya-zhou; Takano, Yasuo; Sun, Hong-zhi; Su, Rong-jian; Luo, Jun-sheng; Gou, Wen-feng

    2015-08-14

    Here, we found that BTG1 overexpression inhibited proliferation, migration and invasion, induced G2/M arrest, differentiation, senescence and apoptosis in BGC-823 and MKN28 cells (p < 0.05). BTG1 transfectants showed a higher mRNA expression of Cyclin D1 and Bax, but a lower mRNA expression of cdc2, p21, mTOR and MMP-9 than the control and mock (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG1 transfectants showed lower mRNA viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05) with the hypoexpression of chemoresistance-related genes (slug, CD147, GRP78, GRP94, FBXW7 TOP1, TOP2 and GST-π). BTG1 expression was restored after 5-aza-2'-deoxycytidine treatment in gastric cancer cells. BTG1 expression was statistically lower in gastric cancer than non-neoplastic mucosa and metastatic cancer in lymph node (p < 0.05). BTG1 expression was positively correlated with depth of invasion, lymphatic and venous invasion, lymph node metastasis, TNM staging and worse prognosis (p < 0.05). The diffuse-type carcinoma showed less BTG1 expression than intestinal- and mixed-type ones (p < 0.05). BTG1 overexpression suppressed tumor growth and lung metastasis of gastric cancer cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that down-regulated BTG1 expression might promote gastric carcinogenesis partially due to its promoter methylation. BTG1 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer.

  19. Targeted Exome Sequencing of Krebs Cycle Genes Reveals Candidate Cancer-Predisposing Mutations in Pheochromocytomas and Paragangliomas.

    PubMed

    Remacha, Laura; Comino-Méndez, Iñaki; Richter, Susan; Contreras, Laura; Currás-Freixes, María; Pita, Guillermo; Letón, Rocío; Galarreta, Antonio; Torres-Pérez, Rafael; Honrado, Emiliano; Jiménez, Scherezade; Maestre, Lorena; Moran, Sebastian; Esteller, Manel; Satrústegui, Jorgina; Eisenhofer, Graeme; Robledo, Mercedes; Cascón, Alberto

    2017-07-18

    Purpose: Mutations in Krebs cycle genes are frequently found in patients with pheochromocytomas/paragangliomas. Disruption of SDH, FH or MDH2 enzymatic activities lead to accumulation of specific metabolites, which give rise to epigenetic changes in the genome that cause a characteristic hypermethylated phenotype. Tumors showing this phenotype, but no alterations in the known predisposing genes, could harbor mutations in other Krebs cycle genes.Experimental Design: We used downregulation and methylation of RBP1, as a marker of a hypermethylation phenotype, to select eleven pheochromocytomas and paragangliomas for targeted exome sequencing of a panel of Krebs cycle-related genes. Methylation profiling, metabolite assessment and additional analyses were also performed in selected cases.Results: One of the 11 tumors was found to carry a known cancer-predisposing somatic mutation in IDH1. A variant in GOT2, c.357A>T, found in a patient with multiple tumors, was associated with higher tumor mRNA and protein expression levels, increased GOT2 enzymatic activity in lymphoblastic cells, and altered metabolite ratios both in tumors and in GOT2 knockdown HeLa cells transfected with the variant. Array methylation-based analysis uncovered a somatic epigenetic mutation in SDHC in a patient with multiple pheochromocytomas and a gastrointestinal stromal tumor. Finally, a truncating germline IDH3B mutation was found in a patient with a single paraganglioma showing an altered α-ketoglutarate/isocitrate ratio.Conclusions: This study further attests to the relevance of the Krebs cycle in the development of PCC and PGL, and points to a potential role of other metabolic enzymes involved in metabolite exchange between mitochondria and cytosol. Clin Cancer Res; 1-10. ©2017 AACR. ©2017 American Association for Cancer Research.

  20. Profiling cancer-related gene mutations in oral squamous cell carcinoma from Japanese patients by targeted amplicon sequencing.

    PubMed

    Nakagaki, Takafumi; Tamura, Miyuki; Kobashi, Kenta; Koyama, Ryota; Fukushima, Hisayo; Ohashi, Tomoko; Idogawa, Masashi; Ogi, Kazuhiro; Hiratsuka, Hiroyoshi; Tokino, Takashi; Sasaki, Yasushi

    2017-08-29

    Somatic mutation analysis is a standard practice in the study of human cancers to identify mutations that cause therapeutic sensitization and resistance. We performed comprehensive genomic analyses that used PCR target enrichment and next-generation sequencing on Ion Proton semiconductor sequencers. Forty-seven oral squamous cell carcinoma (OSCC) samples and their corresponding noncancerous tissues were used for multiplex PCR amplification to obtain targeted coverage of the entire coding regions of 409 cancer-related genes (covered regions: 95.4% of total, 1.69 megabases of target sequence). The number of somatic mutations in 47 patients with OSCC ranged from 1 to 20 with a mean of 7.60. The most frequent mutations were in TP53 (61.7%), NOTCH1 (25.5%), CDKN2A (19.1%), SYNE1 (14.9%), PIK3CA (10.6%), ROS1 (10.6%), and TAF1L (10.6%). We also detected copy number variations (CNVs) in the segments of the genome that could be duplicated or deleted from deep sequencing data. Pathway assessment showed that the somatic aberrations within OSCC genomes are mainly involved in several important pathways, including cell cycle regulation and RTK-MAPK-PI3K. This study may enable better selection of therapies and deliver improved outcomes for OSCC patients when combined with clinical diagnostics.

  1. TINAGL1 and B3GALNT1 are potential therapy target genes to suppress metastasis in non-small cell lung cancer.

    PubMed

    Umeyama, Hideaki; Iwadate, Mitsuo; Taguchi, Y-h

    2014-01-01

    Non-small cell lung cancer (NSCLC) remains lethal despite the development of numerous drug therapy technologies. About 85% to 90% of lung cancers are NSCLC and the 5-year survival rate is at best still below 50%. Thus, it is important to find drugable target genes for NSCLC to develop an effective therapy for NSCLC. Integrated analysis of publically available gene expression and promoter methylation patterns of two highly aggressive NSCLC cell lines generated by in vivo selection was performed. We selected eleven critical genes that may mediate metastasis using recently proposed principal component analysis based unsupervised feature extraction. The eleven selected genes were significantly related to cancer diagnosis. The tertiary protein structure of the selected genes was inferred by Full Automatic Modeling System, a profile-based protein structure inference software, to determine protein functions and to specify genes that could be potential drug targets. We identified eleven potentially critical genes that may mediate NSCLC metastasis using bioinformatic analysis of publically available data sets. These genes are potential target genes for the therapy of NSCLC. Among the eleven genes, TINAGL1 and B3GALNT1 are possible candidates for drug compounds that inhibit their gene expression.

  2. Construction and analysis of regulatory genetic networks in cervical cancer based on involved microRNAs, target genes, transcription factors and host genes

    PubMed Central

    WANG, NING; XU, ZHIWEN; WANG, KUNHAO; ZHU, MINGHUI; LI, YANG

    2014-01-01

    Over recent years, genes and microRNA (miRNA/miR) have been considered as key biological factors in human carcinogenesis. During cancer development, genes may act as multiple identities, including target genes of miRNA, transcription factors and host genes. The present study concentrated on the regulatory networks consisting of the biological factors involved in cervical cancer in order to investigate their features and affect on this specific pathology. Numerous raw data was collected and organized into purposeful structures, and adaptive procedures were defined for application to the prepared data. The networks were therefore built with the factors as basic components according to their interacting associations. The networks were constructed at three levels of interdependency, including a differentially-expressed network, a related network and a global network. Comparisons and analyses were made at a systematic level rather than from an isolated gene or miRNA. Critical hubs were extracted in the core networks and notable features were discussed, including self-adaption feedback regulation. The present study expounds the pathogenesis from a novel point of view and is proposed to provide inspiration for further investigation and therapy. PMID:24944708

  3. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer.

    PubMed

    Corrales, Leticia; Gajewski, Thomas F

    2015-11-01

    Novel immunotherapy approaches are transforming the treatment of cancer, yet many patients remain refractory to these agents. One hypothesis is that immunotherapy fails because of a tumor microenvironment that fails to support recruitment of immune cells, including CD8(+) T cells. Therefore, new approaches designed to initiate a de novo antitumor immune response from within the tumor microenvironment are being pursued. Recent evidence has indicated that spontaneous activation of the Stimulator of Interferon Genes (STING) pathway within tumor-resident dendritic cells leads to type I IFN production and adaptive immune responses against tumors. This pathway is activated in the presence of cytosolic DNA that is detected by the sensor cyclic GMP-AMP synthase (cGAS) and generates cyclic GMP-AMP (cGAMP), which binds and activates STING. As a therapeutic approach, intratumoral injection of STING agonists has demonstrated profound therapeutic effects in multiple mouse tumor models, including melanoma, colon, breast, prostate, and fibrosarcoma. Better characterization of the STING pathway in human tumor recognition, and the development of new pharmacologic approaches to engage this pathway within the tumor microenvironment in patients, are important areas for clinical translation.

  4. Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases.

    PubMed

    Joo, Kyeung Min; Park, In H; Shin, Ji Y; Jin, Juyoun; Kang, Bong Gu; Kim, Mi Hyun; Lee, Se Jeong; Jo, Mi-young; Kim, Seung U; Nam, Do-Hyun

    2009-03-01

    The tumor-tropic properties of neural stem cells (NSCs) led to the development of a novel strategy for delivering therapeutic genes to tumors in the brain. To apply this strategy to the treatment of brain metastases, we made a human NSC line expressing cytosine deaminase (F3.CD), which converts 5-fluorocytosine (5-FC) into 5-fluorouracil, an anticancer agent. In vitro, the F3.CD cells significantly inhibited the growth of tumor cell lines in the presence of the prodrug 5-FC. In vivo, MDA-MB-435 human breast cancer cells were implanted into the brain of immune-deficient mouse stereotactically, and F3.CD cells were injected into the contralateral hemisphere followed by systemic 5-FC administration. The F3.CD cells migrated selectively into the brain metastases located in the opposite hemisphere and resulted in significantly reduced volumes. The F3.CD and 5-FC treatment also decreased both tumor volume and number of tumor mass significantly, when immune-deficient mouse had MDA-MB-435 cells injected into the internal carotid artery and F3.CD cells were transplanted into the contralateral brain hemisphere stereotactically. Taken together, brain transplantation of human NSCs, encoding the suicide enzyme CD, combined with systemic administration of the prodrug 5-FC, is an effective treatment regimen for brain metastases of tumors.

  5. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer

    PubMed Central

    Corrales, Leticia; Gajewski, Thomas F.

    2015-01-01

    Novel immunotherapy approaches are transforming the treatment of cancer, yet many patients remain refractory to these agents. One hypothesis is that immunotherapy fails because of a tumor microenvironment that fails to support recruitment of immune cells including CD8+ T cells. Therefore, new approaches designed to initiate a de novo anti-tumor immune response from within the tumor microenvironment are being pursued. Recent evidence has indicated that spontaneous activation of the Stimulator of Interferon Genes (STING) pathway within tumor-resident dendritic cells leads to type I interferon (IFN) production and adaptive immune responses against tumors. This pathway is activated in the presence of cytosolic DNA, that is detected by the sensor cyclic-GMP-AMP synthase (cGAS), and generates cyclic GMP-AMP (cGAMP), which binds and activates STING. As a therapeutic approach, intratumoral injection of STING agonists has demonstrated profound therapeutic effects in multiple mouse tumor models, including melanoma, colon, breast, prostate, and fibrosarcoma. Better characterization of the STING pathway in human tumor recognition, and the development of new pharmacologic approaches to engage this pathway within the tumor microenvironment in patients, are important areas for clinical translation. PMID:26373573

  6. Construction of interference vector targeting Ep-CAM gene and its effects on colorectal cancer cell proliferation.

    PubMed

    Qi, Yanmei; Zhou, Fengqiang; Zhang, Lu; Liu, Lei; Xu, Hong; Guo, Huiguang

    2015-01-01

    Prior study indicates that abnormal protein expression and functional changes in the development and progression of colorectal cancer is related to gene expression. The aim of this study was to construct an interference plasmid targeting the Ep-CAM gene and to investigate its effects on the proliferation of colorectal cancer cells. In this study, HT-29 and HCT-116 colorectal cancer cell lines were selected as cell models. The double-stranded micro (mi)RNA oligo was inserted into the pcDNATM6.2-GW/EmGFPmiR vector, which is an expression of miRNA. Lipofectamine™ 2000 was used to transfer plasmid into the empty plasmid group (transfected pcDNATM6.2-GW/EmGFPmiR-neg) and the interference group (transfected pcDNATM6.2-GW/EmGFPmiR-Ep-CAM-1), respectively. Meanwhile, the nontransferred HT-29 and HCT-116 acts as the blank control group. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the transfection efficiency. Western blot was used to detect Ep-CAM protein expression. The cell proliferation in each group was detected by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results indicated that the Ep-CAM messenger (m)RNA expression in the interference group was lower significantly compared with that of the empty plasmid group and control group (P<0.01). Western blot analysis results showed that Ep-CAM protein expression was significantly lower in interference group compared with that of the empty plasmid group and the control group (P<0.01). MTT assay results demonstrated that the proliferation ability of cells in the interference group was significantly inhibited compared with the two other groups (P<0.05). Silencing of Ep-CAM can significantly inhibit the proliferation of colorectal cancer cells.

  7. Gene therapy in pancreatic cancer.

    PubMed

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-10-07

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.

  8. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  9. A Set of miRNAs, Their Gene and Protein Targets and Stromal Genes Distinguish Early from Late Onset ER Positive Breast Cancer

    PubMed Central

    Bastos, E. P.; Brentani, H.; Pereira, C. A. B.; Polpo, A.; Lima, L.; Puga, R. D.; Pasini, F. S.; Osorio, C. A. B. T.; Roela, R. A.; Achatz, M. I.; Trapé, A. P.; Gonzalez-Angulo, A. M.; Brentani, M. M.

    2016-01-01

    Breast cancer (BC) in young adult patients (YA) has a more aggressive biological behavior and is associated with a worse prognosis than BC arising in middle aged patients (MA). We proposed that differentially expressed miRNAs could regulate genes and proteins underlying aggressive phenotypes of breast tumors in YA patients when compared to those arising in MA patients. Objective: Using integrated expression analyses of miRs, their mRNA and protein targets and stromal gene expression, we aimed to identify differentially expressed profiles between tumors from YA-BC and MA-BC. Methodology and Results: Samples of ER+ invasive ductal breast carcinomas, divided into two groups: YA-BC (35 years or less) or MA-BC (50–65 years) were evaluated. Screening for BRCA1/2 status according to the BOADICEA program indicated low risk of patients being carriers of these mutations. Aggressive characteristics were more evident in YA-BC versus MA-BC. Performing qPCR, we identified eight miRs differentially expressed (miR-9, 18b, 33b, 106a, 106b, 210, 518a-3p and miR-372) between YA-BC and MA-BC tumors with high confidence statement, which were associated with aggressive clinicopathological characteristics. The expression profiles by microarray identified 602 predicted target genes associated to proliferation, cell cycle and development biological functions. Performing RPPA, 24 target proteins differed between both groups and 21 were interconnected within a network protein-protein interactions associated with proliferation, development and metabolism pathways over represented in YA-BC. Combination of eight mRNA targets or the combination of eight target proteins defined indicators able to classify individual samples into YA-BC or MA-BC groups. Fibroblast-enriched stroma expression profile analysis resulted in 308 stromal genes differentially expressed between YA-BC and MA-BC. Conclusion: We defined a set of differentially expressed miRNAs, their mRNAs and protein targets and stromal

  10. A Set of miRNAs, Their Gene and Protein Targets and Stromal Genes Distinguish Early from Late Onset ER Positive Breast Cancer.

    PubMed

    Bastos, E P; Brentani, H; Pereira, C A B; Polpo, A; Lima, L; Puga, R D; Pasini, F S; Osorio, C A B T; Roela, R A; Achatz, M I; Trapé, A P; Gonzalez-Angulo, A M; Brentani, M M

    2016-01-01

    Breast cancer (BC) in young adult patients (YA) has a more aggressive biological behavior and is associated with a worse prognosis than BC arising in middle aged patients (MA). We proposed that differentially expressed miRNAs could regulate genes and proteins underlying aggressive phenotypes of breast tumors in YA patients when compared to those arising in MA patients. Using integrated expression analyses of miRs, their mRNA and protein targets and stromal gene expression, we aimed to identify differentially expressed profiles between tumors from YA-BC and MA-BC. Samples of ER+ invasive ductal breast carcinomas, divided into two groups: YA-BC (35 years or less) or MA-BC (50-65 years) were evaluated. Screening for BRCA1/2 status according to the BOADICEA program indicated low risk of patients being carriers of these mutations. Aggressive characteristics were more evident in YA-BC versus MA-BC. Performing qPCR, we identified eight miRs differentially expressed (miR-9, 18b, 33b, 106a, 106b, 210, 518a-3p and miR-372) between YA-BC and MA-BC tumors with high confidence statement, which were associated with aggressive clinicopathological characteristics. The expression profiles by microarray identified 602 predicted target genes associated to proliferation, cell cycle and development biological functions. Performing RPPA, 24 target proteins differed between both groups and 21 were interconnected within a network protein-protein interactions associated with proliferation, development and metabolism pathways over represented in YA-BC. Combination of eight mRNA targets or the combination of eight target proteins defined indicators able to classify individual samples into YA-BC or MA-BC groups. Fibroblast-enriched stroma expression profile analysis resulted in 308 stromal genes differentially expressed between YA-BC and MA-BC. We defined a set of differentially expressed miRNAs, their mRNAs and protein targets and stromal genes that distinguish early onset from late onset ER

  11. Prognostic impact of ΔTAp73 isoform levels and their target genes in colon cancer patients.

    PubMed

    Soldevilla, Beatriz; Díaz, Raquel; Silva, Javier; Campos-Martín, Yolanda; Muñoz, Concepción; García, Vanesa; García, José M; Peña, Cristina; Herrera, Mercedes; Rodriguez, Marta; Gómez, Irene; Mohamed, Nagat; Marques, Margarita M; Bonilla, Félix; Domínguez, Gemma

    2011-09-15

    Cumulative data support the role of ΔTAp73 variants in tumorigenic processes such as drug resistance. We evaluate the impact of TP73 isoforms and their putative target genes ABCB1, HMGB1, and CASP1 on the survival of colon cancer patients and the correlation between their expressions. We determined in 77 colon cancer patients the expression of ΔEx2p73, ΔEx2/3p73, ΔNp73, TAp73, ABCB1, HMGB1, and CASP1 by quantitative real-time reverse transcriptase-PCR. Tumor characteristics, disease-free survival, and overall survival (OS) were examined in each patient. Functional experiments were carried out to check whether ectopic expression of ΔNp73 modifies the proliferation, drug resistance, migration, and invasion properties of colon tumor cells and the expression of ABCB1, HMGB1, and CASP1. Positive correlations were observed between the expression levels of ΔTAp73 variants and HMGB1. Furthermore, a trend was observed for ABCB1. Overexpression of ΔEx2/3p73 and ΔNp73 isoforms was significantly associated with advanced stages (P = 0.04 and P = 0.03, respectively) and predicted shortened OS (P = 0.04 and P = 0.05, respectively). High levels of ABCB1 and HMGB1 were associated with shorter OS (P = 0.04 and P = 0.05, respectively). Multivariate analysis showed that, in addition to the tumor stage, ABCB1 and HMGB1 had independent relationships with OS (P = 0.008). Ectopic expression of ΔNp73 was associated with an increase in proliferation and drug resistance. The positive correlation between ΔTAp73 variants and HMGB1 and ABCB1 expression supports them as TP73 targets. The fact that upregulation of ΔTAp73 isoforms was associated with shortened OS, increase in proliferation, and drug resistance confirms their oncogenic role and plausible value as prognostic markers. ABCB1 and HMGB1, putative ΔTAp73 target genes, strongly predict OS in an independent manner, making clear the importance of studying downstream TP73 targets that could predict the outcome of colon cancer

  12. Tumor profiling of co-regulated receptor tyrosine kinase and chemoresistant genes reveal different targeting options for lung and gastroesophageal cancers

    PubMed Central

    Wu, Jianzhong; Li, Shuchun; Ma, Rong; Sharma, Ashok; Bai, Shan; Dun, Boying; Cao, Haixia; Jing, Changwen; She, Jinxiong; Feng, Jifeng

    2016-01-01

    The expression of a number of genes can influence the response rates to chemotherapy while genes encoding receptor tyrosine kinases (RTKs) determine the response to most targeted cancer therapies currently used in clinics. In this study, we evaluated seven genes known to influence chemotherapeutic response (ERCC1, BRCA1, RRM1, TUBB3, STMN1, TYMS, and TOP2A) and five RTKs (EGFR, ERBB2, PDGFRB, VEGFR1 and VEGFR2) in non-small cell lung cancer (NSCLC) and esophagus cancer (EC) and the data are compared to gastric cancer (GC) data reported previously. We demonstrate significant differences in the expression profiles between different cancer types as well as heterogeneity among patients within the same cancer type. In all three cancer types, five chemoresistant genes (TOP2A, STMN1, TYMS, BRCA1 and RRM1) are coordinately up-regulated in almost all EC, approximately 90% of NSCLC and one third of GC patients. Most EC and nearly half of GC patients have increased expression of the three RTKs critical to angiogenesis (PDGFR, VEGFR1 and VEGFR2), while almost none of the NSCLC patients have elevated expression of angiogenic RTKs. A variable percentage of patients in the three cancer types show upregulation of the EGFR family RTKs, EGFR and/or ERBB2. It is of interest to note that approximately 10% of the NSCLC and GC patients are triple-negative for the chemosensitivity genes, angiogenic and EGFR RTK genes. The results suggest significant gene expression differences between different cancer types as well as heterogeneity within each cancer type and therefore different molecules should be targeted for future drug development and clinical trials. PMID:28078044

  13. Targeting Breast Cancer Metastasis

    PubMed Central

    Jin, Xin; Mu, Ping

    2015-01-01

    Metastasis is the leading cause of breast cancer-associated deaths. Despite the significant improvement in current therapies in extending patient life, 30–40% of patients may eventually suffer from distant relapse and succumb to the disease. Consequently, a deeper understanding of the metastasis biology is key to developing better treatment strategies and achieving long-lasting therapeutic efficacies against breast cancer. This review covers recent breakthroughs in the discovery of various metastatic traits that contribute to the metastasis cascade of breast cancer, which may provide novel avenues for therapeutic targeting. PMID:26380552

  14. TARGETED THERAPY IN CANCER

    PubMed Central

    Tsimberidou, Apostolia-Maria

    2015-01-01

    Purpose To describe the emergence of targeted therapies that have led to significant breakthroughs in cancer therapy and completed or ongoing clinical trials of novel agents for the treatment of patients with advanced cancer. Methods The literature was systematically reviewed, based on clinical experience and the use of technologies that improved our understanding of carcinogenesis. Results Genomics and model systems have enabled the validation of novel therapeutic strategies. Tumor molecular profiling has enabled the reclassification of cancer, and elucidated some mechanisms of disease progression or resistance to treatment, the heterogeneity between primary and metastatic tumors, and the dynamic changes of tumor molecular profiling over time. Despite the notable technologic advances, there is a gap between the plethora of preclinical data and the lack of effective therapies, which is attributed to suboptimal drug development for “driver” alterations of human cancer, the high cost of clinical trials and available drugs, and limited access of patients to clinical trials. Bioinformatic analyses of complex data to characterize tumor biology, function, and the dynamic tumor changes in time and space may improve cancer diagnosis. The application of discoveries in cancer biology in clinic holds the promise to improve the clinical outcomes in a large scale of patients with cancer. Increased harmonization between discoveries, policies, and practices will expedite the development of anticancer drugs and will accelerate the implementation of precision medicine. Conclusions Combinations of targeted, immunomodulating, antiangiogenic, or chemotherapeutic agents are in clinical development. Innovative adaptive study design is used to expedite effective drug development. PMID:26391154

  15. Targeting Prostate Cancer for Gene Therapy Utilizing Lentivirus and Oncolytic VSV Virus

    DTIC Science & Technology

    2009-04-01

    Prostate cancer is the most commonly diagnosed non- skin carcinoma, and one of the leading causes of cancerrelated deaths in North American men. Presently...primary and metastatic cancer cells while sparing normal cells. Vesicular Stomatitis Virus (VSV) is an oncolytic virus which is able to replicate in...capable of selectively infecting and killing malignant prostate cells while sparing normal cells. This cancer-specific cell death was not due to

  16. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies

    PubMed Central

    Stoyanova, Radka; Pollack, Alan; Takhar, Mandeep; Lynne, Charles; Parra, Nestor; Lam, Lucia L.C.; Alshalalfa, Mohammed; Buerki, Christine; Castillo, Rosa; Jorda, Merce; Ashab, Hussam Al-deen; Kryvenko, Oleksandr N.; Punnen, Sanoj; Parekh, Dipen J.; Abramowitz, Matthew C.; Gillies, Robert J.; Davicioni, Elai; Erho, Nicholas; Ishkanian, Adrian

    2016-01-01

    Standard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective was to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues. Global gene expression profiles were generated from 17 mpMRI-directed diagnostic prostate biopsies using an Affimetrix platform. Spatially distinct imaging areas (‘habitats’) were identified on MRI/3D-Ultrasound fusion. Radiomic features were extracted from biopsy regions and normal appearing tissues. We correlated 49 radiomic features with three clinically available gene signatures associated with adverse outcome. The signatures contain genes that are over-expressed in aggressive prostate cancers and genes that are under-expressed in aggressive prostate cancers. There were significant correlations between these genes and quantitative imaging features, indicating the presence of prostate cancer prognostic signal in the radiomic features. Strong associations were also found between the radiomic features and significantly expressed genes. Gene ontology analysis identified specific radiomic features associated with immune/inflammatory response, metabolism, cell and biological adhesion. To our knowledge, this is the first study to correlate radiogenomic parameters with prostate cancer in men with MRI-guided biopsy. PMID:27438142

  17. Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment.

    PubMed

    Arpicco, Silvia; Milla, Paola; Stella, Barbara; Dosio, Franco

    2014-03-17

    Hyaluronic acid (HA) is a naturally-occurring glycosaminoglycan and a major component of the extracellular matrix. Low levels of the hyaluronic acid receptor CD44 are found on the surface of epithelial, hematopoietic, and neuronal cells; it is overexpressed in many cancer cells, and in particular in tumor-initiating cells. HA has recently attracted considerable interest in the field of developing drug delivery systems, having been used, as such or encapsulated in different types of nanoassembly, as ligand to prepare nano-platforms for actively targeting drugs, genes, and diagnostic agents. This review describes recent progress made with the several chemical strategies adopted to synthesize conjugates and prepare novel delivery systems with improved behaviors.

  18. Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer.

    PubMed

    Chou, Jian-Liang; Su, Her-Young; Chen, Lin-Yu; Liao, Yu-Ping; Hartman-Frey, Corinna; Lai, Yi-Hui; Yang, Hui-Wen; Deatherage, Daniel E; Kuo, Chieh-Ti; Huang, Yi-Wen; Yan, Pearlly S; Hsiao, Shu-Huei; Tai, Chien-Kuo; Lin, Huey-Jen L; Davuluri, Ramana V; Chao, Tai-Kuang; Nephew, Kenneth P; Huang, Tim H-M; Lai, Hung-Cheng; Chan, Michael W-Y

    2010-03-01

    Resistance to TGF-beta is frequently observed in ovarian cancer, and disrupted TGF-beta/SMAD4 signaling results in the aberrant expression of downstream target genes in the disease. Our previous study showed that ADAM19, a SMAD4 target gene, is downregulated through epigenetic mechanisms in ovarian cancer with aberrant TGF-beta/SMAD4 signaling. In this study, we investigated the mechanism of downregulation of FBXO32, another SMAD4 target gene, and the clinical significance of the loss of FBXO32 expression in ovarian cancer. Expression of FBXO32 was observed in the normal ovarian surface epithelium, but not in ovarian cancer cell lines. FBXO32 methylation was observed in ovarian cancer cell lines displaying constitutive TGF-beta/SMAD4 signaling, and epigenetic drug treatment restored FBXO32 expression in ovarian cancer cell lines regardless of FBXO32 methylation status, suggesting that epigenetic regulation of this gene in ovarian cancer may be a common event. In advanced-stage ovarian tumors, a significant (29.3%; P<0.05) methylation frequency of FBXO32 was observed and the association between FBXO32 methylation and shorter progression-free survival was significant, as determined by both Kaplan-Meier analysis (P<0.05) and multivariate Cox regression analysis (hazard ratio: 1.003, P<0.05). Reexpression of FBXO32 markedly reduced proliferation of a platinum-resistant ovarian cancer cell line both in vitro and in vivo, due to increased apoptosis of the cells, and resensitized ovarian cancer cells to cisplatin. In conclusion, the novel tumor suppressor FBXO32 is epigenetically silenced in ovarian cancer cell lines with disrupted TGF-beta/SMAD4 signaling, and FBXO32 methylation status predicts survival in patients with ovarian cancer.

  19. 'Nano-in-nano' hybrid liposomes increase target specificity and gene silencing efficiency in breast cancer induced SCID mice.

    PubMed

    Bhavsar, Dhiraj; Subramanian, Krishnakumar; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2017-10-01

    Gene silencing has immense potential in the treatment of cancer. However, enhancement of its efficiency requires the development of specifically targeted and safe carrier systems. Cationic carriers are generally limited by their immunogenicity. Hence, in this study, we report hybrid liposomes encapsulating Poly (L-lysine)-siRNA complex to silence epithelial cell adhesion molecule (EpCAM), highly expressed in epithelial cancers. The hybrid liposomes LL1 (Egg PC:DSPE-PEG, 10:0) and hybrid immunoliposomes LL2 (Egg PC:DSPE-PEG, 8:2) linked with EpCAM antibody as the targeting ligand showed an encapsulation efficiency of 70% and 86%, respectively. LL2 liposomes with a zeta potential of -26mV exhibited good colloidal stability in phosphate buffered saline containing bovine serum albumin and fetal bovine serum at 37°C. Cell uptake studies showed increased uptake of the LL2 when compared to LL1 liposomes. Finally, the hybrid immunoliposomes were evaluated for their efficacy in regressing the tumor volume in SCID mice. Eight doses each of 0.15mg/kg, which is among the lowest reported siRNA concentrations, were administered to the animals. About 45% reduction in tumor volume was achieved after 28days in the mice treated with LL2 when compared with the positive control and LL1 treated groups. Thus, our results demonstrate that the 'nano-in-nano' concept of encapsulating poly (l-Lysine) complexed EpCAM siRNA in immunoliposomes may be a promising strategy to treat EpCAM-positive epithelial cancers, especially as an adjuvant therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Whole-exome sequencing and targeted gene sequencing provide insights into the role of PALB2 as a male breast cancer susceptibility gene.

    PubMed

    Silvestri, Valentina; Zelli, Veronica; Valentini, Virginia; Rizzolo, Piera; Navazio, Anna Sara; Coppa, Anna; Agata, Simona; Oliani, Cristina; Barana, Daniela; Castrignanò, Tiziana; Viel, Alessandra; Russo, Antonio; Tibiletti, Maria Grazia; Zanna, Ines; Masala, Giovanna; Cortesi, Laura; Manoukian, Siranoush; Azzollini, Jacopo; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Radice, Paolo; Palli, Domenico; Giannini, Giuseppe; Chillemi, Giovanni; Montagna, Marco; Ottini, Laura

    2017-01-01

    Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society. © 2016 American Cancer Society.

  1. Therapeutic targeting of tumor suppressor genes.

    PubMed

    Morris, Luc G T; Chan, Timothy A

    2015-05-01

    Carcinogenesis is a multistep process attributable to both gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes. Currently, most molecular targeted therapies are inhibitors of oncogenes, because inactivated tumor suppressor genes have proven harder to "drug." Nevertheless, in cancers, tumor suppressor genes undergo alteration more frequently than do oncogenes. In recent years, several promising strategies directed at tumor suppressor genes, or the pathways controlled by these genes, have emerged. Here, we describe advances in a number of different methodologies aimed at therapeutically targeting tumors driven by inactivated tumor suppressor genes.

  2. MiR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer

    PubMed Central

    Lorenzon, Laura; Biagioni, Francesca; Lo Sardo, Federica; Grazia Diodoro, Maria; Muti, Paola; Garofalo, Alfredo; Strano, Sabrina; D'Errico, Antonietta; Luca Grazi, Gian; Cioce, Mario; Blandino, Giovanni

    2017-01-01

    Background & Aims There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. Methods We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. Results We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. Conclusions We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically. PMID:28199974

  3. Targetable Endolytic Protein-Based Polymers for Systemic Breast Cancer Gene Therapy

    DTIC Science & Technology

    2005-08-01

    701-709 (1996). 28. K. Roy, H. Q. Mao, S. K. Huang, and K. W. Leong. Oral gene delivery with chitosan --DNA nanoparticles generates immunologic...Task 1. Synthesis of the copolymers a. Design and synthesis of oligonucleotides encoding the polymers b. Synthesis of monomer gene segments c... Synthesis of multimer gene segments d. Small scale expression and analysis of the polymers We successfully synthesized oligonucleotides encoding

  4. A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast

    DTIC Science & Technology

    2004-05-01

    found to be within the same checkpoint epistasis group and diploid double mutant were similar to the procedures described above. The ccr4A cells...complex were or indirect role cannot be ruled out without epistasis analysis). IRs due to single recessive gene deletions and not due to errors The...resistance genes and established that CCR4 and DHH1 are members of the RAD9 epistasis group of checkpoint repair genes. This complex appears to mediate

  5. Gene Therapy of Disseminated Breast Cancer Using Adenoviral Vectors Targeted Through Immunological Methods

    DTIC Science & Technology

    1998-08-01

    vectors encoding the firefly luciferase and 13-galactosidase reporter genes. In addition to these, an adenovirus vector encoding for the cytosine ... deaminase (CD) gene will be used to perform therapeutic studies. The CD enzyme converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), a

  6. Identification and Function of Ets Target Genes Involved in Lung Cancer Progression

    DTIC Science & Technology

    2013-10-01

    Non-Small Cell Lung Cancer (NSCLC) Progression and Metastasis”. Jun Li1, Julian Carretero2, Carl J O’Hara3, Anne Hinds1, Guetchyn Millien1, Mary C...Primary Adenocarcinoma in Lung” Anita Malek , MD; Hasmeena Kathuria, MD; and Carl O’Hara, MD 12 Conclusions In this progress report, we...Expression in Non-Small Cell Lung Cancer (NSCLC) Progression and Metastasis Jun Li1, Julian Carretero2, Carl J O’Hara3, Anne Hinds1, Guetchyn Millien1

  7. Id-1 and Id-2 genes and products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect

    Desprez, Pierre-Yves; Campisi, Judith

    2014-09-30

    A method for treatment and amelioration of breast, cervical, ovarian, endometrial, squamous cells, prostate cancer and melanoma in a patient comprising targeting Id-1 or Id-2 gene expression with a delivery vehicle comprising a product which modulates Id-1 or Id-2 expression.

  8. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets

    PubMed Central

    Shin, John J.; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A.; Poon, Tak; Li, Shu Chen; Young, Barry P.; Roskelley, Calvin D.

    2016-01-01

    ABSTRACT A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C–COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial

  9. Targeting Prostate Cancer Metastasis

    DTIC Science & Technology

    2015-09-01

    drug t oxi c i t y and the e ffect i ve dose i n zebrafish and found the best perf ormi ng s t rat egi es usi ng zebrafish - metastasi s model s...CLASSIFICATION OF: a. REPORT b. ABSTRACT c . THIS PAGE Unclassified Unclassified Unclassified screen, zebrafish , mouse, 17. LIMITATION 18. NUMBER OF... zebrafish -metastasis models and mouse models of prostate cancer, we aim to investigate whether FDA approved drugs that target these pathways can be

  10. SPON2, a newly identified target gene of MACC1, drives colorectal cancer metastasis in mice and is prognostic for colorectal cancer patient survival.

    PubMed

    Schmid, F; Wang, Q; Huska, M R; Andrade-Navarro, M A; Lemm, M; Fichtner, I; Dahlmann, M; Kobelt, D; Walther, W; Smith, J; Schlag, P M; Stein, U

    2016-11-17

    MACC1 (metastasis associated in colon cancer 1) is a prognostic biomarker for tumor progression, metastasis and survival of a variety of solid cancers including colorectal cancer (CRC). Here we aimed to identify the MACC1-induced transcriptome and key players mediating the MACC1-induced effects in CRC. We performed microarray analyses using CRC cells ectopically overexpressing MACC1. We identified more than 1300 genes at least twofold differentially expressed, including the gene SPON2 (Spondin 2) as 90-fold upregulated transcriptional target of MACC1. MACC1-dependent SPON2 expression regulation was validated on mRNA and protein levels in MACC1 high (endogenously or ectopically) and low (endogenously or by knockdown) expressing cells. Chromatin immunoprecipitation analysis demonstrated the binding of MACC1 to the gene promoter of SPON2. In cell culture, ectopic SPON2 overexpression induced cell viability, migration, invasion and colony formation in endogenously MACC1 and SPON2 low expressing cells, whereas SPON2 knockdown reduced proliferative, migratory and invasive abilities in CRC cells with high endogenous MACC1 and SPON2 expression. In intrasplenically transplanted NOD/SCID mice, metastasis induction was analyzed with control or SPON2-overexpressing CRC cells. Tumors with SPON2 overexpression induced liver metastasis (vs control animals without any metastases, P=0.0036). In CRC patients, SPON2 expression was determined in primary tumors (stages I-III), and survival time was analyzed by Kaplan-Meier method. CRC patients with high SPON2 expressing primary tumors demonstrated 8 months shorter metastasis-free survival (MFS) compared with patients with low SPON2 levels (P=0.053). Combining high levels of SPON2 and MACC1 improved the identification of high-risk patients with a 20-month shorter MFS vs patients with low biomarker expression. In summary, SPON2 is a transcriptional target of the metastasis gene MACC1. SPON2 induces cell motility in vitro and CRC

  11. MiR-187 Targets the Androgen-Regulated Gene ALDH1A3 in Prostate Cancer.

    PubMed

    Casanova-Salas, Irene; Masiá, Esther; Armiñán, Ana; Calatrava, Ana; Mancarella, Caterina; Rubio-Briones, José; Scotlandi, Katia; Vicent, Maria Jesús; López-Guerrero, José Antonio

    2015-01-01

    miRNAs are predicted to control the activity of approximately 60% of all protein-coding genes participating in the regulation of several cellular processes and diseases, including cancer. Recently, we have demonstrated that miR-187 is significantly downregulated in prostate cancer (PCa) and here we propose a proteomic approach to identify its potential targets. For this purpose, PC-3 cells were transiently transfected with miR-187 precursor and miRNA mimic negative control. Proteins were analyzed by a two-dimensional difference gel electrophoresis (2D-DIGE) and defined as differentially regulated if the observed fold change was ±1.06. Then, MALDI-TOF MS analysis was performed after protein digestion and low abundance proteins were identified by LC-MS/MS. Peptides were identified by searching against the Expasy SWISS PROT database, and target validation was performed both in vitro by western blot and qRT-PCR and in clinical samples by qRT-PCR, immunohistochemistry and ELISA. DIGE analysis showed 9 differentially expressed spots (p<0.05) and 7 showed a down-regulated expression upon miR-187 re-introduction. Among these targets we identified aldehyde dehydrogenase 1A3 (ALDH1A3). ALDH1A3 expression was significantly downregulated in PC3, LNCaP and DU-145 cells after miR-187 re-introduction. Supporting these data, the expression of ALDH1A3 was found significantly (p<0.0001) up-regulated in PCa samples and inversely correlated (p<0.0001) with miR-187 expression, its expression being directly associated with Gleason score (p = 0.05). The expression of ALDH1A3 was measured in urine samples to evaluate the predictive capability of this biomarker for the presence of PCa and, at a signification level of 10%, PSA and also ALDH1A3 were significantly associated with a positive biopsy of PCa. In conclusion, our data illustrate for the first time the role of ALDH1A3 as a miR-187 target in PCa and provide insights in the utility of using this protein as a new biomarker for PCa.

  12. MiR-187 Targets the Androgen-Regulated Gene ALDH1A3 in Prostate Cancer

    PubMed Central

    Casanova-Salas, Irene; Masiá, Esther; Armiñán, Ana; Calatrava, Ana; Mancarella, Caterina; Rubio-Briones, José; Scotlandi, Katia; Vicent, Maria Jesús; López-Guerrero, José Antonio

    2015-01-01

    miRNAs are predicted to control the activity of approximately 60% of all protein-coding genes participating in the regulation of several cellular processes and diseases, including cancer. Recently, we have demonstrated that miR-187 is significantly downregulated in prostate cancer (PCa) and here we propose a proteomic approach to identify its potential targets. For this purpose, PC-3 cells were transiently transfected with miR-187 precursor and miRNA mimic negative control. Proteins were analyzed by a two-dimensional difference gel electrophoresis (2D-DIGE) and defined as differentially regulated if the observed fold change was ±1.06. Then, MALDI-TOF MS analysis was performed after protein digestion and low abundance proteins were identified by LC–MS/MS. Peptides were identified by searching against the Expasy SWISS PROT database, and target validation was performed both in vitro by western blot and qRT-PCR and in clinical samples by qRT-PCR, immunohistochemistry and ELISA. DIGE analysis showed 9 differentially expressed spots (p<0.05) and 7 showed a down-regulated expression upon miR-187 re-introduction. Among these targets we identified aldehyde dehydrogenase 1A3 (ALDH1A3). ALDH1A3 expression was significantly downregulated in PC3, LNCaP and DU-145 cells after miR-187 re-introduction. Supporting these data, the expression of ALDH1A3 was found significantly (p<0.0001) up-regulated in PCa samples and inversely correlated (p<0.0001) with miR-187 expression, its expression being directly associated with Gleason score (p = 0.05). The expression of ALDH1A3 was measured in urine samples to evaluate the predictive capability of this biomarker for the presence of PCa and, at a signification level of 10%, PSA and also ALDH1A3 were significantly associated with a positive biopsy of PCa. In conclusion, our data illustrate for the first time the role of ALDH1A3 as a miR-187 target in PCa and provide insights in the utility of using this protein as a new biomarker for PCa

  13. Identification of fibroblast growth factor-8b target genes associated with early and late cell cycle events in breast cancer cells.

    PubMed

    Nilsson, E M; Brokken, L J S; Narvi, E; Kallio, M J; Härkönen, P L

    2012-07-06

    Fibroblast growth factor-8 (FGF-8) is implicated in the development and progression of breast cancer and its levels are frequently elevated in breast tumors. The mechanisms driving FGF-8-mediated tumorigenesis are not well understood. Herein we aimed to identify target genes associated with FGF-8b-mediated breast cancer cell proliferation by carrying out a cDNA microarray analysis of genes expressed in estrogen receptor negative S115 breast cancer cells treated with FGF-8b for various time periods in comparison with those expressed in non-treated cells. Gene and protein expression was validated for selected genes by qPCR and western blotting respectively. Furthermore, using TRANSBIG data, the expression of human orthologs of FGF-8-regulated genes was correlated to the Nottingham prognostic index and estrogen receptor status. The analysis revealed a number of significantly up- and down-regulated genes in response to FGF-8b at all treatment times. The most differentially expressed genes were genes related to cell cycle regulation, mitosis, cancer, and cell death. Several key regulators of early cell cycle progression such as Btg2 and cyclin D1, as well as regulators of mitosis, including cyclin B, Plk1, survivin, and aurora kinase A, were identified as novel targets for FGF-8b, some of which were additionally shown to correlate with prognosis and ER status in human breast cancer. The results suggest that in stimulation of proliferation FGF-8b not only promotes cell cycle progression through the G1 restriction point but also regulates key proteins involved in chromosomal segregation during mitosis and cytokinesis of breast cancer cells.

  14. Targeting Prostate Cancer for Gene Therapy Utilizing Lentivirus and Oncolytic VSV Virus

    DTIC Science & Technology

    2010-04-01

    specific fashion. Ad ditionally, mutated form of Vesicular Stomatitis Virus (VSV), an oncolytic virus capable of replicating in interferon (IFN) response...Our results indicated that direct injection of VSV (AV3) intra-prostaticaly lead to selective infection, replication, and overall i ncrease i n ap...ully re plication-competent a nd r apidly s pread through a nd ki ll cancerous cells. Vesicular Stomatitis Virus (VSV) is an oncolytic virus which

  15. Identification and Function of Ets Target Genes Involved in Lung Cancer Progression

    DTIC Science & Technology

    2012-10-01

    tumor epithelial nuclei (Fig 5). We performed ChIP assays in human (A549 and NCI- H1299 ) cell lines to confirm Ets protein binding to the human...ChIP assays in human (A549 and NCI- H1299 ) cell lines to confirm Ets protein binding to the Twist1 promoter (Fig 6). Sonicated cell extracts were...mRNA and protein levels in human cell lines. We transfected an siRNA mixture targeting Ets1 or non-targeting siRNA control into NCI- H1299 (high

  16. Magnetic albumin immuno-nanospheres as an efficient gene delivery system for a potential use in lung cancer: preparation, in vitro targeting and biological effect analysis.

    PubMed

    Hou, Xinxin; Zhang, Hao; Li, Hongbo; Zhang, Dongsheng

    2016-01-01

    Magnetic albumin immuno-nanospheres (MAINs), simultaneously loaded with super-paramagnetic iron oxide nanoparticles for targeting application and anticancer gene, plasmid-survivin/shRNA (pshRNA) and modified with anti-EGFR monoclonal antibody Cetuximab for targeting and treatment agents, were prepared for targeting lung cancer. Transmission electron microscopy images and transfection photographs, respectively, showed that magnetic nanoparticles and pshRNA were successfully encased in the albumin nanospheres. The release profiles in vitro indicated that nanospheres had an obvious effect of sustained release of pshRNA. The results of slide agglutination test and immunofluorescence analysis demonstrated that the immuno-nanospheres retained the immuno-reactivity of Cetuximab. The MAINs significantly increased adherence and uptake by GLC-82 lung cancer cells over-expressed epidermal growth factor receptor over a magnetic albumin nanospheres (MANs) control. The pshRNA-loaded MAINs formulation was more effective than equimolar doses of free Cetuximab, single magnetic targeting with pshRNA (pshRNA-loaded MANs) or single monoclonal antibody targeting with pshRNA (pshRNA-loaded AINs) in the treatment of GLC-82 lung cancer cells. Collectively, the study indicates that the novel pshRNA-loaded magnetic immuno-nanospheres represent a promising approach for magnetic and monoclonal antibody-dependent gene targeting in lung cancer therapy.

  17. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  19. Identification of Novel Gene Targets and Putative Regulators of Arsenic-Associated DNA Methylation in Human Urothelial Cells and Bladder Cancer

    PubMed Central

    Rager, Julia E.; Miller, Sloane; Tulenko, Samantha E.; Smeester, Lisa; Ray, Paul D.; Yosim, Andrew; Currier, Jenna M.; Ishida, María C.; González-Horta, Maria del Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Drobná, Zuzana; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Kim, William Y.; Zhou, Yi-Hui; Wright, Fred A.; Stýblo, Miroslav; Fry, Rebecca C.

    2016-01-01

    There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to a myriad of adverse health effects, including cancer of the bladder. The present study set out to identify DNA methylation patterns associated with iAs and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic (As)-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total As (tAs) and As species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 As-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the As- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer. PMID:26039340

  20. In Vivo Targeting of ADAM9 Gene Expression Using Lentivirus-Delivered shRNA Suppresses Prostate Cancer Growth by Regulating REG4 Dependent Cell Cycle Progression

    PubMed Central

    He, Yun-Chi; Lo, Sen-Jei; Liang, Ji-An; Hsieh, Teng-Fu; Josson, Sajni; Chung, Leland W. K.; Hung, Mien-Chie; Sung, Shian-Ying

    2013-01-01

    Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM) 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA) significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4) expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer. PMID:23342005

  1. A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast

    DTIC Science & Technology

    2005-05-01

    cytoplasm and mitochondria METhionine requiring: Bisphosphate-3-nucleotidase, involved in salt tolerance and methionine biogenesis ; MET22 YOL064C... mitochondria ribosomal protein subunits (MRP and MRPL). These results suggest that slowing the growth rate of yeast by deleting genes in processes necessary...Putative sensor/transporter protein involved in cell wall biogenesis ; contains 14-16 transmembrane segments and 3several putative glycosylation and

  2. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    SciTech Connect

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun; Jin, Shi; Cao, Shoubo; Yu, Yan

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  3. Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer.

    PubMed

    Zhu, X; Shan, L; Wang, F; Wang, J; Wang, F; Shen, G; Liu, X; Wang, B; Yuan, Y; Ying, J; Yang, H

    2015-04-01

    Paraffin sections from 239 cases of surgical resected mammary gland carcinomas were assessed to determine the role of BRCA1 gene methylation in sporadic triple-negative breast cancer and to evaluate the relationship between BRCA1 gene methylation and clinicopathologic features of triple-negative breast cancer in the National Cancer Center, China. Diagnostic tissues collected from patients received mastectomy in the National Cancer Center from January 1, 1999 to December 31, 2008 were reviewed. Tissue microarrays were constructed using 239 triple-negative breast cancer cases and stained with estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, cytokeratin 5/6, and epidermal growth factor receptor. Methylation status of the BRCA1 promoter was measured by methylation-specific PCR and analyzed against clinicopathologic characteristics, subtypes, and prognosis using standard statistical methods. Among the 239 triple-negative breast cancer cases, 137 (57.3 %) showed methylation of the BRCA1. According to the immunohistochemistry results, triple-negative breast cancer cases were classified into basal-like breast cancer (60.7 %) and non-basal-like breast cancer (39.3 %). The frequency of BRCA1 methylation was significantly higher in basal-like breast cancer subtype (71.7 %) than the non-basal subtype (35.1 %). Thus, BRCA1 methylation is statistically significantly correlated with basal-like breast cancer subtype (p < 0.001). Multivariate analyses further showed that BRCA1 promoter methylation is an independently predictor of overall survival (p = 0.023; HR 2.32; 95 % CI 1.12-4.81) and disease-free survival (p = 0.022; HR 2.36; 95 % CI 1.13-4.90) in triple-negative breast cancer. Here we demonstrated that epigenetic alteration of key tumor suppressor gene can be a promising biomarker for the prognosis of triple-negative breast cancer/basal-like breast cancer. Specifically our finding revealed that BRCA1 methylation is closely associated with a

  4. Identification and Function of Ets Target Genes Involved in Lung Cancer Progression

    DTIC Science & Technology

    2011-10-01

    epithelial nuclei, Ets1 is detected in tumor epithelial nuclei (Fig 5). We performed ChIP assays in human (A549 and NCI- H1299 ) cell lines to confirm Ets...binds to the human Twist1 promoter. We performed ChIP assays in human (A549 and NCI- H1299 ) cell lines to confirm Ets protein binding to the Twist1...targeting siRNA control into NCI- H1299 (high Ets1-expressing) cells. We confirm effective knockdown of Ets1 by QRT-PCR and western analysis (Fig 7

  5. Lentivirus vectors construction of SiRNA targeting interference GPC3 gene and its biological effects on liver cancer cell lines Huh-7.

    PubMed

    Lei, Chang-Jiang; Yao, Chun; Pan, Qing-Yun; Long, Hao-Cheng; Li, Lei; Zheng, Shu-Ping; Zeng, Cheng; Huang, Jian-Bin

    2014-10-01

    To build GPC3 gene short hairpin interference RNA (shRNA) slow virus vector, observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth, and provide theoretical basis for gene therapy of liver cancer. Hepatocellular carcinoma cell line Huh-7 was transfected by a RNA interference technique. GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR. Targeted GPC3 gene sequences of small interfering RNA (siRNA) PGC-shRNA-GPC3 were restructured. Stable expression cell lines of siRNA were screened and established with the help of liposomes (lipofectamine(TM2000)) as carrier transfection of human liver cell lines. In order to validate siRNA interference efficiency, GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot. The absorbance value of the cells of blank group, untransfection group and transfection group, the cell cycle and cell apoptosis were calculated, and effects of GPC3 gene on Huh-7 cell proliferation and apoptosis were observed. In the liver cancer cell lines Huh-7, GPC3 gene showed high expression. PGC-shRNA-GPC3 recombinant plasmid was constructed successfully via sequencing validation. Stable recombinant plasmid transfected into liver cancer cell lines Huh-7 can obviously inhibit GPC3 mRNA expression level. The targeted GPC3 siRNA can effectively inhibit the expression of GPC3. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  6. Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells

    PubMed Central

    Lee, Hyunkyung; Lee, Seungyeon; Bae, Hansol; Kang, Han-Sung; Kim, Sun Jung

    2016-01-01

    MiR-204 and miR-211 (miR-204/211) share the same seed site sequence, targeting many of the same genes. Their role in cancer development remains controversial, as both cell proliferative and suppressive effects have been identified. This study aimed to address the relationship between the two structurally similar microRNAs (miRs) by examining their target genes in depth as well as to reveal their contribution in breast cancer cells. Genome-wide pathway analysis with the dysregulated genes after overexpression of either of the two miRs in MCF-7 breast cancer cell identified the “Cancer”- and “Cell signaling”-related pathway as the top pathway for miR-204 and miR-211, respectively. The majority of the target genes for both miRs notably comprised ones that have been characterized to drive cells anti-tumorigenic. Accordingly, the miRs induced the proliferation of MCF-7 and MDA-MB-231 cells, judged by cell proliferation as well as colony forming assay. Tumor suppressors, MX1 and TXNIP, were proven to be direct targets of the miRs. In addition, a high association was observed between miR-204 and miR-211 expression in breast cancer tissue. Our results indicate that miR-204/211 serve to increase cell proliferation at least in MCF-7 and MDA-MB-231 breast cancer cells by downregulating tumor suppressor genes. PMID:27121770

  7. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  8. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements12

    PubMed Central

    Paulo, Paula; Ribeiro, Franclim R; Santos, Joana; Mesquita, Diana; Almeida, Mafalda; Barros-Silva, João D; Itkonen, Harri; Henrique, Rui; Jerónimo, Carmen; Sveen, Anita; Mills, Ian G; Skotheim, Rolf I; Lothe, Ragnhild A; Teixeira, Manuel R

    2012-01-01

    This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements. PMID:22904677

  9. Genome methylation patterns in male breast cancer - Identification of an epitype with hypermethylation of polycomb target genes.

    PubMed

    Johansson, Ida; Lauss, Martin; Holm, Karolina; Staaf, Johan; Nilsson, Cecilia; Fjällskog, Marie-Louise; Ringnér, Markus; Hedenfalk, Ingrid

    2015-10-01

    Male breast cancer (MBC) is a rare disease that shares both similarities and differences with female breast cancer (FBC). The aim of this study was to assess genome-wide DNA methylation profiles in MBC and compare them with the previously identified transcriptional subgroups of MBC, luminal M1 and M2, as well as the intrinsic subtypes of FBC. Illumina's 450K Infinium arrays were applied to 47 MBC and 188 FBC tumors. Unsupervised clustering of the most variable CpGs among MBC tumors revealed two stable epitypes, designated ME1 and ME2. The methylation patterns differed significantly between the groups and were closely associated with the transcriptional subgroups luminal M1 and M2. Tumors in the ME1 group were more proliferative and aggressive than ME2 tumors, and showed a tendency toward inferior survival. ME1 tumors also displayed hypermethylation of PRC2 target genes and high expression of EZH2, one of the core components of PRC2. Upon combined analysis of MBC and FBC tumors, ME1 MBCs clustered among luminal B FBC tumors and ME2 MBCs clustered within the predominantly luminal A FBC cluster. The majority of the MBC tumors remained grouped together within the clusters rather than being interspersed among the FBC tumors. Differences in the genomic location of methylated CpGs, as well as in the regulation of central canonical pathways may explain the separation between MBC and FBC tumors in the respective clusters. These findings further suggest that MBC is not readily defined using conventional criteria applied to FBC. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Development of a Nature-Inspired Vector for Targeted Systemic Breast Cancer Gene Therapy

    DTIC Science & Technology

    2009-01-01

    original design by DNA sequencing. The pET21b:DBV expression vector was transformed into E . coli BL21(DE3) pLysS. Starter cultures, 5 ml, were...cloning process. The expression system was transformed into E . coli BL21 (DE3) plysS and DBV was expressed and purified at a 2 mg/liter yield. The...vectors: The genes encoding various motifs were synthesized and cloned  into a pET21b expression vector. The expression vector was transformed into  E

  11. Ovarian cancer: targeting the untargetable.

    PubMed

    Birrer, Michael J

    2014-01-01

    The premise that all tumors are targetable has been met with some controversy in the approach to epithelial ovarian cancer (EOC). Genomic analysis shows that these tumors (specifically, high-grade serous carcinomas) are genomically unstable and lack actionable driver mutations, much like HER2 in breast and gastric cancers. In this paper, Michael Birrer, MD, PhD, Massachusetts General Hospital, argues that the interpretation of genomic data in ovarian cancer requires a more thoughtful approach that necessitates a closer inspection of the data beyond the mere presence or absence of mutations. We must look at the extensive genomic alterations in DNA and, to understand more about the role of those genes affected by these changes, look beyond the tumor to the role of the stroma. As such, Dr. Birrer is arguing for the importance of translational research. This will be the key to precision medicine in ovarian cancer, as we approach drug discovery and improvements in treatment. Dr. Birrer is a world-renowned scientist who has devoted his career to the study of gynecologic cancers. He has published over 200 papers and written over 27 book chapters and reviews, served on numerous leadership positions in gynecologic oncology (including as co-chair of the National Cancer Institute's Gynecologic Cancer Steering Committee), and remains a clinician-scientist with an active lab and an active clinic. His career trajectory has shown me it is possible to be engaged as a researcher and a clinician and the work he has done has already impacted the care of patients with ovarian cancer. Don S. Dizon, MD, ASCO Educational Book Editor.

  12. ATF4 Targets RET for Degradation and Is a Candidate Tumor Suppressor Gene in Medullary Thyroid Cancer.

    PubMed

    Bagheri-Yarmand, Rozita; Williams, Michelle D; Grubbs, Elizabeth G; Gagel, Robert F

    2017-03-01

    Medullary thyroid cancer (MTC) is an aggressive tumor that harbors activating mutations of the RET proto-oncogene. We previously reported that RET inhibits transcriptional activity of ATF4, the master regulator of the stress response pathway, to prevent cell death. We hypothesized that loss of function of ATF4 plays a role in initiation of MTC. Targeted deletion of Atf4 in mice was used to assess ATF4 function in the thyroid gland. ATF4 overexpression was achieved by adenoviral and lentiviral vectors. We used immunohistochemical analysis and western blotting of MTC tumors to determine protein levels of RET and ATF4 and the Kaplan-Meier method to determine their association with clinical outcome. Targeted deletion of Atf4 in mice causes C-cell hyperplasia, a precancerous lesion for MTC. Forced ATF4 expression decreased survival of MTC cells and blocked the activation of RET downstream signaling pathways (phosphorylated ERK, phosphorylated AKT, and p70S6K). ATF4 knockdown decreased sensitivity to tyrosine kinase inhibitor-induced apoptosis. Moreover, ATF4 expression decreased RET protein levels by promoting RET ubiquitination. We found decreased or loss of ATF4 in 52% of MTC tumors (n = 39) compared with normal thyroid follicle cells. A negative correlation was observed between RET and ATF4 protein levels in MTC tumors, and low ATF4 expression was associated with poor overall survival in patients with MTC. ATF4 was identified as a negative regulator of RET, a candidate tumor suppressor gene, and may be a molecular marker that distinguishes patients at high risk of MTC from those with a longer survival prognosis.

  13. A Multistep High-Content Screening Approach to Identify Novel Functionally Relevant Target Genes in Pancreatic Cancer

    PubMed Central

    Buchholz, Malte; Honstein, Tatjana; Kirchhoff, Sandra; Kreider, Ramona; Schmidt, Harald; Sipos, Bence; Gress, Thomas M.

    2015-01-01

    In order to foster the systematic identification of novel genes with important functional roles in pancreatic cancer, we have devised a multi-stage screening strategy to provide a rational basis for the selection of highly relevant novel candidate genes based on the results of functional high-content analyses. The workflow comprised three consecutive stages: 1) serial gene expression profiling analyses of primary human pancreatic tissues as well as a number of in vivo and in vitro models of tumor-relevant characteristics in order to identify genes with conspicuous expression patterns; 2) use of ‘reverse transfection array’ technology for large-scale parallelized functional analyses of potential candidate genes in cell-based assays; and 3) selection of individual candidate genes for further in-depth examination of their cellular roles. A total of 14 genes, among them 8 from “druggable” gene families, were classified as high priority candidates for individual functional characterization. As an example to demonstrate the validity of the approach, comprehensive functional data on candidate gene ADRBK1/GRK2, which has previously not been implicated in pancreatic cancer, is presented. PMID:25849100

  14. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  15. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  16. Targeting epigenetic regulations in cancer

    PubMed Central

    Ning, Bo; Li, Wenyuan; Zhao, Wei; Wang, Rongfu

    2016-01-01

    Epigenetic regulation of gene expression is a dynamic and reversible process with DNA methylation, histone modifications, and chromatin remodeling. Recently, groundbreaking studies have demonstrated the importance of DNA and chromatin regulatory proteins from different aspects, including stem cell, development, and tumor genesis. Abnormal epigenetic regulation is frequently associated with diseases and drugs targeting DNA methylation and histone acetylation have been approved for cancer therapy. Although the network of epigenetic regulation is more complex than people expect, new potential druggable chromatin-associated proteins are being discovered and tested for clinical application. Here we review the key proteins that mediate epigenetic regulations through DNA methylation, the acetylation and methylation of histones, and the reader proteins that bind to modified histones. We also discuss cancer associations and recent progress of pharmacological development of these proteins. PMID:26508480

  17. Augmentation of a Novel Enzyme/Pro-Drug Gene Therapy "Distant Bystander Effect" to Target Prostate Cancer Metastasis

    DTIC Science & Technology

    2005-09-01

    enzyme/prodrug therapy(GDEPT)_ mIL-12; mIL-18; cytosine deaminase and uracil phopho-ribosyl transferase (CDUPRT) 16. SECURITY CLASSIFICATION OF: 17...therapy, a gene (a fusion of cytosine deaminase and uracil phosphoribosyltransferase (CD/UPRT)) is delivered to a cancer cell so that harmless bacterial...reduction both at the treatment site and at remote locations. In this therapy, a gene (a fusion of cytosine deaminase and uracil phosphoribosyltransferase

  18. Reversibly cross-linked polyplexes enable cancer-targeted gene delivery via self-promoted DNA release and self-diminished toxicity.

    PubMed

    He, Hua; Bai, Yugang; Wang, Jinhui; Deng, Qiurong; Zhu, Lipeng; Meng, Fenghua; Zhong, Zhiyuan; Yin, Lichen

    2015-04-13

    Polycations often suffer from the irreconcilable inconsistency between transfection efficiency and toxicity. Polymers with high molecular weight (MW) and cationic charge feature potent gene delivery capabilities, while in the meantime suffer from strong chemotoxicity, restricted intracellular DNA release, and low stability in vivo. To address these critical challenges, we herein developed pH-responsive, reversibly cross-linked, polyetheleneimine (PEI)-based polyplexes coated with hyaluronic acid (HA) for the effective and targeted gene delivery to cancer cells. Low-MW PEI was cross-linked with the ketal-containing linker, and the obtained high-MW analogue afforded potent gene delivery capabilities during transfection, while rapidly degraded into low-MW segments upon acid treatment in the endosomes, which promoted intracellular DNA release and reduced material toxicity. HA coating of the polyplexes shielded the surface positive charges to enhance their stability under physiological condition and simultaneously reduced the toxicity. Additionally, HA coating allowed active targeting to cancer cells to potentiate the transfection efficiencies in cancer cells in vitro and in vivo. This study therefore provides an effective approach to overcome the efficiency-toxicity inconsistence of nonviral vectors, which contributes insights into the design strategy of effective and safe vectors for cancer gene therapy.

  19. Mad2 Checkpoint Gene Silencing Using Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles in Non-Small Cell Lung Cancer Model

    PubMed Central

    2015-01-01

    RNA interference has emerged as a powerful strategy in cancer therapy because it allows silencing of specific genes associated with tumor progression and resistance. Mad2 is an essential mitotic checkpoint component required for accurate chromosome segregation during mitosis, and its complete abolition leads to cell death. We have developed an epidermal growth factor receptor (EGFR)-targeted chitosan system for silencing the Mad2 gene as a strategy to efficiently induce cell death in EGFR overexpressing human A549 non-small cell lung cancer cells. Control and EGFR-targeted chitosan nanoparticles loaded with small interfering RNAs (siRNAs) against Mad2 were formulated and characterized for size, charge, morphology, and encapsulation efficiency. Qualitative and quantitative intracellular uptake studies by confocal imaging and flow cytometry, respectively, showed time-dependent enhanced and selective intracellular internalization of EGFR-targeted nanoparticles compared to nontargeted system. Targeted nanoparticles showed nearly complete depletion of Mad2 expression in A549 cells contrasting with the partial depletion in the nontargeted system. Accordingly, Mad2-silencing-induced apoptotic cell death was confirmed by cytotoxicity assay and flow cytometry. Our results demonstrate that EGFR-targeted chitosan loaded with Mad2 siRNAs is a potent delivery system for selective killing of cancer cells. PMID:25256346

  20. Targeting sodium/iodide symporter gene expression for estrogen-regulated imaging and therapy in breast cancer.

    PubMed

    Montiel-Equihua, C A; Martín-Duque, P; de la Vieja, A; Quintanilla, M; Burnet, J; Vassaux, G; Lemoine, N R

    2008-07-01

    Expression of the sodium iodide symporter (hNIS) has been detected in breast cancer tissue, but frequently, not at the levels necessary to mediate (131)I accumulation. Transducing the hNIS gene into breast cancer cells with adenovirus could be a tractable strategy to render breast cancer susceptible to radioiodide therapy. We constructed the replication-incompetent virus, AdSERE, in which an estrogen-responsive promoter directs the expression of hNIS. In vitro, we demonstrate that AdSERE mediates hNIS expression and iodide uptake in ER+ breast cancer cells. In vivo, we show that AdSERE-infected ER+ tumors can be imaged due to tracer accumulation; in addition, AdSERE in combination with therapeutic doses of (131)I suppresses tumor growth.

  1. Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells.

    PubMed

    Ma, Kun; Fu, Duo; Yu, Dongli; Cui, Changhao; Wang, Li; Guo, Zhaoming; Mao, Chuanbin

    2017-03-01

    A Sleeping Beauty (SB) transposon system is made of a transposon plasmid (containing gene encoding a desired functional or therapeutic protein) and a transposase plasmid (encoding an enzyme capable of cutting and pasting the gene into the host cell genome). It is a kind of natural, nonviral gene delivery vehicle, which can achieve efficient genomic insertion, providing long-term transgenic expression. However, before the SB transposon system could play a role in promoting gene expression, it has to be delivered efficiently first across cell membrane and then into cell nuclei. Towards this end, we used a nanoparticle-like lipid-based protocell, a closed bilayer of the neutral lipids with the DNA encapsulated inside, to deliver the SB transposon system to cancer cells. The SB transposon system was amplified in situ inside the protocells by a polymerase chain reaction (PCR) process, realizing more efficient loading and delivery of the target gene. To reach a high transfection efficiency, we introduced two targeting moieties, folic acid (FA) as a cancer cell-targeting motif and Dexamethasone (DEX) as a nuclear localization signaling molecule, into the protocells. As a result, the FA enabled the modified targeting protocells to deliver the DNA into the cancer cells with an increased efficiency and the DEX promoted the DNA to translocate to cell nuclei, eventually leading to the increased chromosome insertion efficiency of the SB transposon. In vivo study strongly suggested that the transfection efficiency of FA-modified protocells in the tumor tissue was much higher than that in other tissues, which was consistent with the in vitro results. Our studies implied that with the targeting ligand modification, the protocells could be utilized as an efficient targeting gene carrier. Since the protocells were made of neutral lipids without cationic charges, the cytotoxicity of protocells was significantly lower than that of traditional cationic gene carriers such as cationic

  2. HOX genes in ovarian cancer.

    PubMed

    Kelly, Zoë L; Michael, Agnieszka; Butler-Manuel, Simon; Pandha, Hardev S; Morgan, Richard Gl

    2011-09-09

    The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development. Here we review a number of recent studies showing that HOX genes are strongly expressed in ovarian cancer, and that in some cases the expression of specific HOX genes is sufficient to confer a particular identity and phenotype upon cancer cells. We also review the recent advances in elucidating the different functions of HOX genes in ovarian cancer. A literature search was performed using the search terms HOX genes (including specific HOX genes), ovarian cancer and oncogenesis. Articles were accessed through searches performed in ISI Web of Knowledge, PubMed and ScienceDirect. Taken together, these studies have shown that HOX genes play a role in the oncogenesis of ovarian cancer and function in the inhibition of apoptosis, DNA repair and enhanced cell motility. The function of HOX genes in ovarian cancer oncogenesis supports their potential role as prognostic and diagnostic markers, and as therapeutic targets in this disease.

  3. Microtubule-Targeting Therapy for Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    that were done to achieve the above specific goals. 1. Biological effects of ribozyme -carrying adenoviruses that target stathmin mRNA in human...prostate cancer cells: A ribozyme is a small RNA molecule that acts stoichiometrically to cleave multiple target RNA molecules [1]. This unique ability...of a ribozyme to degrade multiple target RNA molecules is a more efficient approach for down regulating genes that are expressed at very high levels

  4. MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer

    PubMed Central

    Ward, Aoife; Shukla, Kirti; Balwierz, Aleksandra; Soons, Zita; König, Rainer; Sahin, Özgür; Wiemann, Stefan

    2014-01-01

    Tamoxifen is an endocrine therapy which is administered to up to 70% of all breast cancer patients with oestrogen receptor alpha (ERα) expression. Despite the initial response, most patients eventually acquire resistance to the drug. MicroRNAs (miRNAs) are a class of small non-coding RNAs which have the ability to post-transcriptionally regulate genes. Although the role of a few miRNAs has been described in tamoxifen resistance at the single gene/target level, little is known about how concerted actions of miRNAs targeting biological networks contribute to resistance. Here we identified the miRNA cluster, C19MC, which harbours around 50 mature miRNAs, to be up-regulated in resistant cells, with miRNA-519a being the most highly up-regulated. We could demonstrate that miRNA-519a regulates tamoxifen resistance using gain- and loss-of-function testing. By combining functional enrichment analysis and prediction algorithms, we identified three central tumour-suppressor genes (TSGs) in PI3K signalling and the cell cycle network as direct target genes of miR-519a. Combined expression of these target genes correlated with disease-specific survival in a cohort of tamoxifen-treated patients. We identified miRNA-519a as a novel oncomir in ER+ breast cancer cells as it increased cell viability and cell cycle progression as well as resistance to tamoxifen-induced apoptosis. Finally, we could show that elevated miRNA-519a levels were inversely correlated with the target genes' expression and that higher expression of this miRNA correlated with poorer survival in ER+ breast cancer patients. Hence we have identified miRNA-519a as a novel oncomir, co-regulating a network of TSGs in breast cancer and conferring resistance to tamoxifen. Using inhibitors of such miRNAs may serve as a novel therapeutic approach to combat resistance to therapy as well as proliferation and evasion of apoptosis in breast cancer. Published by John Wiley & Sons, Ltd. © 2014 The Authors. The Journal of

  5. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    PubMed

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  6. Targets for molecular therapy of skin cancer.

    PubMed

    Green, Cheryl L; Khavari, Paul A

    2004-02-01

    Cancers of the skin encompass the first and second most common neoplasms in the United States, epidermal basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), respectively, as well as the melanocytic malignancy, malignant melanoma (MM). Recently identified alterations in the function of specific genes in these cancers provide new potential therapeutic targets. These alterations affect conserved regulators of cellular proliferation and viability, including the Sonic Hedgehog, Ras/Raf, ARF/p53, p16(INK4A)/CDK4/Rb and NF-kappaB pathways. New modalities designed to target these specific proteins may represent promising approaches to therapy of human skin cancers.

  7. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    SciTech Connect

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  8. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing.

    PubMed

    Zhang, Liangxuan; Chen, Liangjing; Sah, Sachin; Latham, Gary J; Patel, Rajesh; Song, Qinghua; Koeppen, Hartmut; Tam, Rachel; Schleifman, Erica; Mashhedi, Haider; Chalasani, Sreedevi; Fu, Ling; Sumiyoshi, Teiko; Raja, Rajiv; Forrest, William; Hampton, Garret M; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2014-04-01

    The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic "hotspot" regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed "true-positive" gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent "false-positive" calls in clinically druggable oncogenes such as PIK3CA. AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent "false-positive" variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making.

  9. Profiling Cancer Gene Mutations in Clinical Formalin-Fixed, Paraffin-Embedded Colorectal Tumor Specimens Using Targeted Next-Generation Sequencing

    PubMed Central

    Zhang, Liangxuan; Chen, Liangjing; Sah, Sachin; Latham, Gary J.; Patel, Rajesh; Song, Qinghua; Koeppen, Hartmut; Tam, Rachel; Schleifman, Erica; Mashhedi, Haider; Chalasani, Sreedevi; Fu, Ling; Sumiyoshi, Teiko; Raja, Rajiv; Forrest, William; Hampton, Garret M.; Lackner, Mark R.; Hegde, Priti

    2014-01-01

    Purpose. The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic “hotspot” regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. Methods. We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. Results. Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed “true-positive” gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent “false-positive” calls in clinically druggable oncogenes such as PIK3CA. Conclusion. AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent “false-positive” variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making. PMID:24664487

  10. Targeting stroma to treat cancers

    PubMed Central

    Engels, Boris; Rowley, Donald A.; Schreiber, Hans

    2012-01-01

    All cancers depend on stroma for support of growth. Leukemias, solid tumors, cancer cells causing effusions, metastases as well as micro-disseminated cancer cells release factors that stimulate stromal cells, which in turn produce ligands that stimulate cancer cells. Therefore, elimination of stromal support by destroying the stromal cells or by inhibiting feedback stimulation of cancer growth is in the focus of many evolving therapies. A stringent evaluation of the efficacy of stromal targeting requires testing in animal models. Most current studies emphasize the successes of stromal targeting rather than deciphering its limitations. Here we show that many of the stromal targeting approaches, while often reducing tumor growth rates, are rarely curative. Therefore, we will also discuss conditions where stromal targeting can eradicate large established tumors. Finally, we will examine still unanswered questions of this promising and exciting area of cancer research. PMID:22212863

  11. Targeting tumor suppressor networks for cancer therapeutics.

    PubMed

    Guo, Xuning Emily; Ngo, Bryan; Modrek, Aram Sandaldjian; Lee, Wen-Hwa

    2014-01-01

    Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.

  12. Biocompatible ELR-Based Polyplexes Coated with MUC1 Specific Aptamers and Targeted for Breast Cancer Gene Therapy.

    PubMed

    Piña, Maria J; Girotti, Alessandra; Santos, Mercedes; Rodríguez-Cabello, J Carlos; Arias, F Javier

    2016-03-07

    The search for new and biocompatible materials with high potential for improvement is a challenge in gene delivery applications. A cell type specific vector made of elastin-like recombinamer (ELR) and aptamers has been specifically designed for the intracellular delivery of therapeutic material for breast cancer therapy. A lysine-enriched ELR was constructed and complexed with plasmid DNA to give positively charged and stable polyplexes. Physical characterization of these polyplexes showed a particle size of around 140 nm and a zeta potential of approximately +40 mV. The incorporation of MUC1-specific aptamers into the polyplexes resulted in a slight decrease in zeta potential but increased cell transfection specificity for MCF-7 breast cancer cells with respect to a MUC1-negative tumor line. After showing the transfection ability of this aptamer-ELR vector which is facilitated mainly by macropinocytosis uptake, we demonstrated its application for suicide gene therapy using a plasmid containing the gene of the toxin PAP-S. The strategy developed in this work about using ELR as polymeric vector and aptamers as supplier of specificity to deliver therapeutic material into MUC1-positive breast cancer cells shows promising potential and continues paving the way for ELRs in the biomedical field.

  13. Tungsten Oxide Nanoplates; the Novelty in Targeting Metalloproteinase-7 Gene in Both Cervix and Colon Cancer Cells.

    PubMed

    Yassin, Abdelrahman M; Elnouby, Mohamed; El-Deeb, Nehal M; Hafez, Elsayed E

    2016-10-01

    In this study, we synthesized tungsten oxide (WO3) nanoplates, both crystallographic phases and the morphology of the samples were determined by powder x-ray diffraction and the scanning electron microscopy, respectively. The obtained data clarified that, the all prepared WO3·H2O samples were composed of large quantity of nanoplates. The cytotoxicity patterns of nanoplates were checked on both normal and cancer mammalian cell lines. Both nanoplates cytotoxicity did not exceed the 50 % inhibitory concentration (IC50) on the all normal tested cells even by using concentrations up to 1 mg/ml. In addition, orthorhombic tungsten oxide nanoplate was more potent against both Caco2 and Hela cells by showing inhibition percentages in cellular viability 64.749 and 72.27, respectively, and with cancer selectivity index reached 3.2 and 2.6 on both colon and cervix cancer, respectively. The anticancer effects of nanoplates were translated to alteration in both pro-apoptotic and anti-apoptotic genes expressions. Tungsten oxide nanoplates down regulated the expression of B cell lymphoma 2 (Bcl-2) and metalloproteinase-7 (MMP7) genes. In addition, orthorhombic tungsten oxide nanoplates showed more potentiation in IL2 and IL8 induction (40.43 pg/ml) and upregulation of TNF-α gene expression but with lower folds than Escherichia coli lipopolysaccharide (LPS) induction.

  14. Exploration of inhibitory mechanisms of curcumin in lung cancer metastasis using a miRNA- transcription factor-target gene network

    PubMed Central

    Jiao, De-min; Yan, Li; Wang, Li-shan; Hu, Hui-zhen; Tang, Xia-li; Chen, Jun; Wang, Jian; Li, You; Chen, Qing-yong

    2017-01-01

    The present study was aimed to unravel the inhibitory mechanisms of curcumin for lung cancer metastasis via constructing a miRNA-transcription factor (TF)-target gene network. Differentially expressed miRNAs between human high-metastatic non-small cell lung cancer 95D cells treated with and without curcumin were identified using a TaqMan human miRNA array followed by real-time PCR, out of which, the top 6 miRNAs (miR-302b-3p, miR-335-5p, miR-338-3p, miR-34c-5p, miR-29c-3p and miR-34a-35p) with more verified target genes and TFs than other miRNAs as confirmed by a literature review were selected for further analysis. The miRecords database was utilized to predict the target genes of these 6 miRNAs, TFs of which were identified based on the TRANSFAC database. The findings of the above procedure were used to construct a miRNA-TF-target gene network, among which miR-34a-5p, miR-34c-5p and miR-302b-3p seemed to regulate CCND1, WNT1 and MYC to be involved in Wnt signaling pathway through the LEF1 transcription factor. Therefore, we suggest miR-34a-5p/miR-34c-5p/miR-302b-3p —LEF1—CCND1/WNT1/MYC axis may be a crucial mechanism in inhibition of lung cancer metastasis by curcumin. PMID:28231299

  15. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    SciTech Connect

    Jeong, Kwang Won

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  16. Targeted Nanotechnology for Cancer Imaging

    PubMed Central

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  17. Targeted nanotechnology for cancer imaging.

    PubMed

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B; Karathanasis, Efstathios

    2014-09-30

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Targeting Ochratoxin Biosynthetic Genes.

    PubMed

    Gallo, Antonia; Perrone, Giancarlo

    2017-01-01

    The pathway of ochratoxin A (OTA) biosynthesis has not yet been completely elucidated. Essentially, two kind of genes have been demonstrated to be involved in the biosynthesis of OTA. One of them is the nrps gene encoding a non-ribosomal peptide synthetase (NRPS) which catalyzes the ligation between the isocoumarin group, constituting the polyketide group of OTA molecule, and the amino acid phenylalanine.Here we describe a conventional PCR method developed for the detection of OTA-producing molds belonging to Penicillium and Aspergillus genera by Luque et al. (Food Control 29:270-278, 2013). This method is based on the OTA nrps gene of Penicillium nordicum. It produces a specific amplicon of 459 bp and its functionality in naturally infected samples was also demonstrated.

  19. [Molecular targets in colon cancer].

    PubMed

    Borner, M M

    2006-04-01

    Colorectal cancer is the second leading cause of cancer death in Switzerland. The nihilism that dominated the treatment of these patients for decades has been replaced by a measure of enthusiasm, given recent therapeutic advances. New anticancer drugs such as irinotecan and oxaliplatin have changed the standard chemotherapy treatment of metastatic colorectal cancer. However, the real hype has come from molecular targeted therapy. Identification of cellular processes characteristic of colon cancer has permitted therapeutic targeting with favorable therapeutic index. Inhibition of the epidermal growth factor receptor in the clinic has provided proof of principle that interruption of signal transduction cascades in patients has therapeutic potential. Angiogenesis, especially the vascular endothelial growth factor pathway, has been proven to be another highly successful molecular target. In this article, we will review molecular targets, which are under active clinical investigation in colon cancer.

  20. Cholinergic Targets in Lung Cancer.

    PubMed

    Spindel, Eliot R

    2016-01-01

    Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review.

  1. RNASET2 silencing affects miRNAs and target gene expression pattern in a human ovarian cancer cell model.

    PubMed

    Turconi, Giovanna; Scaldaferri, Debora; Fabbri, Marco; Monti, Laura; Lualdi, Marta; Pedrini, Edoardo; Gribaldo, Laura; Taramelli, Roberto; Acquati, Francesco

    2016-12-01

    Ribonucleases (RNases) are hydrolytic enzymes endowed with the ability to either process or degrade ribonucleic acids. Among the many biological functions assigned to RNases, a growing attention has been recently devoted to the control of cancer growth, in the attempt to bring novel therapeutic approaches to clinical oncology. Indeed, several enzymes belonging to different ribonuclease families have been reported in the last decade to display a marked oncosuppressive activity in a wide range of experimental models. The human RNASET2 gene, the only member of the highly conserved T2/Rh/S family of endoribonucleolytic enzymes described in our species, has been shown to display oncosuppressive roles in both in vitro and in vivo models representing several human malignancies. In the present study, we extend previous findings obtained in ovarian cancer models to shed further light on the cell-autonomous roles played by this gene in the context of its oncosuppresive role and to show that RNASET2 silencing can significantly affect the transcriptional output in one of the most thoroughly investigated human ovarian cancer cell lines. Moreover, we report for the first time that RNASET2-mediated changes in the cell transcriptome are in part mediated by its apparent ability to affect the cell's microRNA expression pattern.

  2. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  3. Challenging cancer targets for aptamer delivery.

    PubMed

    de Franciscis, Vittorio

    2017-09-26

    The extraordinary boost in the understanding of the genetic and epigenetic mechanisms underlying the development and progression of different types of cancer, is offering an unprecedented hope for the development of precise therapeutics able to interfere or replace the expression of target genes. In the last decade, the design of stable, safe and effective RNA-based therapeutics has been significantly improved increasing the number of molecules now in preclinical or in clinical trials for cancer gene therapy. However, with few exclusions as liver and hematological malignancies which are easy accessible to drugs, the development of effective systemic approaches for the delivery of RNA therapeutics to target cells is still unmet. To be effective, targeting carriers must be able to overcome both functional and physical barriers to safely carry and accumulate the therapeutic through the organism selectively to the tumor site, penetrate the target cancer mass, promote the uptake and localization in the appropriate intracellular compartment ultimately leading to the effective modulation of gene expression. Nucleic acid aptamers are folded single stranded oligonucleotides that bind at high affinity and high specificity their targets (proteins, lipids, small molecules etc), coupling the advantages of binding specificity proper of antibodies to the chemical nature of nucleic acids, sometimes also termed "nucleic acid antibodies". In several cases, aptamers targeting cell surface receptors are recycled into the cell together with the bound receptor enabling to drive conjugated therapeutics to cancer cells in a receptor-dependent manner. Therefore, besides other in vivo delivery strategies, the use of aptamers as precise and effective targeting moieties for anticancer RNA-based therapeutics has rapidly emerged and has been successfully addressed by several laboratories. In this Review, we will focus on the most recent and challenging progresses in the field that highlights

  4. Targeted therapy for epithelial ovarian cancer.

    PubMed

    Sharma, Sameer; Odunsi, Kunle

    2005-06-01

    Ovarian cancer is the leading cause of death in women with gynecological malignancies and overall survival for patients with advanced epithelial ovarian cancer (EOC) remains poor. The majority of patients recur after initial treatment. A strategy for improving outcome is to minimise recurrence via targeted therapy in patients after front-line therapy, or more appropriately as consolidation therapy. EOC represents an attractive target because of the biology of the disease and that the bulk of disease occurs in the peritoneal cavity. To initiate targeted therapy, a candidate target must be identified. Innovative approaches via targeted therapy to control metastatic residual EOC are currently under investigation. The targets are molecules and pathways, on which cancer cells depend to proliferate, invade, metastasise and prevent apoptosis. Potential targeted therapies include: proapoptototic therapy, suicide gene therapy, signal transduction, antiangiogenesis, immunotherapy and cytokine therapy. The utilisation of these targets in the clinic demands carefully conducted, well-coordinated but discovery-oriented translational research in the form of clinical trials that can quickly assess alternative strategies or combination of strategies that could result in clinical benefit. Therefore, targeted therapy for epithelial ovarian cancer, especially after complete response to standard regimens, represents a paradigm whose time has come to be nurtured.

  5. Targeting calcium signaling in cancer therapy.

    PubMed

    Cui, Chaochu; Merritt, Robert; Fu, Liwu; Pan, Zui

    2017-01-01

    The intracellular calcium ions (Ca(2+)) act as second messenger to regulate gene transcription, cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca(2+) homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis, progression and metastasis. Targeting derailed Ca(2+) signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca(2+) channels, transporters and Ca(2+)-ATPases, which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca(2+) channels/transporters or Ca(2+)-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for research into the understanding of cellular mechanisms underlying the regulation of Ca(2+) signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca(2+) channels or transporters.

  6. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators.

    PubMed

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16(INK4a) and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Targeting ECM Disrupts Cancer Progression

    PubMed Central

    Venning, Freja A.; Wullkopf, Lena; Erler, Janine T.

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression. PMID:26539408

  8. Targeting ECM Disrupts Cancer Progression.

    PubMed

    Venning, Freja A; Wullkopf, Lena; Erler, Janine T

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

  9. Pathway-Specific Analysis of Gene Expression Data Identifies the PI3K/Akt Pathway as a Novel Therapeutic Target in Cervical Cancer

    PubMed Central

    Schwarz, Julie K.; Payton, Jacqueline E.; Rashmi, Ramachandran; Xiang, Tao; Jia, Yunhe; Huettner, Phyllis; Rogers, Buck E.; Yang, Qin; Watson, Mark; Rader, Janet S.; Grigsby, Perry W.

    2013-01-01

    Purpose Cervical tumor response on posttherapy 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) is predictive of survival outcome. The purpose of this study was to use gene expression profiling to identify pathways associated with tumor metabolic response. Experimental Design This was a prospective tissue collection study for gene expression profiling of 62 pretreatment biopsies from patients with advanced cervical cancer. Patients were treated with definitive radiation. Fifty-three patients received concurrent chemotherapy. All patients underwent a pretreatment and a 3-month posttherapy FDG-PET/computed tomography (CT). Tumor RNA was harvested from fresh frozen tissue and hybridized to Affymetrix U133Plus2 GeneChips. Gene set enrichment analysis (GSEA) was used to identify signaling pathways associated with tumor metabolic response. Immunohistochemistry and in vitro FDG uptake assays were used to confirm our results. Results There were 40 biopsies from patients with a complete metabolic response (PET-negative group) and 22 biopsies from patients with incomplete metabolic response (PET-positive group). The 3-year cause-specific survival estimates were 98% for the PET-negative group and 39% for the PET-positive group (P < 0.0001). GSEA identified alterations in expression of genes associated with the PI3K/Akt signaling pathway in patients with a positive follow-up PET. Immunohistochemistry using a tissue microarray of 174 pretreatment biopsies confirmed p-Akt as a biomarker for poor prognosis in cervical cancer. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 inhibited FDG uptake in vitro in cervical cancer cell lines. Conclusions Activation of the PI3K/Akt pathway is associated with incomplete metabolic response in cervical cancer. Targeted inhibition of PI3K/Akt may improve response to chemoradiation. PMID:22235101

  10. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  11. Clinical correlates of promoter hypermethylation of four target genes in head and neck cancer: a cooperative group correlative study.

    PubMed

    Roh, Jong-Lyel; Wang, Xin Victoria; Manola, Judith; Sidransky, David; Forastiere, Arlene A; Koch, Wayne M

    2013-05-01

    Promoter hypermethylation is a well-documented mechanism for tumor-specific alteration of suppressor gene activity in human malignancy including head and neck cancer (HNC). The abrogation of specific suppressor gene activity may influence tumor behavior and clinical outcome. In this study we examined methylation of DCC, KIF1A, EDNRB, and p16(INK4a) in a large cohort of HNC patients from Eastern Cooperative Group (ECOG) 4393/Radiation Therapy Oncology Group (RTOG) 9614 to identify clinical correlates of methylation of these genes. Methylation was assessed by quantitative methylation-specific PCR in DNA from tumor specimens and was considered as a continuous and a binary variable. Clinical data including demographics, stage, risk factor exposure, treatment, and outcome were collected by ECOG and RTOG. Methylation status was also correlated with mutation of TP53 (previously reported) and human papilloma virus status. Methylation results were available for 368 cases, 353 of which also have p53 mutation status. At least one methylation event was present in all tumors. In multivariate analysis of the entire cohort, methylation of p16 was associated with decreased survival (HR = 1.008; P = 0.045). However, in tumors with disruptive TP53 mutation (poor prognostic group), the additional presence of methylation of p16 was protective (P = 0.019 considering p16 methylation as a continuous variable). Methylation of tumor-related genes contributes to the biological behavior of HNC and influences overall survival in conjunction with other known prognostic molecular events. ©2013 AACR.

  12. GTSE1: a novel TEAD4-E2F1 target gene involved in cell protrusions formation in triple-negative breast cancer cell models

    PubMed Central

    Stelitano, Debora; Leticia, Yamila Peche; Dalla, Emiliano; Monte, Martin; Piazza, Silvano; Schneider, Claudio

    2017-01-01

    GTSE1 over-expression has been reported as a potential marker for metastasis in various types of malignancies, including breast cancer. Despite this, the transcriptional regulation of this protein and the causes of its misregulation in tumors remain largely unknown. The aims of this work were to elucidate how GTSE1 is regulated at the transcriptional level and to clarify the mechanism underlying GTSE1-dependent cell functions in triple-negative breast cancer (TNBC). Here, we identified GTSE1 as a novel target gene of the TEAD4 transcription factor, highlighting a role for the YAP and TAZ coactivators in the transcriptional regulation of GTSE1. Moreover, we found that TEAD4 controls the formation of cell protrusions required for cell migration through GTSE1, unveiling a relevant effector role for this protein in the TEAD-dependent cellular functions and confirming TEAD4 role in promoting invasion and metastasis in breast cancer. Finally, we highlighted a role for the pRb-E2F1 pathway in the control of GTSE1 transcription and observed that treatment with drugs targeting the pRb-E2F1 or YAP/TAZ-TEAD pathways dramatically downregulated the expression levels of GTSE1 and of other genes involved in the formation of metastasis, suggesting their potential use in the treatment of TNBC.

  13. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  14. Strategically targeting MYC in cancer

    PubMed Central

    Posternak, Valeriya; Cole, Michael D.

    2016-01-01

    MYC is a major driver of cancer cell growth and mediates a transcriptional program spanning cell growth, the cell cycle, metabolism, and cell survival. Many efforts have been made to deliberately target MYC for cancer therapy. A variety of compounds have been generated to inhibit MYC function or stability, either directly or indirectly. The most direct inhibitors target the interaction between MYC and MAX, which is required for DNA binding. Unfortunately, these compounds do not have the desired pharmacokinetics and pharmacodynamics for in vivo application. Recent studies report the indirect inhibition of MYC through the development of two compounds, JQ1 and THZ1, which target factors involved in unique stages of transcription. These compounds appear to have significant therapeutic value for cancers with high levels of MYC, although some effects are MYC-independent. These approaches serve as a foundation for developing novel compounds to pharmacologically target MYC-driven cancers. PMID:27081479

  15. Targeted Therapy in Ovarian Cancer

    PubMed Central

    Lim, Hui Jun; Ledger, William

    2016-01-01

    Among female-specific cancers worldwide, ovarian cancer is the leading cause of death from gynecologic malignancy in the western world. Despite radical surgery and initial high response rates to first-line chemotherapy, up to 70% of patients experience relapses with a median progression-free survival of 12–18 months. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. This review aims to assess current understanding of targeted therapy in ovarian cancer and evaluate the evidence for targeting growth-dependent mechanisms involved in its pathogenesis. Of the many targeted therapies currently under evaluation, the most promising strategies developed thus far are antiangiogenic agents and PARP inhibitors. PMID:27215391

  16. Targeting Notch to target cancer stem cells.

    PubMed

    Pannuti, Antonio; Foreman, Kimberly; Rizzo, Paola; Osipo, Clodia; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2010-06-15

    The cellular heterogeneity of neoplasms has been at the center of considerable interest since the "cancer stem cell hypothesis", originally formulated for hematologic malignancies, was extended to solid tumors. The origins of cancer "stem" cells (CSC) or tumor-initiating cells (TIC; henceforth referred to as CSCs) and the methods to identify them are hotly debated topics. Nevertheless, the existence of subpopulations of tumor cells with stem-like characteristics has significant therapeutic implications. The stem-like phenotype includes indefinite self-replication, pluripotency, and, importantly, resistance to chemotherapeutics. Thus, it is plausible that CSCs, regardless of their origin, may escape standard therapies and cause disease recurrences and/or metastasis after apparently complete remissions. Consequently, the idea of selectively targeting CSCs with novel therapeutics is gaining considerable interest. The Notch pathway is one of the most intensively studied putative therapeutic targets in CSC, and several investigational Notch inhibitors are being developed. However, successful targeting of Notch signaling in CSC will require a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to prove safe and effective. Additionally, to determine which patients are most likely to benefit from treatment with Notch-targeting therapeutics, reliable biomarkers to measure pathway activity in CSC from specific tumors will have to be identified and validated. This article summarizes the most recent developments in the field of Notch-targeted cancer therapeutics, with emphasis on CSC.

  17. Gene therapy in head and neck cancer: a review

    PubMed Central

    Chisholm, E; Bapat, U; Chisholm, C; Alusi, G; Vassaux, G

    2007-01-01

    Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed. PMID:18057169

  18. A Nanoparticle Carrying the p53 Gene Targets Tumors Including Cancer Stem Cells, Sensitizes Glioblastoma to Chemotherapy and Improves Survival

    PubMed Central

    2015-01-01

    Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O6-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific targeting (primary and metastatic), which is currently in multiple clinical trials. This self-assembling nanocomplex is formed by simple mixing of the components in a defined order and a specific ratio. Here, we demonstrate that scL crosses the BBB and efficiently targets GBM, as well as cancer stem cells (CSCs), which have been implicated in recurrence and treatment resistance in many human cancers. Moreover, systemic delivery of scL-p53 down-modulates MGMT and induces apoptosis in intracranial GBM xenografts. The combination of scL-p53 and TMZ increased the antitumor efficacy of TMZ with enhanced survival benefit in a mouse model of highly TMZ-resistant GBM. scL-p53 also sensitized both CSCs and bulk tumor cells to TMZ, increasing apoptosis. These results suggest that combining scL-p53 with standard TMZ treatment could be a more effective therapy for GBM. PMID:24811110

  19. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes

    PubMed Central

    Liu, Can; Liu, Ruifang; Zhang, Dingxiao; Deng, Qu; Liu, Bigang; Chao, Hsueh-Ping; Rycaj, Kiera; Takata, Yoko; Lin, Kevin; Lu, Yue; Zhong, Yi; Krolewski, John; Shen, Jianjun; Tang, Dean G.

    2017-01-01

    MicroRNAs play important roles in regulating tumour development, progression and metastasis. Here we show that one of the miR-200 family members, miR-141, is under-expressed in several prostate cancer (PCa) stem/progenitor cell populations in both xenograft and primary patient tumours. Enforced expression of miR-141 in CD44+ and bulk PCa cells inhibits cancer stem cell properties including holoclone and sphere formation, as well as invasion, and suppresses tumour regeneration and metastasis. Moreover, miR-141 expression enforces a strong epithelial phenotype with a partial loss of mesenchymal phenotype. Whole-genome RNA sequencing uncovers novel miR-141-regulated molecular targets in PCa cells including the Rho GTPase family members (for example, CDC42, CDC42EP3, RAC1 and ARPC5) and stem cell molecules CD44 and EZH2, all of which are validated as direct and functionally relevant targets of miR-141. Our results suggest that miR-141 employs multiple mechanisms to obstruct tumour growth and metastasis. PMID:28112170

  20. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer

    PubMed Central

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC. PMID:25186767

  1. Type of Cancer Treatment: Targeted Therapy

    Cancer.gov

    Information about the role that targeted therapies play in cancer treatment. Includes how targeted therapies work against cancer, who receives targeted therapies, common side effects, and what to expect when having targeted therapies.

  2. Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer.

    PubMed

    Flores-Pérez, Ali; Marchat, Laurence A; Rodríguez-Cuevas, Sergio; Bautista-Piña, Verónica; Hidalgo-Miranda, Alfredo; Ocampo, Elena Aréchaga; Martínez, Mónica Sierra; Palma-Flores, Carlos; Fonseca-Sánchez, Miguel A; Astudillo-de la Vega, Horacio; Ruíz-García, Erika; González-Barrios, Juan Antonio; Pérez-Plasencia, Carlos; Streber, María L; López-Camarillo, César

    2016-10-05

    Deregulated expression of microRNAs has been associated with angiogenesis. Studying the miRNome of locally advanced breast tumors we unsuspectedly found a dramatically repression of miR-204, a small non-coding RNA with no previous involvement in tumor angiogenesis. Downregulation of miR-204 was confirmed in an independent cohort of patients and breast cancer cell lines. Gain-of-function analysis indicates that ectopic expression of miR-204 impairs cell proliferation, anchorage-independent growth, migration, invasion, and the formation of 3D capillary networks in vitro. Likewise, in vivo vascularization and angiogenesis were suppressed by miR-204 in a nu/nu mice model. Genome-wide profiling of MDA-MB-231 cells expressing miR-204 revealed changes in the expression of hundred cancer-related genes. Of these, we focused on the study of pro-angiogenic ANGPT1 and TGFβR2. Functional analysis using luciferase reporter and rescue assays confirmed that ANGPT1 and TGFβR2 are novel effectors downstream of miR-204. Accordingly, an inverse correlation between miR-204 and ANGPT1/TGFβR2 expression was found in breast tumors. Knockdown of TGFβR2, but not ANGPT1, impairs cell proliferation and migration whereas inhibition of both genes inhibits angiogenesis. Taken altogether, our findings reveal a novel role for miR-204/ANGPT1/TGFβR2 axis in tumor angiogenesis. We propose that therapeutic manipulation of miR-204 levels may represent a promising approach in breast cancer.

  3. Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer

    PubMed Central

    Flores-Pérez, Ali; Marchat, Laurence A.; Rodríguez-Cuevas, Sergio; Bautista-Piña, Verónica; Hidalgo-Miranda, Alfredo; Ocampo, Elena Aréchaga; Martínez, Mónica Sierra; Palma-Flores, Carlos; Fonseca-Sánchez, Miguel A.; Astudillo-de la Vega, Horacio; Ruíz-García, Erika; González-Barrios, Juan Antonio; Pérez-Plasencia, Carlos; Streber, María L.; López-Camarillo, César

    2016-01-01

    Deregulated expression of microRNAs has been associated with angiogenesis. Studying the miRNome of locally advanced breast tumors we unsuspectedly found a dramatically repression of miR-204, a small non-coding RNA with no previous involvement in tumor angiogenesis. Downregulation of miR-204 was confirmed in an independent cohort of patients and breast cancer cell lines. Gain-of-function analysis indicates that ectopic expression of miR-204 impairs cell proliferation, anchorage-independent growth, migration, invasion, and the formation of 3D capillary networks in vitro. Likewise, in vivo vascularization and angiogenesis were suppressed by miR-204 in a nu/nu mice model. Genome-wide profiling of MDA-MB-231 cells expressing miR-204 revealed changes in the expression of hundred cancer-related genes. Of these, we focused on the study of pro-angiogenic ANGPT1 and TGFβR2. Functional analysis using luciferase reporter and rescue assays confirmed that ANGPT1 and TGFβR2 are novel effectors downstream of miR-204. Accordingly, an inverse correlation between miR-204 and ANGPT1/TGFβR2 expression was found in breast tumors. Knockdown of TGFβR2, but not ANGPT1, impairs cell proliferation and migration whereas inhibition of both genes inhibits angiogenesis. Taken altogether, our findings reveal a novel role for miR-204/ANGPT1/TGFβR2 axis in tumor angiogenesis. We propose that therapeutic manipulation of miR-204 levels may represent a promising approach in breast cancer. PMID:27703260

  4. Targeting ion transport in cancer.

    PubMed

    Oosterwijk, E; Gillies, R J

    2014-03-19

    The metabolism of cancer cells differs substantially from normal cells, including ion transport. Although this phenomenon has been long recognized, ion transporters have not been viewed as suitable therapeutic targets. However, the acidic pH values present in tumours which are well outside of normal limits are now becoming recognized as an important therapeutic target. Carbonic anhydrase IX (CAIX) is fundamental to tumour pH regulation. CAIX is commonly expressed in cancer, but lowly expressed in normal tissues and that presents an attractive target. Here, we discuss the possibilities of exploiting the acidic, hypoxic tumour environment as possible target for therapy. Additionally, clinical experience with CAIX targeting in cancer patients is discussed.

  5. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  6. Biomarkers and Targeted Therapy in Pancreatic Cancer

    PubMed Central

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers. PMID:27147897

  7. Gene therapy for colorectal cancer by adenovirus-mediated siRNA targeting CD147 based on loss of the IGF2 imprinting system.

    PubMed

    Pan, Yuqin; He, Bangshun; Chen, Jie; Sun, Huiling; Deng, Qiwen; Wang, Feng; Ying, Houqun; Liu, Xian; Lin, Kang; Peng, Hongxin; Xie, Hongguang; Wang, Shukui

    2015-11-01

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality phenomenon in CRC. Recently observed association of CRC with cluster of differentiation 147 (CD147) could provide a novel approach for gene therapy. In the present study, we investigated the feasibility of using adenovirus‑mediated siRNA targeting CD147 based on the IGF2 LOI system for targeted gene therapy of CRC. A novel adenovirus-mediated siRNA targeting CD147, rAd-H19-CD147mirsh, which was driven by the IGF2 imprinting system, was constructed. The results showed that the EGFP expression was detected only in the IGF2 LOI cell lines (HT-29 and HCT-8), but that no EGFP was produced in cell lines with maintenance of imprinting (MOI) (HCT116). Moreover, rAd-H19-CD147mirsh significantly inhibited the expression of CD147, decreased cell viability and invasive ability, and increased sensitivity to chemotherapeutic drugs only in the LOI cell lines in vitro. Furthermore, mice bearing HT-29 xenografted tumors, which received intratumoral administration of the rAd-H19-CD147mirsh, showed significantly reduced tumor growth and enhanced survival. We conclude that recombinant adenovirus-mediated siRNA targeting CD147 based on the IGF2 LOI system inhibited the growth of the LOI cells in vitro and in vivo, which would provide a novel approach for targeted CRC gene therapy.

  8. The tumor suppressor TERE1 (UBIAD1) prenyltransferase regulates the elevated cholesterol phenotype in castration resistant prostate cancer by controlling a program of ligand dependent SXR target genes

    PubMed Central

    Fredericks, William J.; Sepulveda, Jorge; Lal, Priti; Tomaszewski, John E.; Lin, Ming-Fong; McGarvey, Terry; Rauscher, Frank J; Malkowicz, S. Bruce

    2013-01-01

    Castrate-Resistant Prostate Cancer (CRPC) is characterized by persistent androgen receptor-driven tumor growth in the apparent absence of systemic androgens. Current evidence suggests that CRPC cells can produce their own androgens from endogenous sterol precursors that act in an intracrine manner to stimulate tumor growth. The mechanisms by which CRPC cells become steroidogenic during tumor progression are not well defined. Herein we describe a novel link between the elevated cholesterol phenotype of CRPC and the TERE1 tumor suppressor protein, a prenyltransferase that synthesizes vitamin K-2, which is a potent endogenous ligand for the SXR nuclear hormone receptor. We show that 50% of primary and metastatic prostate cancer specimens exhibit a loss of TERE1 expression and we establish a correlation between TERE1 expression and cholesterol in the LnCaP-C81 steroidogenic cell model of the CRPC. LnCaP-C81 cells also lack TERE1 protein, and show elevated cholesterol synthetic rates, higher steady state levels of cholesterol, and increased expression of enzymes in the de novo cholesterol biosynthetic pathways than the non-steroidogenic prostate cancer cells. C81 cells also show decreased expression of the SXR nuclear hormone receptor and a panel of directly regulated SXR target genes that govern cholesterol efflux and steroid catabolism. Thus, a combination of increased synthesis, along with decreased efflux and catabolism likely underlies the CRPC phenotype: SXR might coordinately regulate this phenotype. Moreover, TERE1 controls synthesis of vitamin K-2, which is a potent endogenous ligand for SXR activation, strongly suggesting a link between TERE1 levels, K-2 synthesis and SXR target gene regulation. We demonstrate that following ectopic TERE1 expression or induction of endogenous TERE1, the elevated cholesterol levels in C81 cells are reduced. Moreover, reconstitution of TERE1 expression in C81 cells reactivates SXR and switches on a suite of SXR target genes that

  9. Targeting Phospholipid Metabolism in Cancer

    PubMed Central

    Cheng, Menglin; Bhujwalla, Zaver M.; Glunde, Kristine

    2016-01-01

    All cancers tested so far display abnormal choline and ethanolamine phospholipid metabolism, which has been detected with numerous magnetic resonance spectroscopy (MRS) approaches in cells, animal models of cancer, as well as the tumors of cancer patients. Since the discovery of this metabolic hallmark of cancer, many studies have been performed to elucidate the molecular origins of deregulated choline metabolism, to identify targets for cancer treatment, and to develop MRS approaches that detect choline and ethanolamine compounds for clinical use in diagnosis and treatment monitoring. Several enzymes in choline, and recently also ethanolamine, phospholipid metabolism have been identified, and their evaluation has shown that they are involved in carcinogenesis and tumor progression. Several already established enzymes as well as a number of emerging enzymes in phospholipid metabolism can be used as treatment targets for anticancer therapy, either alone or in combination with other chemotherapeutic approaches. This review summarizes the current knowledge of established and relatively novel targets in phospholipid metabolism of cancer, covering choline kinase α, phosphatidylcholine-specific phospholipase D1, phosphatidylcholine-specific phospholipase C, sphingomyelinases, choline transporters, glycerophosphodiesterases, phosphatidylethanolamine N-methyltransferase, and ethanolamine kinase. These enzymes are discussed in terms of their roles in oncogenic transformation, tumor progression, and crucial cancer cell properties such as fast proliferation, migration, and invasion. Their potential as treatment targets are evaluated based on the current literature. PMID:28083512

  10. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites.

    PubMed

    Sabarinathan, Radhakrishnan; Wenzel, Anne; Novotny, Peter; Tang, Xiaojia; Kalari, Krishna R; Gorodkin, Jan

    2014-01-01

    Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study, transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations (SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472 SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48 that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher's exact test p-value = 0.032) than the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to alter the expression of known cancer genes or genes

  11. Combined transductional untargeting/retargeting and transcriptional restriction enhance adenovirus gene targeting and therapy for hepatic colorectal cancer tumors

    PubMed Central

    Li, Hua-Jung; Everts, Maaike; Yamamoto, Masato; Curiel, David T.; Herschman, Harvey R.

    2009-01-01

    Unresectable hepatic colorectal cancer (CRC) metastases are a leading cause of cancer mortality. These tumors, and other epithelial tumors, often express both cyclooxygenase 2 (COX-2) and carcinoembryonic antigen (CEA). Because adenovirus vectors infect liver and lack tumor tropism, they cannot be utilized for systemic therapy of hepatic metastases. We used COX-2 transcriptional restriction, in combination with transductional adenovirus hepatic untargeting and tumor retargeting by a bispecific adapter, sCARhMFE, composed of sCAR (the Coxsackie and Adenovirus Receptor ectodomain) and MFE-23 (a single-chain anti-CEA antibody), to untarget liver following intravenous administration of adenovirus vectors expressing firefly luciferase and to retarget virus to hepatic colorectal tumor xenografts and non-small cell lung tumor xenografts. To improve both liver untargeting and tumor retargeting, we developed sCARfMFE, a trimerized sCARhMFE adapter. Trimerization greatly improves both untargeting of CAR-dependent adenovirus infection and CEA-dependent virus retargeting, in culture and in vivo. Combining sCARfMFE bispecific adapter transductional liver untargeting and transductional tumor retargeting with COX-2 transcriptional tumor-restricted transgene expression increases systemically-administered adenovirus therapeutic efficacy for hepatic CRC tumors, using Herpes Virus Type 1 thymidine kinase as a therapeutic gene in conjunction with the prodrug ganciclovir. Both transductional untargeting and COX-2 transcriptional restriction also reduce HSV1-tk/GCV hepatic toxicity. In addition, transductional sCARfMFE untargeting reduces the innate immune response to systemic adenovirus administration. Combined transductional liver Ad untargeting, transductional tumor retargeting and transcriptional transgene restriction suggests a means to engineer practical, effective therapeutic agents for hepatic CRC metastases in particular, as well as hepatic metastases of other epithelial

  12. Combined transductional untargeting/retargeting and transcriptional restriction enhances adenovirus gene targeting and therapy for hepatic colorectal cancer tumors.

    PubMed

    Li, Hua-Jung; Everts, Maaike; Yamamoto, Masato; Curiel, David T; Herschman, Harvey R

    2009-01-15

    Unresectable hepatic colorectal cancer (CRC) metastases are a leading cause of cancer mortality. These tumors and other epithelial tumors often express both cyclooxygenase-2 (COX-2) and carcinoembryonic antigen (CEA). Because adenovirus (Ad) vectors infect the liver and lack tumor tropism, they cannot be used for systemic therapy of hepatic metastases. We used COX-2 transcriptional restriction, in combination with transductional Ad hepatic untargeting and tumor retargeting by a bispecific adapter, sCARhMFE, composed of sCAR [the coxsackie/Ad receptor (CAR) ectodomain] and MFE-23 (a single-chain anti-CEA antibody), to untarget liver after i.v. administration of Ad vectors expressing firefly luciferase and to retarget virus to hepatic colorectal tumor xenografts and non-small cell lung tumor xenografts. To improve both liver untargeting and tumor retargeting, we developed sCARfMFE, a trimerized sCARhMFE adapter. Trimerization greatly improves both untargeting of CAR-dependent Ad infection and CEA-dependent virus retargeting in culture and in vivo. Combining sCARfMFE bispecific adapter transductional liver untargeting and transductional tumor retargeting with COX-2 transcriptional tumor-restricted transgene expression increases systemically administered Ad therapeutic efficacy for hepatic CRC tumors, using herpes virus type 1 thymidine kinase (HSV1-tk) as a therapeutic gene in conjunction with the prodrug ganciclovir (GCV). Both transductional untargeting and COX-2 transcriptional restriction also reduce HSV1-tk/GCV hepatic toxicity. In addition, transductional sCARfMFE untargeting reduces the innate immune response to systemic Ad administration. Combined transductional liver Ad untargeting, transductional tumor retargeting, and transcriptional transgene restriction suggests a means to engineer practical, effective therapeutic agents for hepatic CRC metastases in particular, as well as hepatic metastases of other epithelial cancers.

  13. Comparative effects of histone deacetylase inhibitors on p53 target gene expression, cell cycle and apoptosis in MCF-7 breast cancer cells.

    PubMed

    Knutson, Andrew Kekapa'a; Welsh, Jennifer; Taylor, Travis; Roy, Somdutta; Wang, Wei-Lin Winnie; Tenniswood, Martin

    2012-03-01

    Histone deacetylase inhibitors are currently being evaluated for their therapeutic potential and have shown considerable promise as adjuvant therapies for a number of cancers. This study compared the effects of 2 hydroxamic acid based inhibitors, CG-1521 and SAHA, on gene expression, cell cycle and cell death in MCF-7 human breast cancer cells. Both compounds show a dose- and time-dependent effect on cell number (evaluated using crystal violet), however CG-1521 exerts its effects significantly earlier than SAHA, and CG-1521 induces apoptosis (assessed by Apo-BrdU staining and flow cytometry) more rapidly than SAHA. qPCR of cell cycle regulatory and apoptotic genes shows that CG-1521 and SAHA modulate similar cohorts of p53-responsive genes, however, the levels of induction and the timing of the induction differs significantly between the 2 inhibitors. In particular SAHA downregulates cell cycle-associated genes that modulate the G1/S transition (including cyclin D1 and cdc25a) and the G2/M transition [cyclin B1, Plk1, Stk6 (serine-threonine kinase 6, Aurora kinase A) and Kntc2] more significantly than CG-1521. In contrast, CG-1521 significantly induces the expression of several p53 target genes associated with apoptosis including Bnip3/Bnip3L, p21/p21B and Gdf15. The differential levels of gene induction provide molecular evidence of both cell cycle arrest and apoptosis, and suggest a molecular mechanism that explains the difference in the biological effects of the 2 histone deacetylase inhibitors.

  14. ck2-Dependent Phosphorylation of Progesterone Receptors (PR) on Ser81 Regulates PR-B Isoform-Specific Target Gene Expression in Breast Cancer Cells ▿

    PubMed Central

    Hagan, Christy R.; Regan, Tarah M.; Dressing, Gwen E.; Lange, Carol A.

    2011-01-01

    Progesterone receptors (PR) are critical mediators of mammary gland development and contribute to breast cancer progression. Progestin-induced rapid activation of cytoplasmic protein kinases leads to selective regulation of growth-promoting genes by phospho-PR species. Herein, we show that phosphorylation of PR Ser81 is ck2 dependent and progestin regulated in intact cells but also occurs in the absence of PR ligands when cells enter the G1/S phase of the cell cycle. T47D breast cancer cells stably expressing a PR-B mutant receptor that cannot be phosphorylated at Ser79/81 (S79/81A) formed fewer soft agar colonies. Regulation of selected genes by PR-B, but not PR-A, also required Ser79/81 phosphorylation for basal and/or progestin-regulated (BIRC3, HSD11β2, and HbEGF) expression. Additionally, wild-type (wt) PR-B, but not S79/81A mutant PR, was robustly recruited to a progesterone response element (PRE)-containing transcriptional enhancer region of BIRC3; abundant ck2 also associated with this region in cells expressing wt but not S79/81A PR. We conclude that phospho-Ser81 PR provides a platform for ck2 recruitment and regulation of selected PR-B target genes. Understanding how ligand-independent PRs function in the context of high levels of kinase activities characteristic of breast cancer is critical to understanding the basis of tumor-specific changes in gene expression and will speed the development of highly selective treatments. PMID:21518957

  15. Methylation of WNT target genes AXIN2 and DKK1 as robust biomarkers for recurrence prediction in stage II colon cancer.

    PubMed

    Kandimalla, R; Linnekamp, J F; van Hooff, S; Castells, A; Llor, X; Andreu, M; Jover, R; Goel, A; Medema, J P

    2017-04-03

    Stage II colon cancer (CC) still remains a clinical challenge with patient stratification for adjuvant therapy (AT) largely relying on clinical parameters. Prognostic biomarkers are urgently needed for better stratification. Previously, we have shown that WNT target genes AXIN2, DKK1, APCDD1, ASCL2 and LGR5 are silenced by DNA methylation and could serve as prognostic markers in stage II CC patients using methylation-specific PCR. Here, we have extended our discovery cohort AMC90-AJCC-II (N=65) and methylation was analyzed by quantitative pyrosequencing. Subsequently, we validated the results in an independent EPICOLON1 CC cohort (N=79). Methylation of WNT target genes is negatively correlated to mRNA expression. A combination of AXIN2 and DKK1 methylation significantly predicted recurrences in univariate (area under the curve (AUC)=0.83, confidence interval (CI): 0.72-0.94, P<0.0001) analysis in stage II microsatellite stable (MSS) CC patients. This two marker combination showed an AUC of 0.80 (CI: 0.68-0.91, P<0.0001) in the EPICOLON1 validation cohort. Multivariate analysis in the Academic Medical Center (AMC) cohort revealed that both WNT target gene methylation and consensus molecular subtype 4 (CMS4) are significantly associated with poor recurrence-free survival (hazard ratio (HR)methylation: 3.84, 95% CI: 1.14-12.43; HRCMS4: 3.73, 95% CI: 1.22-11.48). CMS4 subtype tumors with WNT target methylation showed worse prognosis. Combining WNT target gene methylation and CMS4 subtype lead to an AUC of 0.89 (0.791-0.982, P<0.0001) for recurrence prediction. Notably, we observed that methylation of DKK1 is high in BRAF mutant and CIMP (CpG island methylator phenotype)-positive cancers, whereas AXIN2 methylation appears to be associated with CMS4. Methylation of AXIN2 and DKK1 were found to be robust markers for recurrence prediction in stage II MSS CC patients. Further validation of these findings in a randomized and prospective manner could pave a way to identify

  16. Improved binding activity of antibodies against major histocompatibility complex class I chain-related gene A by phage display technology for cancer-targeted therapy.

    PubMed

    Phumyen, Achara; Jumnainsong, Amonrat; Leelayuwat, Chanvit

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA) is an NKG2D ligand that is over-expressed under cellular stress including cancer transformation and viral infection. High expression of MICA in cancer tissues or patients' sera is useful for prognostic or follow-up markers in cancer patients. In this study, phage display technology was employed to improve antigen-binding activities of anti-MICA monoclonal antibodies (WW2G8, WW6B7, and WW9B8). The 12 amino acid residues in the complementarity determining regions (CDRs) on the V domain of the heavy chain CDR3 (HCDR3) of these anti-MICA antibodies were modified by PCR-random mutagenesis, and phages displaying mutated anti-MICA Fab were constructed. After seven rounds of panning, five clones of phages displaying mutant anti-MICA Fab which exhibited 3-7-folds higher antigen-binding activities were isolated. Two clones of the mutants (phage-displayed mutant Fab WW9B8.1 and phage-displayed mutant Fab WW9B8.21) were confirmed to have antigen-binding specificity for cell surface MICA proteins by flow cytometry. These phage clones are able to recognize MICA in a native form according to positive results obtained by indirect ELISA and flow cytometry. Thus, these phage particles could be potentially used for further development of nanomedicine specifically targeting cancer cells expressing MICA proteins.

  17. Improved Binding Activity of Antibodies against Major Histocompatibility Complex Class I Chain-Related Gene A by Phage Display Technology for Cancer-Targeted Therapy

    PubMed Central

    Phumyen, Achara; Jumnainsong, Amonrat; Leelayuwat, Chanvit

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA) is an NKG2D ligand that is over-expressed under cellular stress including cancer transformation and viral infection. High expression of MICA in cancer tissues or patients' sera is useful for prognostic or follow-up markers in cancer patients. In this study, phage display technology was employed to improve antigen-binding activities of anti-MICA monoclonal antibodies (WW2G8, WW6B7, and WW9B8). The 12 amino acid residues in the complementarity determining regions (CDRs) on the V domain of the heavy chain CDR3 (HCDR3) of these anti-MICA antibodies were modified by PCR-random mutagenesis, and phages displaying mutated anti-MICA Fab were constructed. After seven rounds of panning, five clones of phages displaying mutant anti-MICA Fab which exhibited 3–7-folds higher antigen-binding activities were isolated. Two clones of the mutants (phage-displayed mutant Fab WW9B8.1 and phage-displayed mutant Fab WW9B8.21) were confirmed to have antigen-binding specificity for cell surface MICA proteins by flow cytometry. These phage clones are able to recognize MICA in a native form according to positive results obtained by indirect ELISA and flow cytometry. Thus, these phage particles could be potentially used for further development of nanomedicine specifically targeting cancer cells expressing MICA proteins. PMID:23226940

  18. RNA interferences targeting the Fanconi anemia/BRCA pathway upstream genes reverse cisplatin resistance in drug-resistant lung cancer cells.

    PubMed

    Dai, Chun-Hua; Li, Jian; Chen, Ping; Jiang, He-Guo; Wu, Ming; Chen, Yong-Chang

    2015-09-18

    Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance. In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin. Using small interfering RNA (siRNA), knockdown of FANCF, FANCL, or FANCD2 inhibited function of the FA/BRCA pathway in A549, A549/DDP and SK-MES-1 cells, and potentiated sensitivity of the three cells to cisplatin. The extent of proliferation inhibition induced by cisplatin after knockdown of FANCF and/or FANCL in A549/DDP cells was significantly greater than in A549 and SK-MES-1 cells, suggesting that depletion of FANCF and/or FANCL can reverse resistance of cisplatin-resistant lung cancer cells to cisplatin. Furthermore, knockdown of FANCL resulted in higher cisplatin sensitivity and dramatically elevated apoptosis rates compared with knockdown of FANCF in A549/DDP cells, indicating that FANCL play an important role in the repair of cisplatin-induced DNA damage. Knockdown of FANCF, FANCL, or FANCD2 by RNAi could synergize the effect of cisplatin on suppressing cell proliferation in cisplatin-resistant lung cancer cells through inhibition of FA/BRCA pathway.

  19. Self-assembled BolA-like amphiphilic peptides as viral-mimetic gene vectors for cancer cell targeted gene delivery.

    PubMed

    Chen, Jing-Xiao; Xu, Xiao-Ding; Yang, Shuo; Yang, Juan; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-01-01

    In this study, two types of BolA-like amphiphilic peptides with dual ligands comprising a tumor-targeting moiety of RGD sequence and a cell-penetrating moiety of R8 sequence are designed and synthesized as gene vectors. The BolA-structural peptide carriers can self-assemble into spherical nanoparticles with a hydrophilic core and shell, which are similar to the viral capsid and can bind plasmid DNA in an aqueous medium to form viral-mimetic complexes. It is found that the BolA-like dual ligands system exhibits significantly enhanced gene expression in both HeLa and 293T cell lines, as compared with poly(ethylenimine) PEI. These BolA-like amphiphilic peptides are promising in clinical trials of gene therapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  1. The in vitro and vivo effects of nuclear and cytosolic parafibromin expression on the aggressive phenotypes of colorectal cancer cells: a search of potential gene therapy target.

    PubMed

    Zheng, Hua-Chuan; Liu, Jia-Jie; Li, Jing; Wu, Ji-Cheng; Yang, Lei; Zhao, Gui-Feng; Zhao, Xin; Jiang, Hua-Mao; Huang, Ke-Qiang; Li, Zhi-Jie

    2017-02-16

    Down-regulated parafibromin is positively linked to the pathogenesis of parathyroid, lung, breast, ovarian, gastric and colorectal cancers. Here, we found that wild-type (WT) parafibromin overexpression suppressed proliferation, tumor growth, induced cell cycle arrest and apoptosis in colorectal cancer cells (p<0.05), but it was the converse for mutant-type (MT, mutation in nucleus localization sequence) parafibromin (p<0.05). Both WT and MT transfectants inhibited migration and invasion, and caused better differentiation (p<0.05) of cancer cells. WT parafibromin transfectants showed the overexpression of Cyclin B1, Cyclin D1, Cyclin E, p38, p53, and AIF in HCT-15 and HCT-116 cells, while MT parafibromin only up-regulated p38 expression. There was lower mRNA expression of bcl-2 in parafibromin transfectants than the control and mock, while higher expression of c-myc, Cyclin D1, mTOR, and Raptor. According to transcriptomic analysis, WT parafibromin suppressed PI3K-Akt and FoxO signaling pathways, while MT one promoted PI3K-Akt pathway, focal adhesion, and regulation of actin cytoskeleton. Parafibromin was less expressed in colorectal cancer than paired mucosa (p<0.05), and inversely correlated with its differentiation at both mRNA and protein levels (p<0.05). These findings indicated that WT parafibromin might reverse the aggressive phenotypes of colorectal cancer cells and be employed as a target for gene therapy. Down-regulated parafibromin expression might be closely linked to colorectal carcinogenesis and cancer differentiation.

  2. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  3. Targeting of RET oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer

    PubMed Central

    Tortoreto, Monica; Doria, Filippo; Beretta, Giovanni L.; Zuco, Valentina; Freccero, Mauro; Borrello, Maria Grazia; Lanzi, Cinzia; Richter, Sara N.; Zaffaroni, Nadia; Folini, Marco

    2016-01-01

    Medullary thyroid cancer (MTC) relies on the aberrant activation of RET proto-oncogene. Though targeted approaches (i.e., tyrosine kinase inhibitors) are available, the absence of complete responses and the onset of resistance mechanisms indicate the need for novel therapeutic interventions. Due to their role in regulation of gene expression, G-quadruplexes (G4) represent attractive targets amenable to be recognized or stabilized by small molecules. Here, we report that exposure of MTC cells to a tri-substituted naphthalene diimide (NDI) resulted in a significant antiproliferative activity paralleled by inhibition of RET expression. Biophysical analysis and gene reporter assays showed that impairment of RET expression was consequent to the NDI-mediated stabilization of the G4 forming within the gene promoter. We also showed for the first time that systemic administration of the NDI in mice xenotransplanted with MTC cells resulted in a remarkable inhibition of tumor growth in vivo. Overall, our findings indicate that NDI-dependent RET G4 stabilization represents a suitable approach to control RET transcription and delineate the rationale for the development of G4 stabilizing-based treatments for MTC as well as for other tumors in which RET may have functional and therapeutic implications. PMID:27351133

  4. Targeting ubiquitination for cancer therapies

    PubMed Central

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin–proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family. PMID:26630263

  5. Targeted therapy in renal cancer

    PubMed Central

    Dorff, Tanya B.; Goldkorn, Amir; Quinn, David I.

    2009-01-01

    Renal cell cancer (RCC) has an increasing incidence internationally and is a disease for which there have been limited therapeutic options until recently. The last decade has seen a vastly improved understanding of the biological and clinical factors that predict the outcome of this disease. We now understand some of the different molecular underpinnings of renal clear cell carcinoma by mutation or silencing of the von Hippel Lindau (VHL) gene and subsequent deregulated proliferation and angiogenesis. Survival in advanced disease is predicted by factors (performance status, anemia, hypercalcemia, and serum lactate dehydrogenase, time from diagnosis to recurrence) incorporated into the Memorial Sloan Kettering Cancer Center (MSKCC) criteria (also referred to as ‘Motzer’ criteria). These criteria allow classification of patients with RCC into good, intermediate and poor risk categories with median overall survivals of 22 months, 12 months and 5.4 months, respectively. Predicated upon these advances, six new targeted drugs (sorafenib, sunitinib, temsirolimus, everolimus, bevacizumab and pazopanib) have been tested in well-designed phase III trials, selected or stratified for MSKCC risk criteria, with positive results. All of these new drugs act at least in part through vascular endothelial growth factor (VEGF) mediated pathways with other potential therapeutic impact on platelet-derived growth factor (PDGF), raf kinase and mammalian target of rapamycin (mTOR) pathways. Importantly, data from each of these trials show a consistent doubling of progression-free survival (PFS) over prior standard of care treatments. In addition, sorafenib, sunitinib and temsirolimus, have demonstrated significant overall survival (OS) benefits as well; further follow-up is required to determine whether the disease control exhibited by everolimus and pazopanib will translate into a survival advantage. These drugs are generally well tolerated, as demonstrated by quality

  6. Cancer suicide gene therapy: a patent review.

    PubMed

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  7. Oral targeted therapy for cancer

    PubMed Central

    Carrington, Christine

    2015-01-01

    SUMMARY Oral targeted therapies are increasingly being used to treat cancer. They work by interfering with specific molecules or pathways involved in tumour growth. It is essential that health professionals managing patients taking these drugs have appropriate training and skills. They should be aware of potential adverse effects and drug interactions, and be able to manage toxicities when they occur. Despite the selectivity of these targeted therapies, they still have serious adverse effects including skin reactions, diarrhoea and altered organ function. PMID:26648656

  8. The Evaluation and Comparison of Transcriptionally Targeted Noxa and Puma Killer Genes to Initiate Apoptosis Under Cancer-Specific Promoter CXCR1 in Hepatocarcinoma Gene Therapy.

    PubMed

    Khoshtinat Nikkhoi, Shahryar; Heydarzadeh, Hedieh; Ranjbar, Saeed; Salimi, Fatemeh; Aghaeifard, Masoud; Alavian, Seyed Moayed; Reshadmanesh, Azadeh

    2016-10-01

    Cancerous cells proliferate as fast as possible without a proper surveillance system. This rapid cell division leads to enormous mutation rates, which help a tumor establish. This study evaluated the potential of inducing apoptosis using Noxa and Puma in a hepatocarcinoma cell line. The current study generated two recombinant lentiviruses, pLEX-GCN and pLEX-GCP, bearing Noxa and Puma, respectively. Transduction of both genes to hepatocarcinoma (HepG2) was verified using fluorescent microscopic analysis, western blotting, and quantitative real-time polymerase chain reaction (PCR). To evaluate the potential of Noxa and Puma to initiate apoptosis, a caspase-9 real-time, MTT assay, and a 4', 6-diamidino-2-phenylindole (DAPI) reagent were performed to stain apoptotic cells. The data verified successful transduction to HepG2 and HEK293T. Higher relative expression of Noxa and Puma rather than the untransduced cell line showed these genes are expressed more in HepG2 in comparison to HEK293T. The results of the real-time PCR, MTT assay, and DAPI reagent illustrated that higher cells initiated apoptosis following Puma transduction rather than Noxa. In this approach, the suicide gene was transferred to transformed cells and ignited apoptosis to exterminate them. Puma is a more potent killer gene and has higher capabilities to start intrinsic apoptosis pathway.

  9. Targeting TMPRSS2-ERG in Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    hierarchical, k-means, and consensus clustering (months 25-28 – not started) Task 2. Test small molecule inhibitors that target candidate kinases ...of enzymes in which to fit small molecule inhibitors . To address these challenges, we developed a method to measure gene expression patterns in a...in prostate cancer cells 3) Results and conclusions/achievements In order to identify direct small molecule inhibitors of ERG we took advantage

  10. Characterization of ectopically-expressed ets1 in human colon-cancer cells - induction of putative ets1-target gene.

    PubMed

    Suzuki, H; Romanospica, V; Georgiou, P; Fisher, R; Papas, T; Bhat, N

    1993-10-01

    We have previously shown that the ETS1 gene is expressed in a tissue-specific manner, and encodes a transcription factor, that may be involved in lymphocyte development, activation and proliferation. To understand the ETS1 function in non-lymphoid cells, we have ectopically expressed ETS1 protein in a human colon cancer cell line, and studied its biochemical properties. The 51 kDa ETS1 protein expressed in transfected cells localized in both the nucleus and the cytoplasm, has similar biochemical properties compared to ETS1 protein expressed in lymphoid cells. The ectopically expressed ETS1 binds to the DNA in sequence-specific manner and the binding activity is affected by the flanking sequences outside the 'GGA' core. Our results also demonstrate that the DNA-binding activity of full-length ETS1 is similar in lymphoid and non-lymphoid cells. The ETS1 expressed in DLD-1 cells is biologically active since it induces a 54.5 kDa polypeptide, whose expression level correlates with the expression of ETS1 in DLD-1 cells.

  11. Integrins synergise to induce expression of the MRTF-A-SRF target gene ISG15 for promoting cancer cell invasion.

    PubMed

    Hermann, Michaela-Rosemarie; Jakobson, Madis; Colo, Georgina P; Rognoni, Emanuel; Jakobson, Maili; Kupatt, Christian; Posern, Guido; Fässler, Reinhard

    2016-04-01

    Integrin-mediated activation of small GTPases induces the polymerisation of G-actin into various actin structures and the release of the transcriptional co-activator MRTF from G-actin. Here we report that pan-integrin-null fibroblasts seeded on fibronectin and expressing β1- and/or αV-class integrin contained different G-actin pools, nuclear MRTF-A (also known as MKL1 or MAL) levels and MRTF-A-SRF activities. The nuclear MRTF-A levels and activities were highest in cells expressing both integrin classes, lower in cells expressing β1 integrins and lowest in cells expressing the αV integrins. Quantitative proteomics and transcriptomics analyses linked the differential MRTF-A activities to the expression of the ubiquitin-like modifier interferon-stimulated gene 15 (ISG15), which is known to modify focal adhesion and cytoskeletal proteins. The malignant breast cancer cell line MDA-MB-231 expressed high levels of β1 integrins, ISG15 and ISGylated proteins, which promoted invasive properties, whereas non-invasive MDA-MB-468 and MCF-7 cell lines expressed low levels of β1 integrins, ISG15 and ISGylated proteins. Our findings suggest that integrin-adhesion-induced MRTF-A-SRF activation and ISG15 expression constitute a newly discovered signalling circuit that promotes cell migration and invasion. © 2016. Published by The Company of Biologists Ltd.

  12. Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma

    PubMed Central

    Yang, Ching-Yao; Liau, Jau-Yu; Huang, Wei-Ju; Chang, Yu-Ting; Chang, Ming-Chu; Lee, Jen-Chieh; Tsai, Jia-Huei; Su, Yi-Ning; Hung, Chia-Cheng; Jeng, Yung-Ming

    2015-01-01

    Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. The genetic changes of leiomyosarcoma remain to be discovered. In this study, we analyzed the genetic changes of 44 cancer-related genes by using next-generation sequencing in 54 leiomyosarcomas. We identified TP53 mutations in 19 of the 54 tumors (35%) and ATRX mutations in 9 of the 54 tumors (17%). The TP53-mutated leiomyosarcomas were limited to female patients (P = 0.006). All but 2 of the TP53-mutated leiomyosarcomas were located in the uterus (n = 11) or retroperitoneum (n = 6). The ATRX mutations were associated with poorly differentiated leiomyosarcomas (P = 0.028) and the presence of tumor necrosis (P = 0.015). Kaplan-Meier survival analysis showed that patients with ATRX-mutated leiomyosarcomas had worse overall survival than did patients with ATRX-wild-type leiomyosarcomas. All of the ATRX-mutated leiomyosarcomas showed the alternative lengthening of telomere phenotype. The ATRX mutations did not correlate with ATRX protein expression, as detected using immunohistochemistry. In conclusion, we identified loss of function of the p53 and ATRX pathways being the main mechanisms for leiomyosarcomas. The molecular mechanisms may provide new opportunities to treat these aggressive neoplasms. PMID:26692951

  13. Circadian gene variants in cancer

    PubMed Central

    Kettner, Nicole M.; Katchy, Chinenye A.; Fu, Loning

    2014-01-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  14. The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy.

    PubMed

    Gou, Wen-feng; Yang, Xue-feng; Shen, Dao-fu; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Takano, Yasuo; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-08-14

    BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis and angiogenesis, cell cycle progression, and induce differentiation in various cells. Here, we found that BTG3 overexpression inhibited proliferation, induced S/G2 arrest, differentiation, autophagy, apoptosis, suppressed migration and invasion in MKN28 and MGC803 cells (p < 0.05). BTG3 transfectants showed a higher mRNA expression of p27, Bax, 14-3-3, Caspase-3, Caspase-9, Beclin 1, NF-κB, IL-1, -2, -4, -10 and -17, but a lower mRNA expression of p21, MMP-9 and VEGF than the control and mock (p < 0.05). At protein level, BTG3 overexpression increased the expression of CDK4, AIF, LC-3B, Beclin 1 and p38 (p < 0.05), but decreased the expression of p21 and β-catenin in both transfectants (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG3 transfectants showed lower viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05). BTG3 expression was restored after 5-aza-2'-deoxycytidine or MG132 treatment in gastric cancer cells. BTG3 expression was decreased in gastric cancer in comparison to the adjacent mucosa (p < 0.05), and positively correlated with venous invasion and dedifferentiation of cancer (p < 0.05). It was suggested that BTG3 expression might contribute to gastric carcinogenesis. BTG3 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer.

  15. Mechanisms of gene targeting in higher eukaryotes.

    PubMed

    Tokunaga, Akinori; Anai, Hirofumi; Hanada, Katsuhiro

    2016-02-01

    Targeted genome modifications using techniques that alter the genomic information of interest have contributed to multiple studies in both basic and applied biology. Traditionally, in gene targeting, the target-site integration of a targeting vector by homologous recombination is used. However, this strategy has several technical problems. The first problem is the extremely low frequency of gene targeting, which makes obtaining recombinant clones an extremely labor intensive task. The second issue is the limited number of biomaterials to which gene targeting can be applied. Traditional gene targeting hardly occurs in most of the human adherent cell lines. However, a new approach using designer nucleases that can introduce site-specific double-strand breaks in genomic DNAs has increased the efficiency of gene targeting. This new method has also expanded the number of biomaterials to which gene targeting could be applied. Here, we summarize various strategies for target gene modification, including a comparison of traditional gene targeting with designer nucleases.

  16. Targeting Cancer Metabolism - Revisiting the Warburg Effects

    PubMed Central

    Tran, Quangdon; Lee, Hyunji; Park, Jisoo; Kim, Seon-Hwan; Park, Jongsun

    2016-01-01

    After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism. PMID:27437085

  17. Predictive assay for cancer targets

    NASA Astrophysics Data System (ADS)

    Suess, Amanda; Nguyen, Christine; Sorensen, Karen; Montgomery, Jennifer; Souza, Brian; Kulp, Kris; Dugan, Larry; Christian, Allen

    2005-11-01

    Early detection of cancer is a key element in successful treatment of the disease. Understanding the particular type of cancer involved, its origins and probable course, is also important. PhIP (2-amino-1- methyl-6 phenylimidazo [4,5-b]pyridine), a heterocyclic amine produced during the cooking of meat at elevated temperatures, has been shown to induce mammary cancer in female, Sprague-Dawley rats. Tumors induced by PhIP have been shown to contain discreet cytogenetic signature patterns of gains and losses using comparative genomic hybridization (CGH). To determine if a protein signature exists for these tumors, we are analyzing expression levels of the protein products of the above-mentioned tumors in combination with a new bulk protein subtractive assay. This assay produces a panel of antibodies against proteins that are either on or off in the tumor. Hybridization of the antibody panel onto a 2-D gel of tumor or control protein will allow for identification of a distinct protein signature in the tumor. Analysis of several gene databases has identified a number of rat homologs of human cancer genes located in these regions of gain and loss. These genes include the oncogenes c-MYK, ERBB2/NEU, THRA and tumor suppressor genes EGR1 and HDAC3. The listed genes have been shown to be estrogen-responsive, suggesting a possible link between delivery of bio-activated PhIP to the cell nucleus via estrogen receptors and gene-specific PhIP-induced DNA damage, leading to cell transformation. All three tumors showed similar silver staining patterns compared to each other, while they all were different than the control tissue. Subsequent screening of these genes against those from tumors know to be caused by other agents may produce a protein signature unique to PhIP, which can be used as a diagnostic to augment optical and radiation-based detection schemes.

  18. Predictive Assay For Cancer Targets

    SciTech Connect

    Suess, A; Nguyen, C; Sorensen, K; Montgomery, J; Souza, B; Kulp, K; Dugan, L; Christian, A

    2005-09-19

    Early detection of cancer is a key element in successful treatment of the disease. Understanding the particular type of cancer involved, its origins and probable course, is also important. PhIP (2-amino-1-methyl-6 phenylimidazo [4,5-b]pyridine), a heterocyclic amine produced during the cooking of meat at elevated temperatures, has been shown to induce mammary cancer in female, Sprague-Dawley rats. Tumors induced by PhIP have been shown to contain discreet cytogenetic signature patterns of gains and losses using comparative genomic hybridization (CGH). To determine if a protein signature exists for these tumors, we are analyzing expression levels of the protein products of the above-mentioned tumors in combination with a new bulk protein subtractive assay. This assay produces a panel of antibodies against proteins that are either on or off in the tumor. Hybridization of the antibody panel onto a 2-D gel of tumor or control protein will allow for identification of a distinct protein signature in the tumor. Analysis of several gene databases has identified a number of rat homologs of human cancer genes located in these regions of gain and loss. These genes include the oncogenes c-MYK, ERBB2/NEU, THRA and tumor suppressor genes EGR1 and HDAC3. The listed genes have been shown to be estrogen-responsive, suggesting a possible link between delivery of bio-activated PhIP to the cell nucleus via estrogen receptors and gene-specific PhIP-induced DNA damage, leading to cell transformation. All three tumors showed similar silver staining patterns compared to each other, while they all were different than the control tissue. Subsequent screening of these genes against those from tumors know to be caused by other agents may produce a protein signature unique to PhIP, which can be used as a diagnostic to augment optical and radiation-based detection schemes.

  19. Employment of Salmonella in Cancer Gene Therapy.

    PubMed

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  20. TCGA bladder cancer study reveals potential drug targets

    Cancer.gov

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  1. TCGA Bladder Cancer Study Reveals Potential Drug Targets - TCGA

    Cancer.gov

    Investigators with the TCGA Research Network have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.

  2. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    SciTech Connect

    Zhao, Hu; Zhu, Chen; Qin, Chao; Tao, Tao; Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin; Gu, Min; Yin, Changjun

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  3. Epidermal growth factor receptor targeting alters gene expression and restores the adhesion function of cancerous cells as measured by single cell force spectroscopy.

    PubMed

    Azadi, Shohreh; Tafazzoli-Shadpour, Mohammad; Omidvar, Ramin; Moradi, Lida; Habibi-Anbouhi, Mahdi

    2016-12-01

    Loss of cell-cell adhesion function is a common characteristic of many human epithelial carcinomas that is frequently due to loss of E-cadherin expression. In cancer progression, loss of E-cadherin is associated with invasion and metastasis potential, hence restoration of its function may contribute to the metastasis inhibition. This study examined effect of Epidermal Growth Factor Receptor (EGFR/Her1) blockade on the E-cadherin expression, cellular adherence, and cell elasticity in two human epithelial cancer cell lines, MCF7 and A431. EGFR blocking agents as antibodies or small molecules target EGFR directly. Furthermore, due to intracellular signaling pathways they influence cell behavior and activities. The idea here is to investigate the effect of reduced activity of this signaling pathway using anti-EGFR Antibody (Cetuximab) and tyrosine kinase inhibitor (Lapatinib) on cell-cell adhesion and cell mechanical properties. Real-Time PCR analysis demonstrated that treatment of cells with considered drugs increased the expression of E-cadherin gene among samples. The atomic force microscopy-based single cell force spectroscopy technique was used to measure adhesive force of cancerous cells. Results indicated that inhibition of EGFR activity elevated cell-cell adhesion force, accompanied by stiffening of the cell bodies. In summary, Cetuximab and Lapatinib have been found to mediate cell-cell adhesion by restoration of E-cadherin expression and function. Our data suggest possible therapeutic potential for inhibition of metastasis via the blockade of EGFR signaling.

  4. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  5. socs7, a target gene of microRNA-145, regulates interferon-β induction through STAT3 nuclear translocation in bladder cancer cells.

    PubMed

    Noguchi, S; Yamada, N; Kumazaki, M; Yasui, Y; Iwasaki, J; Naito, S; Akao, Y

    2013-02-07

    We recently reported that microRNA (miR)-145 is downregulated and induces apoptosis in human bladder cancer cells. Also, it is suggested that the ectopic expression of miR-145 induces apoptosis with the induction of TRAIL expression in several cancer cells. Here, we demonstrated a novel mechanism of apoptosis induction by miR-145 in bladder cancer cells. Exogenous miR-145 in T24 and NKB1 cells markedly increased the expression levels of interferon (IFN)-β, 2'-5'-oligoadenylate synthetase 1, which lies upstream of 2'-5' oligoadenylates/RNase L system, and TRAIL, and induced apparent caspase-dependent apoptosis that was suppressed by cotreatment with a pan-caspase inhibitor; moreover, these expression levels were reduced by cotreatment with an miR-145 inhibitor. The apoptosis did not depend on Toll-like receptor 3 (TLR3) expression, because TLR3-silencing failed to inhibit IFN-β induction by miR-145. Then, we focused on the suppressor of cytokine signaling 7 (socs7), whose expression level was upregulated in bladder cancer cells compared with its level in normal human urothelial cells, as a putative target gene involved in IFN-β induction by miR-145. Expectedly, exogenous miR-145 decreased the expression level of SOCS7, and socs7-silencing enhanced IFN-β induction by transfection with a TLR3 ligand, polyinosinic acid-polycytidylic acid (PIC). The results of a luciferase reporter assay revealed that miR-145 targeted socs7. In addition, socs7-silencing significantly decreased the level of p-Akt and suppressed the growth of T24 cells. Furthermore, exogenous miR-145 or socs7-silencing promoted nuclear translocation of STAT3. In conclusion, the machinery of IFN-β induction through the regulation of SOCS7 by miR-145 was closely associated with the induction of apoptosis. Moreover, exogenous miR-145 promoted IFN-β induction by targeting socs7, which resulted in the nuclear translocation of STAT3. Additionally, our data indicate that SOCS7 functioned as an oncogene

  6. Targeting the IL-6 pathway in multiple myeloma and its implications in cancer-associated gene hypermethylation.

    PubMed

    Ingersoll, Susan Blaydes; Ahmad, Sarfraz; Thoni, Natalie D; Ahmed, Farhana H; Monahan, Kimberly A; Edwards, John R

    2011-09-01

    Aberrant methylation of tumor suppressor genes (TSG) is an important epigenetic event in cancer, including multiple myeloma (MM). Interleukin-6 (IL-6), which plays a significant role in the pathogenesis of MM, also regulates DNA methylation. However, attempts to bring IL-6 blockade to the clinic have had limited success. We hypothesize that IL-6 regulation of hypermethylation may be an important pathway leading to rational chemotherapeutic/anti-IL-6 combinations. We first studied the correlation of IL-6 expression and dependence in MM cell lines: U266B1, RPMI8226, and KAS6/1. We confirmed that KAS6/1 is IL-6-dependent whereas U266B1 and RPMI8226 cells are IL-6-independent and that blocking IL-6 inhibited the growth of U266B1 (36% inhibition; p<0.05) and KAS6/1 (68% inhibition; p<0.01), but not the RPMI8226 cells. Using RT-PCR, we showed that U266B1 cells express IL-6, but RPMI8226 and KAS6/1 cells do not. This IL-6 expression pattern correlates with the anti-IL-6 inhibition findings. To correlate IL-6 sensitivity with hypermethylation of TSG, we investigated promoter methylation of CDH1 and DcR1. We found that the promoter of DcR1 and CDH1 is methylated in U266B1 cells and un-methylated in RPMI8226 cells. Furthermore, the DcR1 promoter was un-methylated in KAS6/1 cells. These data support our hypothesis that an IL-6-dependent pathway may regulate hypermethylation of TSG in MM. Newer chemotherapeutic agents that affect methylation are being studied in combination with IL-6 blockade.

  7. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

    PubMed Central

    2014-01-01

    Background PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Methods Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Results Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression

  8. Systemic siRNA Delivery via Peptide-Tagged Polymeric Nanoparticles, Targeting PLK1 Gene in a Mouse Xenograft Model of Colorectal Cancer

    PubMed Central

    Malhotra, Meenakshi; Tomaro-Duchesneau, Catherine; Saha, Shyamali; Prakash, Satya

    2013-01-01

    Polymeric nanoparticles were developed from a series of chemical reactions using chitosan, polyethylene glycol, and a cell-targeting peptide (CP15). The nanoparticles were complexed with PLK1-siRNA. The optimal siRNA loading was achieved at an N : P ratio of 129.2 yielding a nanoparticle size of >200 nm. These nanoparticles were delivered intraperitoneally and tested for efficient delivery, cytotoxicity, and biodistribution in a mouse xenograft model of colorectal cancer. Both unmodified and modified chitosan nanoparticles showed enhanced accumulation at the tumor site. However, the modified chitosan nanoparticles showed considerably, less distribution in other organs. The relative gene expression as evaluated showed efficient delivery of PLK1-siRNA (0.5 mg/kg) with 50.7 ± 19.5% knockdown (P = 0.031) of PLK1 gene. The in vivo data reveals no systemic toxicity in the animals, when tested for systemic inflammation and liver toxicity. These results indicate a potential of using peptide-tagged nanoparticles for systemic delivery of siRNA at the targeted tumor site. PMID:24159333

  9. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    SciTech Connect

    Zhang, Jing; Shen, Chengwu; Wang, Lin; Ma, Quanping; Xia, Pingtian; Qi, Mei; Yang, Muyi; Han, Bo

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  10. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells

    PubMed Central

    Chang, Su'e; Gao, Ling; Yang, Yang; Tong, Dongdong; Guo, Bo; Liu, Liying; Li, Zongfang; Song, Tusheng; Huang, Chen

    2015-01-01

    VitaminD3 signaling is involved in inhibiting the development and progression of gastric cancer (GC), while the active vitamin D metabolite 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)-mediated gene regulatory mechanisms in GC remain unclear. We found that miR-145 is induced by 1,25(OH)2D3 in a dose- and vitamin D receptor (VDR)-dependent manner in GC cells. Inhibition of miR-145 reverses the antiproliferative effect of 1,25(OH)2D3. Furthermore, miR-145 expression was lower in tumors compared with matched normal samples and correlated with increased the E2F3 transcription factor protein staining. Overexpression of miR-145 inhibited colony formation, cell viability and induced cell arrest in S-phase in GC cells by targeting E2F3 and CDK6. miR-145 inhibition consistently abrogates the 1,25(OH)2D3-mediated suppression of E2F3, CDK6, CDK2 and CCNA2 genes. Altogether, our results indicate that miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 in GC cells and might hold promise for prognosis and therapeutic strategies for GC treatment. PMID:25762621

  11. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  12. Targeting HOX/PBX dimers in cancer

    PubMed Central

    Morgan, Richard; El-Tanani, Mohamed; Hunter, Keith D.; Harrington, Kevin J.; Pandha, Hardev S.

    2017-01-01

    The HOX and PBX gene families encode transcription factors that have key roles in establishing the identity of cells and tissues in early development. Over the last 20 years it has become apparent that they are also dysregulated in a wide range of solid and haematological malignancies and have a predominantly pro-oncogenic function. A key mode of transcriptional regulation by HOX and PBX proteins is through their interaction as a heterodimer or larger complex that enhances their binding affinity and specificity for DNA, and there is growing evidence that this interaction is a potential therapeutic target in malignancies that include prostate, breast, renal, ovarian and lung cancer, melanoma, myeloma, and acute myeloid leukaemia. This review summarizes the roles of HOX and PBX genes in cancer and assesses the therapeutic potential of HOX/PBX dimer inhibition, including the availability of biomarkers for its application in precision medicine. PMID:28423659

  13. Targeting HOX/PBX dimers in cancer.

    PubMed

    Morgan, Richard; El-Tanani, Mohamed; Hunter, Keith D; Harrington, Kevin J; Pandha, Hardev S

    2017-05-09

    The HOX and PBX gene families encode transcription factors that have key roles in establishing the identity of cells and tissues in early development. Over the last 20 years it has become apparent that they are also dysregulated in a wide range of solid and haematological malignancies and have a predominantly pro-oncogenic function. A key mode of transcriptional regulation by HOX and PBX proteins is through their interaction as a heterodimer or larger complex that enhances their binding affinity and specificity for DNA, and there is growing evidence that this interaction is a potential therapeutic target in malignancies that include prostate, breast, renal, ovarian and lung cancer, melanoma, myeloma, and acute myeloid leukaemia. This review summarizes the roles of HOX and PBX genes in cancer and assesses the therapeutic potential of HOX/PBX dimer inhibition, including the availability of biomarkers for its application in precision medicine.

  14. Targeting Quiescence in Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    G0 in the bone marrow , which renders them insensitive to chemotherapies designed to target actively proliferating cancer cells. Our goal is to...examine whether dormant DTCs enter G0 in the bone marrow and test whether the disruption of DTC quiescence may reduce tumor burden and improve treatment...dynamics, and that these cell lines respond to signals from the bone marrow thought to promote dormancy by increasing cell cycle arrest. In our xenograft

  15. Neuropilins: A New Target for Cancer Therapy

    PubMed Central

    Grandclement, Camille; Borg, Christophe

    2011-01-01

    Recent investigations highlighted strong similarities between neural crest migration during embryogenesis and metastatic processes. Indeed, some families of axon guidance molecules were also reported to participate in cancer invasion: plexins/semaphorins/neuropilins, ephrins/Eph receptors, netrin/DCC/UNC5. Neuropilins (NRPs) are transmembrane non tyrosine-kinase glycoproteins first identified as receptors for class-3 semaphorins. They are particularly involved in neural crest migration and axonal growth during development of the nervous system. Since many types of tumor and endothelial cells express NRP receptors, various soluble molecules were also found to interact with these receptors to modulate cancer progression. Among them, angiogenic factors belonging to the Vascular Endothelial Growth Factor (VEGF) family seem to be responsible for NRP-related angiogenesis. Because NRPs expression is often upregulated in cancer tissues and correlated with poor prognosis, NRPs expression might be considered as a prognostic factor. While NRP1 was intensively studied for many years and identified as an attractive angiogenesis target for cancer therapy, the NRP2 signaling pathway has just recently been studied. Although NRP genes share 44% homology, differences in their expression patterns, ligands specificities and signaling pathways were observed. Indeed, NRP2 may regulate tumor progression by several concurrent mechanisms, not only angiogenesis but lymphangiogenesis, epithelial-mesenchymal transition and metastasis. In view of their multiples functions in cancer promotion, NRPs fulfill all the criteria of a therapeutic target for innovative anti-tumor therapies. This review focuses on NRP-specific roles in tumor progression. PMID:24212788

  16. Targeted alpha therapy for cancer

    NASA Astrophysics Data System (ADS)

    Allen, Barry J.; Raja, Chand; Rizvi, Syed; Li, Yong; Tsui, Wendy; Zhang, David; Song, Emma; Qu, Chang Fa; Kearsley, John; Graham, Peter; Thompson, John

    2004-08-01

    Targeted alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukaemia, colorectal, breast and prostate cancers, and by a phase 1 trial of intralesional TAT for melanoma. The alpha-emitting radioisotope used is Bi-213, which is eluted from the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (e.g. plasminogen activator inhibitor-2 PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukaemia (WM60), colorectal (C30.6), breast (PAI2, herceptin), ovarian (PAI2, herceptin, C595), prostate (PAI2, J591) and pancreatic (PAI2, C595) cancers. Subcutaneous inoculation of 1-1.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. The 213Bi-9.2.27 AC is injected into secondary skin melanomas in stage 4 patients in a dose escalation study to determine the effective tolerance dose, and to measure kinematics to obtain the equivalent dose to organs. In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than non-specific ACs, specific beta emitting conjugates or free isotopes. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress advanced sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Intralesional doses up to 450 µCi in human

  17. Introduction: Cancer Gene Networks.

    PubMed

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  18. Intracellular signals of lung cancer cells as possible therapeutic targets

    PubMed Central

    Tanaka, Kiyomichi; Kumano, Keiki; Ueno, Hiroo

    2015-01-01

    In recent years, several molecularly targeted therapies have been developed as part of lung cancer treatment; they have produced dramatically good results. However, among the many oncogenes that have been identified to be involved in the development of lung cancers, a number of oncogenes are not covered by these advanced therapies. For the treatment of lung cancers, which is a group of heterogeneous diseases, persistent effort in developing individual therapies based on the respective causal genes is important. In addition, for the development of a novel therapy, identification of the lung epithelial stem cells and the origin cells of lung cancer, and understanding about candidate cancer stem cells in lung cancer tissues, their intracellular signaling pathways, and the mechanism of dysregulation of the pathways in cancer cells are extremely important. However, the development of drug resistance by cancer cells, despite the use of molecularly targeted drugs for the causal genes, thus obstructing treatment, is a well-known phenomenon. In this article, we discuss major causal genes of lung cancers and intracellular signaling pathways involving those genes, and review studies on origin and stem cells of lung cancers, as well as the possibility of developing molecularly targeted therapies based on these studies. PMID:25707772

  19. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns.

    PubMed

    Doig, Craig L; Singh, Prashant K; Dhiman, Vineet K; Thorne, James L; Battaglia, Sebastiano; Sobolewski, Michelle; Maguire, Orla; O'Neill, Laura P; Turner, Bryan M; McCabe, Christopher J; Smiraglia, Dominic J; Campbell, Moray J

    2013-02-01

    The current study investigated transcriptional distortion in prostate cancer cells using the vitamin D receptor (VDR) as a tool to examine how epigenetic events driven by corepressor binding and CpG methylation lead to aberrant gene expression. These relationships were investigated in the non-malignant RWPE-1 cells that were 1α,25(OH)(2)D(3) responsive (RWPE-1) and malignant cell lines that were 1α,25(OH)(2)D(3) partially responsive (RWPE-2) and resistant (PC-3). These studies revealed that selective attenuation and repression of VDR transcriptional responses in the cancer cell lines reflected their loss of antiproliferative sensitivity. This was evident in VDR target genes including VDR, CDKN1A (encodes p21( (waf1/cip1) )) and GADD45A; NCOR1 knockdown alleviated this malignant transrepression. ChIP assays in RWPE-1 and PC-3 cells revealed that transrepression of CDKN1A was associated with increased NCOR1 enrichment in response to 1α,25(OH)(2)D(3) treatment. These findings supported the concept that retained and increased NCOR1 binding, associated with loss of H3K9ac and increased H3K9me2, may act as a beacon for the initiation and recruitment of DNA methylation. Overexpressed histone methyltransferases (KMTs) were detectable in a wide panel of prostate cancer cell lines compared with RWPE-1 and suggested that generation of H3K9me2 states would be favored. Cotreatment of cells with the KMT inhibitor, chaetocin, increased 1α,25(OH)(2)D(3)-mediated induction of CDKN1A expression supporting a role for this event to disrupt CDKN1A regulation. Parallel surveys in PC-3 cells of CpG methylation around the VDR binding regions on CDKN1A revealed altered basal and VDR-regulated DNA methylation patterns that overlapped with VDR-induced recruitment of NCOR1 and gene transrepression. Taken together, these findings suggest that sustained corepressor interactions with nuclear-resident transcription factors may inappropriately transform transient-repressive histone states into

  20. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene

    PubMed Central

    Jiang, Li-Peng; He, Chun-Yan; Zhu, Zhi-Tu

    2017-01-01

    This study aims to explore the effects of microRNA-21 (miR-21) on radiosensitivity in non-small cell lung cancer (NSCLC) by targeting programmed cell deanth 4 (PDCD4) and regulating PI3K/AKT/mTOR signaling pathway. Cancer tissues and adjacent normal tissues were collected from 97 NSCLC patients who received a standard radiotherapy regimen. TUNEL assay was applied to determine cell apoptosis in tissues. The qRT-PCR assay was used to detect the expressions of miR-21 expression and PDCD4 mRNA. The protein expressions of PDCD4 and PI3K/AKT/mTOR signaling pathway-related proteins were determined by Western blotting. Colony formation assay was used to observe the sensitivity to radiotherapy of NSCLC cells. Flow cytometry was adopted to testify cell apoptosis. Compared with adjacent normal tissues, miR-21 expression was significantly increased and the mRNA and protein expressions of PDCD4 were decreased in NSCLC tissues. Higher miR-21 expression was associated with attenuated radiation efficacy and shorter median survival time. PDCD4 was the target gene of miR-21. The miR-21 mimics and siRNA-PDCD4 decreased the sensitivity to radiotherapy and cell apoptosis of A549 and H1299 cells and activated PI3K/AKT/mTOR pathway. The sensitivity of A549 and H1299 cells was strengthened in the miR-21 inhibitors group and the PI3K/AKT/mTOR inhibitors group. The siRNA-PDCD4 could reverse the effects of miR-21 inhibitors on sensitivity to radiotherapy and cell apoptosis of NSCLC cells. Our findings provide strong evidence that miR-21 could inhibit PDCD4 expression and activate PI3K/AKT/mTOR signaling pathway, thereby affecting the radiation sensitivity of NSCLC cells. PMID:28423589

  1. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.

  2. An in vivo genetic screen in Drosophila identifies the orthologue of human cancer/testis gene SPO11 among a network of targets to inhibit lethal(3)malignant brain tumour growth.

    PubMed

    Rossi, Fabrizio; Molnar, Cristina; Hashiyama, Kazuya; Heinen, Jan P; Pampalona, Judit; Llamazares, Salud; Reina, José; Hashiyama, Tomomi; Rai, Madhulika; Pollarolo, Giulia; Fernández-Hernández, Ismael; Gonzalez, Cayetano

    2017-08-01

    Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila. © 2017 The Authors.

  3. Bacteriophage gene targeting vectors generated by transplacement.

    PubMed

    Aoyama, C; Woltjen, K; Mansergh, F C; Ishidate, K; Rancourt, D E

    2002-10-01

    A rate-determining step in gene targeting is the generation of the targeting vector. We have developed bacteriophage gene targeting vectorology, which shortens the timeline of targeting vector construction. Using retro-recombination screening, we can rapidly isolate targeting vectors from an embryonic stem cell genomic library via integrative and excisive recombination. We have demonstrated that recombination can be used to introduce specific point mutations or unique restriction sites into gene targeting vectors via transplacement. Using the choline/ethanolamine kinase alpha and beta genes as models, we demonstrate that transplacement can also be used to introduce specifically a neo resistance cassette into a gene targeting phage. In our experience, the lambdaTK gene targeting system offers considerable flexibility and efficiency in TV construction, which makes generating multiple vectors in one week's time possible.

  4. Targeting microenvironment in cancer therapeutics

    PubMed Central

    Martin, Matthew; Wei, Han; Lu, Tao

    2016-01-01

    During development of a novel treatment for cancer patients, the tumor microenvironment and its interaction with the tumor cells must be considered. Aspects such as the extracellular matrix (ECM), the epithelial-mesenchymal transition (EMT), secreted factors, cancer-associated fibroblasts (CAFs), the host immune response, and tumor-associated microphages (TAM) are critical for cancer progression and metastasis. Additionally, signaling pathways such as the nuclear factor κB (NF-κB), transforming growth factor β (TGFβ), and tumor necrosis factor α (TNFα) can promote further cytokine release in the tumor environment, and impact tumor progression greatly. Importantly, cytokine overexpression has been linked to drug resistance in cancers and is therefore an attractive target for combinational therapies. Specific inhibitors of cytokines involved in signaling between tumor cells and the microenvironment have not been studied in depth and have great potential for use in personalized medicines. Together, the interactions between the microenvironment and tumors are critical for tumor growth and promotion and should be taken into serious consideration for future novel therapeutic approaches. PMID:27270649

  5. Smart Polymeric Nanoparticles for Cancer Gene Delivery

    PubMed Central

    2015-01-01

    The massive amount of human genetic information already available has accelerated the identification of target genes, making gene and nucleic acid therapy the next generation of medicine. Nanoparticle (NP)-based anticancer gene therapy treatment has received significant interest in this evolving field. Recent advances in vector technology have improved gene transfection efficiencies of nonviral vectors to a level similar to viruses. This review serves as an introduction to surface modifications of NPs based on polymeric structural improvements and target moieties. A discussion regarding the future perspective of multifunctional NPs in cancer therapy is also included. PMID:25531409

  6. Targeting lentiviral vectors for cancer immunotherapy

    PubMed Central

    Arce, Frederick; Breckpot, Karine; Collins, Mary; Escors, David

    2012-01-01

    Delivery of tumour-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumour-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4+ and CD8+ T cells in the context of strong co-stimulatory signals. Lentiviral vectors have been tested as vehicles, for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumour growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either targeting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. In conclusion, this review highlights the potential of lentiviral vectors as a generally applicable ‘off-the-shelf’ anti-cancer immunotherapeutic. PMID:22983382

  7. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    PubMed Central

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  8. Targeted Cancer Therapy Using Engineered Salmonella typhimurium.

    PubMed

    Zheng, Jin Hai; Min, Jung-Joon

    2016-09-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy.

  9. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-κB target genes in human breast cancer

    PubMed Central

    Dalmases, Alba; González, Irene; Menendez, Silvia; Arpí, Oriol; Corominas, Josep Maria; Servitja, Sonia; Tusquets, Ignasi; Chamizo, Cristina; Rincón, Raúl; Espinosa, Lluis; Bigas, Anna; Eroles, Pilar; Furriol, Jessica; Lluch, Anna; Rovira, Ana; Albanell, Joan; Rojo, Federico

    2014-01-01

    NF-κB has been linked to doxorubicin resistance in breast cancer patients. NF-κB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-κB -dependent genes and the biological consequences are unclear. We studied NF-κB -dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-κB -dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-κB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF NF-κB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-defcient background correlated with the activation of the NF-κB -dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-κB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-κB /p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-κB -response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior. PMID:24344116

  10. Therapeutic potential of stem cells expressing suicide genes that selectively target human breast cancer cells: Evidence that they exert tumoricidal effects via tumor tropism

    PubMed Central

    YI, BO-RIM; CHOI, KELVIN J.; KIM, SEUNG U.; CHOI, KYUNG-CHUL

    2012-01-01

    Breast cancer is the most prevalent cancer in women worldwide and is classified into ductal and lobular carcinoma. Breast cancer as well as lobular carcinoma is associated with various risk factors such as gender, age, female hormone exposure, ethnicity, family history and genetic risk factor-associated genes. Genes associated with a high risk of developing breast cancer include BRCA1, BRCA2, p53, PTEN, CHEK2 and ATM. Surgery, chemotherapy, radiotherapy and hormone therapy are used to treat breast cancer but these therapies, except for surgery, have many side-effects such as alopecia, anesthesia, diarrhea and arthralgia. Gene-directed enzyme/prodrug therapy (GEPT) or suicide gene therapy, may improve the therapeutic efficacy of conventional cancer radiotherapy and chemotherapy without side-effects. GEPT most often involves the use of a viral vector to deliver a gene not found in mammalian cells and that produces enzymes which can convert a relatively non-toxic prodrug into a toxic agent. Examples of these systems include cytosine deaminase/5-fluorocytosine (CD/5-FC), carboxyl esterase/irinotecan (CE/CPT-11), and thymidine kinase/ganciclovir (TK/GCV). Recently, therapies based on genetically engineered stem cells (GESTECs) using a GEPT system have received a great deal of attention for their clinical and therapeutic potential to treat breast cancer. In this review, we discuss the potential of GESTECs via tumor tropism effects and therapeutic efficacy against several different types of cancer cells. GESTECs represent a useful tool for treating breast cancer without inducing injuries associated with conventional therapeutic modalities. PMID:22736197

  11. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-кB target genes in human breast cancer.

    PubMed

    Dalmases, Alba; González, Irene; Menendez, Silvia; Arpí, Oriol; Corominas, Josep Maria; Servitja, Sonia; Tusquets, Ignasi; Chamizo, Cristina; Rincón, Raúl; Espinosa, Lluis; Bigas, Anna; Eroles, Pilar; Furriol, Jessica; Lluch, Anna; Rovira, Ana; Albanell, Joan; Rojo, Federico

    2014-01-15

    NF-кB has been linked to doxorubicin resistance in breast cancer patients. NF-кB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-кB-dependent genes and the biological consequences are unclear. We studied NF-кB-dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-кB-dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-кB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF-кB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-deficient background correlated with the activation of the NF-кB-dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-кB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-кB/p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-кB-response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior.

  12. Targeting caspases in cancer therapeutics

    PubMed Central

    Hensley, Patrick; Mishra, Murli; Kyprianou, Natasha

    2013-01-01

    The identification of the fundamental role of apoptosis in the growth balance and normal homeostasis against cell proliferation led to the recognition of its loss contributing to tumorigenesis. The mechanistic significance of reinstating apoptosis signaling towards selective targeting of malignant cells heavily exploits the caspase family of death-inducing molecules as a powerful therapeutic platform for the development of potent anticancer strategies. Some apoptosis inhibitors induce caspase expression and activity in preclinical models and clinical trials by targeting both the intrinsic and extrinsic apoptotic pathways and restoring the apoptotic capacity in human tumors. Furthermore, up-regulation of caspases emerges as a sensitizing mechanism for tumors exhibiting therapeutic resistance to radiation and adjuvant chemotherapy. This review provides a comprehensive discussion of the functional involvement of caspases in apoptosis control and the current understanding of reactivating caspase-mediated apoptosis signaling towards effective therapeutic modalities in cancer treatment. PMID:23509217

  13. Chromatin-Bound IκBα Regulates a Subset of Polycomb Target Genes in Differentiation and Cancer

    PubMed Central

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Albà, M. Mar; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M.; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2014-01-01

    Summary IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation. PMID:23850221

  14. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer.

    PubMed

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Mar Albà, M; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2013-08-12

    IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation.

  15. Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer.

    PubMed

    Yun, Eun-Jin; Zhou, Jiancheng; Lin, Chun-Jung; Hernandez, Elizabeth; Fazli, Ladan; Gleave, Martin; Hsieh, Jer-Tsong

    2016-02-01

    Clinical evidence suggests increased cancer stem cells (CSCs) in a tumor mass may contribute to the failure of conventional therapies because CSCs seem to be more resistant than differentiated tumor cells. Thus, unveiling the mechanism regulating CSCs and candidate target molecules will provide new strategy to cure the patients. The stem-like cell properties were determined by a prostasphere assay and dye exclusion assay. To find critical stem cell marker and reveal regulation mechanism, basic biochemical and molecular biologic methods, such as quantitative real-time PCR, Western blot, reporter gene assay, and chromatin immunoprecipitation assay, were used. In addition, to determine the effect of combination therapy targeting both CSCs and its progeny, in vitro MTT assay and in vivo xenograft model was used. We demonstrate immortalized normal human prostate epithelial cells, appeared nontumorigenic in vivo, become tumorigenic, and acquire stem cell phenotype after knocking down a tumor suppressor gene. Also, those stem-like cells increase chemoresistance to conventional anticancer reagent. Mechanistically, we unveil that Wnt signaling is a key pathway regulating well-known stem cell marker CD44 by directly interacting to the promoter. Thus, by targeting CSCs using Wnt inhibitors synergistically enhances the efficacy of conventional drugs. Furthermore, the in vivo mouse model bearing xenografts showed a robust inhibition of tumor growth after combination therapy. Overall, this study provides strong evidence of CSC in castration-resistant prostate cancer. This new combination therapy strategy targeting CSC could significantly enhance therapeutic efficacy of current chemotherapy regimen only targeting non-CSC cells. ©2015 American Association for Cancer Research.

  16. Targeting MDM4 Splicing in Cancers

    PubMed Central

    Bardot, Boris; Toledo, Franck

    2017-01-01

    MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed. PMID:28230750

  17. [Advances of molecular targeted therapy in squamous cell lung cancer].

    PubMed

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  18. New genes potentially involved in breast cancer metastasis.

    PubMed

    Schwirzke, M; Schiemann, S; Gnirke, A U; Weidle, U H

    1999-01-01

    Identification of new genes involved in the pathogenesis of breast cancer opens new avenues for improved diagnostic markers and new molecular targets for improved treatment of this malignancy. In the following we review genes with proved involvement in invasion and metastasis of breast cancer as well as genes which exhibit an expression pattern that correlates with invasion and metastasis.

  19. Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer

    PubMed Central

    Landen, Charles N.; Goodman, Blake; Katre, Ashwini A.; Steg, Adam D.; Nick, Alpa M.; Stone, Rebecca L.; Miller, Lance D.; Mejia, Pablo Vivas; Jennings, Nicolas B.; Gershenson, David M.; Bast, Robert C.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2010-01-01

    Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression, in whom the percent of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 v 13.81 months, p<0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared to chemotherapy alone (a 74–90% reduction, p<0.015). These data demonstrate that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity, but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer. PMID:20889728

  20. Targeting cancer epigenetics: Linking basic biology to clinical medicine.

    PubMed

    Shinjo, Keiko; Kondo, Yutaka

    2015-12-01

    Recent studies provide compelling evidence that epigenetic dysregulation is involved in almost every step of tumor development and progression. Differences in tumor behavior, which ultimately reflects clinical outcome, can be explained by variations in gene expression patterns generated by epigenetic mechanisms, such as DNA methylation. Therefore, epigenetic abnormalities are considered potential biomarkers and therapeutic targets. DNA methylation is stable at certain specific loci in cancer cells and predominantly reflects the characteristic clinicopathological features. Thus, it is an ideal biomarker for cancer screening, classification and prognostic purposes. Epigenetic treatment for cancers is based on the pharmacologic targeting of various core transcriptional programs that sustains cancer cell identity. Therefore, targeting aberrant epigenetic modifiers may be effective for multiple processes compared with using a selective inhibitor of aberrant single signaling pathway. This review provides an overview of the epigenetic alterations in human cancers and discusses about novel therapeutic strategies targeting epigenetic alterations.

  1. [An experimental study on targeting suicide gene therapy for lung cancer with HSV-TK driven by hTERT promoter].

    PubMed

    Wang, Yan-ping; Tang, Xiao-jun; Zhou, Qing-hua; Che, Guo-wei; Chen, Xiao-he; Zhu, Da-xing

    2008-09-01

    To study the approach of targeting expression of suicide gene HSV-TK driven by human telomerase catalytic subunit (hTERT) promoter in lung cancer cells, and to investigate inhibitory effect of HSV-TK/GCV driven by hTERT promoter on proliferation of lung cancer cell line A549 in vitro and in vivo. (1) Recombinant expression vectors of HSV-TK driven by hTERT promoter and SV40 promoter (pGL3-hTp-TK and pGL3-SV40-TK) were transfected into telomerase-positive human lung adenocarcinoma cell A549 and telomerase-negative human embryonic lung fibroblast cell MRC-5. The mRNA expression of TK gene was detected with RT-PCR method; (2) With the treatment of GCV, the proliferation of above transfected cells was investigated by MTT assay; Influence of GCV on apoptosis and cell cycle of these cells was evaluated with flow cytometry; (3) After the subcutaneously transplantation of A549 cells into nude mice, intra-tumor injection of plasmid-liposome as well as intra-peritoneal injection of GCV were performed to stUdy anti-tumor effects of pGL3-hTp-TK/GCV and pGL3-SV40-TK/GCV in vivo. (1) Enzyme digestion and PCR suggested that recombinant plasmids of pGL3-hTp-TK and pGL3-SV40-TK were successfully constructed; TK mRNA expression was detected in both A549 and MRC-5 cells transfected with pGL3-SV40-TK, also in A549 transfected with pGL3-hTp-TK, but not in MRC-5 transfected with pGL3-hTp-TK; (2) GCV showed significant inhibition effect on proliferation of A549 and MRC-5 transfected with pGL3-SV40-TK in vitro, also on that of A549 transfected with pGL3-hTp-TK, but not of MRC-5 transfected with pGL3-hTp-TK; With the treatment of GCV, apoptosis index (AI) of A549 cells transfected with pGL3-SV40-TK and pGL3-hTp-TK (21.58% and 23.19% respectively) increased significantly, compared with that of A549 transfected with pGL3-hTp and blank control; GCV enhanced the effects on AI in MRC-5 transfected with pGL3-SV40-TK (9.35%), but not with pGL3-hTp-TK (0.88%); (3) Inhibition ratio of pGL3-SV40-TK

  2. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    SciTech Connect

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue; Takeuchi, Akiko; Suda, Kentaro; Kubo, Akihiro; Kawahara, Rieko; Okazaki, Shogo; Tanaka, Toshiyuki; Saya, Hideyuki; Seki, Masayuki; Enomoto, Takemi; Yagi, Hideki; Hashimoto, Yoshiyuki; Masuko, Takashi

    2011-03-25

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{sup -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.

  3. Frontiers in Suicide Gene Therapy of Cancer

    PubMed Central

    Malecki, Marek

    2012-01-01

    The National Cancer Institute (NCI) and the American Cancer Society (ACS) predict that 1,638,910 men and women will be diagnosed with cancer in the USA in 2012. Nearly 577,190 patients will die of cancer of all sites this year. Patients undergoing current systemic therapies will suffer multiple side effects from nausea to infertility. Potential parents, when diagnosed with cancer, will have to deposit oocytes or sperm prior to starting systemic radiation or chemo-therapy for the future genetic testing and in vitro fertilization, while trying to avoid risks of iatrogenic mutations in their germ cells. Otherwise, children of parents treated with systemic therapies, will be at high risk of developing genetic disorders. According to these predictions, this year will carry another, very poor therapeutic record again. The ultimate goal of cancer therapy is the complete elimination of all cancer cells, while leaving all healthy cells unharmed. One of the most promising therapeutic strategies in this regard is cancer suicide gene therapy (CSGT), which is rapidly progressing into new frontiers. The therapeutic success, in CSGT, is primarily contingent upon precision in delivery of the therapeutic transgenes to the cancer cells only. This is addressed by discovering and targeting unique or / and over-expressed biomarkers displayed on the cancer cells and cancer stem cells. Specificity of cancer therapeutic effects is further enhanced by designing the DNA constructs, which put the therapeutic genes under the control of the cancer cell specific promoters. The delivery of the suicidal genes to the cancer cells involves viral, as well as synthetic vectors, which are guided by cancer specific antibodies and ligands. The delivery options also include engineered stem cells with tropisms towards cancers. Main mechanisms inducing cancer cells’ deaths include: transgenic expression of thymidine kinases, cytosine deaminases, intracellular antibodies, telomeraseses, caspases, DNases

  4. New Cholesterol Fighting Meds Target Key Gene

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_165942.html New Cholesterol Fighting Meds Target Key Gene Two trials ... 25, 2017 THURSDAY, May 25, 2017 (HealthDay News) -- New gene-based therapies appear to significantly decrease cholesterol ...

  5. Gene targeting: things go better with Cre.

    PubMed

    Jiang, R; Gridley, T

    1997-05-01

    New technologies are changing the way in which gene targeting experiments are being designed. It is now becoming possible to analyze gene function in defined tissues at specific times during the life of a mouse.

  6. Targeting Discoidin Domain Receptors in Prostate Cancer

    DTIC Science & Technology

    2016-08-01

    Agency: DOD-BCRP Grant #: Breakthrough Award L1 BC150621P Title: “Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis...1 AWARD NUMBER: W81XWH-15-1-0226 TITLE: Targeting Discoidin Domain Receptors in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rafael Fridman...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-15-1-0226 Targeting Discoidin Domain Receptors in Prostate Cancer 5b. GRANT NUMBER W81XWH-15

  7. Environment, genes, and cancer

    SciTech Connect

    Manuel, J.

    1996-03-01

    In January, comedian George Burns turned 100 years old. In recent appearances in the media, he still seems sharp as a tack, and is still seen smoking his trademark cigars. Others of us, however, were never very funny, and would die of cancer at age 60 if we continuously smoked cigars or cigarettes. Burns presents a common but perplexing paradox; some people are able to tolerate at least moderate exposure to toxins such as cigarette smoke with little adverse affect, while others develop cancer, emphysema, or heart disease. New studies support the idea that there is an interaction between genes and the environment, and that this interaction may be an important determinant of cancer risk. To understand such risks, it is essential to look at both an individual`s genetic makeup and environmental exposures. Such studies require the collaboration of molecular epidemiologists and molecular biologists. At the NIEHS, Jack A. Taylor, a lead clinical investigator in the Epidemiology Branch, and Douglas A. Bell, an investigator with the Genetic Risk Group of the Laboratory of Biochemical Risk Analysis, have worked together and with other scientists to uncover new information in this area.

  8. Cancer Metabolism: Strategic Diversion from Targeting Cancer Drivers to Targeting Cancer Suppliers

    PubMed Central

    Kim, Soo-Youl

    2015-01-01

    Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the “universality” of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy. PMID:25767677

  9. Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers.

    PubMed

    Kim, Soo-Youl

    2015-03-01

    Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.

  10. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy

    PubMed Central

    Qin, Weiwei; Huang, Guan; Chen, Zuanguang; Zhang, Yuanqing

    2017-01-01

    Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials. PMID:28149278

  11. Aptamer-mediated cancer gene therapy.

    PubMed

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Zhou, Shu-Feng; Li, Yong; Wei, Ming Q; Qiao, Liang; Shamaileh, Hadi Al; Zhu, Yimin; Zheng, Conglong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

  12. Transductional targeting of adenovirus vectors for gene therapy

    PubMed Central

    Glasgow, JN; Everts, M; Curiel, DT

    2007-01-01

    Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions. PMID:16439993

  13. RECQL: a new breast cancer susceptibility gene

    PubMed Central

    Banerjee, Taraswi; Brosh, Robert M

    2015-01-01

    Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy. PMID:26125302

  14. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  15. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  16. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  17. Ewing's sarcoma cancer stem cell targeted therapy.

    PubMed

    Todorova, Roumiana

    2014-01-01

    Ewing`s sarcoma (ES) family of tumors (ESFTs) are round cell tumors of bone and soft tissues, afflicting children and young adults. This review summarizes the present findings about ES cancer stem cell (CSC) targeted therapy: prognostic factors, chromosomal translocations, initiation, epigenetic mechanisms, candidate cell of ES origin (Mesenchymal stem cells (MSCs) and Neural crest stem cells (NCSCs)). The ES CSC model, histopathogenesis, histogenesis, pathogenesis, ES mediated Hematopoietic stem progenitor cells (HSPCs) senescence are also discussed. ESFTs therapy is reviewed concerning CSCs, radiotherapy, risk of subsequent neoplasms, stem cell (SC) support, promising therapeutic targets for ES CSCs (CSC markers, immune targeting, RNAi phenotyping screens, proposed new drugs), candidate EWS-FLI1 target genes and further directions (including human embryonic stem cells (hESCs)). Bone marrow-derived human MSCs are permissive for EWS-FLI1 expression with transition to ESFT-like cellular phenotype. ESFTs are genetically related to NCSC, permissive for EWS-FLI1 expression and susceptible to oncogene-induced immortalization. Primitive neuroectodermal features and MSC origin of ESFTs provide a basis of immune targeting. The microRNAs profile of ES CSCs is shared by ESCs and CSCs from divergent tumor types. Successful reprogramming of differentiated human somatic cells into a pluripotent state allows creation of patient- and disease-specific SCs. The functional role of endogenous EWS at stem cell level on both senescence and tumorigenesis is a link between cancer and aging. The regulatory mechanisms of oncogenic activity of EWS fusions could provide new prognostic biomarkers, therapeutic opportunities and tumor-specific anticancer agents against ESFTs.

  18. Targeting FGFR Signaling in Cancer.

    PubMed

    Touat, Mehdi; Ileana, Ecaterina; Postel-Vinay, Sophie; André, Fabrice; Soria, Jean-Charles

    2015-06-15

    The fibroblast growth factor signaling pathway (FGFR signaling) is an evolutionary conserved signaling cascade that regulates several basic biologic processes, including tissue development, angiogenesis, and tissue regeneration. Substantial evidence indicates that aberrant FGFR signaling is involved in the pathogenesis of cancer. Recent developments of deep sequencing technologies have allowed the discovery of frequent molecular alterations in components of FGFR signaling among several solid tumor types. Moreover, compelling preclinical models have demonstrated the oncogenic potential of these aberrations in driving tumor growth, promoting angiogenesis, and conferring resistance mechanisms to anticancer therapies. Recently, the field of FGFR targeting has exponentially progressed thanks to the development of novel agents inhibiting FGFs or FGFRs, which had manageable safety profiles in early-phase trials. Promising treatment efficacy has been observed in different types of malignancies, particularly in tumors harboring aberrant FGFR signaling, thus offering novel therapeutic opportunities in the era of precision medicine. The most exciting challenges now focus on selecting patients who are most likely to benefit from these agents, increasing the efficacy of therapies with the development of novel potent compounds and combination strategies, and overcoming toxicities associated with FGFR inhibitors. After examination of the basic and translational research studies that validated the oncogenic potential of aberrant FGFR signaling, this review focuses on recent data from clinical trials evaluating FGFR targeting therapies and discusses the challenges and perspectives for the development of these agents.

  19. Gene regulation in cancer gene therapy strategies.

    PubMed

    Scanlon, Ian; Lehouritis, Panos; Niculescu-Duvaz, Ion; Marais, Richard; Springer, Caroline J

    2003-10-01

    Regulation of expression in gene therapy is considered to be a very desirable goal, preventing toxic effects and improving biological efficacy. A variety of systems have been reported in an ever widening range of applications, this paper describes these systems with specific reference to cancer gene therapy.

  20. Therapeutic targeting of liver cancer with a recombinant DNA vaccine containing the hemagglutinin-neuraminidase gene of Newcastle disease virus via apoptotic-dependent pathways

    PubMed Central

    Chen, Li-Gang; Liu, Yuan-Sheng; Zheng, Tang-Hui; Chen, Xu; Li, Ping; Xiao, Chuan-Xing; Ren, Jian-Lin

    2016-01-01

    A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro. PMID:27900002

  1. Therapeutic targeting of liver cancer with a recombinant DNA vaccine containing the hemagglutinin-neuraminidase gene of Newcastle disease virus via apoptotic-dependent pathways.

    PubMed

    Chen, Li-Gang; Liu, Yuan-Sheng; Zheng, Tang-Hui; Chen, Xu; Li, Ping; Xiao, Chuan-Xing; Ren, Jian-Lin

    2016-11-01

    A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro.

  2. Targeting NRF2 signaling for cancer chemoprevention

    SciTech Connect

    Kwak, Mi-Kyoung; Kensler, Thomas W.

    2010-04-01

    Modulation of the metabolism and disposition of carcinogens through induction of cytoprotective enzymes is one of several promising strategies to prevent cancer. Chemopreventive efficacies of inducers such as dithiolethiones and sulforaphane have been extensively studied in animals as well as in humans. The KEAP1-NRF2 system is a key, but not unilateral, molecular target for these chemopreventive agents. The transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of the expression of a subset of genes, which produce proteins responsible for the detoxication of electrophiles and reactive oxygen species as well as the removal or repair of some of their damage products. It is believed that chemopreventive enzyme inducers affect the interaction between KEAP1 and NRF2 through either mediating conformational changes of the KEAP1 protein or activating phosphorylation cascades targeting the KEAP1-NRF2 complex. These events in turn affect NRF2 stability and trafficking. Recent advances elucidating the underlying structural biology of KEAP1-NRF2 signaling and identification of the gene clusters under the transcriptional control of NRF2 are facilitating understanding of the potential pleiotropic effects of NRF2 activators and discovery of novel classes of potent chemopreventive agents such as the triterpenoids. Although there is appropriately a concern regarding a deleterious role of the KEAP1-NRF2 system in cancer cell biology, especially as the pathway affects cell survival and drug resistance, the development and the use of NRF2 activators as chemopreventive agents still holds a great promise for protection of normal cells from a diversity of environmental stresses that contribute to the burden of cancer and other chronic, degenerative diseases.

  3. Polyamine analogues targeting epigenetic gene regulation.

    PubMed

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  4. Molecular imaging and cancer gene therapy.

    PubMed

    Saadatpour, Z; Bjorklund, G; Chirumbolo, S; Alimohammadi, M; Ehsani, H; Ebrahiminejad, H; Pourghadamyari, H; Baghaei, B; Mirzaei, H R; Sahebkar, A; Mirzaei, H; Keshavarzi, M

    2016-11-18

    Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.

  5. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    PubMed Central

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  6. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  7. Drug target prioritization by perturbed gene expression and network information

    PubMed Central

    Isik, Zerrin; Baldow, Christoph; Cannistraci, Carlo Vittorio; Schroeder, Michael

    2015-01-01

    Drugs bind to their target proteins, which interact with downstream effectors and ultimately perturb the transcriptome of a cancer cell. These perturbations reveal information about their source, i.e., drugs’ targets. Here, we investigate whether these perturbations and protein interaction networks can uncover drug targets and key pathways. We performed the first systematic analysis of over 500 drugs from the Connectivity Map. First, we show that the gene expression of drug targets is usually not significantly affected by the drug perturbation. Hence, expression changes after drug treatment on their own are not sufficient to identify drug targets. However, ranking of candidate drug targets by network topological measures prioritizes the targets. We introduce a novel measure, local radiality, which combines perturbed genes and functional interaction network information. The new measure outperforms other methods in target prioritization and proposes cancer-specific pathways from drugs to affected genes for the first time. Local radiality identifies more diverse targets with fewer neighbors and possibly less side effects. PMID:26615774

  8. EGFR targeted therapy in lung cancer; an evolving story.

    PubMed

    Bartholomew, C; Eastlake, L; Dunn, P; Yiannakis, D

    2017-01-01

    Specific oncogenes with driver mutations, such as the Epidermal Growth Factor Receptor (EGFR 1) gene can lead to non-small-cell lung cancer formation. Identification of these oncogenes, their driver mutations and downstream effects allow the targeting of these pathways by drugs. Such personalised therapy has become an important strategy in combating lung cancer and highlights the need to test for these mutations. Tyrosine Kinase Inhibitors (TKIs) against EGFR, such as Erlotinib, are able to halt these tumour promoting properties in non-small-cell lung cancers. Third generation EGFR TKIs, such as Osimertinib, are focussing on resulting acquired TKI resistance. Here we report the clinical course of a patient with metastatic non-small-cell lung cancer who has undergone EGFR targeted therapy and been further challenged by TKI acquired resistance. Her extended survival and maintained quality of life are a consequence of these modern, genotype-targeted, personalised metastatic non-small-cell lung cancer therapies.

  9. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  10. Targeting post-translational modifications of histones for cancer therapy.

    PubMed

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  11. Targeting Cancer with Antisense Oligomers

    SciTech Connect

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  12. Gene and cell therapy for pancreatic cancer.

    PubMed

    Singh, Hans Martin; Ungerechts, Guy; Tsimberidou, Apostolia M

    2015-04-01

    The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.

  13. Chromatin remodeling gene AT-rich interactive domain-containing protein 1A suppresses gastric cancer cell proliferation by targeting PIK3CA and PDK1

    PubMed Central

    Wang, Jie; Cui, Shu-Jian; Wang, Xiao-Qing; Jiang, Ying-Hua; Feng, Li; Yang, Peng-Yuan; Liu, Feng

    2016-01-01

    The tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) was frequently mutated in cancers. The modulation mechanism of ARID1A for PI3K/AKT signaling in gastric cancer (GC) remains elusive. Here, we found that depletion of endogenous ARID1A enhanced the in vitro proliferation, colony formation, cellular growth, nutrient uptake and in vivo xenograft tumor growth of GC cells. PI3K/AKT activation by ARID1A-silencing was profiled using a phospho-protein antibody array. The phosphorylation of PDK1, AKT, GSK3β and 70S6K, and the protein and mRNA expressions of PI3K and PDK1, were upregulated by ARID1A-silencing. Chromatin immunoprecipitation and luciferase reporter assay revealed that ARID1A-involved SWI/SNF complex inhibited PIK3CA and PDK1 transcription by direct binding to their promoters. Serial deletion mutation analyses revealed that the ARID1A central region containing the HIC1-binding domain, but not the ARID DNA-binding domain and the C-terminal domain, was essential for the inhibition of GC cell growth, PI3K/AKT pathway phosphorylation and its transcriptional modulation activity of PIK3CA and PDK1. The proliferation, cellular growth and glucose consumption of ARID1A-deficient GC cells were efficiently prohibited by allosteric inhibitors mk2206 and LY294002, which targeting AKT and PI3K, respectively. Both inhibitors also downregulated the phosphorylation of PI3K/AKT pathway in ARID1A-deficient GC cells. Such cells were sensitized to the treatment of LY294002, and AT7867, another inhibitor of AKT and p70S6K. The administration of LY294002 alone inhibited the in vivo growth of ARID1A- deficient GC cells in mouse xenograft model. Our study provides a novel insight into the modulatory function and mechanism of ARID1A in PI3K/AKT signaling in GC. PMID:27323812

  14. Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  15. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0359 TITLE: Targeting ESR1-Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Sarat Chandarlapaty CONTRACTING...31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1-Mutant Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0359 5c. PROGRAM ELEMENT...mutations found in breast cancer using both structural and cell based assays. We have now have evidence for the effects of the most recurrent

  16. Targeting Prostate Cancer with Multifunctional Nanoparticles

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0487 TITLE: Targeting Prostate Cancer with Multifunctional Nanoparticles PRINCIPAL INVESTIGATOR: Darryl Martin...Targeting Prostate Cancer with Multifunctional Nanoparticles 5b. GRANT NUMBER W81XWH-14-1-0487 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Darryl...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Prostate cancer cells were transfected with claudin siRNA

  17. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0359 TITLE: Targeting ESR1-Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Sarat Chandarlapaty CONTRACTING...ORGANIZATION: Sloan Kettering Institute for Cancer Research New York, NY 10065 REPORT DATE: September 2015 TYPE OF REPORT: Annual Technical Report...31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1-Mutant Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0359 5c. PROGRAM ELEMENT

  18. Targeting TMPRSS2 ERG in Prostate Cancer

    DTIC Science & Technology

    2016-09-01

    molecules in prostate cancer cells for perturbations that would modulate the ERG signature. These results will provide new insights into ERG function...prostate cancer, however, the exact role of TMPRSS2-ERG in tumorigenesis is unclear, making it difficult to design assays to target its function...essential for TMPRSS2-ERG activity in prostate cancer cells (months 1-28) 1a. Generate and titer lentiviruses expressing shRNAs targeting

  19. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  20. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  1. Transforming growth factor-beta1 regulation of ATF-3 and identification of ATF-3 target genes in breast cancer cells.

    PubMed

    Kwok, Sukyee; Rittling, Susan R; Partridge, Nicola C; Benson, Chellakkan S; Thiyagaraj, Mayuranathan; Srinivasan, Narasimhan; Selvamurugan, Nagarajan

    2009-10-01

    Transforming growth factor-beta1 (TGF-beta1) is a crucial molecule for stimulation of breast cancer invasion and formation of bone metastases. The molecular mechanisms of how TGF-beta1 mediates these effects have yet to be completely determined. We have found that activating transcription factor-3 (ATF-3) is strongly stimulated and its level is sustained by TGF-beta1 in highly invasive and metastatic human breast cancer (MDA-MB231) and in mouse mammary pad tumor cells (r3T). ATF-3 is also overexpressed in human primary breast cancer tissue. Overexpression of ATF-3 increased normal human mammary epithelial cell number and DNA synthesis suggesting a role for ATF-3 in cell proliferation. The functional role of ATF-3 in breast cancer progression was determined by the RNA interference technique. Knockdown of ATF-3 by ATF-3 shRNA in MDA-MB231 cells decreased expression of cell cycle gene, cyclin A1 in MDA-MB231 cells. ATF-3 shRNA also decreased expression of an invasive and metastatic gene, matrix metalloproteinase-13 (MMP-13; collagenase-3) in these cells. Chromatin immunoprecipitation experiments identified the direct physical interaction of ATF-3 protein on the human MMP-13 promoter. Thus, the dysregulation of ATF-3 by TGF-beta1 is likely to activate cyclin A1 and MMP-13 genes in breast cancer cells and that would be key to the subsequent cancer cell invasion and metastasis. (c) 2009 Wiley-Liss, Inc.

  2. Mutant Thyroid Hormone Receptors (TRs) Isolated from Distinct Cancer Types Display Distinct Target Gene Specificities: a Unique Regulatory Repertoire Associated with Two Renal Clear Cell Carcinomas

    PubMed Central

    Rosen, Meghan D.; Chan, Ivan H.

    2011-01-01

    Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCC. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the wild-type TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose as a hypothesis that TR mutations from RCCC and HCC may play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors may arise from different selective pressures during development of RCCC vs. HCC. PMID:21622534

  3. Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: a unique regulatory repertoire associated with two renal clear cell carcinomas.

    PubMed

    Rosen, Meghan D; Chan, Ivan H; Privalsky, Martin L

    2011-08-01

    Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCC. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the wild-type TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose as a hypothesis that TR mutations from RCCC and HCC may play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors may arise from different selective pressures during development of RCCC vs. HCC.

  4. Targeted therapies for lung cancer: clinical experience and novel agents.

    PubMed

    Larsen, Jill E; Cascone, Tina; Gerber, David E; Heymach, John V; Minna, John D

    2011-01-01

    Although lung cancer remains the leading cancer killer in the United States, recently a number of developments indicate future clinical benefit. These include evidence that computed tomography-based screening decreases lung cancer mortality, the use of stereotactic radiation for early-stage tumors, the development of molecular methods to predict chemotherapy sensitivity, and genome-wide expression and mutation analysis data that have uncovered oncogene "addictions" as important therapeutic targets. Perhaps the most significant advance in the treatment of this challenging disease is the introduction of molecularly targeted therapies, a term that currently includes monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The development of effective targeted therapeutics requires knowledge of the genes and pathways involved and how they relate to the biologic behavior of lung cancer. Drugs targeting the epidermal growth factor receptor, anaplastic lymphoma kinase, and vascular endothelial growth factor are now U.S. Food and Drug Administration approved for the treatment of advanced non-small cell lung cancer. These agents are generally better tolerated than conventional chemotherapy and show dramatic efficacy when their use is coupled with a clear understanding of clinical data, mechanism, patient selection, drug interactions, and toxicities. Integrating genome-wide tumor analysis with drug- and targeted agent-responsive phenotypes will provide a wealth of new possibilities for lung cancer-targeted therapeutics. Ongoing research efforts in these areas as well as a discussion of emerging targeted agents being evaluated in clinical trials are the subjects of this review.

  5. Endoglin for targeted cancer treatment.

    PubMed

    Rosen, Lee S; Gordon, Michael S; Robert, Francisco; Matei, Daniela E

    2014-02-01

    Endoglin is a homodimeric cell membrane glycoprotein receptor for transforming growth factor β and bone morphogenetic proteins. Endoglin is essential for angiogenesis, being densely expressed on proliferating endothelial cells and upregulated during hypoxia. Its expression is implicated in development of resistance to vascular endothelial growth factor (VEGF) inhibition. TRC105 is an antibody that binds endoglin and prevents endothelial cell activation. Targeting endoglin and the VEGF pathway concurrently improves treatment in vitro and appears to reverse resistance to bevacizumab in some refractory cancer patients. Randomized trials are under way to assess the clinical benefit of adding TRC105 therapy to bevacizumab therapy. Further trials are under way to assess the activity of TRC105 with small-molecule inhibitors of the VEGF pathway in renal cell carcinoma, hepatocellular carcinoma, and soft tissue sarcoma. Stratification of soft tissue sarcomas based on endoglin expression levels is proposed to identify patients most likely to benefit from TRC105 treatment. The development of a TRC105 antibody-drug conjugate is also described.

  6. miRSNPs of miR1274 and miR3202 Genes that Target MeCP2 and DNMT3b Are Associated with Lung Cancer Risk: A Study Conducted on MassARRAY Genotyping.

    PubMed

    Ozbayer, Cansu; Degirmenci, Irfan; Ustuner, Derya; Ak, Guntulu; Saydam, Faruk; Colak, Ertugrul; Gunes, Hasan Veysi; Metintas, Muzaffer

    2016-01-01

    Genetic variants of miRNAs that target DNMTs and MBDs involved in DNA methylation were scanned with current databases, and 35 miRSNPs in 22 miRNA genes were identified. The aim of the study was to determine the association between these variants of miRNA genes and lung cancer (LC). DNA samples were isolated from blood samples and genotyped using a Sequenom MassARRAY System. An association between the rs188912830 gene variant of miR3202 that targets the MeCP2 protein and LC was indicated in both subtypes. The presence of the C-allele in patients with LC and its subtypes was significantly lower, and the absence of the C-allele was determined to increase the risk of LC by 7,429-times compared to the presence (p=0,010). The rs318039 gene variant of miR1274 that targets DNMT3b was found to be associated with LC subtypes. When allele distributions were compared, the numbers of individuals with the C-allele were significantly lower in the NSCLC and SCLC groups. No significant associations were found for the rs72563729 variant of the miR200b gene that targets DNMT3a or for the rs145416750 variant of the miR513c gene that targets TRDMT1. The other 33 variants were found to be ancestral genotypes. Consequently, rs188912830 and rs318039 variations were associated with LC subtypes. Importantly, this study is the first to indicate the functional characterisation of miRSNPs of genes that target DNA methylation.

  7. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    PubMed

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment.

  8. New Prostate Cancer Treatment Target

    Cancer.gov

    Researchers have identified a potential alternative approach to blocking a key molecular driver of an advanced form of prostate cancer, called androgen-independent or castration-resistant prostate cancer.

  9. Stem cell based cancer gene therapy.

    PubMed

    Cihova, Marina; Altanerova, Veronika; Altaner, Cestmir

    2011-10-03

    The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Suicide gene therapy using genetically engineered mesenchymal stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. This review provides an explanation of the stem cell-targeted prodrug cancer gene therapy principle, with focus on the choice of prodrug, properties of bone marrow and adipose tissue-derived mesenchymal stem and neural stem cells as well as the mechanisms of their tumor homing ability. Therapeutic achievements of the cytosine deaminase/5-fluorocytosine prodrug system and Herpes simplex virus thymidine kinase/ganciclovir are discussed. In addition, delivery of immunostimulatory cytokines, apoptosis inducing genes, nanoparticles and antiangiogenic proteins by stem cells to tumors and metastases is discussed as a promising approach for antitumor therapy. Combinations of traditional, targeted and stem cell-directed gene therapy could significantly advance the treatment of cancer.

  10. Genetic and proteomic approaches to identify cancer drug targets

    PubMed Central

    Roti, G; Stegmaier, K

    2012-01-01

    While target-based small-molecule discovery has taken centre-stage in the pharmaceutical industry, there are many cancer-promoting proteins not easily addressed with a traditional target-based screening approach. In order to address this problem, as well as to identify modulators of biological states in the absence of knowing the protein target of the state switch, alternative phenotypic screening approaches, such as gene expression-based and high-content imaging, have been developed. With this renewed interest in phenotypic screening, however, comes the challenge of identifying the binding protein target(s) of small-molecule hits. Emerging technologies have the potential to improve the process of target identification. In this review, we discuss the application of genomic (gene expression-based), genetic (short hairpin RNA and open reading frame screening), and proteomic approaches to protein target identification. PMID:22166799

  11. Exploiting nanotechnology to target cancer

    PubMed Central

    Sengupta, S; Sasisekharan, R

    2007-01-01

    Nanotechnology is increasingly finding use in the management of cancer. Nanoscale devices have impacted cancer biology at three levels: early detection using, for example, nanocantilevers or nanoparticles; tumour imaging using radiocontrast nanoparticles or quantum dots; and drug delivery using nanovectors and hybrid nanoparticles. This review addresses some of the major milestones in the integration of nanotechnology and cancer biology, and the future of nanoscale approaches for cancer management. PMID:17406364

  12. Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma

    PubMed Central

    Kievit, Forrest M.; Veiseh, Omid; Fang, Chen; Bhattarai, Narayan; Lee, Donghoon; Ellenbogen, Richard G.; Zhang, Miqin

    2010-01-01

    Glioma accounts for 80% of brain tumors, and currently remains one of the most lethal forms of cancers. Gene therapy could potentially improve the dismal prognosis of patients with glioma, but this treatment modality has not yet reached the bedside from the laboratory due to the lack of safe and effective gene delivery vehicles. In this study we investigate targeted gene delivery to C6 glioma cells in a xenograft mouse model using chlorotoxin (CTX) labeled nanoparticles. The developed nanovector consists of an iron oxide nanoparticle core, coated with a copolymer of chitosan, polyethylene glycol (PEG) and polyethylenimine (PEI). Green fluorescent protein (GFP) encoding DNA was bound to these nanoparticles, and CTX was then attached using a short PEG linker. Nanoparticles without CTX were also prepared as a control. Mice bearing C6 xenograft tumors were injected intravenously with the DNA bound nanoparticles. Nanoparticle accumulation in the tumor site was monitored using magnetic resonance imaging and analyzed by histology, and GFP gene expression was monitored through Xenogen IVIS fluorescence imaging and confocal fluorescence microscopy. Interestingly, the CTX did not affect the accumulation of nanoparticles at the tumor site, but specifically enhanced their uptake into cancer cells as evidenced by higher gene expression. These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers. PMID:20731441

  13. Glutaminolysis as a target for cancer therapy

    PubMed Central

    Jin, L; Alesi, GN; Kang, S

    2017-01-01

    Cancer cells display an altered metabolic circuitry that is directly regulated by oncogenic mutations and loss of tumor suppressors. Mounting evidence indicates that altered glutamine metabolism in cancer cells has critical roles in supporting macromolecule biosynthesis, regulating signaling pathways, and maintaining redox homeostasis, all of which contribute to cancer cell proliferation and survival. Thus, intervention in these metabolic processes could provide novel approaches to improve cancer treatment. This review summarizes current findings on the role of glutaminolytic enzymes in human cancers and provides an update on the development of small molecule inhibitors to target glutaminolysis for cancer therapy. PMID:26592449

  14. Targeting angiogenesis with integrative cancer therapies.

    PubMed

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  15. Targeting SH2 domains in breast cancer.

    PubMed

    Morlacchi, Pietro; Robertson, Fredika M; Klostergaard, Jim; McMurray, John S

    2014-01-01

    Breast cancer is among the most commonly diagnosed cancer types in women worldwide and is the second leading cause of cancer-related disease in the USA. SH2 domains recruit signaling proteins to phosphotyrosine residues on aberrantly activated growth factor and cytokine receptors and contribute to cancer cell cycling, metastasis, angiogenesis and so on. Herein we review phosphopeptide mimetic and small-molecule approaches targeting the SH2 domains of Grb2, Grb7 and STAT3 that inhibit their targets and reduce proliferation in in vitro breast cancer models. Only STAT3 inhibitors have been evaluated in in vivo models and have led to tumor reduction. Taken together, these studies suggest that targeting SH2 domains is an important approach to the treatment of breast cancer.

  16. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.

    PubMed

    Li, Tony Shing Chau; Yawata, Toshio; Honke, Koichi

    2014-02-14

    For effective ovarian cancer gene therapy, systemic administrated tumor-targeting siRNA/folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate (FA-PEG-COL) nanoparticles is vital for delivery to cancer site(s). siRNA/FA-PEG-COL nanoparticles were prepared by ionic gelation for effective FA receptor-expressing ovarian cancer cells transfection and in vivo accumulation. The chemical structure of FA-PEG-COL conjugate was characterized by MALDI-TOF-MS, FT-IR and (1)H NMR. The average size of siRNA/FA-PEG-COL nanoparticles was approximately 200 nm, and the surface charge was +8.4 mV compared to +30.5 mV with siRNA/COL nanoparticles. FA-PEG-COL nanoparticles demonstrated superior compatibility with erythrocytes in terms of degree of aggregation and haemolytic activity and also effects on cell viability was lower when compared with COL nanoparticles. FA grafting significantly facilitated the uptake of nanoparticles via receptor mediated endocytosis as demonstrated by flow cytometry. The in vitro transfection and gene knockdown efficiency of HIF-1α were superior to COL nanoparticles (76-62%, respectively) and was comparable to Lipofectamine 2000 (79%) as demonstrated by RT-qPCR and Western blot. Gene knockdown at the molecular level translated into effective inhibition of proliferation in vitro. Accumulation efficiency of FA-PEG-COL nanoparticles was investigated in BALB/c mice bearing OVK18 #2 tumor xenograft using in vivo imaging. The active targeting FA-PEG-COL nanoparticles showed significantly greater accumulation than the passive targeting COL nanoparticles. Based on the results obtained, siRNA/FA-PEG-COL nanoparticles show much potential for effective ovarian cancer treatment via gene therapy.

  17. Cancer-linked targets modulated by curcumin

    PubMed Central

    Hasima, Noor; Aggarwal, Bharat B

    2012-01-01

    In spite of major advances in oncology, the World Health Organization predicts that cancer incidence will double within the next two decades. Although it is well understood that cancer is a hyperproliferative disorder mediated through dysregulation of multiple cell signaling pathways, most cancer drug development remains focused on modulation of specific targets, mostly one at a time, with agents referred to as “targeted therapies,” “smart drugs,” or “magic bullets.” How many cancer targets there are is not known, and how many targets must be attacked to control cancer growth is not well understood. Although more than 90% of cancer-linked deaths are due to metastasis of the tumor to vital organs, most drug targeting is focused on killing the primary tumor. Besides lacking specificity, the targeted drugs induce toxicity and side effects that sometimes are greater problems than the disease itself. Furthermore, the cost of some of these drugs is so high that most people cannot afford them. The present report describes the potential anticancer properties of curcumin, a component of the Indian spice turmeric (Curcuma longa), known for its safety and low cost. Curcumin can selectively modulate multiple cell signaling pathways linked to inflammation and to survival, growth, invasion, angiogenesis, and metastasis of cancer cells. More clinical trials of curcumin are needed to prove its usefulness in the cancer setting. PMID:23301199

  18. Bioengineered viral vectors for targeting and killing prostate cancer cells.

    PubMed

    Zhang, Kai-xin; Jia, William; Rennie, Paul S

    2010-01-01

    Enabling the transduction of therapeutic gene expression exclusively in diseased sites is the key to developing more effective treatments for advanced prostate cancer using viral-based therapy. While prostate cancers that express high levels of HER-2 are resistant to the killing effects of trastuzumab, they can be targeted for selective gene expression and destruction by lentiviruses with envelope proteins engineered to bind to this therapeutic antibody. More importantly, after intravenous injection, this trastuzumab-bound lentivirus is able to target castration-resistant prostate tumor xenografts, albeit with low efficiency. This proof of principle opens up multiple possibilities for the prevention and treatment of prostate cancer using a viral-based therapy. However, to be safe and more effective, the viral vectors must target prostate cancer cells more selectively and efficiently. A higher degree of specificity and efficiency of cancer cell targeting can be achieved by engineering viral vectors to bind to a specific cell surface marker and by controlling the expression of the therapeutic payload at transcriptional level, with a tissue-specific promoter, and at the translational level, with a regulatory sequences inserted into either the 5'UTR or 3'UTR regions of the therapeutic gene(s). The latter would be designed to ensure that translation of this mRNA occurs exclusively in malignant cells. Furthermore, in order to obtain a potent anti-tumor effect, viral vectors would be engineered to express pro-apoptotic genes, intra-cellar antibodies/nucleotide aptamers to block critical proteins, or siRNAs to knockdown essential cellular mRNAs. Alternatively, controlled expression of an essential viral gene would restore replication competence to the virus and enable selective oncolysis of tumor cells. Successful delivery of such bioengineered viruses may provide a more effective way to treat advanced prostate cancer.

  19. EZH2 is regulated by ERK/AKT and targets integrin alpha2 gene to control Epithelial-Mesenchymal Transition and anoikis in colon cancer cells.

    PubMed

    Ferraro, Angelo; Mourtzoukou, Despoina; Kosmidou, Vivian; Avlonitis, Spiros; Kontogeorgos, George; Zografos, George; Pintzas, Alexander

    2013-02-01

    Epithelial-Mesenchymal Transition is a good example of cell plasticity. In tumorigenesis, this process has been associated with metastasis. Overexpression of EZH2 has been detected in most malignant human tumors, including colorectal carcinomas. Herein, we provide evidence supporting the idea that oncogenic Epithelial-Mesenchymal Transition in colon cancer cell models is partially controlled by epigenetic factors such as the transcription regulator EZH2. Evaluation of EZH2 mRNA and protein levels revealed overexpression in cell lines with metastatic traits. Analysis of EZH2 mRNA expression was expanded in clinical samples of colon cancer, and high level of EZH2 correlates with appearance of metastasis. Furthermore, inhibition of ERK and AKT pathways in metastatic colon cancer cell lines attenuates EZH2 overexpression. EZH2 promoter analysis illustrates presence of putative AP-1 binding sites and occupancy of transcription factors such as FRA-1 and C-JUN is demonstrated here on EZH2 promoter. Abrogation of EZH2 expression impairs the ability of colon cancer cells to move associated with anoikis in three-dimensional environment. Integrin alpha2 was identified to be a novel EZH2 target by chromatin immunoprecipitation and short hairpin RNA analysis. This study proposes that activation of ERK/AKT pathways and FRA1/C-JUN induce EZH2 overexpression, which results in Integrin alpha2 silencing. Our results show how deregulation of epigenetic factors and mechanisms can affect cancer cell aggressiveness and propose EZH2 as a potential metastasis marker and/or therapeutic target for colorectal cancer treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance.

  1. Intrinsic and Acquired Resistance to HER2-Targeted Therapies in HER2 Gene-Amplified Breast Cancer: Mechanisms and Clinical Implications

    PubMed Central

    Rexer, Brent N.; Arteaga, Carlos L.

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance. PMID:22471661

  2. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  3. Targeting cancer stem cell in castration resistant prostate cancer

    PubMed Central

    Yun, Eun-Jin; Zhou, Jiancheng; Lin, Chun-Jung; Hernandez, Elizabeth; Fazli, Ladan; Gleave, Martin; Hsieh, Jer-Tsong

    2015-01-01

    Purpose Clinical evidence suggests an increased CSC in tumor mass may contribute to the failure of conventional therapies since CSCs seem to be more resistant than differentiated tumor cells. Thus, unveiling the mechanism regulating CSCs and candidate target molecules will provide new strategy to cure the patients. Experimental design The stem-like cell properties were determined by a prostasphere assay, and dye exclusion assay. To find critical stem cell marker and reveal regulation mechanism, basic biochemical and molecular biological methods such as qRT-PCR, Western blot, reporter gene assay and chromatin immunoprecipitation assay were employed. In addition, to determine the effect of combination therapy targeting both CSCs and its progeny, in vitro MTT assay and in vivo xenograft model was used. Results We demonstrate immortalized normal human prostate epithelial cells, appeared non-tumorigenic in vivo, become tumorigenic and acquire stem cell phenotype after knocking down a tumor suppressor gene. Also, those stem-like cells increase chemoresistance to conventional anti-cancer reagent. Mechanistically, we unveil that Wnt signaling is a key pathway regulating well-known stem cell marker CD44 by directly interacting to the promoter. Thus, by targeting CSCs using Wnt inhibitors synergistically enhances the efficacy of conventional drugs. Furthermore, the in vivo mice model bearing xenografts showed a robust inhibition of tumor growth after combination therapy. Conclusions Overall, this study provides strong evidence of CSC in CRPC. This new combination therapy strategy targeting CSC could significantly enhance therapeutic efficacy of current chemotherapy regimen only targeting non-CSC cells. PMID:26490309

  4. Targeting the Hippo Pathway for Anti-cancer Therapies.

    PubMed

    Gong, Rui; Yu, Fa-Xing

    2015-01-01

    The Hippo signaling pathway is critical in regulating tissue homeostasis, organ size, and tumorigenesis. YAP and TAZ, two major effectors of the Hippo pathway, function as transcriptional co-activators and promote target gene expression mainly through interaction with TEAD family transcription factors. As oncoproteins, YAP and TAZ are frequently activated or highly expressed in various cancer specimens. Moreover, their activity has been linked to resistance to a few widely used anti-cancer drugs, and YAP activation contributes to cancer relapse. Thus, the Hippo pathway, especially YAP/TAZ-TEAD interaction, represents an attractive target for anti-cancer therapies. Here, we will discuss potential approaches to inhibit YAP/TAZ activity, and also review currently available small molecules targeting the Hippo pathway.

  5. Evaluation of drug-targetable genes by defining modes of abnormality in gene expression.

    PubMed

    Park, Junseong; Lee, Jungsul; Choi, Chulhee

    2015-09-04

    In the post-genomic era, many researchers have taken a systematic approach to identifying abnormal genes associated with various diseases. However, the gold standard has not been established, and most of these abnormalities are difficult to be rehabilitated in real clinical settings. In addition to identifying abnormal genes, for a practical purpose, it is necessary to investigate abnormality diversity. In this context, this study is aimed to demonstrate simply restorable genes as useful drug targets. We devised the concept of "drug targetability" to evaluate several different modes of abnormal genes by predicting events after drug treatment. As a representative example, we applied our method to breast cancer. Computationally, PTPRF, PRKAR2B, MAP4K3, and RICTOR were calculated as highly drug-targetable genes for breast cancer. After knockdown of these top-ranked genes (i.e., high drug targetability) using siRNA, our predictions were validated by cell death and migration assays. Moreover, inhibition of RICTOR or PTPRF was expected to prolong lifespan of breast cancer patients according to patient information annotated in microarray data. We anticipate that our method can be widely applied to elaborate selection of novel drug targets, and, ultimately, to improve the efficacy of disease treatment.

  6. RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer.

    PubMed

    Lee, Yeong Mi; Lee, Duhwan; Kim, Jihoon; Park, Hansoo; Kim, Won Jong

    2015-05-10

    CPIEDRPMC (RPM) peptide is a peptide that specifically targets invasive colorectal cancer, which is one of the leading causes of cancer-related deaths worldwide. In this study, we exploited RPM peptide as a targeting ligand to produce a novel and efficient gene delivery system that could potentially be used to treat invasive colon cancer. In order to achieve enhanced specificity to colon cancer cells, the RPM peptide was conjugated to a bioreducible gene carrier consisting of a reducible moiety of disulfide-crosslinked low molecular weight polyethylenimine, IR820 dye, and polyethylene glycol. Here, we examined the physiochemical properties, cytotoxicity, in vitro transfection efficiency, and in vivo biodistribution of the RPM-conjugated polyplex. Our results showed that the RPM-conjugated gene carrier formed a compact polyplex with pDNA that had low toxicity. Furthermore, the RPM-conjugated polymer not only had higher cellular uptake in invasive colon cancer than the non-targeted polymer, but also showed enhanced transfection efficiency in invasive colon cancer cells in vitro and in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. MicroRNA-targeted therapeutics for lung cancer treatment.

    PubMed

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  8. Small-molecule targeting of translation initiation for cancer therapy

    PubMed Central

    Aktas, Bertal H.; Qiao, Yuan; Ozdelen, Esra; Schubert, Roland; Sevinc, Sema; Harbinski, Fred; Grubissich, Luciano; Singer, Samuel; Halperin, Jose A.

    2013-01-01

    Translation initiation plays a critical role in the regulation of cell growth and tumorigenesis. We report here that inhibiting translation initiation through induction of eIF2α phosphorylation by small-molecular-weight compounds restricts the availability of the eIF2·GTP·Met-tRNAi ternary complex and abrogates the proliferation of cancer cells in vitro and tumor growth in vivo. Restricting the availability of the ternary complex preferentially down-regulates the expression of growth-promoting proteins and up-regulates the expression of ER stress response genes in cancer cells as well as in tumors excised from either animal models of human cancer or cancer patients. These findings provide the first direct evidence for translational control of gene-specific expression by small molecules in vivo and indicate that translation initiation factors are bona fide targets for development of mechanism-specific anti-cancer agents. PMID:24091475

  9. Cripto: A Target for Breast Cancer Treatment

    DTIC Science & Technology

    2005-06-01

    AD Award Number: DAMD17-01-1-0165 TITLE: Cripto: A, Target for Breast Cancer Treatment PRINCIPAL INVESTIGATOR: Eileen D. Adamson, Ph.D. CONTRACTING...CONTRACT NUMBER Cripto: A Target for Breast Cancer Treatment 5b. GRANT NUMBER DAMD17-01-1-0165 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Target for Breast Cancer Treatment " As reported fully in June 2004, the IDEA grant was not successful in the original mission of finding a peptide that

  10. Ligand-targeted theranostic nanomedicines against cancer

    DOE PAGES

    Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.; ...

    2016-01-06

    Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant

  11. Potential therapeutic targets in energy metabolism pathways of breast cancer.

    PubMed

    Islam, Rowshan Ara; Hossain, Sazzad; Chowdhury, Ezharul Hoque

    2017-03-30

    Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. This paper summarizes the roles of energy metabolism and their cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. As breast cancer is a highly heterogeneous disease, a clear understanding of the variations of energy metabolism in different molecular subtypes would help in treating each type with a very customized, safer and efficient treatment regimen, by targeting specific glucose metabolism and related pathways with gene silencing nucleic acid sequences or small molecule drugs, or the combination of both.

  12. Alterations of metabolic genes and metabolites in cancer.

    PubMed

    Oermann, Eric K; Wu, Jing; Guan, Kun-Liang; Xiong, Yue

    2012-06-01

    Altered metabolic regulation has long been observed in human cancer and broadly used in the clinic for tumor detection. Two recent findings--the direct regulation of metabolic enzymes by frequently mutated cancer genes and frequent mutations of several metabolic enzymes themselves in cancer--have renewed interest in cancer metabolism. Supporting a causative role of altered metabolic enzymes in tumorigenesis, abnormal levels of several metabolites have been found to play a direct role in cancer development. The alteration of metabolic genes and metabolites offer not only new biomarkers for diagnosis and prognosis, but also potential new targets for cancer therapy.

  13. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention

    PubMed Central

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2012-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated. PMID:22353664

  14. Targeting the epigenome with bioactive food components for cancer prevention.

    PubMed

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2011-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated.

  15. Cancer stem cells: a potential target for cancer therapy.

    PubMed

    Qiu, Hong; Fang, Xiaoguang; Luo, Qi; Ouyang, Gaoliang

    2015-09-01

    Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.

  16. Targeting Membrane Lipid a Potential Cancer Cure?

    PubMed

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Wai-Leng; Chuah, Lay-Hong; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2017-01-01

    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy.

  17. Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma

    PubMed Central

    Rosignolo, Francesca; Sponziello, Marialuisa; Durante, Cosimo; Puppin, Cinzia; Mio, Catia; Baldan, Federica; Di Loreto, Carla; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2016-01-01

    PAX8 is a thyroid-specific transcription factor whose expression is dysregulated in thyroid cancer. A recent study using a conditional knock-out mouse model identified 58 putative PAX8 target genes. In the present study, we evaluated the expression of 11 of these genes in normal and tumoral thyroid tissues from patients with papillary thyroid cancer (PTC). ATP1B1, GPC3, KCNIP3, and PRLR transcript levels in tumor tissues were significantly lower in PTCs than in NT, whereas LCN2, LGALS1 and SCD1 expression was upregulated in PTC compared with NT. Principal component analysis of the expression of the most markedly dysregulated PAX8 target genes was able to discriminate between PTC and NT. Immunohistochemistry was used to assess levels of proteins encoded by the two most dyregulated PAX8 target genes, LCN2 and GPC3. Interestingly, GPC3 was detectable in all of the NT samples but none of the PTC samples. Collectively, these findings point to significant PTC-associated dysregulation of several PAX8 target genes, supporting the notion that PAX8-regulated molecular cascades play important roles during thyroid tumorigenesis. PMID:27249794

  18. Design of ligand-targeted nanoparticles for enhanced cancer targeting

    NASA Astrophysics Data System (ADS)

    Stefanick, Jared F.

    Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted

  19. Targeting glycogen metabolism in bladder cancer

    PubMed Central

    Lew, Carolyn Ritterson; Guin, Sunny; Theodorescu, Dan

    2015-01-01

    Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis—two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist. PMID:26032551

  20. Aurora kinases: novel therapy targets in cancers.

    PubMed

    Tang, Anqun; Gao, Keyu; Chu, Laili; Zhang, Rui; Yang, Jing; Zheng, Junnian

    2017-01-29

    Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.

  1. Prodrug applications for targeted cancer therapy.

    PubMed

    Giang, Irene; Boland, Erin L; Poon, Gregory M K

    2014-09-01

    Prodrugs are widely used in the targeted delivery of cytotoxic compounds to cancer cells. To date, targeted prodrugs for cancer therapy have achieved great diversity in terms of target selection, activation chemistry, as well as size and physicochemical nature of the prodrug. Macromolecular prodrugs such as antibody-drug conjugates, targeted polymer-drug conjugates and other conjugates that self-assemble to form liposomal and micellar nanoparticles currently represent a major trend in prodrug development for cancer therapy. In this review, we explore a unified view of cancer-targeted prodrugs and highlight several examples from recombinant technology that exemplify the prodrug concept but are not identified as such. Recombinant "prodrugs" such as engineered anthrax toxin show promise in biological specificity through the conditionally targeting of multiple cellular markers. Conditional targeting is achieved by structural complementation, the spontaneous assembly of engineered inactive subunits or fragments to reconstitute functional activity. These complementing systems can be readily adapted to achieve conditionally bispecific targeting of enzymes that are used to activate low-molecular weight prodrugs. By leveraging strengths from medicinal chemistry, polymer science, and recombinant technology, prodrugs are poised to remain a core component of highly focused and tailored strategies aimed at conditionally attacking complex molecular phenotypes in clinically relevant cancer.

  2. Targeting the TSH receptor in thyroid cancer.

    PubMed

    Rowe, Christopher W; Paul, Jonathan; Gedye, Craig; Tolosa, Jorge; Bendinelli, Cino; McGrath, Shaun; Smith, Roger

    2017-03-28

    Recent advances in the arena of theranostics have necessitated a re-examining of previously established fields. The existing paradigm of therapeutic thyroid stimulating hormone receptor (TSHR) targeting in the post-surgical management of differentiated thyroid cancer using levothyroxine and recombinant human thyroid stimulating hormone (TSH) is well understood. However, in an era of personalized medicine, and with an increasing awareness of the risk profile of longstanding pharmacological hyperthyroidism, it is imperative clinicians understand the molecular basis and magnitude of benefit for individual patients. Furthermore, TSHR has been recently re-conceived as a selective target for residual metastatic thyroid cancer, with pilot data demonstrating effective targeting of nanoparticles to thyroid cancers using this receptor as a target. This review examines the evidence for TSHR signaling as an oncogenic pathway, and assesses the evidence for ongoing TSHR expression in thyroid cancer metastases. Priorities for further research are highlighted.

  3. Translating gastric cancer genomics into targeted therapies.

    PubMed

    Ang, Yvonne L E; Yong, Wei Peng; Tan, Patrick

    2016-04-01

    Gastric cancer is a common disease with limited treatment options and a poor prognosis. Many gastric cancers harbour potentially actionable targets, including over-expression and mutations in tyrosine kinase pathways. Agents have been developed against these targets with varying success- in particular, the use of trastuzumab in HER2-overexpressing gastric cancers has resulted in overall survival benefits. Gastric cancers also have high levels of somatic mutations, making them candidates for immunotherapy; early work in this field has been promising. Recent advances in whole genome and multi-platform sequencing have driven the development of molecular classification systems, which may in turn guide the selection of patients for targeted treatment. Moving forward, challenges will include the development of appropriate biomarkers to predict responses to targeted therapy, and the application of new molecular classifications into trial development and clinical practice.

  4. Identification of human leukocyte antigen-A24-restricted epitope peptides derived from gene products upregulated in lung and esophageal cancers as novel targets for immunotherapy.

    PubMed

    Suda, Takako; Tsunoda, Takuya; Daigo, Yataro; Nakamura, Yusuke; Tahara, Hideaki

    2007-11-01

    For the development of cancer vaccine therapies, we have searched for possible epitope peptides that can elicit cytotoxic T lymphocytes (CTL) to the TTK protein kinase (TTK), lymphocyte antigen 6 complex locus K (LY6K) and insulin-like growth factor (IGF)-II mRNA binding protein 3 (IMP-3), which were previously identified to be transactivated in the majority of lung and esophageal cancers. We screened 31, 17 and 17 candidate human leukocyte antigen (HLA)-A*2402-binding peptides to parts of TTK, LY6K and IMP-3, respectively. As a result, we successfully established strong CTL clones stimulated by TTK-567 (SYRNEIAYL), LY6K-177 (RYCNLEGPPI) and IMP-3-508 (KTVNELQNL) that have specific cytotoxic activities against the HLA-A24-positive target cells pulsed with the candidate peptides. Subsequent analysis of the CTL clones also revealed their cytotoxic activities against lung and esophageal tumor cells that endogenously express TTK, LY6K or IMP-3. A cold target inhibition assay further confirmed that the CTL cell clones specifically recognized the MHC class I–peptide complex. Our results strongly imply that TTK, LY6K and IMP-3 are novel tumor-associated antigens recognized by CTL, and TTK-567 (SYRNEIAYL), LY6K-177 (RYCNLEGPPI) and IMP-3-508 (KTVNELQNL) are HLA-A24-restricted epitope peptides that can induce potent and specific immune responses against lung and esophageal cancer cells expressing TTK, LY6K and IMP-3.

  5. RTCGD: retroviral tagged cancer gene database

    PubMed Central

    Akagi, Keiko; Suzuki, Takeshi; Stephens, Robert M.; Jenkins, Nancy A.; Copeland, Neal G.

    2004-01-01

    Retroviral insertional mutagenesis in mouse hematopoietic tumors provides a potent cancer gene discovery tool in the post-genome-sequence era. To manage multiple high-throughput insertional mutagenesis screening projects, we developed the Retroviral Tagged Cancer Gene Database (RTCGD; http://RTCGD.ncifcrf.gov). A sequence analysis pipeline determines the genomic position of each retroviral integration site cloned from a mouse tumor, the distance between it and the nearest candidate disease gene(s) and its orientation with respect to the candidate gene(s). The pipeline also identifies genomic regions that are targets of retroviral integration in more than one tumor (common integration sites, CISs) and are thus likely to encode a disease gene. Users can search the database using a specified gene symbol, chromosome number or tumor model to identify both CIS genes and unique viral integration sites or compare the integration sites cloned by different laboratories using different models. As a default setting, users first review the CIS Lists and then Clone Lists. CIS Lists describe CISs and their candidate disease genes along with links to other public databases and clone lists. Clone Lists describe the viral integration site clones along with the tumor model and tumor type from which they were cloned, candidate disease gene(s), genomic position and orientation of the integrated provirus with respect to the candidate gene(s). It also provides a pictorial view of the genomic location of each integration site relative to neighboring genes and markers. Researchers can identify integrations of interest and compare their results with those for multiple tumor models and tumor types using RTCGD. PMID:14681473

  6. Current status of gene therapy for cancer.

    PubMed

    Walther, Wolfgang; Schlag, Peter M

    2013-11-01

    In recent years, remarkable progress has been made in the development of cancer gene therapy into an applicable treatment modality for immunogene, suicide, gene correction and oncolytic therapies. New exciting developments for gene suppression or miRNA therapies are under way. The efforts are focused on more efficient and specific attack at known and novel targets, improvement of vector delivery and therapeutic efficacy. In this review, promising and new gene therapy approaches and clinical studies are briefly discussed to highlight important future directions of preclinical and clinical efforts. Apart from progress for vector development and even more important, improvements for suicide, T-cell-based, oncolytic virus therapies were achieved. In addition, new emerging therapies are successfully developed, which are particularly promising for siRNA-based technologies applied to gene suppression therapy. Novel approaches, such as transcription factor ODN-based decoy, complement the spectrum of current cancer gene therapy. In summary, cancer gene therapy has made remarkable progress in the improvement/refinement of existing strategies and delivery systems. The field is moving toward a therapeutic option, which will also be applicable for the treatment of disseminated metastases. Furthermore, numerous new approaches are about to be translated in clinical trials.

  7. The effect of forced expression of mutated K-RAS gene on gastrointestinal cancer cell lines and the IGF-1R targeting therapy.

    PubMed

    Matsunaga, Yasutaka; Adachi, Yasushi; Sasaki, Yasushi; Koide, Hideyuki; Motoya, Masayo; Nosho, Katsuhiko; Takagi, Hideyasu; Yamamoto, Hiroyuki; Sasaki, Shigeru; Arimura, Yoshiaki; Tokino, Takashi; Carbone, David P; Imai, Kohzoh; Shinomura, Yasuhisa

    2017-02-01

    Mutation in K-RAS (K-RAS-MT) plays important roles in both cancer progression and resistance to anti-epidermal growth factor receptor (EGFR) therapy in gastrointestinal tumors. Insulin-like growth factor-1 receptor (IGF-1R) signaling is required for carcinogenicity and progression of many tumors as well. We have previously shown successful therapy for gastrointestinal cancer cell lines bearing a K-RAS mutation using an anti-IGF-1R monoclonal antibody. In this study, we sought to evaluate effects of forced K-RAS-MT expression on gastrointestinal cancer cell lines representing a possible second resistance mechanism for anti-EGFR therapy and IGF-1R-targeted therapy for these transfectants. We made stable transfectants of K-RAS-MT in two gastrointestinal cancer cell lines, colorectal RKO and pancreatic BxPC-3. We assessed the effect of forced expression of K-RAS-MT on proliferation, apoptosis, migration, and invasion in gastrointestinal cancer cells. Then we assessed anti-tumor effects of dominant negative IGF-1R (IGF-1R/dn) and an IGF-1R inhibitor, picropodophyllin, on the K-RAS-MT transfectants. Overexpression of K-RAS-MT in gastrointestinal cancer cell lines led to more aggressive phenotypes, with increased proliferation, decreased apoptosis, and increased motility and invasion. IGF-1R blockade suppressed cell growth, colony formation, migration, and invasion, and up-regulated chemotherapy-induced apoptosis of gastrointestinal cancer cells, even when K-RAS-MT was over-expressed. IGF-1R blockade inhibited the Akt pathway more than the extracellular signal-regulated kinase (ERK) pathway in the K-RAS-MT transfectants. IGF-1R/dn, moreover, inhibited the growth of murine xenografts expressing K-RAS-MT. Thus, K-RAS-MT might be important for progressive phonotype observed in gastrointestinal cancers. IGF-1R decoy is a candidate molecular therapeutic approach for gastrointestinal cancers even if K-RAS is mutated. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  8. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    SciTech Connect

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  9. Targeting the Neural Microenvironment in Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    AD_________________ Award Number: W81XWH-14-1-0505 TITLE: Targeting the Neural Microenvironment in Prostate Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Targeting the Neural Microenvironment in Prostate Cancer 5b. GRANT NUMBER W81XWH-14-1-0505 5c. PROGRAM ELEMENT NUMBER... microenvironment plays an important role in the initiation and progression of PCa. One important component of this microenvironment is nerves. PCa has a

  10. [Genetic basis of head and neck cancers and gene therapy].

    PubMed

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  11. Lung Cancer Gene Signatures and Clinical Perspectives

    PubMed Central

    Kuner, Ruprecht

    2013-01-01

    Microarrays have been used for more than two decades in preclinical research. The tumor transcriptional profiles were analyzed to select cancer-associated genes for in-deep functional characterization, to stratify tumor subgroups according to the histopathology or diverse clinical courses, and to assess biological and cellular functions behind these gene sets. In lung cancer—the main type of cancer causing mortality worldwide—biomarker research focuses on different objectives: the early diagnosis of curable tumor diseases, the stratification of patients with prognostic unfavorable operable tumors to assess the need for further therapy regimens, or the selection of patients for the most efficient therapies at early and late stages. In non-small cell lung cancer, gene and miRNA signatures are valuable to differentiate between the two main subtypes’ squamous and non-squamous tumors, a discrimination which has further implications for therapeutic schemes. Further subclassification within adenocarcinoma and squamous cell carcinoma has been done to correlate histopathological phenotype with disease outcome. Those tumor subgroups were assigned by diverse transcriptional patterns including potential biomarkers and therapy targets for future diagnostic and clinical applications. In lung cancer, none of these signatures have entered clinical routine for testing so far. In this review, the status quo of lung cancer gene signatures in preclinical and clinical research will be presented in the context of future clinical perspectives. PMID:27605195

  12. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2007-11-01

    established vector systems, new viruses are also being developed for targeted gene therapy . One promising example is the measles virus , an enveloped...promising approach. However, the gene delivery efficiency of human serotype 5 recombinant adeno- viruses (Ad5) in cancer gene therapy clinical trials to...replicative viruses , is a highly attractive approach, and an alternate approach to standard cancer therapies , including gene therapies . Virotherapy exploits

  13. Suppression of metastasis of human pancreatic cancer cells to the liver by small interfering RNA-mediated targeting of the midkine gene

    PubMed Central

    YU, LI; FAN, YU; CHEN, BAODING; HU, YUE; GAO, YINA; WEI, DA

    2013-01-01

    The present study aimed to ascertain whether suppression of midkine (MK) expression in pancreatic cancer cells inhibits metastasis to the liver. Human pancreatic cancer AsPC-1 cells were transfected with small interfering RNA (siRNA) targeting MK. siRNA against MK was observed to reduce the expression of MK mRNA and protein in a concentration- and time-dependent manner, and to decrease the number of migrating and tissue-penetrating cells in a concentration-dependent manner (P<0.005). Extracellular vascular endothelial growth factor (VEGF) concentrations were markedly reduced for the siRNA-transfected cells compared with those that were non-siRNA-transfected. The liver transmission rate and tumor nodule number in the animals harboring the siRNA-transfected cells were lower compared with those in the animals harboring the non-siRNA-transfected cells (P<0.005). These data indicate that metastasis of pancreatic cancer cells to the liver requires the expression of MK. The downregulation of VEGF expression is essential to the mechanism whereby suppression of MK expression constrains the metastasis of pancreatic cancer cells to the liver. PMID:24179520

  14. Targeting Ovarian Cancer with Porphysome Nanotechnology

    DTIC Science & Technology

    2014-10-01

    platform that could enhance OC diagnosis by integrating PET / CT and fluorescence imaging, and improve OC therapeutic efficacy and specificity by tailoring...Oza) for Phase I clinical trials. 15. SUBJECT TERMS Ovarian cancer, Folate receptor, Porphysome, Targeting therapy, Fluorescence imaging, PET / CT ...G: Liver. Figure 13. Ovarian cancer metastasis detected by 64 Cu-PLP. a. Representative whole-body PET / CT image of mouse with ovarian cancer

  15. Heterobivalent Imaging Agents Targeting Prostate Cancer Training

    DTIC Science & Technology

    2011-06-01

    has been implicated as a salient player in the pathobiology of cancers of epithelial origin, e.g. prostate, cervix , ovarian, colon and...ANSI Std. Z39.18 W81XWH-10-1-0481 Heterobivalent Imaging Agents Targeting Prostate Cancer Training Aaron LeBeau University of California, San...Francisco San Francisco, CA 94103 Annual Summary 31 MAY 2010 - 1JUN 201101-06-2011 To determine the utility of imaging MT-SP1 in cancer , xenografts of

  16. Targeting Ovarian Cancer with Porphysome Nanotechnology

    DTIC Science & Technology

    2016-10-01

    1 Award Number: W81XWH-13-1-0442 TITLE: Targeting Ovarian Cancer with Porphysome Nanotechnology PRINCIPAL INVESTIGATOR: Gang Zheng CONTRACTING...Ovarian Cancer with Porphysome Nanotechnology 5a. CONTRACT NUMBER W81XWH-13-1-0442 5b. GRANT NUMBER W91ZSQ9277N522 5c. PROGRAM ELEMENT NUMBER 6...Image Guided Surgery; Biodistribution; Ovarian Cancer ; Preclinical Models. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  17. DNA helicases as targets for anti-cancer drugs.

    PubMed

    Sharma, Sudha; Doherty, Kevin M; Brosh, Robert M

    2005-05-01

    DNA helicases have essential roles in nucleic acid metabolism by facilitating cellular processes including replication, recombination, DNA repair, and transcription. The vital roles of helicases in these pathways are reflected by their emerging importance in the maintenance of genomic stability. Recently, a number of human diseases with cancer predisposition have been shown to be genetically linked to a specific helicase defect. This has led researchers to further investigate the roles of helicases in cancer biology, and to study the efficacy of targeting human DNA helicases for anti-cancer drug treatment. Helicase-specific inhibition in malignant cells may compromise the high proliferation rates of cancero