Science.gov

Sample records for cancer imaging agents

  1. Development of a Multifaceted Ovarian Cancer Imaging Agent

    DTIC Science & Technology

    2010-04-01

    method for a recombinant disintegrin vicrostatin (VN), whose structure is based on the snake venom disintegrin contortrostatin (CN), and the use of the...an innovative imaging and diagnostic agent for ovarian cancer (OC). Vicrostatin (VN) is a recombinant protein based on the venom disintegrin...form of the venom derived disintegrin contortrostatin, was compared to a cyclic peptide, cyclo(-RGDfV-), similar to Cilengitide, which is currently in

  2. Dynamic fluorescence imaging with molecular agents for cancer detection

    NASA Astrophysics Data System (ADS)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  3. Synthesis of PSA Inhibitors as SPECT- and PET-Based Imaging Agents for Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    for their ability to inhibit PSA and chymotrypsin. 15. SUBJECT TERMS Prostate cancer , PSA inhibitors, boronic acids, peptidomimetics, serine protease...prostate cancer . First, all men undergoing androgen ablation, eventually relapse and no longer respond to hormone treatment . Therefore, there is an...Imaging Agents for Prostate Cancer PRINCIPAL INVESTIGATOR: Maya Kostova, Ph.D. CONTRACTING ORGANIZATION: Johns Hopkins University

  4. Phosphoramidate-based Peptidomimetic Prostate Cancer PET Imaging Agents

    DTIC Science & Technology

    2013-07-01

    develop a PET imaging agent based on modifying the peptidomimetic PSMA inhibitor which will result in improved tumor uptake and clearance mechanism...Different fluorination approaches were attempted with PSMA module compounds such as direct labeling, cupper free chemistry and the use of...labeling approaches are established, and then the labeling of the modified PSMA inhibitor analogues will be investigated in vitro as well as in vivo. 15

  5. Phosphoramidate-based Peptidomimetic Prostate Cancer PET Imaging Agents

    DTIC Science & Technology

    2013-11-01

    goal is to develop a PET imaging agent based on modifying the peptidomimetic PSMA inhibitor which will result in improved tumor uptake and clearance...mechanism. Different fluorination approaches were attempted with PSMA module compounds such as direct labeling, cupper free chemistry and the use of...the labeling approaches are established, and then the labeling of the modified PSMA inhibitor analogues will be investigated in vitro as well as in

  6. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer.

    PubMed

    Bao, Kai; Lee, Jeong Heon; Kang, Homan; Park, G Kate; El Fakhri, Georges; Choi, Hak Soo

    2017-02-04

    Prostate-specific membrane antigen (PSMA) can serve as a molecular cell surface target for the detection and treatment of prostate cancer. Near-infrared (NIR) fluorescence imaging enables highly sensitive, rapid, and non-radioactive imaging of PSMA, though specific targeting still remains a challenge because no optimized contrast agents exist.

  7. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    DTIC Science & Technology

    2011-04-01

    metastasis model. In this case, androgen dependent prostate cancer cells were injected into the tibia of nude mice and were allowed to grow untreated for...Smith, D., Hussain, M., 2006. Phase II evaluations of cilengitide in asymptomatic patients with androgen -independent prostate cancer : scientific...blood vessels into a growing tumor, is critical to cancer progression and spread. A number of cancer types such as breast and prostate cancer affect up

  8. MULTIFUNCTIONAL SYNTHETIC POLY(L-GLUTAMIC ACID)-BASED CANCER THERAPEUTIC AND IMAGING AGENTS

    PubMed Central

    Melancon, Marites P.

    2012-01-01

    Modern polymer chemistry has led to the generation of a number of biocompatible synthetic polymers have been increasingly studied as efficient carriers for drugs and imaging agents. Synthetic biocompatible polymers have been used to improve the efficacy of both small-molecular-weight therapeutics and imaging agents. Furthermore, multiple targeted anticancer agents and/or imaging reporters can be attached to a single polymer chain, allowing multifunctional and/or multimodality therapy and molecular imaging. Having both an anticancer drug and an imaging reporter in a single polymer chain allows noninvasive real-time visualization of the pharmacokinetics of polymeric drug delivery systems, which can uncover and explain the complicated mechanisms of in vivo drug delivery and their correlation to pharmacodynamics. This review examines use of the synthetic biocompatible polymer poly(L-glutamic acid) (PG) as an efficient carrier of cancer therapeutics and imaging agents. This review will summarize and update our recent research on use of PG as a platform for drug delivery and molecular imaging, including recent clinical findings with respect to PG-paclitaxel (PG-TXL); the combination of PG-TXL with radiotherapy; mechanisms of action of PG-TXL; and noninvasive visualization of in vivo delivery of polymeric conjugates with contrast-enhanced magnetic resonance imaging (MRI), optical imaging, and multimodality imaging. PMID:21303613

  9. Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly; Shah, Jignesh; Gomez, Sobeyda; Gensler, Heidi; Karpiouk, Andrei; Brannon-Peppas, L.; Emelianov, Stanislav

    2009-02-01

    A new metallodielectric nanoparticle consisting of a silica core and silver outer cage was developed for the purpose of enhancing photoacoustic imaging contrast in pancreatic tissue. These nanocages were injected into an ex vivo porcine pancreas and imaged using a combined photoacoustic and ultrasound (PAUS) assembly. This custom-designed PAUS assembly delivered 800 nm light through a fiber optical light delivery system integrated with 128 element linear array transducer operating at 7.5 MHz center frequency. Imaging results prove that the nanocage contrast agents have the ability to enhance photoacoustic imaging contrast. Furthermore, the value of the combined PAUS imaging modality was demonstrated as the location of nanocages against background native tissue was evident. Future applications of these nanocage contrast agents could include targeting them to pancreatic cancer for enhancement of photoacoustic imaging for diagnosis and therapy.

  10. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    DTIC Science & Technology

    2009-04-01

    a production method for a recombinant disintegrin vicrostatin (VN), whose structure is based on the snake venom disintegrin contortrostatin (CN... venom disintegrin contortrostatin (CN), which has shown impressive antitumor and antiangiogenic activities in models of human ovarian cancer. OC cells...Jararhagin, a metallopreoteinase with a disintegrin domain isolated from Bothrops jararaca, a venomous pit viper found in Brazil, Paraguay and northern

  11. Method and application for imaging breast cancer using a contrast agent

    NASA Astrophysics Data System (ADS)

    Huang, Ping; Intes, Xavier; Nioka, Shoko; Kitai, Toshiyuki; Chance, Britton

    2002-04-01

    Diffuse Optical Tomography (DOT) in the Near Infrared Spectral window (NIR) offers new possibilities for medical imaging. And using DOT, Indocyanine green (ICG) is found to be a useful blood pooling contrast agent for optical tumor detection. Here we introduce our efforts on study of breast cancer image reconstruction using ICG as a contrast agent. To improve the signal-to-noise ratio, we developed an effective method to analyze and process the raw data acquired from a CWS (Continuous Wave Spectroscopy) system. Differential absorption images of breast cancers are reconstructed by using ART (Algebraic Reconstruction Technique) which uses the diffusion equation within the Rytov approximation. The experiment device is a combination of sixteen light sources (tungsten bulb) and sixteen light detectors (silicon photodiodes). These sources and detectors are located on a circular holder where the human breasts are placed, each other at equal distance (11 angle apart). It takes a few seconds to acquire data since one source is on, while all the detectors simultaneously detect the photons. So an image includes 16*16 data points. Results from clinical trial in Japan and China show that there is a high concentration of ICG in the location of a cancer, suggesting high blood volume pooling and the usefulness of ICG detecting optically breast cancers.

  12. Novel Molecular Imaging Agents to Detect Biomarkers of Metastatic Breast Cancer

    DTIC Science & Technology

    2006-01-01

    chemistry with HBTU and HOBt as coupling agents. The coupling efficiency of each amino acid residues were checked by Kaiser’s ninhydrin test . The...of each amino acid residues were checked by Kaiser’s ninhydrin test . The starting resin had 1.0mmol/g of OH groups and the scale of peptide synthesis...assess biomarkers of metastatic breast cancer (Months 4-6). This task has been successfully accomplished by testing our peptide-DOTA imaging

  13. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble

  14. Aptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer

    PubMed Central

    Keshtkar, Mohammad; Shahbazi-Gahrouei, Daryoush; Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A.; Aghaei, Mahmoud

    2016-01-01

    Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe3O4@Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T2-weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 μg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells. PMID:28028501

  15. Development of novel epidermal growth receptor-basedradiopharmaceuticals: Imaging agents for breast cancer

    SciTech Connect

    Van Brocklin, Henry F.

    2001-09-25

    The goal of this research was to develop epidermal growthfactor receptor (EGFR) nuclear medicine breast cancer imaging agents. Ourapproach was to synthesize small molecule inhibitors of the EGFR tyrosinekinase (tk) suitable for labeling with single photon or positron-emittingradioisotopes and evaluate the imaging potential of these new molecules.We have synthesized and fully characterized 22 quinazoline compounds. Allcompounds inhibit EGFR tk phosphorylation activity in the nanomolarrange. All compounds tested exhibited specificity for the EGFR tk versusthe ErbB2 and ErbB4 tyrosine kinases. A radiometric binding assay usingan iodine-125 labeled quinazoline was developed to determine the affinityof the quinazolines for the EGFR tk ATP binding site. The affinitiesranged from 0.4-51 nM. The octanol/water partition coefficients (Log P;lipophilicity) of the new compounds ranged from 2.2-5.5. Six compoundshave been labeled with fluorine-18. Biodistribution in EGFRoverexpressing tumor bearing mice demonstrated tumor uptake buthighlighted delivery and metabolism issues. The 2-fluoro quinazoline wasnot metabolized in an in vitro hepatocyte study. From this work a breadthof agent characteristics was created establishing the foundation forfuture research toward the optimal EGFR imaging agent.

  16. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  17. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  18. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  19. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent

    PubMed Central

    Kossatz, Susanne; Brand, Christian; Gutiontov, Stanley; Liu, Jonathan T. C.; Lee, Nancy Y.; Gönen, Mithat; Weber, Wolfgang A.; Reiner, Thomas

    2016-01-01

    Earlier and more accurate detection of oral squamous cell carcinoma (OSCC) is essential to improve the prognosis of patients and to reduce the morbidity of surgical therapy. Here, we demonstrate that the nuclear enzyme Poly(ADP-ribose)Polymerase 1 (PARP1) is a promising target for optical imaging of OSCC with the fluorescent dye PARPi-FL. In patient-derived OSCC specimens, PARP1 expression was increased 7.8 ± 2.6-fold when compared to normal tissue. Intravenous injection of PARPi-FL allowed for high contrast in vivo imaging of human OSCC models in mice with a surgical fluorescence stereoscope and high-resolution imaging systems. The emitted signal was specific for PARP1 expression and, most importantly, PARPi-FL can be used as a topical imaging agent, spatially resolving the orthotopic tongue tumors in vivo. Collectively, our results suggest that PARP1 imaging with PARPi-FL can enhance the detection of oral cancer, serve as a screening tool and help to guide surgical resections. PMID:26900125

  20. Cancer diagnostics using dynamic near-infrared optical imaging and fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Mikhail

    2004-12-01

    A new optical imaging modality has been developed for small animal in vivo imaging of near-infrared fluorescence resulting from fluorescent contrast agents specifically targeted to molecular markers of cancer. The imaging system is comprised of an intensified charge-coupled device (ICCD) for the detection of ultra-low levels of re-emitted fluorescence following the delivery of an expanded beam of excitation light. The design of the ICCD detection system allows for both continuous wave (CW) and frequency-domain modes of operation. Since the accurate acquisition of frequency-domain photon migration (FDPM) data is important for tomographic imaging, the imaging system was also validated using experimentally obtained FDPM measurements of homogenous turbid media and diffusion theory to obtain estimates of the optical properties characteristic of the media. The experiments demonstrated that the absorption and reduced scattering coefficients are determined least accurately when relative measurements of average light intensity IrelDC are employed either alone or in a combination with relative modulation amplitude data IrelAC and/or relative phase shift data thetarel. However, when FDPM measurements of thetarel are employed either alone or in combination with IrelAC data, the absorption and reduced scattering coefficients may be found accurate to within 15% and I1%, respectively, of the values obtained from standard single-pixel measurements; a result that suggests that FDPM data obtained from an ICCD detection system may in fact be useful in tomographic imaging. Furthermore, intensified-detection allows for sub-second exposure times, permitting the acquisition of dynamic fluorescence images immediately following administration of the contrast agent. Experimental results demonstrate that when coupled with a suitable pharmacokinetic model describing targeted dye distribution throughout the body, dynamic fluorescence imaging may be used to discriminate spontaneous canine

  1. An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

    PubMed Central

    Imamura, Yusuke; Tien, Amy H.; Pan, Jinhe; Leung, Jacky K.; Banuelos, Carmen A.; Jian, Kunzhong; Wang, Jun; Mawji, Nasrin R.; Fernandez, Javier Garcia; Lin, Kuo-Shyan; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC. PMID:27525313

  2. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging.

    PubMed

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.

  3. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging

    PubMed Central

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex (tBuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that tBuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35–40 nm) reveals their potential use for early cancer detection by MRI. PMID:25565804

  4. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17

    PubMed Central

    Gaarenstroom, Katja N.; de Kroon, Cor D.; van Poelgeest, Mariette I.E.; Vuyk, Jaap; Bosse, Tjalling; Smit, Vincent T.H.B.M; van de Velde, Cornelis J.H.; Cohen, Adam F.; Low, Philip S.; Burggraaf, Jacobus; Vahrmeijer, Alexander L.

    2016-01-01

    Introduction Intraoperative fluorescence imaging of the folate-receptor alpha (FRα) could support completeness of resection in cancer surgery. Feasibility of EC17, a FRα-targeting agent that fluoresces at 500nm, was demonstrated in a limited series of ovarian cancer patients. Our objective was to evaluate EC17 in a larger group of ovarian cancer patients. In addition, we assessed the feasibility of EC17 in patients with breast cancer. Methods Two-to-three hours before surgery 0.1mg/kg EC17 was intravenously administered to 12 patients undergoing surgery for ovarian cancer and to 3 patients undergoing surgery for biopsy-proven FRα-positive breast cancer. The number of lesions/positive margins detected with fluorescence and concordance between fluorescence and tumor- and FRα-status was assessed in addition to safety and pharmacokinetics. Results Fluorescence imaging in ovarian cancer patients allowed detection of 57 lesions of which 44 (77%) appeared malignant on histopathology. Seven out of these 44 (16%) were not detected with inspection/palpation. Histopathology demonstrated concordance between fluorescence and FRα- and tumor status. Fluorescence imaging in breast cancer patients, allowed detection of tumor-specific fluorescence signal. At the 500nm wavelength, autofluorescence of normal breast tissue was present to such extent that it interfered with tumor identification. Conclusions FRα is a favorable target for fluorescence-guided surgery as EC17 produced a clear fluorescent signal in ovarian and breast cancer tissue. This resulted in resection of ovarian cancer lesions that were otherwise not detected. Notwithstanding, autofluorescence caused false-positive lesions in ovarian cancer and difficulty in discriminating breast cancer-specific fluorescence from background signal. Optimization of the 500nm fluorophore, will minimize autofluorescence and further improve intraoperative tumor detection. PMID:27014973

  5. Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer

    PubMed Central

    Manivasagan, Panchanathan; Quang Bui, Nhat; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Oh, Yun-Ok; Song, Kyeongeun; Seo, Hansu; Yoon, Min; Oh, Junghwan

    2017-01-01

    Cancer nanotechnology is emerging as one of the promising strategies combining photothermal therapy (PTT) and photoacoustic imaging (PAI) for the treatment of breast cancer and it has received considerable attention in the recent years because it is minimally invasive, prevents damage to non-targeted regions, permits fast recovery, and involves breast cancer imaging. The present study demonstrates multifunctional biocompatible chitosan-polypyrrole nanocomposites (CS-PPy NCs) as novel agents for photoacoustic imaging-guided photothermal ablation of cancer because of their biocompatibility, conductivity, stability, and strong near-infrared (NIR) absorbance. The CS-PPy NCs are spherical in shape and range 26–94 nm in size with a mean value of 50.54 ± 2.56 nm. The in vitro results demonstrated good biocompatibility of CS-PPy NCs, which can be used in PTT for cancer cells under 808-nm NIR laser irradiation. Tumor-bearing mice fully recovered after treatment with CS-PPy NCs and NIR 808-nm laser irradiation compared to the corresponding control groups. Our research highlights the promising potential of using CS-PPy NCs for photoacoustic imaging-guided photothermal ablation of cancer in preclinical animals, which should be verified in future clinical trials. PMID:28252638

  6. Fluorescence imaging agents in cancerology

    PubMed Central

    Paganin-Gioanni, Aurélie; Bellard, Elisabeth; Paquereau, Laurent; Ecochard, Vincent; Golzio, Muriel; Teissié, Justin

    2010-01-01

    Background One of the major challenges in cancer therapy is to improve early detection and prevention using novel targeted cancer diagnostics. Detection requests specific recognition. Tumor markers have to be ideally present on the surface of cancer cells. Their targeting with ligands coupled to imaging agents make them visible/detectable. Conclusions Fluorescence imaging is a newly emerging technology which is becoming a complementary medical method for cancer diagnosis. It allows detection with a high spatio-temporal resolution of tumor markers in small animals and in clinical studies. In this review, we focus on the recent outcome of basic studies in the design of new approaches (probes and devices) used to detect tumor cells by fluorescence imaging. PMID:22933906

  7. Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging.

    PubMed

    Li, Juan; Tian, Yuchen; Shan, Dingying; Gong, An; Zeng, Leyong; Ren, Wenzhi; Xiang, Lingchao; Gerhard, Ethan; Zhao, Jinshun; Yang, Jian; Wu, Aiguo

    2017-02-01

    Targeted molecular imaging has attracted great attention in cancer diagnosis and treatment. However, most clinically used ultrasound contrast agents (UCAs) are non-targeted microbubbles seldom used for cancer imaging. Here, we fabricated fluorescent nanobubbles (NBs) by encapsulation of liquid tetradecafluorohexane (C6F14) within biodegradable photoluminescent polymers (BPLPs) through an emulsion-evaporation process and conjugation of PNBL-NPY ligand for specific targeting of Y1 receptors overexpressed in breast tumors. The developed PNBL-NPY modified NBs were uniform in size with good dispersibility and photostability, presenting good ultrasound enhancement. Further, in vitro and in vivo results indicated that the fabricated NBs exhibit high affinity and specificity to Y1 receptor-overexpressing breast cancer cells and tumors with minimal toxicity and damage to organs. Our developed PNBL-NPY-modified NBs are novel targeted UCAs for safe, efficient and specific targeted breast cancer imaging, and may provide a new nanoplatform for early cancer diagnosis and treatment in the future.

  8. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging With Magnetic Nanoparticles as Contrast Agent.

    PubMed

    Bevacqua, Martina T; Scapaticci, Rosa

    2016-02-01

    In microwave breast cancer imaging magnetic nanoparticles have been recently proposed as contrast agent. Due to the non-magnetic nature of human tissues, magnetic nanoparticles make possible the overcoming of some limitations of conventional microwave imaging techniques, thus providing reliable and specific diagnosis of breast cancer. In this paper, a Compressive Sensing inspired inversion technique is introduced for the reconstruction of the magnetic contrast induced within the tumor. The applicability of Compressive Sensing theory is guaranteed by the fact that the underlying inverse scattering problem is linear and the searched magnetic perturbation is sparse. From the numerical analysis, performed in realistic conditions in 3D geometry, it has been pointed out that the adoption of this new tool allows improving resolution and accuracy of the reconstructions, as well as reducing the number of required measurements.

  9. Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents.

    PubMed

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2013-01-01

    Targeted delivery of cancer therapeutics and imaging agents aims to enhance the accumulation of these molecules in a solid tumor while avoiding uptake in healthy tissues. Tumor-specific accumulation has been pursued with passive targeting by the enhanced permeability and retention effect, as well as with active targeting strategies. Active targeting is achieved by functionalization of carriers to allow specific interactions between the carrier and the tumor environment. Functionalization of carriers with ligands that specifically interact with overexpressed receptors on cancer cells represents a classic approach to active tumor targeting. Cell-penetrating peptides (CPPs) provide a non-specific and receptor-independent mechanism to enhance cellular uptake that offers an exciting alternative to traditional active targeting approaches. While the non-specificity of CPP-mediated internalization has the intriguing potential to make this approach applicable to a wide range of tumor types, their promiscuity is, however, a significant barrier to their clinical utility for systemically administered applications. Many approaches have been investigated to selectively turn on the function of systemically delivered CPP-functionalized carriers specifically in tumors to achieve targeted delivery of cancer therapeutics and imaging agents.

  10. J-aggregate Nanoparticles as Photoacoustic Contrast Agents for Prostate Cancer Imaging

    NASA Astrophysics Data System (ADS)

    Shakiba, Mojdeh

    Management of early stage prostate cancer (PCa) is plagued with the dilemma between active surveillance that risks progression, and aggressive treatments of potentially indolent disease that significantly reduces quality of life. This results from the inability of current diagnostic techniques to accurately distinguish between indolent and aggressive disease, which has resulted in overtreatment of PCa. Photoacoutic imaging allows for imaging of specific molecular constituents in tissue. To enable for its use in PCa imaging, we designed a novel organic nanoparticle that combines the unique spectral properties and efficient photon capture of nature's photosynthetic apparatus with the stable and specific delivery offered by nanoparticles. These Jaggregate nanoparticles are shown to produce an intense, narrow photo acoustic signal and to have nanoparticle-dependent photonic properties that enable for assessment of the state of the particle. Preliminary assessment of their use in an orthotopic PCa model showed accumulation in and delineation of the tumor boundary.

  11. Characterization and performance of a near infrared 2-deoxyglucose optical imaging agent for mouse cancer models

    PubMed Central

    Kovar, Joy L.; Volcheck, William; Sevick-Muraca, Eva; Simpson, Melanie A; Olive, D. Michael

    2009-01-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. This characteristic can be exploited for optical imaging of tumors in mice. A near infrared fluorophore, IRDye® 800CW, emission maximum 794 nm, was conjugated to 2-deoxyglucose (2-DG). An immunofluorescent cell-based assay was used to evaluate specificity and sensitivity of the conjugate in cultured cell monolayers. Dose dependent uptake was established with increasing concentrations of IRDye 800CW 2-DG for epithelial and prostate carcinomas. IRDye 800CW 2-DG was specifically blocked by an antibody against GLUT1 glucose transporter, and by excess unlabeled 2-DG or D-glucose. Signal was increased by a phorbol ester activator of glucose transport. Fluorescence microscopy data confirmed localization of the conjugate in the cytoplasm. Subsequent in vivo studies optimized dose, clearance, and timing for signal capture in nude mouse xenografts. In all cases, tumors were clearly imaged with good signal to noise characteristics. These data indicate that IRDye 800CW 2-DG is a broadly applicable optical imaging agent for in vivo imaging of neoplasms in mice. PMID:18938129

  12. L-Ferritin targets breast cancer stem cells and delivers therapeutic and imaging agents

    PubMed Central

    Ruiu, Roberto; Cadenazzi, Marta; Cavallo, Federica; Aime, Silvio; Crich, Simonetta Geninatti

    2016-01-01

    A growing body of evidence suggests that cancer stem cells (CSC) have the unique biological properties necessary for tumor maintenance and spreading, and function as a reservoir for the relapse and metastatic evolution of the disease by virtue of their resistance to radio- and chemo-therapies. Thus, the efficacy of a therapeutic approach relies on its ability to effectively target and deplete CSC. In this study, we show that CSC-enriched tumorspheres from breast cancer cell lines display an increased L-Ferritin uptake capability compared to their monolayer counterparts as a consequence of the upregulation of the L-Ferritin receptor SCARA5. L-Ferritin internalization was exploited for the simultaneous delivery of Curcumin, a natural therapeutic molecule endowed with antineoplastic action, and the MRI contrast agent Gd-HPDO3A, both entrapped in the L-Ferritin cavity. This theranostic system was able to impair viability and self-renewal of tumorspheres in vitro and to induce the regression of established tumors in mice. In conclusion, here we show that Curcumin-loaded L-Ferritin has a strong therapeutic potential due to the specific targeting of CSC and the improved Curcumin bioavailability, opening up the possibility of its use in a clinical setting. PMID:27579532

  13. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  14. Non-carrier-added 186, 188Re labeled 17a-ethynylestradiol : a potential breast cancer imaging and therapy agent

    SciTech Connect

    Fassbender, M. E.; Phillips, Dennis R.; Peterson, E. J.; Ott, K. C.; Arterburn, J. B.

    2001-01-01

    Receptor-targeted radiopharmaceuticals constitute potential agents for the diagnosis and therapy of cancer. Breast cancer is the most prevalent form of diagnosed cancer in women in the United States, and it accounts for the second highest number of cases of cancer fatalities (1). In Approximately two-thirds of the breast tumors, estrogen and progesterone steroid hormone receptors can be found. Such tumors can often be treated successfully with anti-estrogen hormone therapy (2). Hence, the ability to determine the estrogen receptor (ER) contend of the breast tumor is essential for making the most appropriate choice of treatment for the patient. Along with this diagnostic aspect, steroid-based radiopharmaceuticals with high specific activity offer an encouraging prospect for therapeutic applications: {sup 186,188}Re labeled steroids binding to receptors expressed by cancer cells appear to be potential agents for the irradiation of small to medium-sized tumors. {sup 186}Re has been regarded as an ideal radionuclide for radiotherapy due to its appropriate half-live of 90 h and {beta}-energy of 1.07 MeV. Moreover, the {gamma}-emission of 137 keV that allows in vivo imaging while in therapy is an additional bonus. {sup 188}Re is obtained from a {sup 188}W/{sup 188}Re radionuclide generator system, representing an advantage for availability at radiopharmacy laboratory by daily elution. In addition, {sup 188}Re emits high energy beta particles with an average energy of 769 keV, and the emission of the 155 keV allows simultaneous imaging for biodistribution evaluation in vivo. In order to avoid competitive saturation of the binding sites of the ligand receptor, Re labeled steroids with high specific activity are required, and the removal of all excess unlabeled ligands is mandatory. {sup 188}Re is eluted from a {sup 188}W/{sup 188}Re generator produced and provided by Oak Ridge National Laboratory (3). This paper outlines the solid phase-supported preparation of an n

  15. In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    DTIC Science & Technology

    2015-09-01

    detection of early stage prostate cancer, development of near infrared dyes - labeled RNA aptamer that recognizes the prostate specific cell surface protein...the application of PAI for the detection of early stage prostate cancer, development of a NIR dye - labeled RNA aptamer that recognizes the prostate...proposed to enhance the application of PAI for the detection of early stage PrCa: 1. Use of a NIR dye labeled RNA aptamer that recognizes the prostate

  16. Developments Toward Diagnostic Breast Cancer Imaging Using Near-Infrared Optical Measurements and Fluorescent Contrast Agents1

    PubMed Central

    Hawrysz, Daniel J; Sevick-Muraca, Eva M

    2000-01-01

    Abstract The use of near-infrared (NIR) light to interrogate deep tissues has enormous potential for molecular-based imaging when coupled with NIR excitable dyes. More than a decade has now passed since the initial proposals for NIR optical tomography for breast cancer screening using time-dependent measurements of light propagation in the breast. Much accomplishment in the development of optical mammography has been demonstrated, most recently in the application of time-domain, frequency-domain, and continuous-wave measurements that depend on endogenous contrast owing to angiogenesis and increased hemoglobin absorbance for contrast. Although exciting and promising, the necessity of angiogenesis-mediated absorption contrast for diagnostic optical mammography minimizes the potential for using NIR techniques to assess sentinel lymph node staging, metastatic spread, and multifocality of breast disease, among other applications. In this review, we summarize the progress made in the development of optical mammography, and focus on the emerging work underway in the use of diagnostic contrast agents for the molecular-based, diagnostic imaging of breast. PMID:11191107

  17. Delta-Opioid Receptor (δOR) Targeted Near-Infrared Fluorescent Agent for Imaging of Lung Cancer: Synthesis and Evaluation In Vitro and In Vivo.

    PubMed

    Cohen, Allison S; Patek, Renata; Enkemann, Steven A; Johnson, Joseph O; Chen, Tingan; Toloza, Eric; Vagner, Josef; Morse, David L

    2016-02-17

    In the United States, lung cancer is the leading cause of cancer death and ranks second in the number of new cases annually among all types of cancers. Better methods or tools for diagnosing and treating this disease are needed to improve patient outcomes. The delta-opioid receptor (δOR) is reported to be overexpressed in lung cancers and not expressed in normal lung. Thus, we decided to develop a lung cancer-specific imaging agent targeting this receptor. We have previously developed a δOR-targeted fluorescent imaging agent based on a synthetic peptide antagonist (Dmt-Tic) conjugated to a Cy5 fluorescent dye. In this work, we describe the synthesis of Dmt-Tic conjugated to a longer wavelength near-infrared fluorescent (NIRF) dye, Li-cor IR800CW. Binding affinity of Dmt-Tic-IR800 for the δOR was studied using lanthanide time-resolved fluorescence (LTRF) competitive binding assays in cells engineered to overexpress the δOR. In addition, we identified lung cancer cell lines with high and low endogenous expression of the δOR. We confirmed protein expression in these cell lines using confocal fluorescence microscopy imaging and used this technique to estimate the cell-surface receptor number in the endogenously expressing lung cancer cell lines. The selectivity of Dmt-Tic-IR800 for imaging of the δOR in vivo was shown using both engineered cell lines and endogenously expressing lung cancer cells in subcutaneous xenograft models in mice. In conclusion, the δOR-specific fluorescent probe developed in this study displays excellent potential for imaging of lung cancer.

  18. An MR Contrast Agent for Intra-Prostatic Imaging of Prostatic Cancer

    DTIC Science & Technology

    2005-01-01

    nanoparticle MR contrast targeted to the gastrin releasing peptide receptor (GRP receptor) that will be used to image the intra-prostatic distribution of...develop a magnetic nanoparticle MR contrast targeted to the gastrin releasing peptide receptor (GRP receptor) that will be used to image the intra...the receptor in a convenient animal model, the normal mouse. The GRP receptor is expressed at high levels in the normal rodent pancreas. I. Synthesis

  19. VEGFR2-Targeted Ultrasound Imaging Agent Enhances the Detection of Ovarian Tumors at Early Stage in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-07-01

    Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics.

  20. A Radiolabeled Fully Human Antibody to Human Aspartyl (Asparaginyl) β-Hydroxylase Is a Promising Agent for Imaging and Therapy of Metastatic Breast Cancer.

    PubMed

    Revskaya, Ekaterina; Jiang, Zewei; Morgenstern, Alfred; Bruchertseifer, Frank; Sesay, Muctarr; Walker, Susan; Fuller, Steven; Lebowitz, Michael S; Gravekamp, Claudia; Ghanbari, Hossein A; Dadachova, Ekaterina

    2017-03-01

    There is a need for novel effective and safe therapies for metastatic breast cancer based on targeting tumor-specific molecular markers of cancer. Human aspartyl (asparaginyl) β-hydroxylase (HAAH) is a highly conserved enzyme that hydroxylates epidermal growth factor-like domains in transformation-associated proteins and is overexpressed in a variety of cancers, including breast cancer. A fully human monoclonal antibody (mAb) PAN-622 has been developed to HAAH. In this study, they describe the development of PAN-622 mAb as an agent for imaging and radioimmunotherapy of metastatic breast cancer. PAN-622 was conjugated to several ligands such as DOTA, CHXA″, and DTPA to enable subsequent radiolabeling and its immunoreactivity was evaluated by an HAAH-specific enzyme-linked immunosorbent assay and binding to the HAAH-positive cells. As a result, DTPA-PAN-622 was chosen to investigate biodistribution in healthy CD-1 female mice and 4T1 mammary tumor-bearing BALB/c mice. The (111)In-DTPA-pan622 mAb concentrated in the primary tumors and to some degree in lung metastases as shown by SPECT/CT and Cherenkov imaging. A pilot therapy study with (213)Bi-DTPA-PAN-622 demonstrated a significant effect on the primary tumor. The authors concluded that human mAb PAN-622 to HAAH is a promising reagent for development of imaging and possible therapeutic agents for the treatment of metastatic breast cancer.

  1. Highly biocompatible TiO2:Gd3+ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging

    NASA Astrophysics Data System (ADS)

    Chandran, Parwathy; Sasidharan, Abhilash; Ashokan, Anusha; Menon, Deepthy; Nair, Shantikumar; Koyakutty, Manzoor

    2011-10-01

    We report the development of a novel magnetic nano-contrast agent (nano-CA) based on Gd3+ doped amorphous TiO2 of size ~25 nm, exhibiting enhanced longitudinal relaxivity (r1) and magnetic resonance (MR) contrasting together with excellent biocompatibility. Quantitative T1 mapping of phantom samples using a 1.5 T clinical MR imaging system revealed that the amorphous phase of doped titania has the highest r1 relaxivity which is ~2.5 fold higher than the commercially used CA Magnevist™. The crystalline (anatase) samples formed by air annealing at 250 °C and 500 °C showed significant reduction in r1 values and MR contrast, which is attributed to the loss of proton-exchange contribution from the adsorbed water and atomic re-arrangement of Gd3+ ions in the crystalline host lattice. Nanotoxicity studies including cell viability, plasma membrane integrity, reactive oxygen stress and expression of pro-inflammatory cytokines, performed on human primary endothelial cells (HUVEC), human blood derived peripheral blood mononuclear cells (PBMC) and nasopharyngeal epidermoid carcinoma (KB) cell line showed excellent biocompatibility up to relatively higher doses of 200 μg ml-1. The potential of this nano-CA to cause hemolysis, platelet aggregation and plasma coagulation were studied using human peripheral blood samples and found no adverse effects, illustrating the possibility of the safe intravenous administration of these agents for human applications. Furthermore, the ability of these agents to specifically detect cancer cells by targeting molecular receptors on the cell membrane was demonstrated on folate receptor (FR) positive oral carcinoma (KB) cells, where the folic acid conjugated nano-CA showed receptor specific accumulation on cell membrane while leaving the normal fibroblast cells (L929) unstained. This study reveals that the Gd3+ doped amorphous TiO2 nanoparticles having enhanced magnetic resonance contrast and high biocompatibility is a promising candidate for

  2. Interleukin 16- (IL-16-) Targeted Ultrasound Imaging Agent Improves Detection of Ovarian Tumors in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Adur, Malavika K; Utterback, Chet W; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-01-01

    Limited resolution of transvaginal ultrasound (TVUS) scanning is a significant barrier to early detection of ovarian cancer (OVCA). Contrast agents have been suggested to improve the resolution of TVUS scanning. Emerging evidence suggests that expression of interleukin 16 (IL-16) by the tumor epithelium and microvessels increases in association with OVCA development and offers a potential target for early OVCA detection. The goal of this study was to examine the feasibility of IL-16-targeted contrast agents in enhancing the intensity of ultrasound imaging from ovarian tumors in hens, a model of spontaneous OVCA. Contrast agents were developed by conjugating biotinylated anti-IL-16 antibodies with streptavidin coated microbubbles. Enhancement of ultrasound signal intensity was determined before and after injection of contrast agents. Following scanning, ovarian tissues were processed for the detection of IL-16 expressing cells and microvessels. Compared with precontrast, contrast imaging enhanced ultrasound signal intensity significantly in OVCA hens at early (P < 0.05) and late stages (P < 0.001). Higher intensities of ultrasound signals in OVCA hens were associated with increased frequencies of IL-16 expressing cells and microvessels. These results suggest that IL-16-targeted contrast agents improve the visualization of ovarian tumors. The laying hen may be a suitable model to test new imaging agents and develop targeted anti-OVCA therapeutics.

  3. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    NASA Astrophysics Data System (ADS)

    Jafari, Atefeh; Salouti, Mojtaba; Farjami Shayesteh, Saber; Heidari, Zahra; Bitarafan Rajabi, Ahmad; Boustani, Komail; Nahardani, Ali

    2015-02-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION-BBN in human blood serum. DSPION-BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION-BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T2-weighted and T2*-weighted color map MR images were acquired. The MRI study indicated that the DSPION-BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T2*-weighted color map MR images in mice with breast tumors.

  4. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents.

    PubMed

    De Souza, Raquel; Spence, Tara; Huang, Huang; Allen, Christine

    2015-12-10

    The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.

  5. Hypoxia imaging agents labeled with positron emitters.

    PubMed

    Hoigebazar, Lathika; Jeong, Jae Min

    2013-01-01

    Imaging hypoxia using positron emission tomography (PET) is of great importance for therapy of cancer. [(18)F]Fluoromisonidazole (FMISO) was the first PET agent for hypoxia imaging, and various radiolabeled nitroimidazole derivatives such as [(18)F]fluoroerythronitroimidazole (FETNIM), [(18)F]1-α-D: -(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole (FAZA), [(18)F]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), and [(18)F]fluoroetanidazole (FETA) have been developed successively. To overcome the high cost of cyclotron installation, (68)Ga-labeled nitroimidazole derivatives also have been developed. Another important hypoxia imaging agent is (64)Cu-diacetyl-bis(N (4)-methylthiosemicarbazone) ((64)Cu-ATSM), which can distribute in cancer tissue rapidly due to high lipophilicity. However, its application is limited due to high cost of radionuclide production. Although various hypoxia imaging agents have been reported and tested, hypoxia PET images still have to be improved, because of the low blood flow in hypoxic tissues and resulting low uptake of the agents.

  6. Ultrasound Molecular Imaging of the Breast Cancer Neovasculature using Engineered Fibronectin Scaffold Ligands: A Novel Class of Targeted Contrast Ultrasound Agent

    PubMed Central

    Abou-Elkacem, Lotfi; Wilson, Katheryne E.; Johnson, Sadie M.; Chowdhury, Sayan M.; Bachawal, Sunitha; Hackel, Benjamin J.; Tian, Lu; Willmann, Jürgen K.

    2016-01-01

    Molecularly-targeted microbubbles (MBs) are increasingly being recognized as promising contrast agents for oncological molecular imaging with ultrasound. With the detection and validation of new molecular imaging targets, novel binding ligands are needed that bind to molecular imaging targets with high affinity and specificity. In this study we assessed a novel class of potentially clinically translatable MBs using an engineered 10th type III domain of human-fibronectin (MB-FN3VEGFR2) scaffold-ligand to image VEGFR2 on the neovasculature of cancer. The in vitro binding of MB-FN3VEGFR2 to a soluble VEGFR2 was assessed by flow-cytometry (FACS) and binding to VEGFR2-expressing cells was assessed by flow-chamber cell attachment studies under flow shear stress conditions. In vivo binding of MB-FN3VEGFR2 was tested in a transgenic mouse model (FVB/N Tg(MMTV/PyMT634Mul) of breast cancer and control litter mates with normal mammary glands. In vitro FACS and flow-chamber cell attachment studies showed significantly (P<0.01) higher binding to VEGFR2 using MB-FN3VEGFR2 than control agents. In vivo ultrasound molecular imaging (USMI) studies using MB-FN3VEGFR2 demonstrated specific binding to VEGFR2 and was significantly higher (P<0.01) in breast cancer compared to normal breast tissue. Ex vivo immunofluorescence-analysis showed significantly (P<0.01) increased VEGFR2-expression in breast cancer compared to normal mammary tissue. Our results suggest that MBs coupled to FN3-scaffolds can be designed and used for USMI of breast cancer neoangiogenesis. Due to their small size, stability, solubility, the lack of glycosylation and disulfide bonds, FN3-scaffolds can be recombinantly produced with the advantage of generating small, high affinity ligands in a cost efficient way for USMI. PMID:27570547

  7. Quantitative Ultrasound in Cancer Imaging

    PubMed Central

    Feleppa, Ernest J.; Mamou, Jonathan; Porter, Christopher R.; Machi, Junji

    2010-01-01

    Ultrasound is a relatively inexpensive, portable, and versatile imaging modality that has a broad range of clinical uses. It incorporates many imaging modes, such as conventional gray-scale “B-mode” imaging to display echo amplitude in a scanned plane; M-mode imaging to track motion at a given fixed location over time; duplex, color, and power Doppler imaging to display motion in a scanned plane; harmonic imaging to display non-linear responses to incident ultrasound; elastographic imaging to display relative tissue stiffness; and contrast-agent imaging with simple contrast agents to display blood-filled spaces or with targeted agents to display specific agent-binding tissue types. These imaging modes have been well described in the scientific, engineering, and clinical literature. A less well-known ultrasonic imaging technology is based on quantitative ultrasound or (QUS), which analyzes the distribution of power as a function of frequency in the original received echo signals from tissue and exploits the resulting spectral parameters to characterize and distinguish among tissues. This article discusses the attributes of QUS-based methods for imaging cancers and providing improved means of detecting and assessing tumors. The discussion will include applications to imaging primary prostate cancer and metastatic cancer in lymph nodes to illustrate the methods. PMID:21362522

  8. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  9. Synthesis and characterization of a porphyrazine–Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model

    PubMed Central

    Trivedi, Evan R.; Ma, Zhidong; Waters, Emily A.; Macrenaris, Keith W.; Subramanian, Rohit; Barrettf, Anthony G. M.; Meade, Thomas J.; Hoffman, Brian M.

    2015-01-01

    Porphyrazines (Pz), or tetraazaporphyrins, are being studied for their potential use in detection and treatment of cancer. Here, an amphiphilic Cu–Pz–Gd(III) conjugate has been prepared via azide-alkyne Huisgen cycloaddition or ‘click’ chemistry between an azide functionalized Pz and alkyne functionalized DOTA–Gd(III) analog for use as an MRI contrast agent. This agent, Cu–Pz–Gd(III), is synthesized in good yield and exhibits solution-phase ionic relaxivity (r1 = 11.5 mm−1 s−1) that is approximately four times higher than that of a clinically used monomeric Gd (III) contrast agent, DOTA–Gd(III). Breast tumor cells (MDA-MB-231) associate with Cu–Pz–Gd(III) in vitro, where significant contrast enhancement (9.336 ± 0.335 contrast-to-noise ratio) is observed in phantom cell pellet MR images. This novel contrast agent was administered in vivo to an orthotopic breast tumor model in athymic nude mice and MR images were collected. The average T1 of tumor regions in mice treated with 50 mg kg−1 Cu–Pz–Gd (III) decreased relative to saline-treated controls. Furthermore, the decrease in T1 was persistent relative to mice treated with the monomeric Gd(III) contrast agent. An ex vivo biodistribution study confirmed that Cu–Pz–Gd(III) accumulates in the tumors and is rapidly cleared, primarily through the kidneys. Differential accumulation and T1 enhancement by Cu–Pz–Gd(III) in the tumor's core relative to the periphery offer preliminary evidence that this agent would find application in the imaging of necrotic tissue. PMID:24706615

  10. Molecular Imaging of Pancreatic Cancer with Antibodies

    PubMed Central

    2015-01-01

    Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581

  11. A Phase I/II Study for Analytic Validation of 89Zr-J591 ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer

    PubMed Central

    Pandit-Taskar, Neeta; O'Donoghue, Joseph A.; Durack, Jeremy C.; Lyashchenko, Serge K.; Cheal, Sarah M.; Beylergil, Volkan; Lefkowitz, Robert A.; Carrasquillo, Jorge A.; Martinez, Danny F.; Fung, Alex Mak; Solomon, Stephen B.; Gonen, Mithat; Heller, Glenn; Loda, Massimo; Nanus, David M.; Tagawa, Scott T.; Feldman, Jarett L.; Osborne, Joseph R.; Lewis, Jason S.; Reuter, Victor E.; Weber, Wolfgang A.; Bander, Neil H.; Scher, Howard I.; Larson, Steven M.; Morris, Michael J.

    2015-01-01

    Purpose Standard imaging for assessing osseous metastases in advanced prostate cancer remains focused on altered bone metabolism and is inadequate for diagnostic, prognostic, or predictive purposes. We performed a first-in-human phase I/II study of 89Zr-DFO-huJ591 (89Zr-J591) PET/CT immunoscintigraphy to assess performance characteristics for detecting metastases compared to conventional imaging modalities (CIMs) and pathology. Experimental Design Fifty patients with progressive metastatic castration-resistant prostate cancers were injected with 5 mCi of 89Zr-J591. Whole body PET/CT scans were obtained, and images were analyzed for tumor visualization. Comparison was made to contemporaneously obtained bone scintigraphy and cross-sectional imaging on a lesion-by-lesion basis, and with biopsies of metastatic sites. Results Median standardized uptake value for 89Zr-J591-positive bone lesions (n = 491) was 8.9; soft tissue lesions (n = 90): 4.8 (p < .00003). 89Zr-J591 detected 491 osseous sites compared to 339 by MDP, and 90 soft tissue lesions compared to 124 by CT. Compared to all CIMs combined, 89Zr-J591 detected an additional 99 osseous sites. Forty-six lesions (21 bone, 25 soft tissue) were biopsied in 34 patients; 18/19 89Zr-J591-positive osseous sites and 14/16 89Zr-J591-positive soft tissue sites were positive for prostate cancer. The overall accuracy of 89Zr-J591 was 95.2% (20/21) for osseous lesions and 60% (15/25) for soft tissue lesions. Conclusions 89Zr-J591 imaging demonstrated superior targeting of bone lesions relative to CIMs. Targeting soft tissue lesions was less optimal, although 89Zr-J591 had similar accuracy as individual CIMs. This study will provide benchmark data for comparing performance of proposed PSMA targeting agents for prostate cancer. PMID:26175541

  12. Targeted Nanotechnology for Cancer Imaging

    PubMed Central

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  13. pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers.

    PubMed

    Min, Kyung Hyun; Min, Hyun Su; Lee, Hong Jae; Park, Dong Jin; Yhee, Ji Young; Kim, Kwangmeyung; Kwon, Ick Chan; Jeong, Seo Young; Silvestre, Oscar F; Chen, Xiaoyuan; Hwang, Yu-Shik; Kim, Eun-Cheol; Lee, Sang Cheon

    2015-01-27

    We report a theranostic nanoparticle that can express ultrasound (US) imaging and simultaneous therapeutic functions for cancer treatment. We developed doxorubicin-loaded calcium carbonate (CaCO3) hybrid nanoparticles (DOX-CaCO3-MNPs) through a block copolymer templated in situ mineralization approach. The nanoparticles exhibited strong echogenic signals at tumoral acid pH by producing carbon dioxide (CO2) bubbles and showed excellent echo persistence. In vivo results demonstrated that the DOX-CaCO3-MNPs generated CO2 bubbles at tumor tissues sufficient for echogenic reflectivity under a US field. In contrast, the DOX-CaCO3-MNPs located in the liver or tumor-free subcutaneous area did not generate the CO2 bubbles necessary for US contrast. The DOX-CaCO3-MNPs could also trigger the DOX release simultaneously with CO2 bubble generation at the acidic tumoral environment. The DOX-CaCO3-MNPs displayed effective antitumor therapeutic activity in tumor-bearing mice. The concept described in this work may serve as a useful guide for development of various theranostic nanoparticles for US imaging and therapy of various cancers.

  14. Anti-Inflammatory Agents for Cancer Therapy

    PubMed Central

    Rayburn, Elizabeth R.; Ezell, Scharri J.; Zhang, Ruiwen

    2010-01-01

    Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents. PMID:20333321

  15. Multimodal Magnetic Resonance and Near-Infrared-Fluorescent Imaging of Intraperitoneal Ovarian Cancer Using a Dual-Mode-Dual-Gadolinium Liposomal Contrast Agent

    PubMed Central

    Ravoori, M. K.; Singh, S.; Bhavane, R.; Sood, A. K.; Anvari, B.; Bankson, J.; Annapragada, A.; Kundra, V.

    2016-01-01

    The degree of tumor removal at surgery is a major factor in predicting outcome for ovarian cancer. A single multimodality agent that can be used with magnetic resonance (MR) for staging and pre-surgical planning, and with optical imaging to aid surgical removal of tumors, would present a new paradigm for ovarian cancer. We assessed whether a dual-mode, dual-Gadolinium (DM-Dual-Gd-ICG) contrast agent can be used to visualize ovarian tumors in the peritoneal cavity by multimodal MR and near infra-red imaging (NIR). Intraperitoneal ovarian tumors (Hey-A8 or OVCAR3) in mice enhanced on MR two days after intravenous DM-Dual Gd-ICG injection compared to controls (SNR, CNR, p < 0.05, n = 6). As seen on open abdomen and excised tumors views and confirmed by optical radiant efficiency measurement, Hey-A8 or OVCAR3 tumors from animals injected with DM-Dual Gd-ICG had increased fluorescence (p < 0.05, n = 6). This suggests clinical potential to localize ovarian tumors by MR for staging and surgical planning, and, by NIR at surgery for resection. PMID:28004770

  16. Innovative agents in cancer prevention.

    PubMed

    Manson, Margaret M; Farmer, Peter B; Gescher, Andreas; Steward, William P

    2005-01-01

    There are many facets to cancer prevention: a good diet, weight control and physical activity, a healthy environment, avoidance of carcinogens such as those in tobacco smoke, and screening of populations at risk to allow early detection. But there is also the possibility of using drugs or naturally occurring compounds to prevent initiation of, or to suppress, tumour growth. Only a few such agents have been used to date in the clinic with any success, and these include non-steroidal anti-inflammatory drugs for colon, finasteride for prostate and tamoxifen or raloxifene for breast tumours. An ideal chemopreventive agent would restore normal growth control to a preneoplastic or cancerous cell population by modifying aberrant signalling pathways or inducing apoptosis (or both) in cells beyond repair. Characteristics for such an agent include selectivity for damaged or transformed cells, good bioavailability and more than one mechanism of action to foil redundancy or crosstalk in signalling pathways. As more research effort is being targeted towards this area, the distinction between chemotherapeutic and chemopreventive agents is blurring. Chemotherapeutic drugs are now being designed to target over- or under-active signalling molecules within cancer cells, a philosophy which is just as relevant in chemoprevention. Development of dietary agents is particularly attractive because of our long-standing exposure to them, their relative lack of toxicity, and encouraging indications from epidemiology. The carcinogenic process relies on the cell's ability to proliferate abnormally, evade apoptosis, induce angiogenesis and metastasise to distant sites. In vitro studies with a number of different diet-derived compounds suggest that there are molecules capable of modulating each of these aspects of tumour growth. However, on the negative side many of them have rather poor bioavailability. The challenge is to uncover their multiple mechanisms of action in order to predict their

  17. Detoxifying cancer causing agents to prevent cancer.

    PubMed

    Hanausek, Margaret; Walaszek, Zbigniew; Slaga, Thomas J

    2003-06-01

    Different vitamins and other micronutrients in vegetables, fruits, and other natural plant products may prevent cancer development (carcinogenesis) by interfering with detrimental actions of mutagens, carcinogens, and tumor promoters. The goal of current studies in cancer prevention is to determine the mechanisms of synergistic action of the natural source compounds known to inhibit one or more stages of carcinogenesis, that is, initiation and promotion/progression. Many natural cancer preventive agents are effective inhibitors of tumor initiation, promotion, and/or progression. The mechanism of action is related to their abilities to prevent critical carcinogen metabolism and to increase detoxification of carcinogens and tumor promoters. The authors review here the potential role of the detoxification system and, in particular, the roles of D-glucaric acid and the enzyme beta-glucuronidase in early detection and prevention of cancer. There is now growing evidence for the possible control of different stages of the cancer induction by inhibiting beta-glucuronidase with D-glucaric acid derivatives, especially with its salts (D-glucarates). D-Glucaric acid has been found in many vegetables and fruits. Therefore, the consumption of fruits and vegetables naturally rich in D-glucaric acid or self-medication with D-glucaric acid derivatives such as calcium D-glucarate offers a promising cancer prevention approach.

  18. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy

    PubMed Central

    Wang, Kaikai; Zhang, Yifan; Wang, Juan; Yuan, Ahu; Sun, Minjie; Wu, Jinhui; Hu, Yiqiao

    2016-01-01

    Combination of photothermal and photodynamic therapy (PTT/PDT) offer unique advantages over PDT alone. However, to achieve synergetic PDT/PTT effect, one generally needs two lasers with different wavelengths. Near-infrared dye IR-780 could be used as photosensitizer both for PTT and PDT, but its lipophilicity limits its practical use and in vivo efficiency. Herein, a simple multifunctional IR780-loaded nanoplatform based on transferrin was developed for targeted imaging and phototherapy of cancer compatible with a single-NIR-laser irradiation. The self-assembled transferrin-IR780 nanoparticles (Tf-IR780 NPs) exhibited narrow size distribution, good photo-stability, and encouraging photothermal performance with enhanced generation of ROS under laser irradiation. Following intravenous injection, Tf-IR780 NPs had a high tumor-to-background ratio in CT26 tumor-bearing mice. Treatment with Tf-IR780 NPs resulted in significant tumor suppression. Overall, the Tf-IR780 NPs show notable targeting and theranostic potential in cancer therapy. PMID:27263444

  19. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics.

    PubMed

    Fu, Lei; Ke, Heng-Te

    2016-09-01

    Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics.

  20. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics

    PubMed Central

    Fu, Lei; Ke, Heng-Te

    2016-01-01

    Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics. PMID:27807499

  1. Imaging Prostate Cancer with Positron Emission Tomography

    DTIC Science & Technology

    2014-07-01

    AD_________________ Award Number: W81XWH-13-1-0125 TITLE: Imaging Prostate Cancer with Positron Emission Tomography...ABOVE ADDRESS. 1. REPORT DATE 2014 2. REPORT TYPE Annual 3. DATES COVERED 01 Sept 2013-31 Aug 2014 4. TITLE AND SUBTITLE Imaging Prostate Cancer ...proposal is to develop peptide based radiopharmaceuticals and evaluate them as PET imaging agents in preclinical animal models of prostate cancer

  2. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    PubMed

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  3. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    PubMed

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated

  4. Cancer Stratification by Molecular Imaging

    PubMed Central

    Weber, Justus; Haberkorn, Uwe; Mier, Walter

    2015-01-01

    The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers. PMID:25749472

  5. Sanguinarine: A Novel Agent Against Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    The traditional therapeutic and surgical approaches have not been successful in the management of prostate cancer (CaP). Natural plant - based...Natural plant -based products have shown promise as anticancer agents. Ideally, the anti- cancer drugs should specifically target the neoplastic cells... plant alkaloid sanguinarine against prostate cancer development in a nude mice xenograft model. Proc Amer Assoc Cancer Res 46: 1012-1013, 2005. 3

  6. Development of Lipid-Based Nanoparticles for In Vivo Targeted Delivery of Imaging Agents into Breast Cancer Cells

    DTIC Science & Technology

    2009-10-01

    Prognosis, 327-358 (2006). 17 Liapis, H., Flath, A. & Kitazawa , S . Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagn...opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position...0716 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER Anatoliy V. Popov, Ph.D. 5e. TASK NUMBER E-Mail: avpopov

  7. Polyphenols as cancer chemopreventive agents.

    PubMed

    Stoner, G D; Mukhtar, H

    1995-01-01

    This article summarizes available data on the chemopreventive efficacies of tea polyphenols, curcumin and ellagic acid in various model systems. Emphasis is placed upon the anticarcinogenic activity of these polyphenols and their proposed mechanism(s) of action. Tea is grown in about 30 countries and, next to water, is the most widely consumed beverage in the world. Tea is manufactured as either green, black, or oolong; black tea represents approximately 80% of tea products. Epidemiological studies, though inconclusive, suggest a protective effect of tea consumption on human cancer. Experimental studies of the antimutagenic and anticarcinogenic effects of tea have been conducted principally with green tea polyphenols (GTPs). GTPs exhibit antimutagenic activity in vitro, and they inhibit carcinogen-induced skin, lung, forestomach, esophagus, duodenum and colon tumors in rodents. In addition, GTPs inhibit TPA-induced skin tumor promotion in mice. Although several GTPs possess anticarcinogenic activity, the most active is (-)-epigallocatechin-3-gallate (EGCG), the major constituent in the GTP fraction. Several mechanisms appear to be responsible for the tumor-inhibitory properties of GTPs, including enhancement of antioxidant (glutathione peroxidase, catalase and quinone reductase) and phase II (glutathione-S-transferase) enzyme activities; inhibition of chemically induced lipid peroxidation; inhibition of irradiation- and TPA-induced epidermal ornithine decarboxylase (ODC) and cyclooxygenase activities; inhibition of protein kinase C and cellular proliferation; antiinflammatory activity; and enhancement of gap junction intercellular communication. Curcumin is the yellow coloring agent in the spice tumeric. It exhibits antimutagenic activity in the Ames Salmonella test and has anticarcinogenic activity, inhibiting chemically induced preneoplastic lesions in the breast and colon and neoplastic lesions in the skin, forestomach, duodenum and colon of rodents. In addition

  8. Chemopreventive Agent Development | Division of Cancer Prevention

    Cancer.gov

    [[{"fid":"174","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Chemoprevenentive Agent Development Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Chemoprevenentive Agent Development Research Group Homepage Logo","field_folder[und]":"15"},"type":"media","attributes":{"alt":"Chemoprevenentive Agent Development Research Group Homepage Logo","title":"Chemoprevenentive Agent Development Research Group Homepage Logo","heigh | Research on early chemopreventive agent development, from preclinical studies to phase I clinical trials.

  9. Precursors to radiopharmaceutical agents for tissue imaging

    DOEpatents

    Srivastava, Prem C.; Knapp, Jr., Furn F.

    1988-01-01

    A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.

  10. Novel Antimicrotubule Agents for Breast Cancer

    DTIC Science & Technology

    2011-10-01

    cancer cells by disrupting microtubule assembly and the spindle apparatus. Unlike taxanes that stabilize microtubules, vinca alkaloids destabilize...microtubules. The combination of stathmin-based peptide(s) with vinca alkaloids is particularly attractive since both agents inhibit microtubule

  11. Utility of a prototype liposomal contrast agent for x-ray imaging of breast cancer: a proof of concept using micro-CT in small animals

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Samei, E.; Ghaghada, K.; Saunders, R.; Yuan, H.; Qi, Y.; Hedlund, L. W.; Mukundan, S.

    2008-03-01

    Imaging tumor angiogenesis in small animals is extremely challenging due to the size of the tumor vessels. Consequently, both dedicated small animal imaging systems and specialized intravascular contrast agents are required. The goal of this study was to investigate the use of a liposomal contrast agent for high-resolution micro-CT imaging of breast tumors in small animals. A liposomal blood pool agent encapsulating iodine with a concentration of 65.5 mg/ml was used with a Duke Center for In Vivo Microscopy (CIVM) prototype micro-computed tomography (micro-CT) system to image the R3230AC mammary carcinoma implanted in rats. The animals were injected with equivalent volume doses (0.02 ml/kg) of contrast agent. Micro-CT with the liposomal blood pool contrast agent ensured a signal difference between the blood and the muscle higher than 450 HU allowing the visualization of the tumors 3D vascular architecture in exquisite detail at 100-micron resolution. The micro-CT data correlated well with the histological examination of tumor tissue. We also studied the ability to detect vascular enhancement with limited angle based reconstruction, i.e. tomosynthesis. Tumor volumes and their regional vascular percentage were estimated. This imaging approach could be used to better understand tumor angiogenesis and be the basis for evaluating anti-angiogenic therapies.

  12. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer.

  13. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum

    PubMed Central

    Chan, Minnie

    2016-01-01

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents. PMID:27398218

  14. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    PubMed

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  15. Infectious Agents and Cancer Epidemiology Research Webinar Series

    Cancer.gov

    Infectious Agents and Cancer Epidemiology Research Webinar Series highlights emerging and cutting-edge research related to infection-associated cancers, shares scientific knowledge about technologies and methods, and fosters cross-disciplinary discussions on infectious agents and cancer epidemiology.

  16. Synthesis of high affinity fluorine-substituted ligands for the androgen receptor. Potential agents for imaging prostatic cancer by positron emission tomography.

    PubMed

    Liu, A; Carlson, K E; Katzenellenbogen, J A

    1992-05-29

    We have prepared nine androgens substituted with fluorine at C-16 or C-20 to evaluate their potential, as positron emission tomographic (PET) imaging agents for prostatic cancer when labeled with the positron emitting radionuclide fluorine-18 (t1/2 = 110 min). These compounds represent members from the following classes of androgens: testosterone (T), 5 alpha-dihydrotestosterone (DHT), 7 alpha-methyl-19-nortestosterone (MNT), mibolerone (Mib), and metribolone (R1881). All of these compounds were prepared by functionalization of suitable androgen precursors, and the synthetic routes were developed to allow the introduction of fluorine by a fluoride ion displacement reaction late in the synthesis, as is required for the preparation of these compounds in fluorine-18 labeled form. We have also prepared four androgens in which the C-3 carbonyl or 17 beta-hydroxyl groups are replaced by fluorine. Most of the fluorine-substituted androgens show high affinity for the androgen receptor (AR), although fluorine substitution lowers their affinity by a small factor. None of the androgens where fluorine replaces oxygen functions at C-3 or C-17 have substantial affinity for AR. Derivatives of the natural androgens (T and DHT) as well as MNT have little affinity for other steroid hormone receptors (progesterone and mineralocorticoid receptors), whereas the Mib and R1881 derivatives have somewhat greater heterologous binding. With sex steroid binding protein, a human serum binding protein, the pattern of binding affinities is nearly the reverse, with derivatives of Mib, R1881 and MNT having low affinity, and DHT and T, high affinity. From these fluorine-substituted compounds, we can select several whose preparation in fluorine-18 labeled form for further tissue distribution studies is merited.

  17. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging.

    PubMed

    Ho, Chris Jun Hui; Balasundaram, Ghayathri; Driessen, Wouter; McLaren, Ross; Wong, Chi Lok; Dinish, U S; Attia, Amalina Binte Ebrahim; Ntziachristos, Vasilis; Olivo, Malini

    2014-06-18

    Photoacoustic imaging is a novel hybrid imaging modality combining the high spatial resolution of optical imaging with the high penetration depth of ultrasound imaging. Here, for the first time, we evaluate the efficacy of various photosensitizers that are widely used as photodynamic therapeutic (PDT) agents as photoacoustic contrast agents. Photoacoustic imaging of photosensitizers exhibits advantages over fluorescence imaging, which is prone to photobleaching and autofluorescence interference. In this work, we examined the photoacoustic activity of 5 photosensitizers: zinc phthalocyanine, protoporphyrin IX, 2,4-bis [4-(N,N-dibenzylamino)-2,6-dihydroxyphenyl] squaraine, chlorin e6 and methylene blue in phantoms, among which zinc phthalocyanine showed the highest photoacoustic activity. Subsequently, we evaluated its tumor localization efficiency and biodistribution at multiple time points in a murine model using photoacoustic imaging. We observed that the probe localized at the tumor within 10 minutes post injection, reaching peak accumulation around 1 hour and was cleared within 24 hours, thus, demonstrating the potential of photosensitizers as photoacoustic imaging contrast agents in vivo. This means that the known advantages of photosensitizers such as preferential tumor uptake and PDT efficacy can be combined with photoacoustic imaging capabilities to achieve longitudinal monitoring of cancer progression and therapy in vivo.

  18. Gold nanorods: contrast agents for photoacoustic imaging?

    NASA Astrophysics Data System (ADS)

    Ungureanu, C.; Gopal, R. Raja; van Leeuwen, T. G.; Manohar, S.

    2007-07-01

    Gold nanorods are seen as possible contrast agents for photoacoustic imaging since they have strong absorption peaks at near-infrared wavelengths. Also they are easy to conjugate with various proteins. If these particles can be conjugated with cancer affinity proteins then these particles can accumulate specifically at a tumor site. By detecting the presence of accumulation of gold nanorods inside the tissue the indirect detection of tumor can be realized. When these particles are irradiated with light pulses of appropriate temporal properties and energy the temperature around these particles can be high enough to induce apoptosis or necrosis in the surrounding cells. In order to use these particles at their full potential we must determine precisely their optical properties. We simulated the optical properties of gold nanorods synthesized by us using the DDSCAT code. The simulated spectra agree qualitatively with the spectra determined using spectrometry and also determined using photoacoustic spectroscopy. Further the values of molar extinction coefficient derived from the simulations were similar to the data measured experimentally by other groups. These results validated qualitatively the model used in the simulations. During simulations we found that the choice of the dielectric function used in simulations plays an important role in the results.

  19. Functional imaging for prostate cancer: therapeutic implications.

    PubMed

    Mari Aparici, Carina; Seo, Youngho

    2012-09-01

    Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities computed tomography (CT) or magnetic resonance imaging (single photon emission computed tomography [SPECT]/CT, positron emission tomography [PET]/CT, and PET/magnetic resonance imaging), are promising tools for the management of prostate cancer, particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regard to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, although the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging, including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects.

  20. Novel agents for advanced pancreatic cancer

    PubMed Central

    Akinleye, Akintunde; Iragavarapu, Chaitanya; Furqan, Muhammad; Cang, Shundong; Liu, Delong

    2015-01-01

    Pancreatic cancer is relatively insensitive to conventional chemotherapy. Therefore, novel agents targeting dysregulated pathways (MAPK/ERK, EGFR, TGF-β, HEDGEHOG, NOTCH, IGF, PARP, PI3K/AKT, RAS, and Src) are being explored in clinical trials as monotherapy or in combination with cytotoxic chemotherapy. This review summarizes the most recent advances with the targeted therapies in the treatment of patients with advanced pancreatic cancer. PMID:26369833

  1. Silver Nanoplate Contrast Agents for In Vivo Molecular Photoacoustic Imaging

    PubMed Central

    Homan, Kimberly A.; Souza, Michael; Truby, Ryan; Luke, Geoffrey P.; Green, Christopher; Vreeland, Erika; Emelianov, Stanislav

    2012-01-01

    Silver nanoplates are introduced as a new photoacoustic contrast agent that can be easily functionalized for molecular photoacoustic imaging in vivo. Methods are described for synthesis, functionalization, and stabilization of silver nanoplates using biocompatible (“green”) reagents. Directional antibody conjugation to the nanoplate surface is presented along with proof of molecular sensitivity in vitro with pancreatic cancer cells. Cell viability tests show the antibody-conjugated silver nanoplates to be nontoxic at concentrations up to 1 mg/ml. Furthermore, the silver nanoplates' potential for in vivo application as a molecularly sensitive photoacoustic contrast agent is demonstrated using an orthotopic mouse model of pancreatic cancer. Results of these studies suggest that the synthesized silver nanoplates are well suited for a host of biomedical imaging and sensing applications. PMID:22188516

  2. Molecular imaging agents: impact on diagnosis and therapeutics in oncology

    PubMed Central

    Seaman, Marc E.; Contino, Gianmarco; Bardeesy, Nabeel; Kelly, Kimberly A.

    2011-01-01

    Imaging has become a crucial tool in oncology throughout the course of disease detection and management and is an integral part of clinical trials. Anatomic and functional imaging led the way, providing valuable information used in the diagnosis of disease, including data regarding the size and location of the tumor and on physiologic processes such as blood flow and perfusion. As understanding of cancer pathogenesis has advanced through the identification of genetic, biochemical, and cellular alterations in evolving tumors, emphasis has been made on developing methods to detect and serially monitor such alterations. This class of approaches is referred to as molecular imaging. Molecular imaging offers the potential for increasingly sensitive and specific visualization and quantification of biological processes at the cellular and molecular level. These approaches have become established as essential tools for cancer research, early cancer detection and staging and monitoring and predicting response to targeted therapies. Here, we will discuss recent advances in the development of molecular imaging agents and their implementation in basic cancer research as well as in more rationalized approaches to cancer care. PMID:20633310

  3. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Deng, Shengming; Zhang, Wei; Zhang, Bin; Hong, Ruoyu; Chen, Qing; Dong, Jiajia; Chen, Yinyiin; Chen, Zhiqiang; Wu, Yiwei

    2015-01-01

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) modified with a novel cyclic arginine-glycine-aspartate (RGD) peptide were made and radiolabeled as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. The probe was tested both in vitro and in vivo to determine its receptor targeting efficacy and feasibility for SPECT and MRI. The radiochemical syntheses of 125I-cRGD-USPIO were accomplished with a radiochemical purity of 96.05 ± 0.33 %. High radiochemical stability was found in fresh human serum and in phosphate-buffered saline. The average hydrodynamic size of 125I-cRGD-USPIO determined by dynamic light scattering was 51.3 nm. Results of in vitro experiments verified the specificity of the radiolabeled nanoparticles to tumor cells. Preliminary biodistribution studies of 125I-radiolabeled cRGD-USPIO in Bcap37-bearing nude mice showed that it had long circulation half-life, high tumor uptake, and high initial blood retention with moderate liver uptake. In vivo tumor targeting and uptake of the radiolabeled nanoparticles in mice model were visualized by SPECT and MRI collected at different time points. Our results strongly indicated that the 125I-cRGD-USPIO could be used as a promising bifunctional radiotracer for early clinical tumor detection with high sensitivity and high spatial resolution by SPECT and MRI.

  4. Bone-targeting agents in prostate cancer

    PubMed Central

    Suzman, Daniel L.; Boikos, Sosipatros A.; Carducci, Michael A.

    2014-01-01

    Bone metastases are present in the vast majority of men with advanced prostate cancer, representing the main cause for morbidity and mortality. Recurrent or metastatic disease is managed initially with androgen deprivation but the majority of the patients eventually will progress to castration-resistant prostate cancer, with patients developing bone metastases in most of the cases. Survival and growth of the metastatic prostate cancer cells is dependent on a complex microenvironment (onco-niche) that includes the osteoblasts, the osteoclasts, the endothelium, and the stroma. This review summarizes agents that target the pathways involved in this complex interaction between prostate cancer and bone micro-environment and aim to transform lethal metastatic prostate cancer into a chronic disease. PMID:24398856

  5. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  6. Imaging agent and method of use

    DOEpatents

    Wieland, Donald M.; Brown, Lawrence E.; Beierwaltes, William H.; Wu, Jiann-long

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla.

  7. Imaging agent and method of use

    DOEpatents

    Wieland, D.M.; Brown, L.E.; Beierwaltes, W.H.; Wu, J.L.

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla. No Drawings

  8. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  9. Antibody Based Imaging Strategies of Cancer

    PubMed Central

    Warram, Jason M; de Boer, Esther; Sorace, Anna G; Chung, Thomas K; Kim, Hyunki; Pleijhuis, Rick G; van Dam, Gooitzen M; Rosenthal, Eben L

    2014-01-01

    Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment. PMID:24913898

  10. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2015-10-01

    INVESTIGATOR: Dr. Michael S. Yu CONTRACTING ORGANIZATION: University of Utah Salt Lake City, UT 84112 REPORT DATE: October 2015 TYPE OF REPORT: Annual...SUBTITLE Imaging Prostate Cancer Microenvironment by Collagen Hybridization 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0555 5c. PROGRAM ELEMENT...peptide (CMP) as a collagen targeting agents that will allow imaging of invasive PCa. Since CMP binds to unstructured collagens more readily, it is

  11. Virtual cancer image data warehouse.

    PubMed

    Oyama, H; Wakao, F; Mishina, T; Lu, Y; Honjo, A

    1997-01-01

    We previously developed a system with which we have created more than 100 virtual cancer images from CT or MR data of individual patients with cancer (Cancer Edutainment Virtual Reality Theater: CEVRT). These images can be used to help explain procedures, findings, etc. to the patient, to obtain informed consent, to simulate surgery, and to estimate cancer invasion to surrounding organs. We recently developed a web-based object-oriented database both to access these cancer images and to register medical images at international research sites via the Internet. In this report, we introduce an international medical VR data warehouse created using an object-oriented database.

  12. Magnetic resonance imaging with hyperpolarized agents: methods and applications.

    PubMed

    Adamson, Erin; Ludwig, Kai; Mummy, David; Fain, Sean B

    2017-04-06

    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into 1) a brief introduction, 2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, 3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, 4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed

  13. Contrast dispersion imaging for cancer localization.

    PubMed

    Mischi, Massimo; Wijkstra, Hessel

    2014-01-01

    Cancer growth is associated with angiogenic processes in many types of cancer. Several imaging strategies have therefore been developed that target angiogenesis as a marker for cancer localization. To this end, intravascular and extravascular tissue perfusion is typically assessed by dynamic contrast enhanced (DCE) ultrasound (US) and MRI. All the proposed strategies, however, overlook important changes in the microvascular architecture that result from angiogenic processes. To overcome these limitations, we have recently introduced a new imaging strategy that analyzes the intravascular dispersion kinetics of contrast agents spreading through the microvasculature. Contrast dispersion is mainly determined by microvascular multi-path trajectories, reflecting the underlying microvascular architecture. This paper reviews the results obtained for prostate cancer localization by US and MRI dispersion imaging, also presenting the latest new developments and future perspectives.

  14. Multifunctional Theranostic Agent of Cu2(OH)PO4 Quantum Dots for Photoacoustic Image-Guided Photothermal/Photodynamic Combination Cancer Therapy.

    PubMed

    Guo, Wei; Qiu, Zhenyu; Guo, Chongshen; Ding, Dandan; Li, Tianchan; Wang, Fei; Sun, Jianzhe; Zheng, Nannan; Liu, Shaoqin

    2017-03-22

    Image-guided phototherapy is considered to be a prospective technique for cancer treatment because it can provide both oncotherapy and bioimaging, thus achieving an optimized therapeutic efficacy and higher treatment accuracy. Compared to complicated systems with multiple components, using a single material for this multifunctional purpose is preferable. In this work, we strategically fabricated poly(acrylic acid)- (PAA-) coated Cu2(OH)PO4 quantum dots [denoted as Cu2(OH)PO4@PAA QDs], which exhibit a strong near-infrared photoabsorption ability. As a result, an excellent photothermal conversion ability and the photoactivated formation of reactive oxygen species could be realized upon NIR irradiation, concurrently meeting the basic requirements for photothermal and photodynamic therapies. Moreover, phototherapeutic investigations on both cervical cancer cells in vitro and solid tumors of an in vivo mice model illustrated the effective antitumor effects of Cu2(OH)PO4@PAA upon 1064-nm laser irradiation, with no detectable lesions in major organs during treatment. Meanwhile, Cu2(OH)PO4@PAA is also an exogenous contrast for photoacoustic tomography (PAT) imaging to depict tumors under NIR irradiation. In brief, the Cu2(OH)PO4@PAA QDs prepared in this work are expected to serve as a multifunctional theranostic platform.

  15. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  16. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  17. Plant products as protective agents against cancer.

    PubMed

    Aruna, K; Sivaramakrishnan, V M

    1990-11-01

    Out of various spices and leafy vegetables screened for their influence on the carcinogen-detoxifying enzyme, glutathione-S-transferase (GST) in Swiss mice, cumin seeds, poppy seeds, asafoetida, turmeric, kandathipili, neem flowers, manathakkali leaves, drumstick leaves, basil leaves and ponnakanni leaves increased GST activity by more than 78% in the stomach, liver and oesophagus, - high enough to be considered as protective agents against carcinogenesis. Glutathione levels were also significantly elevated in the three tissues by these plant products. All of them except neem flowers, significantly suppressed (in vivo) the chromosome aberrations (CA) caused by benzo(a)pyrene in mouse bone marrow cells. Multiple CA and exchanges reflecting the severity of damage within a cell were significantly suppressed by these nine plant products. The results suggest that these nine plant products are likely to suppress carcinogenesis and can act as protective agents against cancer.

  18. Hetero-bivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2013-09-01

    Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING...SUBTITLE 5a. CONTRACT NUMBER Hetero-bivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b...prostate cancer by targeting simultaneously PSMA and hepsin, which are highly expressed in advanced and metastatic prostate cancer. In Year 3, we

  19. Acoustic and photoacoustic molecular imaging of cancer.

    PubMed

    Wilson, Katheryne E; Wang, Tzu Yin; Willmann, Jürgen K

    2013-11-01

    Ultrasound and combined optical and ultrasonic (photoacoustic) molecular imaging have shown great promise in the visualization and monitoring of cancer through imaging of vascular and extravascular molecular targets. Contrast-enhanced ultrasound with molecularly targeted microbubbles can detect early-stage cancer through the visualization of targets expressed on the angiogenic vasculature of tumors. Ultrasonic molecular imaging can be extended to the imaging of extravascular targets through use of nanoscale, phase-change droplets and photoacoustic imaging, which provides further molecular information on cancer given by the chemical composition of tissues and by targeted nanoparticles that can interact with extravascular tissues at the receptor level. A new generation of targeted contrast agents goes beyond merely increasing imaging signal at the site of target expression but shows activatable and differential contrast depending on their interactions with the tumor microenvironment. These innovations may further improve our ability to detect and characterize tumors. In this review, recent developments in acoustic and photoacoustic molecular imaging of cancer are discussed.

  20. Intraoperative imaging using intravascular contrast agent

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek

    2016-03-01

    Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.

  1. Application of GFP imaging in cancer.

    PubMed

    Hoffman, Robert M

    2015-04-01

    Multicolored proteins have allowed the color-coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Non-invasive imaging with fluorescent proteins enabled the dynamics of metastatic cancer to be followed in real time in individual animals. Non-invasive imaging of cancer cells expressing fluorescent proteins has allowed the real-time determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm can visualize the nuclear-cytoplasmic dynamics of cancer cells in vivo including: mitosis, apoptosis, cell-cycle position, and differential behavior of nucleus and cytoplasm that occurs during cancer-cell deformation and extravasation. Recent applications of the technology described here include linking fluorescent proteins with cell-cycle-specific proteins such that the cells change color from red to green as they transit from G1 to S phases. With the macro- and micro-imaging technologies described here, essentially any in vivo process can be imaged, giving rise to the new field of in vivo cell biology using fluorescent proteins.

  2. Molecular Imaging of Ovarian Cancer

    PubMed Central

    Sharma, Sai Kiran; Nemieboka, Brandon; Sala, Evis; Lewis, Jason S.; Zeglis, Brian M.

    2016-01-01

    Ovarian cancer is the most lethal gynecologic malignancy and the fifth leading cause of cancer-related death in women. Over the past decade, medical imaging has played an increasingly valuable role in the diagnosis, staging, and treatment planning of the disease. In this “Focus on Molecular Imaging” review, we seek to provide a brief yet informative survey of the current state of the molecular imaging of ovarian cancer. The article is divided into sections according to modality, covering recent advances in the MR, PET, SPECT, ultrasound, and optical imaging of ovarian cancer. Although primary emphasis is given to clinical studies, preclinical investigations that are particularly innovative and promising are discussed as well. Ultimately, we are hopeful that the combination of technologic innovations, novel imaging probes, and further integration of imaging into clinical protocols will lead to significant improvements in the survival rate for ovarian cancer. PMID:27127223

  3. Cancer nanomedicine: from drug delivery to imaging.

    PubMed

    Chow, Edward Kai-Hua; Ho, Dean

    2013-12-18

    Nanotechnology-based chemotherapeutics and imaging agents represent a new era of "cancer nanomedicine" working to deliver versatile payloads with favorable pharmacokinetics and capitalize on molecular and cellular targeting for enhanced specificity, efficacy, and safety. Despite the versatility of many nanomedicine-based platforms, translating new drug or imaging agents to the clinic is costly and often hampered by regulatory hurdles. Therefore, translating cancer nanomedicine may largely be application-defined, where materials are adapted only toward specific indications where their properties confer unique advantages. This strategy may also realize therapies that can optimize clinical impact through combinatorial nanomedicine. In this review, we discuss how particular materials lend themselves to specific applications, the progress to date in clinical translation of nanomedicine, and promising approaches that may catalyze clinical acceptance of nano.

  4. Basal cell cancer (image)

    MedlinePlus

    Basal cell cancer is a malignant skin tumor involving cancerous changes of basal skin cells. Basal cell skin cancers ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and ...

  5. Evidence-Based Cancer Imaging

    PubMed Central

    Khorasani, Ramin

    2017-01-01

    With the advances in the field of oncology, imaging is increasingly used in the follow-up of cancer patients, leading to concerns about over-utilization. Therefore, it has become imperative to make imaging more evidence-based, efficient, cost-effective and equitable. This review explores the strategies and tools to make diagnostic imaging more evidence-based, mainly in the context of follow-up of cancer patients. PMID:28096722

  6. Novel Antimicrotubule Agents for Breast Cancer

    DTIC Science & Technology

    2010-10-01

    peptide(s) in breast cancer cells exposed to the different peptide(s) by immunostaining with Alexa Fluor 488 conjugated anti -HA antibody . Since stathm...the cells were fixed, permeabilized and stained with Alexa Fluor 488 conjugated anti -HA antibody . A, B & C are represen tative images of T47D cells...exposed to Sc-P , W-SP and W -SaP peptides respectively. The left panel shows im ages stained with Alexa Fluor 488 conjugated anti -HA antibody

  7. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  8. Modulation of apoptosis by cancer chemopreventive agents.

    PubMed

    D'Agostini, Francesco; Izzotti, Alberto; Balansky, Roumen M; Bennicelli, Carlo; De Flora, Silvio

    2005-12-11

    A review of almost 2000 studies showed that the large majority of 39 putative cancer chemopreventive agents induced "spontaneous" apoptosis. Inhibition of the programmed cell death triggered by a variety of stimuli was consistently reported only with ascorbic acid, alpha-tocopherol, and N-acetylcysteine (NAC). We performed experimental studies in rodents exposed to cigarette smoke, either mainstream (MCS) or environmental (ECS), and UV-A/B-containing light. The nonsteroidal anti-inflammatory drug sulindac did not affect the apoptotic process in the skin of light-exposed mice and in the lungs of ECS-exposed mice. Likewise, 5,6-benzoflavone, indole-3-carbinol, 1,2-dithiole-3-thione and oltipraz failed to modulate apoptosis in the respiratory tract of ECS-exposed rats. Phenethyl isothiocyanate further enhanced the frequency of apoptosis in pulmonary alveolar macrophages and bronchial epithelial cells, and upregulated several genes in the lung of ECS-exposed rats. Both individually and in combination with oltipraz, NAC inhibited apoptosis in the respiratory tract of rats exposed either to MCS or ECS. Moreover, NAC attenuated the ECS-related overexpression of proapoptotic genes and normalized the levels of proapoptotic proteins in rat lung. The transplacental administration of NAC to mice considerably attenuated gene overexpression in the liver of fetuses exposed to ECS throughout pregnancy. Inhibition of apoptosis by chemopreventive agents reflects their ability to counteract certain upstream signals, such as genotoxic damage, redox imbalances, and other forms of cellular stress that trigger apoptosis. On the other hand, enhancement of apoptosis is a double-edged sword, since it represents a protective mechanism in carcinogenesis but may contribute to the pathogenesis of other degenerative diseases. We suggest that stimulation of apoptosis by so many chemopreventive agents, as reported in the literature, may often reflect the occurrence of toxic effects at high doses.

  9. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    PubMed

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  10. Natural anti-cancer agents: Implications in gemcitabine-resistant pancreatic cancer treatment.

    PubMed

    Marasini, Bishal; Sahu, Ravi P

    2017-03-15

    Pancreatic cancer is one of the most lethal malignancy accounting for the fourth leading cause of cancer-related deaths in the United States. Among several explored anti-cancer agents, Gemcitabine, a nucleoside analogue remained a front line chemotherapeutic agent for the treatment of pancreatic cancer. However, gemcitabine exerts a low response rate with limited progression free survival in cancer patients due to cellular resistance of pancreatic tumors to this therapy. Several chemotherapeutic agents have been explored in combination with gemcitabine against pancreatic cancer with overall mixed responses and survival rates. Naturally occurring dietary agents possess promising anti-cancer properties and have been shown to target various oncogenic signaling pathways in in-vitro and in-vivo pancreatic cancer models. Multiple studies using natural compounds have shown increased therapeutic efficacy of gemcitabine in pancreatic cancer models. This review is focused on recent updates on preclinical and clinical studies utilizing natural anti-cancer agents with gemcitabine against pancreatic cancer.

  11. Functional imaging in lung cancer

    PubMed Central

    Harders, S W; Balyasnikowa, S; Fischer, B M

    2014-01-01

    Lung cancer represents an increasingly frequent cancer diagnosis worldwide. An increasing awareness on smoking cessation as an important mean to reduce lung cancer incidence and mortality, an increasing number of therapy options and a steady focus on early diagnosis and adequate staging have resulted in a modestly improved survival. For early diagnosis and precise staging, imaging, especially positron emission tomography combined with CT (PET/CT), plays an important role. Other functional imaging modalities such as dynamic contrast-enhanced CT (DCE-CT) and diffusion-weighted MR imaging (DW-MRI) have demonstrated promising results within this field. The purpose of this review is to provide the reader with a brief and balanced introduction to these three functional imaging modalities and their current or potential application in the care of patients with lung cancer. PMID:24289258

  12. Squamous cell cancer (image)

    MedlinePlus

    ... a malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It is more likely than basal cell cancer to spread (metastasize) to other locations, including internal ...

  13. The cost of developing imaging agents for routine clinical use.

    PubMed

    Nunn, Adrian D

    2006-03-01

    The objective of this study was to estimate the financial cost of developing new imaging agents for clinical use and to discuss the effects of these costs on the future clinical imaging agent environment. Publicly available financial data from the annual reports of major companies developing and selling imaging agents were examined and the data used to develop cost estimates. These estimates were compared with the in-depth data and analyses available for the development costs of therapeutic drugs. The cost of developing a drug for diagnostic imaging to commercialization is in the 100 dollars to 200 million dollars range, whereas a blockbuster imaging drug has current sales of 200 dollars to 400 million dollars. Most of these blockbuster imaging agents have been on the market for some time. The majority provide morphologic images with general indications in a slowly changing section of the market. Future agents will most likely address smaller markets and be in the rapidly developing molecular imaging field. The costs are high and are a significant brake on the development of imaging agents for commercialization. If new imaging agents are to realize their commercial potential, ways must be found to make the financials more attractive. The prices per dose are currently low so they must either be greatly increased for new imaging agents, with a corresponding increase in the value of the information they provide, or the use of imaging agents must be widened and/or their development made less costly in time and money. Without addressing these issues, the commercialization of new imaging agents will continue to be slow and may get slower. This will impact the progress of imaging agents toward use as validated biomarkers.

  14. Cancer-associated infectious agents and epigenetic regulation.

    PubMed

    Vedham, Vidya; Verma, Mukesh

    2015-01-01

    Infectious agents are one of the factors which contribute to cancer development. Few examples include human papilloma virus in cervical cancer, hepatitis virus in hepatocellular carcinoma, herpes virus in Kaposi's sarcoma, Epstein-Barr virus in nasopharyngeal carcinoma, human T-cell lymphotropic virus type-1 (HTLV-1) in T-cell leukemia and lymphoma, Helicobacter pylori in gastric cancer. These agents cause genomic instability in the host and most of them affect host immune system. Infectious agents may integrate in the host genome although their sit of integration is not fixed. Expression of some infectious agents involves epigenetic regulation by DNA methylation, histone modification, miRNA level alteration, and chromatin condensation. This chapter provides examples where epigenetic regulation has been reported in cancer-associated infectious agents. Epigenetic inhibitors and their potential in cancer control and treatment are also discussed.

  15. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging

    PubMed Central

    Daryaei, Iman; Pagel, Mark D

    2016-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191

  16. Nanomedicines for image-guided cancer therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zheng, Jinzi

    2016-09-01

    Imaging technologies are being increasingly employed to guide the delivery of cancer therapies with the intent to increase their performance and efficacy. To date, many patients have benefited from image-guided treatments through prolonged survival and improvements in quality of life. Advances in nanomedicine have enabled the development of multifunctional imaging agents that can further increase the performance of image-guided cancer therapy. Specifically, this talk will focus on examples that demonstrate the benefits and application of nanomedicine in the context of image-guide surgery, personalized drug delivery, tracking of cell therapies and high precision radiotherapy delivery.

  17. Prevention of cancer by agents that suppress oxygen radical formation.

    PubMed

    Troll, W

    1991-01-01

    The prevention of cancer by agents in our diet has led to the concept that oxygen radicals are a necessary component of a variety of human cancers including breast, colon and prostatic cancer. These cancers are putatively promoted by estradiol, bile acids and androgens. Epidemiological studies have shown that these cancers are suppressed in vegetarian populations. Vegetable components that may be responsible for this cancer prevention are Vitamin A, retinoids and protease inhibitors (PIs). These agents have been shown to suppress the formation of hydrogen peroxide in promoter-induced neutrophils. They also have been shown to block two-stage carcinogenesis and breast cancer when fed to animals. PIs also suppress experimentally-induced colon cancer and spontaneous liver cancer. Moreover, a new series of cancer-preventive agents, Sarcophytols (isolated by Fujiki and co-workers), are capable of suppressing two-stage carcinogenesis, breast and colon cancers in rodents when given in low concentrations. Sarcophytols were also active suppressors of H2O2 formation of 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced neutrophils. These observations point to an essential role of oxygen radicals in carcinogenesis. Suppression of the oxygen radical response of neutrophils in relation to cancer preventive agents is a facile assay of these important substances. The mechanism of action of oxygen radicals in promoting carcinogenesis is a multiple one, including: (1) activation of oncogenes, (2) modification of DNA bases, and (3) formation of single-strand breaks leading to poly(ADP)ribose polymerase activation.

  18. Molecular photoacoustic imaging using gold nanoparticles as a contrast agent

    NASA Astrophysics Data System (ADS)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher P.; Zhang, Qiang; Cobley, Claire M.; Xia, Younan; Wang, Lihong V.

    2010-02-01

    Gold nanoparticles have received much attention due to their potential diagnostic and therapeutic applications. Gold nanoparticles are attractive in many biomedical applications because of their biocompatibility, easily modifiable surfaces for targeting, lack of heavy metal toxicity, wide range of sizes (35-100 nm), tunable plasmonic resonance peak, encapsulated site-specific drug delivery, and strong optical absorption in the near-infrared regime. Specifically, due to their strong optical absorption, gold nanoparticles have been used as a contrast agent for molecular photoacoustic (PA) imaging of tumor. The plasmonic resonance peak of the gold nanocages (AuNCs) was tuned to the near-infrared region, and the ratio of the absorption cross-section to the extinction cross-section was approximately ~70%, as measured by PA sensing. We used PEGylated gold nanocages (PEG-AuNCs) as a passive targeting contrast agent on melanomas. After 6-h intravenous injection of PEG-AuNCs, PA amplitude was increased by ~14 %. These results strongly suggest PA imaging paired with AuNCs is a promising diagnostic tool for early cancer detection.

  19. Quantitative Imaging in Cancer Clinical Trials

    PubMed Central

    Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.

    2015-01-01

    As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162

  20. Quantitative imaging as cancer biomarker

    NASA Astrophysics Data System (ADS)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  1. Tailored Near-Infrared Contrast Agents for Image Guided Surgery

    PubMed Central

    Njiojob, Costyl N.; Owens, Eric A.; Narayana, Lakshminarayana; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-01-01

    The success of near-infrared (NIR) fluorescence to be employed for intraoperative imaging relies on the ability to develop a highly stable, NIR fluorescent, nontoxic, biocompatible, and highly excreted compound that retains a reactive functionality for conjugation to a cancer-recognizing peptide. Herein, systematic modifications to previously detailed fluorophore ZW800-1 are explored. Specific modifications, including the isosteric replacement of the O atom of ZW800-1, include nucleophilic amine and sulfur species attached to the heptamethine core. These novel compounds have shown similar satisfactory results in biodistribution and clearance while also expressing increased stability in serum. Most importantly, all of the synthesized and evaluated compounds display a reactive functionality (either a free amino group or carboxylic acid moiety) for further bioconjugation. The results obtained from the newly prepared derivatives demonstrate that the central substitution with the studied linking agents retains the ultralow background in vivo performance of the fluorophores regardless of the total net charge. PMID:25711712

  2. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors

    PubMed Central

    Rivlin, Michal; Navon, Gil

    2016-01-01

    The efficacy of glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) as agents for chemical exchange saturation transfer (CEST) magnetic resonance molecular imaging of tumors is demonstrated. Both agents reflect the metabolic activity and malignancy of the tumors. The method was tested in two types of tumors implanted orthotopically in mice: 4T1 (mouse mammary cancer cells) and MCF7 (human mammary cancer cells). 4T1 is a more aggressive type of tumor than MCF7 and exhibited a larger CEST effect. Two methods of administration of the agents, intravenous (IV) and oral (PO), gave similar results. The CEST MRI observation of lung metastasis was confirmed by histology. The potential of the clinical application of CEST MRI with these agents for cancer diagnosis is strengthened by their lack of toxicity as can be indicated from their wide use as food supplements. PMID:27600054

  3. Optical contrast agents to visualize molecular expression in breast cancer

    NASA Astrophysics Data System (ADS)

    Langsner, Robert James

    Breast cancer is the second leading cause of death of women in the United States. Improvements in screening technology have increased the breast cancer incidence rate, as smaller lesions are being detected. Due to the small size of lesions, patients can choose to receive breast conservation therapy (BCT) rather than a modified radical mastectomy. Even though the breast retains cosmesis after BCT, there is an increased risk of the patient having residual microscopic disease, known as positive margins. Patients with positive margins receive increased radiation and have an increased chance of second surgery. Pathology with hematoxylin and eosin (H&E) remains the gold standard for diagnosing margin status in patients. Intraoperative pathology has been shown to reduce the rate of positive margins in BCT. However, a minority of surgery centers have intraoperative pathology centers, limiting the number of patients that receive this standard of care. The expression profiles of surface receptors such as ErbB2 (HER2-positive) and epidermal growth factor receptor (EGFR) provide information about the aggressiveness of a particular tumor. Recent research has shown that there was elevated EGFR expression in patients with a local recurrence even though the biopsies were assessed to be disease free using standard H&E. If the physicians had known the molecular expression of these biopsies, a different treatment regimen or excision of more tissue might have prevented the recurrence. This thesis investigates targeted molecular contrast agents that enhance the visualization of molecular markers such as glucose transporters (GLUTs) and growth factor receptors in tissue specimens. First, application of 2-NBDG, a fluorescent deoxyglucose, enhances signal in cancerous tissue with a 20-minute incubation. Then, antibody functionalized silica-gold nanoshells enhance the visualization of ErbB2 overexpression in specimens with a 5-minute incubation. To image these contrast agents in cancerous

  4. Rectal imaging and cancer.

    PubMed

    Vining, D J

    1998-09-01

    Rectal imaging has evolved substantially during the past 25 years and now offers surgeons exquisite anatomic detail and physiologic information. Dynamic cystoproctography, helical computed tomography, endoscopic ultrasonography, endorectal magnetic resonance imaging, and immunoscintigraphy have become standards for the diagnosis of rectal disease, staging of neoplasia, and survey of therapeutic results. The indications, limitations, and relative costs of current imaging methods are reviewed, and advances in imaging technology that promise future benefits to colorectal surgeons are introduced.

  5. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging.

  6. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  7. Radiolabelled spiroperidol: Possible pituitary adenoma imaging agent

    SciTech Connect

    Otto, C.A.; Marshall, J.C.; Lloyd, R.V.; Sherman, P.S.; Wieland, D.M.

    1984-01-01

    Prolactin-secreting pituitary adenomas are the most common type of pituitary tumors. Detection currently depends on physical symptoms, elevated serum prolactin levels and CT scans. An imaging agent which specifically localized in prolactinomas based on some functional characteristic of the tumor would be of considerable clinical value not only for early detection but also for monitoring of therapy. Tritiated spiroperidol (/sup 3/H-Sp) was selected for evaluation based on 1) the presence of D-2 receptors in normal anterior pituitary and adenoma tissue and 2) the high affinity of spiroperidol for D-2 receptors. Recent data have established that implantation of diethylstilbestrol (DES) in Fischer F344 rats induced prolactin-secreting tumors in the pituitary. /sup 3/HSp was evaluated in pituitary tissue of both control and DES-treated rats. /sup 3/HSp concentration in normal female anterior pituitary tissue was found to be about 0.27% kg dose/g from 5 min to 4hrs. This value was about 10 times levels in cortex, cerebellum and striatum. In DES-treated rats the % kg dose/g values remained approximately the same. A 5-fold increase in serum prolactin was associated with a 6-fold increase in both pituitary weight and % dose/organ. The data suggests that although total pituitary weight has increased due to tumor growth (reflected in increased values for % dose/organ), the relative number of receptors per g of tissue has remained constant. This result is in agreement with observations of others on D-2 receptor concentration in prolactinomas.

  8. Molecular Imaging of Immunotherapy Targets in Cancer

    PubMed Central

    Ehlerding, Emily B.; England, Christopher G.; McNeel, Douglas G.

    2016-01-01

    Immunotherapy has emerged as a promising alternative in the arsenal against cancer by harnessing the power of the immune system to specifically target malignant tissues. As the field of immunotherapy continues to expand, researchers will require newer methods for studying the interactions between the immune system, tumor cells, and immunotherapy agents. Recently, several noninvasive imaging strategies have been used to map the biodistribution of immune checkpoint molecules, monitor the efficacy and potential toxicities of the treatments, and identify patients who are likely to benefit from immunotherapies. In this review, we outline the current applications of noninvasive techniques for the preclinical imaging of immunotherapy targets and suggest future pathways for molecular imaging to contribute to this developing field. PMID:27469363

  9. Sanguinarine: A Novel Agent Against Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    surgical approaches have not been successful in the management of prostate cancer (CaP). Natural plant - based products have shown promise as anticancer...or treatment of prostate cancer . Several studies have shown that plant -derived alkaloids possess remarkable anticancer effects. Sanguinarine, an...Preclinical evaluation of plant alkaloid sanguinarine against prostate cancer development in a nude mice xenograft model. Proc Amer Assoc Cancer

  10. Ultrasound for molecular imaging and therapy in cancer

    PubMed Central

    Kaneko, Osamu F.

    2012-01-01

    Over the past decade, molecularly-targeted contrast enhanced ultrasound (ultrasound molecular imaging) has attracted significant attention in preclinical research of cancer diagnostic and therapy. Potential applications for ultrasound molecular imaging run the gamut from early detection and characterization of malignancies to monitoring treatment responses and guiding therapies. There may also be a role for ultrasound contrast agents for improved delivery of chemotherapeutic drugs and gene therapies across biological barriers. Currently, a first Phase 0 clinical trial in patients with prostate cancer assesses toxicity and feasibility of ultrasound molecular imaging using contrast agents targeted at the angiogenic marker vascular endothelial growth factor receptor type 2 (VEGFR2). This mini-review highlights recent advances and potential applications of ultrasound molecular imaging and ultrasound-guided therapy in cancer. PMID:23061039

  11. HER2 Targeted Molecular MR Imaging Using a De Novo Designed Protein Contrast Agent

    PubMed Central

    Qiao, Jingjuan; Li, Shunyi; Wei, Lixia; Jiang, Jie; Long, Robert; Mao, Hui; Wei, Ling; Wang, Liya; Yang, Hua; Grossniklaus, Hans E.; Liu, Zhi-Ren; Yang, Jenny J.

    2011-01-01

    The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery. PMID:21455310

  12. Quantitative Imaging in Cancer Clinical Trials.

    PubMed

    Yankeelov, Thomas E; Mankoff, David A; Schwartz, Lawrence H; Lieberman, Frank S; Buatti, John M; Mountz, James M; Erickson, Bradley J; Fennessy, Fiona M M; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L; Linden, Hannah M; Kinahan, Paul E; Zhao, Binsheng; Hylton, Nola M; Gillies, Robert J; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L

    2016-01-15

    As anticancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. Although traditional, anatomic CT, and MRI examinations are useful in many settings, increasing evidence suggests that these methods cannot answer the fundamental biologic and physiologic questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients and to provide a more efficient path for the development of improved targeted therapies.

  13. Optical Imaging of Mammaglobin Expression in Breast Cancer

    DTIC Science & Technology

    2005-05-01

    MMG or its putative receptors for early detection of breast cancer. 15. SUBJECT TERMS Optical imaging; optical contrast agents; radiopharmaceuticals ...primer. 5 2 nd Annual Meeting of the Society for Nuclear Medicine , Toronto, Canada (June 20, 2005) 3. S. Achilefu: Harnessing the power of light to...Applications of optical molecular imaging in biology and medicine . Molecular Imaging Workshop, San Jose, CA (January 23, 2005) 6. S. Achilefu: Molecular

  14. Functional CT imaging of prostate cancer

    NASA Astrophysics Data System (ADS)

    Henderson, Elizabeth; Milosevic, Michael F.; Haider, Masoom A.; Yeung, Ivan W. T.

    2003-09-01

    The purpose of this paper is to investigate the distribution of blood flow (F), mean capillary transit time (Tc), capillary permeability (PS) and blood volume (vb) in prostate cancer using contrast-enhanced CT. Nine stage T2-T3 prostate cancer patients were enrolled in the study. Following bolus injection of a contrast agent, a time series of CT images of the prostate was acquired. Functional maps showing the distribution of F, Tc, PS and vb within the prostate were generated using a distributed parameter tracer kinetic model, the adiabatic approximation to the tissue homogeneity model. The precision of the maps was assessed using covariance matrix analysis. Finally, maps were compared to the findings of standard clinical investigations. Eight of the functional maps demonstrated regions of increased F, PS and vb, the locations of which were consistent with the results of standard clinical investigations. However, model parameters other than F could only be measured precisely within regions of high F. In conclusion functional CT images of cancer-containing prostate glands demonstrate regions of elevated F, PS and vb. However, caution should be used when applying a complex tracer kinetic model to the study of prostate cancer since not all parameters can be measured precisely in all areas.

  15. Imaging of Ep-CAM Positive Metastatic Cancer in the Lymph System

    DTIC Science & Technology

    2010-01-01

    related lymphedema . Work continues to develop a unique imaging agent to identify metastatic tumor cells within the lymph nodes of cancer patients...risk of breast cancer-related lymphedema development. This work is imperative because epithelial cancers account for 90% of all cancers; thus, the

  16. Targeting SR-BI for Cancer Diagnostics, Imaging and Therapy

    PubMed Central

    Rajora, Maneesha A.; Zheng, Gang

    2016-01-01

    Scavenger receptor class B type I (SR-BI) plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumors and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents. PMID:27729859

  17. MMP-2/9-Specific Activatable Lifetime Imaging Agent.

    PubMed

    Rood, Marcus T M; Raspe, Marcel; ten Hove, Jan Bart; Jalink, Kees; Velders, Aldrik H; van Leeuwen, Fijs W B

    2015-05-12

    Optical (molecular) imaging can benefit from a combination of the high signal-to-background ratio of activatable fluorescence imaging with the high specificity of luminescence lifetime imaging. To allow for this combination, both imaging techniques were integrated in a single imaging agent, a so-called activatable lifetime imaging agent. Important in the design of this imaging agent is the use of two luminophores that are tethered by a specific peptide with a hairpin-motive that ensured close proximity of the two while also having a specific amino acid sequence available for enzymatic cleavage by tumor-related MMP-2/9. Ir(ppy)3 and Cy5 were used because in close proximity the emission intensities of both luminophores were quenched and the influence of Cy5 shortens the Ir(ppy)3 luminescence lifetime from 98 ns to 30 ns. Upon cleavage in vitro, both effects are undone, yielding an increase in Ir(ppy)3 and Cy5 luminescence and a restoration of Ir(ppy)3 luminescence lifetime to 94 ns. As a reference for the luminescence activation, a similar imaging agent with the more common Cy3-Cy5 fluorophore pair was used. Our findings underline that the combination of enzymatic signal activation with lifetime imaging is possible and that it provides a promising method in the design of future disease specific imaging agents.

  18. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Bony, Badrul Alam; Kim, Cho Rong; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2013-11-01

    There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI-FI agents.

  19. Targeted delivery of cancer-specific multimodal contrast agents for intraoperative detection of tumor boundaries and therapeutic margins

    NASA Astrophysics Data System (ADS)

    Xu, Ronald X.; Xu, Jeff S.; Huang, Jiwei; Tweedle, Michael F.; Schmidt, Carl; Povoski, Stephen P.; Martin, Edward W.

    2010-02-01

    Background: Accurate assessment of tumor boundaries and intraoperative detection of therapeutic margins are important oncologic principles for minimal recurrence rates and improved long-term outcomes. However, many existing cancer imaging tools are based on preoperative image acquisition and do not provide real-time intraoperative information that supports critical decision-making in the operating room. Method: Poly lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) were synthesized by a modified double emulsion method. The MB and NB surfaces were conjugated with CC49 antibody to target TAG-72 antigen, a human glycoprotein complex expressed in many epithelial-derived cancers. Multiple imaging agents were encapsulated in MBs and NBs for multimodal imaging. Both one-step and multi-step cancer targeting strategies were explored. Active MBs/NBs were also fabricated for therapeutic margin assessment in cancer ablation therapies. Results: The multimodal contrast agents and the cancer-targeting strategies were tested on tissue simulating phantoms, LS174 colon cancer cell cultures, and cancer xenograft nude mice. Concurrent multimodal imaging was demonstrated using fluorescence and ultrasound imaging modalities. Technical feasibility of using active MBs and portable imaging tools such as ultrasound for intraoperative therapeutic margin assessment was demonstrated in a biological tissue model. Conclusion: The cancer-specific multimodal contrast agents described in this paper have the potential for intraoperative detection of tumor boundaries and therapeutic margins.

  20. Prostate Cancer MR Imaging

    NASA Astrophysics Data System (ADS)

    Fütterer, Jurgen J.

    With a total of 192,280 new cases predicted for 2009, prostate cancer (PC) now accounts for 25% of all new male cancers diagnosed in the United States [1]. Furthermore, in their lifetime, one in six men will be clinically diagnosed with having PC, although many more men are found to have histological evidence of PC at autopsy [2,3,4]. Presently, approximately 1 in 10 men will die of PC [5,6]. The ever-aging population and wider spread use of the blood prostate-specific antigen (PSA) test [7,8], as well as the tendency to apply lower cut-off levels for this test [9], will further increase the diagnosis of this disease [10].

  1. Molecular imaging in cancer treatment

    PubMed Central

    Michalski, Mark H.

    2010-01-01

    The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies. PMID:20661557

  2. Clinical photoacoustic imaging of cancer

    PubMed Central

    2016-01-01

    Photoacoustic imaging is a hybrid technique that shines laser light on tissue and measures optically induced ultrasound signal. There is growing interest in the clinical community over this new technique and its possible clinical applications. One of the most prominent features of photoacoustic imaging is its ability to characterize tissue, leveraging differences in the optical absorption of underlying tissue components such as hemoglobin, lipids, melanin, collagen and water among many others. In this review, the state-of-the-art photoacoustic imaging techniques and some of the key outcomes pertaining to different cancer applications in the clinic are presented. PMID:27669961

  3. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging

    PubMed Central

    D’Hollander, Antoine; Mathieu, Evelien; Jans, Hilde; Vande Velde, Greetje; Stakenborg, Tim; Van Dorpe, Pol; Himmelreich, Uwe; Lagae, Liesbet

    2016-01-01

    The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer. PMID:27536107

  4. Imaging of Ep-CAM Positive Metastatic Cancer in the Lymph System

    DTIC Science & Technology

    2011-01-01

    lymphedema . This research plan aims to develop a unique imaging agent to identify metastatic tumor cells within the lymph nodes of cancer patients...breast cancer- related lymphedema and the morbidity associated with axillary lymph node dissection. My goal in this work is to improve quality of life...risk of breast cancer-related lymphedema . This work developed an imaging agent, anti-Ep-CAM-IR800-NOTA-Ga-67, both for optical fluorescence

  5. Cancer heterogeneity and imaging.

    PubMed

    O'Connor, James P B

    2016-10-04

    There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue pathology and clinical imaging scales, as this may help better understand tumor biology and may yield useful biomarkers for guiding therapy-based decision making. This review focuses on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, measure and map tumor heterogeneity. In particular we highlight the potential value of these techniques and the key challenges required to validate and qualify these biomarkers for clinical use.

  6. Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress.

    PubMed

    Chopra, Arvind; Shan, Liang; Eckelman, W C; Leung, Kam; Latterner, Martin; Bryant, Stephen H; Menkens, Anne

    2012-02-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov ) to students, researchers, and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, X-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1,000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4,250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration as well as a comma separated values file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, pre-clinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities, and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments, or suggestions for further improvement of the database by writing to the editors at micad@nlm.nih.gov.

  7. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer.

    PubMed

    Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan

    2013-11-01

    The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.

  8. Imaging of kidney cancer.

    PubMed

    Zhang, Jingbo; Lefkowitz, Robert A; Bach, Ariadne

    2007-01-01

    Advances in molecular genetics have expanded the understanding of renal cell tumors. Now it is understood that renal cortical tumors are a family of neoplasms with distinct cytogenetics and molecular defects, unique histopathologic features, and different malignant potentials. Imaging contributes to clinical management of patients with renal tumors in providing diagnostic information for tumor detection, characterization, staging, treatment planning, and follow-up.

  9. Cancer preventive agents 9. Betulinic acid derivatives as potent cancer chemopreventive agents.

    PubMed

    Nakagawa-Goto, Kyoko; Yamada, Koji; Taniguchi, Masahiko; Tokuda, Harukuni; Lee, Kuo-Hsiung

    2009-07-01

    C-3 esterifications of betulinic acid (BA, 1) and its A-ring homolog, ceanothic acid (CA, 2), were carried out to provide sixteen terpenoids, 4-19, including nine new compounds (4-12). All synthesized compounds were evaluated in an in vitro antitumor-promoting assay using the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Among them, compounds 4-6, 11-14, 16, and 17 displayed remarkable inhibitory effects of EBV-EA activation. BA analog 6, which contains a prenyl-like group, showed the most potent inhibitory effect (100%, 76%, 37%, and 11% inhibition of EBA activation at 1000, 500, 100, and 10mol ratio/TPA, respectively, with IC(50) value of 285mol ratio/32pmol TPA). Compound 6 merits further development as a cancer preventive agent.

  10. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent

    PubMed Central

    Milgroom, Andrew; Intrator, Miranda; Madhavan, Krishna; Mazzaro, Luciano; Shandas, Robin; Liu, Bolin; Park, Daewon

    2014-01-01

    Ultrasound (US) is used widely in the context of breast cancer. While it is advantageous for a number of reasons, it has low specificity and requires the use of a contrast agent. Its use as a standalone diagnostic and real-time imaging modality could be achieved by development of a tumor-targeted ultrasound contrast agent (UCA); functionalizing the UCA with a tumor-targeting agent would also allow the targeted administration of anti-cancer drugs at the tumor site. In this article, clinical US techniques are used to show that mesoporous silica nanoparticles (MSNs), functionalized with the monoclonal antibody Herceptin®, can be used as an effective UCA by increasing US image contrast. Furthermore, in vitro assays show the successful localization and binding of the MSN-Herceptin conjugate to HER2+ cancer cells, resulting in tumor-specific cytotoxicity. These results demonstrate the potential of MSNs as a stable, biocompatible, and effective therapeutic and diagnostic (“theranostic”) agent for US-based breast cancer imaging, diagnosis, and treatment. PMID:24269054

  11. A dual function theranostic agent for near-infrared photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Huang, Shuo; Wang, Mingfeng; Pramanik, Manojit

    2016-03-01

    Theranostic, defined as combining diagnostic and therapeutic agents, has attracted more attention in biomedical application. It is essential to monitor diseased tissue before treatment. Photothermal therapy (PTT) is a promising treatment of cancer tissue due to minimal invasion, unharmful to normal tissue and high efficiency. Photoacoustic tomography (PAT) is a hybrid nonionizing biomedical imaging modality that combines rich optical contrast and high ultrasonic resolution in a single imaging modality. The near infra-red (NIR) wavelengths, usually used in PAT, can provide deep penetration at the expense of reduced contrast, as the blood absorption drops in the NIR range. Exogenous contrast agents with strong absorption in the NIR wavelength range can enhance the photoacoustic imaging contrast as well as imaging depth. Most theranostic agents incorporating PAT and PTT are inorganic nanomaterials that suffer from poor biocompatibility and biodegradability. Herein, we present an benzo[1,2-c;4,5-c'] bis[1,2,5] thiadiazole (BBT), based theranostic agent which not only acts as photoacoustic contrast agent but also a photothermal therapy agent. Experiments were performed on animal blood and organic nanoparticles embedded in a chicken breast tissue using PAT imaging system at ~803 nm wavelengths. Almost ten time contrast enhancement was observed from the nanoparticle in suspension. More than 6.5 time PA signal enhancement was observed in tissue at 3 cm depth. HeLa cell lines was used to test photothermal effect showing 90% cells were killed after 10 min laser irradiation. Our results indicate that the BBT - based naoparticles are promising theranostic agents for PAT imaging and cancer treatment by photothermal therapy.

  12. Contrast agents for photoacoustic and thermoacoustic imaging: a review.

    PubMed

    Wu, Dan; Huang, Lin; Jiang, Max S; Jiang, Huabei

    2014-12-18

    Photoacoustic imaging (PAI) and thermoacoustic imaging (TAI) are two emerging biomedical imaging techniques that both utilize ultrasonic signals as an information carrier. Unique advantages of PAI and TAI are their abilities to provide high resolution functional information such as hemoglobin and blood oxygenation and tissue dielectric properties relevant to physiology and pathology. These two methods, however, may have a limited detection depth and lack of endogenous contrast. An exogenous contrast agent is often needed to effectively resolve these problems. Such agents are able to greatly enhance the imaging contrast and potentially break through the imaging depth limit. Furthermore, a receptor-targeted contrast agent could trace the molecular and cellular biological processes in tissues. Thus, photoacoustic and thermoacoustic molecular imaging can be outstanding tools for early diagnosis, precise lesion localization, and molecular typing of various diseases. The agents also could be used for therapy in conjugation with drugs or in photothermal therapy, where it functions as an enhancer for the integration of diagnosis and therapy. In this article, we present a detailed review about various exogenous contrast agents for photoacoustic and thermoacoustic molecular imaging. In addition, challenges and future directions of photoacoustic and thermoacoustic molecular imaging in the field of translational medicine are also discussed.

  13. Metabolic alterations in bladder cancer: applications for cancer imaging.

    PubMed

    Whyard, Terry; Waltzer, Wayne C; Waltzer, Douglas; Romanov, Victor

    2016-02-01

    uptake of glucose by BC cells gives an opportunity to develop NMR based imaging procedures where glucose or its derivatives can serve as a contrasting agent. In addition, metabolic alterations observed in BC cells could provide the basis for development of new anti-cancer therapeutics.

  14. Spectroscopic Imaging of Bladder Cancer

    SciTech Connect

    Demos, S G; Gandour-Edwards, R; Ramsamooj, R; deVere White, R

    2003-01-01

    The feasibility of developing bladder cancer detection methods using intrinsic tissue optical properties is the focus of this investigation. In vitro experiments have been performed using polarized elastic light scattering in combination with tissue autofluorescence in the NIR spectral region under laser excitation in the green and red spectral regions. The experimental results obtained from a set of tissue specimens from 25 patients reveal the presence of optical fingerprint characteristics suitable for cancer detection with high contrast and accuracy. These photonic methods are compatible with existing endoscopic imaging modalities which make them suitable for in-vivo application.

  15. Multifunctional ultrasound contrast agents for imaging guided photothermal therapy.

    PubMed

    Guo, Caixin; Jin, Yushen; Dai, Zhifei

    2014-05-21

    Among all the imaging techniques, ultrasound imaging has a unique advantage due to its features of real-time, low cost, high safety, and portability. Ultrasound contrast agents (UCAs) have been widely used to enhance ultrasonic signals. One of the most exciting features of UCAs for use in biomedicine is the possibility of easily putting new combinations of functional molecules into microbubbles (MBs), which are the most routinely used UCAs. Various therapeutic agents and medical nanoparticles (quantum dots, gold, Fe3O4, etc.) can be loaded into ultrasound-responsive MBs. Hence, UCAs can be developed as multifunctional agents that integrate capabilities for early detection and diagnosis and for imaging guided therapy of various diseases. The current review will focus on such state-of-the-art UCA platforms that have been exploited for multimodal imaging and for imaging guided photothermal therapy.

  16. Optimal flushing agents for integrated optical and acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  17. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  18. Optimal flushing agents for integrated optical and acoustic imaging systems.

    PubMed

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  19. Intravascular contrast agents suitable for magnetic resonance imaging. [Dogs

    SciTech Connect

    Runge, V.M.; Clanton, J.A.; Herzer, W.A.; Gibbs, S.J.; Price, A.C.; Partain, C.L.; James, A.E. Jr.

    1984-10-01

    Two paramagnetic chelates, chromium EDTA and gadolinium DTPA, were evaluated as potential intravenous contrast agents for magnetic resonance imaging. After evaluating both agents in vitro, in vivo studies were conducted in dogs to document changes in renal appearance produced by contrast injection. Acute splenic and renal infarction were diagnosed with contrast-enhanced MR and confirmed by gamma camera imaging following administration of Tc-99m-labeled DMSA and sulfur colloid. The authors conclude that intravenous paramagnetic contrast agents presently offer the best mechanism for assessment of tissue function and changes in perfusion with MR.

  20. [Contrast agents in magnetic resonance imaging: development and problems].

    PubMed

    Xu, Yi-kai

    2002-09-01

    In spite of the inherent versatility of magnetic resonance imaging (MRI), researchers and clinicians from both home and aboard have made great achievements in developing safe and effective contrast agents. Many new agents are expected to be available for clinical use in the near future. It is of clinical importance that the agents should expand the diagnostic utility of MRI, improve the detection of tiny lesions and help evaluate specific tissue or organ functions. This article aims to examine current status of contrast agents for MRI and the problems waiting for solutions.

  1. Prostate Activated Prodrugs and Imaging Agents

    DTIC Science & Technology

    2005-05-01

    of the Herbal Supplement, PC-SPES, and Diethylstilbestrol in Patients with Androgen-Independent Prostate Cancer, William K. Oh, Philip W. Kantoff...University of Illinois, Urbana Champaign. Chromatographic separations were made using E Merck 230-400 mesh 60H silica gel , or using a Harrison Research...After condensation in vacuo the residue was purified by silical gel chromatography (ethyl acetate: hexanes = 2:1 eluent) to give 2, (216 mg, 78.5

  2. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  3. Ideal flushing agents for integrated optical acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, K. Kirk; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2015-02-01

    An increased number of integrated optical acoustic intravascular imaging systems have been researched and hold great hope for accurate diagnosing of vulnerable plaques and for guiding atherosclerosis treatment. However, in any intravascular environment, vascular lumen is filled with blood, which is a high-scattering source for optical and high frequency ultrasound signals. Blood must be flushed away to make images clear. To our knowledge, no research has been performed to find the ideal flushing agent that works for both optical and acoustic imaging techniques. We selected three solutions, mannitol, dextran and iohexol, as flushing agents because of their image-enhancing effects and low toxicities. Quantitative testing of these flushing agents was performed in a closed loop circulation model and in vivo on rabbits.

  4. [Prevention of skin cancers with sunscreening agents].

    PubMed

    Uhoda, I; Piérard-Franchimont, C; Piérard, G E

    2002-08-01

    How do sunscreens protect against skin cancers? The answer to this question is a matter of controversy among scientist for several years. The doubt persists because the wise use of such products is only one of the factors involved in sun behavior together with avoiding excessive sunlight exposure and wearing protective clothes.

  5. Botanical Agents for the Treatment of Nonmelanoma Skin Cancer

    PubMed Central

    2013-01-01

    Nonmelanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma, are common neoplasms worldwide and are the most common cancers in the United States. Standard therapy for cutaneous neoplasms typically involves surgical removal. However, there is increasing interest in the use of topical alternatives for the prevention and treatment of nonmelanoma skin cancer, particularly superficial variants. Botanicals are compounds derived from herbs, spices, stems, roots, and other substances of plant origin and may be used in the form of dried or fresh plants, extracted plant material, or specific plant-derived chemicals. They possess multiple properties including antioxidant, anti-inflammatory, and immunomodulatory properties and are, therefore, believed to be possible chemopreventive agents or substances that may suppress or reverse the process of carcinogenesis. Here, we provide a review of botanical agents studied for the treatment and prevention of nonmelanoma skin cancers. PMID:23983679

  6. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  7. Hereditary cancer syndromes as model systems for chemopreventive agent development.

    PubMed

    Walcott, Farzana L; Patel, Jigar; Lubet, Ronald; Rodriguez, Luz; Calzone, Kathleen A

    2016-02-01

    Research in chemoprevention has undergone a shift in emphasis for pragmatic reasons from large, phase III randomized studies to earlier phase studies focused on safety, mechanisms, and utilization of surrogate endpoints such as biomarkers instead of cancer incidence. This transition permits trials to be conducted in smaller populations and at substantially reduced costs while still yielding valuable information. This article will summarize some of the current chemoprevention challenges and the justification for the use of animal models to facilitate identification and testing of chemopreventive agents as illustrated though four inherited cancer syndromes. Preclinical models of inherited cancer syndromes serve as prototypical systems in which chemopreventive agents can be developed for ultimate application to both the sporadic and inherited cancer settings.

  8. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  9. Sanguinarine: A Novel Agent Against Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    continues. Natural plant-based products have shown promise as anticancer agents. Sanguinarine, a benzophenanthridine alkaloid derived from the root of...4,5-i]phenanthridinium), derived from the root of Sanguinaria Canadensis and other poppy-fumaria species, is a benzophenanthridine alkaloid and a...Material Command’, we proposed to test the hypothesis that a plant-derived alkaloid sanguinarine will impart antiproliferative effects against

  10. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  11. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  12. Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study

    PubMed Central

    Ghasemian, Zeinab; Shahbazi-Gahrouei, Daryoush; Manouchehri, Sohrab

    2015-01-01

    Background: Magnetic Nanoparticles (MNP) have been used for contrast enhancement in Magnetic Resonance Imaging (MRI). In recent years, research on the use of ferrite nanoparticles in T2 contrast agents has shown a great potential application in MR imaging. In this work, Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4-DMSA magnetic nanoparticles, CZF-MNPs and CZF-MNPs-DMSA, were investigated as MR imaging contrast agents. Methods: Cobalt zinc ferrite nanoparticles and their suitable coating, DMSA, were investigated under in vitro condition. Human prostate cancer cell lines (DU145 and PC3) with bare (uncoated) and coated magnetic nanoparticles were investigated as nano-contrast MR imaging agents. Results: Using T2-weighted MR images identified that signal intensity of bare and coated MNPs was enhanced with increasing concentration of MNPs in water. The values of 1/T2 relaxivity (r2) for bare and coated MNPs were found to be 88.46 and 28.80 (mM−1 s−1), respectively. Conclusion: The results show that bare and coated MNPs are suitable as T2-weighted MR imaging contrast agents. Also, the obtained r2/r1 values (59.3 and 50) for bare and coated MNPs were in agreement with the results of other previous relevant works. PMID:26140183

  13. LUCIS: lung cancer imaging studies.

    PubMed

    Harders, Stefan Walbom

    2012-11-01

    Pulmonary nodules are of high clinical importance, as they may prove to be an early manifestation of lung cancer. Pulmonary nodules are small, focal opacities that may be solitary or multiple. A solitary pulmonary nodule (SPN) is a single, small (= 30 mm in diameter) radiographic opacity. Larger opacities are called masses and are often malignant. As imaging techniques improve and more nodules are detected, the optimal management of SPNs remains unclear. Current strategies include tissue sampling or CT follow-up. The aim of this PhD was to examine current non-invasive methods used to characterise pulmonary nodules and masses in patients with suspected lung cancer and to stage NSCLC. In doing so, this PhD helps to validate the existing methods used to diagnose and stage lung cancer correctly and, hopefully, aids in the development of new methods. In the first study, 213 participants with pulmonary nodules on CT were examined with an additional HRCT. In this study, it was concluded that HRCT of a solitary pulmonary nodule, assessed using attenuation and morphological criteria is a fast, widely available and effective method for diagnosing lung cancer correctly, and especially for ruling out cancer. In the second study, 168 patients with pulmonary lesions on CT were examined with an additional F-18-FDG PET/CT. It was concluded that when used early in the work-up of the lesions, CT raised the prevalence of lung cancer in the population to the point at which further diagnostic imaging examination could be considered redundant. Standard contrast-enhanced CT seems better suited to identify patients with lung cancer than to rule out cancer. Finally, the overall diagnostic accuracy as well as the classification probabilities and predictive values of the two modalities were not significantly different. The reproducibility of the above results was substantial. In the third study, 59 patients with pulmonary nodules or masses on chest radiography were examined with an

  14. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  15. Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents.

    PubMed

    Rieffel, James; Chitgupi, Upendra; Lovell, Jonathan F

    2015-09-16

    Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through the analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and, in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, the higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, recent progress in higher-order multimodal imaging agents is reviewed, spanning a range of material and structural classes, and demonstrating utility in three (or more) imaging modalities.

  16. Perfusion Imaging with a Freely Diffusible Hyperpolarized Contrast Agent

    PubMed Central

    Grant, Aaron K.; Vinogradov, Elena; Wang, Xiaoen; Lenkinski, Robert E.; Alsop, David C.

    2011-01-01

    Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized 13C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic 13C images acquired in rat brain with a balanced steady-state free precession (bSSFP) sequence following administration of hyperpolarized 2-methylpropan-2-ol show that this agent can be imaged with 2–4s temporal resolution, 2mm slice thickness, and 700 micron in-plane resolution while retaining adequate signal-to-noise ratio. 13C relaxation measurements on 2-methylpropan-2-ol in blood at 9.4T yield T1=46±4s and T2=0.55±0.03s. In the rat brain at 4.7T, analysis of the temporal dynamics of the bSSFP image intensity in tissue and venous blood indicate that 2-methylpropan-2-ol has a T2 of roughly 2–4s and a T1 of 43±24s. In addition, the images indicate that 2-methylpropan-2-ol is freely diffusible in brain and hence has a long residence time in tissue; this in turn makes it possible to image the agent continuously for tens of seconds. These characteristics show that 2-methylpropan-2-ol is a promising agent for robust and quantitative perfusion imaging in the brain and body. PMID:21432901

  17. Blood pool contrast agents for venous magnetic resonance imaging

    PubMed Central

    Oliveira, Irai S.; Li, Weier; Ganguli, Suvranu; Prabhakar, Anand M.

    2016-01-01

    Imaging of the venous system plays a vital role in the diagnosis and management of a wide range of clinically significant disorders. There have been great advances in venous imaging techniques, culminating in the use of magnetic resonance venography (MRV). Although MRV has distinct advantages in anatomic and quantitative cross sectional imaging without ionizing radiation, there are well-known challenges in acquisition timing and contrast administration in patients with renal impairment. The latest advancement involves the addition of new contrast media agents, which have emerged as valuable alternatives in these difficult scenarios. In this review, we will focus on a group of specific contrast agents called blood pool agents and discuss their salient features and clinical applications. PMID:28123972

  18. Molecular imaging of breast cancer: present and future directions

    PubMed Central

    Alcantara, David; Leal, Manuel Pernia; García-Bocanegra, Irene; García-Martín, Maria L.

    2014-01-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises. PMID:25566530

  19. Molecular Imaging of Breast Cancer: Present and future directions

    NASA Astrophysics Data System (ADS)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  20. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models.

  1. Rational Choice of Antiemetic Agents during Cancer Chemotherapy

    PubMed Central

    Brigden, Malcolm L.; Wilson, Kenneth S.; Barnett, Jeffrey B.

    1983-01-01

    Nausea and vomiting are major limitations in cancer chemotherapy. Individual susceptibility to nausea varies enormously. There is no ideal antiemetic, but some work with some chemotherapeutic agents, and some are more effective in younger patients. This article describes a flexible, stepped approach using the phenothiazines, metoclopramide, cannabinoids, anticholinergics, antihistamines and others. PMID:21283402

  2. Mitochondria targeting nano agents in cancer therapeutics

    PubMed Central

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-01-01

    Mitochondria have emerged as noteworthy therapeutic targets as their physiological functions are often altered in pathological conditions such as cancer. The electronic databases of MEDLINE, EMBASE and PubMed were searched for recent studies reporting the importance of mitochondria targeting nanoagents in cancer therapeutics. The concluding remarks of the above papers mostly confirmed the growing potential of these novel nanoagents in the area of anticancer research. Furthermore, numerous studies demonstrated the immense potential of nanocarriers in delivering mitochondria-acting compounds to their target site. Among the assemblage of nanomaterials, carbon nanotubes (CNTs) are becoming more prominent for drug delivery due to favorable attributes including their unique shape, which promotes cellular uptake, and large aspect ratio that facilitates conjugation of bioactive molecules on their surface. The present review focused on the current view of variable options available in mitochondria-targeting anticancer therapeutics. It may be concluded that improvements are essential for its establishment as a gold standard therapeutic option especially in the clinical setting. PMID:28105197

  3. Chemical agent detection and quantification with imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Augustin I.

    1999-10-01

    Passive standoff detection of chemical warfare (CW) agents is currently achieved by remote sensing infrared spectrometry in the 8 - 12 micrometer atmospheric window with the aid of automatic spectral analysis algorithms. Introducing an imaging capability would allow for rapid wide-area reconnaissance and mapping of vapor clouds, as well as reduce false alarms by exploiting the added spatial information. This paper contains an overview of the CW agent standoff detection problem and the challenges associated with developing imaging LWIR hyperspectral sensors for the detection and quantification of vapor clouds, as well as a discussion of spectral processing techniques which can be used to exploit the added data dimensionality.

  4. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    DOEpatents

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  5. Targeting HER2 Positive Breast Cancer with Chemopreventive Agents

    PubMed Central

    Wahler, Joseph; Suh, Nanjoo

    2015-01-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is a subtype of breast cancer that is exhibited in approximately 20-30% of breast cancer cases. The overexpression of HER2 is typically associated with a more aggressive disease and poor prognosis. Currently, the therapeutic drugs trastuzumab and lapatinib are the most commonly used to combat HER2+ breast cancer. However, tumors can develop resistance to these drugs. A better understanding of the mechanism of how HER2+ breast cancer works will help aid the development for new therapeutic approaches which more closely target the source of the signaling dysfunction. This review summarizes four major points in the context of HER2 over-expressing breast cancer (i) HER2 as a molecular target in breast cancer therapy, (ii) current treatment options as well as ongoing clinical studies, (iii) animal and cellular models for the study of HER2 over-expressing breast cancer, and (iv) future therapies and chemopreventive agents used to target HER2+ breast cancer. PMID:26442201

  6. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    PubMed

    Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J

    2015-10-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.

  7. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  8. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

    PubMed Central

    Cho, C.F.; Sourabh, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D.

    2015-01-01

    Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application. PMID:24243252

  9. Molecular Cancer Imaging with Polymeric Nanoassemblies: From Tumor Detection to Theranostics.

    PubMed

    Mi, Peng; Wang, Fang; Nishiyama, Nobuhiro; Cabral, Horacio

    2017-01-01

    Several imaging modalities have been widely applied for the detection of cancer and its pathological activity in combination with probes capable of improving the contrast between healthy and cancerous tissues. Biocompatible polymeric nanoassemblies have been developed for precise detection of malignant tumors by enhancing the selectivity and sensitivity of the imaging. Exploiting the compartmentalized structure of the nanoassemblies advantageously allows delivering both imaging and therapeutic agents for cancer multifunctional imaging and theranostics, i.e., the combination of therapy and diagnosis tool on a single platform. Thus, nanoassemblies have high potential not only for cancer molecular imaging but also for tracing nanoparticles in biological systems, studying their biological pathways, gathering pathological information, monitoring therapeutic effects, and guiding pinpoint therapies. In this review, polymeric nanoassemblies for optical imaging, magnetic resonance imaging, multifunctional imaging, and image-guided therapy, emphasizing their role in cancer diagnosis and theranostics are highlighted.

  10. Imaging considerations for a technetium-99m myocardial perfusion agent

    SciTech Connect

    English, R.J.; Jones, A.G.; Davison, A.; Lister-James, J.; Campbell, S.; Holman, B.L.

    1986-03-01

    Myocardial perfusion imaging with /sup 201/Tl chloride suffers from a number of physical, geometric, and dosimetric constraints that could be diminished if an agent labeled with /sup 99m/Tc were available. The cationic complex /sup 99m/Tc hexakis-(t-butylisonitrile)technetium(I) ((/sup 99m/Tc)TBI) has been shown to concentrate in the myocardial tissue of both animals and humans, with preliminary clinical studies demonstrating a number of technical attributes not possible with /sup 201/Tl. Technetium-99m-TBI is a promising myocardial imaging agent that may permit high quality planar, gated, and tomographic imaging of both myocardial ischemia and infarction with reduced imaging times and improved resolution.

  11. Recent advances in oral anticancer agents for colon cancer.

    PubMed

    Shukla, Raj Kumar

    2013-12-01

    To provide therapeutic alternatives to intravenous colon chemotherapy major recent research is focusing on the development of oral chemotherapeutic agents with the intention to improve the quality of life of patients. Initially 5-fluorouracil was most commonly used for the treatment of colorectal cancer but currently oxaliplatin and irinotecan are also available. The majority of these new drugs are pyrimidines and their analogs. The rationale for using oral anticancer agents is discussed and new drugs, such as farnesyl protein transferase inhibitor S-1, rubitecan, ZD9331, MMI-166, eflornithine, sulindac, and oral camptothecin analogs, among others, are presented with the results of their preclinical and clinical developments. This article focuses on the advancement of clinical development and also discusses the relative merits and demerits of these agents. The accelerated approval of these agents by regulatory authorities is supported by survival benefit, response rate and time to progression.

  12. Advances in the Development of Multimodal Imaging Agents for Nuclear/Near-infrared Fluorescence Imaging.

    PubMed

    Ghosh, S C; Azhdarinia, A

    2015-01-01

    Multimodal imaging agents were first introduced a decade ago and consist of a targeting moiety that is dual-labeled with radioactive and fluorescent contrast. These compounds allow whole-body and intraoperative imaging to be performed through administration of a single agent and provide complementary diagnostic information that can be used to guide tumor resection. Since their initial evaluation, interest in dual-labeled agents has continued to grow and their design has subsequently evolved alongside the development of novel chelating agents, improved fluorophores, and highly selective coupling techniques for bioconjugate formation. In this review, will discuss how changes in the labeling components and schemes for multimodal agent development have impacted imaging performance and will focus on antibody- and peptide-based agents as models for dual labeling. We will also describe the growing role of modular dual labeling strategies as well as direct labeling methods using radiohalogens.

  13. Image-guided cancer surgery using near-infrared fluorescence

    PubMed Central

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  14. Identification of genes and candidate agents associated with pancreatic cancer.

    PubMed

    Wang, Bao-sheng; Liu, Zhen; Sun, Shao-long; Zhao, Yi

    2014-01-01

    Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. A major challenge in current cancer research is biological interpretation of complexity of cancer somatic mutation profiles. It has been suggested that several molecular alterations may play important roles in pancreatic carcinogenesis. In this study, by using the GSE28735 affymetrix microarray data accessible from Gene Expression Omnibus (GEO) database, we identified differentially expressed genes (DEGs) between paired pancreatic cancer tissues and adjacent nontumor tissues, followed the protein-protein interaction of the DEGs. Our study identified thousands of DEGs involved in regulation of cell cycle and apoptosis in progression of pancreatic cancer. Sp1 was predicted to be the major regulator by transcription factors analysis. From the protein-protein interaction networks, we found that Tk1 might play an important role in the progression of pancreatic cancer. Finally, we predicted candidate agents, including tomatidine and nialamide, which may be used as drugs to treat pancreatic cancer. In conclusion, our data provide a comprehensive bioinformatics analysis of genes and pathways which may be involved in the progression of pancreatic cancer.

  15. Theranostic agents for intracellular gene delivery with spatiotemporal imaging

    PubMed Central

    Knipe, Jennifer M.; Peters, Jonathan T.; Peppas, Nicholas A.

    2013-01-01

    Gene therapy is the modification of gene expression to treat a disease. However, efficient intracellular delivery and monitoring of gene therapeutic agents is an ongoing challenge. Use of theranostic agents with suitable targeted, controlled delivery and imaging modalities has the potential to greatly advance gene therapy. Inorganic nanoparticles including magnetic nanoparticles, gold nanoparticles, and quantum dots have been shown to be effective theranostic agents for the delivery and spatiotemporal tracking of oligonucleotides in vitro and even a few cases in vivo. Major concerns remain to be addressed including cytotoxicity, particularly of quantum dots; effective dosage of nanoparticles for optimal theranostic effect; development of real-time in vivo imaging; and further improvement of gene therapy efficacy. PMID:23606894

  16. A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M

    2014-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  17. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients.

  18. A brief account of nanoparticle contrast agents for photoacoustic imaging.

    PubMed

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V; Lanza, Gregory M

    2013-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds.

  19. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Nie, Liming; Chen, Mei; Sun, Xiaolian; Rong, Pengfei; Zheng, Nanfeng; Chen, Xiaoyuan

    2014-01-01

    A stable and efficient contrast agent is highly desirable for photoacoustic (PA) imaging applications. Recently gold nanostructures have been widely reported and studied for PA imaging and photothermal therapy. However, the structures of the nonspherical gold nanoparticles are easily destroyed after laser irradiation and thus may fail to complete the intended tasks. In this study, we propose to apply palladium nanosheets (PNSs), with strong optical absorption in the near-infrared (NIR) region, as a new class of exogenous PA contrast agents. PA and ultrasound (US) images were acquired sequentially by a portable and fast photoacoustic tomography (PAT) system with a hand-held transducer. Significant and long-lasting imaging enhancement in SCC7 head and neck squamous cell carcinoma was successfully observed in mice by PAT over time after tail vein administration of PNSs. The morphology and functional perfusion of the tumors were delineated in PA images due to the nanoparticle accumulation. PAT of the main organs was also conducted ex vivo to trace the fate of PNSs, which was further validated by inductively coupled plasma atomic emission spectrometry (ICP-AES). No obvious toxic effect was observed by in vitro MTT assay and ex vivo histological examination 7 days after PNS administration. With the combination of a portable imaging instrument and signal specificity, PNSs might be applied as stable and effective agents for photoacoustic cancer detection, diagnosis and treatment guidance.

  20. Thermoacoustic imaging and spectroscopy for enhanced cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel Ryan

    Early detection of cancer is paramount for improved patient survival. This dissertation presents work developing imaging techniques to improve cancer diagnostics and detection utilizing light and microwave induced thermoacoustic imaging. In the second chapter, the well-established pre-clinical mouse window chamber model is interfaced with simultaneously acquired high-resolution pulse echo (PE) ultrasound and photoacoustic (PA) imaging. Co-registered PE and PA imaging, coupled with developed image segmentation algorithms, are used to quantitatively track and monitor the size, shape, heterogeneity, and neovasculature of the tumor microenvironment during a month long study. Average volumetric growth was 5.35 mm3/day, which correlated well with two dimensional results from fluorescent imaging (R = 0.97, p < 0.01). Spectroscopic PA imaging is also employed to probe the assumed oxygenation status of the tumor vasculature. The window chamber model combined with high-resolution PE and PA imaging could form a powerful testbed for characterizing cancers and evaluating new contrast and therapeutic agents. The third chapter utilizes a clinical ultrasound array to facilitate fast volumetric spectroscopic PA imaging to detect and discriminate endogenous absorbers (i.e. oxy/deoxygenated hemoglobin) as well as exogenous PA contrast agents (i.e. gold nanorods, fluorophores). In vivo spatiotemporal tracking of administered gold nanorods is presented, with the contrast agent augmenting the PA signal 18 dB. Furthermore, through the use of spectral unmixing algorithms, the relative concentrations of multiple endogenous and exogenous co-localized absorbers were reconstructed in tumor bearing mice. The concentration of Alexaflour647 was calculated to increase nearly 20 dB in the center of a prostate tumor after a tail-vein injection of the contrast agent. Additionally, after direct subcutaneous injections of two different gold nanorods into a breast tumor, the concentration of each

  1. Recombinant mumps virus as a cancer therapeutic agent

    PubMed Central

    Ammayappan, Arun; Russell, Stephen J; Federspiel, Mark J

    2016-01-01

    Mumps virus belongs to the family of Paramyxoviridae and has the potential to be an oncolytic agent. Mumps virus Urabe strain had been tested in the clinical setting as a treatment for human cancer four decades ago in Japan. These clinical studies demonstrated that mumps virus could be a promising cancer therapeutic agent that showed significant antitumor activity against various types of cancers. Since oncolytic virotherapy was not in the limelight until the beginning of the 21st century, the interest to pursue mumps virus for cancer treatment slowly faded away. Recent success stories of oncolytic clinical trials prompted us to resurrect the mumps virus and to explore its potential for cancer treatment. We have obtained the Urabe strain of mumps virus from Osaka University, Japan, which was used in the earlier human clinical trials. In this report we describe the development of a reverse genetics system from a major isolate of this Urabe strain mumps virus stock, and the construction and characterization of several recombinant mumps viruses with additional transgenes. We present initial data demonstrating these recombinant mumps viruses have oncolytic activity against tumor cell lines in vitro and some efficacy in preliminary pilot animal tumor models. PMID:27556105

  2. Cellular image segmentation using n-agent cooperative game theory

    NASA Astrophysics Data System (ADS)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  3. A review of NIR dyes in cancer targeting and imaging.

    PubMed

    Luo, Shenglin; Zhang, Erlong; Su, Yongping; Cheng, Tianmin; Shi, Chunmeng

    2011-10-01

    The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis

  4. Nanoengineered multimodal contrast agent for medical image guidance

    NASA Astrophysics Data System (ADS)

    Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.

    2005-04-01

    Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes

  5. Selective anti-cancer agents as anti-aging drugs.

    PubMed

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  6. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  7. Novel prospects of statins as therapeutic agents in cancer.

    PubMed

    Pisanti, Simona; Picardi, Paola; Ciaglia, Elena; D'Alessandro, Alba; Bifulco, Maurizio

    2014-10-01

    Statins are well known competitive inhibitors of hydroxymethylglutaryl-CoA reductase enzyme (HMG-CoA reductase), thus traditionally used as cholesterol-lowering agents. In recent years, more and more effects of statins have been revealed. Nowadays alterations of lipid metabolism have been increasingly recognized as a hallmark of cancer cells. Consequently, much attention has been directed toward the potential of statins as therapeutic agents in the oncological field. Accumulated in vitro and in vivo clinical evidence point out the role of statins in a variety of human malignancies, in regulating tumor cell growth and anti-tumor immune response. Herein, we summarize and discuss, in light of the most recent observations, the anti-tumor effects of statins, underpinning the detailed mode of action and looking for their true significance in cancer prevention and treatment, to determine if and in which case statin repositioning could be really justified for neoplastic diseases.

  8. Capsaicin: From Plants to a Cancer-Suppressing Agent.

    PubMed

    Chapa-Oliver, Angela M; Mejía-Teniente, Laura

    2016-07-27

    Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent.

  9. Inelastic processes of electron interactions with halouracils - cancer therapy agents

    NASA Astrophysics Data System (ADS)

    Limbachiya, Chetan; Vinodkumar, Minaxi; Swadia, Mohit

    2014-10-01

    We report electron impact total inelastic cross sections for important cancer treatment agents, 5-fluorouracil (5FU), 5-chlorouracil (5ClU) and 5-bromouracil (5BrU) from ionization threshold through 5000 eV. We have employed Spherical Complex Optical Potential [1,2] method to compute total inelastic cross sections Qinel and Complex Scattering Potential - ionization contribution (CSP-ic) formalism, to calculate total ionization cross sections Qion. Electron driven ionization cross sections for these important compounds of therapeutic interest are reported for the first time in this work. In absence of any ionization study for these cancer therapy agents, we have compared the data with their parent molecule Uracil. Present cross sections may serve as a reference estimates for experimental work.

  10. Functional imaging of the lungs with gas agents.

    PubMed

    Kruger, Stanley J; Nagle, Scott K; Couch, Marcus J; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B

    2016-02-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.

  11. Near Infrared Heptamethine Cyanine Dye-Mediated Cancer Imaging*

    PubMed Central

    Yang, Xiaojian; Shi, Chunmeng; Tong, Rong; Qian, Weiping; Zhau, Haiyen E.; Wang, Ruoxiang; Zhu, Guodong; Cheng, Jianjun; Yang, Vincent W.; Cheng, Tianmin; Henary, Maged; Strekowski, Lucjan; Chung, Leland W.K.

    2010-01-01

    Purpose Near-infrared (NIR) fluorescence imaging has great potential for noninvasive in vivo imaging of tumors. In this study, we demonstrate the preferential uptake and retention of two hepatamethine cyanine dyes, IR-783 and MHI-148, in tumor cells and tissues. Experimental Design IR-783 and MHI-148 were investigated for their ability to accumulate in human cancer cells, tumor xenografts and spontaneous mouse tumors in transgenic animals. Time- and concentration-dependent dye uptake and retention in normal and cancer cells and tissues were compared, and subcellular localization of the dyes and mechanisms of the dye uptake and retention in tumor cells were evaluated using organelle-specific tracking dyes and bromosulfophthalein (BSP), a competitive inhibitor of organic anion transporting peptides (OATPs). These dyes were used to detect human cancer metastases in a mouse model and differentiate cancer cells from normal cells in blood. Results These NIR hepatamethine cyanine dyes were retained in cancer cells but not normal cells, in tumor xenografts, and in spontaneous tumors in transgenic mice. They can be used to detect cancer metastasis and cancer cells in blood with a high degree of sensitivity. The dyes were found to concentrate in the mitochondria and lysosomes of cancer cells, probably through OATPs since the dye uptake and retention in cancer cells can be blocked completely by BSP. These dyes, when injected to mice, did not cause systemic toxicity. Conclusions These two heptamethine cyanine dyes are promising imaging agents for human cancers and can be further exploited to improve cancer detection, prognosis and treatment. PMID:20410058

  12. Screening CEST contrast agents using ultrafast CEST imaging

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Yadav, Nirbhay N.; Song, Xiaolei; McMahon, Michael T.; Jerschow, Alexej; van Zijl, Peter C. M.; Xu, Jiadi

    2016-04-01

    A chemical exchange saturation transfer (CEST) experiment can be performed in an ultrafast fashion if a gradient field is applied simultaneously with the saturation pulse. This approach has been demonstrated for studying dia- and para-magnetic CEST agents, hyperpolarized Xe gas and in vivo spectroscopy. In this study we present a simple method for the simultaneous screening of multiple samples. Furthermore, by interleaving a number of saturation and readout periods within the TR, a series of images with different saturation times can be acquired, allowing for the quantification of exchange rates using the variable saturation time (QUEST) approach in a much accelerated fashion, thus enabling high throughput screening of CEST contrast agents.

  13. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  14. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer

    PubMed Central

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156

  15. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  16. Neem components as potential agents for cancer prevention and treatment.

    PubMed

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2014-08-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment.

  17. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  18. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer

    PubMed Central

    Yaghchi, Chadwan Al; Zhang, Zhongxian; Alusi, Ghassan; Lemoine, Nicholas R; Wang, Yaohe

    2015-01-01

    The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus. PMID:26595180

  19. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  20. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    NASA Astrophysics Data System (ADS)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  1. Semimetal Nanomaterials of Antimony as Highly Efficient Agent for Photoacoustic Imaging and Photothermal Therapy

    PubMed Central

    Li, Wanwan; Rong, Pengfei; Yang, Kai; Huang, Peng; Sun, Kang; Chen, Xiaoyuan

    2017-01-01

    In this study we report semimetal naonmaterials of antimony (Sb) as highly efficient agent for photoacoustic imaging (PAI) and photothermal therapy (PTT). The Sb nanorod bundles have been synthesized through a facile route by mixing 1-octadecane (ODE) and oleyl amine (OAm) as the solvent. The aqueous dispersion of PEGylated Sb NPs, due to its broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, is applicable as a photothermal agent driven by 808 nm laser with photothermal conversion efficiency up to 41%, noticeably higher than most of the PTT agents reported before. Our in vitro experiments also showed that cancer cell ablation effect of PEGylated Sb NPs was dependent on laser power. By intratumoral administration of PEGylated Sb NPs, 100% tumor ablation can be realized by using NIR laser irradiation with a lower power of 1 W/cm2 for 5 min (or 0.5 W/cm2 for 10 min) and no obvious toxic side effect is identified after photothermal treatment. Moreover, intense PA signal was also observed after intratumoral injection of PEGylated Sb NPs and NIR laser irradiation due to their strong NIR photoabsorption, suggesting PEGylated Sb NPs as a potential NIR PA agent. Based on the findings of this work, futher development of using other smimetal nanocrystals as highly efficient NIR agents can be achieved for vivo tumor imaging and PTT. PMID:25662491

  2. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    SciTech Connect

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  3. Multifunctional gold nanostars for molecular imaging and cancer therapy

    PubMed Central

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Register, Janna K.; Vo-Dinh, Tuan

    2015-01-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL), and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy (PDT). This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed. PMID:26322306

  4. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  5. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  6. Radionuclide-Based Cancer Imaging Targeting the Carcinoembryonic Antigen

    PubMed Central

    Hong, Hao; Sun, Jiangtao; Cai, Weibo

    2008-01-01

    Carcinoembryonic antigen (CEA), highly expressed in many cancer types, is an important target for cancer diagnosis and therapy. Radionuclide-based imaging techniques (gamma camera, single photon emission computed tomography [SPECT] and positron emission tomography [PET]) have been extensively explored for CEA-targeted cancer imaging both preclinically and clinically. Briefly, these studies can be divided into three major categories: antibody-based, antibody fragment-based and pretargeted imaging. Radiolabeled anti-CEA antibodies, reported the earliest among the three categories, typically gave suboptimal tumor contrast due to the prolonged circulation life time of intact antibodies. Subsequently, a number of engineered anti-CEA antibody fragments (e.g. Fab’, scFv, minibody, diabody and scFv-Fc) have been labeled with a variety of radioisotopes for CEA imaging, many of which have entered clinical investigation. CEA-Scan (a 99mTc-labeled anti-CEA Fab’ fragment) has already been approved by the United States Food and Drug Administration for cancer imaging. Meanwhile, pretargeting strategies have also been developed for CEA imaging which can give much better tumor contrast than the other two methods, if the system is designed properly. In this review article, we will summarize the current state-of-the-art of radionuclide-based cancer imaging targeting CEA. Generally, isotopes with short half-lives (e.g. 18F and 99mTc) are more suitable for labeling small engineered antibody fragments while the isotopes with longer half-lives (e.g. 123I and 111In) are needed for antibody labeling to match its relatively long circulation half-life. With further improvement in tumor targeting efficacy and radiolabeling strategies, novel CEA-targeted agents may play an important role in cancer patient management, paving the way to “personalized medicine”. PMID:19578524

  7. Proflavine derivatives as fluorescent imaging agents of amyloid deposits.

    PubMed

    Garin, Dominique; Oukhatar, Fatima; Mahon, Andrew B; Try, Andrew C; Dubois-Dauphin, Michel; Laferla, Frank M; Demeunynck, Martine; Sallanon, Marcelle Moulin; Chierici, Sabine

    2011-04-15

    A series of proflavine derivatives for use to further image Aβ amyloid deposits were synthesized and characterized. Aged 3xTg-AD (23 months old) mice hippocampus sections incubated with these derivatives revealed preferential labeling of amyloid plaques. Furthermore an in vitro binding study showed an inhibitory effect, although moderate, of these compounds on Aβ(40) fibril formation. This study highlights the potential of proflavine as a molecular scaffold for designing new Aβ imaging agents, its native fluorescence allowing in vitro neuropathological staining in AD damaged brain sections.

  8. Metabolic PET Imaging in Cancer Detection and Therapy Response

    PubMed Central

    Zhu, Aizhi; Lee, Daniel; Shim, Hyunsuk

    2010-01-01

    Positron emission tomography (PET) is a noninvasive imaging technique that provides a functional or metabolic assessment of normal tissue or disease conditions. 18F-fluorodeoxyglucose PET imaging (FDG-PET) is widely used clinically for tumor imaging due to increased glucose metabolism in most types of tumors, and has been shown to improve the diagnosis and subsequent treatment of cancers. In this chapter, we review its use in cancer diagnosis, staging, restaging, and assessment of response to treatment. In addition, other metabolic PET imaging agents in research or clinical trial stages are discussed, including amino acid analogs based on increased protein synthesis, and choline, which is based on increased membrane lipid synthesis. Amino acid analogs and choline are more specific to tumor cells than FDG, so they play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with low FDG uptake or high background FDG uptake. For decades, researchers have shown that tumors have altered metabolic profiles and display elevated uptake of glucose, amino acids, and lipids, which can be used for cancer diagnosis and monitoring of the therapeutic response with excellent signal-to-noise ratios. PMID:21362516

  9. Gold Nanorods for Ovarian Cancer Detection with Photoacoustic Imaging and Resection Guidance via Raman Imaging in Living Mice

    PubMed Central

    Jokerst, Jesse V.; Cole, Adam J.; Van de Sompel, Dominique; Gambhir, Sanjiv S.

    2013-01-01

    Improved imaging approaches are needed for ovarian cancer screening, diagnosis, staging, and resection guidance. Here, we propose a combined photoacoustic (PA)/Raman approach using gold nanorods (GNRs) as a passively targeted molecular imaging agent. GNRs with three different aspect ratios were studied. Those with an aspect ratio of 3.5 were selected for their highest ex vivo and in vivo PA signal and used to image subcutaneous xenografts of the 2008, HEY, and SKOV3 ovarian cancer cell lines in living mice. Maximum PA signal was observed within 3 h for all three lines tested and increased signal persisted for at least two days postadministration. There was a linear relationship (R2 = 0.95) between the PA signal and the concentration of injected molecular imaging agent with a calculated limit of detection of 0.40 nM GNRs in the 2008 cell line. The same molecular imaging agent could be used for clear visualization of the margin between tumor and normal tissue and tumor debulking via surface-enhanced Raman spectroscopy (SERS) imaging. Finally, we validated the imaging findings with biodistribution data and elemental analysis. To the best of our knowledge, this is the first report of in vivo imaging of ovarian cancer tumors with a photoacoustic and Raman imaging agent. PMID:23101432

  10. Radiolabelled D2 agonists as prolactinoma imaging agents

    SciTech Connect

    Otto, C.A.

    1991-12-31

    Research conducted in this terminal year of support centered on three distinct areas: mAChR ligand localization in pancreas and the effect of Ca{sup +2} on localization, continuation of assessment of quaternized and neutral mAChR ligands for possible use as PET myocardial imaging agents, and initiation of a study to determine the relationship of the nAChR receptor to the cellular receptor for measles virus. Several tables and figures illustrating the results are included.

  11. Lung Cancer Mutations and Use of Targeted Agents in Hispanics

    PubMed Central

    Cress, W. Douglas; Chiappori, Alberto; Santiago, Pedro; Muñoz-Antonia, Teresita

    2015-01-01

    Hispanic/Latinos (H/L) are expected to grow to over 24% of the USA population by 2050 and lung cancer is the number one cause of cancer death among H/L men. Due to the information that is becoming available via genetic testing, lung cancer molecular profiling is allowing for increasing application of personalized lung cancer therapies. However, to benefit the most people, development of these therapies and genetic tests must include research on as many racial and ethnic groups as possible. The purpose of this review is to bring attention to the fact that the mutations driving lung cancer in H/Ls differ in frequency and nature relative to the non-Hispanic White (WNH) majority that dominate current databases and participate in clinical trials that test new therapies. Clinical trials using new agents targeting genetic alterations (driver mutations) in lung cancer have demonstrated significant improvements in patient outcomes (for example, gefitinib, erlotinib or crizotinib for lung adenocarcinomas harboring EGFR mutations or EML4-ALK fusions, respectively). The nature and frequencies of some lung cancer driver mutations have been shown to be considerably different among racial and ethnic groups. This is particularly true for H/Ls. For example, several reports suggest a dramatic shift in the mutation pattern from predominantly KRAS in a WNH population to predominantly EGFR in multiple H/L populations. However, these studies are limited, and the effects of racial and ethnic differences on the incidence of mutations in lung cancer remain incompletely understood. This review serves as a call to address this problem. PMID:25626064

  12. Innovative Treatments for Cancer:. The Impact of Delivering siRNAs, Chemotherapies, and Preventative Agents Using Nanoformulations

    NASA Astrophysics Data System (ADS)

    Hook, Sara S.; Farrell, Dorothy; Hinkal, George W.; Ptak, Krzystzof; Grodzinski, Piotr; Panaro, Nicholas J.

    2013-09-01

    A multi-disciplinary approach to research epitomized by the emerging field of cancer nanotechnology can catalyze scientific developments and enable clinical translation beyond what we currently utilize. Engineers, chemists, and physical scientists are teaming up with cancer biologists and clinical oncologists to attack the vast array of cancer malignancies using materials at the nanoscale. We discuss how nanoformulations are enabling the targeted, efficient, delivery of not only genetic therapies such silencing RNAs, but also conventional cytotoxic agents and small molecules which results in decreased systemic toxicity and improved therapeutic index. As preventative approaches, there are various imaging agents and devices are being developed for screening purposes as well as new formulations of sunscreens, neutraceuticals, and cancer vaccines. The goal then of incorporating nanotechnology into clinical applications is to achieve new and more effective ways of diagnosing, treating, and preventing cancer to ultimately change the lives of patients worldwide.

  13. Contrast agent stability: a continuous B-mode imaging approach.

    PubMed

    Sboros, V; Moran, C M; Pye, S D; McDicken, W N

    2001-10-01

    The stability of contrast agents in suspensions with various dissolved gas levels has not been reported in the literature. An in vitro investigation has been carried out that studied the combined effect of varying the acoustic pressure along with degassing the suspension environment. In this study, the contrast agents were introduced into suspensions with different oxygen concentration levels, and their relative performance was assessed in terms of decay rate of their backscatter echoes. The partial pressures of oxygen in those solutions ranged between 1.5 and 26 kPa. Two IV and one arterial contrast agents were used: Definity, Quantison, and Myomap. It was found that Quantison and Myomap released free bubbles at high acoustic pressure that also dissolved faster in degassed suspensions. The backscatter decay for Definity did not depend on the air content of the suspensions. The destruction of bubbles was dependent on acoustic pressure. Different backscatter performance was observed by different populations of bubbles of the last two agents. The physical quantity of "overall backscatter" (OB) was defined as the integral of the decay rate over time of the backscatter of the contrast suspensions, and improved significantly the understanding of the behaviour of the agents. A quantitative analysis of the backscatter properties of contrast agents using a continuous imaging approach was difficult to achieve. This is due to the fact that the backscatter in the field of view is representative of a bubble population affected by the ultrasound (US) field, but this bubble population is not representative of the contrast suspension in the whole tank. Single frame insonation is suggested to avoid the effects of decay due to the ultrasonic field, and to measure a tank-representative backscatter. The definition of OB was useful, however, in understanding the behaviour of the agents.

  14. A naturally occurring contrast agent for OCT imaging of smokers' lung

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Bagnaninchi, Pierre O.; Whiteman, Suzanne C.; Gey van Pittius, Daniel; El Haj, Alicia J.; Spiteri, Monica A.; Wang, Ruikang K.

    2005-08-01

    Optical coherence tomography (OCT) offers great potential for clinical applications in terms of its cost, safety and real-time imaging capability. Improvement of its resolution for revealing sub-layers or sub-cellular components within a tissue will further widen its application. In this study we report that carbon pigment, which is frequently present in the lungs of smokers, could be used as a contrast agent to improve the OCT imaging of lung tissue. Carbon produced an intense bright OCT image at a relatively deep location. The parallel histopathological section analysis confirmed the presence of carbon pigment in such tissues. The underlying mechanism of the OCT image formation has been discussed based on a model system in which carbon particles were dispersed in agar gel. Calculations and in-depth intensity profiles of OCT revealed that higher refractive index particles with a size close to or smaller than the wavelength would greatly increase backscattering and generate a sharp contrast, while a particle size several times larger than the wavelength would absorb or obstruct the light path. The naturally occurring contrast agent could provide a diagnostic biomarker of lung tissue in smokers. Furthermore, carbon under such circumstances, can be used as an effective exogenous contrast agent, with which specific components or tissues exhibiting early tumour formation can be optically labelled to delineate the location and boundary, providing potential for early cancer detection and its treatment.

  15. Terahertz polarization imaging for colon cancer detection

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2014-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, noninvasive medical imaging modality for delineating colorectal cancer. The terahertz reflectance measurements of fresh 3 - 5 mm thick human colonic excisions were acquired using a continuous-wave polarization imaging technique. A CO2 optically pumped Far- Infrared molecular gas laser operating at 584 GHz was used to illuminate the colon tissue, while the reflected signals were detected using a liquid Helium cooled silicon bolometer. Both co-polarized and cross-polarized remittance from the samples was collected using wire grid polarizers in the experiment. The experimental analysis of 2D images obtained from THz reflection polarization imaging techniques showed intrinsic contrast between cancerous and normal regions based on increased reflection from the tumor. Also, the study demonstrates that the cross-polarized terahertz images not only correlates better with the histology, but also provide consistent relative reflectance difference values between normal and cancerous regions for all the measured specimens.

  16. Molecular imaging for personalized cancer care.

    PubMed

    Kircher, Moritz F; Hricak, Hedvig; Larson, Steven M

    2012-04-01

    Molecular imaging is rapidly gaining recognition as a tool with the capacity to improve every facet of cancer care. Molecular imaging in oncology can be defined as in vivo characterization and measurement of the key biomolecules and molecularly based events that are fundamental to the malignant state. This article outlines the basic principles of molecular imaging as applied in oncology with both established and emerging techniques. It provides examples of the advantages that current molecular imaging techniques offer for improving clinical cancer care as well as drug development. It also discusses the importance of molecular imaging for the emerging field of theranostics and offers a vision of how molecular imaging may one day be integrated with other diagnostic techniques to dramatically increase the efficiency and effectiveness of cancer care.

  17. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    PubMed Central

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  18. Functionalizing low-density lipoprotein nanoparticles for in vivo near-infrared optical imaging of cancer

    NASA Astrophysics Data System (ADS)

    Corbin, Ian R.; Chen, Juan; Li, Hui; Cao, Weiguo; Zheng, Gang

    2007-07-01

    Low density lipoproteins (LDL) have long been recognized as a potential delivery system for exogenous agents. Imaging agents or drugs can be attached to LDL through surface loading, protein loading or core loading methods. The LDL delivery system has received considerable attention particularly among cancer biologists as it was observed that numerous cancers over-express the low density lipoprotein receptor (LDLR). In this paper we investigate the utility of LDL to transport optical imaging contrast agents for caner detection. The method of loading fluorophores into the core of LDL is attractive as it behaves like an activatable contrast agent. Surface and protein labeled methods also prove to be effective strategies for tracing LDL nanoparticle activity. The strengths and limitations of the LDL carrier system are discussed and novel approaches for imaging cancer with LDL nanoparticles are highlighted.

  19. Near Infrared Resonant Gold / Gold Sulfide Nanoparticles as a Photothermal Cancer Therapeutic Agent

    PubMed Central

    Gobin, André M.; Watkins, Emily M.; Quevedo, Elizabeth; Colvin, Vicki L.; West, Jennifer L.

    2010-01-01

    The development and optimization of near-infrared (nIR) absorbing nanoparticles for use as photothermal cancer therapeutic agents has been ongoing. We have previously reported on larger layered gold / silica nanoshells (~140 nm) for combined therapy and imaging applications. This work exploits the properties of smaller gold / gold sulfide (GGS) nIR absorbing nanoparticles (~35–55 nm) that provide higher absorption (98% absorption & 2% scattering for GGS versus 70% absorption & 30% scattering for gold/silica nanoshells) as well as potentially better tumor penetration. In this work we demonstrate ability to ablate tumor cells in vitro, and efficacy for photothermal cancer therapy, where in an in vivo model we show significantly increased long-term, tumor-free survival. Further, enhanced circulation and bio-distribution is observed in vivo. This class of nIR absorbing nanoparticles has potential to improve upon photothermal tumor ablation for cancer therapy. PMID:20183810

  20. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  1. Multifunctional nanostructured materials for multimodal cancer imaging and therapy.

    PubMed

    Liao, Jinfeng; Qi, Tingting; Chu, Bingyang; Peng, Jinrong; Luo, Feng; Qian, Zhiyong

    2014-01-01

    This paper reviews the recent research and development of multifunctional nanostructured materials for multimodal imaging and therapy. The biomedical applications for multifunctional imaging, diagnosis and therapy are discussed for several nanostructured materials such as polymeric nanoparticles, magnetic nanoparticles, gold nanomaterials, carbon materials, quantum dots and silica nanoparticles. Due to the unique features of nanostructured materials including the large surface area, structural diversity, multifunctionality, and long circulation time in blood, these materials have emerged as attractive preferences for optimized therapy. Multimodal imaging can be introduced to nanostructured materials for precise and fast diagnosis of cancer, which overcomes the shortcoming of single-imaging modality. Meanwhile, nanostructured materials can be also used to deliver therapeutic agents to the disease site in order to accomplish multimodal imaging and simultaneous diagnosis and therapy.

  2. Chain elongation analog of resveratrol as potent cancer chemoprevention agent.

    PubMed

    Kang, Yan-Fei; Qiao, Hai-Xia; Xin, Long-Zuo; Ge, Li-Ping

    2016-09-01

    Resveratrol is identified as a natural cancer chemoprevention agent. There has been a lot of interest in designing and developing resveratrol analogs with cancer chemoprevention activity superior to that of parent molecule and exploring their action mechanism in the past several decades. In this study, we have synthesized resveratrol analogs of compounds A-C via conjugated chain elongation based on isoprene unit retention strategy. Remarkably, cytotoxic activity analysis results indicated that compound B possesses the best proliferation inhibition activity for NCI-H460 cells in all the test compounds. Intriguingly, compound B displayed a higher cytotoxicity against human non-small cell lung cancer cells (NCI-H460) compared to normal human embryonic lung fibroblasts (MRC-5). Afterward, flow cytometry analysis showed that compound B would induce cell apoptosis. We further researched the action mechanism. When NCI-H460 cells were incubated by compound B for 6 or 9 h, respectively, the intracellular reactive oxygen species (ROS) level was enhanced obviously. With elevation of intracellular ROS level, flow cytometry measurement verified mitochondrial transmembrane potential collapse, which was accompanied by the up-regulation of Bax and down-regulation of Bcl-2. More interestingly, compound B increased the expression of caspase-9 and caspase-3, which induced cell apoptosis. Moreover, compound B arrested cell cycle in G0/G1 phase. These are all to provide useful information for designing resveratrol-based chemoprevention agent and understanding the action mechanism.

  3. Naturally occurring anti-cancer agents targeting EZH2.

    PubMed

    Shahabipour, Fahimeh; Caraglia, Michele; Majeed, Muhammed; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-03-18

    Natural products are considered as promising tools for the prevention and treatment of cancer. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase unit of polycomb repressor complexes such as PRC2 complex that has oncogenic roles through interference with growth and metastatic potential. Several agents targeting EZH2 has been discovered but they often induce side effects in clinical trials. Recently, EZH2 has emerged as a potential target of natural products with documented anti-cancer effects and this discloses a new scenario for the development of EZH2 inhibitory strategies with agents with low cytotoxic detrimental effects. In fact, several natural products such as curcumin, triptolide, ursolic acid, sulforaphane, davidiin, tanshindiols, gambogic acid, berberine and Alcea rosea have been shown to serve as EZH2 modulators. Mechanisms like inhibition of histone H3K4, H3K27 and H3K36 trimethylation, down-regulation of matrix metalloproteinase expression, competitive binding to the S-adenosylmethionine binding site of EZH2 and modulation of tumor-suppressive microRNAs have been demonstrated to mediate the EZH2-inhibitory activity of the mentioned natural products. This review summarizes the pathways that are regulated by various natural products resulting in the suppression of EZH2, and provides a plausible molecular mechanism for the putative anti-cancer effects of these compounds.

  4. A paramagnetic CEST agent for imaging glucose by MRI.

    PubMed

    Zhang, Shanrong; Trokowski, Robert; Sherry, A Dean

    2003-12-17

    The europium(III) complex of a DOTA-tetraamide ligand (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N' ',N' ''-tetraacetic acids) containing two phenyl boronate pendent arms binds glucose reversibly with an association constant of 383 M-1 at pH 7. Glucose binding results in slowing of water exchange between a single Eu(III)-bound water molecule and bulk water, and this can be imaged by MRI using chemical exchange saturation transfer (CEST) imaging sequence. This metabolite-responsive paramagnetic CEST agent responds to changes in glucose over the physiologically important range (0-20 mM), and thus it offers the possibility of high-sensitivity MR imaging glucose in tissues using bulk water protons as antenna.

  5. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  6. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    PubMed Central

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  7. Preoperative imaging for hepatic resection of colorectal cancer metastasis.

    PubMed

    Frankel, Timothy L; Gian, Richard Kinh; Jarnagin, William R

    2012-03-01

    Despite recent advances in chemotherapeutic agents, the prognosis for metastatic colon cancer remains poor. Over the past two decades, hepatic metastasectomy has emerged as a promising technique for improving survival in patients with metastatic colon cancer and in some cases providing long-term cure. To maximize safety and efficacy of metastasectomy, appropriate pre-operative imaging is needed. Advancements in computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have led to improved detection of occult lesions and better definition of surgical anatomy. While CT, PET and MRI have a comparable sensitivity for detection of large liver metastases, MRI excels at detection of subcentimeter liver metastases compared to CT and FDG-PET, especially with the combination of diffusion weighted imaging (DWI) and hepatocyte-specific contrast agents. CT may be useful as a screening modality or in preoperative planning such as volumetric estimation of the remnant liver size or in defining preoperative arterial anatomy for hepatic artery infusion pump placement. While technologic advancements have led to unprecedented image quality and clarity, this does not replace the need for a dedicated, competent radiologist with experience in hepatic imaging.

  8. Multi-stimuli responsive Cu2S nanocrystals as trimodal imaging and synergistic chemo-photothermal therapy agents

    NASA Astrophysics Data System (ADS)

    Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Nagaoka, Yutaka; Romero Aburto, Rebeca; Mitcham, Trevor; Ajayan, Pulickel M.; Bouchard, Richard R.; Sakamoto, Yasushi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2015-04-01

    A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies.A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies. Electronic supplementary information (ESI) available: Methodology and additional experimental results. See DOI: 10.1039/c4nr07139e

  9. Image-guided robotic delivery system for precise placement of therapeutic agents.

    PubMed

    Cleary, K; Freedman, M; Clifford, M; Lindisch, D; Onda, S; Jiang, L

    2001-07-06

    The effectiveness of conventional solid tumor treatment is limited by the systemic toxicity and lack of specificity of chemotherapeutic agents. Present treatment modalities are frequently insufficient to eliminate competent cancer cells without exceeding the limits of toxicity to normal tissue. The coming generation of cancer therapeutics depends on the precise targeting and sustained release of antitumor agents to overcome these limitations. We are developing an image-guided, robotic system for precise intratumoral placement of anticancer drugs and sustained release devices to advance this new treatment paradigm. The robotic system will use intraoperatively obtained computed tomographic (CT) images from a mobile CT scanner for guidance. The concept is to track patient anatomy and localize instruments using currently available optical tracking technology. Tracking will also be used to register patient anatomy with the images. The physician can then use the registered image to select an appropriate tumor target and entry location and to plan the instrument path. This path will then be transmitted to the robot, which orients and drives the instrument to the desired target under physician control. Achievement of the target is confirmed via intraoperative CT. This system will provide instrument guidance that is precise, direct, and controllable. Error due to poor target visualization and hand unsteadiness should be reduced greatly. The basic components of the system (robot, mobile CT, tracking) have been demonstrated in our laboratory, and the integration of the components is in progress. In future work, we plan to fuse preoperative PET imaging with intraoperative CT to allow functional as well as anatomic image guidance.

  10. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging.

    PubMed

    Pablico-Lansigan, Michele H; Hickling, William J; Japp, Emily A; Rodriguez, Olga C; Ghosh, Anup; Albanese, Chris; Nishida, Maki; Van Keuren, Edward; Fricke, Stanley; Dollahon, Norman; Stoll, Sarah L

    2013-10-22

    Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.

  11. Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Motamedi, Massoud; Popov, Vsevolod L.; Kotov, Nicholas A.; Oraevsky, Alexander A.

    2004-07-01

    Optoacoustic Tomography (OAT) is a rapidly growing technology that enables noninvasive deep imaging of biological tissues based on their light absorption. In OAT, the interaction of a pulsed laser with tissue increases the temperature of the absorbing components in a confined volume of tissue. Rapid perturbation of the temperature (<1°C) deep within tissue produces weak acoustic waves that easily travel to the surface of the tissue with minor attenuation. Abnormal angiogenesis in a malignant tumor, that increases its blood content, makes a native contrast for optoacoustic imaging; however, the application of OAT for early detection of malignant tumors requires the enhancement of optoacoustic signals originated from tumor by using an exogenous contrast agent. Due to their strong absorption, we have used gold nanoparticles (NP) as a contrast agent. 40nm spherical gold nanoparticles were attached to monoclonal antibody to target cell surface of breast cancer cells. The targeted cancer cells were implanted at depth of 5-6cm within a gelatinous object that optically resembles human breast. Experimental sensitivity measurements along with theoretical analysis showed that our optoacoustic imaging system is capable of detecting a phantom breast tumor with the volume of 0.15ml, which is composed of 25 million NP-targeted cancer cells, at a depth of 5 centimeters in vitro.

  12. The use of contrast agent for imaging biological samples

    NASA Astrophysics Data System (ADS)

    Dammer, J.; Weyda, F.; Sopko, V.; Jakubek, J.

    2011-01-01

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1μm, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  13. In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent

    PubMed Central

    2015-01-01

    Accurate visualization and quantification of β-cell mass is critical for the improved understanding, diagnosis, and treatment of both type 1 diabetes (T1D) and insulinoma. Here, we describe the synthesis of a bimodal imaging probe (PET/fluorescence) for imaging GLP-1R expression in the pancreas and in pancreatic islet cell tumors. The conjugation of a bimodal imaging tag containing a near-infrared fluorescent dye, and the copper chelator sarcophagine to the GLP-1R targeting peptide exendin-4 provided the basis for the bimodal imaging probe. Conjugation was performed via a novel sequential one-pot synthetic procedure including 64Cu radiolabeling and copper-catalyzed click-conjugation. The bimodal imaging agent 64Cu-E4-Fl was synthesized in good radiochemical yield and specific activity (RCY = 36%, specific activity: 141 μCi/μg, >98% radiochemical purity). The agent showed good performance in vivo and ex vivo, visualizing small xenografts (<2 mm) with PET and pancreatic β-cell mass by phosphor autoradiography. Using the fluorescent properties of the probe, we were able to detect individual pancreatic islets, confirming specific binding to GLP-1R and surpassing the sensitivity of the radioactive label. The use of bimodal PET/fluorescent imaging probes is promising for preoperative imaging and fluorescence-assisted analysis of patient tissues. We believe that our procedure could become relevant as a protocol for the development of bimodal imaging agents. PMID:24856928

  14. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer.

    PubMed

    Orel, S G; Schnall, M D

    2001-07-01

    With the introduction of contrast agents, advances in surface coil technology, and development of new imaging protocols, contrast agent-enhanced magnetic resonance (MR) imaging has emerged as a promising modality for detection, diagnosis, and staging of breast cancer. The reported sensitivity of MR imaging for the visualization of invasive cancer has approached 100%. There are many examples in the literature of MR imaging--demonstrated mammographically, sonographically, and clinically occult breast cancer. Often, breast cancer detected on MR images has resulted in a change in patient care. Despite these results, there are many unresolved issues, including no defined standard technique for contrast-enhanced breast MR imaging, no standard interpretation criteria for evaluating such studies, no consensus on what constitutes clinically important enhancement, and no clearly defined clinical indications for the use of MR imaging. Furthermore, this technology remains costly, and issues of cost-effectiveness and cost competition from percutaneous biopsy have yet to be fully addressed. These factors along with the lack of commercially available MR imaging--guided localization and biopsy systems have slowed the transfer of this imaging technology from research centers to clinical breast imaging practices. Technical requirements, potential clinical applications, and potential pitfalls and limitations of contrast-enhanced MR imaging as a method to help detect, diagnose, and stage breast cancer will be described.

  15. [Preserving one's self-image despite cancer].

    PubMed

    Caltagirone, Aury

    2014-03-01

    Cancer and the side effects of the treatments affect a patient's self-image. The assistance of a personal image consultant and socio-aesthetician can help the patient restore their appearance and become more accepting of themselves. It enables them to be more at ease in their relationships with others and reinforces self-esteem.

  16. The Effectiveness of Ferritin as a Contrast Agent for Cell Tracking MRI in Mouse Cancer Models

    PubMed Central

    Lee, Chan Wha; Choi, Sun Il; Lee, Sang Jin; Oh, Young Taek; Park, Gunwoo; Park, Na Yeon; Yoon, Kyoung-Ah; Kim, Sunshin; Suh, Jin-Suck

    2017-01-01

    Purpose We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models. Materials and Methods Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence. Results Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor. Conclusion Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety. PMID:27873495

  17. Multi-agent system for line detection on images

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris A.; Babayan, Pavel V.; Shubin, Nikita Yu.

    2016-10-01

    Lines are one of the most informative structure elements on any images. For this reason, objects detection and recognition problems are often reduced to edge detection task. One of the most popular approaches to detect lines is based on the Hough transform or Radon transform. However, using both of transforms allows estimating the infinite lines parameters only. It is necessary to use additional approaches to estimate the ends of the detected lines. Moreover, Radon transform does not allow detecting non-straight curve shapes at all. This work is oriented to solve line detection problem using Radon transform and multi-agent approach. The results of the experimental researches that confirm the effectiveness of the proposed approach are given. The real full HD image sequences are used. The direction of further improvements is proposed.

  18. DNA as sensors and imaging agents for metal ions.

    PubMed

    Xiang, Yu; Lu, Yi

    2014-02-17

    Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.

  19. Controlling RNA Expression in Cancer Using Iron Oxide Nanoparticles Detectable by MRI and In Vivo Optical Imaging.

    PubMed

    Medarova, Zdravka; Balcioglu, Mustafa; Yigit, Mehmet V

    2016-01-01

    Herein, we describe a protocol for the preparation of iron oxide nanoparticle-based contrast agents and drug delivery vehicles for noninvasive cancer imaging and therapy. In the first part of the chapter we describe the details of the contrast agent synthesis, functionalization, and characterization. In the second part we describe the methods for tumor imaging using the synthesized particles with noninvasive T2-weighted magnetic resonance imaging (MRI) and in vivo near infrared optical imaging.

  20. Plant polyphenolics as anti-invasive cancer agents.

    PubMed

    Bracke, M E; Vanhoecke, B W A; Derycke, L; Bolca, S; Possemiers, S; Heyerick, A; Stevens, C V; De Keukeleire, D; Depypere, H T; Verstraete, W; Williams, C A; McKenna, S T; Tomar, S; Sharma, D; Prasad, A K; DePass, A L; Parmar, V S

    2008-02-01

    Because invasion is, either directly or via metastasis formation, the main cause of death in cancer patients, development of efficient anti-invasive agents is an important research challenge. We have established a screening program for potentially anti-invasive compounds. The assay is based on organotypic confronting cultures between human invasive cancer cells and a fragment of normal tissue in three dimensions. Anti-invasive agents appeared to be heterogeneous with regard to their chemical nature, but plant alkaloids, polyphenolics and some of their synthetic congeners were well represented. Even within this group, active compounds were quite diverse: (+)-catechin, tangeretin, xanthohumol and other prenylated chalcones, 3,7-dimethoxyflavone, a pyrazole derivative, an isoxazolylcoumarin and a prenylated desoxybenzoin. The data gathered in this system are now applied in two projects. Firstly, structure-activity relationships are explored with computer models using an artificial neural network approach, based on quantitative structural descriptors. The aim of this study is the prediction and design of optimally efficient anti-invasive compounds. Secondly, the metabolism of orally ingested plant polyphenolics by colonic bacteria is studied in a simulator of the human intestinal microbial ecosystem (SHIME) and in human intervention trials. This method should provide information on the final bioavailability of the active compounds in the human body, with regard to microbial metabolism, and the feasibility of designing pre- or probiotics that increase the generation of active principles for absorption in the gastro-intestinal tract. The final and global aim of all these studies is to predict, synthesize and apply in vivo molecules with an optimal anti-invasive, and hence an anti-metastatic activity against cancer.

  1. Vascular flow and perfusion imaging with ultrasound contrast agents.

    PubMed

    Bruce, Matthew; Averkiou, Mike; Tiemann, Klaus; Lohmaier, Stefan; Powers, Jeff; Beach, Kirk

    2004-06-01

    Current techniques for imaging ultrasound (US) contrast agents (UCA) make no distinction between low-velocity microbubbles in the microcirculation and higher-velocity microbubbles in the larger vasculature. A combination of radiofrequency (RF) and Doppler filtering on a low mechanical index (MI) pulse inversion acquisition is presented that differentiates low-velocity microbubbles (on the order of mm/s) associated with perfusion, from the higher-velocity microbubbles (on the order of cm/s) in larger vessels. In vitro experiments demonstrate the ability to separate vascular flow using both harmonic and fundamental Doppler signals. Fundamental and harmonic Doppler signals from microbubbles using a low-MI pulse-inversion acquisition are compared with conventional color Doppler signals in vivo. Due to the lower transmit amplitude and enhanced backscatter from microbubbles, the in vivo signal to clutter ratios for both the fundamental (-11 dB) and harmonic (-4 dB) vascular flow signals were greater than with conventional power Doppler (-51 dB) without contrast agent. The processing investigated here, in parallel with conventional pulse-inversion processing, enables the simultaneous display of both perfusion and vascular flow. In vivo results demonstrating the feasibility and potential utility of the real-time display of both perfusion and vascular flow using US contrast agents are presented and discussed.

  2. Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment . This report provides an overview of the types of mechanisms underlying the lymphohematopoietic cancers induc...

  3. Employing image processing techniques for cancer detection using microarray images.

    PubMed

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively.

  4. Fluorescent rhenium-naphthalimide conjugates as cellular imaging agents.

    PubMed

    Langdon-Jones, Emily E; Symonds, Nadine O; Yates, Sara E; Hayes, Anthony J; Lloyd, David; Williams, Rebecca; Coles, Simon J; Horton, Peter N; Pope, Simon J A

    2014-04-07

    A range of biologically compatible, fluorescent rhenium-naphthalimide conjugates, based upon the rhenium fac-tricarbonyl core, has been synthesized. The fluorescent ligands are based upon a N-functionalized, 4-amino-derived 1,8-naphthalimide core and incorporate a dipicolyl amine binding unit to chelate Re(I); the structural variations accord to the nature of the alkylated imide with ethyl ester glycine (L(1)), 3-propanol (L(2)), diethylene glycol (L(3)), and benzyl alcohol (L(4)) variants. The species are fluorescent in the visible region between 505 and 537 nm through a naphthalimide-localized intramolecular charge transfer, with corresponding fluorescent lifetimes of up to 9.8 ns. The ligands and complexes were investigated for their potential as imaging agents for human osteoarthritic cells and protistan fish parasite Spironucleus vortens using confocal fluorescence microscopy. The results show that the specific nature of the naphthalimide structure serves to control the uptake and intracellular localization of these imaging agents. Significant differences were noted between the free ligands and complexes, with the Re(I) complex of L(2) showing hydrogenosomal localization in S. vortens.

  5. Development of Tc-99m Imaging Agents for Abeta Plaques

    SciTech Connect

    Zhi-Ping, Zhuang; Mei-Ping Kung; Catherihne Hou; Hank F. Kung

    2008-09-26

    Development of SPECT imaging agents based on Tc-99m targeting Aβ plaques is useful for diagnosis of Alzheimer’s disease (AD). A stilbene derivative, [11C]SB-13, showing promise in detecting senile plaques present in AD patients has been reported previously1,2. Based on the 4’-amino-stilbene core structure we have added substituted groups through which a chelating group, N2S2, was conjugated. We report herein a series of Tc-99m labeled stilbene derivative conjugated with a TcO[N2S2] core. The syntheses of stilbenes containing a N2S2 chelating ligand are achieved by a scheme shown. Lipophilic 99mTc stilbene complexes were successfully prepared and purified through HPLC. Preliminary results of in vitro labeling of brain sections from transgenic mice showed very promising plaque labeling. These 99mTc stilbene derivatives are warranted for further evaluations as potential imaging agents targeting amyloid plaques.

  6. (Fluorine-18 labeled androgens and progestins: Imaging agents for tumors of the prostate and breast)

    SciTech Connect

    Katzenellenbogen, J.A.

    1990-09-20

    The objective of this project is to develop fluorine-18 labeled steroids which possess high binding affinity and selectivity for androgen and progesterone receptors and can be used as positron-emission tomographic imaging agents for prostate tumors and breast tumors, respectively. These novel diagnostic agents may enable an accurate estimation of tumor dissemination (metastasis of prostate cancer and lymph node involvement of breast cancer) and an in vivo determination of the endocrine responsiveness of these tumors. Thus, they will provide essential information for the selection of alternative therapies (the extent of surgical ablation, radiation and chemotherapy vs hormonal therapy, etc.), thereby improving the management of prostate and breast cancer patients. Specific aims of the program include: synthesize fluorine-substituted progestins from the following high affinity classes: R5020 (promegestone), norgestrel, RU486, and retroprogestins; synthesize fluorine-substituted androgens from the following high affinity classes: mibolerone, R1881 (metribolone) and 2-oxametribolone; evaluate the receptor binding and non-specific binding of these fluorosteroids by in vitro binding assays; develop and optimize fluoride ion substitution reactions suitable for the rapid, efficient, and convenient preparation of these fluorosteroids in high specific activity, F-18 labeled form; and evaluate the target tissue uptake of the F-18 labeled androgens and progestins in experimental animals. We have synthesized several new fluorine-substituted androgens (1--6) over the past year. Their structures and binding affinity for the androgen receptor (RBA) are listed in this paper. 6 refs.

  7. Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies.

    PubMed

    Zhang, Ruiping; Cheng, Kai; Antaris, Alexander L; Ma, Xiaowei; Yang, Min; Ramakrishnan, Sindhuja; Liu, Guifeng; Lu, Alex; Dai, Hongjie; Tian, Mei; Cheng, Zhen

    2016-10-01

    The multimodality theranostic system, which can integrate two or more different therapeutic modalities and multimodal imaging agents into a nanoentity, shows great promising prospects for the cancer treatment. Herein, we developed an efficient and novel strategy to synthesize hybrid anisotropic nanoparticles (HANs) with intrinsic multimodal theranostic capability [chemotherapy, photothermal therapy, magnetic resonance imaging (MRI), and photoacoustic imaging (PAI)]. For the first time, under the guidance of MRI and PAI, the chemotherapy and thermotherapy induced by administration of multifunctional hybrid nanoprobes were applied simultaneously to the treatment of colon cancer-bearing mice in vivo.

  8. Experimental evaluation of a hyperspectral imager for near-infrared fluorescent contrast agent studies

    NASA Astrophysics Data System (ADS)

    Luthman, A. S.; Bohndiek, Sarah E.

    2015-03-01

    Hyperspectral imaging (HSI) systems have the potential to combine morphological and spectral information to provide detailed and high sensitivity readouts in biological and medical applications. As HSI enables simultaneous detection in several spectral bands, the technology has significant potential for use in real-time multiplexed contrast agent studies. Examples include tumor detection in intraoperative and endoscopic imaging as well as histopathology. A multiplexed readout from multiple disease targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. Here, we evaluate a commercial, compact, near-infrared HSI sensor that has the potential to enable low cost, video rate HSI for multiplexed fluorescent contrast agent studies in biomedical applications. The hyperspectral imager, based on a monolithically integrated Fabry-Perot etalon, has 70 spectral bands between 600-900 nm, making it ideal for this application. Initial calibration of the imager was performed to determine wavelength band response, quantum efficiency and the effect of F-number on the spectral response. A platform for wide-field fluorescence imaging in reflectance using fluorophore specific LED excitation was then developed. The applicability of the imaging platform for simultaneous readout of multiple fluorophore signals was demonstrated using a dilution series of Alexa Fluor 594 and Alexa Fluor 647, showing that nanomolar fluorophore concentrations can be detected. Our results show that the HSI system can clearly resolve the emission spectra of the two fluorophores in mixtures of concentrations across several orders of magnitude, indicating a high dynamic range performance. We therefore conclude that the HSI sensor tested here is suitable for detecting fluorescence in biomedical imaging applications.

  9. Non-invasive Optical Molecular Imaging for Cancer Detection

    NASA Astrophysics Data System (ADS)

    Luo, Zhen

    ), which can selectively target plasma membrane of cells based on lower extracellular pH. 20 pairs of clinically normal and abnormal biopsies were obtained from consenting patients at UCDMC. Fluorescence intensity of tissue biopsies before and after topical delivery of 2-NBDG and Alexa-647 labeled pHLIP was measured non-invasively by widefield imaging and confocal microscope. Uptake of propargyl choline was measured after topical delivery using confocal microscope. The results of all three molecular imagine probes were further correlated with pathological diagnosis. The imaging results of clinical biopsies demonstrated that 2-NBDG, propargyl choline and pHLIP peptide can accurately distinguish the pathologically normal and abnormal biopsies. Topical application of the contrast agents generated significantly higher fluorescence signal intensity in all neoplastic tissues as compared to clinically normal biopsies irrespective of the anatomic location or patient. This unpaired comparison across all the cancer patients in this study highlights the specificity of the imaging approach. Furthermore, the results indicated that changes in intracellular glucose, choline metabolism and cancer acidosis are initiated in the early stages of cancer and these changes are correlated with the progression of the disease. In conclusion, these novel optical molecular imaging approaches to measure multiple biomarkers in cancer have significant potential to be a useful tool for improving early detection and prognostic evaluation of oral neoplasia.

  10. Optical imaging for breast cancer prescreening

    PubMed Central

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503

  11. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians

    PubMed Central

    Van Cutsem, Eric; Verheul, Henk M. W.; Flamen, Patrik; Rougier, Philippe; Beets-Tan, Regina; Glynne-Jones, Rob; Seufferlein, Thomas

    2016-01-01

    The use of imaging in colorectal cancer (CRC) has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET) and computed tomography (CT). Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI) is a more versatile technique and dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG)-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner. PMID:27589804

  12. Ultra-high sensitivity imaging of cancer using SERRS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kircher, Moritz F.

    2016-05-01

    "Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.

  13. Simultaneous Dual-Nuclei Imaging for Motion Corrected Detection and Quantification of 19F Imaging Agents

    PubMed Central

    Keupp, Jochen; Rahmer, Jürgen; Grässlin, Ingmar; Mazurkewitz, Peter C.; Schaeffter, Tobias; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2011-01-01

    Fluorine MRI offers broad potential for specific detection and quantification of molecularly targeted agents in diagnosis and therapy planning or monitoring. Because non-proton MRI applications lack morphological information, accompanying proton images are needed to elucidate the spatial tissue context. Furthermore, low concentrations typical of targeted molecular imaging agents require long examinations for signal averaging during which physiological motion may lead to blurring, underestimation in signal quantification, and erroneous localization of the agent distribution. Novel methods for truly-simultaneous acquisition of dual-nuclei MR data are presented that offer efficient and precise anatomical localization of fluorine signals using accurate motion correction based on contemporaneous proton signals. The feasibility of simultaneous dual-nuclei MRI motion correction and corresponding dual-resolution reconstruction, providing nuclei-specific spatial resolution to retrospectively optimize the balance between signal-to-noise ratio and resolution, is shown on a clinical 3T MR system. PMID:21394779

  14. Contribution of imaging to cancer care costs.

    PubMed

    Yang, Yang; Czernin, Johannes

    2011-12-01

    Health care costs in the United States are increasing faster than the gross domestic product (GDP), and the growth rate of costs related to diagnostic imaging exceeds those of overall health care expenditures. Here we show that the contribution of imaging to cancer care costs pales in comparison to those of other key cost components, such as cancer drugs. Specifically, we estimate that (18)F-FDG PET or PET/CT accounted for approximately 1.5% of overall Medicare cancer care costs in 2009. Moreover, we propose that the appropriate use of (18)F-FDG PET or PET/CT could reduce the costs of cancer care. Because the U.S. health care system is complex and because it is difficult to find accurate data elsewhere, most cost and use assessments are based on published data from the U.S. Centers for Medicare & Medicaid Services.

  15. Development of molecularly targeted agents and immunotherapies in small cell lung cancer.

    PubMed

    Sharp, Adam; Bhosle, Jaishree; Abdelraouf, Fatma; Popat, Sanjay; O'Brien, Mary; Yap, Timothy A

    2016-06-01

    Small cell lung cancer (SCLC) is a smoking-induced malignancy with multiple toxin-associated mutations, which accounts for 15% of all lung cancers. It remains a clinical challenge with a rapid doubling time, early dissemination and poor prognosis. Despite multiple clinical trials in SCLC, platinum-based chemotherapy remains the mainstay of treatment in the first line advanced disease setting; good initial responses are nevertheless inevitably followed by disease relapse and survival ultimately remains poor. There are currently no molecularly targeted agents licenced for use in SCLC. Advances in sequencing the cancer genome and other high-throughput profiling technologies have identified aberrant pathways and mechanisms implicated in SCLC development and progression. Novel anti-tumour therapeutics that impact these putative targets are now being developed and investigated in SCLC. In this review, we discuss novel anti-tumour agents assessed in SCLC with reference to the complex molecular mechanisms implicated in SCLC development and progression. We focus on novel DNA damage response inhibitors, immune checkpoint modulators and antibody-drug conjugates that have shown promise in SCLC, and which may potentially transform treatment strategies in this disease. Finally, we envision the future management of SCLC and propose a biomarker-driven translational treatment paradigm for SCLC that incorporates next generation sequencing studies with patient tumours, circulating plasma DNA and functional imaging. Such modern strategies have the potential to transform the management and improve patient outcomes in SCLC.

  16. Imaging Prostate Cancer (PCa) Phenotype and Evolution

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0386 TITLE: Imaging Prostate Cancer (PCa) Phenotype and Evolution PRINCIPAL INVESTIGATOR: Jason A. Koutcher...CONTRACTING ORGANIZATION: Sloan Kettering Institute for Cancer Research New York, NY 10065 REPORT DATE: October 2015 TYPE OF REPORT: Annual Report...time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this

  17. T-oligo as an anticancer agent in colorectal cancer

    SciTech Connect

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc; Puri, Neelu

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  18. Early detection and longitudinal imaging of cancer micrometastases using biofunctionalized rare-earth albumin nanocomposites

    NASA Astrophysics Data System (ADS)

    Zevon, M.; Kantamneni, H.; Ganapathy, V.; Higgins, L.; Mingozzi, M.; Pierce, M.; Riman, R.; Roth, C. M.; Moghe, P. V.

    2016-05-01

    Success of personalized medicine in cancer therapy depends on the ability to identify and molecularly phenotype tumors. Current clinical imaging techniques cannot be integrated with precision molecular medicine at the level of single cells or microlesions due to limited resolution. In this work we use molecularly targeted infrared emitting optical probes to identify and characterize metastatic microlesions prior to their detection with clinically relevant imaging modalities. These contrast agents form the basis of an in vivo optical imaging system capable of resolving internal microlesions, filling a critical unmet need in cancer imaging.

  19. Optical Coherence Tomography in Cancer Imaging

    NASA Astrophysics Data System (ADS)

    Nam, Ahhyun Stephanie; Vakoc, Benjamin; Blauvelt, David; Chico-Calero, Isabel

    Investigations into the biology of cancer and novel cancer therapies rely on preclinical mouse models and traditional histological endpoints. Drawbacks of this approach include a limit in the number of time points for evaluation and an increased number of animals per study. This has motivated the use of intravital microscopy, which can provide longitudinal imaging of critical tumor parameters. Here, the capabilities of OCT as an intravital microscopy of the tumor microenvironment are summarized, and the state of OCT adoption into cancer research is summarized.

  20. PET/MR Imaging in Cancers of the Gastrointestinal Tract.

    PubMed

    Paspulati, Raj Mohan; Gupta, Amit

    2016-10-01

    PET/computed tomography (PET/CT) is an established hybrid imaging technique for staging and follow-up of gastrointestinal (GI) tract malignancies, especially for colorectal carcinoma. Dedicated hybrid PET/MR imaging scanners are currently available for clinical use. Although they will not replace regular use of PET/CT, they may have utility in selected cases of GI tract malignancies. The superior soft tissue contrast resolution and depiction of anatomy and the functional information obtained from diffusion-weighted imaging (DWI) provided by MR imaging in PET/MR imaging are advantages over CT of PET/CT for T staging and follow-up of rectal carcinoma and for better characterization of liver lesions. Functional information from DWI and use of liver-specific MR imaging contrast agents are an added advantage in follow-up of liver metastases after systemic and locoregional treatment. New radiotracers will improve the utility of PET/MR imaging in staging and follow-up of tumors, which may not be [18F]-2-fluoro-2-deoxy-d-glucose avid, such as hepatocellular carcinoma and neuroendocrine tumors. PET/MR imaging also has application in selected cases of cholangiocarcinoma, gallbladder cancer, and pancreatic carcinoma for initial staging and follow-up assessment.

  1. Microtubule-stabilizing agents: New drug discovery and cancer therapy.

    PubMed

    Zhao, Ying; Mu, Xin; Du, Guanhua

    2016-06-01

    Microtubule-stabilizing agents (MSAs) have been highly successful in the treatment of cancer in the past 20years. To date, three classes of MSAs have entered the clinical trial stage or have been approved for clinical anticancer chemotherapy, and more than 10 classes of novel structural MSAs have been derived from natural resources. The microtubule typically contains two MSA-binding sites: the taxoid site and the laulimalide/peloruside site. All defined MSAs are known to bind at either of these sites, with subtle but significant differences. MSAs with different binding sites may produce a synergistic effect. Although having been extensively applied in the clinical setting, paclitaxel and other approved MSAs still pose many challenges such as multidrug resistance, low bioavailability, poor solubility, high toxicity, and low passage through the blood-brain barrier. A variety of studies focus on the structure-activity relationship in order to improve the pharmaceutical properties of these agents. Here, the mechanisms of action, advancements in pharmacological research, and clinical developments of defined MSAs during the past decade are discussed. The latest discovered MSAs are also briefly introduced in this review. The increasing number of natural MSAs indicates the potential discovery of more novel, natural MSAs with different structural bases, which will further promote the development of anticancer chemotherapy.

  2. Preclinical evaluation of biodegradable macromolecular contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Yi

    Macromolecular contrast agents have been shown to be superior to small molecular weight contrast agents for MRI in blood pool imaging, tumor diagnosis and grading. However, none has been approved by the FDA because they circulate in the bloodstream much longer than small molecular weight contrast agents and result in high tissue accumulation of toxic Gd(III) ions. Biodegradable macromolecular contrast agents (BMCA) were invented to alleviate the toxic accumulation. They have a cleavable disulfide bond based backbone that can be degraded in vivo and excreted out of the body via renal filtration. Furthermore, the side chain of the backbone can be modified to achieve various degradation rates. Three BMCA, (Gd-DTPA)-cystamine copolymers (GDCC), Gd-DTPA cystine copolymers (GDCP), and Gd-DTPA cystine diethyl ester copolymers (GDCEP), were evaluated as blood pool contrast agents in a rat model. They have excellent blood pool enhancement, preferred pharmacokinetics, and only minimal long-term tissue retention of toxic Gd(III) ions. GDCC and GDCP, the lead agents with desired degradation rates, with molecular weights of 20 KDa and 70 KDa, were chosen for dynamic contrast enhanced MRI (DCE-MRI) to differentiate human prostate tumor models of different malignancy and growth rates. GDCC and GDCP could differentiate these tumor models, providing more accurate estimations of plasma volume, flow leakage rate, and permeability surface area product than a small molecular weight contrast agent Gd-DTPA-BMA when compared to the prototype macromolecular contrast agent albumin-Gd-DTPA. GDCC was favored for its neutral charge side chain and reasonable uptake rate by the tumors. GDCC with a molecular weight of 40 KDa (GDCC-40, above the renal filtration cutoff size) was used to assess the efficacy of two photothermal therapies (interstitial and indocyanine green enhanced). GDCC-40 provided excellent tumor enhancement shortly after its injection. Acute tumor response (4 hr) after therapies

  3. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  4. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    PubMed Central

    Lee, Haisung; Sung, Dongkyung; Kim, Jinhoon; Kim, Byung-Tae; Wang, Tuntun; An, Seong Soo A; Seo, Soo-Won; Yi, Dong Kee

    2015-01-01

    In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. PMID:26357472

  5. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer.

    PubMed

    Mehta, Amit; Zhang, Lisa; Boufraqech, Myriem; Zhang, Yaqin; Patel, Dhaval; Shen, Min; Kebebew, Electron

    2015-06-01

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies. Currently, there is no standard or effective therapy for ATC. Drug repurposing for cancer treatment is an emerging approach for identifying compounds that may have antineoplastic effects. The aim of this study was to use high-throughput drug library screening to identify and subsequently validate novel therapeutic agents with anticancer effects in ATC. We performed quantitative high-throughput screening (qHTS) in ATC cell lines (SW-1736, 8505C, and C-643), using a compound library of 3282 drugs. qHTS identified 100 compounds that were active in all three ATC cell lines. Proteasome inhibitors were one of the most active drug categories according to enrichment analysis. Of the three proteasome inhibitors screened, a second-generation proteasome inhibitor, carfilzomib, was the most active. Treatment of ATC cells with carfilzomib significantly inhibited cellular proliferation and induced G2/M cell cycle arrest and caspase-dependent apoptosis. Mechanistically, carfilzomib increased expression of p27 (CDKN1B) and decreased expression of the anti-apoptotic protein ATF4. Pretreatment with carfilzomib reduced in vivo metastases (lung, bone, liver, and kidney) and disease progression, and decreased N-cadherin expression. Carfilzomib treatment of mice with established, widely metastatic disease significantly increased their survival, without significant toxicity. Our findings support the use or clinical study of carfilzomib as a therapeutic option in patients with advanced and metastatic ATC.

  6. Uptake of myocardial imaging agents by rejected hearts

    SciTech Connect

    Bergsland, J.; Carr, E.A.; Carroll, M.; Wright, J.W.; Feldman, M.J.; Massucci, J.; Bhayana, J.N.; Gona, J.M.

    1985-09-01

    Technetium 99 m pyrophosphate, Gallium 67 and Thallium 201 uptakes were measured in heterotopically transplanted rat hearts. Five days after transplantation, Technetium 99 m pyrophosphate, and Gallium 67 uptakes were significantly higher in allogeneic grafts than in syngeneic grafts. At an early stage of rejection (three days after transplantation), only Technetium 99 m pyrophosphate uptake in the left ventricle of allogeneic grafts showed a significant difference (p less than 0.04). At five days, Thallium 201 uptake was significantly lower in allo- than syngeneic grafts. There was a positive correlation between radionuclide uptake and histologic degree of rejection for Technetium 99 m pyrophosphate and Gallium 67 while Thallium 201 uptake correlated negatively. Analysis of variance revealed that hearts with no or minimal rejection had statistically different uptakes than hearts with mild to moderate rejection. These results suggest that uptake of imaging agents might be useful in the diagnosis of rejection of the transplanted heart.

  7. Hyperpolarized water as an authentic magnetic resonance imaging contrast agent

    PubMed Central

    McCarney, Evan R.; Armstrong, Brandon D.; Lingwood, Mark D.; Han, Songi

    2007-01-01

    Pure water in a highly 1H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a 1H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the 1H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A 1H signal enhancement of water by a factor of −10 and −100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T1 relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate. PMID:17264210

  8. Image-based brachytherapy for cervical cancer

    PubMed Central

    Vargo, John A; Beriwal, Sushil

    2014-01-01

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of “grey zones” to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced

  9. Image-based brachytherapy for cervical cancer.

    PubMed

    Vargo, John A; Beriwal, Sushil

    2014-12-10

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of "grey zones" to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced cervical

  10. Surface-Enhanced Resonance Raman Scattering Nanostars for High Precision Cancer Imaging

    PubMed Central

    Harmsen, Stefan; Huang, Ruimin; Wall, Matthew A.; Karabeber, Hazem; Samii, Jason M.; Spaliviero, Massimiliano; White, Julie R.; Monette, Sébastien; O’Connor, Rachael; Pitter, Kenneth L.; Sastra, Stephen A.; Saborowski, Michael; Holland, Eric C.; Singer, Samuel; Olive, Kenneth P.; Lowe, Scott W.; Blasberg, Ronald G.; Kircher, Moritz F.

    2015-01-01

    The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the tumor extent is desired clinically and surgically. Here we show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal loco-regional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed here SERRS-nanostars. The SERRS-nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, SERRS-nanostars enabled accurate detection of macroscopic malignant lesions as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 femtomolar limit of detection under in vivo Raman imaging conditions) of SERRS-nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS-nanostars a promising imaging agent for more precise cancer imaging and resection. PMID:25609167

  11. A highly fluorescent AIE-active theranostic agent with anti-tumor activity to specific cancer cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yueyue; Kwok, Ryan T. K.; Lam, Jacky W. Y.; Tang, Ben Zhong

    2016-06-01

    A tetraphenylethene derivative with a structure resembling Tamoxifen is designed and synthesized as a theranostic agent for cell imaging and anti-breast cancer therapy. Its high brightness, excellent photostability and long-term cell tracing properties enable elucidation of its working mechanism and hence provide new insights into drug development.A tetraphenylethene derivative with a structure resembling Tamoxifen is designed and synthesized as a theranostic agent for cell imaging and anti-breast cancer therapy. Its high brightness, excellent photostability and long-term cell tracing properties enable elucidation of its working mechanism and hence provide new insights into drug development. Electronic supplementary information (ESI) available: Detailed synthesis and characterization of TPE-OH and TPE-TMX PL spectra of TPE-TMX fluorescent photographs of TPE-TMX taken under UV irradiation; various concentrations of TPE-TMX with different incubation times. See DOI: 10.1039/c5nr08782a

  12. Circular polarization terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Martin, Jillian P.

    The use of terahertz (THz) radiation for imaging human tissue and delineating tumor margins has become an appealing topic in the biomedical field because THz radiation is non-ionizing and has the demonstrated ability to differentiate between cancerous and normal tissue without the need for exogenous contrast agents. Previously, a reflective continuous-wave (CW) THz imaging system utilizing a linear polarization-sensitive detection technique was demonstrated and used to delineate tumor margins for nonmelanoma skin cancers [1, 2] and determine reflectivity differences between normal and cancerous colon tissue [3 - 5]. This detection technique involves illuminating ex vivo tissue samples with linearly polarized light and collecting the signal remitted by the sample after passing through an analyzing wire grid polarizer oriented with its transmission axis perpendicular to the linear polarization incident on the sample. By collecting the cross-polarization signal, the strong Fresnel surface reflections from the sample holder interfaces are eliminated and predominantly signal from within the tissue volume is obtained. The aim of the proposed research is to enhance this polarization-sensitive detection technique by incorporating circular polarization illumination and detection channels. This technique has been demonstrated at optical wavelengths [6], where the scattering of light within the tissue volume has been extensively studied; however, it has yet to be implemented using THz radiation. In addition, this detection technique has the potential to demonstrate increased contrast between cancerous and normal tissue, and experimental results may shed light on the mechanism behind the observed contrast.

  13. Imaging applications of nanotechnology in cancer.

    PubMed

    Gunasekera, U Ayanthi; Pankhurst, Quentin A; Douek, Michael

    2009-09-01

    Consider a single agent capable of diagnosing cancer, treating it simultaneously and monitoring response to treatment. Particles of this agent would seek cancer cells accurately and destroy them without harming normal surrounding cells. Science fiction or reality? Nanotechnology and nanomedicine are rapidly growing fields that encompass the creation of materials and devices at atomic, molecular and supramolecular level, for potential clinical use. Advances in nanotechnology are bringing us closer to the development of dual and multi-functional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. Examples include contrast agents capable of delivering targeted drugs to specific epithelial receptors. This opens the way for targeted chemotherapy which could minimise systemic side-effects, avoid damage to benign tissues and also reduce the therapeutic treatment dose of a drug required. Most of the current research is still at the pre-clinical stage, with very few instances of bench to bedside research. In order to encourage more translational research, a fundamental change is required to consider the current clinical challenges and then look at ways in which nanotechnology can address these.

  14. Molecular imaging and cancer gene therapy.

    PubMed

    Saadatpour, Z; Bjorklund, G; Chirumbolo, S; Alimohammadi, M; Ehsani, H; Ebrahiminejad, H; Pourghadamyari, H; Baghaei, B; Mirzaei, H R; Sahebkar, A; Mirzaei, H; Keshavarzi, M

    2016-11-18

    Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.

  15. Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer

    PubMed Central

    Alcorn, Sara; Walker, Amanda J.; Gandhi, Nishant; Narang, Amol; Wild, Aaron T.; Hales, Russell K.; Herman, Joseph M.; Song, Danny Y.; DeWeese, Theodore L.; Antonarakis, Emmanuel S.; Tran, Phuoc T.

    2013-01-01

    As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer. PMID:23863691

  16. Harmonic chirp imaging method for ultrasound contrast agent.

    PubMed

    Borsboom, Jerome M G; Chin, Chien Ting; Bouakaz, Ayache; Versluis, Michel; de Jong, Nico

    2005-02-01

    Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However, side-lobes were visible in the B-mode contrast images.

  17. (Fluorine-18 labeled androgens and progestins; imaging agents for tumors of prostate and breast): Technical progress report, February 1, 1987-January 31, 1988

    SciTech Connect

    Katzenellenbogen, J.A.

    1987-01-01

    This project develops fluorine-18 labeled steroids that possess high binding affinity and selectivity for androgen and progesterone receptors and can be used as positron-emission tomographic imaging agents for prostate tumors and breast tumors, respectively. These novel diagnostic agents may enable an accurate estimation of tumor dissemination, such as metastasis of prostate cancer and lymph node involvement of breast cancer, and an in vivo determination of the endocrine responsiveness of these tumors. They will provide essential information for the selection of alternative therapies thereby improving the management of prostate and breast cancer patients. 14 refs., 1 tab.

  18. Body image concerns after colorectal cancer surgery.

    PubMed

    Taylor, Claire

    Body image is understood to be a person's perception of his or her own physical appearance although, as this article highlights, it embraces a greater range of bodily attributes than is often appreciated. It can be significantly affected by a diagnosis of colorectal cancer and subsequent treatment, which may modify the way the body looks, feels and functions. One of the major aesthetic and functional consequences of colorectal cancer surgery is the possibility of stoma formation, which is of particular concern to many. However, the range of other bodily effects following surgery should not be overlooked, not least because of they may result in distress. While concerns about changes in body image generally decrease over time, people recovering from cancer treatment often feel their relationship with their body has been permanently altered. Specialist support is often required when adjusting to any changes in bodily appearance and function. Care outcomes can be improved by having a sound understanding of the body image concerns likely to arise following treatment, as well as the skills to identify and support patients at risk of altered body image. This article provides guidance to nurses caring for individuals who may be experiencing distress over how their body is now perceived by themselves and others following colorectal cancer surgery.

  19. In vivo spectral and fluorescence imaging microscopy of tumor microvessel blood supply and oxygenation changes following vascular targeting agent treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jennifer; Kozikowski, Raymond; Molnar, Nikolett; Siemann, Dietmar W.; Sorg, Brian S.

    2012-03-01

    The formation of new microvasculature is essential for a tumor mass to grow. Vascular targeting agents (VTAs), including anti-angiogenic drugs and vascular disrupting agents, aim to either inhibit new vasculature growth or destroy existing vasculature, respectively. Because the mechanisms for anti-angiogenic drugs and vascular disrupting agents are complementary, analysis of these drugs used together is under investigation for the enhanced treatment of tumors in comparison to each treatment alone. The preclinical evaluation of the effects of VTAs on tumor growth in small animal models is vital for the development of effective drugs for clinical use. In vivo hyperspectral imaging microscopy of hemoglobin saturation has been used previously to investigate the efficacy of VTAs through analysis of tumor microvessel oxygenation after drug administration. Combining this imaging modality with first-pass fluorescence angiographic imaging can give additional important information about the vessel morphology and blood flow changes that occur after VTA treatment, thus elucidating the relationship between microvessel structure changes and oxygenation. In this study, we report the combined use of hyperspectral and first pass fluorescence angiographic imaging to examine the relationship between vessel morphology and oxygenation of human prostate cancer tumors in mice following treatment with vascular disrupting agents, OXi4503, and anti-VEGF angiogenesis inhibitor, cediranib. Imaging of the tumors is completed before treatment as well as in the days following treatment.

  20. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  1. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen**

    PubMed Central

    Ngen, Ethel J.; Rotz, Matthew W.; Kakkad, Samata; Lisok, Ala; Pracitto, Richard; Pullambhatla, Mrudula; Chen, Zhengping; Shah, Tariq; Artemov, Dmitri; Meade, Thomas J.; Bhujwalla, Zaver M.; Pomper, Martin G.

    2016-01-01

    Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight GdIII-based PSMA-targeted contrast agents containing one to three GdIII chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging. PMID:26212031

  2. Generalized paired-agent kinetic model for in vivo quantification of cancer cell-surface receptors under receptor saturation conditions

    NASA Astrophysics Data System (ADS)

    Sadeghipour, N.; Davis, S. C.; Tichauer, K. M.

    2017-01-01

    New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only ‘trace’ levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean  ±  sd): GSRTM 0  ±  1 and SRTM 50  ±  1) and match the SRTM accuracy in non-saturated conditions (% error (mean  ±  sd): GSRTM 5  ±  5 and SRTM 0  ±  5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general ‘rule-of-thumb’ algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological

  3. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wu, Jason Boyang; Pan, Dongfeng

    2016-05-01

    A class of near-infrared fluorescence (NIRF) heptamethine cyanine dyes that are taken up and accumulated specifically in cancer cells without chemical conjugation have recently emerged as promising tools for tumor imaging and targeting. In addition to their fluorescence and nuclear imaging-based tumor-imaging properties, these dyes can be developed as drug carriers to safely deliver chemotherapy drugs to tumors. They can also be used as effective agents for photodynamic therapy with remarkable tumoricidal activity via photodependent cytotoxic activity. The preferential uptake of dyes into cancer but not normal cells is co-operatively mediated by the prevailing activation of a group of organic anion-transporting polypeptides on cancer cell membranes, as well as tumor hypoxia and increased mitochondrial membrane potential in cancer cells. Such mechanistic explorations have greatly advanced the current application and future development of NIRF dyes and their derivatives as anticancer theranostic agents. This review summarizes current knowledge and emerging advances in NIRF dyes, including molecular characterization, photophysical properties, multimodal development and uptake mechanisms, and their growing potential for preclinical and clinical use.

  4. N3-substituted thymidine bioconjugates for cancer therapy and imaging

    PubMed Central

    Khalil, Ahmed; Ishita, Keisuke; Ali, Tehane; Tjarks, Werner

    2013-01-01

    The compound class of 3-carboranyl thymidine analogues (3CTAs) are boron delivery agents for boron neutron capture therapy (BNCT), a binary treatment modality for cancer. Presumably, these compounds accumulate selectively in tumor cells via intracellular trapping, which is mediated by hTK1. Favorable in vivo biodistribution profiles of 3CTAs led to promising results in preclinical BNCT of rats with intracerebral brain tumors. This review presents an overview on the design, synthesis, and biological evaluation of first- and second-generation 3CTAs. Boronated nucleosides developed prior to 3CTAs for BNCT and non-boronated N3-substituted thymidine conjugates for other areas of cancer therapy and imaging are also described. In addition, basic features of carborane clusters, which are used as boron moieties in the design and synthesis of 3CTAs, and the biological and structural features of TK1-like enzymes, which are the molecular targets of 3CTAs, are discussed. PMID:23617430

  5. Lobular breast cancer series: imaging.

    PubMed

    Johnson, Karen; Sarma, Deba; Hwang, E Shelley

    2015-07-11

    The limitations of mammography in the detection and evaluation of invasive lobular carcinoma (ILC) have long been recognized, presenting real clinical challenges in treatment planning for these tumors. However, advances in mammography, ultrasound, and magnetic resonance imaging present opportunities to improve the diagnosis and preoperative assessment of ILC. The evidence supporting the performance of each imaging modality will be reviewed, specifically as it relates to the pathology of ILC and its subtypes. Further, we will discuss emerging technologies that may be employed to enhance the detection rate and ultimately result in more effective screening and staging of ILC.

  6. [Image processing of early gastric cancer cases].

    PubMed

    Inamoto, K; Umeda, T; Inamura, K

    1992-11-25

    Computer image processing was used to enhance gastric lesions in order to improve the detection of stomach cancer. Digitization was performed in 25 cases of early gastric cancer that had been confirmed surgically and pathologically. The image processing consisted of grey scale transformation, edge enhancement (Sobel operator), and high-pass filtering (unsharp masking). Gery scale transformation improved image quality for the detection of gastric lesions. The Sobel operator enhanced linear and curved margins, and consequently, suppressed the rest. High-pass filtering with unsharp masking was superior to visualization of the texture pattern on the mucosa. Eight of 10 small lesions (less than 2.0 cm) were successfully demonstrated. However, the detection of two lesions in the antrum, was difficult even with the aid of image enhancement. In the other 15 lesions (more than 2.0 cm), the tumor surface pattern and margin between the tumor and non-pathological mucosa were clearly visualized. Image processing was considered to contribute to the detection of small early gastric cancer lesions by enhancing the pathological lesions.

  7. Quantitative Imaging in Cancer Evolution and Ecology

    PubMed Central

    Grove, Olya; Gillies, Robert J.

    2013-01-01

    Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral

  8. Single Walled Carbon Nanohorns as Photothermal Cancer Agents

    SciTech Connect

    Whitney, John; Sarkar, Saugata; Zhang, Jianfei; Do, Thao; Manson, Mary kyle; Campbell, Tom; Puretzky, Alexander A; Rouleau, Christopher M; More, Karren Leslie; Geohegan, David B; Rylander, Christopher; Dorn, Harry C; Rylander, Nichole M

    2011-01-01

    Nanoparticles have significant potential as selective photo-absorbing agents for laser based cancer treatment. This study investigates the use of single walled carbon nanohorns (SWNHs) as thermal enhancers when excited by near infrared (NIR) light for tumor cell destruction. Absorption spectra of SWNHs in deionized water at concentrations of 0, 0.01, 0.025, 0.05, 0.085, and 0.1 mg/ml were measured using a spectrophotometer for the wavelength range of 200-1,400 nm. Mass attenuation coefficients were calculated using spectrophotometer transmittance data. Cell culture media containing 0, 0.01, 0.085, and 0.333 mg/ml SWNHs was laser irradiated at 1,064 nm wavelength with an irradiance of 40 W/cm{sup 2} for 0-5 minutes. Temperature elevations of these solutions during laser irradiation were measured with a thermocouple 8 mm away from the incident laser beam. Cell viability of murine kidney cancer cells (RENCA) was measured 24 hours following laser treatment with the previously mentioned laser parameters alone or with SWNHs. Cell viability as a function of radial position was determined qualitatively using trypan blue staining and bright field microscopy for samples exposed to heating durations of 2 and 6 minutes alone or with 0.085 mg/ml SWNHs. A Beckman Coulter Vi-Cell instrument quantified cell viability of samples treated with varying SWNH concentration (0, 0.01, 0.085, and 0.333 mg/ml) and heating durations of 0-6 minutes. Spectrophotometer measurements indicated inclusion of SWNHs increased light absorption and attenuation across all wavelengths. Utilizing SWNHs with laser irradiation increased temperature elevation compared to laser heating alone. Greater absorption and higher temperature elevations were observed with increasing SWNH concentration. No inherent toxicity was observed with SWNH inclusion. A more rapid and substantial viability decline was observed over time in samples exposed to SWNHs with laser treatment compared with samples experiencing laser

  9. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives.

    PubMed

    Park, J Y; Chang, Y; Lee, G H

    2015-01-01

    Biomedical imaging is an essential tool for diagnosis and therapy of diseases such as cancers. It is likely true that medicine has developed with biomedical imaging methods. Sensitivity and resolution of biomedical imaging methods can be improved with imaging agents. Furthermore, it will be ideal if imaging agents could be also used as therapeutic agents. Therefore, one dose can be used for both diagnosis and therapy of diseases (i.e., theragnosis). This will simplify medical treatment of diseases, and will be also a benefit to patients. Mixed (Ln(1x)Ln(2y)O3, x + y = 2) or unmixed (Ln2O3) lanthanide (Ln) oxide nanoparticles (Ln = Eu, Gd, Dy, Tb, Ho, Er) are potential multi-modal imaging and cancer therapeutic agents. The lanthanides have a variety of magnetic and optical properties, useful for magnetic resonance imaging (MRI) and fluorescent imaging (FI), respectively. They also highly attenuate X-ray beam, useful for X-ray computed tomography (CT). In addition gadolinium-157 ((157)Gd) has the highest thermal neutron capture cross section among stable radionuclides, useful for gadolinium neutron capture therapy (GdNCT). Therefore, mixed or unmixed lanthanide oxide nanoparticles can be used for multi-modal imaging methods (i.e., MRI-FI, MRI-CT, CT-FI, and MRICT- FI) and cancer therapy (i.e., GdNCT). Since mixed or unmixed lanthanide oxide nanoparticles are single-phase and solid-state, they can be easily synthesized, and are compact and robust, which will be beneficial to biomedical applications. In this review physical properties of the lanthanides, synthesis, characterizations, multi-modal imagings, and cancer therapy of mixed and unmixed lanthanide oxide nanoparticles are discussed.

  10. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  11. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.

    PubMed

    Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin

    2014-01-01

    Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.

  12. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field

    PubMed Central

    Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin

    2014-01-01

    Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized. PMID:24648733

  13. Imaging genome abnormalities in cancer research.

    PubMed

    Heng, Henry HQ; Stevens, Joshua B; Liu, Guo; Bremer, Steven W; Ye, Christine J

    2004-01-13

    Increasing attention is focusing on chromosomal and genome structure in cancer research due to the fact that genomic instability plays a principal role in cancer initiation, progression and response to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and functional aspects) of normal and cancer cells can be monitored with direct visualization by using a variety of cutting edge molecular cytogenetic technologies that are now available in the field of cancer research. Examples are presented in this review by grouping these methodologies into four categories visualizing different yet closely related major levels of genome structures. An integrated discussion is also presented on several ongoing projects involving the illustration of mitotic and meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of chromosomal aberration capable of monitoring condensation defects in cancer; the establishment of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor genomic instability; and the characterization of apoptosis related chromosomal fragmentations caused by drug treatments.

  14. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  15. Statistical Considerations in Clinical Trial Design of Immunotherapeutic Cancer Agents.

    PubMed

    Dranitsaris, George; Cohen, Roger B; Acton, Gary; Keltner, Llew; Price, Melissa; Amir, Eitan; Podack, Eckhard R; Schreiber, Taylor H

    2015-09-01

    The classical model for identification and clinical development of anticancer agents was based on small molecules, which were often quite toxic. Early studies in small groups of patients would seek to identify a maximum tolerated dose and major dose-limiting toxicities. Tumor response (shrinkage) would be assessed after a minimum number of doses in phase II testing. The decision to take the drug into the randomized phase III clinical setting was usually based on the proportion and duration of objective tumor responses, along with overall survival compared with historical controls. Immune-oncologics that are designed to fight cancer by direct CD8(+) T-cell priming and activation or by blocking a negative regulatory molecule have a number of sharp distinctions from cytotoxic drugs. These include cytoreductive effects that may be very different in timing of onset from traditional chemotherapy and the potential for inducing long-term durable remissions even in heavily pretreated patients with metastatic disease. In this paper we review the different classes of immune-oncologic drugs in clinical development with particular attention to the biostatistical challenges associated with evaluating efficacy in clinical trials. Confronting these issues upfront is particularly important given the rapidly expanding number of clinical trials with both monotherapy and combination trials in immunooncology.

  16. On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging.

    PubMed

    Peyman, Sally A; McLaughlan, James R; Abou-Saleh, Radwa H; Marston, Gemma; Johnson, Benjamin R G; Freear, Steven; Coletta, P Louise; Markham, Alexander F; Evans, Stephen D

    2016-02-21

    Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10(6) particles per s and at high concentration, typically >10(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C4F10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition.

  17. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of

  18. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  19. Biodegradable Porous Silicon Nanomaterials for Imaging and Treatment of Cancer

    NASA Astrophysics Data System (ADS)

    Gu, Luo

    Cancer is the second leading cause of death, claiming ˜0.56 million lives in the U.S. every year following heart diseases (˜0.62 million). From 1991 to 2007, mortality associated with heart diseases decreased 39%; by contrast, the death rate of cancer only decreased by 17% in spite of intensive research and improved therapeutics. The stagnation of conventional medicine and the complexity of cancer demand new therapeutic strategies. As an emerging approach, the use of nanomaterials as cancer diagnostic and therapeutic agents has shown promising results due to their unique physical and chemical properties. To date, more than two dozen nanoparticle-based products have been approved for clinical use and they show advantages over conventional therapeutics. However, translation of many other nanomaterials has been impeded due to concerns over toxicity and biodegradability. This dissertation presents the development of biodegradable luminescent porous silicon nanomaterials and their potential applications for imaging and treatment of cancer. After a brief introduction to nanomedicine and the biomedical applications of porous silicon, Chapter 2 presents a method of making silicon nanoparticles with porous structure and intrinsic luminescence (LPSiNPs). The low toxicity and biodegradability of LPSiNPs are demonstrated in vitro with human cancer cells and in vivo with mouse model. The in vivo clearance of intravenously injected LPSiNPs is studied by tracking the emission of the nanoparticles with fluorescence imaging. Chapter 3 presents a diagnostic application of LPSiNPs. Time-gated fluorescence imaging of tumors using LPSiNPs with long emission lifetime is developed. This technique can effectively eliminate interference from short-lived tissue autofluorescence and improve the detection sensitivity. Chapter 4--6 demonstrate the therapeutic applications of porous silicon nanomaterials. In Chapter 4, magnetically-guided delivery of anticancer drug to cancer cells in vitro

  20. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  1. Radioiodinated carnitine and acylcarnitine analogs as potential myocardial imaging agents

    SciTech Connect

    McConnell, D.S.

    1991-01-01

    R-carnitine is extremely important in mammalian energy metabolism. Gamma-butyrobetaine, the immediate biosynthetic precursor to R-carnitine, is synthesized in many organs. However, only liver can hydroxylate gamma-butyrobetaine to carnitine. Thus the transport of carnitine from its site of synthesis to the site of utilization is of utmost importance. Carnitine is found in highest concentration in cardiac and skeletal muscle, where it is required for the transport of fatty acids into the mitochondria. Before fatty acids are utilized as fuel for the myocyte by beta-oxidation, they are bound to carnitine as an acylcarnitine ester at the 3-hydroxyl, and transported across the micochondrial membranes. R,S-Carnitine has been shown to be taken up by myocytes. The author has begun a study on the use of carnitine derivatives as potential carriers for the site-specific delivery of radioiodine to bidning sites in the myocardium. Such agents labeled with a gamma-emitting nuclide such as iodine-123 would be useful for the noninvasive imaging of these tissues. The aim was to synthesize a variety of radiolabeled analogs of carnitine and acylcarnitine to address questions of transport, binding and availability for myocardial metabolism. These analogs consist of N-alkylated derivatives of carnitine, acylcarnitine esters as well as carnitine amides and ethers. One C-alkylated derivative showed interesting biodistribution, elevated myocardial uptake and competition with carnitine for binding in the myocardium.

  2. Chemopreventive Agent Development Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Chemopreventive Agent Development Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Active Chemopreventive Agent Development Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Chemopreventive Agent Development Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Wang, Chao; Liu, Zhuang

    2012-12-01

    Upconversion nanoparticles (UCNPs), particularly lanthanide-doped nanocrystals, which emit high energy photons under excitation by the near-infrared (NIR) light, have found potential applications in many different fields, including biomedicine. Compared with traditional down-conversion fluorescence imaging, the NIR light excited upconversion luminescence (UCL) imaging relying on UCNPs exhibits improved tissue penetration depth, higher photochemical stability, and is free of auto-fluorescence background, which promises biomedical imaging with high sensitivity. On the other hand, the unique upconversion process of UCNPs may be utilized to activate photosensitive therapeutic agents for applications in cancer treatment. Moreover, the integration of UCNPs with other functional nanostructures could result in the obtained nanocomposites having highly enriched functionalities, useful in imaging-guided cancer therapies. This review article will focus on the biomedical imaging and cancer therapy applications of UCNPs and their nanocomposites, and discuss recent advances and future prospects in this emerging field.

  7. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging

    PubMed Central

    Thian, Yee Liang; Riddell, Angela M.

    2013-01-01

    Abstract Liver-specific magnetic resonance (MR) contrast agents are increasingly used in evaluation of the liver. They are effective in detection and morphological characterization of lesions, and can be useful for evaluation of biliary tree anatomy and liver function. The typical appearances and imaging pitfalls of various tumours at MR imaging performed with these agents can be understood by the interplay of pharmacokinetics of these contrast agents and transporter expression of the tumour. This review focuses on the applications of these agents in oncological imaging. PMID:24434892

  8. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  9. Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods

    PubMed Central

    Wang, Yanjie; Strohm, Eric M.; Sun, Yang; Wang, Zhaoxia; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2016-01-01

    In this study, optical-triggered multifunctional theranostic agents for photoacoustic/fluorescent imaging and cancer therapy have been developed. This system consists of a perfluorohexane liquid and gold nanoparticles (GNPs) in the core, stabilized by a Poly (lactide-co-glycolic acid) (PLGA) polymer shell. When cancer cells containing PLGA-GNPs were exposed to laser pulses, cell viability decreased due to the vaporization of the particles in and around the cells. The particle chemo drug loading and delivery capacity was also investigated in vitro experiments. These particles show potential as photoacoustic imaging and therapy agents for future clinical translation in cancer therapy. PMID:27867720

  10. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time

  11. State-of-the-art imaging of prostate cancer.

    PubMed

    Marko, Jamie; Gould, C Frank; Bonavia, Grant H; Wolfman, Darcy J

    2016-03-01

    Prostate cancer is the most common cancer in men. Modern medical imaging is intimately involved in the diagnosis and management of prostate cancer. Ultrasound is primarily used to guide prostate biopsy to establish the diagnosis of prostate carcinoma. Prostate magnetic resonance imaging uses a multiparametric approach, including anatomic and functional imaging sequences. Multiparametric magnetic resonance imaging can be used for detection and localization of prostate cancer and to evaluate for disease recurrence. Computed tomography and scintigraphic imaging are primarily used to detect regional lymph node spread and distant metastases. Recent advancements in ultrasound, multiparametric magnetic resonance imaging, and scintigraphic imaging have the potential to change the way prostate cancer is diagnosed and managed. This article addresses the major imaging modalities involved in the evaluation of prostate cancer and updates the reader on the state of the art for each modality.

  12. Molecular Imaging of Biomarkers in Breast Cancer

    PubMed Central

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  13. Polymer nanoassemblies for cancer treatment and imaging.

    PubMed

    Lee, Hyun Jin; Ponta, Andrei; Bae, Younsoo

    2010-12-01

    Amphiphilic polymers represented by block copolymers self-assemble into well-defined nanostructures capable of incorporating therapeutics. Polymer nanoassemblies currently developed for cancer treatment and imaging are reviewed in this article. Particular attention is paid to three representative polymer nanoassemblies: polymer micelles, polymer micellar aggregates and polymer vesicles. Rationales, design and performance of these polymer nanoassemblies are addressed, focusing on increasing the solubility and chemical stability of drugs. Also discussed are polymer nanoassembly formation, the distribution of polymer materials in the human body and applications of polymer nanoassemblies for combined therapy and imaging of cancer. Updates on tumor-targeting approaches, based on preclinical and clinical results are provided, as well as solutions for current issues that drug-delivery systems have, such as in vivo stability, tissue penetration and therapeutic efficacy. These are discussed to provide insights on the future development of more effective polymer nanoassemblies for the delivery of therapeutics in the body.

  14. Terahertz-pulsed imaging of cancers

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Woodward, Ruth M.; Fitzgerald, Anthony J.; Pickwell, E.; Pye, Richard J.; Arnone, Donald D.

    2003-06-01

    Over the last decade advances in laser and semiconductor technology has allowed the investigation of terahertz region of the electromagnetic spectrum as a potential tool for medical imaging. The terahertz frequency range covers the far infrared wavelengths and is sensitive to librational and vibrational modes of molecules. Terahertz radiation is non-ionizing and is not highly scattered like visible and near infrared light. Terahertz Pulsed Imaging (TPI) has already been demonstrated as an effective tool for differentiating between tissue types in particular normal skin and basal cell carcinoma in vitro. TPI may prove advantageous in distinguishing type, lateral spread and depth of tumors. Here we present recent ex vivo results obtained with a portable TPI system in a clinical setting. It is hoped that this technique could be applied to other epithelial tissues, which give rise to more than 80% of all adult cancers and include common cancers of the skin, oral cavity, breast, colon and prostate.

  15. Alkylating agents and immunotoxins exert synergistic cytotoxic activity against ovarian cancer cells. Mechanism of action.

    PubMed Central

    Lidor, Y J; O'Briant, K C; Xu, F J; Hamilton, T C; Ozols, R F; Bast, R C

    1993-01-01

    Alkylating agents can be administered in high dosage to patients with ovarian cancer using autologous bone marrow support, but drug-resistant tumor cells can still persist. Immunotoxins provide reagents that might eliminate drug resistant cells. In the present study, concurrent treatment with alkylators and immunotoxins proved superior to treatment with each agent alone. Toxin immunoconjugates prepared from different monoclonal antibodies and recombinant ricin A chain (rRTA) inhibited clonogenic growth of ovarian cancer cell lines in limiting dilution assays. When alkylating agents and toxin conjugates were used in combination, the addition of the immunotoxins to cisplatin, or to cisplatin and thiotepa, produced synergistic cytotoxic activity against the OVCA 432 and OVCAR III cell lines. Studies performed to clarify the mechanism of action showed that cisplatin and thiotepa had no influence on internalization and binding of the 317G5-rRTA immunotoxin. Intracellular uptake of [195m]Pt-cisplatin was not affected by the immunoconjugate and thiotepa. The combination of the 317G5-rRTA and thiotepa, as well as 317G5-rRTA alone, increased [195m]Pt cisplatin-DNA adduct levels. The immunotoxin alone and in combination with the alkylators decreased intracellular glutathione levels and reduced glutathione-S-transferase activity. Repair of DNA damage induced by the combination of alkylators and 317G5-rRTA was significantly reduced when compared to repair after damage with alkylators alone. These findings suggest that immunotoxins affect levels and activity of enzymes required for the prevention and repair of alkylator damage. Images PMID:8227359

  16. Photoacoustic and thermoacoustic imaging application in cancer early detection and treatment monitoring

    NASA Astrophysics Data System (ADS)

    Xing, Da; Xiang, Liangzhong

    2007-11-01

    Laser-based photoacoustic imaging and microwave-based thermoacoustic imaging, combining the advantages of both the high image contrast that results from electromagnetic absorption and the high resolution of ultrasound imaging, could be the next successful generation imaging techniques in biomedical application. It can provide an effective approach of tissue structure and functional images to study the architectures, physiological and pathological properties and metabolisms of biological tissues. This paper is focused on photoacoustic and thermoacoustic imaging application in cancer early detection and treatment monitoring. A unique photoacoustic imaging system was used to detect tumors neovascularization associated with angiogenesis in a rat animal model. We also developed the imaging system to monitor the vascular damage during photodynamic therapy treatment. This method could be potentially used to guide PDT and other phototherapies using vascular changes during treatment to optimize treatment protocols, by choosing appropriate types and doses of photosensitizers, and doses of light. Potentially development of photoacoustic imaging and thermoacoustic imaging to employing in functional and molecular imaging also has been discussed. Especially, these imaging modalities can be further developed by using the contrast agents which modified with tumor-targeting antibodies to realize cancer early detection and cancer target treatment monitoring.

  17. Fluorescence imaging of early lung cancer

    NASA Astrophysics Data System (ADS)

    Lam, Stephen; MacAulay, Calum E.; Le Riche, Jean C.; Ikeda, Norihiko; Palcic, Branko

    1995-01-01

    The performance of a fluorescence imaging device was compared with conventional white-light bronchoscopy in 100 patients with lung cancer, 46 patients with resected State I nonsmall cell lung cancer, 10 patients with head and neck cancer, and 67 volunteers who had smoked at least one pack of cigarettes per day for twenty-five years or more. Using differences in tissue autofluorescence between premalignant, malignant and normal tissues, fluorescence bronchoscopy was found to detect more than twice as many moderate-severe dysplasia and carcinoma in situ sites than conventional white-light bronchoscopy. The use of fluorescence imaging to detect small peripheral lung nodules was investigated in a micro metastatic lung model of mice implanted with Lewis lung tumor cells. Fluorescence imaging was found to be able to detect small malignant lung lesions. The use of (delta) -aminolevulinic acid (ALA) to enhance fluorescence detection of CIS was investigated in a patient after oral administration of 60 mg/kg of ALA four hours prior to bronchoscopy, although ALA enhanced the tumor's visibility, multiple sites of false positive fluorescence were observed in areas of inflammation or metaplasia.

  18. Aerospace technology transfer to breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Winfield, Daniel L.

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U. S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed.

  19. Aerospace technology transfer to breast cancer imaging.

    PubMed

    Winfield, D L

    1997-01-01

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U.S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed.

  20. Hyperspectral imaging of skin and lung cancers

    NASA Astrophysics Data System (ADS)

    Zherdeva, Larisa A.; Bratchenko, Ivan A.; Alonova, Marina V.; Myakinin, Oleg O.; Artemyev, Dmitry N.; Moryatov, Alexander A.; Kozlov, Sergey V.; Zakharov, Valery P.

    2016-04-01

    The problem of cancer control requires design of new approaches for instrumental diagnostics, as the accuracy of cancer detection on the first step of diagnostics in clinics is slightly more than 50%. In this study, we present a method of visualization and diagnostics of skin and lung tumours based on registration and processing of tissues hyperspectral images. In a series of experiments registration of hyperspectral images of skin and lung tissue samples is carried out. Melanoma, basal cell carcinoma, nevi and benign tumours are studied in skin ex vivo and in vivo experiments; adenocarcinomas and squamous cell carcinomas are studied in ex vivo lung experiments. In a series of experiments the typical features of diffuse reflection spectra for pathological and normal tissues were found. Changes in tissues morphology during the tumour growth lead to the changes of blood and pigments concentration, such as melanin in skin. That is why tumours and normal tissues maybe differentiated with information about spectral response in 500-600 nm and 600 - 670 nm areas. Thus, hyperspectral imaging in the visible region may be a useful tool for cancer detection as it helps to estimate spectral properties of tissues and determine malignant regions for precise resection of tumours.

  1. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor.

    PubMed

    Yang, Hengli; Cai, Wenbin; Xu, Lei; Lv, Xiuhua; Qiao, Youbei; Li, Pan; Wu, Hong; Yang, Yilin; Zhang, Li; Duan, Yunyou

    2015-01-01

    Nanobubbles (NBs), as novel ultrasound contrast agents (UCAs), have attracted increasing attention in the field of molecular ultrasound imaging for tumors. However, the preparation of uniform-sized NBs is considered to be controversial, and poor tumor selectivity in in vivo imaging has been reported. In this study, we fabricated uniform nano-sized NBs (478.2 ± 29.7 nm with polydispersity index of 0.164 ± 0.044, n = 3) using a thin-film hydration method by controlling the thickness of phospholipid films; we then conjugated the NBs with Affibody molecules to produce nano-sized UCAs referred to as NB-Affibody with specific affinity to human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors. NB-Affibody presented good ultrasound enhancement, demonstrating a peak intensity of 104.5 ± 2.1 dB under ultrasound contrast scanning. Ex vivo experiments further confirmed that the NB-Affibody conjugates were capable of targeting HER2-expressing tumor cells in vivo with high affinity. The newly prepared nano-sized NB-Affibody conjugates were observed to be novel targeted UCAs for efficient and safe specific molecular imaging and may have potential applications in early cancer quantitative diagnosis and targeted therapy in the future.

  2. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  3. Trends in Imaging after Thyroid Cancer Diagnosis

    PubMed Central

    Banerjee, Mousumi; Muenz, Daniel G.; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background The largest growth in differentiated thyroid cancer (DTC) diagnosis is in low-risk cancers. Trends in imaging after DTC diagnosis are understudied. Hypothesizing a reduction in imaging utilization due to rising low-risk disease, we evaluated post-diagnosis imaging patterns over time and patient characteristics that are associated with likelihood of imaging. Methods Using the Surveillance Epidemiology and End Results-Medicare database, we identified patients diagnosed with localized, regional or distant DTC between 1991 and 2009. We reviewed Medicare claims for neck ultrasound, I-131 scan, or PET scan within 3 years post-diagnosis. Using regression analyses we evaluated trends of imaging utilization. Multivariable logistic regression was used to estimate the likelihood of imaging based on patient characteristics. Results 23,669 patients were included. Patients diagnosed during 2001-2009, compared to 1991-2000, were more likely to have localized disease (p<0.001) and tumors less than 1cm (p<0.001). Use of neck ultrasound and I-131 scan increased in patients with localized disease (p=<0.001 and p=0.003, respectively), regional disease (p<0.001 and p<0.001), and distant metastasis (p=0.001 and p=0.015). Patients diagnosed after 2000 were more likely to undergo neck ultrasound (OR 2.15, 95% CI 2.02-2.28) and I-131 scan (OR 1.44, 95% CI 1.35-1.54). PET scan use from 2005-2009, compared to 1996-2004, increased 32.4-fold (p=<0.001) in localized patients, 13.1-fold (p<0.001) in regional disease patients, and 33.4-fold (p<0.001) in patients with distant DTC. Conclusion Despite a rise in low-risk disease, the use of post-diagnosis imaging increased in all stages of disease. The largest growth was in use of PET scan after 2004. PMID:25565063

  4. Three-photon imaging of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Amirsolaimani, Babak; Rice, Photini; Hatch, Kenneth; Kieu, Khanh

    2016-02-01

    Optical imaging methods have the potential to detect ovarian cancer at an early, curable stage. Optical imaging has the disadvantage that high resolution techniques require access to the tissue of interest, but miniature endoscopes that traverse the natural orifice of the reproductive tract, or access the ovaries and fallopian tubes through a small incision in the vagina wall, can provide a minimally-invasive solution. We have imaged both rodent and human ovaries and fallopian tubes with a variety of endoscope-compatible modalities. The recent development of fiber-coupled femtosecond lasers will enable endoscopic multiphoton microscopy (MPM). We demonstrated two- and three-photon excited fluorescence (2PEF, 3PEF), and second- and third-harmonic generation microscopy (SHG, THG) in human ovarian and fallopian tube tissue. A study was undertaken to understand the mechanisms of contrast in these images. Six patients (normal, cystadenoma, and ovarian adenocarcinoma) provided ovarian and fallopian tube biopsies. The tissue was imaged with three-dimensional optical coherence tomography, multiphoton microscopy, and frozen for histological sectioning. Tissue sections were stained with hematoxylin and eosin, Masson's trichrome, and Sudan black. Approximately 1 μm resolution images were obtained with an excitation source at 1550 nm. 2PEF signal was absent. SHG signal was mainly from collagen. 3PEF and THG signal came from a variety of sources, including a strong signal from fatty connective tissue and red blood cells. Adenocarcinoma was characterized by loss of SHG signal, whereas cystic abnormalities showed strong SHG. There was limited overlap of two- and three- photon signals, suggesting that three-photon imaging can provide additional information for early diagnosis of ovarian cancer.

  5. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes

    PubMed Central

    Zhao, Yong; Bai, Bing; An, Jiaze; Zhang, Hai; Wu, Jason Boyang; Shi, Changhong

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the tumor-specific targeting ability of NIRF heptamethine carbocyanine MHI-148 dye in cultured gastric cancer cells, gastric cancer cell-derived and patient-derived tumor xenograft (PDX) models. We show that the NIRF dye specifically accumulated in tumor regions of both xenograft models, suggesting the potential utility of the dye for tumor-specific imaging and targeting in gastric cancer. We also demonstrated significant correlations between NIRF signal intensity and tumor volume in PDX models. Mechanistically, the higher cellular uptake of MHI-148 in gastric cancer cells than in normal cells was stimulated by hypoxia and activation of a group of organic anion-transporting polypeptide (OATP) genes. Importantly, this NIRF dye was not retained in inflammatory stomach tissues induced by gastric ulcer in mice. In addition, fresh clinical gastric tumor specimens, when perfused with NIR dye, exhibited increased uptake of NIR dye in situ. Together, these results show the possibility of using NIRF dyes as novel candidate agents for clinical imaging and detection of gastric cancer. PMID:27329598

  6. Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents

    PubMed Central

    Wang, Limin; Zha, Zhihao; Qu, Wenchao; Qiao, Hongwen; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2012-01-01

    Introduction This paper reports the synthesis and labeling of 18F alanine derivatives. We also investigate their biological characteristics as potential tumor imaging agents mediated by alanine-serine-cysteine preferring (ASC) transporter system. Methods Three new 18F alanine derivatives were prepared from corresponding tosylate-precursors through a two-step labelling reaction. In vitro uptake studies to evaluate and to compare these three analogs were carried out in 9L glioma and PC-3 prostate cancer cell lines. Potential transport mechanisms, protein incorporation and stability of 3-(1-[18F]fluoromethyl)-L-alanine (L[18F]FMA) were investigated in 9L glioma cells. Its biodistribution was determined in a rat-bearing 9L tumor model. PET imaging studies were performed on rat bearing 9L glioma tumors and transgenic mouse carrying spontaneous generated M/tomND tumor (mammary gland adenocarcinoma). Results New 18F alanine derivatives were prepared with 7–34% uncorrected radiochemical yields, excellent enantiomeric purity (>99%) and good radiochemical purity (>99%). In vitro uptake of the L-[18F]FMA in 9L glioma and PC-3 prostate cancer cells was higher than those observed for other two alanine derivatives and [18F]FDG in first 1 h. Inhibition of cell uptake studies suggested that L-[18F]FMA uptake in 9L glioma was predominantly via transport system ASC. After entering into cells, L-[18F]FMA remained stable and was not incorporated into protein within 2 h. In vivo biodistribution studies demonstrated that L-[18F]FMA had relatively high uptake in liver and kidney. Tumor uptake was fast, reaching a maximum within 30 min. The tumor-to-muscle, tumor-to-blood and tumor-to-brain ratios at 60 min post injection were 2.2, 1.9 and 3.0, respectively. In PET imaging studies, tumors were visualized with L-[18F]FMA in both 9L rat and transgenic mouse. Conclusion L-[18F]FMA showed promising properties as a PET imaging agent for up-regulated ASC transporter associated with tumor

  7. Paired-agent imaging for resection during surgery (PAIRS) of head and neck squamous cell carcinomas (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Chen, Eunice; Gunn, Jason R.; Hoopes, P. Jack; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2016-03-01

    Ninety percent of patients with head and neck squamous cell carcinomas (HNSCC) have overexpression of epidermal growth factor receptor (EGFR), which is correlated with poor prognosis. Complete surgical resection of HNSCC tumors has a large impact on patient survival, where detection of tumor at or close to surgical margins increases the risk of death at 5-years by 90%. In addition, large surgical margins can greatly increase the morbidity experienced by the patient due to functional and cosmetic damage of oral and facial structures. Single fluorescence targeting agents are often used for tumor detection in in vivo pre-clinical imaging; however, the arising signal is qualitative at best because it is a complex mixture of vascular perfusion, vascular leakage, inhibited lymphatic clearance, and receptor binding. In vivo ratiometric receptor concentration imaging (RCI) allows quantification of receptor expression (hence identification of cancerous tissue) by utilizing co-administered paired-agents consisting of a targeted agent and non-targeted perfusion agent to reference the plasma delivery and leakage. A panel of HNSCC tumors with varying levels of EGFR expression (SCC-15 >SCC-25 > SCC-09) have been imaged using ABY-029, a clinically relevant anti-EGFR affibody labeled with IRDye 800CW, and affibody control imaging agent labeled with IRDye 680RD. RCI maps of in vivo tissue have been created and are spatially correlated with EGFR and CD31 immunohistochemistry and basic H and E staining. The RCI threshold parameters for distinguishing tumor from normal tissues (skin and muscle) and the accuracy of margin detection in these tumors will be presented. RCI surgical resection will be further developed using a novel multi-channel, gated fluorescence-guided surgery (FGS) imaging system that is capable of performing RCI in normal room light.

  8. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0238 TITLE: Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer PRINCIPAL...of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Oxygen-rich environments can create pro-mutagenic DNA lesions such as 8-oxoguanine (8-oxo-G) that can be misreplicated during translesion DNA synthesis

  9. Targeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy

    PubMed Central

    Shi, Yiwen; Peng, Dong; Wang, Kun; Chai, Xinyu; Ren, Qiushi; Tian, Jie; Zhou, Chuanqing

    2016-01-01

    Optimizing contrast enhancement is essential for producing specific signals in biomedical imaging and therapy. The potential of using Aucore-Agshell nanorods (Au@Ag NRs) as a dual-functional theranostic contrast agent is demonstrated for effective cancer imaging and treatments. Due to its strong NIR absorption and high efficiency of photothermal conversion, effects of both photoacoustic tomography (PAT) and photothermal therapy (PTT) are enhanced significantly. The PAT signal grows by 45.3% and 82% in the phantom and in vivo experiments, respectively, when compared to those using Au NRs. In PTT, The maximum increase of tissue temperature treated with Au@Ag NRs is 22.8 °C, twice that with Au NRs. Results of the current study show the feasibility of using Au@Ag NRs for synergetic PAT with PTT. And it will enhance the potential application on real-time PAT guided PTT, which will greatly benefit the customized PTT treatment of cancer. PMID:27231624

  10. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  11. Ultrasound Molecular Imaging of Tumor Angiogenesis with an Integrin Targeted Microbubble Contrast Agent

    PubMed Central

    Anderson, Christopher R.; Hu, Xiaowen; Tlaxca, Jose; Decleves, Anne-Emilie; Houghtaling, Robert; Sharma, Kumar; Lawrence, Michael; Ferrara, Katherine; Rychak, Joshua J.

    2010-01-01

    Rationale and Objectives Ultrasound molecular imaging is an emerging technique for sensitive detection of intravascular targets. Molecular imaging of angiogenesis has strong potential for both clinical use and as a research tool in tumor biology and the development of anti-angiogenic therapies. Our objective is to develop a robust microbubble (MB) ultrasound contrast agent platform to which targeting ligands can be conjugated by biocompatible, covalent conjugation chemistry, and to develop a pure low mechanical index imaging processing method and corresponding quantifying method. The microbubbles and the imaging methods were evaluated in a mouse model of breast cancer in vivo. Materials and Methods We utilized a cyclic RGD (cRGD) pentapeptide containing a terminal cysteine group conjugated to the surface of MB bearing pyridyldithio-propionate (PDP) for targeting αvβ3 integrins. As negative controls, MB without a ligand or MB bearing a scrambled sequence (cRAD) were prepared. To enable characterization of peptides bound to MB surfaces, the cRGD peptide was labeled with FITC and detected by plate fluorometry, flow cytometry, and fluorescence microscopy. Targeted adhesion of cRGD-MB was demonstrated in an in vitro flow adhesion assay against recombinant murine αvβ3 integrin protein and αvβ3 integrin-expressing endothelial cells (bEnd.3). The specificity of cRGD-MB for αvβ3 integrin was demonstrated by treating bEnd.3 EC with a blocking antibody. A murine model of mammary carcinoma was used to assess targeted adhesion and ultrasound molecular imaging in vivo. The targeted microbubbles were visualized using a low mechanical index contrast imaging pulse sequence, and quantified by intensity normalization and two-dimensional Fourier transform analysis, Results The cRGD ligand concentration on the MB surface was ~8.2 × 106 molecules/MB. At a wall shear stress of 1.0 dynes/cm2, cRGD-MB exhibited 5-fold higher adhesion to immobilized recombinant αvβ3 integrin

  12. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy

    PubMed Central

    Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing

    2016-01-01

    Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics. PMID:27446485

  13. Plasmonic Nanoparticles with Quantitatively Controlled Bioconjugation for Photoacoustic Imaging of Live Cancer Cells.

    PubMed

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-12-01

    Detection and imaging of single cancer cells is critical for cancer diagnosis and understanding of cellular dynamics. Photoacoustic imaging (PAI) provides a potential tool for the study of cancer cell dynamics, but faces the challenge that most cancer cells lack sufficient endogenous contrast. Here, a type of colloidal gold nanoparticles (AuNPs) are physically fabricated and are precisely functionalized with quantitative amounts of functional ligands (i.e., polyethyleneglycol (PEG) and (Arginine(R)-Glycine(G)-Aspartic(D))4 (RGD) peptides) to serve as an exogenous contrast agent for PAI of single cells. The functionalized AuNPs, with a fixed number of PEG but different RGD densities, are delivered into human prostate cancer cells. Radioactivity and photoacoustic analyses show that, although cellular uptake efficiency of the AuNPs linearly increases along with RGD density, photoacoustic signal generation efficiency does not and only maximize at a moderate RGD density. The functionalization of the AuNPs is in turn optimized based on the experimental finding, and single cancer cells are imaged using a custom photoacoustic microscopy with high-resolution. The quantitatively functionalized AuNPs together with the high-resolution PAI system provide a unique platform for the detection and imaging of single cancer cells, and may impact not only basic science but also clinical diagnostics on a range of cancers.

  14. Plasmonic Nanoparticles with Quantitatively Controlled Bioconjugation for Photoacoustic Imaging of Live Cancer Cells

    PubMed Central

    Tian, Chao; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing

    2016-01-01

    Detection and imaging of single cancer cells is critical for cancer diagnosis and understanding of cellular dynamics. Photoacoustic imaging (PAI) provides a potential tool for the study of cancer cell dynamics, but faces the challenge that most cancer cells lack sufficient endogenous contrast. Here, a type of colloidal gold nanoparticles (AuNPs) are physically fabricated and are precisely functionalized with quantitative amounts of functional ligands (i.e., polyethyleneglycol (PEG) and (Arginine(R)–Glycine(G)–Aspartic(D))4 (RGD) peptides) to serve as an exogenous contrast agent for PAI of single cells. The functionalized AuNPs, with a fixed number of PEG but different RGD densities, are delivered into human prostate cancer cells. Radioactivity and photoacoustic analyses show that, although cellular uptake efficiency of the AuNPs linearly increases along with RGD density, photoacoustic signal generation efficiency does not and only maximize at a moderate RGD density. The functionalization of the AuNPs is in turn optimized based on the experimental finding, and single cancer cells are imaged using a custom photoacoustic microscopy with high‐resolution. The quantitatively functionalized AuNPs together with the high‐resolution PAI system provide a unique platform for the detection and imaging of single cancer cells, and may impact not only basic science but also clinical diagnostics on a range of cancers. PMID:27981012

  15. The role of imaging in the diagnosis of primary prostate cancer

    PubMed Central

    Harvey, Hugh; deSouza, Nandita M

    2016-01-01

    Ultrasound and magnetic resonance imaging (MRI) are key imaging modalities in prostate cancer diagnosis. MRI offers a range of intrinsic contrast mechanisms (T2, diffusion-weighted imaging (DWI), MR spectroscopy (MRS)) and extrinsic contrast-generating options based on tumour vascular state following injection of weakly paramagnetic agents such as gadolinium. Together these parameters are referred to as multiparametric (mp)MRI and are used for detecting and guiding biopsy and staging prostate cancer. Although sensitivity of mpMRI is <75% for disease detection, specificity is >90% and a standardised reporting system together with MR-guided targeted biopsy is the optimal diagnostic pathway. Shear wave ultrasound elastography is a new technique which also holds promise for future studies. This article describes the developments in imaging the primary site of prostate cancer and reviews their current and future utility for screening, diagnosis and T-staging the disease. PMID:28344811

  16. Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Welge, Weston A.; Barton, Jennifer K.

    2016-03-01

    Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the azoxymethane (AOM) mouse model of colorectal cancer using a commercial swept-source OCT system and a miniature endoscope designed and built in-house. We present en face images of the colonic crypts and demonstrate that different patterns in healthy and adenoma tissue can be seen. These patterns correspond to those reported in the literature. We have previously demonstrated early detection of colon adenoma using OCT by detecting minute thickening of the mucosa. By combining mucosal thickness measurement with imaging of the crypt structure, OCT can be used to correlate ACF and adenoma development in space and time. These results suggest that OCT may be a superior imaging modality for studying the connection between ACF and colorectal cancer.

  17. Nutraceuticals as potential therapeutic agents for colon cancer: a review.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-06-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.

  18. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  19. Optical imaging of breast tumors and of gastrointestinal cancer by laser-induced fluorescence.

    PubMed

    Ebert, Bernd; Grosenick, Dirk

    2013-01-01

    Optical imaging offers a high potential for noninvasive detection of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. We review recent developments in the detection of breast cancer in humans by fluorescent contrast agents. So far, the unspecific contrast agents indocyanine green (ICG) and omocyanine have been applied, whereas molecular probes for direct targeted imaging of this disease are still in preclinical research. We discuss recent improvements in the differentiation of malignant and benign lesions with ICG based on its enhanced extravasation in breast cancer. Whereas fluorescence imaging in thick tissue layers is hampered by strong light scattering, tissue surfaces can be investigated with high spatial resolution. As an example for superficial tumors, lesions of the gastrointestinal tract (GI) are discussed. In these investigations, protoporphyrin IX is used as a tumor-specific (due to its strong enhancement in tumor cells) target for spectroscopic identification and imaging. We present a time-gated method for fluorescence imaging and spectroscopy with strong suppression of tissue autofluorescence and show results on patients with Barrett's esophagus and with colitis ulcerosa.

  20. About the Chemopreventive Agent Development Research Group | Division of Cancer Prevention

    Cancer.gov

    The Chemopreventive Agent Development Research Group promotes and supports research on early chemopreventive agent development, from preclinical studies to phase I clinical trials. The group’s projects aim to identify and develop prevention agents with the potential to block, reverse, or delay the early stages of cancer. The overarching goal is to determine positive and negative predictive values of preclinical models for clinical development. |

  1. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    NASA Astrophysics Data System (ADS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-07-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY ) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30-70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.

  2. Multimeric Near IR–MR Contrast Agent for Multimodal In Vivo Imaging

    PubMed Central

    2015-01-01

    Multiple imaging modalities are often required for in vivo imaging applications that require both high probe sensitivity and excellent spatial and temporal resolution. In particular, MR and optical imaging are an attractive combination that can be used to determine both molecular and anatomical information. Herein, we describe the synthesis and in vivo testing of two multimeric NIR–MR contrast agents that contain three Gd(III) chelates and an IR-783 dye moiety. One agent contains a PEG linker and the other a short alkyl linker. These agents label cells with extraordinary efficacy and can be detected in vivo using both imaging modalities. Biodistribution of the PEGylated agent shows observable fluorescence in xenograft MCF7 tumors and renal clearance by MR imaging. PMID:26083313

  3. Improved cancer therapy and molecular imaging with multivalent, multispecific antibodies.

    PubMed

    Sharkey, Robert M; Rossi, Edmund A; Chang, Chien-Hsing; Goldenberg, David M

    2010-02-01

    Antibodies are highly versatile proteins with the ability to be used to target diverse compounds, such as radionuclides for imaging and therapy, or drugs and toxins for therapy, but also can be used unconjugated to elicit therapeutically beneficial responses, usually with minimal toxicity. This update describes a new procedure for forming multivalent and/or multispecific proteins, known as the dock-and-lock (DNL) technique. Developed as a procedure for preparing bispecific antibodies capable of binding divalently to a tumor antigen and monovalently to a radiolabeled hapten-peptide for pretargeted imaging and therapy, this methodology has the flexibility to create a number of other biologic agents of therapeutic interest. A variety of constructs, based on anti-CD20 and CD22 antibodies, have been made, with results showing that multispecific antibodies have very different properties from the respective parental monospecific antibodies. The technique is not restricted to antibody combination, but other biologics, such as interferon-alpha2b, have been prepared. These types of constructs not only allow small biologics to be sustained in the blood longer, but also to be selectively targeted. Thus, DNL technology is a highly flexible platform that can be used to prepare many different types of agents that could further improve cancer detection and therapy.

  4. Improved Cancer Therapy and Molecular Imaging with Multivalent, Multispecific Antibodies

    PubMed Central

    Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M.

    2010-01-01

    Summation Antibodies are highly versatile proteins with the ability to be used to target diverse compounds, such as radionuclides for imaging and therapy, or drugs and toxins for therapy, but also can be used unconjugated to elicit therapeutically beneficial responses, usually with minimal toxicity. This update describes a new procedure for forming multivalent and/or multispecific proteins, known as the dock-and-lock (DNL) technique. Developed as a procedure for preparing bispecific antibodies capable of binding divalently to a tumor antigen and monovalently to a radiolabeled hapten-peptide for pretargeted imaging and therapy, this methodology has the flexibility to create a number of other biologic agents of therapeutic interest. A variety of constructs, based on anti-CD20 and CD22 antibodies, have been made, with results showing that multispecific antibodies have very different properties from the respective parental monospecific antibodies. The technique is not restricted to antibody combination, but other biologics, such as interferon-α2b, have been prepared. These types of constructs not only allow small biologics to be sustained in the blood longer, but also to be selectively targeted. Thus, DNL technology is a highly flexible platform that can be used to prepare many different types of agents that could further improve cancer detection and therapy. PMID:20187791

  5. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A

    2012-10-23

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  6. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel'nychenko, Nina V.; Sukach, Volodymyr A.

    2012-08-14

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  7. In vitro and In vivo Studies on Stilbene Analogs as Potential Treatment Agents for Colon Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based upon the potential of resveratrol as a cancer chemopreventive agent, 27 stilbenes analogs were synthesized and tested against colon cancer cell line HT-29. Among these compounds, amino derivative (Z)-4-(3,5-dimethoxystyryl) aniline (4), (Z)-methyl 4-(3,5-dimethoxystyryl) benzoate (6) and (Z)-1...

  8. Imaging biomarker roadmap for cancer studies.

    PubMed

    O'Connor, James P B; Aboagye, Eric O; Adams, Judith E; Aerts, Hugo J W L; Barrington, Sally F; Beer, Ambros J; Boellaard, Ronald; Bohndiek, Sarah E; Brady, Michael; Brown, Gina; Buckley, David L; Chenevert, Thomas L; Clarke, Laurence P; Collette, Sandra; Cook, Gary J; deSouza, Nandita M; Dickson, John C; Dive, Caroline; Evelhoch, Jeffrey L; Faivre-Finn, Corinne; Gallagher, Ferdia A; Gilbert, Fiona J; Gillies, Robert J; Goh, Vicky; Griffiths, John R; Groves, Ashley M; Halligan, Steve; Harris, Adrian L; Hawkes, David J; Hoekstra, Otto S; Huang, Erich P; Hutton, Brian F; Jackson, Edward F; Jayson, Gordon C; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O; Lee, Ting-Yim; Leen, Edward L; Lewis, Jason S; Liu, Yan; Lythgoe, Mark F; Manoharan, Prakash; Maxwell, Ross J; Miles, Kenneth A; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R; Parker, Geoff J M; Partridge, Mike; Pathak, Arvind P; Peet, Andrew C; Punwani, Shonit; Reynolds, Andrew R; Robinson, Simon P; Shankar, Lalitha K; Sharma, Ricky A; Soloviev, Dmitry; Stroobants, Sigrid; Sullivan, Daniel C; Taylor, Stuart A; Tofts, Paul S; Tozer, Gillian M; van Herk, Marcel; Walker-Samuel, Simon; Wason, James; Williams, Kaye J; Workman, Paul; Yankeelov, Thomas E; Brindle, Kevin M; McShane, Lisa M; Jackson, Alan; Waterton, John C

    2017-03-01

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.

  9. Imaging biomarker roadmap for cancer studies

    PubMed Central

    O’Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; deSouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, John R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    2017-01-01

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing ‘translational gaps’ through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored ‘roadmap’. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use. PMID:27725679

  10. Imaging of Prostate Cancer Using (64)Cu-Labeled Prostate-Specific Membrane Antigen Ligand.

    PubMed

    Singh, Aviral; Kulkarni, Harshad R; Baum, Richard P

    2017-04-01

    Prostate cancer is the most common noncutaneous cancer among men, rendering the diagnosis and staging of significant medical and public interest. One of the most interesting developments in the application of nuclear oncology has been the development of novel diagnostic agents that are able to facilitate targeted therapies using the concept of theranostics. This review summarizes the current and emerging molecular imaging techniques for the investigation of patients with prostate cancer with emphasis on the potential of (64)Cu-PSMA PET/CT in staging, restaging, and the application of theranostics.

  11. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities.

    PubMed

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M; Wu, Erxi

    2013-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.

  12. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NASA Astrophysics Data System (ADS)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  13. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    SciTech Connect

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; Jong, N. de; Vos, H. J.

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  14. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents.

    PubMed

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-09-22

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based "nanobubble" contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size.

  15. Photoacoustic imaging of prostate cancer using cylinder diffuse radiation

    NASA Astrophysics Data System (ADS)

    Xie, Wenming; Li, Li; Li, Zhifang; Li, Hui

    2012-12-01

    Prostate cancer is one of diseases with high mortality in man. Many clinical imaging modalities are utilized for the detection, grading and staging of prostate cancer, such as ultrasound, CT, MRI, etc. But they lacked adequate sensitivity and specificity for finding cancer in transition or central zone of prostate. To overcome these problems, we propose a photoacoustic imaging modality based on cylinder diffuse radiation through urethra for prostate cancer detection. We measure the related parameters about this system like lateral resolution (~2mm) and axial resolution(~333μm). Finally, simulated sample was imaged by our system. The results demonstrate the feasibility for detecting prostate cancer by our system.

  16. Peptides homing to tumor vasculature: imaging and therapeutics for cancer.

    PubMed

    Liu, Zhiguo; Wu, Kaichun

    2008-11-01

    A major obstacle to advances in anti-vascular therapy is the lack of molecule candidates that are effective in selectively targeting cancer tissues while sparing normal ones. Phage display peptide library greatly eases the discovery of peptides with specific homing capacity. Many novel peptides homing to angiogenic vessels were isolated recently. Notably, many such peptides showed relatively specific affinity with particular tumor types. These peptides appear to be able to accumulate in the target vascular site of tumor, making them particularly efficient to deliver drugs or other therapeutic and imaging agents. Some homing peptides could not only target to the desired location, but also be internalized into targeted cells, or even induce destruction in desired cells all by the same peptide sequence itself. Accumulating evidence has shown that by tumor specific targeting delivery, improved local effect can be achieved with well tolerated side effects. In the current review, recent literatures and patents in this field have been summarized.

  17. Tracking the mammary architectural features and detecting breast cancer with magnetic resonance diffusion tensor imaging.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Feinberg-Shapiro, Myra; Grobgeld, Dov; Eyal, Erez; Zehavi, Tania; Degani, Hadassa

    2014-12-15

    Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.

  18. Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging

    PubMed Central

    Nissan, Noam; Furman-Haran, Edna; Feinberg-Shapiro, Myra; Grobgeld, Dov; Eyal, Erez; Zehavi, Tania; Degani, Hadassa

    2014-01-01

    Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection. PMID:25549209

  19. Molecular Imaging in Breast Cancer – Potential Future Aspects

    PubMed Central

    Pinker, Katja; Bogner, Wolfgang; Gruber, Stephan; Brader, Peter; Trattnig, Siegfried; Karanikas, Georgios; Helbich, Thomas H.

    2011-01-01

    Summary Molecular imaging aims to visualize and quantify biological, physiological, and pathological processes at cellular and molecular levels. Recently, molecular imaging has been introduced into breast cancer imaging. In this review, we will present a survey of the molecular imaging techniques that are either clinically available or are being introduced into clinical imaging. We will discuss nuclear imaging and multiparametric magnetic resonance imaging as well as the combined application of molecular imaging in the assessment of breast lesions. In addition, we will briefly discuss other evolving molecular imaging techniques, such as phosphorus magnetic resonance spectroscopic imaging and sodium imaging. PMID:21673821

  20. Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies.

    PubMed

    Li, Yanyan; Atkinson, Katharine; Zhang, Tao

    2017-03-12

    The cancer stem cell model claims that the initiation, maintenance, and growth of a tumor are driven by a small population of cancer cells termed cancer stem cells. Cancer stem cells possess a variety of phenotypes associated with therapeutic resistance and often cause recurrence of the diseases. Several strategies have been investigated to target cancer stem cells in a variety of cancers, such as blocking one or more self-renewal signaling pathways, reducing the expression of drug efflux and ATP-binding cassette efflux transporters, modulating epigenetic aberrations, and promoting cancer stem cell differentiation. A number of cell and animal studies strongly support the potential benefits of combining chemotherapeutic drugs with cancer stem cell targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This mini-review provides an updated discussion of these preclinical and clinical studies.

  1. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?

    PubMed

    Apetoh, L; Ladoire, S; Coukos, G; Ghiringhelli, F

    2015-09-01

    Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.

  2. Metformin: A Potential Therapeutic Agent for Recurrent Colon Cancer

    PubMed Central

    Nangia-Makker, Pratima; Yu, Yingjie; Vasudevan, Anita; Farhana, Lulu; Rajendra, Sindhu G.; Levi, Edi; Majumdar, Adhip P. N.

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties. However, most of the studies to evaluate therapeutic efficacy of metformin have been on primary cancer. No information is available whether metformin could be effectively used for recurrent cancer, specifically colorectal cancer (CRC) that affects up to 50% of patients treated by conventional chemotherapies. Although the reasons for recurrence are not fully understood, it is thought to be due to re-emergence of chemotherapy-resistant cancer stem/stem-like cells (CSCs/CSLCs). Therefore, development of non-toxic treatment strategies targeting CSCs would be of significant therapeutic benefit. In the current investigation, we have examined the effectiveness of metformin, in combination with 5-fluorouracil and oxaliplatin (FuOx), the mainstay of colon cancer therapeutics, on survival of chemo-resistant colon cancer cells that are highly enriched in CSCs/CSLCs. Our data show that metformin acts synergistically with FuOx to (a) induce cell death in chemo resistant (CR) HT-29 and HCT-116 colon cancer cells, (b) inhibit colonospheres formation and (c) enhance colonospheres disintegration. In vitro cell culture studies have further demonstrated that the combinatorial treatment inhibits migration of CR colon cancer cells. These changes were associated with increased miRNA 145 and reduction in miRNA 21. Wnt/β-catenin signaling pathway was also down-regulated indicating its pivotal role in regulating the growth of CR colon cancer cells. Data from SCID mice xenograft model of CR HCT-116 and CR HT-29 cells show that the combination of metformin and FuOX is highly effective in inhibiting the growth of colon tumors as evidenced by ∼50% inhibition in growth following 5 weeks of combination treatment, when compared with the vehicle treated controls. Our current data suggest that metformin together with conventional chemotherapy could be an effective treatment

  3. Cancer Imaging at the Crossroads of Precision Medicine: Perspective From an Academic Imaging Department in a Comprehensive Cancer Center.

    PubMed

    Van den Abbeele, Annick D; Krajewski, Katherine M; Tirumani, Sree Harsha; Fennessy, Fiona M; DiPiro, Pamela J; Nguyen, Quang-Dé; Harris, Gordon J; Jacene, Heather A; Lefever, Greg; Ramaiya, Nikhil H

    2016-04-01

    The authors propose one possible vision for the transformative role that cancer imaging in an academic setting can play in the current era of personalized and precision medicine by sharing a conceptual model that is based on experience and lessons learned designing a multidisciplinary, integrated clinical and research practice at their institution. The authors' practice and focus are disease-centric rather than imaging-centric. A "wall-less" infrastructure has been developed, with bidirectional integration of preclinical and clinical cancer imaging research platforms, enabling rapid translation of novel cancer drugs from discovery to clinical trial evaluation. The talents and expertise of medical professionals, scientists, and staff members have been coordinated in a horizontal and vertical fashion through the creation of Cancer Imaging Consultation Services and the "Adopt-a-Radiologist" campaign. Subspecialized imaging consultation services at the hub of an outpatient cancer center facilitate patient decision support and management at the point of care. The Adopt-a-Radiologist campaign has led to the creation of a novel generation of imaging clinician-scientists, fostered new collaborations, increased clinical and academic productivity, and improved employee satisfaction. Translational cancer research is supported, with a focus on early in vivo testing of novel cancer drugs, co-clinical trials, and longitudinal tumor imaging metrics through the imaging research core laboratory. Finally, a dedicated cancer imaging fellowship has been developed, promoting the future generation of cancer imaging specialists as multidisciplinary, multitalented professionals who are trained to effectively communicate with clinical colleagues and positively influence patient care.

  4. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    NASA Astrophysics Data System (ADS)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  5. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand.

    PubMed

    Amoury, Manal; Bauerschlag, Dirk; Zeppernick, Felix; von Felbert, Verena; Berges, Nina; Di Fiore, Stefano; Mintert, Isabell; Bleilevens, Andreas; Maass, Nicolai; Bräutigam, Karen; Meinhold-Heerlein, Ivo; Stickeler, Elmar; Barth, Stefan; Fischer, Rainer; Hussain, Ahmad Fawzi

    2016-08-23

    Triple-negative breast cancer (TNBC) is a heterogeneous disease in which the tumors do not express estrogen receptor (ER), progesterone receptor (PgR) or human epidermal growth factor receptor 2 (HER2). Classical receptor-targeted therapies such as tamoxifen or trastuzumab are therefore unsuitable and combinations of surgery, chemotherapy and/or radiotherapy are required. Photoimmunotheranostics is a minimally invasive approach in which antibodies deliver nontoxic photosensitizers that emit light to facilitate diagnosis and produce cytotoxic reactive oxygen species to induce apoptosis and/or necrosis in cancer cells. We developed a panel of photoimmunotheranostic agents against three TNBC-associated cell surface antigens. Antibodies against epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM) and chondroitin sulfate proteoglycan 4 (CSPG4) were conjugated to the highly potent near-infrared imaging agent/photosensitizer IRDye®700DX phthalocyanine using SNAP-tag technology achieving clear imaging in both breast cancer cell lines and human biopsies and highly potent phototherapeutic activity with IC50values of 62-165 nM against five different cell lines expressing different levels of EGFR, EpCAM and CSPG4. A combination of all three reagents increased the therapeutic activity against TNBC cells by up to 40%.

  6. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand

    PubMed Central

    Zeppernick, Felix; von Felbert, Verena; Berges, Nina; Di Fiore, Stefano; Mintert, Isabell; Bleilevens, Andreas; Maass, Nicolai; Bräutigam, Karen; Meinhold-Heerlein, Ivo; Stickeler, Elmar

    2016-01-01

    Triple-negative breast cancer (TNBC) is a heterogeneous disease in which the tumors do not express estrogen receptor (ER), progesterone receptor (PgR) or human epidermal growth factor receptor 2 (HER2). Classical receptor-targeted therapies such as tamoxifen or trastuzumab are therefore unsuitable and combinations of surgery, chemotherapy and/or radiotherapy are required. Photoimmunotheranostics is a minimally invasive approach in which antibodies deliver nontoxic photosensitizers that emit light to facilitate diagnosis and produce cytotoxic reactive oxygen species to induce apoptosis and/or necrosis in cancer cells. We developed a panel of photoimmunotheranostic agents against three TNBC-associated cell surface antigens. Antibodies against epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM) and chondroitin sulfate proteoglycan 4 (CSPG4) were conjugated to the highly potent near-infrared imaging agent/photosensitizer IRDye®700DX phthalocyanine using SNAP-tag technology achieving clear imaging in both breast cancer cell lines and human biopsies and highly potent phototherapeutic activity with IC50values of 62–165 nM against five different cell lines expressing different levels of EGFR, EpCAM and CSPG4. A combination of all three reagents increased the therapeutic activity against TNBC cells by up to 40%. PMID:27448975

  7. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  8. Novel compounds in the treatment of lung cancer: current and developing therapeutic agents

    PubMed Central

    Bao, Rudi; Chan, Pokman

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the United States. Though incremental advances have been made in the treatment of this devastating disease during the past decade, new therapies are urgently needed. Traditional cytotoxic agents have been combined with other modalities with improved survival for early-stage patients. Newer cytotoxic agents targeting the same or different mechanisms have been developed at different stages. Optimization of various chemotherapy regimens in different settings is one of the aims of current clinical trials. Some predictive biomarkers (eg, excision repair cross-complementing 1, ERCC1) and histotypes (eg, adenocarcinoma) are found to be associated with resistance/response to some cytotoxic drugs. Another notable advance is the addition of targeted therapy to lung cancer treatment. Targeted agents such as erlotinib and bevacizumab have demonstrated clinical benefits and gained Food and Drug Administration approval for lung cancer. More agents targeting various signaling pathways critical to lung cancer are at different stages of development. Along with the effort of new targeted drug discovery, biomarkers such as epidermal growth factor receptor and anaplastic lymphoma kinase mutations have proven useful for patient selection, and more predictive biomarkers have been actively evaluated in non-small cell lung cancer. The paradigm of lung cancer treatment has shifted towards biomarker-based personalized medicine. PMID:27186107

  9. Crocetin: an agent derived from saffron for prevention and therapy for cancer.

    PubMed

    Gutheil, William G; Reed, Gregory; Ray, Amitabha; Anant, Shrikant; Dhar, Animesh

    2012-01-01

    Cancer is one of the leading causes of death in the United States and accounts for approximately 8 million deaths per year worldwide. Although there is an increasing number of therapeutic options available for patients with cancer, their efficacy is time-limited and non-curative. Approximately 50-60% cancer patients in the United States utilize agents derived from different parts of plants or nutrients (complementary and alternative medicine), exclusively or concurrently with traditional therapeutic regime such as chemotherapy and/or radiation therapy. The need for new drugs has prompted studies evaluating possible anti-cancer agents in fruits, vegetables, herbs and spices. Saffron, a spice and a food colorant present in the dry stigmas of the plant Crocus sativus L., has been used as an herbal remedy for various ailments including cancer by the ancient Arabian, Indian and Chinese cultures. Crocetin, an important carotenoid constituent of saffron, has shown significant potential as an anti-tumor agent in animal models and cell culture systems. Crocetin affects the growth of cancer cells by inhibiting nucleic acid synthesis, enhancing anti-oxidative system, inducing apoptosis and hindering growth factor signaling pathways. This review discusses the studies on cancer preventive potential of crocetin and its future use as an anticancer agent.

  10. Crocetin: an agent derived from saffron for prevention and therapy for cancer

    PubMed Central

    Gutheil, William G.; Reed, Gregory; Ray, Amitabha; Dhar, Animesh

    2015-01-01

    Cancer is one of the leading causes of death in the United States and accounts for approximately 8 million deaths per year worldwide. Although there is an increasing number of therapeutic options available for patients with cancer, their efficacy is time-limited and non-curative. Approximately 50-60% of cancer patients in the United States utilize agents derived from different parts of plants or nutrients (complementary and alternative medicine), exclusively or concurrently with traditional therapeutic regime such as chemotherapy and/or radiation therapy. The need for new drugs has prompted studies evaluating possible anti-cancer agents in fruits, vegetables, herbs and spices. Saffron, a spice and a food colorant present in the dry stigmas of the plant Crocus sativus L., has been used as an herbal remedy for various ailments including cancer by the ancient Arabian, Indian and Chinese cultures. Crocetin, an important carotenoid constituent of saffron, has shown significant potential as an anti-tumor agent in animal models and cell culture systems. Crocetin affects the growth of cancer cells by inhibiting nucleic acid synthesis, enhancing anti-oxidative system, inducing apoptosis and hindering growth factor signaling pathways. This review discusses the studies on cancer preventive potential of crocetin and its future use as an anticancer agent. PMID:21466430

  11. Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview.

    PubMed

    Eastmond, David A; Keshava, Nagalakshmi; Sonawane, Babasaheb

    2014-04-13

    Lymphohematopoietic neoplasia are one of the most common types of cancer induced by therapeutic and environmental agents. Of the more than 100 human carcinogens identified by the International Agency for Research on Cancer, approximately 25% induce leukemias or lymphomas. The objective of this review is to provide an introduction into the origins and mechanisms underlying lymphohematopoietic cancers induced by xenobiotics in humans with an emphasis on acute myeloid leukemia, and discuss the implications of this information for risk assessment. Among the agents causing lymphohematopoietic cancers, a number of patterns were observed. Most physical and chemical leukemia-inducing agents such as the therapeutic alkylating agents, topoisomerase II inhibitors, and ionizing radiation induce mainly acute myeloid leukemia through DNA-damaging mechanisms that result in either gene or chromosomal mutations. In contrast, biological agents and a few immunosuppressive chemicals induce primarily lymphoid neoplasms through mechanisms that involve alterations in immune response. Among the environmental agents examined, benzene was clearly associated with acute myeloid leukemia in humans, with increasing but still limited evidence for an association with lymphoid neoplasms. Ethylene oxide and 1,3-butadiene were linked primarily to lymphoid cancers. Although the association between formaldehyde and leukemia remains controversial, several recent evaluations have indicated a potential link between formaldehyde and acute myeloid leukemia. The four environmental agents examined in detail were all genotoxic, inducing gene mutations, chromosomal alterations, and/or micronuclei in vivo. Although it is clear that rapid progress has been made in recent years in our understanding of leukemogenesis, many questions remain for future research regarding chemically induced leukemias and lymphomas, including the mechanisms by which the environmental agents reviewed here induce these diseases and the

  12. Challenges in Clinical Prostate Cancer: Role of Imaging

    PubMed Central

    Kelloff, Gary J.; Choyke, Peter; Coffey, Donald S.

    2010-01-01

    Objective This article reviews a recent 2-day workshop on prostate cancer and imaging technology that was conducted by the Cancer Imaging Program of the National Cancer Institute. The workshop dealt with research trends and avenues for improving imaging and applications across the clinical spectrum of the disease. Conclusion After a summary of prostate cancer incidence and mortality, four main clinical challenges in prostate cancer treatment and management—diagnostic accuracy; risk stratification, initial staging, active surveillance, and focal therapy; prostate-specific antigen relapse after radiation therapy or radical prostatectomy; and assessing response to therapy in advanced disease—were discussed by the 55-member panel. The overarching issue in prostate cancer is distinguishing lethal from nonlethal disease. New technologies and fresh uses for established procedures make imaging effective in both assessing and treating prostate cancer. PMID:19457806

  13. The status of targeted agents in the setting of neoadjuvant radiation therapy in locally advanced rectal cancers

    PubMed Central

    Hadaki, Maher; Harrison, Mark

    2013-01-01

    Radiotherapy has a longstanding and well-defined role in the treatment of resectable rectal cancer to reduce the historically high risk of local recurrence. In more advanced borderline or unresectable cases, where the circumferential resection margin (CRM) is breached or threatened according to magnetic resonance imaging (MRI), despite optimized local multimodality treatment and the gains achieved by modern high quality total mesorectal excision (TME), at least half the patients fail to achieve sufficient downstaging with current schedules. Many do not achieve an R0 resection. In less locally advanced cases, even if local control is achieved, this confers only a small impact on distant metastases and a significant proportion of patients (30-40%) still subsequently develop metastatic disease. In fact, distant metastases have now become the predominant cause of failure in rectal cancer. Therefore, increasing the intensity and efficacy of chemotherapy and chemoradiotherapy by integrating additional cytotoxics and biologically targetted agents seems an appealing strategy to explore—with the aim of enhancing curative resection rates and improving distant control and survival. However, to date, we lack validated biomarkers for these biological agents apart from wild-type KRAS. For cetuximab, the appearance of an acneiform rash is associated with response, but low levels of magnesium appear more controversial. There are no molecular biomarkers for bevacizumab. Although some less invasive clinical markers have been proposed for bevacizumab, such as circulating endothelial cells (CECS), circulating levels of VEGF and the development of overt hypertension, these biomarkers have not been validated and are observed to emerge only after a trial of the agent. We also lack a simple method of ongoing monitoring of ‘on target’ effects of these biological agents, which could determine and pre-empt the development of resistance, prior to radiological and clinical assessessments

  14. The status of targeted agents in the setting of neoadjuvant radiation therapy in locally advanced rectal cancers.

    PubMed

    Glynne-Jones, Rob; Hadaki, Maher; Harrison, Mark

    2013-09-01

    Radiotherapy has a longstanding and well-defined role in the treatment of resectable rectal cancer to reduce the historically high risk of local recurrence. In more advanced borderline or unresectable cases, where the circumferential resection margin (CRM) is breached or threatened according to magnetic resonance imaging (MRI), despite optimized local multimodality treatment and the gains achieved by modern high quality total mesorectal excision (TME), at least half the patients fail to achieve sufficient downstaging with current schedules. Many do not achieve an R0 resection. In less locally advanced cases, even if local control is achieved, this confers only a small impact on distant metastases and a significant proportion of patients (30-40%) still subsequently develop metastatic disease. In fact, distant metastases have now become the predominant cause of failure in rectal cancer. Therefore, increasing the intensity and efficacy of chemotherapy and chemoradiotherapy by integrating additional cytotoxics and biologically targetted agents seems an appealing strategy to explore-with the aim of enhancing curative resection rates and improving distant control and survival. However, to date, we lack validated biomarkers for these biological agents apart from wild-type KRAS. For cetuximab, the appearance of an acneiform rash is associated with response, but low levels of magnesium appear more controversial. There are no molecular biomarkers for bevacizumab. Although some less invasive clinical markers have been proposed for bevacizumab, such as circulating endothelial cells (CECS), circulating levels of VEGF and the development of overt hypertension, these biomarkers have not been validated and are observed to emerge only after a trial of the agent. We also lack a simple method of ongoing monitoring of 'on target' effects of these biological agents, which could determine and pre-empt the development of resistance, prior to radiological and clinical assessessments or

  15. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  16. A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques

    NASA Astrophysics Data System (ADS)

    Kulkarni, Padmakar V.; Vasdev, Neil; Hao, Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu, Bao Xi; Sun, Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.

    2011-06-01

    Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.

  17. Object oriented image analysis based on multi-agent recognition system

    NASA Astrophysics Data System (ADS)

    Tabib Mahmoudi, Fatemeh; Samadzadegan, Farhad; Reinartz, Peter

    2013-04-01

    In this paper, the capabilities of multi-agent systems are used in order to solve object recognition difficulties in complex urban areas based on the characteristics of WorldView-2 satellite imagery and digital surface model (DSM). The proposed methodology has three main steps: pre-processing of dataset, object based image analysis and multi-agent object recognition. Classified regions obtained from object based image analysis are used as input datasets in the proposed multi-agent system in order to modify/improve results. In the first operational level of the proposed multi-agent system, various kinds of object recognition agents modify initial classified regions based on their spectral, textural and 3D structural knowledge. Then, in the second operational level, 2D structural knowledge and contextual relations are used by agents for reasoning and modification. Evaluation of the capabilities of the proposed object recognition methodology is performed on WorldView-2 imagery over Rio de Janeiro (Brazil) which has been collected in January 2010. According to the obtained results of the object based image analysis process, contextual relations and structural descriptors have high potential to modify general difficulties of object recognition. Using knowledge based reasoning and cooperative capabilities of agents in the proposed multi-agent system in this paper, most of the remaining difficulties are decreased and the accuracy of object based image analysis results is improved for about three percent.

  18. ER maleate is a novel anticancer agent in oral cancer: implications for cancer therapy

    PubMed Central

    Fu, Guodong; Somasundaram, Raj Thani; Jessa, Fatima; Srivastava, Gunjan; MacMillan, Christina; Witterick, Ian; Walfish, Paul G.; Ralhan, Ranju

    2016-01-01

    ER maleate [10-(3-Aminopropyl)-3, 4-dimethyl-9(10H)-acridinone maleate] identified in a kinome screen was investigated as a novel anticancer agent for oral squamous cell carcinoma (OSCC). Our aim was to demonstrate its anticancer effects, identify putative molecular targets and determine their clinical relevance and investigate its chemosensitization potential for platinum drugs to aid in OSCC management. Biologic effects of ER maleate were determined using oral cancer cell lines in vitro and oral tumor xenografts in vivo. mRNA profiling, real time PCR and western blot revealed ER maleate modulated the expression of polo-like kinase 1 (PLK1) and spleen tyrosine kinase (Syk). Their clinical significance was determined in oral SCC patients by immunohistochemistry and correlated with prognosis by Kaplan-Meier survival and multivariate Cox regression analyses. ER maleate induced cell apoptosis, inhibited proliferation, colony formation, migration and invasion in oral cancer cells. Imagestream analysis revealed cell cycle arrest in G2/M phase and increased polyploidy, unravelling deregulation of cell division and cell death. Mechanistically, ER maleate decreased expression of PLK1 and Syk, induced cleavage of PARP, caspase9 and caspase3, and increased chemosensitivity to carboplatin; significantly suppressed tumor growth and increased antitumor activity of carboplatin in tumor xenografts. ER maleate treated tumor xenografts showed reduced PLK1 and Syk expression. Clinical investigations revealed overexpression of PLK1 and Syk in oral SCC patients that correlated with disease prognosis. Our in vitro and in vivo findings provide a strong rationale for pre-clinical efficacy of ER maleate as a novel anticancer agent and chemosensitizer of platinum drugs for OSCC. PMID:26934445

  19. Weakly supervised histopathology cancer image segmentation and classification.

    PubMed

    Xu, Yan; Zhu, Jun-Yan; Chang, Eric I-Chao; Lai, Maode; Tu, Zhuowen

    2014-04-01

    Labeling a histopathology image as having cancerous regions or not is a critical task in cancer diagnosis; it is also clinically important to segment the cancer tissues and cluster them into various classes. Existing supervised approaches for image classification and segmentation require detailed manual annotations for the cancer pixels, which are time-consuming to obtain. In this paper, we propose a new learning method, multiple clustered instance learning (MCIL) (along the line of weakly supervised learning) for histopathology image segmentation. The proposed MCIL method simultaneously performs image-level classification (cancer vs. non-cancer image), medical image segmentation (cancer vs. non-cancer tissue), and patch-level clustering (different classes). We embed the clustering concept into the multiple instance learning (MIL) setting and derive a principled solution to performing the above three tasks in an integrated framework. In addition, we introduce contextual constraints as a prior for MCIL, which further reduces the ambiguity in MIL. Experimental results on histopathology colon cancer images and cytology images demonstrate the great advantage of MCIL over the competing methods.

  20. Luminescence Enhanced Eu(3+)/Gd(3+) Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo.

    PubMed

    Xie, Yunfei; He, Wangmei; Li, Fang; Perera, Thalagalage Shalika Harshani; Gan, Lin; Han, Yingchao; Wang, Xinyu; Li, Shipu; Dai, Honglian

    2016-04-27

    Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo.

  1. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer.

    PubMed

    Azimi, Haniye; Khakshur, Ali Asghar; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    In the present article, we reviewed plants and phytochemical compounds demonstrating beneficial effects in pancreatic cancer to find new sources of pharmaceutical agents. For this purpose, Scopus, PubMed, Web of Science, and Google scholar were searched for plants or herbal components with beneficial effects in the treatment of pancreatic cancer. Data were collected up to January 2013. The search terms were "plant," "herb," "herbal therapy," or "phytotherapy" and "pancreatic cancer" or "pancreas." All of the human in vivo and in vitro studies were included. According to studies, among diverse plants and phytochemicals, 12 compounds including apigenin, genistein, quercetin, resveratrol, epigallocatechin gallate, benzyl isothiocyanate, sulforaphane, curcumin, thymoquinone, dihydroartemisinin, cucurbitacin B, and perillyl alcohol have beneficial action against pancreatic cancer cells through 4 or more mechanisms. Applying their plausible synergistic effects can be an imperative approach for finding new efficient pharmacological agents in the treatment of pancreatic cancer.

  2. Gastric cancer in the era of molecularly targeted agents: current drug development strategies.

    PubMed

    Arkenau, Hendrik-Tobias

    2009-07-01

    Gastric cancer is the second most common cause of cancer death worldwide with approximately one million cases diagnosed annually. Despite considerable improvements in surgical techniques, innovations in clinical diagnostics and the development of new chemotherapy regimens, the clinical outcome for patients with advanced gastric cancer and cancer of the GEJ is generally poor with 5-year survival rates ranging between 5 and 15%. The understanding of cancer relevant events has resulted in new therapeutic strategies, particularly in developing of new molecular targeted agents. These agents have the ability to target a variety of cancer relevant receptors and downstream pathways including the epidermal growth factor receptor (EGFR), the vascular endothelial growth factor receptor (VEGFR), the insulin-like growth factor receptor (IGFR), the c-Met pathway, cell-cycle pathways, and down-stream signalling pathways such as the Akt-PI3k-mTOR pathway. In the era of new molecularly targeted agents this review focuses on recent developments of targeting relevant pathways involved in gastric cancer and cancer of the GEJ.

  3. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells

    PubMed Central

    Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614

  4. Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging.

    PubMed

    Lim, Eun-Kyung; Kim, Hyun-Ouk; Jang, Eunji; Park, Joseph; Lee, Kwangyeol; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2011-11-01

    We fabricated hyaluronan-modified magnetic nanoclusters (HA-MNCs) for detection of CD44-overexpressing breast cancer using magnetic resonance (MR) imaging. CD44 is closely associated with cancer growth, including proliferation, metastasis, invasion, and angiogenesis. Hence, pyrenyl hyaluronan (Py-HA) conjugates were synthesized as CD44-targetable surfactants with hyaluronan (HA) and 1-pyrenylbutyric acid (Py) to modify hyaluronan on hydrophobic magnetic nanocrystals. Subsequently, HA-MNCs were fabricated using the nano-emulsion method; magnetic nanocrystals were simultaneously self-assembled with Py-HA conjugates, and their physical and magnetic properties depended on the degree of substitution (DS) of Py in Py-HA conjugates. HA-MNCs exhibited superior targeting efficiency with MR sensitivity as well as excellent biocompatibility through in vitro/in vivo studies. This suggests that HA-MNCs can be a potent cancer specific molecular imaging agent via targeted detection of CD44 with MR imaging.

  5. Content-based image retrieval in the World Wide Web: a web agent for fetching portraits

    NASA Astrophysics Data System (ADS)

    Muenkelt, Olaf; Kaufmann, Oliver; Eckstein, Wolfgang

    1997-01-01

    This article propose a way to automatically retrieve images from the world-wide-web using a semantic description for images and an agent concept for the retrieval of images. The system represents image in a textual way, e.g. look for a portrait of the a specific person, or fetch an image showing a countryside in Southern California. This textual descriptions are fed in search machines, e.g. yahoo, alta- vista. The resulting html documents are seeked for links. The next step subsequently processes each link by fetching the document other the net, converting it to an ascii representation, and performing a full text search by using the image description. This leads to starting points of images which are retrieved via a web-agent. The image descriptions are decomposed in a set of parts containing image operations which are further processed, e.g. a set for representing the background of a portrait tries to find a homogeneous region in the image because this is likely to find in a portrait. Additional operations are performed on the foreground, i.e. the image region which contains e.g. the face of a person. The system is realized using two C++ libraries: one for building up web-agents, LIWA++, and one for processing images, HORUS.

  6. Radioiodinated glucose analogues for use as imaging agents

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1988-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  7. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  8. Targeted Agents Active Against Breast Cancer: Q&A

    Cancer.gov

    ALTTO was a clinical trial designed to determine whether the combination of the monoclonal antibody trastuzumab (Herceptin) and the drug lapatinib (Tykerb) was more effective in treating HER2/ErbB2-positive breast cancer when combined with chemotherapy.

  9. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives?

    PubMed

    Cirmi, Santa; Ferlazzo, Nadia; Lombardo, Giovanni E; Maugeri, Alessandro; Calapai, Gioacchino; Gangemi, Sebastiano; Navarra, Michele

    2016-11-04

    Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology.

  10. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives?

    PubMed Central

    Cirmi, Santa; Ferlazzo, Nadia; Lombardo, Giovanni E.; Maugeri, Alessandro; Calapai, Gioacchino; Gangemi, Sebastiano; Navarra, Michele

    2016-01-01

    Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology. PMID:27827912

  11. Small animal imaging platform for quantitative assessment of short-wave infrared-emitting contrast agents

    NASA Astrophysics Data System (ADS)

    Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-03-01

    We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.

  12. Radiosensitizers in Pancreatic Cancer – Preclinical and Clinical Exploits with Molecularly Targeted Agents

    PubMed Central

    Walker, Amanda J.; Alcorn, Sara; Narang, Amol; Nugent, Katriana; Wild, Aaron T.; Herman, Joseph M.; Tran, Phuoc T.

    2013-01-01

    There has been an explosion in the number of molecularly targeted agents engineered to inhibit specific molecular pathways driving the tumorigenic phenotype in cancer cells. Some of these molecularly targeted agents have demonstrated robust clinical effects, but few result in meaningful durable responses. Therapeutic radiation is used to treat a majority of cancer patients with recent technologic and pharmacologic enhancements, leading to improvements in the therapeutic ratio for cancer care. Radiotherapy has a very specific role in select cases of postoperative and locally advanced pancreatic cancer patients, but control of metastatic disease still appears to be the major limiting factor behind improvements in cure. Recent rapid autopsy pathologic findings suggest a sub-group of advanced pancreatic cancer patients where death is caused from local disease progression and who would thus benefit from improved local control. One promising approach is to combine molecularly targeted agents with radiotherapy to improve tumor response rates and likelihood of durable local control. We review suggested recommendations on the investigation of molecularly targeted agents as radiosensitizers from preclinical studies to implementation in phase I–II clinical trials. We then discuss a select set of molecularly targeted therapies that we believe show promise as radiosensitizers in the treatment of pancreatic cancer. PMID:24331186

  13. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  14. Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage cancer detection

    NASA Astrophysics Data System (ADS)

    Tate, Tyler H.; Baggett, Brenda; Rice, Photini F. S.; Koevary, Jennifer Watson; Orsinger, Gabriel V.; Nymeyer, Ariel C.; Welge, Weston A.; Saboda, Kathylynn; Roe, Denise J.; Hatch, Kenneth D.; Chambers, Setsuko K.; Utzinger, Urs; Barton, Jennifer Kehlet

    2016-05-01

    With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease originates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging. Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflectance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstituting using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endoscopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast agents.

  15. Iodine contrast cone beam CT imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John

    2007-03-01

    An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.

  16. Multifunctional Nanoprobes for Cancer Cell Targeting, Imaging and Anticancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Linkov, Pavel; Laronze-Cochard, Marie; Sapi, Janos; Sidorov, Lev N.; Nabiev, Igor

    The diagnosis and treatment of cancer have been greatly improved with recent developments in bio-nanotechnology, including engineering of multifunctional probes. One of the promising nanoscale tools for cancer imaging is fluorescent quantum dots (QDs), whose small size and unique optical properties allow them to penetrate into cells and ensure highly sensitive optical diagnosis of cancer at the cellular level. Furthermore, novel multi-functional probes have been developed in which QDs are conjugated with one or several functional molecules, including targeting moieties and therapeutic agents. Here, the strategy for engineering novel nanocarriers for controlled nucleus-targeted antitumor drug delivery and real-time imaging by single- or two-photon microscopy is described. A triple multifunctional nanoprobe is being developed that consists of a nitrogen-based heterocyclic derivative, an anticancer agent interacting with a DNA in living cells; a recognized molecule serving as a vector responsible for targeted delivery of the probe into cancer cells; and photoluminescent QDs providing the imaging capability of the probe. Subsequent optimization of the multifunctional nanoprobe will offer new possibilities for cancer diagnosis and treatment.

  17. Prostate-specific membrane antigen as a target for cancer imaging and therapy

    PubMed Central

    KIESS, A. P.; BANERJEE, S. R.; MEASE, R. C.; ROWE, S. P.; RAO, A.; FOSS, C. A.; CHEN, Y.; YANG, X.; CHO, S. Y.; NIMMAGADDA, S.; POMPER, M. G.

    2016-01-01

    The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers. PMID:26213140

  18. Identification of early cancerous lesion of esophagus with endoscopic images by hyperspectral image technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Wei; Chen, Shih-Hua; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Wang, Hsiang-Chen

    2016-03-01

    This study presents a method to identify early esophageal cancer within endoscope using hyperspectral imaging technology. The research samples are three kinds of endoscopic images including white light endoscopic, chromoendoscopic, and narrow-band endoscopic images with different stages of pathological changes (normal, dysplasia, dysplasia - esophageal cancer, and esophageal cancer). Research is divided into two parts: first, we analysis the reflectance spectra of endoscopic images with different stages to know the spectral responses by pathological changes. Second, we identified early cancerous lesion of esophagus by principal component analysis (PCA) of the reflectance spectra of endoscopic images. The results of this study show that the identification of early cancerous lesion is possible achieve from three kinds of images. In which the spectral characteristics of NBI endoscopy images of a gray area than those without the existence of the problem the first two, and the trend is very clear. Therefore, if simply to reflect differences in the degree of spectral identification, chromoendoscopic images are suitable samples. The best identification of early esophageal cancer is using the NBI endoscopic images. Based on the results, the use of hyperspectral imaging technology in the early endoscopic esophageal cancer lesion image recognition helps clinicians quickly diagnose. We hope for the future to have a relatively large amount of endoscopic image by establishing a hyperspectral imaging database system developed in this study, so the clinician can take this repository more efficiently preliminary diagnosis.

  19. Phase-Change Contrast Agents for Imaging and Therapy

    PubMed Central

    Sheeran, Paul S.; Dayton, Paul A.

    2016-01-01

    Phase-change contrast agents (PCCAs) for ultrasound-based applications have resulted in novel ways of approaching diagnostic and therapeutic techniques beyond what is possible with microbubble contrast agents and liquid emulsions. When subjected to sufficient pressures delivered by an ultrasound transducer, stabilized droplets undergo a phase-transition to the gaseous state and a volumetric expansion occurs. This phenomenon, termed acoustic droplet vaporization, has been proposed as a means to address a number of in vivo applications at the microscale and nanoscale. In this review, the history of PCCAs, physical mechanisms involved, and proposed applications are discussed with a summary of studies demonstrated in vivo. Factors that influence the design of PCCAs are discussed, as well as the need for future studies to characterize potential bioeffects for administration in humans and optimization of ultrasound parameters. PMID:22352770

  20. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    SciTech Connect

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  1. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells.

    PubMed

    Chandra, Ramesh; Madan, Jitender; Singh, Prashant; Chandra, Ankush; Kumar, Pradeep; Tomar, Vartika; Dass, Sujata K

    2012-12-01

    Noscapine, a tubulin binding anticancer agent undergoing Phase I/II clinical trials, inhibits tumor growth in nude mice bearing human xenografts of breast, lung, ovarian, brain, and prostrate origin. The analogues of noscapine like 9-bromonoscapine (EM011) are 5 to 10-fold more active than parent compound, noscapine. Noscapinoids inhibit the proliferation of cancer cells that are resistant to paclitaxel and epothilone. Noscapine also potentiated the anticancer activity of doxorubicin in a synergistic manner against triple negative breast cancer (TNBC). However, physicochemical and pharmacokinetic (ED50˜300-600 mg/kg bodyweight) limitations of noscapine present hurdle in development of commercial anticancer formulations. Therefore, objectives of the present review are to summarize the chemotherapeutic potential of noscapine and implications of nanoscale based drug delivery systems in enhancing the therapeutic efficacy of noscapine in cancer cells. We have constructed noscapine-enveloped gelatin nanoparticles, NPs and poly (ethylene glycol) grafted gelatin NPs as well as inclusion complex of noscapine in β-cyclodextrin (β-CD) and evaluated their physicochemical characteristics. The Fe3O4 NPs were also used to incorporate noscapine in its polymeric nanomatrix system where molecular weight of the polymer governed the encapsulation efficiency of drug. The enhanced noscapine delivery using μPAR-targeted optical-MR imaging trackable NPs offer a great potential for image directed targeted delivery of noscapine. Human Serum Albumin NPs (150-300 nm) as efficient noscapine drug delivery systems have also been developed for potential use in breast cancer.

  2. Magnetic resonance imaging for prostate cancer clinical application

    PubMed Central

    Li, Bing; Du, Yong; Huang, Yayong; Meng, Jun; Xiao, Dongmei

    2013-01-01

    As prostate cancer is a biologically heterogeneous disease for which a variety of treatment options are available, the major objective of prostate cancer imaging is to achieve more precise disease characterization. In clinical practice, magnetic resonance imaging (MRI) is one of the imaging tools for the evaluation of prostate cancer, the fusion of MRI or dynamic contrast-enhanced MRI (DCE-MRI) with magnetic resonance spectroscopic imaging (MRSI) is improving the evaluation of cancer location, size, and extent, while providing an indication of tumor aggressiveness. This review summarizes the role of MRI in the application of prostate cancer and describes molecular MRI techniques (including MRSI and DCE-MRI) for aiding prostate cancer management. PMID:23592906

  3. Molecular Imaging and Precision Medicine in Head and Neck Cancer.

    PubMed

    Mena, Esther; Thippsandra, Shwetha; Yanamadala, Anusha; Redy, Siddaling; Pattanayak, Puskar; Subramaniam, Rathan M

    2017-01-01

    The concept of using tumor genomic profiling information has revolutionized personalized cancer treatment. Head and neck (HN) cancer management is being influenced by recent discoveries of activating mutations in epidermal growth factor receptor and related targeted therapies with tyrosine kinase inhibitors, targeted therapies for Kristen Rat Sarcoma, and MET proto-oncogenes. Molecular imaging using PET plays an important role in assessing the biologic behavior of HN cancer with the goal of delivering individualized cancer treatment. This review summarizes recent genomic discoveries in HN cancer and their implications for functional PET imaging in assessing response to targeted therapies, and drug resistance mechanisms.

  4. Diagnosis of skin cancer using image processing

    NASA Astrophysics Data System (ADS)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Coronel-Beltrán, Ángel

    2014-10-01

    In this papera methodology for classifying skin cancerin images of dermatologie spots based on spectral analysis using the K-law Fourier non-lineartechnique is presented. The image is segmented and binarized to build the function that contains the interest area. The image is divided into their respective RGB channels to obtain the spectral properties of each channel. The green channel contains more information and therefore this channel is always chosen. This information is point to point multiplied by a binary mask and to this result a Fourier transform is applied written in nonlinear form. If the real part of this spectrum is positive, the spectral density takeunit values, otherwise are zero. Finally the ratio of the sum of the unit values of the spectral density with the sum of values of the binary mask are calculated. This ratio is called spectral index. When the value calculated is in the spectral index range three types of cancer can be detected. Values found out of this range are benign injure.

  5. Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging.

    PubMed

    Jung, Jongjin; Kim, Mi Ae; Cho, Jee-Hyun; Lee, Seung Jae; Yang, Ilseung; Cho, Janggeun; Kim, Seong Keun; Lee, Chulhyun; Park, Joung Kyu

    2012-08-01

    We present a facile synthesis of europium-doped gadolinium sulfide (GdS:Eu(3+)) opto-magnetic nanoparticles (NPs) via sonochemistry. Their photoluminescence and strong paramagnetic properties enable these NPs to be utilized as an in vitro cell imaging and in vivo T(1)-weighted MR imaging probe. The GdS:Eu(3+) NPs have a prominent longitudinal (r(1)) relaxivity value, which is a critical parameter for T(1)-weighted MR imaging. Here, we showed not only their strong positive contrast effect to blood vessels and organs of mice, but also blood half-life and biodistribution including clearance from organs, in order to assess the GdS:Eu(3+) NPs as a competent nanocrystal-based T(1) contrast agent. We further showed confocal images of breast cancer cells containing GdS:Eu(3+) NPs to evaluate as a photoluminescence probe. Dual-mode imaging capability obtained from the GdS:Eu(3+) NPs will allow target-oriented cellular imaging as well as the resulting disease-specific MR imaging.

  6. Carnosol: A promising anti-cancer and anti-inflammatory agent

    PubMed Central

    Johnson, Jeremy J.

    2011-01-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicincal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. PMID:21382660

  7. PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts

    PubMed Central

    Oi, Naomi; Chen, Hanyong; Reddy, Kanamata; Jiang, Yanan; Yao, Ke; Li, Haitao; Li, Wei; Zhang, Yi; Saleem, Mohammad; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2016-01-01

    Esophageal cancer is one of the least studied and deadliest cancers worldwide with a poor prognosis due to limited options for treatment. Chemotherapy agents such as the microtubule-targeting compounds are the mainstay of palliation for advanced esophageal cancer treatment. However, the toxicity and side effects of tubulin-binding agents (TBAs) have promoted the development of novel, more potent but less toxic TBAs. Herein, we identified 2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrazol-5-yl]-5-[(2-methylprop-2-en-1-yl)oxy] phenol (PPMP) as a novel TBA for esophageal cancer treatment. PPMP markedly inhibited tubulin polymerization, and decreased viability and anchorage-independent growth of esophageal cancer cell lines, effects that were accompanied by G2/M arrest and apoptosis. Importantly, we produced patient-derived esophageal cancer xenografts to evaluate the therapeutic effect of PPMP in a setting that best mimics the clinical context in patients with esophageal cancer. Overall, we identified PPMP as a novel microtubule-destabilizing compound and as a new therapeutic agent against esophageal carcinoma. PMID:27129160

  8. First Pharmacophore-Based Identification of Androgen Receptor Down-regulating Agents: Discovery of Potent Anti-Prostate Cancer Agents

    PubMed Central

    Purushottamachar, Puranik; Khandelwal, Aakanksha; Chopra, Pankaj; Maheshwari, Neha; Gediya, Lalji K; Vasaitis, Tadas S.; Bruno, Robert; Clement, Omoshile O.; Njar, Vincent C. O.

    2007-01-01

    A qualitative 3D pharmacophore model (a common feature based model or Catalyst HipHop algorithm) was developed for well known natural product androgen receptor down-regulating agents (ARDAs). The four common chemical features identified included: one hydrophobic group, one ring aromatic group and two hydrogen bond acceptors. This model served as a template in virtual screening of the Maybridge and NCI databases that resulted in identification of 6 new ARDAs (EC50 values 17.5 – 212 μM). Five of these molecules strongly inhibited the growth of human prostate LNCaP cells. These novel compounds may be used as leads to develop other novel anti-prostate cancer agents. PMID:17383188

  9. Magnetic resonance contrast media sensing in vivo molecular imaging agents: an overview.

    PubMed

    Amanlou, Massoud; Siadat, Seyed Davar; Norouzian, Dariush; Ebrahimi, Seyed Esmaeil Sadat; Aghasadeghi, Mohammad Reza; Ghorbani, Masoud; Alavidjeh, Mohammad Shafiee; Inanlou, Davoud Nouri; Arabzadeh, Ali Jabbari; Ardestani, Mehdi Shafiee

    2011-01-01

    Metabolic imaging is commonly performed by nuclear medicine facilities such as PET or SPECT, etc. The production and biomedical applications of bio-molecular sensing in vivo MRI metabolic contrast agents has recently become of great universal research interest, which follows its great success as a potential cost effective, less radioactive, nuclear medicine alternative. Temperature, redox potential, enzyme activity, free radial/metal ion responsive and/or pH sensitive molecular metabolic MR contrast agents are among the famous instances exemplified, which basically promote MR image contrast enhancement ability to distinguish molecular metabolic/gene expression features. Overall, these MRI contrast agents provide a framework to achieve a greater degree of accuracy from MRI as a low cost, more available facility, non radioactive radiation producing and highly sensitive biomedical tool to propound as a new suggesting opponent for PET nuclear medicine imaging. In the present review, the design, development, examination and future of the above agents will be discussed in detail.

  10. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.

  11. One-Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy.

    PubMed

    Zhang, Yu; Cui, Zhifen; Kong, Huating; Xia, Kai; Pan, Liang; Li, Jiang; Sun, Yanhong; Shi, Jiye; Wang, Lihua; Zhu, Ying; Fan, Chunhai

    2016-04-13

    The use of functional nanodiamonds (fNDs) to deliver CpG oligonucleotides (ODNs) for sustained immunostimulation is reported. It is demonstrated that monotherapy using this immunostimulatory agent significantly suppresses the tumor growth in two murine tumor models. This fND-based nanoagent opens new opportunities for immunotherapy, as well as clinical applications of various types of therapeutic nucleic acids.

  12. [Developing FGFR inhibitors as potential anti-cancer agents].

    PubMed

    Zsákai, Lilian; Németh, Gábor; Szántai-Kis, Csaba; Greff, Zoltán; Horváth, Zoltán; Szokol, Bálint; Baska, Ferenc; Boon, Tin Chuad; Orfi, Lászlo; Kéri, Györgya

    2013-01-01

    Fibroblast Growth Factor Receptor (FGFR) family is a sequentially highly related subgroup of membrane proteins consisting of four tyrosine kinase type enzyme: FGFR1, FGFR2, FGFR3 and FGFR4. These are kinases of great interest in a wide spectrum of physiological processes such as tissue repair via controlling cell proliferation. As initiatiors of cell proliferation, in some cases they have leading roles in several types of cancer, eg. breast cancer, pancreas cancer, gastric tumors and multiple myeloma via overexpression and/or mutation. This phenomenon makes them promising targets for drug development in order to develop signal transduction therapies based on small molecule FGFR inhibitors. We have developed two main groups of lead molecules: compounds with benzotiophene and oxindole cores utilizing numerous methods from in silico modelling via in vitro biochemichal assays and testing on relevant cell lines to cytotoxicity assays.

  13. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  14. An activatable, polarity dependent, dual-luminescent imaging agent with a long luminescence lifetime.

    PubMed

    Rood, Marcus T M; Oikonomou, Maria; Buckle, Tessa; Raspe, Marcel; Urano, Yasuteru; Jalink, Kees; Velders, Aldrik H; van Leeuwen, Fijs W B

    2014-09-04

    In this proof-of-concept study, a new activatable imaging agent based on two luminophores and two different quenching mechanisms is reported. Both partial and total activation of the luminescence signal can be achieved, either in solution or in vitro. Bond cleavage makes the compound suitable for luminescence lifetime imaging.

  15. Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging

    PubMed Central

    Shekhar, Himanshu; Rychak, Joshua J.; Doyley, Marvin M.

    2013-01-01

    Purpose: Subharmonic imaging is of interest for high frequency (>10 MHz) nonlinear imaging, because it can specifically detect the response of ultrasound contrast agents (UCA). However, conventional UCA produce a weak subharmonic response at high frequencies, which limits the sensitivity of subharmonic imaging. We hypothesized that modifying the size distribution of the agent can enhance its high-frequency subharmonic response. The overall goal of this study was to investigate size-manipulated populations of the agent to determine the range of sizes that produce the strongest subharmonic response at high frequencies (in this case, 20 MHz). A secondary goal was to assess whether the number or the volume-weighted size distribution better represents the efficacy of the agent for high-frequency subharmonic imaging. Methods: The authors created six distinct agent size distributions from the native distribution of a commercially available UCA (Targestar-P®). The median (number-weighted) diameter of the native agent was 1.63 μm, while the median diameters of the size-manipulated populations ranged from 1.35 to 2.99 μm. The authors conducted acoustic measurements with native and size-manipulated agent populations to assess their subharmonic response to 20 MHz excitation (pulse duration 1.5 μs, pressure amplitudes 100–398 kPa). Results: The results showed a considerable difference between the subharmonic response of the agent populations that were investigated. The subharmonic response peaked for the agent population with a median diameter of 2.15 μm, which demonstrated a subharmonic signal that was 8 dB higher than the native agent. Comparing the subharmonic response of different UCA populations indicated that microbubbles with diameters between 1.3 and 3 μm are the dominant contributors to the subharmonic response at 20 MHz. Additionally, a better correlation was observed between the subharmonic response of the agent and the number-weighted size-distribution (R2

  16. A supramolecular material for dual-modal imaging and targeted cancer therapy.

    PubMed

    Guan, Shanyue; Liang, Ruizheng; Li, Chunyang; Wei, Min

    2017-04-01

    Recently, how to design a formulation system with simultaneous diagnosis and therapy toward cancer has attracted tremendous attention. Herein, a supramolecular material was prepared via a facile method by the co-intercalation of folic acid (FA) and doxorubicin (DOX) into the gallery of Gd(3+)-doped layered double hydroxides (LDHs), followed by surface adsorption of fluorescein isothiocyanate (FITC). This supramolecular agent was proved to exhibit excellent magnetic resonance imaging (MRI) and fluorescence imaging (FI) behavior, as well as chemotherapy toward cancer (KB cell). The co-intercalated FA enables an efficient and selective drug delivery with good specificity. This work provides a facile approach for the fabrication of a drug formulation with dual-modal imaging and targeted therapy, which could be potentially used in the practical chemotherapy and medical imaging.

  17. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property.

    PubMed

    Azmi, Asfar S; Sarkar, Fazlul H; Hadi, S M

    2013-01-01

    " Let food be thy medicine and medicine be thy food" was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  18. Tissue imaging for cancer detection using NIR autofluorescence

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Staggs, Michael C.; Gandour-Edwards, Regina; Ramsamooj, Rajen; White, Ralph de Vere

    2002-05-01

    Near IR imaging using elastic light scattering and tissue fluorescence under long-wavelength laser excitation are explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation. A set of images of each tissue sample is recorded. These images are then compared with the histopathology of the tissue sample to reveal the optical fingerprint characteristics suitable for cancer detection. The experimental results indicate that the above approaches can help image and differentiate cancer form normal tissue.

  19. Medical imaging in the diagnosis and management of cancer pain.

    PubMed

    Cuevas, Carlos; Shibata, Dean

    2009-08-01

    Within the past few decades medical imaging has evolved very rapidly, now becoming an indispensable tool for the diagnosis, treatment, and follow-up of patients with cancer-related pain. Multiple imaging modalities are available for the assessment of cancer patients, each one with different advantages and limitations that are important to consider at the time we order a diagnostic study or plan an image-guided procedure. This article reviews the role that various imaging modalities play in the management of cancer pain and provides an overview of the latest technological advances.

  20. Whole-body multicolor spectrally resolved fluorescence imaging for development of target-specific optical contrast agents using genetically engineered probes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.

    2007-02-01

    Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.

  1. Effects of nonlinear propagation in ultrasound contrast agent imaging.

    PubMed

    Tang, Meng-Xing; Kamiyama, Naohisa; Eckersley, Robert J

    2010-03-01

    This paper investigates two types of nonlinear propagation and their effects on image intensity and contrast-to-tissue ratio (CTR) in contrast ultrasound images. Previous studies have shown that nonlinear propagation can occur when ultrasound travels through tissue and microbubble clouds, making tissue farther down the acoustic path appear brighter in pulse inversion (PI) images, thus reducing CTR. In this study, the effect of nonlinear propagation through tissue or microbubbles on PI image intensity and CTR are compared at low mechanical index. A combination of simulation and experiment with SonoVue microbubbles were performed using a microbubble dynamics model, a laboratory ultrasound system and a clinical prototype scanner. The results show that, close to the bubble resonance frequency, nonlinear propagation through a bubble cloud of a few centimeter thickness with a modest concentration (1:10000 dilution of SonoVue microbubbles) is much more significant than through tissue-mimicking material. Consequently, CTR in regions distal to the imaging probe is greatly reduced for nonlinear propagation through the bubble cloud, with as much as a 12-dB reduction compared with nonlinear propagation through tissue-mimicking material. Both types of nonlinear propagation cause only a small change in bubble PI signals at the bubble resonance frequency. When the driving frequency increases beyond bubble resonance, nonlinear propagation through bubbles is greatly reduced in absolute values. However because of a greater reduction in nonlinear scattering from bubbles at higher frequencies, the corresponding CTR is much lower than that at bubble resonance frequency.

  2. Stimuli-Responsive Biodegradable Hyperbranched Polymer-Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents.

    PubMed

    Sun, Ling; Li, Xue; Wei, Xiaoli; Luo, Qiang; Guan, Pujun; Wu, Min; Zhu, Hongyan; Luo, Kui; Gong, Qiyong

    2016-04-27

    The efficacy and biocompatibility of nanoscale magnetic resonance imaging (MRI) contrast agents depend on optimal molecular structures and compositions. Gadolinium [Gd(III)] based dendritic macromolecules with well-defined and tunable nanoscale sizes are excellent candidates as multivalent MRI contrast agents. Here, we propose a novel alternate preparation of biodegradable hyperbranched polymer-gadolinium conjugates via a simple strategy and report potentially efficient and biocompatible nanoscale MRI contrast agents for cancer diagnosis. The enzyme-responsive hyperbranched poly(oligo-(ethylene glycol) methacrylate)-gadolinium conjugate (HB-POEGMA-Gd) was prepared via one-step reversible addition-fragmentation chain transfer (RAFT) polymerization and Gd(III) chelating, and the cRGDyK functionalized polymer (HB-POEGMA-cRGD-Gd) was obtained via click chemistry. By using an enzyme similar to lysosomal cathepsin B, hyperbranched conjugates of high molecular weights (MW) (180 and 210 kDa) and nanoscale sizes (38 and 42 nm) were degraded into low MW (25 and 30 kDa) and smaller products (4.8 and 5.2 nm) below the renal threshold. Conjugate-based nanoscale systems had three-fold more T1 relaxivity compared to clinical agent diethylenediaminepentaacetic acid (DTPA)-Gd. Animal studies with the nanoscale system offered greater tumor accumulation and enhanced signal intensity (SI) in mouse U87 tumors of which the greatest activity was conferred by the cRGDyK moiety functionalized hyperbranched conjugate. In vitro cytotoxicity, hemocompatibility and in vivo toxicity studies confirmed no adverse events. This design strategy for multifunctional Gd(III)-labeled biodegradable dendritic macromolecules may have significant potential as future efficient, biocompatible polymeric nanoscale MRI diagnostic contrast agents for cancer.

  3. Characterization of Estrogen-Receptor-Targeted Contrast-Agents in Solution, Breast Cancer Cells and Tumors in vivo

    PubMed Central

    Pais, Adi; Biton, Inbal Eti; Margalit, Raanan; Degani, Hadassa

    2012-01-01

    The estrogen receptor (ER) is a major prognostic biomarker of breast cancer, currently determined in surgical specimens by immunohistochemistry. Two new ER targeted probes, pyridine-tetra-acetate-Gd chelate (PTA-Gd) conjugated either to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd), were explored as contrast agents for molecular imaging of ER. In solution both probes exhibited a micromolar ER binding-affinity, fast water exchange-rate (~107s−1) and water proton-relaxivity of 4.7 to 6.8 mM−1s−1. In human breast cancer cells, both probes acted as estrogen agonists and enhanced the water protons T1 relaxation-rate and relaxivity in ER-positive as compared to ER-negative cells, with EPTA-Gd showing a higher ER-specific relaxivity than TPTA-Gd. In studies of breast cancer tumors in vivo EPTA-Gd induced the highest enhancement in ER-positive tumors as compared to ER-negative tumors and muscle tissue, enabling in vivo detection of ER. TPTA-Gd demonstrated the highest enhancement in muscle tissue indicating non specific interaction of this agent with muscle components. The extracellular contrast agents, PTA-Gd and GdDTPA, showed no difference in the perfusion capacity of ER-positive and negative tumors confirming the specific interaction of EPTA-Gd with ER. These findings lay a basis for the molecular imaging of the estrogen receptor using EPTA-Gd as a template for further developments. PMID:22887470

  4. Breast cancer imaging by microwave-induced thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Minghua; Ku, Geng; Jin, Xing; Wang, Lihong V.; Fornage, Bruno D.; Hunt, Kelly K.

    2005-04-01

    We report a preliminary study of breast cancer imaging by microwave-induced thermoacoustic tomography. In this study, we built a prototype of breast cancer imager based on a circular scan mode. A 3-GHz 0.3~0.5-μs microwave is used as the excitation energy source. A 2.25-MHz ultrasound transducer scans the thermoacoustic signals. All the measured data is transferred to a personal computer for imaging based on our proposed back-projection reconstruction algorithms. We quantified the line spread function of the imaging system. It shows the spatial resolution of our experimental system reaches 0.5 mm. After phantom experiments demonstrated the principle of this technique, we moved the imaging system to the University of Texas MD Anderson Cancer Center to image the excised breast cancer specimens. After the surgery performed by the physicians at the Cancer Center, the excised breast specimen was placed in a plastic cylindrical container with a diameter of 10 cm; and it was then imaged by three imaging modalities: radiograph, ultrasound and thermoacoustic imaging. Four excised breast specimens have been tested. The tumor regions have been clearly located. This preliminary study demonstrated the potential of microwave-induced thermoacoustic tomography for applications in breast cancer imaging.

  5. Research into europium complexes as magnetic resonance imaging contrast agents (Review)

    PubMed Central

    HAN, GUOCAN; DENG, YANGWEI; SUN, JIHONG; LING, JUN; SHEN, ZHIQUAN

    2015-01-01

    Europium (Eu) is a paramagnetic lanthanide element that possesses an outstanding luminescent property. Eu complexes are ideal fluorescence imaging (FI) agents. Eu2+ has satisfactory relaxivity and optical properties, and can realize magnetic resonance (MRI)-FI dual imaging applications when used with appropriate cryptands that render it oxidatively stable. By contrast, based on the chemical exchange saturation transfer (CEST) mechanism, Eu3+ complexes can provide enhanced MRI sensitivity when used with optimal cryptands, incorporated into polymeric CEST agents or blended with Gd3+. Eu complexes are promising in MRI-FI dual imaging applications and have a bright future. PMID:26136858

  6. Angiogenesis in prostate cancer: onset, progression and imaging.

    PubMed

    Russo, Giovanna; Mischi, Massimo; Scheepens, Wout; De la Rosette, Jean J; Wijkstra, Hessel

    2012-12-01

    What's known on the subject? and What does the study add? Today, angiogenesis is known to play a key role in cancer growth and development. Emerging cancer treatments are based on the suppression of angiogenesis, and modern imaging techniques investigate changes in the microvasculature that are caused by angiogenesis. As for other forms of cancers, angiogenesis is well recognised as a fundamental process in the development of prostate cancer. The novelty of this extensive report on angiogenesis in cancer, with particular attention on prostate cancer and the imaging techniques able to detect it, is the new prospective to the subject. In contrast with the other available reviews, this report goes from 'theory' to 'practice', establishing a clear link between angiogenesis development and imaged angiogenesis features. Once the key role of angiogenesis in the development of cancer and in particular prostate cancer has been fully described, attention is turned to the current imaging methods with the potential to assess the angiogenesis process and, as a consequence, to detect and localise prostate cancer. • As confirmed by all available statistics, cancer represents a major clinical and societal problem in the developed world. The form of cancer with the highest incidence in men is prostate cancer. For prostate cancer, as well as for most forms of cancer, detection of the disease at an early stage is critical to reduce mortality and morbidity. • Today, it is well known that pathological angiogenesis represents a crucial step in cancer development and progression. Comparable with most forms of cancer, angiogenesis also plays a fundamental role for prostate cancer growth. • As a consequence, angiogenesis is an ideal target not only for novel anti-angiogenic therapies, but also for modern imaging techniques that aim at cancer localisation by detection of angiogenic microvascular changes. • These techniques are mainly based on magnetic resonance, ultrasound, and

  7. Multi-agent systems: effective approach for cancer care information management.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza; Rahimi, Azin

    2013-01-01

    Physicians, in order to study the causes of cancer, detect cancer earlier, prevent or determine the effectiveness of treatment, and specify the reasons for the treatment ineffectiveness, need to access accurate, comprehensive, and timely cancer data. The cancer care environment has become more complex because of the need for coordination and communication among health care professionals with different skills in a variety of roles and the existence of large amounts of data with various formats. The goals of health care systems in such a complex environment are correct health data management, providing appropriate information needs of users to enhance the integrity and quality of health care, timely access to accurate information and reducing medical errors. These roles in new systems with use of agents efficiently perform well. Because of the potential capability of agent systems to solve complex and dynamic health problems, health care system, in order to gain full advantage of E- health, steps must be taken to make use of this technology. Multi-agent systems have effective roles in health service quality improvement especially in telemedicine, emergency situations and management of chronic diseases such as cancer. In the design and implementation of agent based systems, planning items such as information confidentiality and privacy, architecture, communication standards, ethical and legal aspects, identification opportunities and barriers should be considered. It should be noted that usage of agent systems only with a technical view is associated with many problems such as lack of user acceptance. The aim of this commentary is to survey applications, opportunities and barriers of this new artificial intelligence tool for cancer care information as an approach to improve cancer care management.

  8. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review

    PubMed Central

    Khodarahmi, Ghadamali; Asadi, Parvin; Hassanzadeh, Farshid; Khodarahmi, Elham

    2015-01-01

    Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development. PMID:26941815

  9. Radionuclide imaging and treatment of thyroid cancer.

    PubMed

    Wang, Xiu Juan; Li, XianFeng; Ren, Yuan

    2016-06-01

    Over the past decades, the diagnostic methods and therapeutic tools for thyroid cancer (TC) have been greatly improved. In addition to the classical method of ingestion of radioactive iodine-131 (I131) and subsequent I123 and I124 positron emission tomography (PET) in therapy and examination, I124 PET-based 3-dimensional imaging, Ga68-labeled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI(3)-octreotide (DOTANOC) PET/computed tomography (CT), Tc99m tetrofosmin, pre-targeted radioimmunotherapy, and peptide receptor radionuclide therapy have all been used clinically. These novel methods are useful in diagnosis and therapy of TC, but also have unavoidable adverse effects. In this review, we will discuss the development of nuclear medicine in TC examination and treatment.

  10. Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents

    PubMed Central

    Gaston, Julie; Cheradame, Laura; Yvonnet, Vanessa; Deas, Olivier; Poupon, Marie-France; Judde, Jean-Gabriel

    2016-01-01

    Activation of the IFN/STAT1 pathway is closely associated with drug response and recurrence of breast cancer treated by chemotherapy. The aim of the current study was to elucidate the molecular mechanisms involved upstream and downstream of this pathway in order to identify distinct entities that might be manipulated to improve treatment efficacy. Four breast cancer cell lines (T-47D, MCF7, MDA-MB-231 and HBCx-19 established from the eponymous PDX) were treated in vitro with mafosfamide, a DNA damage inducer. In two of these cell lines (MCF7 and HBCx-19), genotoxic treatment upregulated type I IFN expression leading to paracrine activation of IFN/STAT1 signaling pathway after 6–8 days. We show that STING, a well-characterized inducer of IFN in immune cells, is rapidly triggered in MCF7 cells under genotoxic stress and forms nuclear foci that co-localize with phosphorylated IRF-3 and γH2AX. STING silencing abrogated chemotherapy-induced type I IFN production and signaling and potentiated genotoxic treatment efficacy as it promoted cell death extent and delayed cell colony regrowth. Similar results were obtained after silencing PARP12, one selected gene of the IFN/STAT1 pathway fingerprint. In summary, this study provides the first demonstration of STING activation in breast cancer cells. Our data suggest that genotoxic-induced, STING-mediated type I IFN signaling is a cell-intrinsic mechanism of breast cancer cell survival and regrowth. PMID:27791205

  11. Biocompatible PEGylated Fe3O4 Nanoparticles as Photothermal Agents for Near-Infrared Light Modulated Cancer Therapy

    PubMed Central

    Yuan, Gang; Yuan, Yongjie; Xu, Kan; Luo, Qi

    2014-01-01

    In accordance with the World Cancer Report, cancer has become the leading cause of mortality worldwide, and various therapeutic strategies have been developed at the same time. In the present study, biocompatible magnetic nanoparticles were designed and synthesized as high-performance photothermal agents for near-infrared light mediated cancer therapy in vitro. Via a facile one-pot solvothermal method, well-defined PEGylated magnetic nanoparticles (PEG–Fe3O4) were prepared with cheap inhesion as a first step. Due to the successful coating of PEG molecules on the surface of PEG–Fe3O4, these nanoparticles exhibited excellent dispersibility and dissolvability in physiological condition. Cytotoxicity based on MTT assays indicated these nanoparticles revealed high biocompatibility and low toxicity towards both Hela cells and C6 cells. After near-infrared (NIR) laser irradiation, the viabilities of C6 cells were effectively suppressed when incubated with the NIR laser activated PEG–Fe3O4. In addition, detailed photothermal anti-cancer efficacy was evaluated via visual microscope images, demonstrating that our PEG–Fe3O4 were promising for photothermal therapy of cancer cells. PMID:25329618

  12. Mitochondrial Apoptosis: A New Foundation for Combing Agents in Prostate Cancer Treatment

    DTIC Science & Technology

    2000-03-01

    Cancer Treatment . Charles E. Myers, M.D. This grant sought to examine synergy between androgen withdrawal and drugs known to have activity against hormone-refractory prostate cancer. The hypothesis is that apoptosis induced by these various agents would converge on mitochondria enhancing tumor cell kill. During the first year, we were able to clearly show that none of the agents tested were synergistic or even additive with hormonal therapy. However, we did find promising synergy between HMG-Co reductase inhibitors or phenylbutyrate on one hand and the chemotherapy drugs,

  13. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    NASA Astrophysics Data System (ADS)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  14. Imaging primary mouse sarcomas after radiation therapy using cathepsin-activatable fluorescent imaging agents

    PubMed Central

    Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.; Ferrer, Jorge M.; Kim, Yongbaek; Lee, W. David; Bawendi, Moungi G.; Brigman, Brian E.; Kirsch, David G.

    2014-01-01

    Purpose Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS), and other tumors, undergo radiation therapy (RT) prior to surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes and various tissues, including the tumor, were imaged using a handheld imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b positive tumor associated immune cells. Conclusions In this primary mouse model of STS, RT does not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes label tumor cells and tumor associated macrophages. Our results support including patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes. PMID:23391816

  15. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    SciTech Connect

    Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.; Ferrer, Jorge M.; Kim, Yongbaek; Lee, W. David; Bawendi, Moungi G.; Brigman, Brian E.; Kirsch, David G.

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

  16. Medicinal plants from Peru: a review of plants as potential agents against cancer.

    PubMed

    Gonzales, Gustavo F; Valerio, Luis G

    2006-09-01

    Natural products have played a significant role in drug discovery and development especially for agents against cancer and infectious disease. An analysis of new and approved drugs for cancer by the United States Food and Drug Administration over the period of 1981-2002 showed that 62% of these cancer drugs were of natural origin. Natural compounds possess highly diverse and complex molecular structures compared to small molecule synthetic drugs and often provide highly specific biological activities likely derived from the rigidity and high number of chiral centers. Ethnotraditional use of plant-derived natural products has been a major source for discovery of potential medicinal agents. A number of native Andean and Amazonian medicines of plant origin are used as traditional medicine in Peru to treat different diseases. Of particular interest in this mini-review are three plant materials endemic to Peru with the common names of Cat's claw (Uncaria tomentosa), Maca (Lepidium meyenii), and Dragon's blood (Croton lechleri) each having been scientifically investigated for a wide range of therapeutic uses including as specific anti-cancer agents as originally discovered from the long history of traditional usage and anecdotal information by local population groups in South America. Against this background, we present an evidence-based analysis of the chemistry, biological properties, and anti-tumor activities for these three plant materials. In addition, this review will discuss areas requiring future study and the inherent limitations in their experimental use as anti-cancer agents.

  17. Dynamic infrared imaging for skin cancer screening

    NASA Astrophysics Data System (ADS)

    Godoy, Sebastián E.; Ramirez, David A.; Myers, Stephen A.; von Winckel, Greg; Krishna, Sanchita; Berwick, Marianne; Padilla, R. Steven; Sen, Pradeep; Krishna, Sanjay

    2015-05-01

    Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to detect the most common types of skin cancer. We discuss and propose a standardized analysis method for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously selecting pixels with the same initial temperature. This process compensates the intrinsic limitations of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested the methodology on human subjects using thermal infrared image sequences from a pilot study conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects for the present study. Statistically significant results were obtained that allowed us to distinguish between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% confidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively, and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in conjunction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact, and non-invasive way to screen for common types of skin cancer. As such, it has the potential to significantly reduce the number of biopsies performed on suspicious lesions.

  18. Metabolic Imaging of Glutamine in Cancer.

    PubMed

    Zhu, Lin; Ploessl, Karl; Zhou, Rong; Mankoff, David; Kung, Hank F

    2017-04-01

    Glucose and glutamine are the most abundant nutrients for producing energy and building blocks in normal and tumor cells. Increased glycolysis in tumors, the Warburg Effect, is the basis for (18)F-FDG PET imaging. Cancer cells can also be genetically reprogrammed to use glutamine. 5-(11)C-(2S)-glutamine and (18)F-(2S,4R)4-fluoroglutamine may be useful complementary tools to measure changes in tumor metabolism. In glioma patients, the tracer (18)F-(2S,4R)4-fluoroglutamine showed tumor-to-background contrast different from that of (18)F-FDG and differences in uptake in glioma patients with clinical progression of disease versus stable disease (tumor-to-brain ratio > 3.7 in clinically active glioma tumors, minimal or no specific uptake in clinically stable tumors). These preliminary results suggest that (18)F-(2S,4R)4-fluoroglutamine PET may be a new tool for probing in vivo metabolism of glutamine in cancer patients and for guiding glutamine-targeted therapeutics. Further studies of uptake mechanism, and comparison of kinetics for (18)F-(2S,4R)4-fluoroglutamine versus the (11)C-labeled native glutamine, will be important and enlightening.

  19. Noninvasive Surface Imaging of Breast Cancer in Humans using a Hand-held Optical Imager.

    PubMed

    Erickson-Bhatt, Sarah J; Roman, Manuela; Gonzalez, Jean; Nunez, Annie; Kiszonas, Richard; Lopez-Penalver, Cristina; Godavarty, Anuradha

    2015-12-01

    X-ray mammography, the current gold standard for breast cancer detection, has a 20% false-negative rate (cancer is undetected) and increases in younger women with denser breast tissue. Diffuse optical imaging (DOI) is a safe (nonionizing), and relatively inexpensive method for noninvasive imaging of breast cancer in human subjects (including dense breast tissues) by providing physiological information (e.g. oxy- and deoxy- hemoglobin concentration). At the Optical Imaging Laboratory, a hand-held optical imager has been developed which employs a breast contourable probe head to perform simultaneous illumination and detection of large surfaces towards near real-time imaging of human breast cancer. Gen-1 and gen-2 versions of the handheld optical imager have been developed and previously demonstrated imaging in tissue phantoms and healthy human subjects. Herein, the hand-held optical imagers are applied towards in vivo imaging of breast cancer subjects in an attempt to determine the ability of the imager to detect breast tumors. Five female human subjects (ages 51-74) diagnosed with breast cancer were imaged with the gen-1 optical imager prior to surgical intervention. One of the subjects was also imaged with the gen-2 optical imager. Both imagers use 785 nm laser diode sources and ICCD camera detectors to generate 2D surfaces maps of total hemoglobin absorption. The subjects lay in supine position and images were collected at various locations on both the ipsilateral (tumor-containing) and contralateral (non-tumor containing) breasts. The optical images (2D surface maps of optical absorption due to total hemoglobin concentration) show regions of higher intensity at the tumor location, which is indicative of increased vasculature and higher blood content due to the presence of the tumor. Additionally, a preliminary result indicates the potential to image lymphatic spread. This study demonstrates the potential of the hand-held optical devices to noninvasively image

  20. Synchronous gynecologic cancer and the use of imaging for diagnosis.

    PubMed

    Boaventura, Camila Silva; Galvão, José Lucas Scarpinetti; Soares, Giovanna Milanes Bego; Bitencourt, Almir Galvão Vieira; Chojniak, Rubens; Bringel, Shenia Lauanna Rezende; Brot, Louise De

    2016-04-01

    Endometrial and cervical cancers are the most prevalent gynecologic neoplasms. While endometrial cancer occurs in older women, cervical cancer is more prevalente in young subjects. The most common clinical manifestation in these two gynecological cancers is vaginal bleeding. In the first case, diagnosis is made based on histological and imaging evaluation of the endometrium, while cervical cancers are diagnosed clinically, according to the International Federation of Gynecology and Obstetrics (FIGO). The authors present a case of synchronous gynecological cancer of the endometrium and cervix diagnosed during staging on MRI and confirmed by histological analysis of the surgical specimen.

  1. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis.

    PubMed

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E; Chung, Leland W K

    2014-09-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy.

  2. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis

    PubMed Central

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E.; Chung, Leland W.K.

    2014-01-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy. PMID:24957295

  3. Tanshinones as Effective Therapeutic Agents for Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    BW) and the routes of administration (oral gavaging with corn oil or dietary supplementation ) in inhibiting the growth of PC-3 tumors. We found...activity against PC3 tumors. Although dietary supplementation was labor-efficient, the intake of the active agents could not be controlled because the...basis for most modern pharmaceutical drugs. Herbal medicines usually contain multiple bioactive compo- nents with specific biological activities and

  4. Autofluorescence spectroscopy and imaging for cancer detection in the larynx

    NASA Astrophysics Data System (ADS)

    Lin, Kan; Zheng, Wei; Huang, Zhiwei

    2009-11-01

    Autofluorescence imaging has shown high sensitivity for early diagnosis and detection of cancer in humans. However, it has a limitation in diagnostic specificity due to high false positive rates. In this work, we apply an integrated fluorescence spectroscopy and endoscopic imaging technique for real-time tissue measurements. The results show that the combined autofluorescence imaging and spectroscopy has the potential for improving laryngeal cancer diagnosis and detection.

  5. Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3’diindolylmethane (DIM)

    DTIC Science & Technology

    2006-08-01

    carbinol protects against covalent binding of benzo [ a ] pyrene and N -nitrosodimethylamine metabolites to mouse liver macromolecules. Chem Biol Interact...TκB has been reported to play a role in de novo resistance of cancer cells to chemotherapeutic agents, which is a major cause for treatment failure in... cancer chemotherapy. Previous studies have shown that 3,3’-diindolylmethane (DIM), a major in vivo acid- catalyzed condensation product of Indole-3

  6. Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3’-Diindolylmethane (DIM)

    DTIC Science & Technology

    2007-08-01

    protects against covalent binding of benzo [ a ] pyrene and N -nitrosodimethylamine metabolites to mouse liver macromolecules. Chem Biol Interact 1984;48...by ANSI Std. Z39.18 Constitutive activation of Akt or NF-κB has been reported to play a role in de novo resistance of cancer cells to...chemotherapeutic agents, which is a major cause of treatment failure in cancer chemotherapy. Previous studies have shown that 3, 3’-diindolylmethane (DIM), a

  7. Development of contrast enhancing agents in magnetic resonance imaging.

    PubMed

    Lex, L

    1989-01-01

    Magnetic Resonance Imaging (MRI) is a powerful new diagnostic tool in medicine. In MRI there is a great need to improve the specific identification of different tissues i.e. to enhance the contrast between them. This review tries to cover most of the approaches known for solving this problem.

  8. Motion corrected photoacoustic difference imaging of fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan

    2016-03-01

    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  9. Bisphosphonate-Based Contrast Agents for Radiological Imaging of Microcalcifications

    DTIC Science & Technology

    2006-03-01

    treatment of patients with bone metastases [5]. Two such commercially available compounds are pamidronate disodium, available as Aredia® from...reaction has superior yield (>70%) to the 18-21% yield for pamidronate - IRDye-78 (LI-COR) conjugation reported previously [6]. Representative images are

  10. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    PubMed

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  11. ADVANCES IN IMAGING TECHNOLOGIES IN THE EVALUATION OF HIGH-GRADE BLADDER CANCER

    PubMed Central

    Zlatev, Dimitar V.; Altobelli, Emanuela; Liao, Joseph C.

    2015-01-01

    Bladder cancer is a heterogeneous disease that ranges from low-grade variant with an indolent course, to high-grade subtype with a recurrent, progressive, and potentially lethal outcome. Accurate assessment for individualized treatment depends critically on the diagnostic accuracy of white light cystoscopy. Despite its central role, white light cystoscopy has several well-documented shortcomings including difficult flat lesion detection, imprecise tumor delineation that limits complete resection, differentiation between inflammation and malignancy, and grade and stage determination. As the limitations of white light cystoscopy contribute to the risk of cancer persistence, recurrence, and progression, there is a need for improved visualization of flat, multifocal, high-grade, and muscle-invasive lesions. Optical imaging technologies have emerged as an adjunct to white light cystoscopy with the goal to guide more effective treatment by improving cancer detection and patient stratification on the basis of grade and stage. Photodynamic diagnosis and narrow band imaging are macroscopic imaging modalities similar to white light cystoscopy, but provide additional contrast enhancement of bladder tumors and have been shown to improve detection rates. Confocal laser endomicroscopy and optical coherence tomography are microscopic imaging technologies that enable real-time high resolution, subsurface tissue characterization with spatial resolutions similar to histology. Molecular imaging offers the potential for the combination of optical imaging technologies with cancer-specific molecular agents to improve the specificity of disease detection. PMID:25882557

  12. In vivo detection of copper ions by magnetic resonance imaging using a prion-based contrast agent.

    PubMed

    Makino, Satoshi; Umemoto, Tomohiro; Yamada, Hiroshi; Yezdimer, Eric M; Tooyama, Ikuo

    2012-10-01

    Abnormal distributions of transition metals inside the body are potential diagnostic markers for several diseases, including Alzheimer's disease, Parkinson's disease, Wilson's disease, and cancer. In this article, we demonstrate that P57/Gd, a novel prion-based contrast agent, can selectively image tissues with excessive copper accumulation using magnetic resonance imaging (MRI). P57/Gd selectivity binds copper(II) over other physiologically relevant cations such as zinc, iron, manganese, and calcium. To simulate a metabolic copper disorder, we treated mice with an intraperitoneal injection of a CuSO(4) solution to induce a renal copper overload. The MRI signal intensities from the renal cortex and medulla of copper spiked animals that were administered P57/Gd were found to correlate with the ex vivo copper concentrations determined by inductively coupled plasma mass spectrometry.

  13. Improving the Outcome for Children With Cancer: Development of Targeted New Agents

    PubMed Central

    Adamson, Peter C.

    2015-01-01

    The outcome for children with cancer has improved significantly over the past 60 years, with greater than 80% of patients today becoming 5-year survivors. Despite this progress, cancer remains the leading cause of death from disease in children in the United States, and significant short-term and long-term treatment toxicities continue to impact the majority of children with cancer. The development of targeted new agents offers the prospect of potentially more effective and less toxic treatment for children. More than a decade since imatinib mesylate was introduced into the treatment of children with Philadelphia chromosomepositive acute lymphoblastic leukemia, transforming its outcome, a range of targeted agents has undergone study in pediatric cancer patients. Early lessons learned from these studies include a better understanding of the adverse event profile of these drugs in children, the challenge of developing pediatric-specific formulations, and the continued reliance on successful development for adult cancer indications on pediatric drug development. The collaborative research infrastructure for children with cancer in the United States is well positioned to advance novel treatments into clinical investigations for a spectrum of rare and ultra-rare childhood cancers. A greater investment of resources in target discovery and validation can help drive much needed development of new, more effective treatments for children with cancer. PMID:25754421

  14. Terpenoids as anti-colon cancer agents - A comprehensive review on its mechanistic perspectives.