Science.gov

Sample records for cancer initiation progression

  1. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression.

    PubMed

    Hjelmeland, Anita; Zhang, Jianhua

    2016-04-01

    Cancer is a complex disease marked by uncontrolled cell growth and invasion. These processes are driven by the accumulation of genetic and epigenetic alterations that promote cancer initiation and progression. Contributing to genome changes are the regulation of oxidative stress and reactive species-induced damage to molecules and organelles. Redox regulation, metabolic plasticity, autophagy, and mitophagy play important and interactive roles in cancer hallmarks including sustained proliferation, activated invasion, and replicative immortality. However, the impact of these processes can differ depending on the signaling pathways altered in cancer, tumor type, tumor stage, and/or the differentiation state. Here, we highlight some of the representative studies on the impact of oxidative and nitrosative activities, mitochondrial bioenergetics, metabolism, and autophagy and mitophagy in the context of tumorigenesis. We discuss the implications of these processes for cellular activities in cancer for anti-cancer-based therapeutics. PMID:27372165

  2. Tight Junctions: A Barrier to the Initiation and Progression of Breast Cancer?

    PubMed Central

    Brennan, Kieran; Offiah, Gozie; McSherry, Elaine A.; Hopkins, Ann M.

    2010-01-01

    Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression. PMID:19920867

  3. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression.

    PubMed

    McConkey, David J; Lee, Sangkyou; Choi, Woonyoung; Tran, Mai; Majewski, Tadeusz; Lee, Sooyong; Siefker-Radtke, Arlene; Dinney, Colin; Czerniak, Bogdan

    2010-01-01

    Urothelial cancer has served as one of the most important sources of information about the mutational events that underlie the development of human solid malignancies. Although "field effects" that affect the entire bladder mucosa appear to initiate disease, tumors develop along 2 distinct biological "tracks" that present vastly different challenges for clinical management. Recent whole genome methodologies have facilitated even more rapid progress in the identification of the molecular mechanisms involved in bladder cancer initiation and progression. Specifically, whole organ mapping combined with high resolution, high throughput SNP analyses have identified a novel class of candidate tumor suppressors ("forerunner genes") that localize near more familiar tumor suppressors but are disrupted at an earlier stage of cancer development. Furthermore, whole genome comparative genomic hybridization (CGH) and mRNA expression profiling have demonstrated that the 2 major subtypes of urothelial cancer (papillary/superficial and non-papillary/muscle-invasive) are truly distinct molecular entities, and in recent work our group has discovered that muscle-invasive tumors express molecular markers characteristic of a developmental process known as "epithelial-to-mesenchymal transition" (EMT). Emerging evidence indicates that urothelial cancers contain subpopulations of tumor-initiating cells ("cancer stem cells") but the phenotypes of these cells in different tumors are heterogeneous, raising questions about whether or not the 2 major subtypes of cancer share a common precursor. This review will provide an overview of these new insights and discuss priorities for future investigation. PMID:20610280

  4. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression

    PubMed Central

    Sansone, Luigi; Limana, Federica; Arcangeli, Tania; De Santis, Elena; Polese, Milena; Fini, Massimo; Russo, Matteo A.

    2016-01-01

    The presence of ROS is a constant feature in living cells metabolizing O2. ROS concentration and compartmentation determine their physiological or pathological effects. ROS overproduction is a feature of cancer cells and plays several roles during the natural history of malignant tumor. ROS continuously contribute to each step of cancerogenesis, from the initiation to the malignant progression, acting directly or indirectly. In this review, we will (a) underline the role of ROS in the pathway leading a normal cell to tumor transformation and progression, (b) define the multiple roles of ROS during the natural history of a tumor, (c) conciliate many conflicting data about harmful or beneficial effects of ROS, (d) rethink the importance of oncogene and tumor suppressor gene mutations in relation to the malignant progression, and (e) collocate all the cancer hallmarks in a mechanistic sequence which could represent a “physiological” response to the initial growth of a transformed stem/pluripotent cell, defining also the role of ROS in each hallmark. We will provide a simplified sketch about the relationships between ROS and cancer. The attention will be focused on the contribution of ROS to the signaling of HIF, NFκB, and Sirtuins as a leitmotif of cancer initiation and progression. PMID:26798421

  5. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression

    PubMed Central

    He, Chunbo; Lv, Xiangmin; Hua, Guohua; Lele, Subodh M; Remmenga, Steven; Dong, Jixin; Davis, John S; Wang, Cheng

    2014-01-01

    Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces expression of EGF receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, while knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF&NRGs/ERBBs/YAP/HBEGF&NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression. PMID:25798835

  6. Deregulation of a Hox Protein Regulatory Network Spanning Prostate Cancer Initiation and Progression

    PubMed Central

    Chen, James L.; Li, Jianrong; Kiriluk, Kyle J.; Rosen, Alex M.; Paner, Gladell P.; Antic, Tatjana; Lussier, Yves A.; Vander Griend, Donald J.

    2012-01-01

    Purpose The aberrant activity of developmental pathways in prostate cancer may provide significant insight into predicting tumor initiation and progression, as well as identifying novel therapeutic targets. To this end, despite shared androgen-dependence and functional similarities to the prostate gland, seminal vesicle cancer is exceptionally rare. Experimental Design We conducted genomic pathway analyses comparing patient-matched normal prostate and seminal vesicle epithelial cells to identify novel pathways for tumor initiation and progression. Derived gene expression profiles were grouped into cancer biomodules using a protein–protein network algorithm to analyze their relationship to known oncogenes. Each resultant biomodule was assayed for its prognostic ability against publically available prostate cancer patient gene array datasets. Results Analyses show that the embryonic developmental biomodule containing four homeobox gene family members (Meis1, Meis2, Pbx1, and HoxA9) detects a survival difference in a set of watchful-waiting patients (n = 172, P = 0.05), identify men who are more likely to recur biochemically postprostatectomy (n = 78, P = 0.02), correlate with Gleason score (r = 0.98, P = 0.02), and distinguish between normal prostate, primary tumor, and metastatic disease. In contrast to other cancer types, Meis1, Meis2, and Pbx1 expression is decreased in poor-prognosis tumors, implying that they function as tumor suppressor genes for prostate cancer. Immunohistochemical staining documents nuclear basal-epithelial and stromal Meis2 staining, with loss of Meis2 expression in prostate tumors. Conclusion These data implicate deregulation of the Hox protein cofactors Meis1, Meis2, and Pbx1 as serving a critical function to suppress prostate cancer initiation and progression. PMID:22723371

  7. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression

    PubMed Central

    Godoy, Guilherme; Gakis, Georgios; Smith, Carolyn L.; Fahmy, Omar

    2016-01-01

    Epidemiologic studies have long demonstrated clear differences in incidence and progression of bladder cancer between genders suggesting that the mechanisms of development and progression in these tumors have a strong association with steroid hormonal pathways. Such observations led to preclinical studies investigating the role of androgen and estrogen receptors, as well as their cognate hormones in bladder cancer initiation and progression. Using various in vitro cell line assays and in vivo mouse models, studies have elucidated different mechanisms and signaling pathways through which these steroid receptors may participate in this disease. More recently, RNA expression data from multiple studies revealed a luminal subtype of bladder cancer that exhibited an estrogen receptor signaling pathway, making it a strong candidate for further consideration of targeted therapies in the future. Despite the promising preclinical data demonstrating potential roles for both antiandrogen and antiestrogen strategies targeting these pathways in different stages of bladder cancer, only two clinical trials are currently active and accruing patients for such clinical studies. Targeted therapies in bladder cancer are a large unmet need and have the potential to change treatment paradigms and improve oncological outcomes of patients with bladder cancer. PMID:27376135

  8. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment.

    PubMed

    Willis, Rudolph E

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  9. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    PubMed Central

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  10. Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective.

    PubMed

    Naushad, Shaik Mohammad; Reddy, Cheruku Apoorva; Kumaraswami, Konda; Divyya, Shree; Kotamraju, Srigiridhar; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadha Rao; Kutala, Vijay Kumar

    2014-03-01

    Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by

  11. E5 and E6/E7 of high-risk HPVs cooperate to enhance cancer progression through EMT initiation.

    PubMed

    Al Moustafa, Ala-Eddin

    2015-01-01

    It is estimated that 10-20% of human carcinogenesis is linked to virus infection including papillomaviruses (HPVs). Moreover, since metastatic cancer disease is a major cause of morbidity and mortality in cancer patients, the role of onco-viruses in cancer progression to a metastatic form is of particular interest. Recent studies reported that E5 and E6/E7 onco-proteins of high-risk HPVs could enhance cancer progression via the initiation of the epithelial-mesenchymal transition (EMT) event. Herein, we discuss the association between E5 as well as E6/E7 of high-risk HPV and cancer progression. PMID:26177717

  12. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    PubMed

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  13. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  14. Short-form Ron is a novel determinant of ovarian cancer initiation and progression.

    PubMed

    Moxley, Katherine M; Wang, Luyao; Welm, Alana L; Bieniasz, Magdalena

    2016-05-01

    Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment. PMID:27551332

  15. Short-form Ron is a novel determinant of ovarian cancer initiation and progression

    PubMed Central

    Moxley, Katherine M.; Wang, Luyao; Welm, Alana L.; Bieniasz, Magdalena

    2016-01-01

    Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment. PMID:27551332

  16. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression.

    PubMed

    Koelwyn, Graeme J; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W

    2015-12-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer.

  17. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  18. Spontaneous initiation, promotion and progression of colorectal cancer in the novel A/J Min/+ mouse.

    PubMed

    Sødring, Marianne; Gunnes, Gjermund; Paulsen, Jan Erik

    2016-04-15

    The C57BL/6J multiple intestinal neoplasia (Min/+) mouse is a widely used murine model for familial adenomatous polyposis, a hereditary form of human colorectal cancer. However, it is a questionable model partly because the vast majority of tumors arise in the small intestine, and partly because the fraction of tumors that progress to invasive carcinomas is minuscule. A/J mice are typically more susceptible to carcinogen-induced colorectal cancer than C57BL/6J mice. To investigate whether the novel Min/+ mouse on the A/J genetic background could be a better model for colorectal cancer, we examined the spontaneous intestinal tumorigenesis in 81 A/J Min/+ mice ranging in age from 4 to 60 weeks. The A/J Min/+ mouse exhibited a dramatic increase in number of colonic lesions when compared to what has been reported for the conventional Min/+ mouse; however, an increase in small intestinal lesions did not occur. In addition, this novel mouse model displayed a continual development of colonic lesions highlighted by the transition from early lesions (flat ACF) to tumors over time. In mice older than 40 weeks, 13 colonic (95% CI: 8.7-16.3) and 21 small intestinal (95% CI: 18.6-24.3) tumors were recorded. Notably, a considerable proportion of those lesions progressed to carcinomas in both the colon (21%) and small intestine (51%). These findings more closely reflect aspects of human colorectal carcinogenesis. In conclusion, the novel A/J Min/+ mouse may be a relevant model for initiation, promotion and progression of colorectal cancer.

  19. Interleukin-6 Prevents the Initiation but Enhances the Progression of Lung Cancer.

    PubMed

    Qu, Zhaoxia; Sun, Fan; Zhou, Jingjiao; Li, Liwen; Shapiro, Steven D; Xiao, Gutian

    2015-08-15

    Recent studies suggest that high expression of the proinflammatory cytokine IL6 is associated with poor survival of lung cancer patients. Accordingly, IL6 has been a target of great interest for lung cancer therapy. However, the role of IL6 in lung cancer has not been determined yet. Here, we demonstrate that IL6 plays opposite roles in the initiation and growth of lung cancer in a mouse model of lung cancer induced by the K-Ras oncogene. We find that compared with wild-type mice, IL6-deficient mice developed much more lung tumors after an activating mutant of K-Ras was induced in the lungs. However, lung tumors developed in IL6-deficient mice were significantly smaller. Notably, both the lung tumor-suppressing and -promoting functions of IL6 involve its ability in activating the transcription factor STAT3. IL6/STAT3 signaling suppressed lung cancer initiation through maintaining lung homeostasis, regulating lung macrophages, and activating cytotoxic CD8 T cells under K-Ras oncogenic stress, whereas it promoted lung cancer cell growth through inducing the cell proliferation regulator cyclin D1. These studies reveal a previously unexplored role of IL6/STAT3 signaling in maintaining lung homeostasis and suppressing lung cancer induction. These studies also significantly improve our understanding of lung cancer and provide a molecular basis for designing IL6/STAT3-targeted therapies for this deadliest human cancer.

  20. MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer

    PubMed Central

    Lee, Kyungjin; Ferguson, Lynnette R

    2016-01-01

    Colorectal cancer is a major global cause of morbidity and mortality. Current strategies employed to increase detection of early, curable stages of this disease are contributing to a reduction of the negative health impact from it. While there is a genetic component to the risk of disease, diet and environment are known to have major effects on the risk of an individual for developing the disease. However, there is the potential to reduce the impact of this disease further by preventing disease development. Biomarkers which can either predict the risk for or early stages of colorectal cancer could allow intervention at a time when prospects could be modified by environmental factors, including lifestyle and diet choices. Thus, such biomarkers could be used to identify high risk individuals who would benefit from lifestyle and dietary interventions to prevent this disease. This review will give an overview on one type of biomarker in the form of microRNAs, which have the potential to predict an individual’s risk for colorectal cancer, as well as providing a highly sensitive and non-invasive warning of disease presence and/or progression. MicroRNA biomarkers which have been studied and whose levels look promising for this purpose include MiR-18a, MiR-21, MiR-92a, MiR-135b, MiR-760, MiR-601. Not only have several individual microRNAs appeared promising as biomarkers, but panels of these may be even more useful. Furthermore, understanding dietary sources and ways of dietary modulation of these microRNAs might be fruitful in reducing the incidence and slowing the progression of colorectal cancer. PMID:27672263

  1. MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer.

    PubMed

    Lee, Kyungjin; Ferguson, Lynnette R

    2016-09-01

    Colorectal cancer is a major global cause of morbidity and mortality. Current strategies employed to increase detection of early, curable stages of this disease are contributing to a reduction of the negative health impact from it. While there is a genetic component to the risk of disease, diet and environment are known to have major effects on the risk of an individual for developing the disease. However, there is the potential to reduce the impact of this disease further by preventing disease development. Biomarkers which can either predict the risk for or early stages of colorectal cancer could allow intervention at a time when prospects could be modified by environmental factors, including lifestyle and diet choices. Thus, such biomarkers could be used to identify high risk individuals who would benefit from lifestyle and dietary interventions to prevent this disease. This review will give an overview on one type of biomarker in the form of microRNAs, which have the potential to predict an individual's risk for colorectal cancer, as well as providing a highly sensitive and non-invasive warning of disease presence and/or progression. MicroRNA biomarkers which have been studied and whose levels look promising for this purpose include MiR-18a, MiR-21, MiR-92a, MiR-135b, MiR-760, MiR-601. Not only have several individual microRNAs appeared promising as biomarkers, but panels of these may be even more useful. Furthermore, understanding dietary sources and ways of dietary modulation of these microRNAs might be fruitful in reducing the incidence and slowing the progression of colorectal cancer. PMID:27672263

  2. MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer

    PubMed Central

    Lee, Kyungjin; Ferguson, Lynnette R

    2016-01-01

    Colorectal cancer is a major global cause of morbidity and mortality. Current strategies employed to increase detection of early, curable stages of this disease are contributing to a reduction of the negative health impact from it. While there is a genetic component to the risk of disease, diet and environment are known to have major effects on the risk of an individual for developing the disease. However, there is the potential to reduce the impact of this disease further by preventing disease development. Biomarkers which can either predict the risk for or early stages of colorectal cancer could allow intervention at a time when prospects could be modified by environmental factors, including lifestyle and diet choices. Thus, such biomarkers could be used to identify high risk individuals who would benefit from lifestyle and dietary interventions to prevent this disease. This review will give an overview on one type of biomarker in the form of microRNAs, which have the potential to predict an individual’s risk for colorectal cancer, as well as providing a highly sensitive and non-invasive warning of disease presence and/or progression. MicroRNA biomarkers which have been studied and whose levels look promising for this purpose include MiR-18a, MiR-21, MiR-92a, MiR-135b, MiR-760, MiR-601. Not only have several individual microRNAs appeared promising as biomarkers, but panels of these may be even more useful. Furthermore, understanding dietary sources and ways of dietary modulation of these microRNAs might be fruitful in reducing the incidence and slowing the progression of colorectal cancer.

  3. Global cancer research initiative.

    PubMed

    Love, Richard R

    2010-05-03

    Cancer is an increasing problem for low- and middle-income countries undergoing an epidemiologic transition from dominantly acute communicable disease to more frequent chronic disease with increased public health successes in the former domain. Progress against cancer in high-income countries has been modest and has come at enormous expense. There are several well-conceived global policy and planning initiatives which, with adequate political will, can favorably impact the growing global cancer challenges. Most financial resources for cancer, however, are spent on diagnosis and management of patients with disease in circumstances where specific knowledge about effective approaches is significantly limited, and the majority of interventions, other than surgery, are not cost-effective in resource-limited countries by global standards. In summary, how to intervene effectively on a global scale for the majority of citizens who develop cancer is poorly defined. In contrast to technology-transfer approaches, markedly increased clinical research activities are more likely to benefit cancer sufferers. In these contexts, a global cancer research initiative is proposed, and mechanisms for realizing such an effort are suggested.

  4. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression

    PubMed Central

    Lee, Jong Hun; Khor, Tin Oo; Shu, Limin; Su, Zheng-Yuan; Fuentes, Francisco; Kong, Ah-Ng Tony

    2013-01-01

    Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2–Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including

  5. Stochastic dynamics of cancer initiation

    NASA Astrophysics Data System (ADS)

    Foo, Jasmine; Leder, Kevin; Michor, Franziska

    2011-02-01

    Most human cancer types result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is initiated and the subsequent emergence of additional alterations drives progression to more aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk of accumulating oncogenic mutations are organized into small compartments of cells and proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer initiation during a human lifetime, a 'race' between this fitness process and the aging process of the patient is considered; the latter is modeled as a second stochastic Markov process in an aging dimension. This model allows us to investigate the dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our framework also provides a methodology to assess the effects of different life expectancy distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis while considering life expectancy data of the US population to inform the dynamics of the aging process. We study how the probability of cancer initiation prior to death, the time until cancer initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness distribution and life expectancy of the population.

  6. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    PubMed Central

    2012-01-01

    Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs) provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and differentiation may exert long

  7. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer.

    PubMed

    Melnik, Bodo C; John, Swen Malte; Carrera-Bastos, Pedro; Cordain, Loren

    2012-08-14

    Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs) provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and differentiation may exert long

  8. Progress in Initiator Modeling

    SciTech Connect

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  9. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression

    PubMed Central

    Zhang, Wen Cai; Chin, Tan Min; Yang, Henry; Nga, Min En; Lunny, Declan Patrick; Lim, Edwin Kok Hao; Sun, Li Li; Pang, Yin Huei; Leow, Yi Ning; Malusay, Shanneen Rossellini Y; Lim, Priscilla Xin Hui; Lee, Jeravan Zili; Tan, Benedict Jian Wei; Shyh-Chang, Ng; Lim, Elaine Hsuen; Lim, Wan Teck; Tan, Daniel Shao Weng; Tan, Eng Huat; Tai, Bee Choo; Soo, Ross Andrew; Tam, Wai Leong; Lim, Bing

    2016-01-01

    The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. PMID:27325363

  10. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression.

    PubMed

    Zhang, Wen Cai; Chin, Tan Min; Yang, Henry; Nga, Min En; Lunny, Declan Patrick; Lim, Edwin Kok Hao; Sun, Li Li; Pang, Yin Huei; Leow, Yi Ning; Malusay, Shanneen Rossellini Y; Lim, Priscilla Xin Hui; Lee, Jeravan Zili; Tan, Benedict Jian Wei; Shyh-Chang, Ng; Lim, Elaine Hsuen; Lim, Wan Teck; Tan, Daniel Shao Weng; Tan, Eng Huat; Tai, Bee Choo; Soo, Ross Andrew; Tam, Wai Leong; Lim, Bing

    2016-01-01

    The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. PMID:27325363

  11. A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression

    PubMed Central

    Casado-Medrano, Victoria; Barrio-Real, Laura; García-Rostán, Ginesa; Baumann, Matti; Rocks, Oliver; Caloca, María J.

    2016-01-01

    β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression. PMID:27058424

  12. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer.

    PubMed

    Saloman, Jami L; Albers, Kathryn M; Li, Dongjun; Hartman, Douglas J; Crawford, Howard C; Muha, Emily A; Rhim, Andrew D; Davis, Brian M

    2016-03-15

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.

  13. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer

    PubMed Central

    Saloman, Jami L.; Albers, Kathryn M.; Li, Dongjun; Hartman, Douglas J.; Crawford, Howard C.; Muha, Emily A.; Rhim, Andrew D.; Davis, Brian M.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations. PMID:26929329

  14. Sphingosylphosphorylcholine in cancer progress

    PubMed Central

    Yue, Hong-Wei; Jing, Qing-Chuan; Liu, Ping-Ping; Liu, Jing; Li, Wen-Jing; Zhao, Jing

    2015-01-01

    Sphingosylphosphorylcholine (SPC) is a naturally occurring bioactive sphingolipid in blood plasma, metabolizing from the hydrolysis of the membrane sphingolipid. It has been shown to exert multifunctional role in cell physiological regulation either as an intracellular second messenger or as an extracellular agent through G protein coupled receptors (GPCRs). Because of elevated levels of SPC in malicious ascites of patients with cancer, the role of SPC in tumor progression has prompted wide interest. The factor was reported to affect the proliferation and/or migration of many cancer cells, including pancreatic cancer cells, epithelial ovarian carcinoma cells, rat C6 glioma cells, neuroblastoma cells, melanoma cells, and human leukemia cells. This review covers current knowledge of the role of SPC in tumor. PMID:26550104

  15. Preventing Breast Cancer: Making Progress

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  16. Targeting ECM Disrupts Cancer Progression

    PubMed Central

    Venning, Freja A.; Wullkopf, Lena; Erler, Janine T.

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression. PMID:26539408

  17. Chemopreventive n-3 Polyunsaturated Fatty Acids Reprogram Genetic Signatures during Colon Cancer Initiation and Progression in the Rat

    PubMed Central

    Davidson, Laurie A.; Nguyen, Danh V.; Hokanson, Regina M.; Callaway, Evelyn S.; Isett, Robert B.; Turner, Nancy D.; Dougherty, Edward R.; Wang, Naisyin; Lupton, Joanne R.; Carroll, Raymond J.; Chapkin, Robert S.

    2015-01-01

    The mechanisms by which n-3 polyunsaturated fatty acids (PUFAs) decrease colon tumor formation have not been fully elucidated. Examination of genes up- or down-regulated at various stages of tumor development via the monitoring of gene expression relationships will help to determine the biological processes ultimately responsible for the protective effects of n-3 PUFA. Therefore, using a 3 × × × 2 factorial design, we used Codelink DNA microarrays containing ∼9000 genes to help decipher the global changes in colonocyte gene expression profiles in carcinogen-injected Sprague Dawley rats. Animals were assigned to three dietary treatments differing only in the type of fat (corn oil/n-6 PUFA, fish oil/n-3 PUFA, or olive oil/n-9 monounsaturated fatty acid), two treatments (injection with the carcinogen azoxymethane or with saline), and two time points (12 hours and 10 weeks after first injection). Only the consumption of n-3 PUFA exerted a protective effect at the initiation (DNA adduct formation) and promotional (aberrant crypt foci) stages. Importantly, microarray analysis of colonocyte gene expression profiles discerned fundamental differences among animals treated with n-3 PUFA at both the 12 hours and 10-week time points. Thus, in addition to demonstrating that dietary fat composition alters the molecular portrait of gene expression profiles in the colonic epithelium at both the initiation and promotional stages of tumor development, these findings indicate that the chemopreventive effect of fish oil is due to the direct action of n-3 PUFA and not to a reduction in the content of n-6 PUFA. PMID:15374999

  18. Progress in breast cancer: overview.

    PubMed

    Arteaga, Carlos L

    2013-12-01

    This edition of CCR Focus titled Research in Breast Cancer: Frontiers in Genomics, Biology, and Clinical Investigation reviews six topics that cover areas of translational research of high impact in breast cancer. These topics represent areas of breast cancer research where significant progress has occurred but also where very important challenges remain. The papers in this CCR Focus section are contributed by experts in the respective areas of investigation. Herein, key aspects of these contributions and the research directions they propose are reviewed.

  19. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression

    PubMed Central

    Chang, Chia-Chi; Zhang, Chenyu; Zhang, Qingling; Sahin, Ozgur; Wang, Hai; Xu, Jia; Xiao, Yi; Zhang, Jian; Rehman, Sumaiyah K.; Li, Ping; Hung, Mien-Chie; Behbod, Fariba; Yu, Dihua

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation. PMID:27150057

  20. Progress on the childhood immunization initiative.

    PubMed Central

    Robinson, C A; Evans, W B; Mahanes, J A; Sepe, S J

    1994-01-01

    President Clinton submitted the Comprehensive Childhood Immunization Initiative Act to Congress in April 1993. The objective of the legislation is to protect all children in the United States by their second birthday against nine vaccine-preventable infectious diseases. As originally introduced in the Congress the initiative called for (a) Federal purchase and distribution of recommended childhood vaccines for all children, (b) improving the public health capacity to deliver vaccine, (c) establishing a State-based national immunization information and tracking system, and (d) expanding immunization education and mobilization efforts directed to health care providers and parents. The authors review the progress and current status of the initiative, updating a previous progress report. The President's legislative proposal, modified by Congress, was enacted August 10, 1993. Several key provisions of the original legislation, deferred by Congress, may be incorporated in subsequent legislation or implemented through existing authorities. Therefore, the evolving framework for the initiative derives not from a single legislative mandate, but expands current immunization program activities and adds important new and complementary activities. As mentioned in the original title of the legislation, this is a "comprehensive" effort to address the problem of under-immunization in U.S. preschool children. PMID:7938378

  1. Epigenetic regulation in cancer progression

    PubMed Central

    2014-01-01

    Cancer is a disease arising from both genetic and epigenetic modifications of DNA that contribute to changes in gene expression in the cell. Genetic modifications include loss or amplification of DNA, loss of heterozygosity (LOH) as well as gene mutations. Epigenetic changes in cancer are generally thought to be brought about by alterations in DNA and histone modifications that lead to the silencing of tumour suppressor genes and the activation of oncogenic genes. Other consequences that result from epigenetic changes, such as inappropriate expression or repression of some genes in the wrong cellular context, can also result in the alteration of control and physiological systems such that a normal cell becomes tumorigenic. Excessive levels of the enzymes that act as epigenetic modifiers have been reported as markers of aggressive breast cancer and are associated with metastatic progression. It is likely that this is a common contributor to the recurrence and spread of the disease. The emphasis on genetic changes, for example in genome-wide association studies and increasingly in whole genome sequencing analyses of tumours, has resulted in the importance of epigenetic changes having less attention until recently. Epigenetic alterations at both the DNA and histone level are increasingly being recognised as playing a role in tumourigenesis. Recent studies have found that distinct subgroups of poor-prognosis tumours lack genetic alterations but are epigenetically deregulated, pointing to the important role that epigenetic modifications and/or their modifiers may play in cancer. In this review, we highlight the multitude of epigenetic changes that can occur and will discuss how deregulation of epigenetic modifiers contributes to cancer progression. We also discuss the off-target effects that epigenetic modifiers may have, notably the effects that histone modifiers have on non-histone proteins that can modulate protein expression and activity, as well as the role of

  2. Basic Research and Progress against Pediatric Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against childhood cancers. The graphic shows the research milestones that led to the development and approval of Unituxin to treat neuroblastoma, a cancer seen mainly in children.

  3. Heme oxygenase-1 in macrophages controls prostate cancer progression

    PubMed Central

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-01-01

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression. We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells. In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression. PMID:26418896

  4. Cancer stem cells: progress and challenges in lung cancer.

    PubMed

    Templeton, Amanda K; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama; Ramesh, Rajagopal

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  5. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  6. Microgravity alters cancer growth and progression.

    PubMed

    Jhala, Dhwani V; Kale, Raosaheb K; Singh, Rana P

    2014-01-01

    Study of the process of cancer initiation, growth and progression in altered gravity is of utmost importance considering the health status of researchers visiting in space and future scope of space tourism. Microgravity affects various cells in the body differently; however, the mechanisms of such effects are not understood completely. Therefore, it is imperative to explore various physiological and biochemical processes, particularly those which can influence the process of carcinogenesis. If the changes in physiological or biochemical processes do not revert back to normalcy even after returning from the space to earth, it may lead to various aberrations and morphological changes during the life span. Such changes could lead to pathological conditions including cancer. For example, microgravity is observed to suppress the activity of immune cells, which itself increases the risk of cancer development. It is little known how the microgravity affects cellular and molecular events that determine physiological and biological responses. There is also a possibility of changes in epigenetic signatures during microgravity exposure which remains unexplored. Herein, we have reviewed the effect of microgravity on relevant molecular and biological processes, and how it could influence the course of cancer development. In this regard, we have also highlighted the areas of research that require more attention to bridge the gap of understanding for such biological processes. PMID:24720362

  7. Tumour progression and the nature of cancer.

    PubMed Central

    Clark, W. H.

    1991-01-01

    The nature of neoplasia and its sometime end result, cancer, has been studied by exposition and explanation of the sequential lesions of tumour progression. Neoplastic lesions were divided into four classes on the basis of growth characteristics and whether lesional growth is confined to one or more tissue compartments. Class IA, the initial lesion, an orderly, probably clonal growth, usually differentiates and disappears. Class IB: Failure to differentiate accompanied by disorderly growth. Class IC: Randomly dispersed atypical cells, constituting a precursor state. Class II, intermediate lesions, apparently arising from the atypical cells, show temporally unrestricted growth within the tissue compartment of origin. Class III lesions, primary invasive cancers, show temporally unrestricted growth in two or more tissue compartments and metastasise along different paths, a property associated with extracellular matrix interaction. The metastatic pathways may result from different subsets of cells in the primary cancer. Class IV lesions are the metastases. It was concluded that, all neoplasms develop in the same way, have the same general behavioural characteristics, and, when malignant, all interact with the extracellular matrix of the primary and the secondary sites. The origins and development of cancer are considered to be pluralistic and not due to a discrete change in a cell, whose progeny, as a result of that discrete change, carries all of the information required to explain the almost limitless events of a neoplastic system. Images Figure 4 PMID:1911211

  8. Microgravity alters cancer growth and progression.

    PubMed

    Jhala, Dhwani V; Kale, Raosaheb K; Singh, Rana P

    2014-01-01

    Study of the process of cancer initiation, growth and progression in altered gravity is of utmost importance considering the health status of researchers visiting in space and future scope of space tourism. Microgravity affects various cells in the body differently; however, the mechanisms of such effects are not understood completely. Therefore, it is imperative to explore various physiological and biochemical processes, particularly those which can influence the process of carcinogenesis. If the changes in physiological or biochemical processes do not revert back to normalcy even after returning from the space to earth, it may lead to various aberrations and morphological changes during the life span. Such changes could lead to pathological conditions including cancer. For example, microgravity is observed to suppress the activity of immune cells, which itself increases the risk of cancer development. It is little known how the microgravity affects cellular and molecular events that determine physiological and biological responses. There is also a possibility of changes in epigenetic signatures during microgravity exposure which remains unexplored. Herein, we have reviewed the effect of microgravity on relevant molecular and biological processes, and how it could influence the course of cancer development. In this regard, we have also highlighted the areas of research that require more attention to bridge the gap of understanding for such biological processes.

  9. Cancer progression modeling using static sample data.

    PubMed

    Sun, Yijun; Yao, Jin; Nowak, Norma J; Goodison, Steve

    2014-01-01

    As molecular profiling data continues to accumulate, the design of integrative computational analyses that can provide insights into the dynamic aspects of cancer progression becomes feasible. Here, we present a novel computational method for the construction of cancer progression models based on the analysis of static tumor samples. We demonstrate the reliability of the method with simulated data, and describe the application to breast cancer data. Our findings support a linear, branching model for breast cancer progression. An interactive model facilitates the identification of key molecular events in the advance of disease to malignancy.

  10. SOX4 is essential for prostate tumorigenesis initiated by PTEN ablation | Office of Cancer Genomics

    Cancer.gov

    Understanding remains incomplete of the mechanisms underlying initiation and progression of prostate cancer, the most commonly diagnosed cancer in American men. The transcription factor SOX4 is overexpressed in many human cancers, including prostate cancer, suggesting it may participate in prostate tumorigenesis. In this study, we investigated this possibility by genetically deleting Sox4 in a mouse model of prostate cancer initiated by loss of the tumor suppressor Pten.

  11. Chromosome 6p amplification and cancer progression

    PubMed Central

    Santos, Gda C; Zielenska, M; Prasad, M; Squire, J A

    2007-01-01

    Chromosomal imbalances represent an important mechanism in cancer progression. A clear association between DNA copy‐number aberrations and prognosis has been found in a variety of tumours. Comparative genomic hybridisation studies have detected copy‐number increases affecting chromosome 6p in several types of cancer. A systematic analysis of large tumour cohorts is required to identify genomic imbalances of 6p that correlate with a distinct clinical feature of disease progression. Recent findings suggest that a central part of the short arm of chromosome 6p harbours one or more oncogenes directly involved in tumour progression. Gains at 6p have been associated with advanced or metastatic disease, poor prognosis, venous invasion in bladder, colorectal, ovarian and hepatocellular carcinomas. Copy number gains of 6p DNA have been described in a series of patients who presented initially with follicle centre lymphoma, which subsequently transformed to diffuse large B cell lymphoma. Melanoma cytogenetics has consistently identified aberrations of chromosome 6, and a correlation with lower overall survival has been described. Most of the changes observed in tumours to date map to the 6p21–p23 region, which encompasses approximately half of the genes on all of chromosome 6 and one third of the number of CpG islands in this chromosome. Analyses of the genes that cluster to the commonly amplified regions of chromosome 6p have helped to identify a small number of molecular pathways that become deregulated during tumour progression in diverse tumour types. Such pathways offer promise for new treatments in the future. PMID:16790693

  12. Liver cancer stem cell markers: Progression and therapeutic implications.

    PubMed

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-04-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  13. Liver cancer stem cell markers: Progression and therapeutic implications

    PubMed Central

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  14. Bedtime misalignment and progression of breast cancer

    PubMed Central

    Hahm, Bong-Jin; Jo, Booil; Dhabhar, Firdaus S.; Palesh, Oxana; Aldridge-Gerry, Arianna; Bajestan, Sepideh N.; Neri, Eric; Nouriani, Bita; Spiegel, David; Zeitzer, Jamie M.

    2016-01-01

    Disruption of circadian rhythms, which frequently occurs during night shift work, may be associated with cancer progression. The effect of chronotype (preference for behaviors such as sleep, work, or exercise to occur at particular times of day, with an associated difference in circadian physiology) and alignment of bedtime (preferred vs. habitual), however, have not yet been studied in the context of cancer progression in women with breast cancer. Chronotype and alignment of actual bedtime with preferred chronotype were examined using the Morningness–Eveningness Scale (MEQ) and sleep-wake log among 85 women with metastatic breast cancer. Their association with disease-free interval (DFI) was retrospectively examined using the Cox proportional hazards model. Median DFI was 81.9 months for women with aligned bedtimes (“going to bed at preferred bedtime”) (n=72), and 46.9 months for women with misaligned bedtimes (“going to bed later or earlier than the preferred bedtime”) (n=13) (log rank p=0.001). In a multivariate Cox proportional hazard model, after controlling for other significant predictors of DFI, including chronotype (morning type/longer DFI; HR=0.539, 95% CI=0.320–0.906, p=0.021), estrogen receptor (ER) status at initial diagnosis (negative/shorter DFI; HR=2.169, 95% CI=1.124–4.187, p=0.028) and level of natural-killer cell count (lower levels/shorter DFI; HR=1.641, 95% CI=1.000–2.695, p=0.050), misaligned bedtimes was associated with shorter DFI, compared to aligned bedtimes (HR=3.180, 95% CI=1.327–7.616, p=0.018). Our data indicate that a misalignment of bedtime on a daily basis, an indication of circadian disruption, is associated with more rapid breast cancer progression as measured by DFI. Considering the limitations of small sample size and study design, a prospective study with a larger sample is necessary to explore their causal relationship and underlying mechanisms. PMID:24156520

  15. Specialized Initiatives - Cancer Imaging Program

    Cancer.gov

    CIP has sponsored a number of programs for specific purposes, using set-aside funds. Among these are Phase 2 N01 ProgramIn-Vivo Cellular & Molecular Imaging Centers (ICMICs) Quantitative Imaging for Evaluation of Responses to Cancer Therapies (QIN) Network for Translational Research (NTR): Optical Imaging in Multimodal Platforms Small Animal Imaging Resource Program (SAIRP) Development of Preclinical Drugs and Enhancers (DCIDE) program.

  16. [Epithelial-mesenchymal transition in cancer progression].

    PubMed

    Gos, Monika; Miłoszewska, Joanna; Przybyszewska, Małgorzata

    2009-01-01

    According to recently published data, the epithelial-mesenchymal transition--a process important for embryonic development, may be involved in many pathological processes such as wound healing, tissue fibrosis or cancer progression. The EMT process in cell is driven by growth factors (EGF, PDGF, HGF) or other signaling proteins such as TGF-beta, sonic hedgehog (Shh), Wnt/beta-catenin and extracellular matrix (ECM) components that may stimulate cellular growth and migration. During cancer progression, the EMT process is necessary to the conversion of benign tumor to aggressive and highly invasive cancer. This is due to complex changes in cancer cells and their microenvironment that lead to dissolution of intracellular junctions and their detachment from basolateral membrane, and changes in the interactions between cancer cells and ECM. The loss of adhesion is accompanied by molecular and morphologic changes in cancer cells that are essential for the phenotypic change from epithelial to mesenchymal one, and the acquirement of higher migration and invasion potential. During the colonization of distant sites, a reverse process mesenchymal-epithelial transition (MET) takes place and metastatic cancer cells again acquire the epithelial phenotype. The EMT in cancer progression is not only specific for cancer cells. It has been suggested that also cells within tumor microenvironment e.g. cancer associated fibroblasts (CAF) are generated in part from normal epithelial cells in EMT process. The understanding of the role of EMT and MET processes in cancer progression and their relationship with cancer stem cells, cancer associated fibroblasts and other stroma cells might lead to the discovery of new, targeted cancer therapies.

  17. Depression and cancer: mechanisms and disease progression.

    PubMed

    Spiegel, David; Giese-Davis, Janine

    2003-08-01

    Depression and cancer commonly co-occur. The prevalence of depression among cancer patients increases with disease severity and symptoms such as pain and fatigue. The literature on depression as a predictor of cancer incidence is mixed, although chronic and severe depression may be associated with elevated cancer risk. There is divided but stronger evidence that depression predicts cancer progression and mortality, although disentangling the deleterious effects of disease progression on mood complicates this research, as does the fact that some symptoms of cancer and its treatment mimic depression. There is evidence that providing psychosocial support reduces depression, anxiety, and pain, and may increase survival time with cancer, although studies in this latter area are also divided. Psychophysiological mechanisms linking depression and cancer progression include dysregulation of the hypothalamic-pituitary-adrenal axis, especially diurnal variation in cortisol and melatonin. Depression also affects components of immune function that may affect cancer surveillance. Thus, there is evidence of a bidirectional relationship between cancer and depression, offering new opportunities for therapeutic intervention.

  18. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Cancer.gov

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  19. Recent Progress in Pancreatic Cancer

    PubMed Central

    Wolfgang, Christopher L.; Herman, Joseph M.; Laheru, Daniel A.; Klein, Alison P.; Erdek, Michael A.; Fishman, Elliot K.; Hruban, Ralph H.

    2013-01-01

    Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in our understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer. PMID:23856911

  20. Membrane potential and cancer progression

    PubMed Central

    Yang, Ming; Brackenbury, William J.

    2013-01-01

    Membrane potential (Vm), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm. It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis. PMID:23882223

  1. Multifunctional nanoparticles: recent progress in cancer therapeutics.

    PubMed

    Seeta Rama Raju, G; Benton, Leah; Pavitra, E; Yu, Jae Su

    2015-09-01

    Although much progress has been made in treating cancers, cancer death rates in and around the United States are still high. Current treatments are either ineffective against some cancers or detrimental to patients, which decreases their quality of life. The use of nanotechnology in cancer therapy can potentially increase patient survival, reduce side effects, and reduce mortality rates because nanoparticles (NPs) have the potential to target only tumors and bypass healthy cells. NPs possess many features, including size, shape, charge, and composition, which allow them to carry chemotherapeutics to cancer cells. NPs can also be used in radiotherapy as radiosensitizers and in imaging as contrast agents. Many studies have performed in vitro and/or in vivo experiments on these particles in human and animal cell lines. This review discusses recent studies on different NPs and their potential use in cancer therapy.

  2. Interleukin-8 in breast cancer progression.

    PubMed

    Todorović-Raković, Nataša; Milovanović, Jelena

    2013-10-01

    Interleukin-8 (IL-8) is a chemokine that has an autocrine and/or paracrine tumor-promoting role and significant potential as a prognostic and/or predictive cancer biomarker. In breast cancer, which is mostly determined by expression of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), IL-8 could play a specific role. IL-8 is highly expressed in ER- breast cancers, but it increases invasiveness and metastatic potential of both ER- and ER+ breast cancer cells. It is also highly expressed in HER2+ breast cancers. Because of the complex crosstalk between these receptors and IL-8, its role is mainly determined by delicate balance in their signaling pathways. Therefore, the main point of this review was to analyze the possible influence of IL-8 in breast cancer progression related to its interaction with ER and HER2 and the consequent therapeutic implications of these relations.

  3. Progress in prostate cancer imaging

    PubMed Central

    Gulley, James L.; Emberton, Mark; Kurhanewicz, John; Choyke, Peter

    2013-01-01

    There are multiple new technologies being developed for imaging of advanced prostate cancer. This Seminar article highlights several of these emerging modalities that were discussed at the Society of Urologic Oncology annual meeting in Bethesda, MD. © 2012 Elsevier Inc. All rights reserved. PMID:23218070

  4. Current progress in immunotherapy for pancreatic cancer.

    PubMed

    Foley, Kelly; Kim, Victoria; Jaffee, Elizabeth; Zheng, Lei

    2016-10-10

    Pancreatic cancer remains one of the most lethal cancers with few treatment options. Immune-based strategies to treat pancreatic cancer, such as immune checkpoint inhibitors, therapeutic vaccines, and combination immunotherapies, are showing promise where other approaches have failed. Immune checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, are effective as single agents in immune sensitive cancers like melanoma, but lack efficacy in immune insensitive cancers including pancreatic cancer. However, these inhibitors are showing clinical activity, even in traditionally non-immunogenic cancers, when combined with other interventions, including chemotherapy, radiation therapy, and therapeutic vaccines. Therapeutic vaccines given together with immune modulating agents are of particular interest because vaccines are the most efficient way to induce effective anti-tumor T cell responses, which is required for immunotherapies to be effective. In pancreatic cancer, early studies suggest that vaccines can induce T cells that have the potential to recognize and kill pancreatic cancer cells, but the tumor microenvironment inhibits effective T cell trafficking and function. While progress has been made in the development of immunotherapies for pancreatic cancer over the last several years, additional trials are needed to better understand the signals within the tumor microenvironment that are formidable barriers to T cell infiltration and function. Additionally, as more pancreatic specific antigens are identified, immunotherapies will continue to be refined to provide the most significant clinical benefit.

  5. Catalog of genetic progression of human cancers: breast cancer.

    PubMed

    Desmedt, Christine; Yates, Lucy; Kulka, Janina

    2016-03-01

    With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.

  6. Progress Against Prostate Cancer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Prostate Cancer Progress Against Prostate Cancer Past Issues / Winter 2010 Table of Contents Click ... This can narrow the urethra, decreasing urine flow. Prostate cancer is made up of cells the body does ...

  7. Prevention of Initial Supercooling in Progressive Freeze-concentration.

    PubMed

    Liu, L; Fujii, T; Hayakawa, K; Miyawaki, O

    1998-01-01

    A physical method is proposed that uses a cooling plate with many small holes to prevent initial supercooling in progressive freeze-concentration, and thus avoid serious contamination of the ice produced. The higher chance for ice nucleation of the water molecules in the holes due to the temperature gradient in the cooling plate resulted in the initial supercooling being completely prevented. Accordingly, the purity of the ice initially formed was substantially improved when compared with that by the standard vessel without holes in the cooling plate.

  8. Src Kinase Regulation in Progressively Invasive Cancer

    PubMed Central

    Xu, Weichen; Allbritton, Nancy; Lawrence, David S.

    2012-01-01

    Metastatic progression is a multistep process that involves tumor growth and survival, motility and invasion, and subsequent proliferation in an inappropriate environment. The Src protein tyrosine kinase has been implicated in many of the biochemical pathways that drive these behaviors. Although Src itself is only rarely mutated in human tumors, its aberrant activity has been noted in various cancers and suggested to serve as a barometer of metastatic potential. With these features in mind, we examined Src kinase regulation at the structural, enzymatic, and expression levels as a function of progressively invasive prostate cancer cell lines. Surprisingly, both total Src content and kinase activity decrease with increasing cell line aggressiveness, an observation that appears to be inconsistent with the well-documented role of Src in the signaling pathways that drive growth and invasion. However, we do observe a direct correlation between Src kinase specific activity (total Src kinase activity/total Src content) and metastatic aggressiveness, possibly suggesting that in highly aggressive cell lines, key signaling enzymes are globally recruited to drive the cancerous phenotype. In addition, although the expected enhanced phosphorylation of Src at Tyr-416 (activation site) is present in the most aggressive prostate cancer cell lines, unexpectedly high phosphorylation levels at the Tyr-527 inhibitory site are observed as well. The latter, rather than representative of inhibited enzyme, is more indicative of primed Src responsive to local phosphorylated binding partners. PMID:23145001

  9. Noncoding RNAs in gastric cancer: Research progress and prospects

    PubMed Central

    Zhang, Meng; Du, Xiang

    2016-01-01

    Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC. PMID:27547004

  10. Cell Polarity Proteins in Breast Cancer Progression.

    PubMed

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  11. Cell Polarity Proteins in Breast Cancer Progression.

    PubMed

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362918

  12. Research Ethics Considerations Regarding the Cancer Moonshot Initiative.

    PubMed

    Hammer, Marilyn J

    2016-07-01

    If the Precision Medicine Initiative was the launching pad, the Cancer Moonshot Initiative is the liftoff. A billion-dollar mission to "eliminate cancer as we know it," the Cancer Moonshot Initiative underscores the Precision Medicine Initiative's near-term focus in oncology research and translation. Spearheaded by Vice President Biden, the goal is to condense a decade of research into actionable results within five years.

  13. MET expression during prostate cancer progression

    PubMed Central

    Verhoef, Esther I.; van der Steen, Berdine; Hoogland, A. Marije; Sleddens, Hein F.B.M.; Looijenga, Leendert H.J.; van Leenders, Geert J.L.H.

    2016-01-01

    Tyrosine-kinase inhibitors of the hepatocyte growth factor receptor MET are under investigation for the treatment of hormone-refractory prostate cancer (HRPC) metastasis. Analysis of MET protein expression and genetic alterations might contribute to therapeutic stratification of prostate cancer patients. Our objective was to investigate MET on protein, DNA and RNA level in clinical prostate cancer at various stages of progression. Expression of MET was analyzed in hormone-naive primary prostate cancers (N=481), lymph node (N=40) and bone (N=8) metastases, as well as HRPC (N=54) and bone metastases (N=15). MET protein expression was analyzed by immunohistochemistry (D1C2 C-terminal antibody). MET mRNA levels and MET DNA copy numbers were determined by in situ hybridization. None of the hormone-naive primary prostate cancer or lymph node metastases demonstrated MET protein or mRNA expression. In contrast, MET protein was expressed in 12/52 (23%) evaluable HRPC resections. RNA in situ demonstrated cytoplasmic signals in 14/54 (26%) of the HRPC patients, and was associated with MET protein expression (p=0.025, χ2), in absence of MET amplification or polysomy. MET protein expression was present in 7/8 (88%) hormone-naive and 10/15 (67%) HRPC bone metastases, without association of HRPC (p=0.37; χ2), with MET polysomy in 8/13 (61%) evaluable cases. In conclusion, MET was almost exclusively expressed in HRPC and prostate cancer bone metastasis, but was not related to MET amplification or polysomy. Evaluation of MET status could be relevant for therapeutic stratification of late stage prostate cancer. PMID:27105539

  14. Tremelimumab-associated tumor regression following after initial progression: two case reports.

    PubMed

    Shimomura, Akihiko; Fujiwara, Yutaka; Kondo, Shunsuke; Kodaira, Makoto; Iwasa, Satoru; Kitano, Shigehisa; Tanabe, Yuko; Tamura, Kenji; Yamamoto, Noboru

    2016-01-01

    The human IgG2 monoclonal antibody tremelimumab is an immune checkpoint inhibitor that blocks cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). The therapeutic response of anti-CTLA-4 monoclonal antibodies possess unique kinetics, in that antitumor responses are often observed after initial short-term disease progression, in some cases as long as 6-12 months after anti-CTLA-4 treatment initiation. Here, we report two cases: one of bile duct cancer and the other of squamous cell carcinoma of unknown primary, both of which demonstrated initial rapid disease progression followed by dramatic tumor shrinkage after one or two doses of tremelimumab, without any immune-related adverse events. This delayed, yet dramatic antitumor response suggests that tremelimumab may hold promise in the treatment of solid tumors.

  15. Prostatic and dietary omega-3 fatty acids and prostate cancer progression during active surveillance.

    PubMed

    Moreel, Xavier; Allaire, Janie; Léger, Caroline; Caron, André; Labonté, Marie-Ève; Lamarche, Benoît; Julien, Pierre; Desmeules, Patrice; Têtu, Bernard; Fradet, Vincent

    2014-07-01

    The association between omega-3 (ω-3) fatty acids and prostate cancer has been widely studied. However, little is known about the impact of prostate tissue fatty acid content on prostate cancer progression. We hypothesized that compared with the estimated dietary ω-3 fatty acids intake and the ω-3 fatty acids levels measured in red blood cells (RBC), the prostate tissue ω-3 fatty acid content is more strongly related to prostate cancer progression. We present the initial observations from baseline data of a phase II clinical trial conducted in a cohort of 48 untreated men affected with low-risk prostate cancer, managed under active surveillance. These men underwent a first repeat biopsy session within 6 months after the initial diagnosis of low-risk prostate cancer, at which time 29% of the men had progressed from a Gleason score of 6 to a Gleason score of 7. At the first repeat biopsy session, fatty acid levels were assessed with a food-frequency questionnaire, and determined in the RBC and in the prostate tissue biopsy. We found that eicosapentaenoic acid (EPA) was associated with a reduced risk of prostate cancer progression when measured directly in the prostate tissue. Thus, this initial interim study analysis suggests that prostate tissue ω-3 fatty acids, especially EPA, may be protective against prostate cancer progression in men with low-risk prostate cancer.

  16. Multiscale Models of Breast Cancer Progression

    PubMed Central

    Chakrabarti, Anirikh; Verbridge, Scott; Stroock, Abraham D.; Fischbach, Claudia; Varner, Jeffrey D.

    2013-01-01

    Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. This series of events is highly complex, involving multiple cell types interacting with (and shaping) the microenvironment. Multiscale mathematical models have emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes occurring on the systemic scale, with the molecular signaling processes occurring on the cellular and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling across multiple length scales, with an emphasis on the integration of intracellular signal transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis. Then, we summarized the development of tissue engineering platforms which could provide highfidelity ex vivo experimental models to identify and validate multiscale simulations. Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular networks with the microenvironment. We present models of a variety of cancers, in addition to breast cancer specific models. Taken together, we expect as the sophistication of the simulations increase, that multiscale modeling and bottom-up agent-based models in particular will become an increasingly important platform technology for basic scientific discovery, as well as the identification and validation of potentially novel therapeutic targets. PMID:23008097

  17. RNA editing, epitranscriptomics, and processing in cancer progression

    PubMed Central

    Witkin, Keren L; Hanlon, Sean E; Strasburger, Jennifer A; Coffin, John M; Jaffrey, Samie R; Howcroft, T Kevin; Dedon, Peter C; Steitz, Joan A; Daschner, Phil J; Read-Connole, Elizabeth

    2015-01-01

    The transcriptome is extensively and dynamically regulated by a network of RNA modifying factors. RNA editing enzymes APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and ADAR (adenosine deaminase, RNA-specific) irreversibly recode primary RNA sequences, whereas newly described methylases (writers) and de-methylases (erasers) dynamically alter RNA molecules in response to environmental conditions. RNA modifications can affect RNA splicing, nuclear-cytoplasmic transport, translation, and regulation of gene expression by RNA interference. In addition, tRNA base modifications, processing, and regulated cleavage have been shown to alter global patterns of mRNA translation in response to cellular stress pathways. Recent studies, some of which were discussed at this workshop, have rekindled interest in the emerging roles of RNA modifications in health and disease. On September 10th, 2014, the Division of Cancer Biology, NCI sponsored a workshop to explore the role of epitranscriptomic RNA modifications and tRNA processing in cancer progression. The workshop attendees spanned a scientific range including chemists, virologists, and RNA and cancer biologists. The goal of the workshop was to explore the interrelationships between RNA editing, epitranscriptomics, and RNA processing and the enzymatic pathways that regulate these activities in cancer initiation and progression. At the conclusion of the workshop, a general discussion focused on defining the major challenges and opportunities in this field, as well as identifying the tools, technologies, resources and community efforts required to accelerate research in this emerging area. PMID:25455629

  18. Paracrine effects of stem cells in wound healing and cancer progression (Review).

    PubMed

    Dittmer, Jürgen; Leyh, Benjamin

    2014-06-01

    Stem cells play an important role in tissue repair and cancer development. The capacity to self-renew and to differentiate to specialized cells allows tissue-specific stem cells to rebuild damaged tissue and cancer stem cells to initiate and promote cancer. Mesenchymal stem cells, attracted to wounds and cancer, facilitate wound healing and support cancer progression primarily by secreting bioactive factors. There is now growing evidence that, like mesenchymal stem cells, also tissue-specific and cancer stem cells manipulate their environment by paracrine actions. Soluble factors and microvesicles released by these stem cells have been shown to protect recipient cells from apoptosis and to stimulate neovascularization. These paracrine mechanisms may allow stem cells to orchestrate wound healing and cancer progression. Hence, understanding these stem cell-driven paracrine effects may help to improve tissue regeneration and cancer treatment.

  19. Making progress: the role of cancer councils in Australia in indigenous cancer control

    PubMed Central

    2014-01-01

    Background Indigenous Australians have poorer outcomes from cancer for a variety of reasons including poorer participation in screening programs, later diagnosis, higher rates of cancer with poor prognosis and poorer uptake and completion of treatment. Cancer prevention and support for people with cancer is part of the core business of the State and Territory Cancer Councils. To support sharing of lessons learned, this paper reports an environmental scan undertaken in 2010 in cancer councils (CCs) nationwide that aimed to support Indigenous cancer control. Methods The methods replicated the approach used in a 2006 environmental scan of Indigenous related activity in CCs. The Chief Executive Officer of each CC nominated individuals for interview. Interviews explored staffing, projects, programs and activities to progress cancer control issues for Indigenous Australians, through phone or face-to-face interviews. Reported initiatives were tabulated using predetermined categories of activity and summaries were returned to interviewees, the Aboriginal and Torres Strait Islander Subcommittee and Chief Executive Officers for verification. Results All CCs participated and modest increases in activity had occurred in most states since 2006 through different means. Indigenous staff numbers were low and no Indigenous person had yet been employed in smaller CCs; no CC had an Indigenous Board member and efforts at capacity building were often directed outside of the organisation. Developing partnerships with Indigenous organisations were ongoing. Acknowledgement and specific mention of Indigenous people in policy was increasing. Momentum increased following the establishment of a national subcommittee which increased the profile of Indigenous issues and provided collegial and practical support for those committed to reducing Indigenous cancer disparities. Government funding of “Closing the Gap” and research in the larger CCs have been other avenues for increasing knowledge

  20. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  1. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production. PMID:24477002

  2. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production.

  3. Post-Newtonian initial data with waves: progress in evolution

    NASA Astrophysics Data System (ADS)

    Kelly, B. J.; Tichy, W.; Zlochower, Y.; Campanelli, M.; Whiting, B.

    2010-06-01

    In Kelly et al (2007 Phys. Rev. D 76 024008), we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. These data satisfy the constraint equations to 2.5 post-Newtonian order, and contain a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving these data with a modern moving puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted.

  4. Post-Newtonian Initial Data with Waves: Progress in Evolution

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Tichy, Wolfgang; Zlochower, Yosef; Campanelli, Manuela; Whiting, Bernard

    2010-01-01

    "In Kelly \\et al [Phys. Rev. D, 76:024008, (2007)], we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to 2.5 post-Newtonian order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving this data with a modem moving-puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted."

  5. A phase II randomized trial comparing standard and low dose rituximab combined with alemtuzumab as initial treatment of progressive chronic lymphocytic leukemia in older patients: a trial of the ECOG-ACRIN cancer research group (E1908).

    PubMed

    Zent, Clive S; Victoria Wang, Xin; Ketterling, Rhett P; Hanson, Curtis A; Libby, Edward N; Barrientos, Jacqueline C; Call, Timothy G; Chang, Julie E; Liu, Jane J; Calvo, Alejandro R; Lazarus, Hillard M; Rowe, Jacob M; Luger, Selina M; Litzow, Mark R; Tallman, Martin S

    2016-03-01

    Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) patients requiring initial therapy are often older and frailer and unsuitable candidates for standard chemoimmunotherapy regimens. Shorter duration combination monoclonal antibody (mAb) therapy using alemtuzumab and rituximab has been shown to be effective and tolerable treatment for CLL. Standard dose anti-CD20 mAb therapy causes loss of CD20 expression by surviving CLL cells, which can be minimized by decreasing the mAb dose. We report a randomized phase II clinical trial enrolling older (≥ 65 years) patients (median age 76 years, n = 31) with treatment naïve progressive CLL. Patients received 8-12 weeks of standard subcutaneous alemtuzumab with either intravenous standard (375 mg/m(2) weekly)(n = 16) or low dose (20 mg/m(2) 3x week)(n = 15) rituximab. This study was closed before full accrual because the manufacturer withdrew alemtuzumab for treatment of CLL. The overall response rate was 90% with an 45% complete response rate, median progression-free survival of 17.9 months and no significant differences in outcome between the low and standard dose rituximab arms. The major toxicities were cytopenia and infection with one treatment fatality caused by progressive multifocal leukoencephalopathy but no other opportunistic infections. Combination mAb therapy was effective and tolerable treatment for older and frailer patients with progressive CLL, achieving a high rate of complete remissions. These data support the role of mAb in therapy for less fit CLL patients and the further study of low dose higher frequency anti-CD20 mAb therapy as a potentially more effective use of anti-CD20 mAb in the treatment of CLL.

  6. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation

    PubMed Central

    Zasadil, Lauren M.; Britigan, Eric M. C.; Ryan, Sean D.; Kaur, Charanjeet; Guckenberger, David J.; Beebe, David J.; Moser, Amy R.; Weaver, Beth A.

    2016-01-01

    Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the ApcMin/+ mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. ApcMin/+ cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E+/−;ApcMin/+ doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with ApcMin/+ animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy. PMID:27146113

  7. Hornerin Is Involved in Breast Cancer Progression

    PubMed Central

    Choi, Jinhyuk; Kim, Dong-Il; Kim, Jinkyoung; Kim, Baek-Hui

    2016-01-01

    Purpose The S100 gene family, which comprises over 20 members, including S100A1, S100A2, S100A8, S100A9, profilaggrin, and hornerin encodes low molecular weight calcium-binding proteins with physiological and pathological roles in keratinization. Recent studies have suggested a link between S100 proteins and human cancer progression. The purpose of the present study was to determine the expression levels of hornerin, S100A8, and S100A9 and evaluate their roles in the progression of invasive ductal carcinoma (IDC). Methods Seventy cases of ductal carcinoma in situ (DCIS), IDC, and metastatic carcinoma in lymph nodes (MCN) were included. Tissue microarrays were constructed from lesions of DCIS, IDC, and MCN from the same patients. Expression of hornerin, S100A8, and S100A9 was analyzed using immunohistochemistry. Results The expression of hornerin was associated with the estrogen receptor-negative (p=0.003) and the human epidermal growth factor receptor 2-positive (p=0.002) groups. The expression of S100A8 was associated with a higher pT stage (p=0.017). A significant (p<0.001) correlation between the expression of S100A9 and S100A8 was also found. The mean percentages of hornerin-positive tumor cells in DCIS, IDC, and MCN were 1.0%±3.3% (mean±standard deviation), 12.0%±24.0%, and 75.3%± 27.6%, respectively. The expression of hornerin significantly (p<0.001) increased with the progression of carcinoma. The mean levels of S100A8 and S100A9 in DCIS, IDC, and MCN were not significantly (p>0.050) different. The expression of hornerin increased in a stepwise manner (DCIScancer progression and malignant transformation from preinvasive lesions. PMID:27382389

  8. Autophagy in malignant transformation and cancer progression.

    PubMed

    Galluzzi, Lorenzo; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Amaravadi, Ravi K; Baehrecke, Eric H; Cecconi, Francesco; Codogno, Patrice; Debnath, Jayanta; Gewirtz, David A; Karantza, Vassiliki; Kimmelman, Alec; Kumar, Sharad; Levine, Beth; Maiuri, Maria Chiara; Martin, Seamus J; Penninger, Josef; Piacentini, Mauro; Rubinsztein, David C; Simon, Hans-Uwe; Simonsen, Anne; Thorburn, Andrew M; Velasco, Guillermo; Ryan, Kevin M; Kroemer, Guido

    2015-04-01

    Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.

  9. Autophagy in malignant transformation and cancer progression

    PubMed Central

    Galluzzi, Lorenzo; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Amaravadi, Ravi K; Baehrecke, Eric H; Cecconi, Francesco; Codogno, Patrice; Debnath, Jayanta; Gewirtz, David A; Karantza, Vassiliki; Kimmelman, Alec; Kumar, Sharad; Levine, Beth; Maiuri, Maria Chiara; Martin, Seamus J; Penninger, Josef; Piacentini, Mauro; Rubinsztein, David C; Simon, Hans-Uwe; Simonsen, Anne; Thorburn, Andrew M; Velasco, Guillermo; Ryan, Kevin M; Kroemer, Guido

    2015-01-01

    Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. PMID:25712477

  10. Comprehensive cancer control programs and coalitions: partnering to launch successful colorectal cancer screening initiatives.

    PubMed

    Seeff, Laura C; Major, Anne; Townsend, Julie S; Provost, Ellen; Redwood, Diana; Espey, David; Dwyer, Diane; Villanueva, Robert; Larsen, Leslie; Rowley, Kathryn; Leonard, Banning

    2010-12-01

    Colorectal cancer control has long been a focus area for Comprehensive Cancer Control programs and their coalitions, given the high burden of disease and the availability of effective screening interventions. Colorectal cancer control has been a growing priority at the national, state, territorial, tribal, and local level. This paper summarizes several national initiatives and features several Comprehensive Cancer Control Program colorectal cancer control successes.

  11. Colorectal cancer progression: lessons from Drosophila?

    PubMed

    Bell, Graham P; Thompson, Barry J

    2014-04-01

    Human colorectal cancers arise as benign adenomas, tumours that retain their epithelial character, and then progress to malignant adenocarcinomas and carcinomas in which the epithelium becomes disrupted. Carcinomas often exhibit transcriptional downregulation of E-cadherin and other epithelial genes in an epithelial-to-mesenchymal transition (EMT), a mechanism first discovered in Drosophila to be mediated by the transcription factors Twist and Snail. In contrast, adenocarcinomas retain expression of E-cadherin and disruption of the epithelium occurs through formation of progressively smaller epithelial cysts with apical Crumbs/CRB3, Stardust/PALS1, and Bazooka/PAR3 localised to the inner lumen. Results from Drosophila show that morphologically similar cysts form upon induction of clonal heterogeneity in Wnt, Smad, or Ras signalling levels, which causes extrusion of epithelial cells at clonal boundaries. Thus, intratumour heterogeneity might also promote formation of adenocarcinomas in humans. Finally, epithelial cysts can collectively migrate, as in the case of Drosophila border cells, a potential model system for the invasive migration of adenocarcinoma cells.

  12. Progress in addressing disparities through comprehensive cancer control.

    PubMed

    Weinberg, Armin D; Jackson, Pamela M; DeCourtney, Christine A; Cravatt, Kym; Ogo, Joanne; Sanchez, Marta M; Tortolero-Luna, Guillermo; Rollins, Rochelle L

    2010-12-01

    Cancer-related disparities are the significant differences in cancer incidence, cancer prevalence, cancer death, cancer survivorship, and burden of cancer or related health conditions that exist disproportionately in certain populations compared with the general population with respect to variables like race, ethnicity, and geography. The emergence of comprehensive cancer control efforts provides a framework to address the unequal disease burden felt by these groups. This article illustrates four distinct programs uniquely designed to fit at-risk populations. Specific examples are given that demonstrate a significant impact on the full range of the cancer care continuum. Although measureable progress has been made to improve prevention, detection, and treatment of cancer throughout the United States, many populations remain underserved, impeding our ability to achieve national healthcare goals. Here, we reemphasize the need to sustain this progress through use of partnerships, technology, and policy.

  13. [Research progress on mechanisms of modern medicine in cancer metastasis].

    PubMed

    Chen, Hui; Qu, Jing-Lian; Gong, Jie-Ning

    2014-08-01

    Cancer metastasis is the most dangerous stage of tumorigenesis and evolution, the primary cause of death in cancer patients. Clinically, more than 60% of cancer patients have found metastasis at the time of examination. Modern medicine has made significant progress on the mechanisms of cancer metastasis in recent years, from the simple "anatomy and machinery" theory forward to the "seed and soil" theory, then to the "microenvironmental" theory and the "cancer stem cell" theory. The emerging "cancer stem cell" theory successfully explains phenomenon such as tumor genetic heterogeneity, anoikis resistance, tumor dormancy, providing more new targets and ideas for the diagnosis and treatment of cancer metastasis.

  14. Targeting clotting proteins in cancer therapy - progress and challenges.

    PubMed

    Ruf, Wolfram; Rothmeier, Andrea S; Graf, Claudine

    2016-04-01

    Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients. PMID:27067961

  15. Considerations for initiating and progressing running programs in obese individuals.

    PubMed

    Vincent, Heather K; Vincent, Kevin R

    2013-06-01

    Running has rapidly increased in popularity and elicits numerous health benefits, including weight loss. At present, no practical guidelines are available for obese persons who wish to start a running program. This article is a narrative review of the emerging evidence of the musculoskeletal factors to consider in obese patients who wish to initiate a running program and increase its intensity. Main program goals should include gradual weight loss, avoidance of injury, and enjoyment of the exercise. Pre-emptive strengthening exercises can improve the strength of the foot and ankle, hip abductor, quadriceps, and trunk to help support the joints bearing the loads before starting a running program. Depending on the presence of comorbid joint pain, nonimpact exercise or walking (on a flat surface, on an incline, and at high intensity) can be used to initiate the program. For progression to running, intensity or mileage increases should be slow and consistent to prevent musculoskeletal injury. A stepwise transition to running at a rate not exceeding 5%-10% of weekly mileage or duration is reasonable for this population. Intermittent walk-jog programs are also attractive for persons who are not able to sustain running for a long period. Musculoskeletal pain should neither carry over to the next day nor be increased the day after exercising. Rest days in between running sessions may help prevent overuse injury. Patients who have undergone bariatric surgery and are now lean can also run, but special foci such as hydration and energy replacement must be considered. In summary, obese persons can run for exercise, provided they follow conservative transitions and progression, schedule rest days, and heed onset of pain symptoms.

  16. Activation of blood coagulation in cancer: implications for tumour progression.

    PubMed

    Lima, Luize G; Monteiro, Robson Q

    2013-09-04

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.

  17. Activation of blood coagulation in cancer: implications for tumour progression

    PubMed Central

    Lima, Luize G.; Monteiro, Robson Q.

    2013-01-01

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies. PMID:23889169

  18. Differential roles of STAT3 in the initiation and growth of lung cancer.

    PubMed

    Zhou, J; Qu, Z; Yan, S; Sun, F; Whitsett, J A; Shapiro, S D; Xiao, G

    2015-07-01

    Signal transducer and activator of transcription 3 (STAT3) is linked to multiple cancers, including pulmonary adenocarcinoma. However, the role of STAT3 in lung cancer pathogenesis has not been determined. Using lung epithelial-specific inducible knockout strategies, we demonstrate that STAT3 has contrasting roles in the initiation and growth of both chemically and genetically induced lung cancers. Selective deletion of lung epithelial STAT3 in mice before cancer induction by the smoke carcinogen, urethane, resulted in increased lung tissue damage and inflammation, K-Ras oncogenic mutations and tumorigenesis. Deletion of lung epithelial STAT3 after establishment of lung cancer inhibited cancer cell proliferation. Simultaneous deletion of STAT3 and expression of oncogenic K-Ras in mouse lung elevated pulmonary injury, inflammation and tumorigenesis, but reduced tumor growth. These studies indicate that STAT3 prevents lung cancer initiation by maintaining pulmonary homeostasis under oncogenic stress, whereas it facilitates lung cancer progression by promoting cancer cell growth. These studies also provide a mechanistic basis for targeting STAT3 to lung cancer therapy.

  19. Optimizing initial chemotherapy for metastatic pancreatic cancer.

    PubMed

    Mantripragada, Kalyan C; Safran, Howard

    2016-05-01

    The two combination chemotherapy regimens FOLFIRINOX and gemcitabine plus nab-paclitaxel represent major breakthroughs in the management of metastatic pancreatic cancer. Both regimens showed unprecedented survival advantage in the setting of front-line therapy. However, their application for treatment of patients in the community is challenging because of significant toxicities, thus limiting potential benefits to a narrow population of patients. Modifications to the dose intensity or schedule of those regimens improve their tolerability, while likely retaining survival advantage over single-agent chemotherapy. Newer strategies to optimize these two active regimens in advanced pancreatic cancer are being explored that can help personalize treatment to individual patients.

  20. STAT3 activation in monocytes accelerates liver cancer progression

    PubMed Central

    2011-01-01

    Background Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Methods Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Results Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Conclusion Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal

  1. Regulated lysosomal exocytosis mediates cancer progression

    PubMed Central

    Machado, Eda; White-Gilbertson, Shai; van de Vlekkert, Diantha; Janke, Laura; Moshiach, Simon; Campos, Yvan; Finkelstein, David; Gomero, Elida; Mosca, Rosario; Qiu, Xiaohui; Morton, Christopher L.; Annunziata, Ida; d’Azzo, Alessandra

    2015-01-01

    Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf−⁄− mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance. PMID:26824057

  2. CXCL5 Promotes Prostate Cancer Progression1

    PubMed Central

    Begley, Lesa A; Kasina, Sathish; Mehra, Rohit; Adsule, Shreelekha; Admon, Andrew J; Lonigro, Robert J; Chinnaiyan, Arul M; Macoska, Jill A

    2008-01-01

    CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage) and nonimmune (epithelial, endothelial, and fibroblastic) cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate. PMID:18320069

  3. Heparanase procoagulant activity in cancer progression.

    PubMed

    Nadir, Yona; Brenner, Benjamin

    2016-04-01

    Heparanase is an endo-β-D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix. This activity is strongly implicated in tumor metastasis and angiogenesis. We have earlier demonstrated that apart of its well characterized enzymatic activity, heparanase may also affect the hemostatic system in a non-enzymatic manner. We showed that heparanase up-regulated the expression of the blood coagulation initiator-tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we demonstrated that heparanase directly enhanced TF activity, which led to increased factor Xa production and subsequent activation of the coagulation system. In patients with cancer, increased heparanase procoagulant activity appeared to be a potential predictor of survival. We have also shown that JAK-2 is involved in heparanase up-regulation via the erythropoietin receptor, a finding that may point to a new mechanism of thrombosis in JAK-2 positive patents with essential thrombocytosis. Recently, we found that the solvent accessible surface of TFPI-2 first Kunitz domain had a role in TF/heparanase complex inhibition. Peptides derived from TFPI-2 inhibitory site were shown to reduce coagulation activation induced by heparanase and to attenuate sepsis severity and tumor growth in a mouse model, without predisposing to significant bleeding tendency. These data imply that inhibition of heparanase procoagulant domain is potentially a good target for sepsis and cancer therapy. PMID:27067977

  4. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    SciTech Connect

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle.

  5. The European initiative for quality management in lung cancer care.

    PubMed

    Blum, Torsten G; Rich, Anna; Baldwin, David; Beckett, Paul; De Ruysscher, Dirk; Faivre-Finn, Corinne; Gaga, Mina; Gamarra, Fernando; Grigoriu, Bogdan; Hansen, Niels C G; Hubbard, Richard; Huber, Rudolf Maria; Jakobsen, Erik; Jovanovic, Dragana; Konsoulova, Assia; Kollmeier, Jens; Massard, Gilbert; McPhelim, John; Meert, Anne-Pascale; Milroy, Robert; Paesmans, Marianne; Peake, Mick; Putora, Paul-Martin; Scherpereel, Arnaud; Schönfeld, Nicolas; Sitter, Helmut; Skaug, Knut; Spiro, Stephen; Strand, Trond-Eirik; Taright, Samya; Thomas, Michael; van Schil, Paul E; Vansteenkiste, Johan F; Wiewrodt, Rainer; Sculier, Jean-Paul

    2014-05-01

    Lung cancer is the commonest cause of cancer-related death worldwide and poses a significant respiratory disease burden. Little is known about the provision of lung cancer care across Europe. The overall aim of the Task Force was to investigate current practice in lung cancer care across Europe. The Task Force undertook four projects: 1) a narrative literature search on quality management of lung cancer; 2) a survey of national and local infrastructure for lung cancer care in Europe; 3) a benchmarking project on the quality of (inter)national lung cancer guidelines in Europe; and 4) a feasibility study of prospective data collection in a pan-European setting. There is little peer-reviewed literature on quality management in lung cancer care. The survey revealed important differences in the infrastructure of lung cancer care in Europe. The European guidelines that were assessed displayed wide variation in content and scope, as well as methodological quality but at the same time there was relevant duplication. The feasibility study demonstrated that it is, in principle, feasible to collect prospective demographic and clinical data on patients with lung cancer. Legal obligations vary among countries. The European Initiative for Quality Management in Lung Cancer Care has provided the first comprehensive snapshot of lung cancer care in Europe.

  6. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    PubMed

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P < 0.05). Collectively, our findings demonstrate that CNTN1 promotes prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.

  7. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression.

    PubMed

    Verbovšek, Urška; Van Noorden, Cornelis J F; Lah, Tamara T

    2015-12-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts, appeared to be overexpressed as well in various types of cancers. In this review, the physiological functions of CatK are presented and compared to its potential role in pathobiolology of processes associated with tumour growth, invasion and metastasis of cancer cells and their interactions with the tumour microenvironment. CatK activity is either indirectly affecting signalling pathways, or directly degrading extracellular matrix (ECM) proteins, for example in bone metastases. Recently, CatK was also found in glioma, possibly regulating cancer stem-like cell mobilisation and modulating recently found physiological CatK substrates, including chemokines and growth factors. Moreover, CatK may be useful in differential diagnosis and may have prognostic value. Finally, the application of CatK inhibitors, which are already in clinical trials for treatment of osteoporosis, has a potential to attenuate cancer aggressiveness.

  8. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression

    PubMed Central

    Mukaida, Naofumi; Sasaki, Soichiro

    2016-01-01

    Tumor microenvironments have a crucial role in cancer initiation and progression, and share many molecular and pathological features with wound healing process. Unless treated, tumors, however, do not heal in contrast to wounds that heal within a limited time framework. Wounds heal in coordination of a myriad of types of cells, particularly endothelial cells, leukocytes, and fibroblasts. Similar sets of cells also contribute to cancer initiation and progression, and as a consequence, anti-cancer treatment strategies have been proposed and tested by targeting endothelial cells and/or leukocytes. Compared with endothelial cells and leukocytes, less attention has been paid to the roles of cancer-associated fibroblasts (CAFs), fibroblasts present in tumor tissues, because their heterogeneity hinders the elucidation on them at cellular and molecular levels. Here, we will discuss the origin of CAFs and their crucial roles in cancer initiation and progression, and the possibility to develop a novel type of anti-cancer treatment by manipulating the migration and functions of CAFs. PMID:27340347

  9. Androgen deprivation modulates gene expression profile along prostate cancer progression.

    PubMed

    Volante, Marco; Tota, Daniele; Giorcelli, Jessica; Bollito, Enrico; Napoli, Francesca; Vatrano, Simona; Buttigliero, Consuelo; Molinaro, Luca; Gontero, Paolo; Porpiglia, Francesco; Tucci, Marcello; Papotti, Mauro; Berruti, Alfredo; Rapa, Ida

    2016-10-01

    Androgen deprivation therapy (ADT) is the standard of care for metastatic prostate cancer and initially induces tumor regression, but invariably results in castration-resistant prostate cancer through various mechanisms, incompletely discovered. Our aim was to analyze the dynamic modulation, determined by ADT, of the expression of selected genes involved in the pathogenesis and progression of prostate cancer (TMPRSS2:ERG, WNT11, SPINK1, CHGA, AR, and SPDEF) using real-time polymerase chain reaction in a series of 59 surgical samples of prostate carcinomas, including 37 cases preoperatively treated with ADT and 22 untreated cases, and in 43 corresponding biopsies. The same genes were analyzed in androgen-deprived and control LNCaP cells. Three genes were significantly up-modulated (WNT11 and AR) or down-modulated (SPDEF) in patients treated with ADT versus untreated cases, as well as in androgen-deprived LNCaP cells. The effect of ADT on CHGA gene up-modulation was almost exclusively detected in cases positive for the TMPRSS2:ERG fusion. The correlation between biopsy and surgical samples was poor for most of the tested genes. Gene expression analysis of separate tumor areas from the same patient showed an extremely heterogeneous profile in the 6 tested cases (all untreated). In conclusion, our results strengthened the implication of ADT in promoting a prostate cancer aggressive phenotype and identified potential biomarkers, with special reference to the TMPRSS2:ERG fusion, which might favor the development of neuroendocrine differentiation in hormone-treated patients. However, intratumoral heterogeneity limits the use of gene expression analysis as a potential prognostic or predictive biomarker in patients treated with ADT. PMID:27342909

  10. Cancer Progression and Tumor Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Blagoev, Krastan; Kalpathy-Cramer, Jayashree; Wilkerson, Julia; Sprinkhuizen, Sara; Song, Yi-Qiao; Bates, Susan; Rosen, Bruce; Fojo, Tito

    2013-03-01

    We present and analyze tumor growth data from prostate and brain cancer. Scaling the data from different patients shows that early stage prostate tumors show non-exponential growth while advanced prostate and brain tumors enter a stage of exponential growth. The scaling analysis points to the existence of cancer stem cells and/or massive apoptosis in early stage prostate cancer and that late stage cancer growth is not dominated by cancer stem cells. Statistical models of these two growth modes are discussed. Work supported by the National Science Foundation and the National Institutes of Health

  11. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  12. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  13. Nerve Fibers in Breast Cancer Tissues Indicate Aggressive Tumor Progression

    PubMed Central

    Huang, Di; Su, Shicheng; Cui, Xiuying; Shen, Ximing; Zeng, Yunjie; Wu, Wei; Chen, Jianing; Chen, Fei; He, Chonghua; Liu, Jiang; Huang, Wei; Liu, Qiang; Su, Fengxi; Song, Erwei; Ouyang, Nengtai

    2014-01-01

    Abstract Emerging evidence has indicated nerve fibers as a marker in the progression of various types of cancers, such as pancreatic cancer and prostate cancer. However, whether nerve fibers are associated with breast cancer progression remains unclear. In this study, we evaluated the presence of nerve fibers in 352 breast cancer specimens and 83 benign breast tissue specimens including 43 cases of cystic fibrosis and 40 cases of fibroadenoma from 2 independent breast tumor center using immunohistochemical staining for specific peripheral nerve fiber markers. In all, nerve fibers were present in 130 out of 352 breast cancer tissue specimens, while none were detected in normal breast tissue specimens. Among 352 cases, we defined 239 cases from Sun Yat-Sen Memorial Hospital, Guangzhou, China, as the training set, and 113 cases from the First Affiliated Hospital of Shantou University, Guangdong, China, as the validation set. The thickness of tumor-involving nerve fibers is significantly correlated with poor differentiation, lymph node metastasis, high clinical staging, and triple negative subtype in breast cancer. More importantly, Cox multifactor analysis indicates that the thickness of tumor-involving nerve fibers is a previously unappreciated independent prognostic factors associated with shorter disease-free survival of breast cancer patients. Our findings are further validated by online Oncomine database. In conclusion, our results show that nerve fiber involvement in breast cancer is associated with progression of the malignancy and warrant further studies in the future. PMID:25501061

  14. Role of glutathione in cancer progression and chemoresistance.

    PubMed

    Traverso, Nicola; Ricciarelli, Roberta; Nitti, Mariapaola; Marengo, Barbara; Furfaro, Anna Lisa; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Domenicotti, Cinzia

    2013-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.

  15. Initiation of Massive Landsliding through Progressive Strength Reduction in Volcanoes

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Keith, T. C.; Kayen, R. E.; Iverson, N. R.; Iverson, R. M.; Brien, D. L.

    2011-12-01

    Landslides that sculpt deeply into volcano edifices can be extremely large. For example, the 1980 collapse of Mount St. Helens (MSH) volcano generated a 2.8 km3 debris-avalanche deposit from a series of massive retrogressive failures. Rock shear strength plays a fundamental role in such landsliding, yet pertinent data from modern volcano collapse surfaces are rare. The collapse crater at MSH affords access to rocks directly from the failure surface of the1980 massive landslide. We used a combination of field observations, laboratory strength tests designed to mimic conditions in the pre-collapse edifice, and quasi-3D slope-stability analyses to investigate the effects of progressive strength reduction, caused by pre-collapse deformation, on the instability of the volcano's edifice. Within the MSH crater, we observed that the basal shear zone from the outermost initial landslide block (Block I) of the 1980 failure formed primarily in pervasively shattered older dacitic dome rocks; shearing was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. We collected relatively undisturbed tube samples and disturbed bulk samples of the shattered dacite from near the slip surface of Block I. Using a triaxial testing device, equipped with high-pressure components to mimic overburden stresses in the pre-collapse edifice, we determined the quasi-static drained shear strength of the undisturbed samples. These tests indicated a peak angle of internal friction, φ, of 35° and a residual φ (after undergoing axial strain up to 20%) of 29°. We also determined residual shear strength using a specially constructed large-volume ring-shear apparatus that imposed large quasi-static shear strains exceeding 100%. These tests yielded a similar residual strength, with φ of 27°. Prior to its catastrophic collapse in 1980, the MSH edifice was deformed northward tens of meters by an intruding cryptodome, which likely caused shearing along a summit fault and

  16. Genetic alteration and gene expression modulation during cancer progression

    PubMed Central

    Garnis, Cathie; Buys, Timon PH; Lam, Wan L

    2004-01-01

    Cancer progresses through a series of histopathological stages. Progression is thought to be driven by the accumulation of genetic alterations and consequently gene expression pattern changes. The identification of genes and pathways involved will not only enhance our understanding of the biology of this process, it will also provide new targets for early diagnosis and facilitate treatment design. Genomic approaches have proven to be effective in detecting chromosomal alterations and identifying genes disrupted in cancer. Gene expression profiling has led to the subclassification of tumors. In this article, we will describe the current technologies used in cancer gene discovery, the model systems used to validate the significance of the genes and pathways, and some of the genes and pathways implicated in the progression of preneoplastic and early stage cancer. PMID:15035667

  17. Platelets, coagulation and fibrinolysis in breast cancer progression

    PubMed Central

    2013-01-01

    The progression of breast cancer from early-stage to metastatic disease results from a series of events during which malignant cells invade and travel within the bloodstream to distant sites, leading to a clonogenic accumulation of tumor cells in non-breast tissue. While mechanistically complex, an emerging literature supports hemostatic elements as an important patient factor that facilitates the metastatic potential of breast cancer. Hemostatic elements involved include platelets, coagulation, and fibrinolysis. Key steps in breast tumor progression, including cellular transformation, proliferation, tumor cell survival, and angiogenesis, can be mediated by components of the hemostatic system. Thus, the hemostatic system provides potential targets for novel therapeutic approaches to breast cancer therapy with drugs in current use and in development. The present article provides a comprehensive overview of the evidence and mechanisms supporting the roles played by platelets, coagulation activation, and the fibrinolytic system in breast cancer progression. PMID:23905544

  18. Crizotinib Improves Progression-Free Survival in Some Patients with Advanced Lung Cancer

    MedlinePlus

    ... Prevention Lung Cancer Screening Research Crizotinib Improves Progression-Free Survival in Some Patients with Advanced Lung Cancer ( ... starting treatment without their disease getting worse (progression-free survival), as assessed by radiologic review. Results Progression- ...

  19. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer

    PubMed Central

    Bernstein, Carol; Bernstein, Harris

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy. PMID:25987950

  20. CCN5/WISP-2: A micromanager of breast cancer progression.

    PubMed

    Banerjee, Sushanta K; Banerjee, Snigdha

    2012-06-01

    The gain of plasticity by a subset of cancer cells is a unique but common sequence of cancer progression from epithelial phenotype to mesenchymal phenotype (EMT) that is followed by migration, invasion and metastasis to a distant organ, and drug resistance. Despite multiple studies, it is still unclear how cancer cells regulate plasticity. Recent studies from our laboratory and others' proposed that CCN5/WISP-2, which is found intracellularly (in the nucleus and cytoplasm) and extracellularly, plays a negative regulator of plasticity. It prevents the EMT process in breast cancer cells as well as pancreatic cancer cells. Multiple genetic insults, including the gain of p53 mutations that accumulate over the time, may perturb CCN5 expression in non-invasive breast cancer cells, which ultimately helps cells to gain invasive phenotypes. Moreover, emerging evidence indicates that several oncogenic lesions such as miR-10b upregulation and activation of TGF-β-signaling can accumulate during CCN5 crisis in breast cancer cells. Collectively, these studies indicate that loss of CCN5 activity may promote breast cancer progression; application of CCN5 protein may represent a novel therapeutic intervention in breast cancer and possibly pancreatic cancer.

  1. Neither Saints nor Sinners: Initial Reporting of the "Progressive" Case.

    ERIC Educational Resources Information Center

    Swain, Bruce M.

    1980-01-01

    Examines the circumstances of the 1979 "Progressive" case, in which the federal government quashed an article about hydrogen bomb production. Notes reportorial lapses that prevented a full and balanced account of the situation. (RL)

  2. Heparan Sulfate and Heparanase as Modulators of Breast Cancer Progression

    PubMed Central

    Gomes, Angélica M.; Stelling, Mariana P.; Pavão, Mauro S. G.

    2013-01-01

    Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients' survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression. PMID:23984412

  3. [Epigenetic alterations in cervical cancer progression].

    PubMed

    Ríos-Romero, Magdalena; Soto-Valladares, Ana Guadalupe; Piña-Sánchez, Patricia

    2015-01-01

    Despite the use of the screening test, such as Papanicolaou, and the detection of human papillomavirus (HPV), cervical cancer remains as a public health problem in México and it is the second leading cause of death for malignant neoplasias among women. High-risk HPV infection is the main risk factor for the development of premalignant lesions and cervical cancer; however, HPV infection is not the only factor; there are various genetic and epigenetic alterations required for the development of neoplasias; some of them have been described and even in some cases they have been suggested as biomarkers for prognosis. However, in contrast with other cancer types, such as breast cancer, in cervical cancer the use of biomarkers has not been established for clinical applications. Unlike genetic alterations, epigenetic alterations are potentially reversible; in this sense, their characterization is important, since they have not only a potential use as biomarkers, but they also could represent new therapeutic targets for treatment of cervical cancer. This review describes some of the more common epigenetic alterations in cervical cancer and its potential use in routine clinical practice.

  4. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    SciTech Connect

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; Hung, Ming -Szu; Hsieh, David; Au, Alfred; Jablons, David M.; You, Liang

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods: Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.

  5. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    DOE PAGESBeta

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; Hung, Ming -Szu; Hsieh, David; Au, Alfred; Jablons, David M.; You, Liang

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less

  6. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention.

    PubMed

    Cavalieri, Ercole L; Rogan, Eleanor G

    2016-03-01

    Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens. PMID:26979321

  7. Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression.

    PubMed

    Nana, Andre Wendindonde; Yang, Pei-Ming; Lin, Hung-Yun

    2015-01-01

    Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor β (TGFβ) superfamily is a large group of structurally related proteins including TGFβ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The TGFβ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulin- like growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (αvβ3, α5β1) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function

  8. 76 FR 66932 - The National Cancer Institute (NCI) Announces the Initiation of a Public Private Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Initiation of a Public Private Industry Partnership on Translation of Nanotechnology in Cancer (TONIC) To Promote Translational Research and Development Opportunities of Nanotechnology-Based Cancer Solutions AGENCY: National Cancer Institute (NCI), Office of Cancer Nanotechnology Research (OCNR),...

  9. Local prostate cancer radiotherapy after prostate-specific antigen progression during primary hormonal therapy

    PubMed Central

    2012-01-01

    Background The outcome of patients after radiotherapy (RT) for localized prostate cancer in case of prostate-specific antigen (PSA) progression during primary hormonal therapy (HT) is not well known. Methods A group of 27 patients presenting with PSA progression during primary HT for local prostate cancer RT was identified among patients who were treated in the years 2000–2004 either using external-beam RT (EBRT; 70.2Gy; n=261) or Ir-192 brachytherapy as a boost to EBRT (HDR-BT; 18Gy + 50.4Gy; n=71). The median follow-up period after RT was 68 months. Results Median biochemical recurrence free (BRFS), disease specific (DSS) and overall survival (OS) for patients with PSA progression during primary HT was found to be only 21, 54 and 53 months, respectively, with a 6-year BRFS, DSS and OS of 19%, 41% and 26%. There were no significant differences between different RT concepts (6-year OS of 27% after EBRT and 20% after EBRT with HDR-BT). Considering all 332 patients in multivariate Cox regression analysis, PSA progression during initial HT, Gleason score>6 and patient age were found to be predictive for lower OS (p<0.001). The highest hazard ratio resulted for PSA progression during initial HT (7.2 in comparison to patients without PSA progression during primary HT). PSA progression and a nadir >0.5 ng/ml during initial HT were both significant risk factors for biochemical recurrence. Conclusions An unfavourable prognosis after PSA progression during initial HT needs to be considered in the decision process before local prostate radiotherapy. Results from other centres are needed to validate our findings. PMID:23227960

  10. Transcriptional network of androgen receptor in prostate cancer progression.

    PubMed

    Takayama, Ken-ichi; Inoue, Satoshi

    2013-08-01

    The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

  11. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  12. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids.

  13. Cullin-3 protein expression levels correlate with breast cancer progression

    PubMed Central

    Haagenson, Kelly K.; Tait, Larry; Wang, Juan; Shekhar, Malathy P.; Polin, Lisa; Chen, Wei; Wu, Gen Sheng

    2012-01-01

    Cullin-3 is a component of the Cullin-Ring ubiquitin ligase (CRL) family that plays an important role in mediating protein degradation. Deregulation of Cullin-3 expression has been observed in human cancers; however, a role for Cullin-3 in tumor progression has not been previously recognized. Using the MCF10DCIS.com human breast cancer xenograft model, we show that Cullin-3 is increasingly expressed during progression from comedo ductal carcinoma in situ (DCIS) to invasive carcinomas. Cullin-3 protein is not detected in early lesions but is noticeably increased in DCIS tumors and significantly overexpressed in invasive cancers. In experimental metastasis assays, high expression of Cullin-3 was observed in the lung site. Importantly, Cullin-3 staining is detected in human breast cancer tissues, not in normal breast tissues and its expression level positively correlates with tumor stage. These data suggest that Cullin-3 may play an important role in tumor progression from DCIS to invasive cancer and may serve as a biomarker for the diagnosis of aggressive breast cancer. PMID:22825334

  14. Recent Progress on Nutraceutical Research in Prostate Cancer

    PubMed Central

    Li, Yiwei; Ahmad, Aamir; Kong, Dejuan; Bao, Bin; Sarkar, Fazlul H.

    2014-01-01

    Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate Cancer (PCa) is most frequently diagnosed cancer and second leading cause of cancer-related death in men in US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3’-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to down-regulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC) related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug-resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival. PMID:24375392

  15. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer

    PubMed Central

    Buganim, Yosef; Solomon, Hilla; Goldfinger, Naomi; Hovland, Randi; Ke, Xi-Song; Oyan, Anne M.; Kalland, Karl-H.; Rotter, Varda; Domany, Eytan

    2011-01-01

    Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification. PMID:21297939

  16. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    NASA Astrophysics Data System (ADS)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile; Forné, Thierry; Lesne, Annick

    2016-08-01

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  17. Lineage factors and differentiation states in lung cancer progression.

    PubMed

    Cheung, W K C; Nguyen, D X

    2015-11-19

    Lung cancer encompasses a heterogeneous group of malignancies. Here we discuss how the remarkable diversity of major lung cancer subtypes is manifested in their transforming cell of origin, oncogenic dependencies, phenotypic plasticity, metastatic competence and response to therapy. More specifically, we review the increasing evidence that links this biological heterogeneity to the deregulation of cell lineage-specific pathways and the transcription factors that ultimately control them. As determinants of pulmonary epithelial differentiation, these poorly characterized transcriptional networks may underlie the etiology and biological progression of distinct lung cancers, while providing insight into innovative therapeutic strategies.

  18. Pancreatic Cancer: Progress in Systemic Therapy

    PubMed Central

    Perkhofer, Lukas; Ettrich, Thomas J.; Seufferlein, Thomas

    2014-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths in the Western world. Due to lack of specific symptoms and no accessible precursor lesions, primary diagnosis is commonly delayed, resulting in the identification of only 15-20% of patients with potentially curable disease. The major limiting factor is an already locally advanced or metastatic disease at the time of diagnosis. Consequently, systemic therapy forms the backbone of treatment strategy for the majority of patients. Summary A deeper understanding of the molecular characteristics of pancreatic cancer has led to the identification of several potential therapeutic targets. A variety of targeted therapies are currently under clinical evaluation as single agents or in combination with chemotherapy for PDAC. This review highlights the current state of chemotherapy in pancreatic cancer and provides an outlook on its future perspectives. Key Message This review focuses on the current chemotherapy regimens for the systemic treatment of PDAC. Practical Implications Various neoadjuvant approaches have been explored, including chemoradiation, chemotherapy followed by chemoradiation or intensified chemotherapy without defining a standard of care so far. The standard of care is gemcitabine or 5-fluorouracil. The oral fluoropyrimidine S-1 may be a promising new agent in this setting. For first-line treatment of metastatic pancreatic cancer, no targeted therapy has yet demonstrated clinical benefit apart from the combination of the tyrosine kinase inhibitor erlotinib plus gemcitabine. Recently, novel chemotherapeutic regimens such as FOLFIRINOX and gemcitabine plus nanoparticle albumin-bound paclitaxel have been introduced. Both combinations have proved to be superior to the standard gemcitabine regimen. For second-line treatment the combination of 5-fluorouracil/leucovorin and oxaliplatin yields improved results compared to best supportive care. PMID:26672477

  19. Education For All (EFA) - Fast Track Initiative Progress Report 30046

    ERIC Educational Resources Information Center

    World Bank Education Advisory Service, 2004

    2004-01-01

    Launched in June 2002, the Education For All-Fast Track Initiative (FTI) is a performance-based program focusing on the implementation of sustainable policies in support of universal primary completion (UPC) and the required resource mobilization. During its twenty months of implementation, FTI has delivered on results, which give reason for…

  20. Evaluating Complex Systems-Building Initiatives: A Work in Progress

    ERIC Educational Resources Information Center

    Walker, Gary; Kubisch, Anne C.

    2008-01-01

    In April 2007, more than 60 people--practitioners, advocates, funders, and evaluators--met for 2 days in Pittsburgh, Pennsylvania, to discuss the challenges that arise in evaluating systems change or systems-building initiatives and to suggest approaches to resolving those challenges. The symposium was convened by the partners of BUILD, a…

  1. Progressing from Initially Ambiguous Functional Analyses: Three Case Examples

    ERIC Educational Resources Information Center

    Tiger, Jeffrey H.; Fisher, Wayne W.; Toussaint, Karen A.; Kodak, Tiffany

    2009-01-01

    Most often functional analyses are initiated using a standard set of test conditions, similar to those described by Iwata, Dorsey, Slifer, Bauman, and Richman [Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). "Toward a functional analysis of self-injury." "Journal of Applied Behavior Analysis, 27", 197-209…

  2. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10.

    PubMed

    Liu, Hua; Xu, Xuan-Fu; Zhao, Yan; Tang, Mao-Chun; Zhou, Ying-Qun; Lu, Jie; Gao, Feng-Hou

    2014-12-01

    Recent studies have shown that microRNAs, a class of small and noncoding RNA molecules, play crucial roles in the initiation and progression of pancreatic cancer. In the present study, the expression and roles of miR-191 were investigated. Through both gain-of function and loss-of function experiments, a pro-oncogenic function of miR-191 was demonstrated. At the molecular level, bioinformatic prediction, luciferase, and protein expression analysis suggested that miR-191 could inhibit protein levels of UPS10, which suppressed the proliferation and growth of cancer cells through stabilizing P53 protein. Collectively, these data suggest that miR-191 could promote pancreatic cancer progression through targeting USP10, implicating a novel mechanism for the tumorigenesis.

  3. Differential action of glycoprotein hormones: significance in cancer progression.

    PubMed

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  4. Geranylgeranylacetone inhibits ovarian cancer progression in vitro and in vivo

    SciTech Connect

    Hashimoto, Kae; Morishige, Ken-ichirou . E-mail: mken@gyne.med.osaka-u.ac.jp; Sawada, Kenjiro; Ogata, Seiji; Tahara, Masahiro; Shimizu, Shoko; Sakata, Masahiro; Tasaka, Keiichi; Kimura, Tadashi

    2007-04-27

    Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation.

  5. New Progress of Epigenetic Biomarkers in Urological Cancer.

    PubMed

    Wu, Peng; Cao, Ziyi; Wu, Song

    2016-01-01

    Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers. PMID:27594736

  6. New Progress of Epigenetic Biomarkers in Urological Cancer

    PubMed Central

    Cao, Ziyi

    2016-01-01

    Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers. PMID:27594736

  7. Vertebral Metastasis as the Initial Manifestation of Colon Cancer

    PubMed Central

    Jain, Tushina; Williams, Renee; Liechty, Benjamin

    2016-01-01

    Oncology guidelines currently recommend against performing colonoscopies in the workup of adenocarcinoma of unknown primary unless colonic malignancy is otherwise suggested by clinical signs or symptoms. We present 2 cases of metastatic colonic adenocarcinoma that presented only with neurologic symptoms from vertebral metastasis. Although bony metastases are a rare presentation of colon cancer and colonoscopy is not warranted in the initial workup of adenocarcinoma of unknown primary, we describe these cases as a reminder that bony metastases do not rule out a colon cancer diagnosis. PMID:27807574

  8. DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative.

    PubMed

    Levine, Morgan E; Hosgood, H Dean; Chen, Brian; Absher, Devin; Assimes, Themistocles; Horvath, Steve

    2015-09-01

    Lung cancer is considered an age-associated disease, whose progression is in part due to accumulation of genomic instability as well as age-related decline in system integrity and function. Thus even among individuals exposed to high levels of genotoxic carcinogens, such as those found in cigarette smoke, lung cancer susceptibility may vary as a function of individual differences in the rate of biological aging. We recently developed a highly accurate candidate biomarker of aging based on DNA methylation (DNAm) levels, which may prove useful in assessing risk of aging-related diseases, such as lung cancer. Using data on 2,029 females from the Women's Health Initiative, we examined whether baseline measures of "intrinsic epigenetic age acceleration" (IEAA) predicted subsequent lung cancer incidence. We observed 43 lung cancer cases over the nearly twenty years of follow-up. Results showed that standardized measures of IEAA were significantly associated with lung cancer incidence (HR: 1.50, P=3.4x10-3). Furthermore, stratified Cox proportional hazard models suggested that the association may be even stronger among older individuals (70 years or above) or those who are current smokers. Overall, our results suggest that IEAA may be a useful biomarker for evaluating lung cancer susceptibility from a biological aging perspective. PMID:26411804

  9. Clinical trial designs for rare diseases: Studies developed and discussed by the International Rare Cancers Initiative

    PubMed Central

    Bogaerts, Jan; Sydes, Matthew R.; Keat, Nicola; McConnell, Andrea; Benson, Al; Ho, Alan; Roth, Arnaud; Fortpied, Catherine; Eng, Cathy; Peckitt, Clare; Coens, Corneel; Pettaway, Curtis; Arnold, Dirk; Hall, Emma; Marshall, Ernie; Sclafani, Francesco; Hatcher, Helen; Earl, Helena; Ray-Coquard, Isabelle; Paul, James; Blay, Jean-Yves; Whelan, Jeremy; Panageas, Kathy; Wheatley, Keith; Harrington, Kevin; Licitra, Lisa; Billingham, Lucinda; Hensley, Martee; McCabe, Martin; Patel, Poulam M.; Carvajal, Richard; Wilson, Richard; Glynne-Jones, Rob; McWilliams, Rob; Leyvraz, Serge; Rao, Sheela; Nicholson, Steve; Filiaci, Virginia; Negrouk, Anastassia; Lacombe, Denis; Dupont, Elisabeth; Pauporté, Iris; Welch, John J.; Law, Kate; Trimble, Ted; Seymour, Matthew

    2015-01-01

    Background The past three decades have seen rapid improvements in the diagnosis and treatment of most cancers and the most important contributor has been research. Progress in rare cancers has been slower, not least because of the challenges of undertaking research. Settings The International Rare Cancers Initiative (IRCI) is a partnership which aims to stimulate and facilitate the development of international clinical trials for patients with rare cancers. It is focused on interventional – usually randomised – clinical trials with the clear goal of improving outcomes for patients. The key challenges are organisational and methodological. A multi-disciplinary workshop to review the methods used in ICRI portfolio trials was held in Amsterdam in September 2013. Other as-yet unrealised methods were also discussed. Results The IRCI trials are each presented to exemplify possible approaches to designing credible trials in rare cancers. Researchers may consider these for use in future trials and understand the choices made for each design. Interpretation Trials can be designed using a wide array of possibilities. There is no ‘one size fits all’ solution. In order to make progress in the rare diseases, decisions to change practice will have to be based on less direct evidence from clinical trials than in more common diseases. PMID:25542058

  10. HIF-1 suppresses lipid catabolism to promote cancer progression

    PubMed Central

    Zhang, Huafeng

    2015-01-01

    Hypoxia-inducible factor 1 (HIF-1) promotes glycolysis in cancer cells, hence sustaining survival. We recently reported that HIF-1 suppresses fatty acid β-oxidation in malignant cells through medium- and long-chain acyl-CoA dehydrogenases. This promotes tumor progression by controlling the level of reactive oxygen species and via crosstalk between metabolism and PTEN signaling. PMID:27308514

  11. Nutrition and Physical Activity Cancer Prevention Guidelines, Cancer Risk, and Mortality in the Women's Health Initiative

    PubMed Central

    Thomson, Cynthia A.; McCullough, Marjorie L.; Wertheim, Betsy C.; Chlebowski, Rowan T.; Martinez, Maria Elena; Stefanick, Marcia L.; Rohan, Thomas E.; Manson, JoAnn E.; Tindle, Hilary A.; Ockene, Judith; Vitolins, Mara Z.; Wactawski-Wende, Jean; Sarto, Gloria E.; Lane, Dorothy S.; Neuhouser, Marian L.

    2014-01-01

    Healthy lifestyle behaviors are recommended to reduce cancer risk and overall mortality. Adherence to cancer-preventive health behaviors and subsequent cancer risk has not been evaluated in a diverse sample of postmenopausal women. We examined the association between the American Cancer Society (ACS) Nutrition and Physical Activity Cancer Prevention Guidelines score and risk of incident cancer, cancer-specific mortality, and all-cause mortality in 65,838 postmenopausal women enrolled in the Women’s Health Initiative Observational Study. ACS guidelines scores (0–8 points) were determined from a combined measure of diet, physical activity, body mass index (current and at age 18 years), and alcohol consumption. After a mean follow-up of 12.6 years, 8,632 incident cancers and 2,356 cancer deaths were identified. The highest ACS guidelines scores compared with the lowest were associated with a 17% lower risk of any cancer [HR, 0.83; 95% confidence interval (CI), 0.75–0.92], 22% lower risk of breast cancer (HR, 0.78; 95% CI, 0.67–0.92), 52% lower risk of colorectal cancer (HR, 0.48; 95% CI, 0.32–0.73), 27% lower risk of all-cause mortality, and 20% lower risk of cancer-specific mortality (HR, 0.80; 95% CI, 0.71–0.90). Associations with lower cancer incidence and mortality were generally strongest among Asian, black, and Hispanic women and weakest among non-Hispanic whites. Behaviors concordant with Nutrition and Physical Activity Cancer Prevention Guidelines were associated with lower risk of total, breast, and colorectal cancers and lower cancer-specific mortality in postmenopausal women. PMID:24403289

  12. Role of Glutathione in Cancer Progression and Chemoresistance

    PubMed Central

    Traverso, Nicola; Ricciarelli, Roberta; Nitti, Mariapaola; Marengo, Barbara; Furfaro, Anna Lisa; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Domenicotti, Cinzia

    2013-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents. PMID:23766865

  13. Extracellular metabolic energetics can promote cancer progression.

    PubMed

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B; Tavazoie, Sohail F

    2015-01-29

    Colorectal cancer primarily metastasizes to the liver and globally kills over 600,000 people annually. By functionally screening 661 microRNAs (miRNAs) in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastasis, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  14. The COMET initiative database: progress and activities update (2014).

    PubMed

    Gargon, Elizabeth; Williamson, Paula R; Altman, Doug G; Blazeby, Jane M; Clarke, Mike

    2015-01-01

    The COMET Initiative database is a repository of studies relevant to the development of core outcome sets (COS). Use of the website continues to increase, with more than 16,500 visits in 2014 (36 % increase over 2013), 12,257 unique visitors (47 % increase), 9780 new visitors (43 % increase) and a rise in the proportion of visits from outside the UK (8565 visits; 51 % of all visits). By December 2014, a total of 6588 searches had been completed, with 2383 in 2014 alone (11 % increase). The growing awareness of the need for COS is reflected in the website and database usage figures. PMID:26558998

  15. The role of vimentin intermediate filaments in the progression of lung cancer.

    PubMed

    Kidd, Martha E; Shumaker, Dale K; Ridge, Karen M

    2014-01-01

    There is an accumulation of evidence in the literature demonstrating the integral role of vimentin intermediate filaments (IFs) in the progression of lung cancers. Vimentin IF proteins have been implicated in many aspects of cancer initiation and progression, including tumorigenesis, epithelial-to-mesenchymal transition (EMT), and the metastatic spread of cancer. Specifically, vimentin IFs have been recognized as an essential component regulating EMT, major signal transduction pathways involved in EMT and tumor progression, cell migration and invasion, the positioning and anchorage of organelles, such as mitochondria, and cell-cell and cell-substrate adhesion. In tumorgenesis, vimentin forms a complex with 14-3-3 and beclin 1 to inhibit autophagy via an AKT-dependent mechanism. Vimentin is a canonical marker of EMT, and recent evidence has shown it to be an important regulator of cellular motility. Transcriptional regulation of vimentin through hypoxia-inducible factor-1 may be a potential driver of EMT. Finally, vimentin regulates 14-3-3 complexes and controls various intracellular signaling and cell cycle control pathways by depleting the availability of free 14-3-3. There are many exciting advances in our understanding of the complex role of vimentin IFs in cancer, pointing to the key role vimentin IFs may play in tumor progression.

  16. Clinical cancer advances 2011: Annual Report on Progress Against Cancer from the American Society of Clinical Oncology.

    PubMed

    Vogelzang, Nicholas J; Benowitz, Steven I; Adams, Sylvia; Aghajanian, Carol; Chang, Susan Marina; Dreyer, Zoann Eckert; Janne, Pasi A; Ko, Andrew H; Masters, Greg A; Odenike, Olatoyosi; Patel, Jyoti D; Roth, Bruce J; Samlowski, Wolfram E; Seidman, Andrew D; Tap, William D; Temel, Jennifer S; Von Roenn, Jamie H; Kris, Mark G

    2012-01-01

    A message from ASCO'S President. It has been forty years since President Richard Nixon signed the National Cancer Act of 1971, which many view as the nation's declaration of the "War on Cancer." The bill has led to major investments in cancer research and significant increases in cancer survival. Today, two-thirds of patients survive at least five years after being diagnosed with cancer compared with just half of all diagnosed patients surviving five years after diagnosis in 1975. The research advances detailed in this year's Clinical Cancer Advances demonstrate that improvements in cancer screening, treatment, and prevention save and improve lives. But although much progress has been made, cancer remains one of the world's most serious health problems. In the United States, the disease is expected to become the nation's leading cause of death in the years ahead as our population ages. I believe we can accelerate the pace of progress, provided that everyone involved in cancer care works together to achieve this goal. It is this viewpoint that has shaped the theme for my presidential term: Collaborating to Conquer Cancer. In practice, this means that physicians and researchers must learn from every patient's experience, ensure greater collaboration between members of a patient's medical team, and involve more patients in the search for cures through clinical trials. Cancer advocates, insurers, and government agencies also have important roles to play. Today, we have an incredible opportunity to improve the quality of cancer care by drawing lessons from the real-world experiences of patients. The American Society of Clinical Oncology (ASCO) is taking the lead in this area, in part through innovative use of health information technology. In addition to our existing quality initiatives, ASCO is working with partners to develop a comprehensive rapid-learning system for cancer care. When complete, this system will provide physicians with personalized, real

  17. [Cancer procoagulant activity in cases of esophageal, stomach and colorectal cancer considering progression degree and histological type of cancer].

    PubMed

    Kozuszko, B; Skrzydlewski, Z; Sulkowska, M; Snarska, J; Kozłowski, M; Skrzydlewska, E; Zalewski, B

    2001-09-01

    The cancer procoagulant activity has been evaluated in homogenates of esophagal, stomach and colorectal cancer tissues and in the blood serum of patients with these neoplasms's. Activity of CP was significantly higher in examined material than in control. The correlation between CP activity and progression degree as well as histological type was affirmed. The higher activity of CP in homogenates as well as in serum was observed in cases with higher degree of clinical progression and smaller activity of this enzyme corresponded with lower degree of the cancer progression. The highest activity of CP was observed in the cases of adenocarcinoma whereas the lowest in cases of squamous cell carcinoma. Higher activity of CP in homogenates of examined tissues correlated with higher activity of this enzyme in the serum. Activity of CP depended on the tissue localisation of the cancer and the highest was in the cases of stomach cancers whereas the lowest was in the cases of esophagal cancer.

  18. Progress in the Development of a Shock Initiation Model

    NASA Astrophysics Data System (ADS)

    Howe, Philip M.; Benson, David J.

    2004-07-01

    We used an Eulerian hydrocode to guide the development of an engineering model of shock initiation. The model in its current form has two types of hotspots- one from void collapse, and one from interactions at grain boundaries. The dependence of hotspot and bulk temperatures upon shock strength is estimated using a Gruneisen equation of state for the bulk solid, calibrated against measurements of reaction times for steady state detonation. Arrhenius kinetics are used to predict ignition times associated with hotspot temperatures. The hotspots contribute a small amount of energy to the shock front, thereby causing some shock front acceleration, and also serve to initiate erosive burning. The two erosive burn reactions that result from the two different types of hotspots compete to consume the material. The energy release rate resulting from the competition of these reactions was used as input to a method of characteristics code. This in turn was used to calculate particle velocity — time profiles at various simulated gauge locations. These calculated profiles were compared with experiment.

  19. Progress on Simulating the Initiation of Vacuum Insulator Flashover

    SciTech Connect

    Perkins, M P; Houck, T L; Javedani, J B; Vogtlin, G E; Goerz, D A

    2009-06-26

    Vacuum insulators are critical components in many pulsed power systems. The insulators separate the vacuum and non-vacuum regions, often under great stress due to high electric fields. The insulators will often flashover at the dielectric vacuum interface for electric field values much lower than for the bulk breakdown through the material. Better predictive models and computational tools are needed to enable insulator designs in a timely and inexpensive manner for advanced pulsed power systems. In this article we will discuss physics models that have been implemented in a PIC code to better understand the initiation of flashover. The PIC code VORPAL has been ran on the Linux cluster Hera at LLNL. Some of the important physics modules that have been implemented to this point will be discussed for simple angled insulators. These physics modules include field distortion due to the dielectric, field emission, secondary electron emission, insulator charging, and the effects of magnitude fields. In the future we will incorporate physics modules to investigate the effects of photoemission, electron stimulated desorption, and gas ionization. This work will lead to an improved understanding of flashover initiation and better computational tools for advanced insulator design.

  20. Progression and metastasis of lung cancer.

    PubMed

    Popper, Helmut H

    2016-03-01

    Metastasis in lung cancer is a multifaceted process. In this review, we will dissect the process in several isolated steps such as angiogenesis, hypoxia, circulation, and establishment of a metastatic focus. In reality, several of these processes overlap and occur even simultaneously, but such a presentation would be unreadable. Metastasis requires cell migration toward higher oxygen tension, which is based on changing the structure of the cell (epithelial-mesenchymal transition), orientation within the stroma and stroma interaction, and communication with the immune system to avoid attack. Once in the blood stream, cells have to survive trapping by the coagulation system, to survive shear stress in small blood vessels, and to find the right location for extravasation. Once outside in the metastatic locus, tumor cells have to learn the communication with the "foreign" stroma cells to establish vascular supply and again express molecules, which induce immune tolerance.

  1. The Role of Cytokines in Breast Cancer Development and Progression

    PubMed Central

    Esquivel-Velázquez, Marcela; Ostoa-Saloma, Pedro; Palacios-Arreola, Margarita Isabel; Nava-Castro, Karen E.; Castro, Julieta Ivonne

    2015-01-01

    Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders. PMID:25068787

  2. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. [Role of the stroma in the initiation and progression of tumors].

    PubMed

    Baranyi, Marcell; Lippai, Mónika; Szatmári, Zsuzsanna

    2015-11-01

    In the last decade, growing attention was paid to the observation that tumors did not only consist of cancer cells, they are rather a complex tissue-like mixture of tumor and stromal cells, which are playing an important role in the course of the malignant disease. Their contribution is so essential that without them, tumors are not even able to grow. This short review summarizes how stromal cells can promote the cancerous transformation and early development of tumors, how chronic inflammation contributes to the progression of cancer and how the stroma takes part in the induction of angiogenesis. The main mechanisms by which tumors can escape the immune surveillance will be demonstrated as well as the complex contributions of stroma to the invasion, intravasation and metastasis of cancer cells. Finally, possible and promising therapies will be presented that aim at the stroma and its main effects on the progression of tumors.

  4. Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens.

    PubMed

    Uttam, Shikhar; Pham, Hoa V; LaFace, Justin; Leibowitz, Brian; Yu, Jian; Brand, Randall E; Hartman, Douglas J; Liu, Yang

    2015-11-15

    Early cancer detection currently relies on screening the entire at-risk population, as with colonoscopy and mammography. Therefore, frequent, invasive surveillance of patients at risk for developing cancer carries financial, physical, and emotional burdens because clinicians lack tools to accurately predict which patients will actually progress into malignancy. Here, we present a new method to predict cancer progression risk via nanoscale nuclear architecture mapping (nanoNAM) of unstained tissue sections based on the intrinsic density alteration of nuclear structure rather than the amount of stain uptake. We demonstrate that nanoNAM detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis who did and did not develop colon cancer up to 13 years after their initial colonoscopy. NanoNAM of the initial biopsies correctly classified 12 of 15 patients who eventually developed colon cancer and 15 of 18 who did not, with an overall accuracy of 85%. Taken together, our findings demonstrate great potential for nanoNAM in predicting cancer progression risk and suggest that further validation in a multicenter study with larger cohorts may eventually advance this method to become a routine clinical test. PMID:26383164

  5. Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens.

    PubMed

    Uttam, Shikhar; Pham, Hoa V; LaFace, Justin; Leibowitz, Brian; Yu, Jian; Brand, Randall E; Hartman, Douglas J; Liu, Yang

    2015-11-15

    Early cancer detection currently relies on screening the entire at-risk population, as with colonoscopy and mammography. Therefore, frequent, invasive surveillance of patients at risk for developing cancer carries financial, physical, and emotional burdens because clinicians lack tools to accurately predict which patients will actually progress into malignancy. Here, we present a new method to predict cancer progression risk via nanoscale nuclear architecture mapping (nanoNAM) of unstained tissue sections based on the intrinsic density alteration of nuclear structure rather than the amount of stain uptake. We demonstrate that nanoNAM detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis who did and did not develop colon cancer up to 13 years after their initial colonoscopy. NanoNAM of the initial biopsies correctly classified 12 of 15 patients who eventually developed colon cancer and 15 of 18 who did not, with an overall accuracy of 85%. Taken together, our findings demonstrate great potential for nanoNAM in predicting cancer progression risk and suggest that further validation in a multicenter study with larger cohorts may eventually advance this method to become a routine clinical test.

  6. The role of MT2-MMP in cancer progression

    SciTech Connect

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-03-05

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  7. Dual role of GRK5 in cancer development and progression

    PubMed Central

    Gambardella, J; Franco, A; Giudice, C Del; Fiordelisi, A; Cipolletta, E; Ciccarelli, M; Trimarco, B; Iaccarino, G; Sorriento, D

    2016-01-01

    GRK5 is a multifunctional protein that is able to move within the cell in response to various stimuli to regulate key intracellular signaling from receptor activation, on plasmamembrane, to gene transcription, in the nucleus. Thus, GRK5 is involved in the development and progression of several pathological conditions including cancer. Several reports underline the involvement of GRK5 in the regulation of tumor growth even if they appear controversial. Indeed, depending on its subcellular localization and on the type of cancer, GRK5 is able to both inhibit cancer progression, through the desensitization of GPCR and non GPCR-receptors (TSH, PGE2R, PDGFR), and induce tumor growth, acting on non-receptor substrates (p53, AUKA and NPM1). All these findings suggest that targeting GRK5 could be an useful anti-cancer strategy, for specific tumor types. In this review, we will discuss the different effects of this kinase in the induction and progression of tumorigenesis, the molecular mechanisms by which GRK5 exerts its effects, and the potential therapeutic strategies to modulate them. PMID:27326393

  8. Dual role of GRK5 in cancer development and progression.

    PubMed

    Gambardella, J; Franco, A; Giudice, C Del; Fiordelisi, A; Cipolletta, E; Ciccarelli, M; Trimarco, B; Iaccarino, G; Sorriento, D

    2016-05-01

    GRK5 is a multifunctional protein that is able to move within the cell in response to various stimuli to regulate key intracellular signaling from receptor activation, on plasmamembrane, to gene transcription, in the nucleus. Thus, GRK5 is involved in the development and progression of several pathological conditions including cancer. Several reports underline the involvement of GRK5 in the regulation of tumor growth even if they appear controversial. Indeed, depending on its subcellular localization and on the type of cancer, GRK5 is able to both inhibit cancer progression, through the desensitization of GPCR and non GPCR-receptors (TSH, PGE2R, PDGFR), and induce tumor growth, acting on non-receptor substrates (p53, AUKA and NPM1). All these findings suggest that targeting GRK5 could be an useful anti-cancer strategy, for specific tumor types. In this review, we will discuss the different effects of this kinase in the induction and progression of tumorigenesis, the molecular mechanisms by which GRK5 exerts its effects, and the potential therapeutic strategies to modulate them.

  9. Inferring Tree Causal Models of Cancer Progression with Probability Raising

    PubMed Central

    Mauri, Giancarlo; Antoniotti, Marco; Mishra, Bud

    2014-01-01

    Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models. PMID:25299648

  10. Global threat reduction initiative Russian nuclear material removal progress

    SciTech Connect

    Cummins, Kelly

    2008-07-15

    In December 1999 representatives from the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) started discussing a program to return to Russia Soviet- or Russian-supplied highly enriched uranium (HEU) fuel stored at the Russian-designed research reactors outside Russia. Trilateral discussions among the United States, Russian Federation, and the International Atomic Energy Agency (IAEA) have identified more than 20 research reactors in 17 countries that have Soviet- or Russian-supplied HEU fuel. The Global Threat Reduction Initiative's Russian Research Reactor Fuel Return Program is an important aspect of the U.S. Government's commitment to cooperate with the other nations to prevent the proliferation of nuclear weapons and weapons-usable proliferation-attractive nuclear materials. To date, 496 kilograms of Russian-origin HEU have been shipped to Russia from Serbia, Latvia, Libya, Uzbekistan, Romania, Bulgaria, Poland, Germany, and the Czech Republic. The pilot spent fuel shipment from Uzbekistan to Russia was completed in April 2006. (author)

  11. Progress and remaining challenges for cancer control in Latin America and the Caribbean.

    PubMed

    Strasser-Weippl, Kathrin; Chavarri-Guerra, Yanin; Villarreal-Garza, Cynthia; Bychkovsky, Brittany L; Debiasi, Marcio; Liedke, Pedro E R; Soto-Perez-de-Celis, Enrique; Dizon, Don; Cazap, Eduardo; de Lima Lopes, Gilberto; Touya, Diego; Nunes, Joāo Soares; St Louis, Jessica; Vail, Caroline; Bukowski, Alexandra; Ramos-Elias, Pier; Unger-Saldaña, Karla; Brandao, Denise Froes; Ferreyra, Mayra E; Luciani, Silvana; Nogueira-Rodrigues, Angelica; de Carvalho Calabrich, Aknar Freire; Del Carmen, Marcela G; Rauh-Hain, Jose Alejandro; Schmeler, Kathleen; Sala, Raúl; Goss, Paul E

    2015-10-01

    Cancer is one of the leading causes of mortality worldwide, and an increasing threat in low-income and middle-income countries. Our findings in the 2013 Commission in The Lancet Oncology showed several discrepancies between the cancer landscape in Latin America and more developed countries. We reported that funding for health care was a small percentage of national gross domestic product and the percentage of health-care funds diverted to cancer care was even lower. Funds, insurance coverage, doctors, health-care workers, resources, and equipment were also very inequitably distributed between and within countries. We reported that a scarcity of cancer registries hampered the design of credible cancer plans, including initiatives for primary prevention. When we were commissioned by The Lancet Oncology to write an update to our report, we were sceptical that we would uncover much change. To our surprise and gratification much progress has been made in this short time. We are pleased to highlight structural reforms in health-care systems, new programmes for disenfranchised populations, expansion of cancer registries and cancer plans, and implementation of policies to improve primary cancer prevention. PMID:26522157

  12. Progress and remaining challenges for cancer control in Latin America and the Caribbean.

    PubMed

    Strasser-Weippl, Kathrin; Chavarri-Guerra, Yanin; Villarreal-Garza, Cynthia; Bychkovsky, Brittany L; Debiasi, Marcio; Liedke, Pedro E R; Soto-Perez-de-Celis, Enrique; Dizon, Don; Cazap, Eduardo; de Lima Lopes, Gilberto; Touya, Diego; Nunes, Joāo Soares; St Louis, Jessica; Vail, Caroline; Bukowski, Alexandra; Ramos-Elias, Pier; Unger-Saldaña, Karla; Brandao, Denise Froes; Ferreyra, Mayra E; Luciani, Silvana; Nogueira-Rodrigues, Angelica; de Carvalho Calabrich, Aknar Freire; Del Carmen, Marcela G; Rauh-Hain, Jose Alejandro; Schmeler, Kathleen; Sala, Raúl; Goss, Paul E

    2015-10-01

    Cancer is one of the leading causes of mortality worldwide, and an increasing threat in low-income and middle-income countries. Our findings in the 2013 Commission in The Lancet Oncology showed several discrepancies between the cancer landscape in Latin America and more developed countries. We reported that funding for health care was a small percentage of national gross domestic product and the percentage of health-care funds diverted to cancer care was even lower. Funds, insurance coverage, doctors, health-care workers, resources, and equipment were also very inequitably distributed between and within countries. We reported that a scarcity of cancer registries hampered the design of credible cancer plans, including initiatives for primary prevention. When we were commissioned by The Lancet Oncology to write an update to our report, we were sceptical that we would uncover much change. To our surprise and gratification much progress has been made in this short time. We are pleased to highlight structural reforms in health-care systems, new programmes for disenfranchised populations, expansion of cancer registries and cancer plans, and implementation of policies to improve primary cancer prevention.

  13. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    PubMed Central

    Cheung, Otto K.-W.; Cheng, Alfred S.-L.

    2016-01-01

    Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management. PMID:27703473

  14. Daxx regulates mitotic progression and prostate cancer predisposition.

    PubMed

    Kwan, Pak Shing; Lau, Chi Chiu; Chiu, Yung Tuen; Man, Cornelia; Liu, Ji; Tang, Kai Dun; Wong, Yong Chuan; Ling, Ming-Tat

    2013-04-01

    Mitotic progression of mammalian cells is tightly regulated by the E3 ubiquitin ligase anaphase promoting complex (APC)/C. Deregulation of APC/C is frequently observed in cancer cells and is suggested to contribute to chromosome instability and cancer predisposition. In this study, we identified Daxx as a novel APC/C inhibitor frequently overexpressed in prostate cancer. Daxx interacts with the APC/C coactivators Cdc20 and Cdh1 in vivo, with the binding of Cdc20 dependent on the consensus destruction boxes near the N-terminal of the Daxx protein. Ectopic expression of Daxx, but not the D-box deleted mutant (DaxxΔD-box), inhibited the degradation of APC/Cdc20 and APC/Cdh1 substrates, leading to a transient delay in mitotic progression. Daxx is frequently upregulated in prostate cancer tissues; the expression level positively correlated with the Gleason score and disease metastasis (P = 0.027 and 0.032, respectively). Furthermore, ectopic expression of Daxx in a non-malignant prostate epithelial cell line induced polyploidy under mitotic stress. Our data suggest that Daxx may function as a novel APC/C inhibitor, which promotes chromosome instability during prostate cancer development.

  15. Initial Progress in Developing the New ICSU World Data System

    NASA Astrophysics Data System (ADS)

    Minster, J. H.; Capitaine, N.; Clark, D. M.; Mokrane, M.

    2009-12-01

    On October 24, 2008, at the 29th International Council for Science (ICSU) General Assembly in Maputo, Mozambique, a decision to form a new ICSU World Data System (WDS) was taken. The new ICSU World Data System (WDS) will replace the framework within which the current ICSU World Data Centers (WDCs) and services of the Federation of Astronomical and Geophysical data-analysis Services (FAGS) are currently organized. The transition from the old organizations to the new WDS was facilitated by the ICSU ad-hoc WDS Transition Team which developed a white paper with recommendations for the new WDS Scientific Committee (WDS-SC). The WDS-SC was appointed by ICSU and reports to the Executive Board and the General Assembly of ICSU. The WDSSC met for the first time in October 2009. WDS-SC shall be the governing body of WDS with the following tasks: 1) to ensure that the WDS clearly supports ICSU’s mission and objectives by ensuring the long-term stewardship and provision of quality-assessed data and data services to the international science community and other stakeholders; 2) to develop, and keep under continuous review, an implementation plan for the creation of the WDS by incorporating the ICSU WDCs, the Services of FAGS and a wide range of other data centers and services; 3) to define agreed standards, establish and oversee the procedures for the review and accreditation of existing and new facilities; 4) to monitor the geographic and disciplinary scope of the system and to develop strategies for the recruitment and establishment of new WDS facilities as necessary; 5) to consider resource issues and provide guidance on funding mechanisms for facilities within WDS when appropriate; 6) to develop strong cooperative links with the ICSU Strategic Coordinating Committee on Information and Data (SCCID);and 7) to cooperate closely with the ICSU Committee on Data for Science and Technology (CODATA). WDS development will proceed from these initial concepts: history and legacy of

  16. Spinning Reserve From Hotel Load Response: Initial Progress

    SciTech Connect

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby and Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial

  17. Dietary energy balance modulates ovarian cancer progression and metastasis.

    PubMed

    Al-Wahab, Zaid; Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-08-15

    A high energy balance, or caloric excess, accounts as a tumor promoting factor, while a negative energy balance via caloric restriction, has been shown to delay cancer progression. The effect of energy balance on ovarian cancer progression was investigated in an isogeneic immunocompetent mouse model of epithelial ovarian cancer kept on a regimen of regular diet, high energy diet (HED) and calorie restricted diet (CRD), prior to inoculating the animals intraperitoneally with the mouse ovarian surface epithelial ID8 cancer cells. Tumor evaluation revealed that mice group on HED displayed the most extensive tumor formation with the highest tumor score at all organ sites (diaphragm, peritoneum, bowel, liver, kidney, spleen), accompanied with increased levels of insulin, leptin, insulin growth factor-1 (IGF-1), monocyte chemoattractant protein-1 (MCP-1), VEGF and interleukin 6 (IL-6). On the other hand, the mice group on CRD exhibited the least tumor burden associated with a significant reduction in levels of insulin, IGF-1, leptin, MCP-1, VEGF and IL-6. Immunohistochemistry analysis of tumors from HED mice showed higher activation of Akt and mTOR with decreased adenosine monophosphate activated kinase (AMPK) and SIRT1 activation, while tumors from the CRD group exhibited the reverse profile. In conclusion, ovarian cancer growth and metastasis occurred more aggressively under HED conditions and was significantly curtailed under CRD. The suggested mechanism involves modulated secretion of growth factors, cytokines and altered regulation of AMPK and SIRT1 that converges on mTOR inhibition. While the role of a high energy state in ovarian cancer has not been confirnmed in the literature, the current findings support investigating the potential impact of diet modulation as adjunct to other anticancer therapies and as possible individualized treatment strategy of epithelial ovarian cancer.

  18. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model.

    PubMed

    Ru, Peng; Steele, Robert; Nerurkar, Pratibha V; Phillips, Nancy; Ray, Ratna B

    2011-12-01

    Prostate cancer remains the second leading cause of cancer deaths among American men. Earlier diagnosis increases survival rate in patients. However, treatments for advanced disease are limited to hormone ablation techniques and palliative care. Thus, new methods of treatment and prevention are necessary for inhibiting disease progression to a hormone refractory state. One of the approaches to control prostate cancer is prevention through diet, which inhibits one or more neoplastic events and reduces the cancer risk. For centuries, Ayurveda has recommended the use of bitter melon (Momordica charantia) as a functional food to prevent and treat human health related issues. In this study, we have initially used human prostate cancer cells, PC3 and LNCaP, as an in vitro model to assess the efficacy of bitter melon extract (BME) as an anticancer agent. We observed that prostate cancer cells treated with BME accumulate during the S phase of the cell cycle and modulate cyclin D1, cyclin E, and p21 expression. Treatment of prostate cancer cells with BME enhanced Bax expression and induced PARP cleavage. Oral gavage of BME, as a dietary compound, delayed the progression to high-grade prostatic intraepithelial neoplasia in TRAMP (transgenic adenocarcinoma of mouse prostate) mice (31%). Prostate tissue from BME-fed mice displayed approximately 51% reduction of proliferating cell nuclear antigen expression. Together, our results suggest for the first time that oral administration of BME inhibits prostate cancer progression in TRAMP mice by interfering cell-cycle progression and proliferation. PMID:21911444

  19. The wound healing, chronic fibrosis, and cancer progression triad

    PubMed Central

    Rybinski, Brad; Franco-Barraza, Janusz

    2014-01-01

    For decades tumors have been recognized as “wounds that do not heal.” Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing. PMID:24520152

  20. Graphene as Cancer Theranostic Tool: Progress and Future Challenges

    PubMed Central

    Orecchioni, Marco; Cabizza, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2015-01-01

    Nowadays cancer remains one of the main causes of death in the world. Current diagnostic techniques need to be improved to provide earlier diagnosis and treatment. Traditional therapy approaches to cancer are limited by lack of specificity and systemic toxicity. In this scenario nanomaterials could be good allies to give more specific cancer treatment effectively reducing undesired side effects and giving at the same time accurate diagnosis and successful therapy. In this context, thanks to its unique physical and chemical properties, graphene, graphene oxide (GO) and reduced graphene (rGO) have recently attracted tremendous interest in biomedicine including cancer therapy. Herein we analyzed all studies presented in literature related to cancer fight using graphene and graphene-based conjugates. In this context, we aimed at the full picture of the state of the art providing new inputs for future strategies in the cancer theranostic by using of graphene. We found an impressive increasing interest in the material for cancer therapy and/or diagnosis. The majority of the works (73%) have been carried out on drug and gene delivery applications, following by photothermal therapy (32%), imaging (31%) and photodynamic therapy (10%). A 27% of the studies focused on theranostic applications. Part of the works here discussed contribute to the growth of the theranostic field covering the use of imaging (i.e. ultrasonography, positron electron tomography, and fluorescent imaging) combined to one or more therapeutic modalities. We found that the use of graphene in cancer theranostics is still in an early but rapidly growing stage of investigation. Any technology based on nanomaterials can significantly enhance their possibility to became the real revolution in medicine if combines diagnosis and therapy at the same time. We performed a comprehensive summary of the latest progress of graphene cancer fight and highlighted the future challenges and the innovative possible

  1. Graphene as cancer theranostic tool: progress and future challenges.

    PubMed

    Orecchioni, Marco; Cabizza, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2015-01-01

    Nowadays cancer remains one of the main causes of death in the world. Current diagnostic techniques need to be improved to provide earlier diagnosis and treatment. Traditional therapy approaches to cancer are limited by lack of specificity and systemic toxicity. In this scenario nanomaterials could be good allies to give more specific cancer treatment effectively reducing undesired side effects and giving at the same time accurate diagnosis and successful therapy. In this context, thanks to its unique physical and chemical properties, graphene, graphene oxide (GO) and reduced graphene (rGO) have recently attracted tremendous interest in biomedicine including cancer therapy. Herein we analyzed all studies presented in literature related to cancer fight using graphene and graphene-based conjugates. In this context, we aimed at the full picture of the state of the art providing new inputs for future strategies in the cancer theranostic by using of graphene. We found an impressive increasing interest in the material for cancer therapy and/or diagnosis. The majority of the works (73%) have been carried out on drug and gene delivery applications, following by photothermal therapy (32%), imaging (31%) and photodynamic therapy (10%). A 27% of the studies focused on theranostic applications. Part of the works here discussed contribute to the growth of the theranostic field covering the use of imaging (i.e. ultrasonography, positron electron tomography, and fluorescent imaging) combined to one or more therapeutic modalities. We found that the use of graphene in cancer theranostics is still in an early but rapidly growing stage of investigation. Any technology based on nanomaterials can significantly enhance their possibility to became the real revolution in medicine if combines diagnosis and therapy at the same time. We performed a comprehensive summary of the latest progress of graphene cancer fight and highlighted the future challenges and the innovative possible

  2. Anoikis molecular pathways and its role in cancer progression.

    PubMed

    Paoli, Paolo; Giannoni, Elisa; Chiarugi, Paola

    2013-12-01

    Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonizing of distant organs. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are vital steps during cancer progression and metastatic colonization, the ability of cancer cells to resist anoikis has now attracted main attention from the scientific community. Cancer cells develop anoikis resistance due to several mechanisms, including change in integrins' repertoire allowing them to grow in different niches, activation of a plethora of inside-out pro-survival signals as over-activation of receptors due to sustained autocrine loops, oncogene activation, growth factor receptor overexpression, or mutation/upregulation of key enzymes involved in integrin or growth factor receptor signaling. In addition, tumor microenvironment has also been acknowledged to contribute to anoikis resistance of bystander cancer cells, by modulating matrix stiffness, enhancing oxidative stress, producing pro-survival soluble factors, triggering epithelial-mesenchymal transition and self-renewal ability, as well as leading to metabolic deregulations of cancer cells. All these events help cancer cells to inhibit the apoptosis machinery and sustain pro-survival signals after detachment, counteracting anoikis and constituting promising targets for anti-metastatic pharmacological therapy. This article is part of a Special Section entitled: Cell Death Pathways. PMID:23830918

  3. [Progress in nuclear magnetic resonance spectroscopy for early cancer diagnosis].

    PubMed

    Gao, Xiu-xiang; Xu, Yi-zhuang; Zhao, Mei-xian; Qi, Jian; Li, Hui-zhen; Wu, Jin-guang

    2008-08-01

    Based on more than 100 references, the present paper reviews the progress in the application of nuclear magnetic resonance (NMR) spectroscopy, an effective method to study the variation in chemical composition and molecular structure in biological samples for early diagnosis of cancer at molecular level. In the past several decades, numerous works have demonstrated that NMR spectroscopy may be developed into a sensitive diagnosis method to detect cancer in early stage. Because of the rapid development of NMR spectroscopic techniques, it becomes possible to record NMR spectra of biological samples in both in-vitro and in-vivo manner. Systematic spectral differences between biological samples from cancer patients and normal controls can be observed from both liquid-state and solid-state 1H, 31P NMR spectra and used to reflect the changes in metabolic behavior of malignant tissues. This paper has summarized NMR spectroscopic investigation on biological fluid, cultured cancerous cells, resected tissues, as well as in-vivo malignant tissues by using various advanced NMR techniques including recently developedhigh-resolution magic angle spinning (HR-MAS)and magnetic resonance spectroscopy and imaging (MRSI) methods. First, characteristic peaks, which are related to choline, phosphocholine (PC) and glycerophosphocholine, can be observed in both 1H and 31P NMR spectra of biological fluid samples from cancer patients. These results indicate that alternation in the metabolic pattern occurs with the progression of cancer. The research on cultured cells by using NMR spectroscopy showed that the signal of various phospholipids and their metabolites such as PME increased significantly in cultured cancer cells. For resected tissues, two methods can be utilized. The first one is to investigate the tissues directly by using HR-MAS spectroscopy. The second method is to extract various metabolites with various solvents such as CHCl3/methonal mixtures, HClO4 solutions, etc. and then

  4. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.

    PubMed

    Taniguchi, Naoyuki; Kizuka, Yasuhiko

    2015-01-01

    Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer.

  5. Impact of proteolytic enzymes in colorectal cancer development and progression

    PubMed Central

    Herszényi, László; Barabás, Loránd; Hritz, István; István, Gábor; Tulassay, Zsolt

    2014-01-01

    Tumor invasion and metastasis is a highly complicated, multi-step phenomenon. In the complex event of tumor progression, tumor cells interact with basement membrane and extracellular matrix components. Proteolytic enzymes (proteinases) are involved in the degradation of extracellular matrix, but also in cancer invasion and metastasis. The four categories of proteinases (cysteine-, serine-, aspartic-, and metalloproteinases) are named and classified according to the essential catalytic component in their active site. We and others have shown that proteolytic enzymes play a major role not only in colorectal cancer (CRC) invasion and metastasis, but also in malignant transformation of precancerous lesions into cancer. Tissue and serum-plasma antigen concentrations of proteinases might be of great value in identifying patients with poor prognosis in CRC. Our results, in concordance with others indicate the potential tumor marker impact of proteinases for the early diagnosis of CRC. In addition, proteinases may also serve as potential target molecules for therapeutic agents. PMID:25309062

  6. Tpl2 induces castration resistant prostate cancer progression and metastasis.

    PubMed

    Lee, Hye Won; Cho, Hyun Jung; Lee, Se Jeong; Song, Hye Jin; Cho, Hee Jin; Park, Min Chul; Seol, Ho Jun; Lee, Jung-Il; Kim, Sunghoon; Lee, Hyun Moo; Choi, Han Yong; Nam, Do-Hyun; Joo, Kyeung Min

    2015-05-01

    Progression to metastatic castration resistant prostate cancer (CRPC) is the major lethal pathway of prostate cancer (PC). Herein, we demonstrated that tumor progression locus 2 (Tpl2) kinase is the fundamental molecule provoking progression and metastasis of CRPC. Tpl2 upregulates CXCR4 and focal adhesion kinase (FAK) to activate CXCL12/CXCR4 and FAK/Akt signalling pathway. Consequently, epithelial-mesenchymal transition (EMT) and stemness of androgen depletion independent (ADI) PC cells are induced, which is dependent on the kinase activity of Tpl2. In vitro, proliferation, clonogenicity, migration, invasion and chemoresistance of ADI PC cells were enhanced by Tpl2. In vivo, Tpl2 overexpression and downregulation showed significant stimulatory and inhibitory effects on tumorigenic and metastatic potential of ADI PC cells, respectively. Moreover, the prognostic effects of Tpl2 and expressional correlation between Tpl2 and EMT-related molecules/CXCR4 were validated in clinical PC databases. Since Tpl2 exerts metastatic progression promoting activities in CRPC, Tpl2 could serve as a novel therapeutic target for metastatic CRPC. PMID:25274482

  7. Relating Single Cell Heterogeneity To Genotype During Cancer Progression

    NASA Astrophysics Data System (ADS)

    Rajaram, Satwik

    2013-03-01

    Progression of normal cells towards cancer is driven by a series of genetic changes. Traditional population-averaged measurements have found that cell signalling activities are increasingly altered during this progression. Despite the fact that cancer cells are known to be highly heterogeneous, the response of individual pathways to specific genetic changes remains poorly characterized at a single cell level. Do signalling alterations in a pathway reflect a shift of the whole population, or changes to specific subpopulations? Are alterations to pathways independent, or are cells with alterations in one pathway more likely to be abnormal in another due to crosstalk? We are building a computational framework that analyzes immunofluorescence microscopy images of cells to identify alterations in individual pathways at a single-cell level. A primary novelty of our approach is a ``change of basis'' that allows us to understand signalling in cancer cells in terms of the much better understood patterns of signalling in normal cells. This allows us to model heterogeneous populations of cancer cells as a mixture of distinct subpopulations, each with a specific combination of signalling pathways altered beyond the normal baseline. We used this framework to analyze human bronchial epithelial cell lines containing a series of genetic modifications commonly seen in lung cancer. We confirmed expected trends (such as a population-wide epithelial mesenchymal transition following the last of our series of modifications) and are presently studying the relation between the mutational profiles of cancer cells and pathway crosstalk. Our framework will help establish a more natural basis for future investigations into the phenotype-genotype relationship in heterogeneous populations.

  8. MicroRNAs in Breast Cancer -Our Initial Results.

    PubMed

    Popovska-Jankovic, K; Noveski, P; Chakalova, L; Petrusevska, G; Kubelka, K; Plaseska-Karanfilska, D

    2012-12-01

    MicroRNAs (miRNAs) are small [∼21 nucleotide (nt)] non coding RNAs (ncRNAs) that regulate gene expression posttranscriptionally. About 3.0% of human genes encode for miRNAs, and up to 30.0% of human protein coding genes may be regulated by miRNAs. Currently, more than 2000 unique human mature microRNAs are known. MicroRNAs play a key role in diverse biological processes including development, cell proliferation, differentiation and apoptosis. These processes are commonly dysregulated in cancer, implicating miRNAs in carcinogenesis, where they act as tumor supressors or oncogenes. Several miRNAs are associated with breast cancer. Here we present our initial results of miRNA analyses of breast cancer tissues using quantitative real time-polymerase chain reaction (ReTi-PCR) (qPCR) involving stem-loop reverse transcriptase (RT) primers combined with TaqMan® PCR and miRNA microarray analysis.

  9. Interaction of tumor cells and lymphatic vessels in cancer progression.

    PubMed

    Alitalo, A; Detmar, M

    2012-10-18

    Metastatic spread of cancer through the lymphatic system affects hundreds of thousands of patients yearly. Growth of new lymphatic vessels, lymphangiogenesis, is activated in cancer and inflammation, but is largely inactive in normal physiology, and therefore offers therapeutic potential. Key mediators of lymphangiogenesis have been identified in developmental studies. During embryonic development, lymphatic endothelial cells derive from the blood vascular endothelium and differentiate under the guidance of lymphatic-specific regulators, such as the prospero homeobox 1 transcription factor. Vascular endothelial growth factor-C (VEGF-C) and VEGF receptor 3 signaling are essential for the further development of lymphatic vessels and therefore they provide a promising target for inhibition of tumor lymphangiogenesis. Lymphangiogenesis is important for the progression of solid tumors as shown for melanoma and breast cancer. Tumor cells may use chemokine gradients as guidance cues and enter lymphatic vessels through intercellular openings between endothelial cell junctions or, possibly, by inducing larger discontinuities in the endothelial cell layer. Tumor-draining sentinel lymph nodes show enhanced lymphangiogenesis even before cancer metastasis and they may function as a permissive 'lymphovascular niche' for the survival of metastatic cells. Although our current knowledge indicates that the development of anti-lymphangiogenic therapies may be beneficial for the treatment of cancer patients, several open questions remain with regard to the frequency, mechanisms and biological importance of lymphatic metastases.

  10. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    PubMed

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. PMID:27117662

  11. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    PubMed

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.

  12. Progress in adjuvant chemotherapy for breast cancer: an overview.

    PubMed

    Anampa, Jesus; Makower, Della; Sparano, Joseph A

    2015-01-01

    Breast cancer is the most common cause of cancer and cancer death worldwide. Although most patients present with localized breast cancer and may be rendered disease-free with local therapy, distant recurrence is common and is the primary cause of death from the disease. Adjuvant systemic therapies are effective in reducing the risk of distant and local recurrence, including endocrine therapy, anti-HER2 therapy, and chemotherapy, even in patients at low risk of recurrence. The widespread use of adjuvant systemic therapy has contributed to reduced breast cancer mortality rates. Adjuvant cytotoxic chemotherapy regimens have evolved from single alkylating agents to polychemotherapy regimens incorporating anthracyclines and/or taxanes. This review summarizes key milestones in the evolution of adjuvant systemic therapy in general, and adjuvant chemotherapy in particular. Although adjuvant treatments are routinely guided by predictive factors for endocrine therapy (hormone receptor expression) and anti-HER2 therapy (HER2 overexpression), predicting benefit from chemotherapy has been more challenging. Randomized studies are now in progress utilizing multiparameter gene expression assays that may more accurately select patients most likely to benefit from adjuvant chemotherapy.

  13. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    SciTech Connect

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-02-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  14. Cyr61 promotes breast tumorigenesis and cancer progression

    SciTech Connect

    Tsai, Miaw-Sheue; Bogart, Daphne F.; Castaneda, Jessica M.; Li, Patricia; Lupu, Ruth

    2002-01-16

    Cyr61, a member of the CCN family of genes, is an angiogenic factor. We have shown that it is overexpressed in invasive and metastatic human breast cancer cells and tissues. Here, we investigated whether Cyr61 is necessary and/or sufficient to bypass the ''normal'' estrogen (E2) requirements for breast cancer cell growth. Our results demonstrate that under E2-depleted condition, Cyr61 is sufficient to induce MCF-7 cells grow in the absence of E2. MCF-7 cells transfected with Cyr61 (MCF-7/Cyr61) became E2-independent but still E2-responsive. On the other hand, MCF-7/vector cells remain E2-dependent. MCF-7/Cyr61 cells acquire an antiestrogen-resistant phenotype, one of the most common clinical occurrences during breast cancer progression. MCF-7/Cyr61 cells are anchorage-independent and capable of forming Matrigel outgrowth patterns in the absence of E2. ERa expression in MCF-7/Cyr61 cells is decreased although still functional. Additionally, MCF-7/Cyr61 cells are tumorigenic in ovariectomized athymic nude mice. The tumors resemble human invasive carcinomas with increased vascularization and overexpression of vascular endothelial growth factor (VEGF). Our results demonstrate that Cyr61 is a tumor-promoting factor and a key regulator of breast cancer progression. This study provides evidence that Cyr61 is sufficient to induce E2-independence and anti-E2 resistance, and to promote invasiveness in vitro, and to induce tumorigenesis in vivo, all of which are characteristics of an aggressive breast cancer phenotype.

  15. Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis

    PubMed Central

    Tong, Dali; Liu, Gaolei; Lan, Weihua; Zhang, Dianzheng; Xiao, Hualiang; Zhang, Yao; Huang, Zaoming; Yang, Junjie; Zhang, Jun; Jiang, Jun

    2016-01-01

    Cancer stem cells (CSCs) are a sub-population of tumor cells playing essential roles in initiation, differentiation, recurrence, metastasis and development of drug resistance of various cancers, including bladder cancer. Although multiple lines of evidence suggest that metformin is capable of repressing CSC repopulation in different cancers, the effect of metformin on bladder cancer CSCs remains largely unknown. Using the N-methyl-N-nitrosourea (MNU)-induced rat orthotropic bladder cancer model, we demonstrated that metformin is capable of repressing bladder cancer progression from both mild to moderate/severe dysplasia lesions and from carcinoma in situ (CIS) to invasive lesions. Metformin also can arrest bladder cancer cells in G1/S phases, which subsequently leads to apoptosis. And also metformin represses bladder cancer CSC repopulation evidenced by reducing cytokeratin 14 (CK14+) and octamer-binding transcription factor 3/4 (OCT3/4+) cells in both animal and cellular models. More importantly, we found that metformin exerts these anticancer effects by inhibiting COX2, subsequently PGE2 as well as the activation of STAT3. In conclusion, we are the first to systemically demonstrate in both animal and cell models that metformin inhibits bladder cancer progression by inhibiting stem cell repopulation through the COX2/PGE2/STAT3 axis. PMID:27058422

  16. Comprehensive nucleosome mapping of the human genome in cancer progression.

    PubMed

    Druliner, Brooke R; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M; Dimalanta, Eileen T; Stewart, Fiona J; Boardman, Lisa; Dennis, Jonathan H

    2016-03-22

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation.

  17. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression.

    PubMed

    Juratli, Mazen A; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A; Melerzanov, Alexander V; Zharov, Vladimir P; Galanzha, Ekaterina I

    2014-01-01

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs' diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0-54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients. PMID:24434542

  18. Comprehensive nucleosome mapping of the human genome in cancer progression

    PubMed Central

    Druliner, Brooke R.; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M.; Dimalanta, Eileen T.; Stewart, Fiona J.; Boardman, Lisa; Dennis, Jonathan H.

    2016-01-01

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation. PMID:26735342

  19. Towards a Quantitative Endogenous Network Theory of Cancer Genesis and Progression: beyond ``cancer as diseases of genome''

    NASA Astrophysics Data System (ADS)

    Ao, Ping

    2011-03-01

    There has been a tremendous progress in cancer research. However, it appears the current dominant cancer research framework of regarding cancer as diseases of genome leads impasse. Naturally questions have been asked that whether it is possible to develop alternative frameworks such that they can connect both to mutations and other genetic/genomic effects and to environmental factors. Furthermore, such framework can be made quantitative and with predictions experimentally testable. In this talk, I will present a positive answer to this calling. I will explain on our construction of endogenous network theory based on molecular-cellular agencies as dynamical variable. Such cancer theory explicitly demonstrates a profound connection to many fundamental concepts in physics, as such stochastic non-equilibrium processes, ``energy'' landscape, metastability, etc. It suggests that neneath cancer's daunting complexity may lie a simplicity that gives grounds for hope. The rationales behind such theory, its predictions, and its initial experimental verifications will be presented. Supported by USA NIH and China NSF.

  20. Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression

    PubMed Central

    Cammarota, Francesca; Laukkanen, Mikko O.

    2016-01-01

    The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease. PMID:26798356

  1. Initial Experience of Head and Neck Cancer Patients Treated in an Oncologist Led Palliative Cancer Care Clinic at a Tertiary Cancer Care Center in Uttar Pradesh: Is the Initiative of a Full-fledged Palliative Care for Cancer Patients Justified

    PubMed Central

    Lal, Punita; Verma, Mranalini; Kumar, Gaurav; Shrivastava, Resham; Kumar, Shaleen

    2016-01-01

    Introduction: Poor socioeconomic status and illiteracy attribute to the advanced presentation of head and neck cancer (HNC) patients in India and are candidates for palliation in our setup. We set up a palliative cancer care clinic (PCCC), and an audit of initial 153 HNC patients is presented. Aims and Objectives: To assess the impact of palliative cancer care services. Methodology: Data of advanced HNC patients suited for palliation were collected to document demography, symptomatology, cancer treatment, and supportive care. Results: One hundred and fifty-three patients were seen during January 2013 to March 2015 in the PCCC. Seventy-two (47%) referral cases were due to disease progression and 81 (53%) due to de novo advanced cases. Median follow-up for this group was 5.3 months. Ninety (59%) cases needed some degree of assistance for their normal activities. Sixty-seven (44%) patients belonged to poor socioeconomic status and 65 (43%) were educated up to equivalent of high school. One hundred and thirty-five (88%) patients had an adequate family support. Pain was the most common presenting symptom in 134 (87%) cases with adequate relief in 112 (84%) patients with another 13 (09%) could not be assessed. Overall median duration of symptoms was 6 months. Cancer-directed therapy was used in 143 (93%) patients. Near the end of life in 47 (73%) out of 63 documented cases, caregivers were psychologically prepared for the inevitable. Conclusion: The role of palliative care team in alleviating physical, psychosocial, and emotional issues of patient and family members was significant. PCCC seems to be a feasible working model in our setup. PMID:27803571

  2. Tumor-Derived Exosomes in Oncogenic Reprogramming and Cancer Progression

    PubMed Central

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2014-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell–cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication — the release of membrane vesicles known as exosomes — has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression. PMID:25156068

  3. Tissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathway

    PubMed Central

    Zhou, Quan; Wu, Xiongyan; Chen, Xuehua; Li, Jianfang; Zhu, Zhenggang; Liu, Bingya; Su, Liping

    2016-01-01

    Gastric cancer (GC) is one of the most common tumors worldwide and involves extensive local tumor invasion, metastasis, and poor prognosis. Understanding mechanisms regulating progression of GC is necessary for developing effective therapeutic strategies. Tissue transglutaminase-2 (TG2), a multifunctional member of the transglutaminase family, has been shown to be critical for tumor initiation and progression. However, how TG2 promotes the progression of GC is unknown. We report that TG2 was highly expressed in GC tissues and positively associated with depth of tumor invasion and late TNM stage. With gain- and loss-of-function approaches, we observed that TG2 promoted GC cell proliferation, migration, invasion, as well as tumorigenesis and peritoneal metastasis in vivo. These events were associated with the ERK1/2 pathway activation and an ERK1/2 inhibitor (U0126) inhibited cell proliferation, migration, and invasion induced by overexpression of TG2. In summary, TG2 contributes to tumorigenesis and progression of GC by activating the ERK1/2 signaling pathway and is a potential therapeutic target of metastatic gastric cancer. PMID:26771235

  4. EGFR Mutation Positive Stage IV Non-Small-Cell Lung Cancer: Treatment Beyond Progression

    PubMed Central

    Van Assche, Katrijn; Ferdinande, Liesbeth; Lievens, Yolande; Vandecasteele, Katrien; Surmont, Veerle

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of death from cancer for both men and women. Chemotherapy is the mainstay of treatment in advanced disease, but is only marginally effective. In about 30% of patients with advanced NSCLC in East Asia and in 10–15% in Western countries, epidermal growth factor receptor (EGFR) mutations are found. In this population, first-line treatment with the tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib, or afatinib is recommended. The treatment beyond progression is less well-defined. In this paper, we present three patients, EGFR mutation positive, with local progression after an initial treatment with TKI. These patients were treated with local radiotherapy. TKI was temporarily stopped and restarted after radiotherapy. We give an overview of the literature and discuss the different treatment options in case of progression after TKI: TKI continuation with or without chemotherapy, TKI continuation with local therapy, alternative dosing or switch to next-generation TKI or combination therapy. There are different options for treatment beyond progression in EGFR mutation positive metastatic NSCLC, but the optimal strategy is still to be defined. Further research on this topic is ongoing. PMID:25538894

  5. Nuclear iASPP may facilitate prostate cancer progression

    PubMed Central

    Morris, E V; Cerundolo, L; Lu, M; Verrill, C; Fritzsche, F; White, M J; Thalmann, G N; ten Donkelaar, C S; Ratnayaka, I; Salter, V; Hamdy, F C; Lu, X; Bryant, R J

    2014-01-01

    One of the major challenges in prostate cancer (PCa) research is the identification of key players that control the progression of primary cancers to invasive and metastatic disease. The majority of metastatic PCa express wild-type p53, whereas loss of p63 expression, a p53 family member, is a common event. Here we identify inhibitor of apoptosis-stimulating protein of p53 (iASPP), a common cellular regulator of p53 and p63, as an important player of PCa progression. Detailed analysis of the prostate epithelium of iASPP transgenic mice, iASPPΔ8/Δ8 mice, revealed that iASPP deficiency resulted in a reduction in the number of p63 expressing basal epithelial cells compared with that seen in wild-type mice. Nuclear and cytoplasmic iASPP expression was greater in PCa samples compared with benign epithelium. Importantly nuclear iASPP associated with p53 accumulation in vitro and in vivo. A pair of isogenic primary and metastatic PCa cell lines revealed that nuclear iASPP is enriched in the highly metastatic PCa cells. Nuclear iASPP is often detected in PCa cells located at the invasive leading edge in vivo. Increased iASPP expression associated with metastatic disease and PCa-specific death in a clinical cohort with long-term follow-up. These results suggest that iASPP function is required to maintain the expression of p63 in normal basal prostate epithelium, and nuclear iASPP may inactivate p53 function and facilitate PCa progression. Thus iASPP expression may act as a predictive marker of PCa progression. PMID:25341046

  6. Osteoarthritis disease progression model using six year follow-up data from the osteoarthritis initiative.

    PubMed

    Passey, Chaitali; Kimko, Holly; Nandy, Partha; Kagan, Leonid

    2015-03-01

    The objective was to develop a quantitative model of disease progression of knee osteoarthritis over 6 years using the total WOMAC score from patients enrolled into the Osteoarthritis Initiative (OAI) study. The analysis was performed using data from the Osteoarthritis Initiative database. The time course of the total WOMAC score of patients enrolled into the progression cohort was characterized using non-linear mixed effect modeling in NONMEM. The effect of covariates on the status of the disease and the progression rate was investigated. The final model provided a good description of the experimental data using a linear progression model with a common baseline (19 units of the total WOMAC score). The WOMAC score decreased by 1.77 units/year in 89% of the population or increased by 1.74 units/year in 11% of the population. Multiple covariates were found to affect the baseline and the rate of progression, including BMI, sex, race, the use of pain medications, and the limitation in activity due to symptoms. A mathematical model to describe the disease progression of osteoarthritis in the studied population was developed. The model identified two sub-populations with increasing or decreasing total WOMAC score over time, and the effect of important covariates was quantified.

  7. 48 CFR 32.503-3 - Initiation of progress payments and review of accounting system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... payments and review of accounting system. 32.503-3 Section 32.503-3 Federal Acquisition Regulations System... on Costs 32.503-3 Initiation of progress payments and review of accounting system. (a) For..., (2) possessed of an adequate accounting system and controls, and (3) in sound financial...

  8. Does colon cancer ever metastasize to bone first? a temporal analysis of colorectal cancer progression

    PubMed Central

    2009-01-01

    Background It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. Methods We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. Results No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does. PMID:19664211

  9. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  10. Sorafenib Improves Progression-Free Survival in Some Patients with Metastatic Thyroid Cancer

    MedlinePlus

    ... of Endocrine & Neuroendocrine Neoplasias Research Sorafenib Improves Progression-Free Survival in Some Patients with Metastatic Thyroid Cancer ... starting treatment without their disease getting worse ( progression-free survival ), as assessed by independent review. Secondary endpoints ...

  11. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases.

    PubMed

    Tabarés-Seisdedos, Rafael; Dumont, Nancy; Baudot, Anaïs; Valderas, Jose M; Climent, Joan; Valencia, Alfonso; Crespo-Facorro, Benedicto; Vieta, Eduard; Gómez-Beneyto, Manuel; Martínez, Salvador; Rubenstein, John L

    2011-06-01

    In the past 5 years, several leading groups have attempted to explain why individuals with Down's syndrome have a reduced risk of many solid tumours and an increased risk of leukaemia and testicular cancer. Niels Bohr, the Danish physicist, noted that a paradox could initiate progress. We think that the paradox of a medical disorder protecting against cancer could be formalised in a new model of inverse cancer morbidity in people with other serious diseases. In this Personal View, we review evidence from epidemiological and clinical studies that supports a consistently lower than expected occurrence of cancer in patients with Down's syndrome, Parkinson's disease, schizophrenia, diabetes, Alzheimer's disease, multiple sclerosis, and anorexia nervosa. Intriguingly, most comorbidities are neuropsychiatric or CNS disorders. We provide a brief overview of evidence indicating genetic and molecular connections between cancer and these complex diseases. Inverse comorbidity could be a valuable model to investigate common or related pathways or processes and test new therapies, but, most importantly, to understand why certain people are protected from the malignancy.

  12. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases.

    PubMed

    Tabarés-Seisdedos, Rafael; Dumont, Nancy; Baudot, Anaïs; Valderas, Jose M; Climent, Joan; Valencia, Alfonso; Crespo-Facorro, Benedicto; Vieta, Eduard; Gómez-Beneyto, Manuel; Martínez, Salvador; Rubenstein, John L

    2011-06-01

    In the past 5 years, several leading groups have attempted to explain why individuals with Down's syndrome have a reduced risk of many solid tumours and an increased risk of leukaemia and testicular cancer. Niels Bohr, the Danish physicist, noted that a paradox could initiate progress. We think that the paradox of a medical disorder protecting against cancer could be formalised in a new model of inverse cancer morbidity in people with other serious diseases. In this Personal View, we review evidence from epidemiological and clinical studies that supports a consistently lower than expected occurrence of cancer in patients with Down's syndrome, Parkinson's disease, schizophrenia, diabetes, Alzheimer's disease, multiple sclerosis, and anorexia nervosa. Intriguingly, most comorbidities are neuropsychiatric or CNS disorders. We provide a brief overview of evidence indicating genetic and molecular connections between cancer and these complex diseases. Inverse comorbidity could be a valuable model to investigate common or related pathways or processes and test new therapies, but, most importantly, to understand why certain people are protected from the malignancy. PMID:21498115

  13. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians.

    PubMed

    Van Cutsem, Eric; Verheul, Henk M W; Flamen, Patrik; Rougier, Philippe; Beets-Tan, Regina; Glynne-Jones, Rob; Seufferlein, Thomas

    2016-01-01

    The use of imaging in colorectal cancer (CRC) has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET) and computed tomography (CT). Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI) is a more versatile technique and dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG)-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner. PMID:27589804

  14. Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment

    PubMed Central

    Zhang, Pengcheng; Hu, Chunhua; Ran, Wei; Meng, Jia; Yin, Qi; Li, Yaping

    2016-01-01

    Treatments of high specificity are desirable for cancer therapy. Light-triggered nanotheranostics (LTN) mediated cancer therapy could be one such treatment, as they make it possible to visualize and treat the tumor specifically in a light-controlled manner with a single injection. Because of their great potential in cancer therapy, many novel and powerful LTNs have been developed, and are mainly prepared from photosensitizers (PSs) ranging from small organic dyes such as porphyrin- and cyanine-based dyes, semiconducting polymers, to inorganic nanomaterials such as gold nanoparticles, transition metal chalcogenides, carbon nanotubes and graphene. Using LTNs and localized irradiation in combination, complete tumor ablation could be achieved in tumor-bearing animal models without causing significant toxicity. Given their great advances and promising future, we herein review LTNs that have been tested in vivo with a highlight on progress that has been made in the past a couple of years. The current challenges faced by these LTNs are also briefly discussed. PMID:27217830

  15. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians

    PubMed Central

    Van Cutsem, Eric; Verheul, Henk M. W.; Flamen, Patrik; Rougier, Philippe; Beets-Tan, Regina; Glynne-Jones, Rob; Seufferlein, Thomas

    2016-01-01

    The use of imaging in colorectal cancer (CRC) has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET) and computed tomography (CT). Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI) is a more versatile technique and dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG)-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner. PMID:27589804

  16. Tumor-derived exosomes in cancer progression and treatment failure.

    PubMed

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  17. Tumor-derived exosomes in cancer progression and treatment failure.

    PubMed

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  18. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression?

    PubMed Central

    Petrosyan, Armen

    2015-01-01

    The Golgi apparatus-complex is a highly dynamic organelle which is considered the “heart” of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the “black reaction,” and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins. PMID:27064441

  19. Dual roles of PARP-1 promote cancer growth and progression

    PubMed Central

    Schiewer, Matthew J.; Goodwin, Jonathan F.; Han, Sumin; Brenner, J. Chad; Augello, Michael A.; Dean, Jeffry L.; Liu, Fengzhi; Planck, Jamie L.; Ravindranathan, Preethi; Chinnaiyan, Arul M.; McCue, Peter; Gomella, Leonard G.; Raj, Ganesh V.; Dicker, Adam P.; Brody, Jonathan R.; Pascal, John M.; Centenera, Margaret M.; Butler, Lisa M.; Tilley, Wayne D.; Feng, Felix Y.; Knudsen, Karen E.

    2012-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair, and also functions as a context-specific regulator of transcription factors. Using multiple models, data demonstrate that PARP-1 elicits pro-tumorigenic effects in androgen receptor (AR)-positive prostate cancer (PCa) cells, both in the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function. It was further confirmed in genetically-defined systems that PARP-1 supports AR transcriptional function, and that in models of advanced PCa, PARP-1 enzymatic activity is enhanced, further linking PARP-1 to AR activity and disease progression. In vivo analyses demonstrate that PARP-1 activity is required for AR function in xenograft tumors, as well as tumor cell growth in vivo and generation and maintenance of castration-resistance. Finally, in a novel explant system of primary human tumors, targeting PARP-1 potently suppresses tumor cell proliferation. Collectively, these studies identify novel functions of PARP-1 in promoting disease progression, and ultimately suggest that the dual functions of PARP-1 can be targeted in human PCa to suppress tumor growth and progression to castration-resistance. PMID:22993403

  20. The Role of Sarcosine Metabolism in Prostate Cancer Progression12

    PubMed Central

    Khan, Amjad P; Rajendiran, Thekkelnaycke M; Ateeq, Bushra; Asangani, Irfan A; Athanikar, Jyoti N; Yocum, Anastasia K; Mehra, Rohit; Siddiqui, Javed; Palapattu, Ganesh; Wei, John T; Michailidis, George; Sreekumar, Arun; Chinnaiyan, Arul M

    2013-01-01

    Metabolomic profiling of prostate cancer (PCa) progression identified markedly elevated levels of sarcosine (N-methyl glycine) in metastatic PCa and modest but significant elevation of the metabolite in PCa urine. Here, we examine the role of key enzymes associated with sarcosine metabolism in PCa progression. Consistent with our earlier report, sarcosine levels were significantly elevated in PCa urine sediments compared to controls, with a modest area under the receiver operating characteristic curve of 0.71. In addition, the expression of sarcosine biosynthetic enzyme, glycine N-methyltransferase (GNMT), was elevated in PCa tissues, while sarcosine dehydrogenase (SARDH) and pipecolic acid oxidase (PIPOX), which metabolize sarcosine, were reduced in prostate tumors. Consistent with this, GNMT promoted the oncogenic potential of prostate cells by facilitating sarcosine production, while SARDH and PIPOX reduced the oncogenic potential of prostate cells by metabolizing sarcosine. Accordingly, addition of sarcosine, but not glycine or alanine, induced invasion and intravasation in an in vivo PCa model. In contrast, GNMT knockdown or SARDH overexpression in PCa xenografts inhibited tumor growth. Taken together, these studies substantiate the role of sarcosine in PCa progression. PMID:23633921

  1. The role of sarcosine metabolism in prostate cancer progression.

    PubMed

    Khan, Amjad P; Rajendiran, Thekkelnaycke M; Ateeq, Bushra; Asangani, Irfan A; Athanikar, Jyoti N; Yocum, Anastasia K; Mehra, Rohit; Siddiqui, Javed; Palapattu, Ganesh; Wei, John T; Michailidis, George; Sreekumar, Arun; Chinnaiyan, Arul M

    2013-05-01

    Metabolomic profiling of prostate cancer (PCa) progression identified markedly elevated levels of sarcosine (N-methyl glycine) in metastatic PCa and modest but significant elevation of the metabolite in PCa urine. Here, we examine the role of key enzymes associated with sarcosine metabolism in PCa progression. Consistent with our earlier report, sarcosine levels were significantly elevated in PCa urine sediments compared to controls, with a modest area under the receiver operating characteristic curve of 0.71. In addition, the expression of sarcosine biosynthetic enzyme, glycine N-methyltransferase (GNMT), was elevated in PCa tissues, while sarcosine dehydrogenase (SARDH) and pipecolic acid oxidase (PIPOX), which metabolize sarcosine, were reduced in prostate tumors. Consistent with this, GNMT promoted the oncogenic potential of prostate cells by facilitating sarcosine production, while SARDH and PIPOX reduced the oncogenic potential of prostate cells by metabolizing sarcosine. Accordingly, addition of sarcosine, but not glycine or alanine, induced invasion and intravasation in an in vivo PCa model. In contrast, GNMT knockdown or SARDH overexpression in PCa xenografts inhibited tumor growth. Taken together, these studies substantiate the role of sarcosine in PCa progression. PMID:23633921

  2. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer.

    PubMed

    Zhang, Yi; Wang, Zhi; Yu, Jin; Shi, Jia zhong; Wang, Chun; Fu, Wei hua; Chen, Zhi wen; Yang, Jin

    2012-09-01

    A variety of cancer stem-like cells (CSCs) have been shown to be responsible for cancer tumorigenicity, relapse and metastasis. Despite several reports demonstrating the presence of CSCs in human bladder cancer, their identities are still under debate, and few studies have examined their roles in cisplatin resistance and related tumor progression. In this study, a subpopulation of CSCs was enriched following cisplatin selection from the bladder cell line T24. The cisplatin-resistant T24 cells displayed a greater self-renewal capacity as demonstrated by higher levels of sphere formation and stem cell marker expression, contained a larger proportion of side population cells and exhibited higher tumorigenicity. They also possessed epithelial-mesenchymal transition characteristics. Furthermore, a strong correlation between the levels of Bmi1 and Nanog expression and the degree of malignancy of urothelial cell carcinomas tissues was observed. We provide the first direct evidence that CSC-like cells exist in the population of cisplatin-resistant bladder cancer cells and may play a role in the progression and drug resistance of bladder cancer. PMID:22343321

  3. The effect of vascular endothelial growth factor in the progression of bladder cancer and diabetic retinopathy

    PubMed Central

    Aldebasi, Yousef H; Rahmani, Arshad H; Khan, Amjad A; Aly, Salah Mesalhy

    2013-01-01

    Bladder cancer and diabetic retinopathy is a major public health and economical burden worldwide. Despite its high prevalence, the molecular mechanisms that induce or develop bladder carcinomas and diabetic retinopathy progression are poorly understood but it might be due to the disturbance in balance between angiogenic factors such as VEGF and antiangiogenic factors such as pigment epithelium derived growth factor. VEGF is one of the important survival factors for endothelial cells in the process of normal physiological and abnormal angiogenesis and induce the expression of antiapoptotic proteins in the endothelial cells. It is also the major initiator of angiogenesis in cancer and diabetic retinopathy, where it is up-regulated by oncogenic expression and different type of growth factors. The alteration in VEGF and VEGF receptors gene and overexpression, determines a diseases phenotype and ultimately the patient’s clinical outcome. However, expressional and molecular studies were made on VEGF to understand the exact mechanism of action in the genesis and progression of bladder carcinoma and diabetic retinopathy , but still how VEGF mechanism involve in such type of disease progression are not well defined. Some other factors also play a significant role in the process of activation of VEGF pathways. Therefore, further detailed analysis via molecular and therapeutic is needed to know the exact mechanisms of VEGF in the angiogenesis pathway. The detection of these types of diseases at an early stage, predict how it will behave and act in response to treatment through regulation of VEGF pathways. The present review aimed to summarize the mechanism of alteration of VEGF gene pathways, which play a vital role in the development and progression of bladder cancer and diabetic retinopathy. PMID:23641300

  4. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  5. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells.

    PubMed

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O'Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  6. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    SciTech Connect

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  7. Role of MTA1 in Cancer Progression and Metastasis

    PubMed Central

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-01-01

    The MTA1 protein contributes to the process of cancer progression and metastasis through multiple genes and protein targets and interacting proteins with roles in transformation, anchorage-independent growth, invasion, survival, DNA-repair, angiogenesis, hormone-independence, metastasis and therapeutic resistance. MTA proteins control a spectrum of cancer promoting processes by modulating the expression of target genes and/or the activity of MTA-interacting proteins. In the case of MTA1, these functions are manifested through post-translational modifications of MTA1 in response to upstream signals, MTA1 interaction with binding proteins and the expression of target gene products. The MTA1 coregulator interacts with nucleosomes through modified histones and is an integrator of extracellular signaling and gene activator. Studies delineating the molecular basis of dual functionality of MTA1 reveal that the functions of MTA1-chromatin modifying complexes in the context of target gene regulation are dynamic in nature. The nature and targets of MTA1-chromatin modifying complexes are also governed by the dynamic plasticity of the nucleosome landscape as well as kinetics of activation and inactivation of enzymes responsible for post-translational modifications on the MTA1 protein. These broadly applicable functions also explain why MTA1 may be a ‘hub’ gene, whose current understanding is limited to selective influences on gene with roles in cancer but further research may reveal a more global influence. Because the deregulation of enzymes and their substrates with roles in MTA1-biology is not necessarily limited to cancer, we speculate that the lessons from MTA1 as a prototype dual master coregulator will be relevant for other human diseases. In this context, the concept of the dynamic nature of corepressor versus coactivator complexes and the MTA1 proteome as a function of time to signal is likely to be generally applicable to other multi-proteins regulatory complexes

  8. Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression.

    PubMed

    Weigert, Andreas; Mora, Javier; Sekar, Divya; Syed, Shahzad; Brüne, Bernhard

    2016-01-01

    Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence. PMID:27558823

  9. Changes in cellular mechanical properties during onset or progression of colorectal cancer

    PubMed Central

    Ciasca, Gabriele; Papi, Massimiliano; Minelli, Eleonora; Palmieri, Valentina; De Spirito, Marco

    2016-01-01

    Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC.

  10. Changes in cellular mechanical properties during onset or progression of colorectal cancer

    PubMed Central

    Ciasca, Gabriele; Papi, Massimiliano; Minelli, Eleonora; Palmieri, Valentina; De Spirito, Marco

    2016-01-01

    Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC. PMID:27621568

  11. Changes in cellular mechanical properties during onset or progression of colorectal cancer.

    PubMed

    Ciasca, Gabriele; Papi, Massimiliano; Minelli, Eleonora; Palmieri, Valentina; De Spirito, Marco

    2016-08-28

    Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC. PMID:27621568

  12. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  13. Long Island Breast Cancer Study Project (Past Initiative)

    Cancer.gov

    The Long Island Breast Cancer Study Project is a multistudy effort to investigate whether environmental factors are responsible for breast cancer in Suffolk and Nassau counties, NY, as well as in Schoharie County, NY, and Tolland County, CT.

  14. Implementation of Timeline Reforms Speeds Initiation of National Cancer Institute–Sponsored Trials

    PubMed Central

    2013-01-01

    Background The National Cancer Institute (NCI) organized the Operational Efficiency Working Group in 2008 to develop recommendations for improving the speed with which NCI-sponsored clinical trials move from the idea stage to a protocol open to patient enrollment. Methods Given the many stakeholders involved, the Operational Efficiency Working Group advised a multifaceted approach to mobilize the entire research community to improve their business processes. New staff positions to monitor progress, protocol-tracking Web sites, and strategically planned conference calls were implemented. NCI staff and clinical teams at Cooperative Groups and Cancer Centers strived to achieve new target timelines but, most important, agreed to abide by absolute deadlines. For phase I–II studies and phase III studies, the target timelines are 7 months and 10 months, whereas the absolute deadlines were set at 18 and 24 months, respectively. Trials not activated by the absolute deadline are automatically disapproved. Results The initial experience is encouraging and indicates a reduction in development times for phase I–II studies from the historical median of 541 days to a median of 442 days, an 18.3% decrease. The experience with phase III studies to date, although more limited (n = 25), demonstrates a 45.7% decrease in median days. Conclusions Based upon this progress, the NCI and the investigator community have agreed to reduce the absolute deadlines to 15 and 18 months for phase I–II and III trials, respectively. Emphasis on initiating trials rapidly is likely to help reduce the time it takes for clinical trial results to reach patients in need of new treatments. PMID:23776198

  15. In situ quantification of genomic instability in breast cancer progression

    SciTech Connect

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  16. Numerical indices based on circulating tumor DNA for the evaluation of therapeutic response and disease progression in lung cancer patients

    PubMed Central

    Kato, Kikuya; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Imamura, Fumio

    2016-01-01

    Monitoring of disease/therapeutic conditions is an important application of circulating tumor DNA (ctDNA). We devised numerical indices, based on ctDNA dynamics, for therapeutic response and disease progression. 52 lung cancer patients subjected to the EGFR-TKI treatment were prospectively collected, and ctDNA levels represented by the activating and T790M mutations were measured using deep sequencing. Typically, ctDNA levels decreased sharply upon initiation of EGFR-TKI, however this did not occur in progressive disease (PD) cases. All 3 PD cases at initiation of EGFR-TKI were separated from other 27 cases in a two-dimensional space generated by the ratio of the ctDNA levels before and after therapy initiation (mutation allele ratio in therapy, MART) and the average ctDNA level. For responses to various agents after disease progression, PD/stable disease cases were separated from partial response cases using MART (accuracy, 94.7%; 95% CI, 73.5–100). For disease progression, the initiation of ctDNA elevation (initial positive point) was compared with the onset of objective disease progression. In 11 out of 28 eligible patients, both occurred within ±100 day range, suggesting a detection of the same change in disease condition. Our numerical indices have potential applicability in clinical practice, pending confirmation with designed prospective studies. PMID:27381430

  17. Progression in substance use initiation: A multilevel discordant monozygotic twin design.

    PubMed

    Richmond-Rakerd, Leah S; Slutske, Wendy S; Deutsch, Arielle R; Lynskey, Michael T; Agrawal, Arpana; Madden, Pamela A F; Bucholz, Kathleen K; Heath, Andrew C; Martin, Nicholas G

    2015-08-01

    Considerable attention has been paid to the "gateway" pattern of drug use initiation in which individuals progress from tobacco and alcohol use to cannabis and other illicit drugs. The extent to which this sequence reflects a causal impact of licit substance use on illicit substance involvement remains unclear. Clarifying the mechanisms underlying substance use initiation may help inform our understanding of risk for psychopathology, as increasing research is demonstrating associations between initiation patterns and heavier involvement. This study examined patterns of substance use initiation using a discordant twin design. Participants were 3,476 monozygotic twins (37% male) from the Australian Twin Registry who reported on their ages of tobacco, alcohol, and cannabis initiation. Multilevel proportional hazard regression models were used to (a) estimate within-twin-pair and between-twin-pair contributions to associations between the ages of onset of different drugs; and (b) examine whether the magnitude of effects differed as a function of the order of substance use initiation. Finding significant effects within twin pairs would support the hypothesis that the age of initiation of a substance causally influences the age of initiation of a subsequent substance. Finding significant effects between twin pairs would support the operation of familial influences that explain variation in the ages of initiation of multiple drugs. Within-twin-pair effects for typical patterns were modest. When initiation was atypical, however, larger within-twin-pair effects were observed and causal influences were more strongly implicated. Results support the utility of examining the timing and ordering of substance use initiation within sophisticated, genetically informative designs. PMID:26098047

  18. Progression in Substance Use Initiation: A Multilevel Discordant Monozygotic Twin Design

    PubMed Central

    Richmond-Rakerd, Leah S.; Slutske, Wendy S.; Deutsch, Arielle R.; Lynskey, Michael T.; Agrawal, Arpana; Madden, Pamela A.F.; Bucholz, Kathleen K.; Heath, Andrew C.; Martin, Nicholas G.

    2015-01-01

    Considerable attention has been paid to the “gateway” pattern of drug use initiation in which individuals progress from tobacco and alcohol use to cannabis and other illicit drugs. The extent to which this sequence reflects a causal impact of licit substance use on illicit substance involvement remains unclear. Clarifying the mechanisms underlying substance use initiation may help inform our understanding of risk for psychopathology, as increasing research is demonstrating associations between initiation patterns and heavier involvement. This study examined patterns of substance use initiation using a discordant twin design. Participants were 3,476 monozygotic twins (37% male) from the Australian Twin Registry who reported on their ages of tobacco, alcohol, and cannabis initiation. Multilevel proportional hazard regression models were employed to (a) estimate within-twin-pair and between-twin-pair contributions to associations between the ages of onset of different drugs; and (b) examine whether the magnitude of effects differed as a function of the order of substance use initiation. Finding significant effects within twin pairs would support the hypothesis that the age of initiation of one substance causally influences the age of initiation of a subsequent substance. Finding significant effects between twin pairs would support the operation of familial influences that explain variation in the ages of initiation of multiple drugs. Within-twin-pair effects for typical patterns were modest. When initiation was atypical, however, larger within-twin-pair effects were observed and causal influences were more strongly implicated. Results support the utility of examining the timing and ordering of substance use initiation within sophisticated, genetically informative designs. PMID:26098047

  19. Connexin's Connection in Breast Cancer Growth and Progression

    PubMed Central

    2016-01-01

    Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease. PMID:27642298

  20. Connexin's Connection in Breast Cancer Growth and Progression

    PubMed Central

    2016-01-01

    Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease.

  1. Connexin's Connection in Breast Cancer Growth and Progression.

    PubMed

    Banerjee, Debarshi

    2016-01-01

    Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease. PMID:27642298

  2. Interleukin 1β—A Potential Salivary Biomarker for Cancer Progression?

    PubMed Central

    Idris, Adi; Ghazali, Nur B; Koh, David

    2015-01-01

    The relationship between cancer and inflammation is a complex but intimate one. Decades of work has shown to us that cancer progression is influenced by a multitude of factors, including genetic, environmental, and immunological factors. We often overlook that cancer progression is also a pathological consequence of a dysregulated inflammatory control in the body. A current emerging topic in cancer research is the role of inflammasomes in carcinogenesis. The inflammasome is a multicomplex protein platform that when activated results in the release of proinflammatory cytokines, such as interleukin (IL)-1β. There is increasing evidence suggesting that IL-1β plays a pivotal role in cancer progression. This short review proposes the possibility of using IL-1β as a potential cancer progression biomarker and discusses the use of saliva as a model biological fluid for measuring physiological IL-1β levels in the body. PMID:26244033

  3. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer

    PubMed Central

    Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. PMID:25844044

  4. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C. D.; Sokolov, I.

    2015-03-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.

  5. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression

    PubMed Central

    Homma, Miwako Kato; Wada, Ikuo; Suzuki, Toshiyuki; Yamaki, Junko; Krebs, Edwin G.; Homma, Yoshimi

    2005-01-01

    Casein kinase 2 (CK2) is a ubiquitous eukaryotic Ser/Thr protein kinase that plays an important role in cell cycle progression. Although its function in this process remains unclear, it is known to be required for the G1 and G2/M phase transitions in yeast. Here, we show that CK2 activity changes notably during cell cycle progression and is increased within 3 h of serum stimulation of quiescent cells. During the time period in which it exhibits high enzymatic activity, CK2 associates with and phosphorylates a key molecule for translation initiation, eukaryotic translation initiation factor (eIF) 5. Using MS, we show that Ser-389 and -390 of eIF5 are major sites of phosphorylation by CK2. This is confirmed using eIF5 mutants that lack CK2 sites; the phosphorylation levels of mutant eIF5 proteins are significantly reduced, relative to WT eIF5, both in vitro and in vivo. Expression of these mutants reveals that they have a dominant-negative effect on phosphorylation of endogenous eIF5, and that they perturb synchronous progression of cells through S to M phase, resulting in a significant reduction in growth rate. Furthermore, the formation of mature eIF5/eIF2/eIF3 complex is reduced in these cells, and, in fact, restricted diffusional motion of WT eIF5 was almost abolished in a GFP-tagged eIF5 mutant lacking CK2 phosphorylation sites, as measured by fluorescence correlation spectroscopy. These results suggest that CK2 may be involved in the regulation of cell cycle progression by associating with and phosphorylating a key molecule for translation initiation. PMID:16227438

  6. Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells.

    PubMed

    Yu, Xiaojun; Zheng, Bo'an; Chai, Rui

    2014-12-12

    Dysregulation of protein synthesis is emerging as a major contributory factor in cancer development. eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 (eukaryotic translation initiation factor 3) family, which is essential for initiation of protein synthesis in eukaryotic cells. Acquaintance with eIF3D is little since it has been identified as a dispensable subunit of eIF3 complex. Recently, eIF3D was found to embed somatic mutations in human colorectal cancers, indicating its importance for tumour progression. To further probe into its action in colon cancer, we utilized lentivirus-mediated RNA interference to knock down eIF3D expression in one colon cancer cell line HCT116. Knockdown of eIF3D in HCT116 cells significantly inhibited cell proliferation and colony formation in vitro. Flow cytometry analysis indicated that depletion of eIF3D led to cell-cycle arrest in the G2/M phase, and induced an excess accumulation of HCT116 cells in the sub-G1 phase representing apoptotic cells. Signalling pathways responsible for cell growth and apoptosis have also been found altered after eIF3D silencing, such as AMPKα (AMP-activated protein kinase alpha), Bad, PRAS40 [proline-rich Akt (PKB) substrate of 40 kDa], SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase), GSK3β and PARP [poly(ADP-ribose) polymerase]. Taken together, these findings suggest that eIF3D might play an important role in colon cancer progression.

  7. FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7

    PubMed Central

    Bai, Yu-Pan; Shang, Kun; Chen, Huan; Ding, Fei; Wang, Zhen; Liang, Chen; Xu, Ye; Sun, Meng-Hong; LI, Ying-Yi

    2015-01-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in the tumor stroma, are important modifiers of tumour progression. In the present study, we observed that azoxymethane and dextran sodium sulfate treatments induced increasingly severe colorectal mucosal inflammation and the intratumoural accumulation of CAFs. Fibroblast growth factor (FGF)-1 and FGF-3 were detected in infiltrating cells, and FGFR4, the specific receptor for FGF-1 and FGF-3, was detected in colon cancer tissues. The phosphorylation of FGFR4 enhanced the production of metalloproteinase (MMP)-7 and mitogen-activated protein kinase kinase (Mek)/extracellular signal-regulated kinase (Erk), which was accompanied by excessive vessel generation and cell proliferation. Moreover, we separated CAFs, pericarcinoma fibroblasts (PFs), and normal fibroblasts (NFs) from human colon tissue specimens to characterize the function of CAFs. We observed that CAFs secrete more FGF-1/-3 than NFs and PFs and promote cancer cell growth and angiogenesis through the activation of FGFR4, which is followed by the activation of Mek/Erk and the modulation of MMP-7 expression. The administration of FGF-1/-3-neutralizing antibodies or the treatment of cells with FGFR4 siRNA or the FGFR4 inhibitor PD173074 markedly suppressed colon cancer cell proliferation and neovascularization. These observations suggest a crucial role for CAFs and FGF signaling in the initiation and progression of colorectal cancer. The inhibition of the FGF signaling pathway may be a useful strategy for the treatment of colon cancer. PMID:26183471

  8. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-01

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  9. Observation of the initiation and progression of damage in compressively loaded composite plates containing a cutout

    NASA Technical Reports Server (NTRS)

    Waas, A.; Babcock, C., Jr.

    1986-01-01

    A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.

  10. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression

    PubMed Central

    Reavie, Linsey; Buckley, Shannon M.; Loizou, Evangelia; Takeishi, Shoichiro; Aranda-Orgilles, Beatriz; Ndiaye-Lobry, Delphine; Abdel-Wahab, Omar; Ibrahim, Sherif; Nakayama, Keiichi I.; Aifantis, Iannis

    2013-01-01

    The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML), as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis and the eventual inhibition of tumor progression. Decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML. PMID:23518350

  11. [Research hotspot and progress of preoperative chemoradiotherapy for rectal cancer].

    PubMed

    Peng, Jianhong; Pan, Zhizhong

    2016-06-01

    Preoperative chemoradiotherapy (CRT) has become an important component of comprehensive treatment for rectal cancer. Although local recurrent risk has been remarkably reduced by CRT, distant metastasis remains the main cause of therapeutic failure. Therefore, more and more studies focused on controlling distant metastasis in order to prolong long-term survival. Recently, CRT has achieved certain progression in rectal cancer: (1)Patients with stage T3 should be classified into specific subgroups to formulate individualized treatment regimen. For stage T3a, it is feasible to perform surgery alone or administrate low intensity preoperative CRT; for stage T3b and T3c, conventional preoperative CRT should be performed in order to reduce the risk of recurrence postoperatively. (2)With regard to combined regimen for chemotherapy, oral capecitabine superiors to intravenous bolus 5-fluorouracil (5-FU) and is comparable to continuous intravenous infusion 5-FU with a better safety. Therefore, capecitabine is recommended for older patients and those with poor tolerance to chemotherapy. Compared to single 5-FU concurrent CRT, addition of oxaliplatin into preoperative CRT may result in a higher survival benefit in Chinese patients. As to the application of irinotecan, bevacizumab or cetuximab, unless there are more evidence to confirm their efficacy and safety from randomized controlled trial, they should not be recommended for adding to preoperative CRT routinely. (3)On the optimization in CRT pattern, the application values of induction chemotherapy before concurrent CRT, consolidation chemotherapy after concurrent CRT, neoadjuvant sandwich CRT, neoadjuvant chemotherapy alone and short-course preoperative radiotherapy remain further exploration. (4)On the treatment strategy for clinical complete response (cCR) after CRT, whether "wait and see" strategy is able to be adopted, it is still a hot topic with controversy. PMID:27353093

  12. Circular RNA: a novel biomarker for progressive laryngeal cancer

    PubMed Central

    Xuan, Lijia; Qu, Lingmei; Zhou, Han; Wang, Peng; Yu, Haoyang; Wu, Tianyi; Wang, Xin; Li, Qiuying; Tian, Linli; Liu, Ming; Sun, Yanan

    2016-01-01

    Circular RNAs (circRNAs), a class of endogenous RNAs, are characterized by covalently closed continuous loop without 5’ to 3’ polarity and polyadenylated tail. Recent studies indicated that circRNAs might play an important role in cancer. However, the function of circRNA in laryngeal squamous cell cancer tissues (LSCC) is still unknown. In this study, we investigated the expression of circRNAs in 4 paired LSCC tissues and adjacent non-tumor tissues by microarray analysis. Results showed significant upregulation (n = 302) of or downregulation (n = 396) of 698 circRNAs in LSCC tissues. We further detected hsa_circRNA_100855 as the most upregulated circRNA and hsa_circRNA_104912 as the most downregulated circRNA using qRT-PCR methods. Results showed that hsa_circRNA_100855 level was significantly higher in LSCC than in the corresponding adjacent non-neoplastic tissues. Patients with T3-4 stage, neck nodal metastasis or advanced clinical stage had higher hsa_circRNA_100855 expression. The hsa_circRNA_104912 level was significantly lower in LSCC than in corresponding adjacent non-neoplastic tissues. Patients with T3-4 stage, neck nodal metastasis, poor differentiation or advanced clinical stage had a lower hsa_circRNA_104912 expression. Overall, our data suggest that circRNAs play an important role in the tumorigenesis of LSCC and may serve as novel and stable biomarkers for the diagnosis and progress of LSCC. PMID:27158380

  13. n-Butyl Benzyl Phthalate Promotes Breast Cancer Progression by Inducing Expression of Lymphoid Enhancer Factor 1

    PubMed Central

    Hsieh, Tsung-Hua; Tsai, Cheng-Fang; Hsu, Chia-Yi; Kuo, Po-Lin; Hsi, Edward; Suen, Jau-Ling; Hung, Chih-Hsing; Lee, Jau-Nan; Chai, Chee-Yin; Wang, Shao-Chun; Tsai, Eing-Mei

    2012-01-01

    Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP), on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d). A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer. PMID:22905168

  14. Alterations of the apical junctional complex and actin cytoskeleton and their role in colorectal cancer progression

    PubMed Central

    Gehren, Adriana Sartorio; Rocha, Murilo Ramos; de Souza, Waldemir Fernandes; Morgado-Díaz, José Andrés

    2015-01-01

    Colorectal cancer represents the fourth highest mortality rate among cancer types worldwide. An understanding of the molecular mechanisms that regulate their progression can prevents or reduces mortality due to this disease. Epithelial cells present an apical junctional complex connected to the actin cytoskeleton, which maintains the dynamic properties of this complex, tissue architecture and cell homeostasis. Several studies have indicated that apical junctional complex alterations and actin cytoskeleton disorganization play a critical role in epithelial cancer progression. However, few studies have examined the existence of an interrelation between these 2 components, particularly in colorectal cancer. This review discusses the recent progress toward elucidating the role of alterations of apical junctional complex constituents and of modifications of actin cytoskeleton organization and discusses how these events are interlinked to modulate cellular responses related to colorectal cancer progression toward successful metastasis. PMID:26451338

  15. Serological Monitoring Is Key To Sustain Progress of the Maternal and Neonatal Tetanus Elimination Initiative.

    PubMed

    Levine, Myron M; Pasetti, Marcela F

    2016-07-01

    In this issue of Clinical and Vaccine Immunology, Scobie and colleagues (H. M. Scobie et al., Clin Vaccine Immunol 23:546-554, 2016, http://dx.doi.org/10.1128/CVI.00052-16) report a nationwide serosurvey of tetanus immunity in >2,000 Cambodian women of child-bearing age to monitor progress toward maternal and neonatal tetanus elimination. This commentary discusses vaccines as interventions for disease control, elimination, and eradication and emphasizes the importance of the tools needed to monitor the effectiveness of initiatives that deliver the vaccines programmatically. PMID:27226278

  16. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    PubMed Central

    Loomans, Holli A.; Andl, Claudia D.

    2014-01-01

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion. PMID:25560921

  17. Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression.

    PubMed

    Liu, Che-Ming; Hsieh, Chia-Ling; Shen, Chia-Ning; Lin, Cheng-Chieh; Shigemura, Katsumi; Sung, Shian-Ying

    2016-09-01

    Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells. PMID:27397852

  18. GGAP2/PIKE-A directly activates both the Akt and NF-κB pathways and promotes prostate cancer progression

    PubMed Central

    Cai, Yi; Wang, Jianghua; Li, Rile; Ayala, Gustavo; Ittmann, Michael; Liu, Mingyao

    2009-01-01

    GGAP2/PIKE-A is a GTP-binding protein which can enhance Akt activity. Increased activation of the AKT and NF-κB pathways have been identified as critical steps in cancer initiation and progression in a variety of human cancers. We have found significantly increased expression GGAP2 in the majority of human prostate cancers and GGAP2 expression increases Akt activation in prostate cancer cells. Thus increased GGAP2 expression is a common mechanism for enhancing the activity of the Akt pathway in prostate cancers. In addition, we have found that activated Akt can bind and phosphorylate GGAP2 at serine 629, which enhances GTP binding by GGAP2. Phosphorylated GGAP2 can bind the p50 subunit of NF-κB and enhances NF-κB transcriptional activity. When expressed in prostate cancer cells, GGAP2 enhances proliferation, foci formation and tumor progression in vivo. Thus increased GGAP2 expression, which is present in three quarters of human prostate cancers, can activate two critical pathways that have been linked to prostate cancer initiation and progression. PMID:19176382

  19. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  20. The many faces of neuroendocrine differentiation in prostate cancer progression.

    PubMed

    Terry, Stéphane; Beltran, Himisha

    2014-01-01

    In normal prostate, neuroendocrine (NE) cells are rare and interspersed among the epithelium. These cells are believed to provide trophic signals to epithelial cell populations through the secretion of an abundance of neuropeptides that can diffuse to influence surrounding cells. In the setting of prostate cancer (PC), NE cells can also stimulate surrounding prostate adenocarcinoma cell growth, but in some cases adenocarcinoma cells themselves acquire NE characteristics. This epithelial plasticity is associated with decreased androgen receptor (AR) signaling and the accumulation of neuronal and stem cell characteristics. Transformation to an NE phenotype is one proposed mechanism of resistance to contemporary AR-targeted treatments, is associated with poor prognosis, and thought to represent up to 25% of lethal PCs. Importantly, the advent of high-throughput technologies has started to provide clues for understanding the complex molecular profiles of tumors exhibiting NE differentiation. Here, we discuss these recent advances, the multifaceted manner by which an NE-like state may arise during the different stages of disease progression, and the potential benefit of this knowledge for the management of patients with advanced PC. PMID:24724054

  1. Tristetraprolin inhibits gastric cancer progression through suppression of IL-33

    PubMed Central

    Deng, Kaiyuan; Wang, Hao; Shan, Ting; Chen, Yigang; Zhou, Hong; Zhao, Qin; Xia, Jiazeng

    2016-01-01

    Tristetraprolin (TTP) is an adenine/uridine (AU)-rich element (ARE)-binding protein that can induce degradation of mRNAs. In this study, we report that TTP suppresses the expression of interleukin-33 (IL-33), a tumor-promoting inflammatory cytokine, and thereby inhibits the progression of gastric cancer (GC). Overexpression of TTP decreased the level of IL-33, whereas knockdown of TTP increased IL-33 levels. We also discovered that TTP inhibited the proliferation, migration, and invasion of GC cell lines through regulation of IL-33. Furthermore, TTP RNA and protein levels were remarkably reduced in GC and inversely correlated with IL-33 level, and they were also closely associated with depth of invasion, lymph node metastasis, advanced TNM stage, as well as survival rate. Taken together, these findings identified TTP as a downregulator of IL-33, and further suggest that TTP can serve as a novel biomarker for the diagnosis of GC and as a potential therapeutic target for GC treatment. PMID:27074834

  2. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression

    PubMed Central

    Lucas, Morghan C.; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  3. The Project Data Sphere Initiative: Accelerating Cancer Research by Sharing Data

    PubMed Central

    Reeder-Hayes, Katherine E.; Corty, Robert W.; Basch, Ethan; Milowsky, Mathew I.; Dusetzina, Stacie B.; Bennett, Antonia V.; Wood, William A.

    2015-01-01

    Background. In this paper, we provide background and context regarding the potential for a new data-sharing platform, the Project Data Sphere (PDS) initiative, funded by financial and in-kind contributions from the CEO Roundtable on Cancer, to transform cancer research and improve patient outcomes. Given the relatively modest decline in cancer death rates over the past several years, a new research paradigm is needed to accelerate therapeutic approaches for oncologic diseases. Phase III clinical trials generate large volumes of potentially usable information, often on hundreds of patients, including patients treated with standard of care therapies (i.e., controls). Both nationally and internationally, a variety of stakeholders have pursued data-sharing efforts to make individual patient-level clinical trial data available to the scientific research community. Potential Benefits and Risks of Data Sharing. For researchers, shared data have the potential to foster a more collaborative environment, to answer research questions in a shorter time frame than traditional randomized control trials, to reduce duplication of effort, and to improve efficiency. For industry participants, use of trial data to answer additional clinical questions could increase research and development efficiency and guide future projects through validation of surrogate end points, development of prognostic or predictive models, selection of patients for phase II trials, stratification in phase III studies, and identification of patient subgroups for development of novel therapies. Data transparency also helps promote a public image of collaboration and altruism among industry participants. For patient participants, data sharing maximizes their contribution to public health and increases access to information that may be used to develop better treatments. Concerns about data-sharing efforts include protection of patient privacy and confidentiality. To alleviate these concerns, data sets are

  4. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance

    PubMed Central

    2014-01-01

    Background Development of resistance to androgen deprivation therapy (ADT) is a major obstacle for the management of advanced prostate cancer. Therapies with androgen receptor (AR) antagonists and androgen withdrawal initially regress tumors but development of compensatory mechanisms including AR bypass signaling leads to re-growth of tumors. MicroRNAs (miRNAs) are small regulatory RNAs that are involved in maintenance of cell homeostasis but are often altered in tumor cells. Results In this study, we determined the association of genome wide miRNA expression (1113 unique miRNAs) with development of resistance to ADT. We used androgen sensitive prostate cancer cells that progressed to ADT and AR antagonist Casodex (CDX) resistance upon androgen withdrawal and treatment with CDX. Validation of expression of a subset of 100 miRNAs led to identification of 43 miRNAs that are significantly altered during progression of cells to treatment resistance. We also show a correlation of altered expression of 10 proteins targeted by some of these miRNAs in these cells. Conclusions We conclude that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade. The cumulative effect of these altered miRNA expression profiles is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance. These early events are driving the transition to castration resistance and cannot be studied in already developed CRPC cell lines or tissues. Furthermore our results can be used a prognostic marker of cancers with a potential to be resistant to ADT. PMID:24387052

  5. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy.

    PubMed

    Park, Soyeun

    2016-06-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.

  6. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy

    PubMed Central

    Park, Soyeun

    2016-01-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs. PMID:27390735

  7. Inactivation of the transcription factor GLI1 accelerates pancreatic cancer progression.

    PubMed

    Mills, Lisa D; Zhang, Lizhi; Marler, Ronald; Svingen, Phyllis; Fernandez-Barrena, Maite G; Dave, Maneesh; Bamlet, William; McWilliams, Robert R; Petersen, Gloria M; Faubion, William; Fernandez-Zapico, Martin E

    2014-06-01

    The role of GLI1 in pancreatic tumor initiation promoting the progression of preneoplastic lesions into tumors is well established. However, its function at later stages of pancreatic carcinogenesis remains poorly understood. To address this issue, we crossed the gli1 knock-out (GKO) animal with cre-dependent pancreatic activation of oncogenic kras concomitant with loss of the tumor suppressor tp53 (KPC). Interestingly, in this model, GLI1 played a tumor-protective function, where survival of GKO/KPC mice was reduced compared with KPC littermates. Both cohorts developed pancreatic cancer without significant histopathological differences in survival studies. However, analysis of mice using ultrasound-based imaging at earlier time points showed increased tumor burden in GKO/KPC mice. These animals have larger tumors, decreased body weight, increased lactate dehydrogenase production, and severe leukopenia. In vivo and in vitro expression studies identified FAS and FAS ligand (FASL) as potential mediators of this phenomenon. The FAS/FASL axis, an apoptotic inducer, plays a role in the progression of pancreatic cancer, where its expression is usually lost or significantly reduced in advanced stages of the disease. Chromatin immunoprecipitation and reporter assays identified FAS and FASL as direct targets of GLI1, whereas GKO/KPC mice showed lower levels of this ligand compared with KPC animals. Finally, decreased levels of apoptosis were detected in tumor tissue in the absence of GLI1 by TUNEL staining. Together, these findings define a novel pathway regulated by GLI1 controlling pancreatic tumor progression and provide a new theoretical framework to help with the design and analysis of trials targeting GLI1-related pathways. PMID:24737325

  8. Cancer stem cells, cancer-initiating cells and methods for their detection.

    PubMed

    Akbari-Birgani, Shiva; Paranjothy, Ted; Zuse, Anna; Janikowski, Tomasz; Cieślar-Pobuda, Artur; Likus, Wirginia; Urasińska, Elżbieta; Schweizer, Frank; Ghavami, Saeid; Klonisch, Thomas; Łos, Marek J

    2016-05-01

    The cancer stem cell (CSC) hypothesis considers CSCs as the main culprits of tumor initiation, propagation, metastasis and therapy failure. CSCs represent a minority subpopulation of cells within a tumor. Their detection, characterization and monitoring are crucial steps toward a better understanding of the biological roles of these special cells in the development and propagation of tumors which, in turn, improves clinical reasoning and treatment options. Nowadays, in vitro and in vivo assays are available that address the self-renewal and differentiation potential of CSCs, and advanced in vivo molecular imaging technology facilitates the detection and provides an unprecedented in vivo observation platform to study the behavior of CSCs in their natural environment. Here, we provide a brief overview of CSCs and describe modern cellular models and labeling techniques to study and trace CSCs. PMID:26976692

  9. Soft drink intake and progression of radiographic knee osteoarthritis: data from the osteoarthritis initiative

    PubMed Central

    Lu, Bing; Ahmad, Oneeb; Zhang, Fang-Fang; Driban, Jeffrey B; Duryea, Jeffrey; Lapane, Kate L; McAlindon, Timothy; Eaton, Charles B

    2013-01-01

    Objectives We examine the prospective association of soft drink consumption with radiographic progression of knee osteoarthritis (OA). Design Prospective cohort study. Setting This study used data from the osteoarthritis initiative (OAI). Participants In OAI, 2149 participants with radiographic knee OA and having dietary data at baseline were followed up to 12, 24, 36 and 48 months. Measures The soft drink consumption was assessed with a Block Brief Food Frequency Questionnaire completed at baseline. To evaluate knee OA progression, we used quantitative medial tibiofemoral joint space width (JSW) based on plain radiographs. The multivariate linear models for repeated measures were used to test the independent association between soft drink intake and the change in JSW over time, while adjusting for body mass index and other potential confounding factors. Results In stratified analyses by gender, we observed a significant dose–response relationship between baseline soft drink intake and adjusted mean change of JSW in men. With increasing levels of soft drink intake (none, ≤1, 2–4 and ≥5 times/week), the mean decreases of JSW were 0.31, 0.39, 0.34 and 0.60 mm, respectively. When we further stratified by obesity, a stronger dose–response relationship was found in non-obese men. In obese men, only the highest soft drink level (≥5 times/week) was associated with increased change in JSW compared with no use. In women, no significant association was observed. Conclusions Our results suggest that frequent consumption of soft drinks may be associated with increased OA progression in men. Replication of these novel findings in other studies demonstrating the reduction in soft drink consumption leads to delay in OA progression is needed. PMID:23872291

  10. Current status and progress of pancreatic cancer in China

    PubMed Central

    Lin, Quan-Jun; Yang, Feng; Jin, Chen; Fu, De-Liang

    2015-01-01

    Cancer is currently one of the most important public health problems in the world. Pancreatic cancer is a fatal disease with poor prognosis. As in most other countries, the health burden of pancreatic cancer in China is increasing, with annual mortality rates almost equal to incidence rates. The increasing trend of pancreatic cancer incidence is more significant in the rural areas than in the urban areas. Annual diagnoses and deaths of pancreatic cancer in China are now beyond the number of cases in the United States. GLOBOCAN 2012 estimates that cases in China account for 19.45% (65727/337872) of all newly diagnosed pancreatic cancer and 19.27% (63662/330391) of all deaths from pancreatic cancer worldwide. The population’s growing socioeconomic status contributes to the rapid increase of China’s proportional contribution to global rates. Here, we present an overview of control programs for pancreatic cancer in China focusing on prevention, early diagnosis and treatment. In addition, we describe key epidemiological, demographic, and socioeconomic differences between China and developed countries. Facts including no nationwide screening program for pancreatic cancer, delay in early detection resulting in a late stage at presentation, lack of awareness of pancreatic cancer in the Chinese population, and low investment compared with other cancer types by government have led to backwardness in China’s pancreatic cancer diagnosis and treatment. Finally, we suggest measures to improve health outcomes of pancreatic cancer patients in China. PMID:26185370

  11. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities.

    PubMed

    DeSantis, Carol E; Siegel, Rebecca L; Sauer, Ann Goding; Miller, Kimberly D; Fedewa, Stacey A; Alcaraz, Kassandra I; Jemal, Ahmedin

    2016-07-01

    In this article, the American Cancer Society provides the estimated number of new cancer cases and deaths for blacks in the United States and the most recent data on cancer incidence, mortality, survival, screening, and risk factors for cancer. Incidence data are from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries, and mortality data are from the National Center for Health Statistics. Approximately 189,910 new cases of cancer and 69,410 cancer deaths will occur among blacks in 2016. Although blacks continue to have higher cancer death rates than whites, the disparity has narrowed for all cancers combined in men and women and for lung and prostate cancers in men. In contrast, the racial gap in death rates has widened for breast cancer in women and remained level for colorectal cancer in men. The reduction in overall cancer death rates since the early 1990s translates to the avoidance of more than 300,000 deaths among blacks. In men, incidence rates from 2003 to 2012 decreased for all cancers combined (by 2.0% per year) as well as for the top 3 cancer sites (prostate, lung, and colorectal). In women, overall rates during the corresponding time period remained unchanged, reflecting increasing trends in breast cancer combined with decreasing trends in lung and colorectal cancer rates. Five-year relative survival is lower for blacks than whites for most cancers at each stage of diagnosis. The extent to which these disparities reflect unequal access to health care versus other factors remains an active area of research. Progress in reducing cancer death rates could be accelerated by ensuring equitable access to prevention, early detection, and high-quality treatment. CA Cancer J Clin 2016;66:290-308. © 2016 American Cancer Society.

  12. Progress through Collaboration - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the areas of sharing proteomics reagents and protocols and also in regulatory science.

  13. Kidney cancer progression linked to shifts in tumor metabolism

    Cancer.gov

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  14. Multivitamin and mineral use and breast cancer mortality in older women with invasive breast cancer in the women's health initiative

    PubMed Central

    McGinn, A. P.; Budrys, N.; Chlebowski, R.; Ho, G. Y.; Johnson, K. C.; Lane, D. S.; Li, W.; Neuhouser, M. L.; Saquib, J.; Shikany, J. M.; Song, Y.; Thomson, C.

    2014-01-01

    Multivitamin use is common in the United States. It is not known whether multivitamins with minerals supplements (MVM) used by women already diagnosed with invasive breast cancer would affect their breast cancer mortality risk. To determine prospectively the effects of MVM use on breast cancer mortality in postmenopausal women diagnosed with invasive breast cancer, a prospective cohort study was conducted of 7,728 women aged 50–79 at enrollment in the women's health initiative (WHI) in 40 clinical sites across the United States diagnosed with incident invasive breast cancer during WHI and followed for a mean of 7.1 years after breast cancer diagnosis. Use of MVM supplements was assessed at WHI baseline visit and at visit closest to breast cancer diagnosis, obtained from vitamin pill bottles brought to clinic visit. Outcome was breast cancer mortality. Hazard ratios and 95 % confidence intervals (CIs) for breast cancer mortality comparing MVM users to non-users were estimated using Cox proportional hazard regression models. Analyses using propensity to take MVM were done to adjust for potential differences in characteristics of MVM users versus non-users. At baseline, 37.8 % of women reported MVM use. After mean post-diagnosis follow-up of 7.1 ± 4.1 (SD) years, there were 518 (6.7 %) deaths from breast cancer. In adjusted analyses, breast cancer mortality was 30 % lower in MVM users as compared to non-users (HR = 0.70; 95 % CI 0.55, 0.91). This association was highly robust and persisted after multiple adjustments for potential confounding variables and in propensity score matched analysis (HR = 0.76; 95 % CI 0.60–0.96). Postmenopausal women with invasive breast cancer using MVM had lower breast cancer mortality than non-users. The results suggest a possible role for daily MVM use in attenuating breast cancer mortality in women with invasive breast cancer but the findings require confirmation. PMID:24104882

  15. PACE Continuous Innovation Indicators-a novel tool to measure progress in cancer treatments.

    PubMed

    Paddock, Silvia; Brum, Lauren; Sorrow, Kathleen; Thomas, Samuel; Spence, Susan; Maulbecker-Armstrong, Catharina; Goodman, Clifford; Peake, Michael; McVie, Gordon; Geipel, Gary; Li, Rose

    2015-01-01

    Concerns about rising health care costs and the often incremental nature of improvements in health outcomes continue to fuel intense debates about 'progress' and 'value' in cancer research. In times of tightening fiscal constraints, it is increasingly important for patients and their representatives to define what constitutes 'value' to them. It is clear that diverse stakeholders have different priorities. Harmonisation of values may be neither possible nor desirable. Stakeholders lack tools to visualise or otherwise express these differences and to track progress in cancer treatments based on variable sets of values. The Patient Access to Cancer care Excellence (PACE) Continuous Innovation Indicators are novel, scientifically rigorous progress trackers that employ a three-step process to quantify progress in cancer treatments: 1) mine the literature to determine the strength of the evidence supporting each treatment; 2) allow users to weight the analysis according to their priorities and values; and 3) calculate Evidence Scores (E-Scores), a novel measure to track progress, based on the strength of the evidence weighted by the assigned value. We herein introduce a novel, flexible value model, show how the values from the model can be used to weight the evidence from the scientific literature to obtain E-Scores, and illustrate how assigning different values to new treatments influences the E-Scores. The Indicators allow users to learn how differing values lead to differing assessments of progress in cancer research and to check whether current incentives for innovation are aligned with their value model. By comparing E-Scores generated by this tool, users are able to visualise the relative pace of innovation across areas of cancer research and how stepwise innovation can contribute to substantial progress against cancer over time. Learning from experience and mapping current unmet needs will help to support a broad audience of stakeholders in their efforts to

  16. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents.

    PubMed

    Joshi, Gaurav; Singh, Pankaj Kumar; Negi, Arvind; Rana, Anil; Singh, Sandeep; Kumar, Raj

    2015-10-01

    Cancer is one of the leading causes of mortality amongst world's population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling. PMID:26297992

  17. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents.

    PubMed

    Joshi, Gaurav; Singh, Pankaj Kumar; Negi, Arvind; Rana, Anil; Singh, Sandeep; Kumar, Raj

    2015-10-01

    Cancer is one of the leading causes of mortality amongst world's population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling.

  18. The global state of palliative care-progress and challenges in cancer care.

    PubMed

    Reville, Barbara; Foxwell, Anessa M

    2014-07-01

    All persons have a right to palliative care during cancer treatment and at the end-of-life. The World Health Organization (WHO) defines palliative care as a medical specialty that addresses physical, psychological, social, legal, and spiritual domains of care by an interdisciplinary team of professional and lay health care providers. Widespread adoption of this universal definition will aid policy development and educational initiatives on a national level. The need for palliative care is expanding due to the aging of the world's population and the increase in the rate of cancer in both developed and developing countries. However, in one third of the world there is no access to palliative care for persons with serious or terminal illness. Palliative care improves symptoms, most frequently pain, and improves quality of life for patients and their families, especially in the terminal disease phase. Accessibility to palliative care services, adequately trained health care professionals, availability of essential medicines, and gaps in education vary greatly throughout the world. Pain management is an integral concept in the practice of palliative care; however, opioiphobia, insufficient supply of opioids, and regulatory restrictions contribute to undue suffering for millions. Ongoing advocacy efforts call for increased awareness, palliative care integration with cancer care, and public and professional education. Enacting necessary change will require the engagement of health ministries and the recognition of the unique needs and resources of each country. The aim of this review is to examine progress in palliative care development and explore some of the barriers influencing cancer care across the globe. PMID:25841689

  19. [Mechanisms responsible for the progression of scirrhous gastric cancer].

    PubMed

    Yashiro, Masakazu; Ohira, Masaichi; Muguruma, Kazuya; Shinto, Osamu; Hirakawa, Kosei

    2012-10-01

    Scirrhous gastric carcinoma is characterized by rapid cancer cell infiltration and proliferation accompanied by extensive stromal fibrosis. The proliferative and invasive ability of scirrhous gastric cancer cells are closely associated with the growth factors, FGF7 and TGFbeta produced by organ-specific fibroblasts. Peritoneal fibroblasts morphologically change mesothelial cells, and stimulate the migratory capability of cancer cells. A FGFR2 phosphorylation inhibitor prolongs the survival of mice with peritoneal metastasis of scirrhous gastric cancer. A TGFbetaR inhibitor decreases the growth of fibroblast, and invasion-stimulating activity of fibroblasts on cancer cells. A FGFR2 phosphorylation inhibitor or TGFbetaR inhibitor appears therapeutically promising in scirrhous gastric carcinoma.

  20. Helicobacter pylori infection in relation to gastric cancer progression.

    PubMed

    Venkateshwari, A; Krishnaveni, D; Venugopal, S; Shashikumar, P; Vidyasagar, A; Jyothy, A

    2011-01-01

    Gastric cancer is a major cause of cancer death worldwide, especially in developing countries. The incidence of gastric cancer varies from country to country, probably as a result of genetic, epigenetic, and environmental factors. H. pylori infection is considered as a major risk factor in the development of gastric cancer. However, the scenario varies in Asian countries, exhibiting a higher rate of H. pylori infection and low incidence of gastric cancer, which could be attributed to strain-specific virulence factors and host genetic makeup. In this review, we discuss the various virulence factors expressed by this bacterium and their interaction with the host factors, to influence pathogenesis. PMID:21248438

  1. Collaborative colorectal cancer screening: a successful quality improvement initiative

    PubMed Central

    2003-01-01

    Problem: Low screening and referral rates for colorectal cancer at a primary care clinic suggest the need for alternative methods to identify patients and complete the screening process. Design: A review of >5000 medical charts established baseline screening and referral data. After a 3-month trial of a screening protocol, the research team conducted a follow-up medical chart review to determine referral levels. Background and setting: The clinic is an 8-physician primary care facility in Southlake, Texas, and is one of 36 clinics affiliated with HealthTexas Provider Network. Key measures for improvement: The goal was to increase referrals for colorectal cancer to at least 85% among patients aged 50 to 75 years. Strategies for improvement: The entire staff of the primary care clinic and the gastroenterology office became involved in the referral process. The team used simple tools such as chart stickers to draw attention to patients requiring screening, generation of referral forms that were numbered for follow-up and faxed to the gastroenterologists, and patient educational material on colorectal cancer screening. These tools were designed to overcome specific barriers to successful screening that the team had identified. Effects of change: Referrals for sigmoidoscopy, colonoscopy, and double- contrast barium enema increased from 47% to 86%. Fecal occult blood testing was arranged for additional patients through the primary care office. Revenues related to colonoscopies increased by about 50% for the gastroenterologist group, the hospital, and the pathology group affiliated with Southlake Family Medicine. Lessons learned: This colorectal cancer screening protocol succeeded in its 3-month trial because it was collaborative, opportunistic, simple, and made good business sense. The protocol is now being implemented at other HealthTexas Provider Network offices. PMID:16278706

  2. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential.

    PubMed

    Vakoc, Benjamin J; Fukumura, Dai; Jain, Rakesh K; Bouma, Brett E

    2012-05-01

    The past decade has seen dramatic technological advances in the field of optical coherence tomography (OCT) imaging. These advances have driven commercialization and clinical adoption in ophthalmology, cardiology and gastrointestinal cancer screening. Recently, an array of OCT-based imaging tools that have been developed for preclinical intravital cancer imaging applications has yielded exciting new capabilities to probe and to monitor cancer progression and response in vivo. Here, we review these results, forecast the future of OCT for preclinical cancer imaging and discuss its exciting potential to translate to the clinic as a tool for monitoring cancer therapy.

  3. NAC, Tiron and Trolox Impair Survival of Cell Cultures Containing Glioblastoma Tumorigenic Initiating Cells by Inhibition of Cell Cycle Progression

    PubMed Central

    Stigliani, Sara; Carra, Elisa; Monteghirfo, Stefano; Longo, Luca; Daga, Antonio; Dono, Mariella; Zupo, Simona; Giaretti, Walter; Castagnola, Patrizio

    2014-01-01

    Reactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs). ROS production in the absence or presence of N-acetyl-L-cysteine (NAC), tiron, and trolox was evaluated by flow cytometry (FCM). The effects of these antioxidants on cell survival and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and FCM. The biological processes modulated by these drugs were determined by oligonucleotide microarray gene expression profiling. Our results showed that NAC, tiron and trolox impaired PT4 cell survival, had minor effects on ROS levels and caused wide deregulation of cell cycle genes. Furthermore, tiron and trolox caused inhibition of cell survival in two additional cell cultures containing TICs, FO-1 and MM1, established from a melanoma and a mesothelioma patient, respectively. NAC, instead, impaired survival of the MM1 cells but not of the FO-1 cells. However, when used in combination, NAC enhanced the inhibitory effect of PLX4032 (BRAF V600E inhibitor) and Gefitinib (EGFR inhibitor), on FO-1 and PT4 cell survival. Collectively, NAC, tiron and trolox modulated gene expression and impaired the growth of cultures containing TICs primarily by inhibiting cell cycle progression. PMID:24587218

  4. Genetics and metabolic deregulation following cancer initiation: A world to explore.

    PubMed

    Araldi, Rodrigo Pinheiro; Módolo, Diego Grando; de Sá Júnior, Paulo Luiz; Consonni, Sílvio Roberto; de Carvalho, Rodrigo Franco; Roperto, Franco Peppino; Beçak, Willy; de Cassia Stocco, Rita

    2016-08-01

    Cancer is a group of highly complex and heterogeneous diseases with several causes. According to the stochastic model, cancer initiates from mutation in somatic cells, leading to genomic instability and cell transformation. This canonical pathway of carcinogenesis is related to the discovery of important mechanisms that regulate cancer initiation. However, there are few studies describing genetic and metabolic alterations that deregulate transformed cells, resulting in epithelial-mesenchymal transition (EMT) and its most dramatic consequence, the metastasis. This review summarizes the main genetics and metabolic changes induced by reactive oxygen species (ROS) that lead to EMT. PMID:27470384

  5. Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman.

    PubMed

    Mirzal, Andri; Chaudhry, Shafique Ahmad

    2016-01-01

    Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide. PMID:27268600

  6. Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman.

    PubMed

    Mirzal, Andri; Chaudhry, Shafique Ahmad

    2016-01-01

    Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide.

  7. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium.

    PubMed

    Tucker, Matthew R; Okada, Takashi; Johnson, Susan D; Takaiwa, Fumio; Koltunow, Anna M G

    2012-05-01

    Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.

  8. Enamel caries initiation and progression following low fluence (energy) argon laser and fluoride treatment.

    PubMed

    Hicks, M J; Flaitz, C M; Westerman, G H; Blankenau, R J; Powell, G L; Berg, J H

    1995-01-01

    The aim of this study was to evaluate the effect of low fluence argon laser (AL) and acidulated phosphate fluoride (APF) treatment on caries initiation (CI) and progression (CP) in human enamel. Twenty caries-free molars were divided into tooth quarters. Tooth quarters from each specimen were assigned to one of four groups: 1) Control; 2) AL Only; 3) AL before APF; 4) APF before AL. AL was at 0.25 watts for 10 seconds (12.0 +/- 0.5 J/cm2). APF treatment was with a 1.23% gel for 4 minutes. Lesions were created in two treated, sound enamel windows per tooth quarter with an acidified gel. After CI and CP, sections were obtained and imbibed with water for polarized light study. Mean body of the lesion (BL) depths were determined and compared among groups (ANOVA & DMR). After CI, BL depths were: 189 +/- 29 micrometers for Control, 133 +/- 23 micrometers for AL only; 91 +/- 17 micrometers for AL before APF; and 83 +/- 14 micrometers for APF before AL. After CP, BL depths were: 321 +/- 43 micrometers for Control, 206 +/- 35 micrometers for AL only; 118 +/- 21 micrometers for AL before APF; and 114 +/- 19 micrometers for APF before AL. After CI and CP, argon laser irradiation alone resulted in significant reductions in lesion depth when compared with controls (p<0.05). APF treatment before or after argon laser exposure resulted in a significant reduction in lesion depth when compared with AL alone or control groups (p<0.05). Caries initiation and progression in vitro are affected to a significant extent when low fluence (energy) argon laser irradiation of sound enamel alone or in conjunction with APF treatment is done. This caries-protective effect occurs at an argon laser fluence (energy) that is capable of polymerizing visible light-cured resins. PMID:8634203

  9. PACE Continuous Innovation Indicators—a novel tool to measure progress in cancer treatments

    PubMed Central

    Paddock, Silvia; Brum, Lauren; Sorrow, Kathleen; Thomas, Samuel; Spence, Susan; Maulbecker-Armstrong, Catharina; Goodman, Clifford; Peake, Michael; McVie, Gordon; Geipel, Gary; Li, Rose

    2015-01-01

    Concerns about rising health care costs and the often incremental nature of improvements in health outcomes continue to fuel intense debates about ‘progress’ and ‘value’ in cancer research. In times of tightening fiscal constraints, it is increasingly important for patients and their representatives to define what constitutes ’value’ to them. It is clear that diverse stakeholders have different priorities. Harmonisation of values may be neither possible nor desirable. Stakeholders lack tools to visualise or otherwise express these differences and to track progress in cancer treatments based on variable sets of values. The Patient Access to Cancer care Excellence (PACE) Continuous Innovation Indicators are novel, scientifically rigorous progress trackers that employ a three-step process to quantify progress in cancer treatments: 1) mine the literature to determine the strength of the evidence supporting each treatment; 2) allow users to weight the analysis according to their priorities and values; and 3) calculate Evidence Scores (E-Scores), a novel measure to track progress, based on the strength of the evidence weighted by the assigned value. We herein introduce a novel, flexible value model, show how the values from the model can be used to weight the evidence from the scientific literature to obtain E-Scores, and illustrate how assigning different values to new treatments influences the E-Scores. The Indicators allow users to learn how differing values lead to differing assessments of progress in cancer research and to check whether current incentives for innovation are aligned with their value model. By comparing E-Scores generated by this tool, users are able to visualise the relative pace of innovation across areas of cancer research and how stepwise innovation can contribute to substantial progress against cancer over time. Learning from experience and mapping current unmet needs will help to support a broad audience of stakeholders in their

  10. Effect of Metformin on Progression of Head and Neck Cancers, Occurrence of Second Primary Cancers, and Cause-Specific Survival

    PubMed Central

    Kwon, Minsu; Song, Jihyun; Lee, Sang-Wook; Kim, Sung-Bae; Choi, Seung-Ho; Nam, Soon Yuhl

    2015-01-01

    Background. This study aimed to investigate the effect of metformin on progression of head and neck cancers, occurrence of second primary cancers, and cause-specific survival. Methods. This study analyzed a retrospective cohort of 1,151 consecutive patients with head and neck squamous cell carcinoma who were treated at our hospital. Patients were divided into three groups: nondiabetic, nonmetformin, and metformin. Clinical characteristics, recurrence of index head and neck cancer, occurrence of second primary cancer, and survival were compared among the different groups. Results. Of 1,151 patients, 99 (8.6%) were included in the metformin group, 79 (6.8%) were in the nonmetformin group, and 973 (84.5%) were in the nondiabetic group. Diabetic status and metformin exposure had no significant impact on index head and neck cancer recurrence or second primary cancer development (p > .2). The nonmetformin group showed relatively lower overall (p = .017) and cancer-specific (p = .054) survival rates than the other groups in univariate analyses, but these results were not confirmed in multivariate analyses. Conclusion. Metformin use did not show beneficial effects on index tumor progression, second primary cancer occurrence, and cause-specific survival in patients with head and neck cancer compared with nonmetformin users and nondiabetic patients. PMID:25802404

  11. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression

    PubMed Central

    Palaniappan, Ashok; Ramar, Karthick; Ramalingam, Satish

    2016-01-01

    It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge. PMID:27243824

  12. Proteins' promise--progress and challenges in ovarian cancer proteomics.

    PubMed

    Koehn, H; Oehler, M K

    2007-12-01

    Ovarian cancer is the leading cause of gynaecological cancer death. The mortality rate of ovarian cancer could be greatly decreased if there were a screening test which was able to detect the disease at an early stage, resulting in an increased probability of cure. The most promising prospect for the early detection of ovarian cancer comes from the rapidly advancing field of clinical proteomics. An increasing number of reports on the potential clinical application of proteomics research for early detection as well as risk assessment and management of ovarian cancer are being published. Although the research is very promising, major technical challenges are still preventing new discoveries in ovarian cancer proteomics from being translated into clinical practice.

  13. [Research progression of translational medicine in gastric cancer].

    PubMed

    Li, Maoran; Zhao, Gang; Zhu, Chunchao

    2014-02-01

    Gastric cancer is one of the most common malignant tumors which is a great threat to human health. In recent years, the reform of surgical mordalities and the optimization of radiation and chemotherapy is still far from reducing morbidity and mortality of gastric cancer. As a new research pattern, translational medicine has emerged in various clinical subjects, which leads to remarkable effects. In this paper, the definition and development of translational medicine, molecular markers and drug treatment of gastric cancer will be discussed and the feasibility of translational medicine in the treatment of gastric cancer will be explained. In our opinion, the intervention of translational medicine could change the current situation that scientific researches is severely disconnected with clinical practice and increase the detection rate of gastric cancer and the effective rate of adjuvant therapy after surgery to improve the prognosis of patients with gastric cancer.

  14. Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells.

    PubMed

    Dubash, Taronish D; Hoffmann, Christopher M; Oppel, Felix; Giessler, Klara M; Weber, Sarah; Dieter, Sebastian M; Hüllein, Jennifer; Zenz, Thorsten; Herbst, Friederike; Scholl, Claudia; Weichert, Wilko; Werft, Wiebke; Benner, Axel; Schmidt, Manfred; Schneider, Martin; Glimm, Hanno; Ball, Claudia R

    2016-02-28

    Within primary colorectal cancer (CRC) a subfraction of all tumor-initiating cells (TIC) drives long-term progression in serial xenotransplantation. It has been postulated that efficient maintenance of TIC activity in vitro requires serum-free spheroid culture conditions that support a stem-like state of CRC cells. To address whether tumorigenicity is indeed tightly linked to such a stem-like state in spheroids, we transferred TIC-enriched spheroid cultures to serum-containing adherent conditions that should favor their differentiation. Under these conditions, primary CRC cells did no longer grow as spheroids but formed an adherent cell layer, up-regulated colon epithelial differentiation markers, and down-regulated TIC-associated markers. Strikingly, upon xenotransplantation cells cultured under either condition equally efficient formed serially transplantable tumors. Clonal analyses of individual lentivirally marked TIC clones cultured under either culture condition revealed no systematic differences in contributing clone numbers, indicating that phenotypic differentiation does not select for few individual clones adapted to unfavorable culture conditions. Our results reveal that CRC TIC can be propagated under conditions previously thought to induce their elimination. This phenotypic plasticity allows addressing primary human CRC TIC properties in experimental settings based on adherent cell growth.

  15. Comparative lineage tracing reveals cellular preferences for prostate cancer initiation.

    PubMed

    Wang, Zhu A; Shen, Michael M

    2015-01-01

    The interplay of different cell types of origin and distinct oncogenic mutations may determine the tumor subtype. We have recently found that although both basal and luminal epithelial cells can initiate prostate tumorigenesis, the latter are more likely to undergo transformation in response to a range of oncogenic events. PMID:27308462

  16. Recent progress in gene-directed enzyme prodrug therapy: an emerging cancer treatment.

    PubMed

    Both, Gerald W

    2009-08-01

    The principle of gene-directed enzyme prodrug therapy (GDEPT) has existed for many years but, while simple in concept, the effective practical application of this therapy has proven to be challenging. Improvements in the efficacy of GDEPT have been achieved principally through the choice and development of more effective vectors, by optimizing and controlling gene expression and by increasing the activity of the delivered enzyme through mutation. While innovation continues in this field, the pioneering GDEPT systems designed to treat glioma and prostate cancer have completed or are now entering late-stage clinical trials, respectively. As the pace of innovation in GDEPT technology far exceeds its clinical application, these initial products are anticipated to be replaced by next-generation biologicals. This review highlights recent progress in the strategies and development of GDEPT and summarizes the status of current clinical trials. With the first GDEPT product for treatment of resected gliomas poised to gain marketing approval, a new era in cancer gene medicine is emerging. PMID:19649987

  17. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression

    PubMed Central

    Cohen-Dvashi, Hadas; Ben-Chetrit, Nir; Russell, Roslin; Carvalho, Silvia; Lauriola, Mattia; Nisani, Sophia; Mancini, Maicol; Nataraj, Nishanth; Kedmi, Merav; Roth, Lee; Köstler, Wolfgang; Zeisel, Amit; Yitzhaky, Assif; Zylberg, Jacques; Tarcic, Gabi; Eilam, Raya; Wigelman, Yoav; Will, Rainer; Lavi, Sara; Porat, Ziv; Wiemann, Stefan; Ricardo, Sara; Schmitt, Fernando; Caldas, Carlos; Yarden, Yosef

    2015-01-01

    Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells. PMID:25678558

  18. Honokiol targets mitochondria to halt cancer progression and metastasis.

    PubMed

    Pan, Jing; Lee, Yongik; Wang, Yian; You, Ming

    2016-06-01

    Cancer continues to be the leading cause of death worldwide. Plants have a long history of use in the treatment of cancer. Honokiol (HNK) is an important bioactive compound found in the bark of Magnolia tree, and has been shown to inhibit cancer growth and metastasis in many cell types in vitro and in animal models. Resistance to chemotherapy and radiotherapy is the major obstacle for cure of cancer. Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death, suggesting that HNK not only directly inhibits primary cancers and metastasis, but also has potential to overcome drug resistance. Ultimately, this may mean that HNK could be combined with traditional chemotherapies administered at lower doses to significantly reduce toxicity, meanwhile enhance efficacy. As a natural compound, HNK is composed of polyphenols and has been described in many studies targeting multiple key cell signaling molecules. Mitochondria are the main hub for cellular energy production and play an important role in cell survival, and are the key target identified for HNK to mediate cancer cell death, survival, and metastasis. In this review, we have summarized different aspects of HNK's anti-cancer effects from recent accumulated literature, as well as the underlying molecular mechanisms. This review is primarily focused on the effects of HNK on epidermal growth factor receptor (EGFR) and signal transduction and activator of transcription 3 (STAT3) signaling, as well as the broader regulation of mitochondrial function and cancer cell metabolism. PMID:27276215

  19. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    PubMed Central

    Hawk, Mark A.; McCallister, Chelsea; Schafer, Zachary T.

    2016-01-01

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression. PMID:27754368

  20. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress.

    PubMed

    Colatsky, Thomas; Fermini, Bernard; Gintant, Gary; Pierson, Jennifer B; Sager, Philip; Sekino, Yuko; Strauss, David G; Stockbridge, Norman

    2016-01-01

    The implementation of the ICH S7B and E14 guidelines has been successful in preventing the introduction of potentially torsadogenic drugs to the market, but it has also unduly constrained drug development by focusing on hERG block and QT prolongation as essential determinants of proarrhythmia risk. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative was established to develop a new paradigm for assessing proarrhythmic risk, building on the emergence of new technologies and an expanded understanding of torsadogenic mechanisms beyond hERG block. An international multi-disciplinary team of regulatory, industry and academic scientists are working together to develop and validate a set of predominantly nonclinical assays and methods that eliminate the need for the thorough-QT study and enable a more precise prediction of clinical proarrhythmia risk. The CiPA effort is led by a Steering Team that provides guidance, expertise and oversight to the various working groups and includes partners from US FDA, HESI, CSRC, SPS, EMA, Health Canada, Japan NIHS, and PMDA. The working groups address the three pillars of CiPA that evaluate drug effects on: 1) human ventricular ionic channel currents in heterologous expression systems, 2) in silico integration of cellular electrophysiologic effects based on ionic current effects, the ion channel effects, and 3) fully integrated biological systems (stem-cell-derived cardiac myocytes and the human ECG). This article provides an update on the progress of the initiative towards its target date of December 2017 for completing validation.

  1. Developmental control of gene copy number by repression of replication initiation and fork progression.

    PubMed

    Sher, Noa; Bell, George W; Li, Sharon; Nordman, Jared; Eng, Thomas; Eaton, Matthew L; Macalpine, David M; Orr-Weaver, Terry L

    2012-01-01

    Precise DNA replication is crucial for genome maintenance, yet this process has been inherently difficult to study on a genome-wide level in untransformed differentiated metazoan cells. To determine how metazoan DNA replication can be repressed, we examined regions selectively under-replicated in Drosophila polytene salivary glands, and found they are transcriptionally silent and enriched for the repressive H3K27me3 mark. In the first genome-wide analysis of binding of the origin recognition complex (ORC) in a differentiated metazoan tissue, we find that ORC binding is dramatically reduced within these large domains, suggesting reduced initiation as one mechanism leading to under-replication. Inhibition of replication fork progression by the chromatin protein SUUR is an additional repression mechanism to reduce copy number. Although repressive histone marks are removed when SUUR is mutated and copy number restored, neither transcription nor ORC binding is reinstated. Tethering of the SUUR protein to a specific site is insufficient to block replication, however. These results establish that developmental control of DNA replication, at both the initiation and elongation stages, is a mechanism to change gene copy number during differentiation.

  2. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression

    PubMed Central

    Kolb, Ryan; Phan, Liem; Borcherding, Nicholas; Liu, Yinghong; Yuan, Fang; Janowski, Ann M.; Xie, Qing; Markan, Kathleen R.; Li, Wei; Potthoff, Matthew J.; Fuentes-Mattei, Enrique; Ellies, Lesley G.; Knudson, C. Michael; Lee, Mong-Hong; Yeung, Sai-Ching J.; Cassel, Suzanne L.; Sutterwala, Fayyaz S.; Zhang, Weizhou

    2016-01-01

    Obesity is associated with an increased risk of developing breast cancer and is also associated with worse clinical prognosis. The mechanistic link between obesity and breast cancer progression remains unclear, and there has been no development of specific treatments to improve the outcome of obese cancer patients. Here we show that obesity-associated NLRC4 inflammasome activation/ interleukin (IL)-1 signalling promotes breast cancer progression. The tumour microenvironment in the context of obesity induces an increase in tumour-infiltrating myeloid cells with an activated NLRC4 inflammasome that in turn activates IL-1β, which drives disease progression through adipocyte-mediated vascular endothelial growth factor A (VEGFA) expression and angiogenesis. Further studies show that treatment of mice with metformin inhibits obesity-associated tumour progression associated with a marked decrease in angiogenesis. This report provides a causal mechanism by which obesity promotes breast cancer progression and lays out a foundation to block NLRC4 inflammasome activation or IL-1β signalling transduction that may be useful for the treatment of obese cancer patients. PMID:27708283

  3. How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might Combine to Drive Cancer Progression

    PubMed Central

    Bischof, Ashley G.; Mannix, Robert J.; Tobin, Heather; Bar-Yam, Yaneer; Bellin, Robert M.; Ingber, Donald E.

    2013-01-01

    Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation. PMID:24098430

  4. Florida Initiative for Quality Cancer Care: Improvements on Colorectal Cancer Quality of Care Indicators during a 3-Year Interval

    PubMed Central

    Siegel, Erin M; Jacobsen, Paul B; Lee, Ji-Hyun; Malafa, Mokenge; Fulp, William; Fletcher, Michelle; Smith, Jesusa Corazon R; Brown, Richard; Levine, Richard; Cartwright, Thomas; Abesada-Terk, Guillermo; Kim, George; Alemany, Carlos; Faig, Douglas; Sharp, Philip; Markham, Merry-Jennifer; Shibata, David

    2015-01-01

    BACKGROUND The quality of cancer care has become a national priority; however, there are few ongoing efforts to assist medical oncology practices in identifying areas for improvement. The Florida Initiative for Quality Cancer Care is a consortium of 11 medical oncology practices that evaluates the quality of cancer care across Florida. Within this practice-based system of self-assessment, we determined adherence to colorectal cancer quality of care indicators (QCIs) in 2006, disseminated results to each practice and reassessed adherence in 2009. The current report focuses on evaluating the direction and magnitude of change in adherence to QCIs for colorectal cancer patients between the 2 assessments. STUDY DESIGN Medical records were reviewed for all colorectal cancer patients seen by a medical oncologist in 2006 (n = 489) and 2009 (n = 511) at 10 participating practices. Thirty-five indicators were evaluated individually and changes in QCI adherence over time and by site were examined. RESULTS Significant improvements were noted from 2006 to 2009, with large gains in surgical/pathological QCIs (eg, documenting rectal radial margin status, lymphovascular invasion, and the review of ≥12 lymph nodes) and medical oncology QCIs (documenting planned treatment regimen and providing recommended neoadjuvant regimens). Documentation of perineural invasion and radial margins significantly improved; however, adherence remained low (47% and 71%, respectively). There was significant variability in adherence for some QCIs across institutions at follow-up. CONCLUSIONS The Florida Initiative for Quality Cancer Care practices conducted self-directed quality-improvement efforts during a 3-year interval and overall adherence to QCIs improved. However, adherence remained low for several indicators, suggesting that organized improvement efforts might be needed for QCIs that remained consistently low over time. Findings demonstrate how efforts such as the Florida Initiative for

  5. β-catenin activation drives thymoma initiation and progression in mice

    PubMed Central

    Liang, Chih-Chia; Lu, Tsai-Ling; Yu, Yi-Ru; You, Li-Ru; Chen, Chun-Ming

    2015-01-01

    Thymoma is the most commonly identified cancer in the anterior mediastinum. To date, the causal mechanism that drives thymoma progression is not clear. Here, we generated K5-ΔN64Ctnnb1/ERT2 transgenic mice, which express an N-terminal deletion mutant of β-catenin fused to a mutated ligand-binding domain of estrogen receptor (ERT2) under the control of the bovine cytokeratin 5 (K5) promoter. The transgenic mouse lines named Tg1 and Tg4 were characterized. Forced expression of ΔN64Ctnnb1/ERT2 in the Tg1 and Tg4 mice developed small thymoma lesions in response to tamoxifen treatment. In the absence of tamoxifen, the Tg1 mice exhibited leaky activation of β-catenin, which activated the TOP-Gal transgene and Wnt/β-catenin-targeted genes. As the Tg1 mice aged in the absence of tamoxifen, manifest thymomas were found at 10-12 months. Interestingly, we detected loss of AIRE and increase of p63 in the thymomas of Tg1 mice, similar to that observed in human thymomas. Moreover, the β5t protease subunit, which was reported as a differential marker for human type B3 thymoma, was expressed in the Tg1 thymomas. Thus, the Tg1 mice generated in this study accurately mimic the characteristics of human thymomas and may serve as a model for understanding thymoma pathogenesis. PMID:26101855

  6. Model of genetic progression in ovarian cancer with comparative genomic hybridization

    SciTech Connect

    Iwabuchi, H.; Sakamoto, M.; Sakunaga, H.

    1994-09-01

    We have performed comparative genomic hybridization (CGH) and analysis of loss of heterozygosity (LOH) using DNA obtained from 44 common epithelial ovarian tumors (benign 8, borderline 3, low grade 11, high grade 22) with the goal of developing a model for genetic progression in common epithelial ovarian cancer. Five general features are apparent from these studies: (1) There is a high concordance (0.85) between LOH and reduced copy number measured by CGH suggesting that most LOH is caused by physical deletion. (2) The total number of aberrations/tumor increased with histologic grade (Kurskal-Wallis, p<0.01). (3) Gene dosage abnormalities 17p-, 17q- and 3q+ occur at highest frequency, f, (f>0.3) and in both low grade and high grade tumors; abnormalities 9q-, 22q-, and Xp- occur at intermediate frequencies (0.2cancer specific aberrations usually carry many more aberrations per tumor (>15/tumor) than tumors that do not (<5/tumor). (5) Many of the genetic abnormalities are correlated. Specifically, strong correlations (Fischer, p<0.01) were observed for the aberration pairs: 16q-:8p-; 17q-:9q; 8p-:8q+; 17p-:17q-; 22q-:9q-; Xp-:9q; 3q+:6p+; and 3q+:Xp-. Taken together, these observations suggest a parallel pathway model for genetic progression in which 17p-, 17q- and 3q+ are independent initial genetic events; 9q-, 22q- and Xp- are intermediate events and 6p+, 8p- and 8q+ are late events.

  7. [Aspects of progesterone receptor (PR) activity regulation - impact on breast cancer progression].

    PubMed

    Piasecka, Dominika; Składanowski, Andrzej C; Kordek, Radzisław; Romańska, Hanna M; Sądej, Rafał

    2015-01-01

    Progesterone receptor (PR) and its specific ligand play a key role in development and physiology of mammary gland. The role of PR in initiation and progression of breast carcinoma (BCa) is unquestionable, although molecular mechanism of PR action is complex and not fully understood. It is known that increased risk of breast cancer is associated with progestin-based (synthetic ligands of progesterone) hormonal contraception or hormone replacement therapies. It is estimated that ER/PR-positive tumours represent approximately 50-70% of all BCa cases, and the loss of PR is associated with resistance to hormonal therapy and increased tumour invasiveness. In classical, genomic signalling pathway cytoplasmic PR, following ligand binding, translocates to the nucleus and regulates expression of genes with the PRE sequence. PR is also involved in a large number of alternative, non-genomic signalling cascades, e.g. PR is able to activate MAPK and PI3K/AKT pathways, which leads to regulation of gene expression. The cross-talk between PR and Growth Factors Receptors (GFR) results in progesterone-independent activation of PR as well as PR-regulated GFR expression and activation. Growth factors signalling promotes formation of a pool of hypersensitive PR responsive to even very low ligand concentration. Transcriptional activity of PR as well as its dynamic impact on processes such as cell migration and adhesion are crucial for BCa progression. Further studies of multifaceted mechanisms of PR action may contribute to new PR-targeting therapeutic strategies for breast cancer patients. PMID:26689013

  8. Epigenetic regulator RBP2 is critical for breast cancer progression and metastasis

    PubMed Central

    Cao, Jian; Liu, Zongzhi; Cheung, William K.C.; Zhao, Minghui; Chen, Sophia Y.; Chan, Siew Wee; Booth, Carmen J.; Nguyen, Don X.; Yan, Qin

    2014-01-01

    Summary Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that epigenetic aberrations contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene expression datasets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes. In addition, RBP2 loss suppresses tumor formation in the MMTV-neu transgenic mice. These results suggest that therapeutically targeting RBP2 is a potential strategy to inhibit tumor progression and metastasis. PMID:24582965

  9. California Breast Cancer Prevention Initiatives: Setting a research agenda for prevention.

    PubMed

    Sutton, P; Kavanaugh-Lynch, M H E; Plumb, M; Yen, I H; Sarantis, H; Thomsen, C L; Campleman, S; Galpern, E; Dickenson, C; Woodruff, T J

    2015-07-01

    The environment is an underutilized pathway to breast cancer prevention. Current research approaches and funding streams related to breast cancer and the environment are unequal to the task at hand. We undertook the California Breast Cancer Prevention Initiatives, a four-year comprehensive effort to set a research agenda related to breast cancer, the environment, disparities and prevention. We identified 20 topics for Concept Proposals reflecting a life-course approach and the complex etiology of breast cancer; considering the environment as chemical, physical and socially constructed exposures that are experienced concurrently: at home, in the community and at work; and addressing how we should be modifying the world around us to promote a less carcinogenic environment. Redirecting breast cancer research toward prevention-oriented discovery could significantly reduce the incidence and associated disparities of the disease among future generations.

  10. Antibody-based immunotherapy of solid cancers: progress and possibilities.

    PubMed

    Nicodemus, Christopher F

    2015-01-01

    Monoclonal antibodies remain a primary product option for novel cancer treatment. The properties of an antibody are a function of the antigen specificity and constant region incorporated. The rapid advance in molecular understanding of cancer biology and the host-tumor interaction has defined a new range of targets for antibody development. The clinical success of the checkpoint inhibitors has validated immune modulation and mobilization as a therapeutic approach. Solid cancers are distinguished from hematologic malignancies because the solid tumor stroma contains significant tumor promoting and immune dampening elements less prominent in hematologic cancer. This review highlights how engineered monoclonal antibody products are emerging as potential cornerstones of new more personalized cancer treatment paradigms that target both tumor and the stromal environment.

  11. Split-Course, High-Dose Palliative Pelvic Radiotherapy for Locally Progressive Hormone-Refractory Prostate Cancer

    SciTech Connect

    Gogna, Nirdosh Kumar; Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn; Burmeister, Elizabeth; Holt, Tanya

    2012-06-01

    Purpose: Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. Methods and Materials: A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. Results: The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. Conclusions: The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported.

  12. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  13. Measuring quality in cancer care: overview of initiatives in selected countries.

    PubMed

    Wild, C; Patera, N

    2013-11-01

    To inform the Austrian National Cancer Plan on possible generic quality indicators that might be derived from routine data a systematic literature search in three databases, followed by extensive hand-searching to locate initiatives and their publications was carried out in spring 2011. Twenty-one initiatives that developed indicators for measuring quality of cancer care were identified: longer standing and decentralised initiatives are characteristics of the USA. The Canadian province of Ontario publishes the Cancer System Quality Index, centralised audit and peer review programmes are undertaken in the National Health Service in the UK. Methodologically sound cancer type-specific pilot projects in Belgium have been implemented, the Netherlands and Denmark are running national initiatives. Germany recently started quality measurement activities, too. Generic indicators often focus on end-of-life care, multidisciplinarity, advance care planning and documentation. Indicators measuring the quality of care during an entire episode of cancer are rare, as are those for less common cancers and for care in the outpatient setting. Access, equity and the patient's perspective are only beginning to be incorporated into indicators. After having identified a range of candidate indicators that can be implemented with routinely collected data alone, piloting them in Austria would be the next step to go. PMID:23808585

  14. The Haiti Breast Cancer Initiative: Initial Findings and Analysis of Barriers-to-Care Delaying Patient Presentation

    PubMed Central

    Sharma, Ketan; Costas, Ainhoa; Damuse, Ruth; Hamiltong-Pierre, Jean; Pyda, Jordan; Ong, Cecilia T.; Shulman, Lawrence N.; Meara, John G.

    2013-01-01

    Background. In Haiti, breast cancer patients present at such advanced stages that even modern therapies offer modest survival benefit. Identifying the personal, sociocultural, and economic barriers-to-care delaying patient presentation is crucial to controlling disease. Methods. Patients presenting to the Hôpital Bon Sauveur in Cange were prospectively accrued. Delay was defined as 12 weeks or longer from initial sign/symptom discovery to presentation, as durations greater than this cutoff correlate with reduced survival. A matched case-control analysis with multivariate logistic regression was used to identify factors predicting delay. Results. Of N = 123 patients accrued, 90 (73%) reported symptom-presentation duration and formed the basis of this study: 52 patients presented within 12 weeks of symptoms, while 38 patients waited longer than 12 weeks. On logistic regression, lower education status (OR = 5.6, P = 0.03), failure to initially recognize mass as important (OR = 13.0, P < 0.01), and fear of treatment cost (OR = 8.3, P = 0.03) were shown to independently predict delayed patient presentation. Conclusion. To reduce stage at presentation, future interventions must educate patients on the recognition of initial breast cancer signs and symptoms and address cost concerns by providing care free of charge and/or advertising that existing care is already free. PMID:23840209

  15. The Haiti Breast Cancer Initiative: Initial Findings and Analysis of Barriers-to-Care Delaying Patient Presentation.

    PubMed

    Sharma, Ketan; Costas, Ainhoa; Damuse, Ruth; Hamiltong-Pierre, Jean; Pyda, Jordan; Ong, Cecilia T; Shulman, Lawrence N; Meara, John G

    2013-01-01

    Background. In Haiti, breast cancer patients present at such advanced stages that even modern therapies offer modest survival benefit. Identifying the personal, sociocultural, and economic barriers-to-care delaying patient presentation is crucial to controlling disease. Methods. Patients presenting to the Hôpital Bon Sauveur in Cange were prospectively accrued. Delay was defined as 12 weeks or longer from initial sign/symptom discovery to presentation, as durations greater than this cutoff correlate with reduced survival. A matched case-control analysis with multivariate logistic regression was used to identify factors predicting delay. Results. Of N = 123 patients accrued, 90 (73%) reported symptom-presentation duration and formed the basis of this study: 52 patients presented within 12 weeks of symptoms, while 38 patients waited longer than 12 weeks. On logistic regression, lower education status (OR = 5.6, P = 0.03), failure to initially recognize mass as important (OR = 13.0, P < 0.01), and fear of treatment cost (OR = 8.3, P = 0.03) were shown to independently predict delayed patient presentation. Conclusion. To reduce stage at presentation, future interventions must educate patients on the recognition of initial breast cancer signs and symptoms and address cost concerns by providing care free of charge and/or advertising that existing care is already free. PMID:23840209

  16. Biomarkers for gastric cancer: Progression in early diagnosis and prognosis (Review)

    PubMed Central

    JIN, ZILIANG; JIANG, WEIHUA; WANG, LIWEI

    2015-01-01

    Gastric cancer is one of leading causes of cancer-related mortality worldwide and is a notable disease due to its heterogeneity. Recently, numerous studies have investigated the molecular basis of gastric cancer, involving the alteration of pathogenesis, and invasion and metastasis. With the development of modern technologies, various novel biomarkers had been identified that appear to possess diagnostic and prognostic value; therefore, the present review describes our current knowledge of biomarkers for the early diagnosis and prognosis of gastric cancer. Classic biomarkers for gastric cancer diagnosis include carcinoembryonic antigen and cancer antigen 19-9, while microRNA and DNA hypomethylation are proposed as novel biomarkers. Excluding classical biomarkers, biomarkers for determining the progression and prognosis of gastric cancer focus on targeting microRNAs, epigenetic alterations and genetic polymorphisms. PMID:25788990

  17. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle.

    PubMed

    Motrescu, Elena Roza; Rio, Marie-Christine

    2008-08-01

    This brief review focuses on the emerging role of matrix metalloproteinase 11 (MMP-11) in cancer progression. It has recently been shown that MMP-11 is induced in adipose tissue by cancer cells as they invade their surrounding environment. MMP-11 negatively regulates adipogenesis by reducing pre-adipocyte differentiation and reversing mature adipocyte differentiation. Adipocyte dedifferentiation in turn leads to the accumulation of nonmalignant peritumoral fibroblast-like cells, which favor cancer cell survival and tumor progression. This MMP-11-mediated bi-directional cross-talk between invading cancer cells and adjacent adipocytes/pre-adipocytes highlights the central role that MMP-11 plays during tumor desmoplasia and represents a molecular link between obesity and cancer.

  18. The characteristics and spatial distributions of initially missed and rebiopsy-detected prostate cancers

    PubMed Central

    2016-01-01

    Purpose: The purpose of this study was to analyze the characteristics of initially missed and rebiopsy-detected prostate cancers following 12-core transrectal biopsy. Methods: A total of 45 patients with prostate cancers detected on rebiopsy and 45 patients with prostate cancers initially detected on transrectal ultrasound-guided biopsy were included in the study. For result analysis, the prostate was divided into six compartments, and the cancer positive rates, estimated tumor burden, and agreement rates between biopsy and surgical specimens, along with clinical data, were evaluated. Results: The largest mean tumor burden was located in the medial apex in both groups. There were significantly more tumors in this location in the rebiopsy group (44.9%) than in the control group (30.1%, P=0.015). The overall sensitivity of biopsy was significantly lower in the rebiopsy group (22.5% vs. 43.4%, P<0.001). The agreement rate of cancer positive cores between biopsy and surgical specimens was significantly lower in the medial apex in the rebiopsy group compared with that of the control group (50.0% vs. 65.6%, P=0.035). The cancer positive rates of target biopsy cores and premalignant lesions in the rebiopsy group were 63.1% and 42.3%, respectively. Conclusion: Rebiopsy-detected prostate cancers showed different spatial distribution and lower cancer detection rate of biopsy cores compared with initially diagnosed cancers. To overcome lower cancer detection rate, target biopsy of abnormal sonographic findings, premalignant lesions and medial apex which revealed larger tumor burden would be recommended when performing rebiopsy. PMID:27048261

  19. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages

    PubMed Central

    Tsuboki, Junko; Fujiwara, Yukio; Horlad, Hasita; Shiraishi, Daisuke; Nohara, Toshihiro; Tayama, Shingo; Motohara, Takeshi; Saito, Yoichi; Ikeda, Tsuyoshi; Takaishi, Kiyomi; Tashiro, Hironori; Yonemoto, Yukihiro; Katabuchi, Hidetaka; Takeya, Motohiro; Komohara, Yoshihiro

    2016-01-01

    It is well known that tumour-associated macrophages (TAMs) play an important role in tumour development by modulating the tumour microenvironment, and targeting of protumour activation or the M2 polarization of TAMs is expected to be an effective therapy for cancer patients. We previously demonstrated that onionin A (ONA), a natural low molecular weight compound isolated from onions, has an inhibitory effect on M2 macrophage polarization. In the present study, we investigated whether ONA had a therapeutic anti-ovarian cancer effect using in vitro and in vivo studies. We found that ONA reduced the extent of ovarian cancer cell proliferation induced by co-culture with human macrophages. In addition, we also found that ONA directly suppressed cancer cell proliferation. A combinatorial effect with ONA and anti-cancer drugs was also observed. The activation of signal transducer and activator of transcription 3 (STAT3), which is involved in cell proliferation and chemo-resistance, was significantly abrogated by ONA in ovarian cancer cells. Furthermore, the administration of ONA suppressed cancer progression and prolonged the survival time in a murine ovarian cancer model under single and combined treatment conditions. Thus, ONA is considered useful for the additional treatment of patients with ovarian cancer owing to its suppression of the protumour activation of TAMs and direct cytotoxicity against cancer cells. PMID:27404320

  20. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages.

    PubMed

    Tsuboki, Junko; Fujiwara, Yukio; Horlad, Hasita; Shiraishi, Daisuke; Nohara, Toshihiro; Tayama, Shingo; Motohara, Takeshi; Saito, Yoichi; Ikeda, Tsuyoshi; Takaishi, Kiyomi; Tashiro, Hironori; Yonemoto, Yukihiro; Katabuchi, Hidetaka; Takeya, Motohiro; Komohara, Yoshihiro

    2016-01-01

    It is well known that tumour-associated macrophages (TAMs) play an important role in tumour development by modulating the tumour microenvironment, and targeting of protumour activation or the M2 polarization of TAMs is expected to be an effective therapy for cancer patients. We previously demonstrated that onionin A (ONA), a natural low molecular weight compound isolated from onions, has an inhibitory effect on M2 macrophage polarization. In the present study, we investigated whether ONA had a therapeutic anti-ovarian cancer effect using in vitro and in vivo studies. We found that ONA reduced the extent of ovarian cancer cell proliferation induced by co-culture with human macrophages. In addition, we also found that ONA directly suppressed cancer cell proliferation. A combinatorial effect with ONA and anti-cancer drugs was also observed. The activation of signal transducer and activator of transcription 3 (STAT3), which is involved in cell proliferation and chemo-resistance, was significantly abrogated by ONA in ovarian cancer cells. Furthermore, the administration of ONA suppressed cancer progression and prolonged the survival time in a murine ovarian cancer model under single and combined treatment conditions. Thus, ONA is considered useful for the additional treatment of patients with ovarian cancer owing to its suppression of the protumour activation of TAMs and direct cytotoxicity against cancer cells. PMID:27404320

  1. UNESCO's Astronomy and World Heritage Initiative: Progress to Date and Future Priorities

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2013-01-01

    UNESCO’s thematic initiative on Astronomy and World Heritage was created in 2005 “to establish a link between science and culture on the basis of research aimed at acknowledging the cultural and scientific values of properties connected with astronomy”. Since 2008, when a formal Memorandum of Understanding (MoU) was signed between the IAU and UNESCO to work together to advance the Initiative, the IAU, through its Working Group on Astronomy and World Heritage, has been working to help identify, safeguard and promote the world’s most valuable cultural properties connected with astronomy. The Working Group’s first major deliverable was the Thematic Study on the Heritage Sites of Astronomy and Archaeoastronomy, which was prepared in collaboration with ICOMOS, the Advisory Body to UNESCO that assesses World Heritage List applications relating to cultural heritage. Published in 2010, this has been endorsed by the World Heritage Centre as a basis for developing specific guidelines for UNESCO member states on the inscription of astronomical properties. The IAU’s General Assembly in Beijing saw the launch of perhaps the most significant deliverable from the Initiative to date, the Portal to the Heritage of Astronomy (www.astronomicalheritage.net) which is a dynamic, publicly accessible database, discussion forum, and document-repository on astronomical heritage sites throughout the world, whether or not they are on UNESCO’s World Heritage List. In recent months the Working Group has completed a set of nine “Extended Case Studies", which raise a wide range of general issues, varying from the integrity of astronomical sightlines at ancient sites to the preservation of dark skies at modern observatories. Given the progress that has been made to date, how would we wish to see the Initiative develop in the future and what should be the Working Group’s priorities in the coming months and years? Among the suggestions I shall be discussing is that the WG should

  2. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis

    PubMed Central

    Hsu, Ya-Ling; Hung, Jen-Yu; Chiang, Shin-Yi; Jian, Shu-Fang; Wu, Cheng-Ying; Lin, Yi-Shiuan; Tsai, Ying-Ming; Chou, Shah-Hwa; Tsai, Ming-Ju; Kuo, Po-Lin

    2016-01-01

    Communication between cancer cells and their microenvironment plays an important role in cancer development, but the precise mechanisms by which cancer-associated fibroblasts (CAF) impact anti-cancer immunity and cancer progression in lung cancer are poorly understood. Here, we report that lung fibroblasts when activated by lung cancer cells produce tryptophan metabolite kynurenine (Kyn) that inhibits dendritic cells' differentiation and induces cancer growth as well as migration. We identified TDO2 (tryptophan 2,3-dioxygenase) as the main enzyme expressed in fibroblasts capable of tryptophan metabolism. Mechanistically, condition medium of CAF or exogenous kynurenine stimulated AKT, with no lysine 1 (WNK1) and cAMP response element-bindingprotein (CREB) phosphorylation in lung cancer cells. Inhibition of the AKT/CREB pathway prevents cancer proliferation, while inhibition of the AKT/ WNK1 reverted epithelial-to-mesenchymal transition and cancer migration induced by kynurenine. Moreover, we also demonstrate that lung cancer-derived galectin-1 contributes to the upregulation of TDO2 in CAF through an AKT-dependent pathway. Immunohistochemical analysis of lung cancer surgical specimens revealed increased TDO2 expression in the fibroblasts adjacent to the cancer. Furthermore, in vivo studies showed that administration of TDO2 inhibitor significantly improves DCs function and T cell response, and decreases tumor metastasis in mice. Taken together, our data identify the feedback loop, consisting of cancer-derived galectin-1 and CAF-producing kynurenine, that sustains lung cancer progression. These findings suggest that targeting this pathway may be a promising therapeutic strategy. PMID:27050278

  3. [Progress of Japan Mammary Cancer Society and future perspectives].

    PubMed

    Kuno, K

    1985-05-01

    One of the important past achievements of the Japan Mammary Cancer Society was the establishment of the general rule for clinical and pathological record of mammary cancer. The past two decades have seen major changes in our understanding of the biology of the breast cancer as well as in diagnosis and management. The prediction of the future is extremely difficult. However, there is a future need to develop tests of tumor and host potential for spread. A future goal of chemotherapy selectivity would be to develop ways of testing for drug selection.

  4. [Biology of cancer cell-stroma interaction in carcinogenesis and cancer progression].

    PubMed

    Fujita, S; Sugihara, H; Ito, R; Tsuchihashi, Y

    1984-03-01

    Cancer cells are dependent on physical and chemical supports of stroma no less than non-cancerous cells and tissues are. The role of stroma should, therefore, be important in genesis and progression of cancers growing in vivo. But this aspect underlying carcinogenesis and manifestation of human cancers has long been neglected or attracted less attention in the investigations of oncology. Focusing particular attention on parenchyma-stromal interaction in gastrointestinal mucosa, the authors have found that, quite unexpectedly, in normal gastric as well as intestinal mucosa of all the animal species so for studied, vascularity is always poorly developed in the generative cell zones. Cross-sectional area of vascular bed is markedly reduced in this zone. Application of Hagen-Poiseulle law revealed that the reduced total cross-sectional area, resulting in a rapid drop in hydrostatic pressure, creates here a situation particularly favorable for proliferating cell population. Since the transport of water soluble material together with tissue fluid through the capillary wall is driven by the hydrostatic pressure, the generative cell zones are found to be present at the site where the turnover of the material is the most active. Before the zone of the rapid pressure drop, there appears zone of relatively high intravascular hydrostatic pressure, where secretory function seems to be facilitated. This zone, as is well known, corresponds to glandular portion of the mucosa. After the zone of the rapid pressure drop (in surface of the mucosa), zone of a low intravascular hydrostatic pressure appears, where absorptive function is to be facilitated. Within such zones, in gastric mucosa surface epithelium and in intestinal mucosa absorptive villi cells are located. It is likely that architecture of gastrointestinal epithelium and vascular pattern in the stroma is closely correlated and that the former is determined, at least partly, by the latter. When human gastric mucosa shows

  5. Defining ETS transcription regulatory networks and their contribution to breast cancer progression.

    PubMed

    Turner, David P; Findlay, Victoria J; Moussa, Omar; Watson, Dennis K

    2007-10-15

    ETS factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, that when perturbed contribute to tumor progression. The well documented alterations in ETS factor expression and function during breast cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. Furthermore, additional events contribute to, or may be necessary for, target gene regulation. In order to advance our understanding of the ETS-dependent regulation of breast cancer progression and metastasis, this prospect article puts forward a model for examining the effects of simultaneous expression of multiple transcription factors on the transcriptome of non-metastatic and metastatic breast cancer. Compared to existing RNA profiles defined following expression of individual transcription factors, the anti- and pro-metastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression.

  6. Salt Reduction Initiatives around the World – A Systematic Review of Progress towards the Global Target

    PubMed Central

    Trieu, Kathy; Neal, Bruce; Hawkes, Corinna; Dunford, Elizabeth; Campbell, Norm; Rodriguez-Fernandez, Rodrigo; Legetic, Branka; McLaren, Lindsay; Barberio, Amanda; Webster, Jacqui

    2015-01-01

    Objective To quantify progress with the initiation of salt reduction strategies around the world in the context of the global target to reduce population salt intake by 30% by 2025. Methods A systematic review of the published and grey literature was supplemented by questionnaires sent to country program leaders. Core characteristics of strategies were extracted and categorised according to a pre-defined framework. Results A total of 75 countries now have a national salt reduction strategy, more than double the number reported in a similar review done in 2010. The majority of programs are multifaceted and include industry engagement to reformulate products (n = 61), establishment of sodium content targets for foods (39), consumer education (71), front-of-pack labelling schemes (31), taxation on high-salt foods (3) and interventions in public institutions (54). Legislative action related to salt reduction such as mandatory targets, front of pack labelling, food procurement policies and taxation have been implemented in 33 countries. 12 countries have reported reductions in population salt intake, 19 reduced salt content in foods and 6 improvements in consumer knowledge, attitudes or behaviours relating to salt. Conclusion The large and increasing number of countries with salt reduction strategies in place is encouraging although activity remains limited in low- and middle-income regions. The absence of a consistent approach to implementation highlights uncertainty about the elements most important to success. Rigorous evaluation of ongoing programs and initiation of salt reduction programs, particularly in low- and middle- income countries, will be vital to achieving the targeted 30% reduction in salt intake. PMID:26201031

  7. The Met pathway: master switch and drug target in cancer progression.

    PubMed

    Mazzone, Massimiliano; Comoglio, Paolo M

    2006-08-01

    It has been recognized for more than a century that most tumors tend to become more aggressive in clinical behavior over time, although this time course may be variable. This phenomenon has been termed "cancer progression," a process that appears to develop in a stepwise fashion through qualitatively different stages. Cancer progression relies on the ability of neoplastic cells to abandon their primary site of accretion, trespass tissue boundaries, and penetrate into the vasculature to colonize and repopulate distant sites. Among the various properties associated with cancer progression, the acquisition by neoplastic cells of the capacity to invade locally and to metastasize is of great clinical significance, and is still the fundamental definition of malignancy. This process represents the aberrant counterpart of a physiological morphogenetic program, known as invasive growth, occurring during embryo development and, in some instances, in adulthood for the generation and maintenance of normal organ complexity and architecture. Here we summarize some of the strategies adopted to inhibit cancer cell growth and spreading. We also review the current findings about cancer and metastasis inhibitors. As we suggest possible directions for drug development, we propose the receptor for the hepatocyte growth factor, Met, as an ideal target for tackling cancer progression.

  8. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model

    PubMed Central

    Trejo-Becerril, Catalina; Pérez-Cárdenas, Enrique; Taja-Chayeb, Lucía; Anker, Philippe; Herrera-Goepfert, Roberto; Medina-Velázquez, Luis A.; Hidalgo-Miranda, Alfredo; Pérez-Montiel, Delia; Chávez-Blanco, Alma; Cruz-Velázquez, Judith; Díaz-Chávez, José; Gaxiola, Miguel; Dueñas-González, Alfonso

    2012-01-01

    It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy. PMID:23285175

  9. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.

    PubMed

    Feinberg, Andrew P; Koldobskiy, Michael A; Göndör, Anita

    2016-05-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  10. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

    PubMed Central

    Feinberg, Andrew P.; Koldobskiy, Michael A.; Göndör, Anita

    2016-01-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of ‘tumour progenitor genes’. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: ‘epigenetic mediators’, corresponding to the tumour progenitor genes suggested earlier; ‘epigenetic modifiers’ of the mediators, which are frequently mutated in cancer; and ‘epigenetic modulators’ upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  11. Biomarkers to Distinguish Aggressive Cancers from Non-aggressive or Non-progressing Cancer — EDRN Public Portal

    Cancer.gov

    Distinguishing aggressive cancers from non-aggressive or non-progressing cancers is an issue of both clinical and public health importance particularly for those cancers with an available screening test. With respect to breast cancer, mammographic screening has been shown in randomized trials to reduce breast cancer mortality, but given the limitations of its sensitivity and specificity some breast cancers are missed by screening. These so called interval detected breast cancers diagnosed between regular screenings are known to have a more aggressive clinical profile. In addition, of those cancers detected by mammography some are indolent while others are more likely to recur despite treatment. The pilot study proposed herein is highly responsive to the EDRN supplement titled “Biomarkers to Distinguish Aggressive Cancers from Nonaggressive or Non-progressing Cancers” in that it addresses both of the research objectives related to these issues outlined in the notice for this supplement: Aim 1: To identify biomarkers in tumor tissue related to risk of interval detected vs. mammography screen detected breast cancer focusing on early stage invasive disease. We will compare gene expression profiles using the whole genome-cDNA-mediated Annealing, Selection, extension and Ligation (DASL) assay of 50 screen detected cancers to those of 50 interval detected cancers. Through this approach we will advance our understanding of the molecular characteristics of interval vs. screen detected breast cancers and discover novel biomarkers that distinguish between them. Aim 2: To identify biomarkers in tumor tissue related to risk of cancer recurrence among patients with screen detected early stage invasive breast cancer. Using the DASL assay we will compare gene expression profiles from screen detected early stage breast cancer that either recurred within five years or never recurred within five years. These two groups of patients will be matched on multiple factors including

  12. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells.

    PubMed

    Hooda, Jagmohan; Cadinu, Daniela; Alam, Md Maksudul; Shah, Ajit; Cao, Thai M; Sullivan, Laura A; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  13. The Alzheimer’s Disease Neuroimaging Initiative: Progress report and future plans

    PubMed Central

    Weiner, Michael W.; Aisen, Paul S.; Jack, Clifford R.; Jagust, William J.; Trojanowski, John Q.; Shaw, Leslie; Saykin, Andrew J.; Morris, John C.; Cairns, Nigel; Beckett, Laurel A.; Toga, Arthur; Green, Robert; Walter, Sarah; Soares, Holly; Snyder, Peter; Siemers, Eric; Potter, William; Cole, Patricia E.; Schmidt, Mark

    2010-01-01

    The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year re-search project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD. PMID:20451868

  14. [A case of cryptococcal ventriculitis with slowly progressive gait disturbance and memory impairment as initial symptoms].

    PubMed

    Yamashiro, Nobuo; Nagasaka, Takamura; Takaki, Ryusuke; Miwa, Michiaki; Shindo, Kazumasa; Takiyama, Yoshihisa

    2015-01-01

    A 54-year-old man was admitted due to progressive gait disturbance and cognitive impairment. On MRI, a hyperintense region was observed in the periventricular white matter on FLAIR imaging, with Gd-enhancement in the choroid plexus and periventricular wall. Cerebrospinal fluid (CSF) examination showed marked abnormalities including a high white blood cell count (WBC, 360 cells/mm(3). 83% lymphocytes), an elevated protein level (1,416 mg/dl), a low glucose level (12 mg/dl), and elevated cryptococcal antigen with positive Indian ink staining. Cryptococcal ventriculitis was diagnosed. The patient was initially treated with liposomal amphotericin B, fluconazole, voriconazole, and flucytosine for 38 weeks, followed by administration of itraconazole and fluconazole with some improvement. The brain MRI after one month showed septum formation in the posterior horn, which was suggestive of ventriculitis. Although ventriculitis is rare, we should pay attention to the presence of ventriculitis due to cryptococcal infection in the central nervous system. PMID:25746069

  15. Interface Finite Elements for the Analysis of Fracture Initiation and Progression

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Technical Monitor); Johnson, Eric R.

    2003-01-01

    Progressive failure analyses (PFA) are important for the prediction of residual strength and damage tolerance of vehicle structures, and to predict the energy absorbing capability of vehicle structures under crash-type loads. Typically continuum damage mechanics (CDM) and fracture mechanics (FM) are the methods used for PFA. The method of interfacial damage mechanics (IDM) is used for PFA in this research. IDM has capabilities intermediate between CDM and FM, and is used to numerically model the initiation, growth, and arrest of cracks. IDM smooths the stress singularity at the crack tip, and is easily adaptable with other nonlinearties such as plasticity and material damage. IDM is implemented by user-defined interface elements in the ABAQUS/ Standard structural analysis software package. The structural components selected to demonstrate the effectiveness PFA using interface elements are, for the most part, those with published test data. These structural components were subjected to quasi-static loading in the tests. Thus, the ABAQUS analyses are used to predict geometrically and materially nonlinear equilibrium states. Impact loading, dynamic fracture, reflected stress waves, inertia, and time dependent material behavior are not considered.

  16. Evidence for the role of environmental agents in the initiation or progression of autoimmune conditions.

    PubMed Central

    Powell, J J; Van de Water, J; Gershwin, M E

    1999-01-01

    The concordance of autoimmune disease among identical twins is virtually always less than 50% and often in the 25-40% range. This observation, as well as epidemic clustering of some autoimmune diseases following xenobiotic exposure, reinforces the thesis that autoimmune disease is secondary to both genetic and environmental factors. Because nonliving agents do not have genomes, disease characteristics involving nonliving xenobiotics are primarily secondary to host phenotype and function. In addition, because of individual genetic susceptibilities based not only on major histocompatibility complex differences but also on differences in toxin metabolism, lifestyles, and exposure rates, individuals will react differently to the same chemicals. With these comments in mind it is important to note that there have been associations of a number of xenobiotics with human autoimmune disease, including mercury, iodine, vinyl chloride, canavanine, organic solvents, silica, l-tryptophan, particulates, ultraviolet radiation, and ozone. In addition, there is discussion in the literature that raises the possibility that xenobiotics may also exacerbate an existing autoimmune disease. In this article we discuss these issues and, in particular, the evidence for the role of environmental agents in the initiation or progression of autoimmune conditions. With the worldwide deterioration of the environment, this is a particularly important subject for human health. PMID:10970167

  17. A comprehensive review on host genetic susceptibility to human papillomavirus infection and progression to cervical cancer

    PubMed Central

    Chattopadhyay, Koushik

    2011-01-01

    Cervical cancer is the second most common cancer in women worldwide. This is caused by oncogenic types of human papillomavirus (HPV) infection. Although large numbers of young sexually active women get HPV-infected, only a small fraction develop cervical cancer. This points to different co-factors for regression of HPV infection or progression to cervical cancer. Host genetic factors play an important role in the outcome of such complex or multifactor diseases such as cervical cancer and are also known to regulate the rate of disease progression. The aim of this review is to compile the advances in the field of host genetics of cervical cancer. MEDLINE database was searched using the terms, ‘HPV’, ‘cervical’, ‘CIN’, ‘polymorphism(s)’, ‘cervical’+ *the name of the gene* and ‘HPV’+ *the name of the gene*. This review focuses on the major host genes reported to affect the progression to cervical cancer in HPV infected individuals. PMID:22345983

  18. Targeting matriptase in breast cancer abrogates tumor progression via impairment of stromal-epithelial growth factor signaling

    PubMed Central

    Zoratti, Gina L.; Tanabe, Lauren M.; Varela, Fausto A.; Murray, Andrew S.; Bergum, Christopher; Colombo, Eloic; Lang, Julie; Molinolo, Alfredo A.; Leduc, Richard; Marsault, Eric; Boerner, Julie; List, Karin

    2015-01-01

    Matriptase is an epithelia-specific membrane-anchored serine protease that has received considerable attention in recent years due to its consistent dysregulation in human epithelial tumors, including breast cancer. Mice with reduced levels of matriptase display a significant delay in oncogene-induced mammary tumor formation and blunted tumor growth. The abated tumor growth is associated with a decrease in cancer cell proliferation. Here we demonstrate by genetic deletion and silencing that the proliferation impairment in matriptase deficient breast cancer cells is caused by their inability to initiate activation of the c-Met signaling pathway in response to fibroblast-secreted pro-HGF. Similarly, inhibition of matriptase catalytic activity using a selective small-molecule inhibitor abrogates the activation of c-Met, Gab1 and AKT, in response to pro-HGF, which functionally leads to attenuated proliferation in breast carcinoma cells. We conclude that matriptase is critically involved in breast cancer progression and represents a potential therapeutic target in breast cancer. PMID:25873032

  19. TARGETING THE eIF4F TRANSLATION INITIATION COMPLEX: A CRITICAL NEXUS FOR CANCER DEVELOPMENT

    PubMed Central

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2014-01-01

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor (eIF) 4F, the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and pre-clinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes such as cell growth and proliferation, enhanced cell survival, and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g. Ras, PI3K/AKT/TOR, and Myc), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as anti-neoplastic agents. PMID:25593033

  20. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling.

    PubMed

    Rovigatti, Ugo

    2015-11-01

    It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part.

  1. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling.

    PubMed

    Rovigatti, Ugo

    2015-11-01

    It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part. PMID:26427785

  2. Physician-Initiated Stop-Smoking Program for Patients Receiving Treatment for Early-Stage Cancer

    ClinicalTrials.gov

    2015-10-06

    Bladder Cancer; Breast Cancer; Colorectal Cancer; Head and Neck Cancer; Lung Cancer; Lymphoma; Prostate Cancer; Testicular Germ Cell Tumor; Tobacco Use Disorder; Unspecified Adult Solid Tumor, Protocol Specific

  3. An integrated multidisciplinary model describing initiation of cancer and the Warburg hypothesis

    PubMed Central

    2013-01-01

    Background In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation. Model Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise. Specifically, we discuss how an analog of non-equilibrium Rayleigh-Benard convection can result in glycolytic oscillations and cause a cell to become locked into a higher-entropy state characteristic of cancer. Conclusions A quantitative model is presented that attributes the well-known Warburg effect to a biophysical mechanism driven by a convective disturbance in the cell. Contrary to current understanding, this effect may precipitate cancer development, rather than follow from it, providing new insights into carcinogenesis, cancer treatment, and prevention. PMID:23758735

  4. The epigenetics of tumour initiation: cancer stem cells and their chromatin.

    PubMed

    Avgustinova, Alexandra; Benitah, Salvador Aznar

    2016-02-01

    Cancer stem cells (CSCs) have been identified in various tumours and are defined by their potential to initiate tumours upon transplantation, self-renew and reconstitute tumour heterogeneity. Modifications of the epigenome can favour tumour initiation by affecting genome integrity, DNA repair and tumour cell plasticity. Importantly, an in-depth understanding of the epigenomic alterations underlying neoplastic transformation may open new avenues for chromatin-targeted cancer treatment, as these epigenetic changes could be inherently more amenable to inhibition and reversal than hard-wired genomic alterations. Here we discuss how CSC function is affected by chromatin state and epigenomic instability. PMID:26874045

  5. Three-Dimensional Spinal Morphology can Differentiate Between Progressive and Non-Progressive Patients With Adolescent Idiopathic Scoliosis at the Initial Presentation.

    PubMed

    Nault, M-L; Mac-Thiong, J-M; Roy-Beaudry, M; Turgeon, I; de Guise, J; Labelle, H; Parent, S

    2014-02-27

    Study Design. This is a prospective case-control study.Objective. The objective of this study was to compare 3D morphologic parameters of the spine at the first visit between a non progressive (NP) and a progressive (P) group of immature adolescent idiopathic scoliosis (AIS).Summary of Background Data. Prediction of curve progression remains challenging in AIS at the first visit. Prediction of progression is based on curve type, curve magnitude and skeletal or chronological age.Methods. A prospective cohort of 134 AIS was followed from skeletal immaturity to maturity (mean 37 months). The first group was made up of AIS patients with a minimum 6° progression of the major curve between the first and last follow up (P) (n=53) and the second group was composed of NP patients that reached maturity with less than 6° progression (n=81). Computerized measurements were undertaken on reconstructed 3D spine radiographs of the first visit. There were 6 categories of measurements: angle of plane of maximum curvature, Cobb angles (kyphosis, lordosis), 3D wedging (apical vertebra, apical disks), rotation (upper and lower junctional vertebra, apical vertebra, thoracolumbar junction), torsion and slenderness (height/width ratio). t tests were also undertaken.Results. There was no statistical difference between the two groups for age and initial Cobb angle. NP presented significant hypokyphosis, and parameters related to rotation presented significant statistical differences between NP and P (plane of maximal curvature, torsion, apical axial rotation). Depth slenderness also presented statistical differences.Conclusion. This study confirms that even at the initial visit, 3D morphologic differences exist between P and NP AIS. It supports the use of 3D reconstructions of the spine in the initial evaluation of AIS to help predict outcome.

  6. Unraveling the mystery of cancer metabolism in the genesis of tumor-initiating cells and development of cancer.

    PubMed

    Zhang, Gaochuan; Yang, Ping; Guo, Pengda; Miele, Lucio; Sarkar, Fazlul H; Wang, Zhiwei; Zhou, Quansheng

    2013-08-01

    Robust anaerobic metabolism plays a causative role in the origin of cancer cells; however, the oncogenic metabolic genes, factors, pathways, and networks in genesis of tumor-initiating cells (TICs) have not yet been systematically summarized. In addition, the mechanisms of oncogenic metabolism in the genesis of TICs are enigmatic. In this review, we discussed multiple cancer metabolism-related genes (MRGs) that are overexpressed in TICs and are responsible for inducing pluripotent stem cells. Moreover, we summarized that oncogenic metabolic genes and onco-metabolites induce metabolic reprogramming, which switches normal mitochondrial oxidative phosphorylation to cancer anaerobic metabolism, triggers epigenetic, genetic, and environmental alterations, drives the generation of TICs, and boosts the development of cancer. Importantly, cancer metabolism is controlled by positive and negative metabolic regulators. Positive oncogenic metabolic regulators, including key oncogenic metabolic genes, onco-metabolites, hypoxia, and an acidic environment, promote oncogenic metabolic reprogramming and anaerobic metabolism. However, dysfunction of negative metabolic regulators, including defects in p53, PTEN, and LKB1-AMPK-mTOR pathways, enhances cancer metabolism. Loss of the metabolic balance results in oncogenic metabolic reprogramming, genesis of TICs, and tumorigenesis. Collectively, this review provides new insight into the role and mechanism of these oncogenic metabolisms in the genesis of TICs and tumorigenesis. Accordingly, targeting key oncogenic genes, onco-metabolites, pathways, networks, and the acidic cancer microenvironment appears to be an attractive strategy for novel anti-tumor treatment.

  7. Metformin blocks progression of obesity-activated thyroid cancer in a mouse model

    PubMed Central

    Park, Jeongwon; Kim, Won Gu; Zhao, Li; Enomoto, Keisuke; Willingham, Mark; Cheng, Sheue-Yann

    2016-01-01

    Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/−mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/−mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/−mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/−mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/−mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer. PMID:27145454

  8. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research. PMID:25234700

  9. Predictive values of vascular endothelial growth factor and microvessel-density levels in initial biopsy for prostate cancer.

    PubMed

    Kervancioglu, Enis; Kosan, Murat; Erinanc, Hilal; Gonulalan, Umut; Oguzulgen, Ahmet Ibrahim; Coskun, Esra Zeynep; Ozkardes, Hakan

    2016-02-01

    Angiogenesis is an important factor in the development and progression of prostate cancer (PCA). We aimed to investigate the values of vascular-endothelial-growth-factor (VEGF) expression level and microvessel density (MVD) in the prediction of PCA diagnosis at repeated prostate biopsy (re-PBx). We retrospectively evaluated 167 patients with re-PBx according to elevated prostate-specific antigen levels, suspicious digital rectal examination, and the presence of premalignant lesions. Patients with PCA on re-PBx were included in the cancer group (n = 17). Patients with benign prostatic hyperplasia or normal tissues on re-PBx were included in the control group (n = 21). The groups were compared according to the expression level of VEGF and MVD in initial prostate biopsy. There was no statistically significant difference between groups according to age and serum prostate-specific-antigen values. The mean VEGF scores of the cancer and control groups were 232.64 ± 11.14 and 183.09 ± 14.56, respectively (p < 0.05). The mean MVD of the biopsy samples in the cancer and control groups were 246.47 ± 17.59 n/mm(2) and 197.33 ± 16.26 n/mm(2), respectively (p < 0.05). The cutoff values of VEGF scores and MVD were set as 200 and 215, respectively, for PCA detection in our study. Our results showed that the expression level of VEGF and MVD significantly increased in the initial prostate-biopsy samples of patients with PCA diagnosed with re-PBx. The evaluation of VEGF expression level and MVD might have an important value in the prediction of PCA at re-PBx. The expression level of VEGF and MVD should be kept in mind as PCA-related histopathological changes that indicate the increased angiogenesis in prostatic tissue.

  10. Recent Progress in Cancer-Related Lymphedema Treatment and Prevention

    PubMed Central

    Shaitelman, Simona F.; Cromwell, Kate D.; Rasmussen, John C.; Stout, Nicole L.; Armer, Jane M.; Lasinski, Bonnie B.; Cormier, Janice N.

    2016-01-01

    This article provides an overview of the recent developments in the diagnosis, treatment, and prevention of cancer-related lymphedema. Lymphedema incidence by tumor site is evaluated. Measurement techniques and trends in patient education and treatment are also summarized to include current trends in therapeutic and surgical treatment options as well as longer-term management. Finally, an overview of the policies related to insurance coverage and reimbursement will give the clinician an overview of important trends in the diagnosis, treatment, and management of cancer-related lymphedema. PMID:25410402

  11. [Research progress of relationship between exosomes and breast cancer].

    PubMed

    Bi, Tao-Ling; Sun, Jin-Jian; Tian, Yu-Zi; Zhou, Ye-Fang

    2016-06-25

    Exosomes are nanosized small membrane microvesicles of endocytic origin secreted by most cell types. Exosomes, through its carrying protein or RNA from derived cells, affect gene regulation networks or epigenetic reorganization of receptor cell, and then modulate the physiological processes of cells. Studies have shown that external exosomes secreted by breast cancer cells or other cells play an important role in the development of tumor, including cell migration, cell differentiation and the immune response, etc. In this article, the latest studies were summarized to provide an overview of current understanding of exosomes in breast cancer. PMID:27350208

  12. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  13. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression.

    PubMed

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-04-19

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  14. Synthesis of survival and disease progression outcomes for health technology assessment of cancer therapies.

    PubMed

    Welton, N J; Willis, S R; Ades, A E

    2010-07-01

    Studies of clinical efficacy commonly report more than one clinical endpoint. For example, randomized controlled trials of treatments for cancer will normally report time to disease progression as well as overall survival. It is likely that disease progression will be associated with higher mortality rates. Disease progression rates will also have consequences for the societal economic burden of the disease. Economic evaluation of the cost-effectiveness of different treatment regimes therefore requires the joint estimation of both disease progression and mortality. We describe a model to combine evidence from studies reporting time to event summaries for disease progression and/or mortality, motivated by a systematic review of 1st-line treatment for advanced breast cancer to provide inputs for an economic evaluation as part of the National Institute for Health and Clinical Excellence (NICE) clinical guideline on treatment of advanced breast cancer in England and Wales. The review identified a network of treatment comparisons, which provides the basis for indirect comparison. A variety of outcomes were reported: overall survival, time to progression (overall and responders only), and the proportion of responder, stable, progressive disease, and non-assessable patients. There were only five trials, and not all trials reported all outcomes. The scarcity of the available evidence required us to make strong assumptions in order to identify model parameters. However, this evidence structure often occurs in health technology assessment (HTA) of treatments for cancer. We discuss the validity of the assumptions made, and the potential to assess their validity in other applications of HTA of cancer therapies. Copyright © 2011 John Wiley & Sons, Ltd. PMID:26061469

  15. Association of plasma adiponectin and leptin levels with the development and progression of ovarian cancer

    PubMed Central

    Jin, Jing Hui; Kim, Hyun-Jung; Kim, Chan Young; Kim, Yun Hwan; Ju, Woong

    2016-01-01

    Objective Decreased adiponectin and increased leptin plasma concentrations are believed to be associated with the occurrence and progression of cancers such as endometrial cancer and breast cancer. The aim of this study was to explore the association of plasma adiponectin and leptin levels with the development and progression of ovarian cancer. Methods For patients with ovarian cancer and the control group, adiponectin and leptin levels were measured; anthropometric data were obtained during a chart review. Statistical comparisons between groups were analyzed using the Student's t-test; correlations were confirmed using the Pearson correlation. Results The mean adiponectin and leptin concentrations in patients with ovarian cancer were lower than those of the control group (8.25 vs. 11.44 µg/mL, respectively; P=0.026) (7.09 vs. 15.4 ng/mL, respectively; P=0.001). However, there was no significant difference in adiponectin and leptin levels between early-stage (I/II) and advanced-stage (III/IV) disease (P=0.078). Conclusion Compared with other gynecological cancers, the level of adiponectin and leptin were decreased in ovarian cancer that may have some diagnostic value; additional study to elucidate the function of these two hormones in the development of ovarian carcinogenesis is necessitated. PMID:27462594

  16. miR-340 and ZEB1 negative feedback loop regulates TGF-β- mediated breast cancer progression

    PubMed Central

    Xie, Ye-Gong; Wang, Jie; Mao, Jie-Fei; Zhang, Bin; Wang, Xin; Cao, Xu-Chen

    2016-01-01

    MicroRNAs act as key regulators in carcinogenesis and progression in various cancers. In present study, we explored the role of miR-340 in the breast cancer progression. Our results showed that overexpression of miR-340 inhibits breast cancer cell proliferation and invasion, whereas depletion of miR-340 promotes breast cancer progression. Molecularly, ZEB1 was identified as a target gene of miR-340 and miR-340 suppressed the expression of ZEB1 by directly binding to the 3′-UTR of ZEB1. Furthermore, ZEB1 transcriptionally suppresses miR-340 expression. The negative feedback loop regulated TGF-β-mediated breast cancer progression. In conclusion, our data suggested that miR-340 acted as a tumor suppressor in breast cancer progression. PMID:27036021

  17. MIEN1 promotes oral cancer progression and implicates poor overall survival.

    PubMed

    Rajendiran, Smrithi; Kpetemey, Marilyne; Maji, Sayantan; Gibbs, Lee D; Dasgupta, Subhamoy; Mantsch, Rebecca; Hare, Richard J; Vishwanatha, Jamboor K

    2015-01-01

    Oral squamous cell carcinoma is a highly malignant tumor with the potential to invade local and distant sites and promote lymph node metastasis. Major players underlying the molecular mechanisms behind tumor progression are yet to be fully explored. Migration and invasion enhancer 1 (MIEN1), a novel protein overexpressed in various cancers, facilitates cell migration and invasion. In the present study we investigated the expression and role of MIEN1 in oral cancer progression using an in vitro model, patient derived oral tissues and existing TCGA data. Expression analysis using immortalized normal and cancer cells demonstrated increased expression of MIEN1 in cancer. Assays performed after MIEN1 knockdown in OSC-2 cells showed decreased migration, invasion and filopodia formation; while MIEN1 overexpression in DOK cells increased these characteristics and also up-regulated some Akt/NF-κB effectors, thereby suggesting an important role for MIEN1 in oral cancer progression. Immunohistochemical staining and analyses of oral tissue specimens, collected from patients over multiple visits, revealed significantly more staining in severe dysplasia and squamous cell carcinoma compared to mildly dysplastic or hyperplastic tissues. Finally, this was corroborated with the TCGA dataset, where MIEN1 expression was not only higher in intermediate and high grade cancer with significantly lower survival but also correlated with smoking. In summary, we demonstrate that MIEN1 expression not only positively correlates with oral cancer progression but also seems to be a critical molecular determinant in migration and invasion of oral cancer cells, thereby, playing a possible role in their metastatic dissemination.

  18. Drug withdrawal in women with progressive metastatic breast cancer while on aromatase inhibitor therapy

    PubMed Central

    Chavarri-Guerra, Y; Higgins, M J; Szymonifka, J; Cigler, T; Liedke, P; Partridge, A; Ligibel, J; Come, S E; Finkelstein, D; Ryan, P D; Goss, P E

    2014-01-01

    Background: Acquiring resistance to endocrine therapy is common in metastatic hormone-receptor-positive breast cancer (MBC). These patients most often transition either to next-line endocrine therapy or to systemic chemotherapy. However, withdrawal of endocrine therapy and observation as is selectively practiced in prostate cancer is another potential strategy for breast cancer patients. Methods: A prospective, single-arm phase II trial of aromatase inhibitor (AI) withdrawal was performed in women with MBC, who had disease progression on AI therapy. The primary objective was to estimate the clinical benefit rate (defined as complete or partial response, or stable disease for at least 24 weeks, by RECIST criteria). Participants were monitored clinically and radiographically off all therapy at 8, 16 and 24 weeks after treatment and every 12 weeks thereafter until disease progression. Results: Twenty-four patients (of 40 intended) were enrolled when the study was closed due to slow accrual. Clinical benefit rate overall was 46% (95% CI 26% to 67%). Median progression-free survival from time of AI withdrawal was 4 months. Two patients have remained progression free, off all treatment, for over 60 months. Conclusions: Despite suboptimal patient accrual, our results suggest that selected patients with metastatic breast cancer progressing on AI therapy can experience disease stabilisation and a period of observation after AI withdrawal. A randomised phase II trial is planned. PMID:25233398

  19. Continuation of trastuzumab beyond disease progression in HER2-positive metastatic gastric cancer: the MD Anderson experience

    PubMed Central

    Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Rogers, Jane E.; Mares, Jeannette Elizabeth; Blum, Mariela A.; Estrella, Jeannelyn; Matamoros, Aurelio; Sagebiel, Tara; Devine, Catherine E.; Badgwell, Brian D.; Lin, Quan D.; Das, Prajnan; Ajani, Jaffer A.

    2016-01-01

    Background Despite the wide spread use of trastuzumab in human epidermal growth factor receptor 2 (HER2) overexpressing metastatic gastric cancer patients, its optimal duration of administration beyond first-line disease progression is unknown. In HER2 overexpressing metastatic breast cancer, trastuzumab continuation beyond first-line disease progression has shown improvement in time to progression (TTP) without an increased risk of treatment related toxicity. Methods HER2-overexpressing metastatic gastric cancer patients were identified from our database between January 2010 and December 2014. We retrospectively reviewed the medical records of 43 patients who received trastuzumab in combination with chemotherapy as first-line and continued trastuzumab beyond disease progression. Results Forty-three cases were identified, 27 males (62.8%), median age of the patients was 58 years. Thirty-five (81.4%) presented with stage 4 as their initial presentation. Eighty one percent had 3+ HER2 overexpression by immunohistochemistry (IHC) and 18% had 2+ HER2 overexpression confirmed by fluorescence in situ hybridization (FISH). Thirteen (52%) were moderately differentiated, 16 (37.1%) were poorly differentiated. The most common sites of metastasis were liver 35 (81.4%) and lung 14 (32.5%). The most commonly used first-line regimen was oxaliplatin, 5-fluorouracil (5-FU), and trastuzumab in 22 (51.1%) patients. Twenty-five (58.1%) patients received irinotecan, 5-FU and trastuzumab in the second-line. Progression-free survival (PFS) was 5 months (95% CI: 4.01–5.99 months). Five patients are still alive and excluded from calculating the median overall survival (OS) which was 11 months (range, 5–53 months) for the remaining 20 subjects of this second-line group. Trastuzumab was not discontinued due to side effects in any of the study population. Conclusions In conclusion, this retrospective analysis suggests that continuation of trastuzumab beyond disease progression in

  20. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  1. THE 2011-2016 TRANSDISCIPLINARY RESEARCH IN ENERGETICS AND CANCER (TREC) INITIATIVE: RATIONALE AND DESIGN

    PubMed Central

    Patterson, Ruth E.; Colditz, Graham A.; Hu, Frank B.; Schmitz, Kathryn H.; Ahima, Rexford S.; Brownson, Ross C.; Carson, Kenneth R.; Chavarro, Jorge E.; Chodosh, Lewis A.; Gehlert, Sarah; Gill, Jeff; Glanz, Karen; Haire-Joshu, Debra; Herbst, Karen Louise; Hoehner, Christine M.; Hovmand, Peter S.; Irwin, Melinda L.; Jacobs, Linda A.; James, Aimee S.; Jones, Lee W.; Kerr, Jacqueline; Kibel, Adam S.; King, Irena B.; Ligibel, Jennifer A.; Meyerhardt, Jeffrey A.; Natarajan, Loki; Neuhouser, Marian L.; Olefsky, Jerrold M.; Proctor, Enola K.; Redline, Susan; Rock, Cheryl L.; Rosner, Bernard; Sarwer, David B.; Schwartz, J. Sanford; Sears, Dorothy D.; Sesso, Howard D.; Stampfer, Meir J.; Subramanian, S. V.; Taveras, Elsie M.; Tchou, Julia; Thompson, Beti; Troxel, Andrea B.; Wessling-Resnick, Marianne; Wolin, Kathleen Y.; Thornquist, Mark D.

    2013-01-01

    Purpose Recognition of the complex, multidimensional relationship between excess adiposity and cancer control outcomes has motivated the scientific community to seek new research models and paradigms. Methods The National Cancer Institute developed an innovative concept to establish a centers grant mechanism in nutrition, energetics, and physical activity; referred to as the Transdisciplinary Research on Energetics and Cancer (TREC) Initiative. This paper gives an overview of the 2011-2016 TREC Collaborative Network and the 15 research projects being conducted at the Centers. Results Four academic institutions were awarded TREC center grants in 2011: Harvard University, University of California San Diego, University of Pennsylvania, and Washington University in St. Louis. The Fred Hutchinson Cancer Research Center is the Coordination Center. The TREC research portfolio includes 3 animal studies, 3 cohort studies, 4 randomized clinical trials, 1 cross-sectional study, and 2 modeling studies. Disciplines represented by TREC investigators include basic science, endocrinology, epidemiology, biostatistics, behavior, medicine, nutrition, physical activity, genetics, engineering, health economics, and computer science. Approximately 41,000 participants will be involved in these studies, including children, healthy adults, and breast and prostate cancer survivors. Outcomes include biomarkers of cancer risk, changes in weight and physical activity, persistent adverse treatment effects (e.g., lymphedema, urinary and sexual function), and breast and prostate cancer mortality. Conclusion The NIH Science of Team Science group will evaluate the value-added by this collaborative science. However, the most important outcome will be whether this transdisciplinary initiative improves the health of Americans at risk for cancer as well as cancer survivors. PMID:23378138

  2. The breast cancer "plunge" after initial publication of the WHI results: an alternative explanation.

    PubMed

    Simon, James A; Nahum, Gerard G; Stanislaw, Harold; Gaines, Tatiana

    2010-07-01

    From 2002 to 2003, the breast cancer incidence in the United States, as reported by the National Cancer Institute's Surveillance Epidemiology and End Results (SEER 9) database, appeared to decrease by 6.7%. This phenomenon has been attributed to a reduction in the use of menopausal hormone therapies after the initial publication of the Women's Health Initiative (WHI) study results in July of 2002. However, attempts to draw a causal association between the use of menopausal hormone therapies and the incidence of breast cancer have not accounted for the facts that prescriptions of estrogen-plus-progestin menopausal therapies, which are associated with increased rates of breast cancer, fell by 53% from 2002 to 2003, while prescriptions of estrogen-only therapies fell by only 27%. To address this issue, we analyzed the effects of the higher rate of discontinuation of estrogen-plus-progestin menopausal therapies relative to estrogen-only treatments during the 2002-2003 time period, based upon the effects of different types of menopausal hormone therapies on breast cancer incidence as determined by the WHI interventional hormone trials. This approach demonstrates that the relative persistence with menopausal estrogen-only therapies - as compared to estrogen-plus-progestin therapies - can explain the reduction in breast cancer incidence from 2002 to 2003. In addition, we point out the incompatibility of the breast cancer incidence rates found in the two WHI interventional hormone trials and the rates reported in the SEER 9 database. Based on these findings, we conclude - as previously demonstrated in the estrogen-only arm of the WHI interventional hormone trials - that menopausal estrogen-only use is not responsible for increasing the risk of breast cancer in menopausal women and may, in fact, be protective. Additional studies are still needed to better define the relationship between different types of menopausal hormone therapies and the incidence of breast cancer.

  3. Latest research progress in the correlation between baicalein and breast cancer invasion and metastasis

    PubMed Central

    YAN, WAN-JUN; MA, XING-CONG; GAO, XIAO-YAN; XUE, XING-HUAN; ZHANG, SHU-QUN

    2016-01-01

    Breast cancer is one of the most commonly occurring female malignant tumors. According to the 2012 GLOBOCAN statistics, produced by the International Agency for Research On Cancer (‘IARC’), nearly 1.7 million women were diagnosed with breast cancer, with 522,000 related deaths: An increase in the incidence of breast cancer and associated mortality by nearly 18% from 2008. Metastasis is the final step in breast cancer progression, and represents the most common cause of mortality in patients with breast cancer. Therefore, a search for low-toxicity, safe and effective anti-breast cancer drugs in the form of natural compounds has become an intense focus of research. Baicalein, a widely used Chinese herbal medicine, has extensive antitumor activity. The present review briefly describes the research that has been performed on the association between baicalein and breast cancer metastasis, and further illustrates the influence of baicalein on the underlying mechanisms of breast cancer metastasis, adding a novel theory basis for baicalein antitumor research. In conclusion, baicalein may represent a promising target for the prevention and therapy of breast cancer. PMID:27073644

  4. Research Progress of MicroRNA in Early Detection of Ovarian Cancer

    PubMed Central

    Wang, Ze-Hua; Xu, Cong-Jian

    2015-01-01

    Objective: This review aimed to update the progress of microRNA (miRNA) in early detection of ovarian cancer. We discussed the current clinical diagnosis methods and biomarkers of ovarian cancer, especially the methods of miRNA in early detection of ovarian cancer. Data Sources: We collected all relevant studies about miRNA and ovarian cancer in PubMed and CNKI from 1995 to 2015. Study Selection: We included all relevant studies concerning miRNA in early detection of ovarian cancer, and excluded the duplicated articles. Results: miRNAs play a key role in various biological processes of ovarian cancer, such as development, proliferation, differentiation, apoptosis and metastasis, and these phenomena appear in the early-stage. Therefore, miRNA can be used as a new biomarker for early diagnosis of ovarian cancer, intervention on miRNA expression of known target genes, and potential target genes can achieve the effect of early prevention. With the development of nanoscience and technology, analysis methods of miRNA are also quickly developed, which may provide better characterization of early detection of ovarian cancer. Conclusions: In the near future, miRNA therapy could be a powerful tool for ovarian cancer prevention and treatment, and combining with the new analysis technology and new nanomaterials, point-of-care tests for miRNA with high throughput, high sensitivity, and strong specificity are developed to achieve the application of diagnostic kits in screening of early ovarian cancer. PMID:26668153

  5. Validation of Novel Biomarkers for Prostate Cancer Progression by the Combination of Bioinformatics, Clinical and Functional Studies

    PubMed Central

    Väänänen, Riina-Minna; Mattsson, Jesse; Li, Yifeng; Tallgrén, Terhi; Tong Ochoa, Natalia; Bjartell, Anders; Åkerfelt, Malin; Taimen, Pekka; Boström, Peter J.

    2016-01-01

    The identification and validation of biomarkers for clinical applications remains an important issue for improving diagnostics and therapy in many diseases, including prostate cancer. Gene expression profiles are routinely applied to identify diagnostic and predictive biomarkers or novel targets for cancer. However, only few predictive markers identified in silico have also been validated for clinical, functional or mechanistic relevance in disease progression. In this study, we have used a broad, bioinformatics-based approach to identify such biomarkers across a spectrum of progression stages, including normal and tumor-adjacent, premalignant, primary and late stage lesions. Bioinformatics data mining combined with clinical validation of biomarkers by sensitive, quantitative reverse-transcription PCR (qRT-PCR), followed by functional evaluation of candidate genes in disease-relevant processes, such as cancer cell proliferation, motility and invasion. From 300 initial candidates, eight genes were selected for validation by several layers of data mining and filtering. For clinical validation, differential mRNA expression of selected genes was measured by qRT-PCR in 197 clinical prostate tissue samples including normal prostate, compared against histologically benign and cancerous tissues. Based on the qRT-PCR results, significantly different mRNA expression was confirmed in normal prostate versus malignant PCa samples (for all eight genes), but also in cancer-adjacent tissues, even in the absence of detectable cancer cells, thus pointing to the possibility of pronounced field effects in prostate lesions. For the validation of the functional properties of these genes, and to demonstrate their putative relevance for disease-relevant processes, siRNA knock-down studies were performed in both 2D and 3D organotypic cell culture models. Silencing of three genes (DLX1, PLA2G7 and RHOU) in the prostate cancer cell lines PC3 and VCaP by siRNA resulted in marked growth arrest

  6. Validation of Novel Biomarkers for Prostate Cancer Progression by the Combination of Bioinformatics, Clinical and Functional Studies.

    PubMed

    Alinezhad, Saeid; Väänänen, Riina-Minna; Mattsson, Jesse; Li, Yifeng; Tallgrén, Terhi; Tong Ochoa, Natalia; Bjartell, Anders; Åkerfelt, Malin; Taimen, Pekka; Boström, Peter J; Pettersson, Kim; Nees, Matthias

    2016-01-01

    The identification and validation of biomarkers for clinical applications remains an important issue for improving diagnostics and therapy in many diseases, including prostate cancer. Gene expression profiles are routinely applied to identify diagnostic and predictive biomarkers or novel targets for cancer. However, only few predictive markers identified in silico have also been validated for clinical, functional or mechanistic relevance in disease progression. In this study, we have used a broad, bioinformatics-based approach to identify such biomarkers across a spectrum of progression stages, including normal and tumor-adjacent, premalignant, primary and late stage lesions. Bioinformatics data mining combined with clinical validation of biomarkers by sensitive, quantitative reverse-transcription PCR (qRT-PCR), followed by functional evaluation of candidate genes in disease-relevant processes, such as cancer cell proliferation, motility and invasion. From 300 initial candidates, eight genes were selected for validation by several layers of data mining and filtering. For clinical validation, differential mRNA expression of selected genes was measured by qRT-PCR in 197 clinical prostate tissue samples including normal prostate, compared against histologically benign and cancerous tissues. Based on the qRT-PCR results, significantly different mRNA expression was confirmed in normal prostate versus malignant PCa samples (for all eight genes), but also in cancer-adjacent tissues, even in the absence of detectable cancer cells, thus pointing to the possibility of pronounced field effects in prostate lesions. For the validation of the functional properties of these genes, and to demonstrate their putative relevance for disease-relevant processes, siRNA knock-down studies were performed in both 2D and 3D organotypic cell culture models. Silencing of three genes (DLX1, PLA2G7 and RHOU) in the prostate cancer cell lines PC3 and VCaP by siRNA resulted in marked growth arrest

  7. Prognostic and predictive factors in prostate cancer: historical perspectives and recent international consensus initiatives.

    PubMed

    Srigley, John R; Amin, Mahul; Boccon-Gibod, Liliane; Egevad, Lars; Epstein, Jonathan I; Humphrey, Peter A; Mikuz, Gregor; Newling, Don; Nilsson, Sten; Sakr, Wael; Wheeler, Thomas M; Montironi, Rodolfo

    2005-05-01

    An understanding of prognosis in cancer medicine is important for patient care, research and cancer control programs. In prostate cancer, prognostic (predictive) factors are particularly important given the marked heterogeneity of this disease at clinical, morphologic and biomolecular levels. Clinical stage and histologic grade have historically played major roles in defining heterogeneity in prostate cancer. More recently, serum prostate-specific antigen measurement has assumed a significant prognostic role. Over the last two decades there has been an explosion of research into biomarkers, many of which have been purported to have prognostic significance. In this paper we present an overview of the various consensus initiatives that have transpired over the last dozen years. Criteria for evaluating prognostic factors and classifications of predictive factors have emerged that have proven useful and advanced our understanding of the biology of prostate cancer. The results of these consensus initiatives form a foundation on which the current international consultation on prognosis (prediction) in prostate cancer is built. Advances in our understanding of the new and promising prognostic factors will require a more rigorous evidence-based approach to the analysis of published studies. Furthermore, appropriate mathematical models for the analysis of the multiple factors that influence a prognostic system will have to be employed.

  8. Multi-state relative survival modelling of colorectal cancer progression and mortality.

    PubMed

    Gilard-Pioc, Séverine; Abrahamowicz, Michal; Mahboubi, Amel; Bouvier, Anne-Marie; Dejardin, Olivier; Huszti, Ella; Binquet, Christine; Quantin, Catherine

    2015-06-01

    Accurate identification of factors associated with progression of colorectal cancer remains a challenge. In particular, it is unclear which statistical methods are most suitable to separate the effects of putative prognostic factors on cancer progression vs cancer-specific and other cause mortality. To address these challenges, we analyzed 10 year follow-up data for patients who underwent curative surgery for colorectal cancer in 1985-2000. Separate analyses were performed in two French cancer registries. Results of three multivariable models were compared: Cox model with recurrence as a time-dependent variable, and two multi-state models, which separated prognostic factor effects on recurrence vs death, with or without recurrence. Conventional multi-state model analyzed all-cause mortality while new relative survival multi-state model focused on cancer-specific mortality. Among the 2517 and 2677 patients in the two registries, about 50% died without a recurrence, and 28% had a recurrence, of whom almost 90% died. In both multi-state models men had significantly increased risk of cancer recurrence in both registries (HR=0.79; 95% CI: 0.68-0.92 and HR=0.83; 95% CI: 0.71-0.96). However, the two multi-state models identified different prognostic factors for mortality without recurrence. In contrast to the conventional model, in the relative survival analyses gender had no independent association with cancer-specific mortality whereas patients diagnosed with stage III cancer had significantly higher risks in both registries (HR=1.67; 95% CI: 1.27-2.22 and HR=2.38; 95% CI: 1.29-3.27). In conclusion, relative survival multi-state model revealed that different factors may be associated with cancer recurrence vs cancer-specific mortality either after or without a recurrence.

  9. EphB2 promotes cervical cancer progression by inducing epithelial-mesenchymal transition.

    PubMed

    Gao, Qing; Liu, Wei; Cai, Jiangyi; Li, Mu; Gao, Yane; Lin, Wenjing; Li, Zongfang

    2014-02-01

    EphB2, a receptor tyrosine kinase for ephrin ligands, is overexpressed in various cancers and plays an important role in tumor progression. However, the expression and functions of EphB2 in cervical cancer remain unknown. In this study, we performed immunohistochemistry in clinical cervical specimens and found that EphB2 was overexpressed in the cervical cancer specimens, and its expression correlated with cancer progression. The percentage of EphB2-positive cells increased gradually from 28% in the normal cervix to 40% in high-grade squamous intraepithelial lesions, and ultimately to 69.8% in squamous cell carcinomas (P < .05). We overexpressed EphB2 in HeLa cells and silenced EphB2 in cervical cancer (C33A) cells, which expressed low and high levels of EphB2, respectively. Exogenous EphB2 promoted cell migration, invasion, and an epithelial-mesenchymal transition (EMT) signature, which is a complex process that occurs during organogenesis and cancer metastasis, whereas EphB2 silencing had the opposite effect (P < .05). Furthermore, HeLa cells with exogenous EphB2 exhibited a stem cell-like state that promoted tumorsphere formation in vitro and exhibited tumorigenesis potential in vivo (P < .05), whereas EphB2 silencing in C33A cells inhibited these stem cell properties (P < .05). In addition, we investigated the intracellular signaling pathways in cervical cancer and found that R-Ras expression correlated positively with EphB2 in clinical samples, and its activity was regulated by EphB2 in cervical cancer. These findings demonstrate that EphB2 plays an important role in cervical cancer progression by orchestrating an EMT program through R-Ras activation.

  10. 20 Years of Progress in Radiation Oncology: Prostate Cancer.

    PubMed

    Lanciano; Thomas; Eifel

    1997-04-01

    Carcinoma of the cervix remains of special interest to the Patterns of Care Study (PCS) because of the prominent role that radiotherapy plays in the definitive management of all stages and extents of disease. Five PCS surveys have been conducted for squamous cell cancer of the uterine cervix beginning in 1973 and repeated thereafter at 5-year intervals. The records of over 2,700 women have been reviewed for these surveys. Changes in the pretreatment investigations of cervical cancer patients have occurred during these years, with an increase in the use of computed tomography (CT) and a decrease in the use of intravenous pyelography and cystoscopy. A marked increase in the use of linear accelerators has also occurred, with 98% of all facilities having a linear accelerator as the highest energy treatment machine in the 1988 survey. There has been a change in brachytherapy prescription over the time of the surveys, with most institutions reporting point dose calculations and dose distributions instead of milligram hours. Mean point A dose has increased to approximately 80cGy, reflecting the PCS recommendations of dose intensity to the paracentral point through use of brachytherapy. The outcome for stage I and II cervical cancer has remained stable over the time of the surveys, while the results have improved for stage III disease. This improvement in survival and local control for stage III cervical cancer is due in part to the PCS, which has developed standards of treatment with the goal of radiation dose intensity. A number of patient, tumor, and treatment factors significant in multivariate analysis have been described by the PCS with large cohorts of patients. The most important treatment factors associated with a decrease in pelvic failure and improved survival are the use of brachytherapy and higher paracentral dose. A significant dose response has been described for stage III cervical cancer and optimal pelvic control has been demonstrated with point A doses

  11. Progress in SPECT/CT imaging of prostate cancer.

    PubMed

    Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H

    2006-08-01

    Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of

  12. Progress in SPECT/CT imaging of prostate cancer.

    PubMed

    Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H

    2006-08-01

    Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of

  13. Obesity and cancer progression: is there a role of fatty acid metabolism?

    PubMed

    Balaban, Seher; Lee, Lisa S; Schreuder, Mark; Hoy, Andrew J

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  14. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention

    PubMed Central

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-01-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment. PMID:27051643

  15. Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer

    PubMed Central

    Wadosky, Kristine M; Koochekpour, Shahriar

    2016-01-01

    Patients with localized prostate cancer (PCa) have several therapeutic options with good prognosis. However, survival of patients with high-risk, advanced PCa is significantly less than patients with early-stage, organ-confined disease. Testosterone and other androgens have been directly linked to PCa progression since 1941. In this review, we chronicle the discoveries that led to modern therapeutic strategies for PCa. Specifically highlighted is the biology of androgen receptor (AR), the nuclear receptor transcription factor largely responsible for androgen-stimulated and castrate-recurrent (CR) PCa. Current PCa treatment paradigms can be classified into three distinct but interrelated categories: targeting AR at pre-receptor, receptor, or post-receptor signaling. The continuing challenge of disease relapse as CR and/or metastatic tumors, destined to occur within three years of the initial treatment, is also discussed. We conclude that the success of PCa therapies in the future depends on targeting molecular mechanisms underlying tumor recurrence that still may affect AR at pre-receptor, receptor, and post-receptor levels. PMID:27019626

  16. Simultaneous inference of cancer pathways and tumor progression from cross-sectional mutation data.

    PubMed

    Raphael, Benjamin J; Vandin, Fabio

    2015-06-01

    Recent cancer sequencing studies provide a wealth of somatic mutation data from a large number of patients. One of the most intriguing and challenging questions arising from this data is to determine whether the temporal order of somatic mutations in a cancer follows any common progression. Since we usually obtain only one sample from a patient, such inferences are commonly made from cross-sectional data from different patients. This analysis is complicated by the extensive variation in the somatic mutations across different patients, variation that is reduced by examining combinations of mutations in various pathways. Thus far, methods to reconstruct tumor progression at the pathway level have restricted attention to known, a priori defined pathways. In this work we show how to simultaneously infer pathways and the temporal order of their mutations from cross-sectional data, leveraging on the exclusivity property of driver mutations within a pathway. We define the pathway linear progression model, and derive a combinatorial formulation for the problem of finding the optimal model from mutation data. We show that with enough samples the optimal solution to this problem uniquely identifies the correct model with high probability even when errors are present in the mutation data. We then formulate the problem as an integer linear program (ILP), which allows the analysis of datasets from recent studies with large numbers of samples. We use our algorithm to analyze somatic mutation data from three cancer studies, including two studies from The Cancer Genome Atlas (TCGA) on large number of samples on colorectal cancer and glioblastoma. The models reconstructed with our method capture most of the current knowledge of the progression of somatic mutations in these cancer types, while also providing new insights on the tumor progression at the pathway level.

  17. Role of Smac/DIABLO in cancer progression

    PubMed Central

    Martinez-Ruiz, Gustavo; Maldonado, Vilma; Ceballos-Cancino, Gisela; Grajeda, Juan P Reyes; Melendez-Zajgla, Jorge

    2008-01-01

    Second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI (Smac/DIABLO) is a proapoptogenic mitochondrial protein that is released to the cytosol in response to diverse apoptotic stimuli, including commonly used chemotherapeutic drugs. In the cytosol, Smac/DIABLO interacts and antagonizes inhibitors of apoptosis proteins (IAPs), thus allowing the activation of caspases and apoptosis. This activity has prompted the synthesis of peptidomimetics that could potentially be used in cancer therapy. For these reasons, several authors have analyzed the expression levels of Smac/DIABLO in samples of patients from different tumors. Although dissimilar results have been found, a tissue-specific role of this protein emerges from the data. The objective of this review is to present the current knowledge of the Smac/DIABLO role in cancer and its possible use as a marker or therapeutic target for drug design. PMID:18822137

  18. Role of Smac/DIABLO in cancer progression.

    PubMed

    Martinez-Ruiz, Gustavo; Maldonado, Vilma; Ceballos-Cancino, Gisela; Grajeda, Juan P Reyes; Melendez-Zajgla, Jorge

    2008-09-26

    Second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI (Smac/DIABLO) is a proapoptogenic mitochondrial protein that is released to the cytosol in response to diverse apoptotic stimuli, including commonly used chemotherapeutic drugs. In the cytosol, Smac/DIABLO interacts and antagonizes inhibitors of apoptosis proteins (IAPs), thus allowing the activation of caspases and apoptosis. This activity has prompted the synthesis of peptidomimetics that could potentially be used in cancer therapy. For these reasons, several authors have analyzed the expression levels of Smac/DIABLO in samples of patients from different tumors. Although dissimilar results have been found, a tissue-specific role of this protein emerges from the data. The objective of this review is to present the current knowledge of the Smac/DIABLO role in cancer and its possible use as a marker or therapeutic target for drug design.

  19. Nutrition and cancer education: ten years of progress.

    PubMed

    Ashley, J M; St Jeor, S T; Veach, T L; Mackintosh, F R; Anderson, J L; Perumean-Chaney, S E; Krenkel, J A; Scott, B J

    2000-01-01

    The Nutrition Education and Research Program at the University of Nevada School of Medicine was awarded two separate NIH/NCI R25 cancer education grants over a ten-year period. With this support, a four-year longitudinal nutrition curriculum was implemented, including the required 20-hour freshman Medical Nutrition Course, junior and senior nutrition electives, and a senior assignment in nutrition and cancer during the rural rotation with faculty preceptors. Funding has also supported nutrition integration into the basic science courses, patient care courses, and specialty clerkships. A unique nutrition fellowship for medical students who specialize in nutrition during their four years of training and graduate with special Qualifications in Nutrition (SQIN) has also been instituted. The curriculum reflects a longitudinal, interdisciplinary, but flexible, integration of nutrition into an already crowded medical school education.

  20. SOCE and cancer: Recent progress and new perspectives

    PubMed Central

    Xie, Jiansheng; Pan, Hongming; Yao, Junlin

    2015-01-01

    Ca2+ acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store‐operated Ca2+ entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca2+ stores triggers activation of the endoplasmic reticulum (ER)‐resident Ca2+ sensor protein STIM to gate and open the ORAI Ca2+ channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed. PMID:26355642

  1. Pattern Recognition Receptors in Cancer Progression and Metastasis

    PubMed Central

    Pandey, Sanjay; Singh, Saurabh; Anang, Vandana; Bhatt, Anant N; Natarajan, K; Dwarakanath, Bilikere S

    2015-01-01

    The innate immune system is an integral component of the inflammatory response to pathophysiological stimuli. Toll-like receptors (TLRs) and inflammasomes are the major sensors and pattern recognition receptors (PRRs) of the innate immune system that activate stimulus (signal)-specific pro-inflammatory responses. Chronic activation of PRRs has been found to be associated with the aggressiveness of various cancers and poor prognosis. Involvement of PRRs was earlier considered to be limited to infection- and injury-driven carcinogenesis, where they are activated by pathogenic ligands. With the recognition of damage-associated molecular patterns (DAMPs) as ligands of PRRs, the role of PRRs in carcinogenesis has also been implicated in other non-pathogen-driven neoplasms. Dying (apoptotic or necrotic) cells shed a plethora of DAMPs causing persistent activation of PRRs, leading to chronic inflammation and carcinogenesis. Such chronic activation of TLRs promotes tumor cell proliferation and enhances tumor cell invasion and metastasis by regulating pro-inflammatory cytokines, metalloproteinases, and integrins. Due to the decisive role of PRRs in carcinogenesis, targeting PRRs appears to be an effective cancer-preventive strategy. This review provides a brief account on the association of PRRs with various cancers and their role in carcinogenesis. PMID:26279628

  2. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    PubMed Central

    Bonomi, Serena; Gallo, Stefania; Catillo, Morena; Pignataro, Daniela; Biamonti, Giuseppe; Ghigna, Claudia

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer might provide a better understanding of the malignant transformation and identify novel pathways that are uniquely relevant to tumorigenesis. Understanding the molecular underpinnings of cancer-associated alternative splicing isoforms will not only help to explain many fundamental hallmarks of cancer, but will also offer unprecedented opportunities to improve the efficacy of anti-cancer treatments. PMID:24285959

  3. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    PubMed Central

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  4. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  5. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness.

  6. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    PubMed

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.

  7. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  8. The ghrelin axis--does it have an appetite for cancer progression?

    PubMed

    Chopin, Lisa K; Seim, Inge; Walpole, Carina M; Herington, Adrian C

    2012-12-01

    Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.

  9. Non-invasive fluorescent-protein imaging of orthotopic pancreatic-cancer-patient tumorgraft progression in nude mice.

    PubMed

    Suetsugu, Atsushi; Katz, Matthew; Fleming, Jason; Truty, Mark; Thomas, Ryan; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2012-08-01

    In order to individualize and therefore have more effective treatment for pancreatic cancer, we have developed a multicolor, imageable, orthotopic mouse model for individual patients with pancreatic cancer by passaging their tumors through transgenic nude mice expressing green fluorescent protein (GFP) and red fluorescent protein (RFP). The tumors acquired brightly fluorescent stroma from the transgenic host mice, which was stably associated with the tumors through multiple passages. In the present study, pancreatic cancer patient tumor specimens were initially established in NOD.CB17-Prkdc(scid)/NcrCrl (NOD/SCID) mice. The tumors were then passaged orthotopically into transgenic nude mice ubiquitously expressing GFP and subsequently to nude mice ubiquitously expressing RFP. The tumors, with very bright GFP and RFP stroma, were then orthotopically passaged to non-transgenic nude mice. It was possible to image the brightly fluorescent tumors non-invasively longitudinally as they progressed in the non-transgenic nude mice. This non-invasive imageable tumorgraft model will be valuable to screen for effective treatment options for individual patients with pancreatic cancer, as well as for the discovery of improved agents for this treatment-resistant disease.

  10. The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression

    PubMed Central

    Niknafs, Yashar S.; Han, Sumin; Ma, Teng; Speers, Corey; Zhang, Chao; Wilder-Romans, Kari; Iyer, Matthew K.; Pitchiaya, Sethuramasundaram; Malik, Rohit; Hosono, Yasuyuki; Prensner, John R.; Poliakov, Anton; Singhal, Udit; Xiao, Lanbo; Kregel, Steven; Siebenaler, Ronald F.; Zhao, Shuang G.; Uhl, Michael; Gawronski, Alexander; Hayes, Daniel F.; Pierce, Lori J.; Cao, Xuhong; Collins, Colin; Backofen, Rolf; Sahinalp, Cenk S.; Rae, James M.; Chinnaiyan, Arul M.; Feng, Felix Y.

    2016-01-01

    Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer. PMID:27666543

  11. ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer

    PubMed Central

    Rubin, John R.; Hayward, Alexandra; Cates, Angelica L.; Day, Kathleen C.; El-Sawy, Layla; Kunju, L. Priya; Daignault, Stephanie; Lee, Cheryl T.; Liebert, Monica; Hussain, Maha; Day, Mark L.

    2016-01-01

    ADAM15 is a member of a family of catalytically active disintegrin membrane metalloproteinases that function as molecular signaling switches, shed membrane bound growth factors and/or cleave and inactivate cell adhesion molecules. Aberrant metalloproteinase function of ADAM15 may contribute to tumor progression through the release of growth factors or disruption of cell adhesion. In this study, we utilized human bladder cancer tissues and cell lines to evaluate the expression and function of ADAM15 in the progression of human bladder cancer. Examination of genome and transcriptome databases revealed that ADAM15 ranked in the top 5% of amplified genes and its mRNA was significantly overexpressed in invasive and metastatic bladder cancer compared to noninvasive disease. Immunostaining of a bladder tumor tissue array designed to evaluate disease progression revealed increased ADAM15 immunoreactivity associated with increasing cancer stage and exhibited significantly stronger staining in metastatic samples. About half of the invasive tumors and the majority of the metastatic cases exhibited high ADAM15 staining index, while all low grade and noninvasive cases exhibited negative or low staining. The knockdown of ADAM15 mRNA expression significantly inhibited bladder tumor cell migration and reduced the invasive capacity of bladder tumor cells through MatrigelTM and monolayers of vascular endothelium. The knockdown of ADAM15 in a human xenograft model of bladder cancer inhibited tumor growth by 45% compared to controls. Structural modeling of the catalytic domain led to the design of a novel ADAM15-specific sulfonamide inhibitor that demonstrated bioactivity and significantly reduced the viability of bladder cancer cells in vitro and in human bladder cancer xenografts. Taken together, the results revealed an undescribed role of ADAM15 in the invasion of human bladder cancer and suggested that the ADAM15 catalytic domain may represent a viable therapeutic target in

  12. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Cancer.gov

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  13. Anterior prostate biopsy at initial and repeat evaluation: is it useful to detect significant prostate cancer?

    PubMed Central

    Pepe, Pietro; Pennisi, Michele; Fraggetta, Filippo

    2015-01-01

    ABSTRACT Purpose: Detection rate for anterior prostate cancer (PCa) in men who underwent initial and repeat biopsy has been prospectively evaluated. Materials and Methods: From January 2013 to March 2014, 400 patients all of Caucasian origin (median age 63.5 years) underwent initial (285 cases) and repeat (115 cases) prostate biopsy; all the men had negative digital rectal examination and the indications to biopsy were: PSA values > 10 ng/mL, PSA between 4.1-10 or 2.6-4 ng/mL with free/total PSA≤25% and ≤20%, respectively. A median of 22 (initial biopsy) and 31 cores (repeat biopsy) were transperineally performed including 4 cores of the anterior zone (AZ) and 4 cores of the AZ plus 2 cores of the transition zone (TZ), respectively. Results: Median PSA was 7.9 ng/mL; overall, a PCa was found in 180 (45%) patients: in 135 (47.4%) and 45 (36%) of the men who underwent initial and repeat biopsy, respectively. An exclusive PCa of the anterior zone was found in the 8.9 (initial biopsy) vs 13.3% (repeat biopsy) of the men: a single microfocus of cancer was found in the 61.2% of the cases; moreover, in 7 out 18 AZ PCa the biopsy histology was predictive of significant cancer in 2 (28.5%) and 5 (71.5%) men who underwent initial and repeat biopsy, respectively. Conclusions: However AZ biopsies increased detection rate for PCa (10% of the cases), the majority of AZ PCa with histological findings predictive of clinically significant cancer were found at repeat biopsy (about 70% of the cases). PMID:26689509

  14. Efficacy of Trastuzumab in Routine Clinical Practice and After Progression for Metastatic Breast Cancer Patients: The Observational Hermine Study

    PubMed Central

    Antoine, Eric C.; Vincent-Salomon, Anne; Delozier, Thierry; Kerbrat, Pierre; Bethune-Volters, Anne; Guastalla, Jean-Paul; Spielmann, Marc; Mauriac, Louis; Misset, Jean-Louis; Serin, Daniel; Campone, Mario; Hebert, Christophe; Remblier, Céline; Bergougnoux, Loïc; Campana, Frank; Namer, Moïse

    2010-01-01

    Background. The Hermine study observed the use of trastuzumab for metastatic breast cancer (MBC) in routine practice, including patients who received trastuzumab treatment beyond progression (TBP). Patients and Methods. The study observed 623 patients for ≥2 years. Treatment was given according to oncologists' normal clinical practices. Endpoints included duration of treatment, efficacy, and cardiac safety. The TBP subanalysis compared overall survival (OS) in 177 patients who received first-line trastuzumab and either continued trastuzumab for ≥30 days following progression or stopped at or before progression. Results. The median treatment duration was 13.3 months. In the first-, second-, and third-line or beyond treatment groups, the median time to progression (TTP) were 10.3 months, 9.0 months, and 6.3 months, and the median OS times were 30.3 months, 27.1 months, and 23.2 months, respectively. Heart failure was observed in 2.6% of patients, although no cardiac-associated deaths occurred. In the TBP subanalysis, the median OS duration from treatment initiation and time of disease progression were longer in patients who continued receiving trastuzumab TBP (>27.8 months and 21.3 months, respectively) than in those who stopped (16.8 months and 4.6 months, respectively). However, the groups were not completely comparable, because patients who continued trastuzumab TBP had better prognoses at treatment initiation. The median TTP was longer in patients who continued trastuzumab TBP (10.2 months) than in those who stopped (7.1 months). Conclusion. The Hermine findings confirm that the pivotal trials of first-line trastuzumab treatment in MBC patients are applicable in clinical practice. The subanalysis suggests that trastuzumab TBP offers a survival benefit to MBC patients treated with first-line trastuzumab. PMID:20671105

  15. Technical progress report. Private sector initiatives between the United States and Japan. January 1992 - December 1992

    SciTech Connect

    1993-08-01

    OAK A271 This annual report for calendar year 1992 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  16. Technical progress report. Private sector initiatives between the United States and Japan. January 1990 - December 1990

    SciTech Connect

    1993-07-01

    OAK A271 This annual report for calendar year 1990 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  17. Technical progress report. Private sector initiatives between the United States and Japan. January 1989 - December 1989

    SciTech Connect

    1990-02-01

    This annual report for calendar year 1989 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  18. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment

    PubMed Central

    Peña, Christopher G.; Nakada, Yuji; Saatcioglu, Hatice D.; Aloisio, Gina M.; Cuevas, Ileana; Zhang, Song; Miller, David S.; Lea, Jayanthi S.; Wong, Kwok-Kin; DeBerardinis, Ralph J.; Amelio, Antonio L.; Brekken, Rolf A.; Castrillon, Diego H.

    2015-01-01

    Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities. PMID:26413869

  19. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    NASA Astrophysics Data System (ADS)

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-08-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.

  20. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness.

    PubMed

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  1. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    PubMed Central

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  2. Copper and angiogenesis: unravelling a relationship key to cancer progression.

    PubMed

    Finney, Lydia; Vogt, Stefan; Fukai, Tohru; Glesne, David

    2009-01-01

    1. Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. 2. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. 3. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of

  3. Copper and angiogenesis : unravelling a relationship key to cancer progression.

    SciTech Connect

    Finney, L. A.; Vogt, S.; Fukai, T.; Glesne, D.; Univ. of Illinois

    2009-01-01

    Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of regulatory

  4. Copper and angiogenesis : unraveling a relationship key to cancer progression.

    SciTech Connect

    Finney, L. F.; Vogt, S. V.; Fukai, TF; Glesne, DG; Univ. of Illinois at Chicago

    2009-01-01

    Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of regulatory

  5. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model

    PubMed Central

    Liang, Yu; Zhu, Fengyu; Zhang, Haojie; Chen, Demeng; Zhang, Xiuhong; Gao, Qian; Li, Yang

    2016-01-01

    The role of transforming growth factor-β (TGF-β) signaling in cancer progression is still under debate. To determine the function of TGF-β signaling in bladder cancer progression, we conditionally knocked out the Tgfbr2 in mouse model after a N-butyl-N-4-hydroxybutyl Nitrosamine induced bladder carcinogenesis. We found the ablation of TGF-β signaling could inhibit the cancer cell proliferation, cancer stem cell population and EMT, hence suppressed the invasive cancer progression, which is similar with the result of TGF-β receptor I inhibitor treatment. These findings recognize the roles and mechanisms of TGF-β signaling in bladder cancer progression in vivo for the first time. PMID:27378170

  6. Molecular Features of Subtype-Specific Progression from Ductal Carcinoma In Situ to Invasive Breast Cancer.

    PubMed

    Lesurf, Robert; Aure, Miriam Ragle; Mørk, Hanne Håberg; Vitelli, Valeria; Lundgren, Steinar; Børresen-Dale, Anne-Lise; Kristensen, Vessela; Wärnberg, Fredrik; Hallett, Michael; Sørlie, Therese

    2016-07-26

    Breast cancer consists of at least five main molecular "intrinsic" subtypes that are reflected in both pre-invasive and invasive disease. Although previous studies have suggested that many of the molecular features of invasive breast cancer are established early, it is unclear what mechanisms drive progression and whether the mechanisms of progression are dependent or independent of subtype. We have generated mRNA, miRNA, and DNA copy-number profiles from a total of 59 in situ lesions and 85 invasive tumors in order to comprehensively identify those genes, signaling pathways, processes, and cell types that are involved in breast cancer progression. Our work provides evidence that there are molecular features associated with disease progression that are unique to the intrinsic subtypes. We additionally establish subtype-specific signatures that are able to identify a small proportion of pre-invasive tumors with expression profiles that resemble invasive carcinoma, indicating a higher likelihood of future disease progression. PMID:27396337

  7. The Lymphatic System in Disease Processes and Cancer Progression.

    PubMed

    Padera, Timothy P; Meijer, Eelco F J; Munn, Lance L

    2016-07-11

    Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema.

  8. The matricellular protein CCN6 (WISP3) decreases Notch1 and suppresses breast cancer initiating cells.

    PubMed

    Huang, Wei; Martin, Emily E; Burman, Boris; Gonzalez, Maria E; Kleer, Celina G

    2016-05-01

    Increasing evidence supports that the epithelial to mesenchymal transition (EMT) in breast cancer cells generates tumor initiating cells (TICs) but the contribution of the tumor microenvironment to these programs needs further elucidation. CCN6 (WISP3) is a secreted matrix-associated protein (36.9 kDa) of the CCN family (named after CTGF, Cyr61 and Nov) that is reduced or lost in invasive carcinomas of the breast with lymph node metastasis and in inflammatory breast cancer. CCN6 exerts breast cancer growth and invasion inhibitory functions, but the mechanisms remain to be defined. In the present study we discovered that ectopic CCN6 overexpression in triple negative (TN) breast cancer cells and in cells derived from patients is sufficient to induce a mesenchymal to epithelial transition (MET) and to reduce TICs. In vivo, CCN6 overexpression in the TIC population of MDA-MB-231 cells delayed tumor initiation, reduced tumor volume, and inhibited the development of metastasis. Our studies reveal a novel CCN6/Slug signaling axis that regulates Notch1 signaling activation, epithelial cell phenotype and breast TICs, which requires the conserved thrombospondin type 1 (TSP1) motif of CCN6. The relevance of these data to human breast cancer is highlighted by the finding that CCN6 protein levels are inversely correlated with Notch1 intracellular activated form (NICD1) in 69.5% of invasive breast carcinomas. These results demonstrate that CCN6 regulates epithelial and mesenchymal states transition and TIC programs, and pinpoint one responsible mechanism.

  9. The Asian-American and Pacific Islander population and the American Cancer Society initiative.

    PubMed

    Vance, Ralph

    2005-12-15

    The American Cancer Society (ACS) Nationwide Asian-American/Pacific Islander (AAPI) Initiative is a continuing collaboration between the ACS and other organizations and community groups. With a view to incorporating access to quality treatment as an over-arching principal, the objectives of the AAPI Initiative are to provide strategic oversight to the ACS for outreach to AAPI populations and to develop a nationwide plan for the purpose of making ACS programs and services available to these populations. After a series of meetings in 2002, including a joint meeting between the Asian American Network for Cancer Awareness, Research, and Training (AANCART) and the ACS, the first ACS Nationwide AAPI Council meeting was held in early 2003. The goals and objectives of this initiative are 1) to develop a plan for delivery of ACS programs and services to the AAPI population, 2) to develop a program for collaboration with organizations that can help the ACS reach its objectives, 3) to develop an advocacy program that enables the ACS to reach its objectives, and 4) to develop an income-development program to both reach and maintain these objectives. The ACS-AANCART collaboration is a great example of the type of collaboration that will make not only the ACS but also the cancer community as a whole successful in eradicating cancer as a major public health problem.

  10. The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression

    PubMed Central

    Nardy, Ana Flávia Fernandes Ribas; Freire-de-Lima, Leonardo; Freire-de-Lima, Célio Geraldo; Morrot, Alexandre

    2016-01-01

    Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes, including cell differentiation, adhesion, motility, signal transduction, host–pathogen interactions, tumor cell invasion, and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune-resistant cancer cells. The involvement of glycans in cancer progression is related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field. PMID:27014629

  11. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression.

    PubMed

    Zhu, Jieqing; Xiong, Gaofeng; Trinkle, Christine; Xu, Ren

    2014-09-01

    Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits biochemical and biomechanical signals that control cellular architecture and gene expression. These ECM signals cooperate with growth factors and hormones to regulate cell migration, differentiation, and transformation. ECM signaling is tightly regulated during normal mammary gland development. Deposition and alignment of fibrillar collagens direct migration and invasion of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM proteins in the long run is sufficient to promote breast cancer development and progression. Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and soluble factors are crucial for normal mammary gland development as well as breast cancer progression.

  12. The dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment

    PubMed Central

    Moon, Eui Jung; Giaccia, Amato

    2015-01-01

    The Cap’N’Collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses and shares structural similarities including basic leucine zipper (bZIP) and CNC domains,. They form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in cancer prevention and progression depending on the cellular context and environment. Therefore, a better understanding of NRF2 will be necessary to exploit this complex network of balancing antioxidant pathways to inhibit tumor progression. PMID:25458917

  13. Deregulation of FOXO3A During Prostate Cancer Progression

    PubMed Central

    Shukla, Sanjeev; Shukla, Meenakshi; MacLennan, Gregory T; Fu, Pingfu; Gupta, Sanjay

    2009-01-01

    Forkhead box transcription factor FOXO3A is an important regulator of cellular function, is thought to act as a tumor suppressor. We studied whether alterations in FOXO3A activity occur in prostate tumorigenesis. Our studies demonstrate that FOXO3A activity is negatively regulated by Akt/PKB through posttranslational modifications. In prostate cancer cells, Akt activation causes increased accumulation of FOXO3A and its binding chaperone protein 14-3-3 in the cytosol. Higher levels of FOXO3A in the cytosol correlated with phosphorylation at Ser253, which accounted for its nuclear exclusion. Dominant negative Akt approach in PC-3 cells increased FOXO3A accumulation in the nucleus, causing upregulation of the downstream target, MnSOD. Conversely, stable DU145-Akt over-expressing cells exhibited decreased FOXO3A levels in the nucleus. Similar findings were noted in prostate tumor specimens, in which marked cytoplasmic accumulation of FOXO3A and 14-3-3 in prostate tumors was observed with increasing Gleason grade, in contrast to exclusively nuclear accumulation in benign prostate cells. These findings correlate with decreased FOXO3A DNA binding activity along with down modulation of FOXO3A transcriptional activity with increasing tumor grade. Our findings demonstrate that tumor associated alterations and redistribution of FOXO3A are frequent events in the etiology of prostate cancer. PMID:19424579

  14. STATUS AND PROGRESS IN PARTICULATE MATTER FORECASTING: INITIAL APPLICATION OF THE ETA- CMAQ FORECAST MODEL

    EPA Science Inventory

    This presentation reviews the status and progress in forecasting particulate matter distributions. The shortcomings in representation of particulate matter formation in current atmospheric chemistry/transport models are presented based on analyses and detailed comparisons with me...

  15. Identification of serum proteome components associated with progression of non-small cell lung cancer.

    PubMed

    Pietrowska, Monika; Jelonek, Karol; Michalak, Malwina; Roś, Małgorzata; Rodziewicz, Paweł; Chmielewska, Klaudia; Polański, Krzysztof; Polańska, Joanna; Gdowicz-Kłosok, Agnieszka; Giglok, Monika; Suwiński, Rafał; Tarnawski, Rafał; Dziadziuszko, Rafał; Rzyman, Witold; Widłak, Piotr

    2014-01-01

    The aim of the present study was to perform comparative analysis of serum from patients with different stages of non-small cell lung cancer (NSCLC) using the three complementary proteomic approaches to identify proteome components associated with the progression of cancer. Serum samples were collected before any treatment from 200 patients with NSCLC, including 103 early stage, 64 locally advanced and 33 metastatic cancer samples, and from 200 donors without malignancy. The low-molecular-weight fraction of serum proteome was MALDI-profiled in all samples. Serum proteins were characterized using 2D-PAGE and LC-MS/MS approaches in a representative group of 30 donors. Several significant differences were detected between serum samples collected from patients with early stage cancer and patients with locally advanced cancer, as well as between patients with metastatic cancer and patients with local disease. Of note, serum components discriminating samples from early stage cancer and healthy persons were also detected. In general, about 70 differentiating serum proteins were identified, including inflammatory and acute phase proteins already reported to be associated with the progression of lung cancer (serum amyloid A or haptoglobin). Several differentiating proteins, including apolipoprotein H or apolipoprotein A1, were not previously associated with NSCLC. No significant differences in patterns of serum proteome components were detected between patients with adenocarcinoma and squamous cell carcinoma. In conclusion, we identified the biomarker candidates with potential importance for molecular proteomic staging of NSCLC. Additionally, several serum proteome components revealed their potential applicability in early detection of the lung cancer. PMID:24872961

  16. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression

    PubMed Central

    Li, Linna; Liu, Chunping; Amato, Robert J.; Chang, Jeffrey T.; Du, Guangwei; Li, Wenliang

    2014-01-01

    The epithelial–mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL2) as a novel potent promoter for EMT and breast cancer progression. CDKL2-expressing human mammary gland epithelial cells displayed enhanced mesenchymal traits and stem cell-like phenotypes, which was acquired through activating a ZEB1/E-cadherin/β-catenin positive feedback loop and regulating CD44 mRNA alternative splicing to promote conversion of CD24high cells to CD44high cells. Furthermore, CDKL2 enhanced primary tumor formation and metastasis in a breast cancer xenograft model. Notably, CDKL2 is expressed significantly higher in mesenchymal human breast cancer cell lines than in epithelial lines, and its over-expression/amplification in human breast cancers is associated with shorter disease-free survival. Taken together, our study uncovered a major role for CDKL2 in promoting EMT and breast cancer progression. PMID:25333262

  17. An improved syngeneic orthotopic murine model of human breast cancer progression.

    PubMed

    Rashid, Omar M; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-10-01

    Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous (OP) injection in the area of the nipple, or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. ODV produced less variable-sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development . PMID:25200444

  18. Controlling female cancer in Argentina. Divergent initiatives and the road to fragmentation

    PubMed Central

    Eraso, Yolanda

    2014-01-01

    This article analyses the organisation of cancer control in Argentina, with a special focus on the initiatives, institutions, and models that targeted female or gynaecological cancers. It identifies and examines the main factors in the process of elaborating a national policy to control the disease drawing on a series of actors and instruments such as the state, medical professionals, institutions and services, and the use of technology (notably diagnostic tools) for the detection of the disease. It traces the developments in the organisation highlighting its transformations from a centralising to a decentralised model of service provision. Using the concept of «path-dependence» the article examines the continuities and changes observed in the organisation of female cancer critically signalling the particular time at which a path was taken where «fragmentation» became consolidated within the health system. It also argues that it was within the field of cancer diagnosis that Argentinian doctors first sought to create the foundational structures of cancer organisation. The article contends that the path-dependence analytical approach helps us acknowledge the importance of historical analysis in the identification of factors that led to the lack of service coordination, including the persistent strain between national/provincial states that hampered the development of comprehensive programmes, aspects that have continued to mark efforts in the elaboration of cancer policies to the present day. PMID:24944432

  19. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.

    PubMed

    Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko

    2016-01-01

    Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia. PMID:27150920

  20. MiR-654-5p attenuates breast cancer progression by targeting EPSTI1

    PubMed Central

    Tan, Yu-Yan; Xu, Xiao-Yun; Wang, Jin-Feng; Zhang, Cheng-Wu; Zhang, Sheng-Chu

    2016-01-01

    MicroRNAs (miRNAs) dysregulation is a common event in a variety of human diseases including breast cancer. However, clinical relevance and biological role of miR-654-5p in the progression of breast cancer remain greatly elusive. Herein, the expression levels of miR-654-5p were aberrantly downregulated in human breast cancer specimens and four breast cancer cell lines. Low expression of miR-654-5p was strongly associated with advanced TNM stage and lymph node metastasis as well as a poor survival. Functional analysis showed that miR-654-5p overexpression inhibited cell growth and invasion, and induced cell apoptosis in two aggressive breast cancer cells. Further studies demonstrated that Epithelial stromal interaction 1 (EPSTI1) was a direct target gene of miR-654-5p and showed an inverse correlation with miR-654-5p expression. Forced expression of EPSTI1 could abrogate the inhibitory effect of miR-654-5p on the growth and invasion of breast cancer cells as well as apoptosis-induced ability. In conclusion, the present study highlights that miR-654-5p acts as a tumor suppressor in breast cancer through directly targeting EPSTI1, and their functional regulation may open a novel avenue with regard to the therapeutic target for breast cancer. PMID:27186421

  1. ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression

    PubMed Central

    Aljarah, Ali Kadhim; Ide, Hiroki; Li, Yi; Kashiwagi, Eiji; Netto, George J.; Zheng, Yichun; Miyamoto, Hiroshi

    2015-01-01

    Little is known about biological significance of ELK1, a transcriptional factor that activates downstream targets including c-fos proto-oncogene, in bladder cancer. Recent preclinical evidence also suggests the involvement of androgen receptor (AR) signaling in bladder cancer progression. In this study, we aim to investigate the functions of ELK1 in bladder cancer growth and their regulation by AR signals. Immunohistochemistry in bladder tumor specimens showed that the levels of phospho-ELK1 (p-ELK1) expression were significantly elevated in urothelial neoplasms, compared with non-neoplastic urothelium tissues, and were also correlated with AR positivity. Patients with p-ELK1-positive non-muscle-invasive and muscle-invasive tumors had significantly higher risks for tumor recurrence and progression, respectively. In AR-positive bladder cancer cell lines, dihydrotestosterone treatment increased ELK1 expression (mRNA, protein) and its nuclear translocation, ELK1 transcriptional activity, and c-fos expression, which was restored by an anti-androgen hydroxyflutamide. ELK1 silencing via short hairpin RNA (shRNA) resulted in decreases in cell viability/colony formation, and cell migration/invasion as well as an increase in apoptosis. Importantly, ELK1 appears to require activated AR to regulate bladder cancer cell proliferation, but not cell migration. Androgen also failed to significantly induce AR transactivation in ELK1-knockdown cells. In accordance with our in vitro findings, ELK1-shRNA expression considerably retarded tumor formation as well as its growth in xenograft-bearing male mice. Our results suggest that ELK1 plays an important role in bladder tumorigenesis and cancer progression, which is further induced by AR activation. Accordingly, ELK1 inhibition, together with AR inactivation, has the potential of being a therapeutic approach for bladder cancer. PMID:26342199

  2. Gene signatures of breast cancer progression and metastasis

    PubMed Central

    2011-01-01

    Breast cancer is a heterogeneous disease. Patient outcome varies significantly, depending on prognostic features of patients and their tumors, including patient age, menopausal status, tumor size and histology, nodal status, and so on. Response to treatment also depends on a series of predictive factors, such as hormone receptor and HER2 status. Current treatment guidelines use these features to determine treatment. However, these guidelines are imperfect, and do not always predict response to treatment or survival. Evolving technologies are permitting increasingly large amounts of molecular data to be obtained from tumors, which may enable more personalized treatment decisions to be made. The challenge is to learn what information leads to improved prognostic accuracy and treatment outcome for individual patients. PMID:21345283

  3. Recent progress and clinical importance on pharmacogenetics in cancer therapy

    PubMed Central

    Soh, Thomas I Peng; Yong, Wei Peng; Innocenti, Federico

    2013-01-01

    Recent advances have provided unprecedented opportunities to identify prognostic and predictive markers of efficacy of cancer therapy. Genetic markers can be used to exclude patients who will not benefit from therapy, exclude patients at high risk of severe toxicity, and adjust dosing. Genomic approaches for marker discovery now include genome-wide association studies and tumor DNA sequencing. The challenge is now to select markers for which there is enough evidence to transition them to the clinic. The hurdles include the inherent low frequency of many of these markers, the lengthy validation process through trials, as well as legislative and economic hurdles. Attempts to answer questions about certain markers more quickly have led to an increased popularity of trials with enrichment design, especially in the light of the dramatic phase I results seen in recent months. Personalized medicine in oncology is a step closer to reality. PMID:21950596

  4. The progress of targeted therapy in advanced gastric cancer

    PubMed Central

    2013-01-01

    Although palliative chemotherapy has been shown to prolong survival and improve quality of life, the survival of advanced gastric cancer (AGC) patients remains poor. With the advent of targeted therapy, many molecular targeted agents have been evaluated in clinical studies. Trastuzumab, an anti-HER2 monoclonal antibody, has shown activity against HER2-positive AGC and becomes the first targeted agent approved in AGC. Drugs that target epidermal growth factor receptor, including monoclonal antibody and tyrosine kinase inhibitor, do not bring survival benefit to patients with AGC. Additionally, vascular endothelial growth factor inhibitors are also under investigation. Ramucirumab has shown promising result. Other targeted agents are in preclinical or early clinical development, such as mammalian target of rapamycinm inhibitors and c-MET inhibitors. PMID:24330856

  5. Cancer radioimmunotherapy: Development of an effective approach. Progress report, 1985

    SciTech Connect

    DeNardo, S.J.

    1985-12-31

    The objective of this program is the development of effective approaches for delivering radiation therapy to patients with cancer using radiopharmaceuticals produced from monoclonal antibodies. One major achievement of this program has been the development of a new, Cu-67 chelator (Teta). This chelator firmly holds copper even in the presence of competitive serum proteins. Copper has proven to be labile with other chelators. Also, a single photon emission tomographic camera was purchased with University and philanthropic funds specifically for this program. This allows full-time developmental work on quantitative imaging approaches and in vivo kinetics of our various radiopharmaceutical antibody products. The pharmakinetics of I-123 antibody and antibody fragments have been obtained in patients utilizing quantitative imaging and have demonstrated significant differences as well as the need for long- term studies with I-131 and Cu-67.

  6. Effects of Flaxseed Lignan Secoisolariciresinol Diglucosideon Preneoplastic Biomarkers of Cancer Progression in a Model of Simultaneous Breast and Ovarian Cancer Development.

    PubMed

    Delman, Devora M; Fabian, Carol J; Kimler, Bruce F; Yeh, Henry; Petroff, Brian K

    2015-01-01

    Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n = 8-10/group) received 0, 10, or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 mo after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology, and dysplasia scores, as well as expression of selected genes involved in proliferation, estrogen signaling, and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes preneoplastic progression in the ovarian epithelium.

  7. Effects of Flaxseed Lignan Secoisolariciresinol Diglucosideon Preneoplastic Biomarkers of Cancer Progression in a Model of Simultaneous Breast and Ovarian Cancer Development.

    PubMed

    Delman, Devora M; Fabian, Carol J; Kimler, Bruce F; Yeh, Henry; Petroff, Brian K

    2015-01-01

    Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n = 8-10/group) received 0, 10, or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 mo after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology, and dysplasia scores, as well as expression of selected genes involved in proliferation, estrogen signaling, and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes preneoplastic progression in the ovarian epithelium. PMID:26010915

  8. Effects of flaxseed lignan secoisolariciresinol diglucoside on preneoplastic biomarkers of cancer progression in a model of simultaneous breast and ovarian cancer development

    PubMed Central

    Delman, Devora M.; Fabian, Carol J.; Kimler, Bruce F.; Yeh, Henry; Petroff, Brian K.

    2016-01-01

    Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator (SERM)-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n=8–10/group) received 0, 10 or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 months after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology and dysplasia scores as well as expression of selected genes involved in proliferation, estrogen signaling and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes pre-neoplastic progression in the ovarian epithelium. PMID:26010915

  9. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression.

    PubMed

    Putluri, Nagireddy; Shojaie, Ali; Vasu, Vihas T; Vareed, Shaiju K; Nalluri, Srilatha; Putluri, Vasanta; Thangjam, Gagan Singh; Panzitt, Katrin; Tallman, Christopher T; Butler, Charles; Sana, Theodore R; Fischer, Steven M; Sica, Gabriel; Brat, Daniel J; Shi, Huidong; Palapattu, Ganesh S; Lotan, Yair; Weizer, Alon Z; Terris, Martha K; Shariat, Shahrokh F; Michailidis, George; Sreekumar, Arun

    2011-12-15

    Although alterations in xenobiotic metabolism are considered causal in the development of bladder cancer, the precise mechanisms involved are poorly understood. In this study, we used high-throughput mass spectrometry to measure over 2,000 compounds in 58 clinical specimens, identifying 35 metabolites which exhibited significant changes in bladder cancer. This metabolic signature distinguished both normal and benign bladder from bladder cancer. Exploratory analyses of this metabolomic signature in urine showed promise in distinguishing bladder cancer from controls and also nonmuscle from muscle-invasive bladder cancer. Subsequent enrichment-based bioprocess mapping revealed alterations in phase I/II metabolism and suggested a possible role for DNA methylation in perturbing xenobiotic metabolism in bladder cancer. In particular, we validated tumor-associated hypermethylation in the cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1) promoters of bladder cancer tissues by bisulfite sequence analysis and methylation-specific PCR and also by in vitro treatment of T-24 bladder cancer cell line with the DNA demethylating agent 5-aza-2'-deoxycytidine. Furthermore, we showed that expression of CYP1A1 and CYP1B1 was reduced significantly in an independent cohort of bladder cancer specimens compared with matched benign adjacent tissues. In summary, our findings identified candidate diagnostic and prognostic markers and highlighted mechanisms associated with the silencing of xenobiotic metabolism. The metabolomic signature we describe offers potential as a urinary biomarker for early detection and staging of bladder cancer, highlighting the utility of evaluating metabolomic profiles of cancer to gain insights into bioprocesses perturbed during tumor development and progression. PMID:21990318

  10. Tumour-initiating capacity is independent of epithelial–mesenchymal transition status in breast cancer cell lines

    PubMed Central

    Xie, G; Ji, A; Yuan, Q; Jin, Z; Yuan, Y; Ren, C; Guo, Z; Yao, Q; Yang, K; Lin, X; Chen, L

    2014-01-01

    Background: Epithelial–mesenchymal transition (EMT) and cancer stem cells (CSCs) are considered to be crucial for cancer biology. The purpose of this study was to determine whether EMT directly led to the acquisition of tumour-initiating capacity in breast cancer cell lines. Methods: Epithelial–mesenchymal transition was induced in five breast cancer cell lines and one normal breast cell line by EMT-related cytokine stimulation. Mesenchymal–epithelial transition (MET) was induced by stably overexpressing miR-200c in three mesenchymal-like breast cancer cell lines. Molecular expression and cell function analysis were performed to evaluate the effect of EMT or MET on tumour-initiating capacity and other biological characteristics. Results: The induction of EMT did not enhance tumour-initiating capacity but, instead, conferred a CD44+/CD24−/low phenotype as well as cell proliferation, migration, and resistance to doxorubicin and radiation on breast cancer cell lines. Furthermore, MET did not lead to inhibition or loss of the tumour-initiating capacity in mesenchymal-like breast cancer cell lines, but it markedly attenuated other malignant properties, including proliferation, invasion, and resistance to therapy. Conclusions: Epithelial–mesenchymal transition does not alter tumour-initiating capacity of breast cancer cells but some other biological characteristics. Therefore, EMT and tumour-initiating capacity may not be directly linked in breast cancer cell lines. PMID:24755887

  11. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes

    PubMed Central

    1994-01-01

    Successful transmission of the African trypanosome between the mammalian host blood-stream and the tsetse fly vector involves dramatic alterations in the parasite's morphology and biochemistry. This differentiation through to the tsetse midgut procyclic form is accompanied by re-entry into a proliferative cell cycle. Using a synchronous differentiation model and a variety of markers diagnostic for progress through both differentiation and the cell cycle, we have investigated the interplay between these two processes. Our results implicate a relationship between the trypanosome cell cycle position and the perception of the differentiation signal and demonstrate that irreversible commitment to the differentiation occurs rapidly after induction. Furthermore, we show that re-entry into the cell cycle in the differentiating population is synchronous, and that once initiated, progress through the differentiation pathway can be uncoupled from progress through the cell cycle. PMID:8195296

  12. IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER

    PubMed Central

    Wei, Wei; Lewis, Michael T.

    2015-01-01

    Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646

  13. Statins and breast cancer stage and mortality in the Women’s Health Initiative

    PubMed Central

    Desai, Pinkal; Lehman, Amy; Chlebowski, Rowan T.; Kwan, Marilyn L.; Arun, Monica; Manson, JoAnn E.; Lavasani, Sayeh; Wasswertheil-Smoller, Sylvia; Sarto, Gloria E.; LeBoff, Meryl; Cauley, Jane; Cote, Michele; Beebe-Dimmer, Jennifer; Jay, Allison

    2016-01-01

    Purpose To evaluate the association between statins and breast cancer stage and mortality in the Women’s Health Initiative. Methods The study population included 128,675 post-menopausal women aged 50–79 years, out of which there were 7,883 newly diagnosed cases of in situ (19 %), local (61 %)-, regional (19 %)- and distant (1 %)-stage breast cancer and 401 deaths due to breast cancer after an average of 11.5 (SD = 3.7) years of follow-up. Stage was coded using SEER criteria and was stratified into early (in situ and local)- versus late (regional and distant)-stage disease. Information on statins and other risk factors were collected by self- and interviewer-administered questionnaires. Cause of death was based on medical record review. Multivariable-adjusted hazards ratios (HR) and 95 % confidence intervals (CIs) evaluating the relationship between statin use (at baseline only and in a time-dependent manner) and diagnosis of late-stage breast cancer and breast cancer-specific mortality were computed from Cox proportional hazards analyses after adjusting for appropriate confounders. Results Statins were used by 10,474 women (8 %) at baseline. In the multivariable-adjusted time-dependent model, use of lipophilic statins was associated with a reduction in diagnosis of late-stage breast cancer (HR 0.80, 95 % CI 0.64–0.98, p = 0.035) which was also significant among women with estrogen receptor-positive disease (HR 0.72, 95 % CI 0.56–0.93, p = 0.012). Breast cancer mortality was marginally lower in statin users compared with nonusers (HR 0.59, 95 % CI 0.32–1.06, p = 0.075). Conclusions Prior statin use is associated with lower breast cancer stage at diagnosis. PMID:25736184

  14. The biology of depression in cancer and the relationship between depression and cancer progression.

    PubMed

    Sotelo, Jorge Luis; Musselman, Dominique; Nemeroff, Charles

    2014-02-01

    The prevalence of depressive symptoms in patients with cancer exceeds that observed in the general population and depression is associated with a poorer prognosis in cancer patients. The increased prevalence is not solely explained by the psychosocial stress associated with the diagnosis. Pro-inflammatory cytokines, which induce sickness behaviour with symptoms overlapping those of clinical depression, are validated biomarkers of increased inflammation in patients with cancer. A growing literature reveals that chronic inflammatory processes associated with stress may also underlie depression symptoms in general, and in patients with cancer in particular. Therapeutic modalities, which are frequently poorly tolerated, are used in the treatment of cancer. These interventions are associated with inflammatory reactions, which may help to explain their toxicity. There is evidence that antidepressants can effectively treat symptoms of depression in cancer patients though the database is meager. Novel agents with anti-inflammatory properties may be effective alternatives for patients with treatment-resistant depression who exhibit evidence of increased inflammation.

  15. Cumulative Epigenetic Abnormalities in Host Genes with Viral and Microbial Infection during Initiation and Progression of Malignant Lymphoma/Leukemia

    PubMed Central

    Oka, Takashi; Sato, Hiaki; Ouchida, Mamoru; Utsunomiya, Atae; Yoshino, Tadashi

    2011-01-01

    Although cancers have been thought to be predominantly driven by acquired genetic changes, it is becoming clear that microenvironment-mediated epigenetic alterations play important roles. Aberrant promoter hypermethylation is a prevalent phenomenon in human cancers as well as malignant lymphoma/leukemia. Tumor suppressor genes become frequent targets of aberrant hypermethylation in the course of gene-silencing due to the increased and deregulated DNA methyltransferases (DNMTs). The purpose of this article is to review the current status of knowledge about the contribution of cumulative epigenetic abnormalities of the host genes after microbial and virus infection to the crisis and progression of malignant lymphoma/leukemia. In addition, the relevance of this knowledge to malignant lymphoma/leukemia assessment, prevention and early detection will be discussed. PMID:24212629

  16. Lung cancer epidemiology in New Mexico uranium miners. Progress report, March 1, 1991--November 30, 1991

    SciTech Connect

    Samet, J.M.

    1991-11-01

    This investigation assesses the health effects of radon progeny exposure in New Mexico uranium miners. Cumulative exposures sustained by most New Mexico miners are well below those received earlier in the Colorado Plateau. This project utilizes the research opportunity offered by New Mexico miners to address unresolved issues related to radon progeny exposure: (1) the lung cancer risk of lower levels of exposure, (2) interaction between radon progeny exposure and cigarette smoking in the causation of lung cancer, (3) the relationship between lung cancer histologic type and radon progeny exposure, and (4) possible effects of radon progeny exposure other than lung cancer. A cohort study of 3800 men with at least one year of underground uranium mining experience in New Mexico is in progress. Results are discussed.

  17. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  18. The steady progress of targeted therapies, promising advances for lung cancer

    PubMed Central

    Bombardelli, Lorenzo; Berns, Anton

    2016-01-01

    Lung cancer remains one of the most complex and challenging cancers, being responsible for almost a third of all cancer deaths. This grim picture seems however to be changing, for at least a subset of lung cancers. The number of patients who can benefit from targeted therapies is steadily increasing thanks to the progress made in identifying actionable driver lesions in lung tumours. The success of the latest generation of EGFR and ALK inhibitors in the clinic not only illustrates the value of targeted therapies, but also shows how almost inevitably drug resistance develops. Therefore, more sophisticated approaches are needed to achieve long-term remissions. Although there are still significant barriers to be overcome, technological advances in early detection of relevant mutations and the opportunity to test new drugs in predictive preclinical models justify the hope that we will overcome these obstacles. PMID:27350784

  19. Potential involvement of chemicals in liver cancer progression: an alternative toxicological approach combining biomarkers and innovative technologies.

    PubMed

    Peyre, Ludovic; Zucchini-Pascal, Nathalie; de Sousa, Georges; Luzy, Anne-Pascale; Rahmani, Roger

    2014-12-01

    Pesticides as well as many other environmental pollutants are considered as risk factors for the initiation and the progression of cancer. In order to evaluate the in vitro effects of chemicals present in the diet, we began by combining viability, real-time cellular impedance and high throughput screening data to identify a concentration "zone of interest" for the six xenobiotics selected: endosulfan, dioxin, carbaryl, carbendazim, p'p'DDE and hydroquinone. We identified a single concentration of each pollutant allowing a modulation of the impedance in the absence of vital changes (nuclear integrity, mitochondrial membrane potential, cell death). Based on the number of observed modulations known to be involved in hepatic homeostasis dysfunction that may lead to cancer progression such as cell cycle and apoptosis regulators, EMT biomarkers and signal transduction pathways, we then ranked the pollutants in terms of their toxicity. Endosulfan, was able to strongly modulate all the studied cellular processes in HepG2 cells, followed by dioxin, then carbendazim. While p,p'DDE, carbaryl and hydroquinone seemed to affect fewer functions, their effects nevertheless warrant close scrutiny. Our in vitro data indicate that these xenobiotics may contribute to the evolution and worsening of hepatocarcinoma, whether via the induction of the EMT process and/or via the deregulation of liver key processes such as cell cycle and resistance to apoptosis.

  20. Quantitative assessment of smoking-induced emphysema progression in longitudinal CT screening for lung cancer

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Mizuguchi, R.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2015-03-01

    Computed tomography has been used for assessing structural abnormalities associated with emphysema. It is important to develop a robust CT based imaging biomarker that would allow quantification of emphysema progression in early stage. This paper presents effect of smoking on emphysema progression using annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in longitudinal screening for lung cancer. The percentage of LAV (LAV%) was measured after applying CT value threshold method and small noise reduction. Progression of emphysema was assessed by statistical analysis of the annual changes represented by linear regression of LAV%. This method was applied to 215 participants in lung cancer CT screening for five years (18 nonsmokers, 85 past smokers, and 112 current smokers). The results showed that LAV% is useful to classify current smokers with rapid progression of emphysema (0.2%/year, p<0.05). This paper demonstrates effectiveness of the proposed method in diagnosis and prognosis of early emphysema in CT screening for lung cancer.

  1. Simulating Initial and Progressive Failure of Open-Hole Composite Laminates under Tension

    NASA Astrophysics Data System (ADS)

    Guo, Zhangxin; Zhu, Hao; Li, Yongcun; Han, Xiaoping; Wang, Zhihua

    2016-06-01

    A finite element (FE) model is developed for the progressive failure analysis of fiber reinforced polymer laminates. The failure criterion for fiber and matrix failure is implemented in the FE code Abaqus using user-defined material subroutine UMAT. The gradual degradation of the material properties is controlled by the individual fracture energies of fiber and matrix. The failure and damage in composite laminates containing a central hole subjected to uniaxial tension are simulated. The numerical results show that the damage model can be used to accurately predicte the progressive failure behaviour both qualitatively and quantitatively.

  2. Negative correlation of ITCH E3 ubiquitin ligase and miRNA-106b dictates metastatic progression in pancreatic cancer.

    PubMed

    Luo, Zhu-Lin; Luo, Hui-Jun; Fang, Chen; Cheng, Long; Huang, Zhu; Dai, Ruiwu; Li, Kun; Tian, Fu-Zhou; Wang, Tao; Tang, Li-Jun

    2016-01-12

    Pancreatic cancer is one of the major malignancies and cause for mortality across the world, with recurrence and metastatic progression remaining the single largest cause of pancreatic cancer mortality. Hence it is imperative to develop novel biomarkers of pancreatic cancer prognosis. The E3 ubiquitin ligase ITCH has been previously reported to inhibit the tumor suppressive Hippo signaling by suppressing LATS1/2 in breast cancer and chronic lymphocytic leukemia. However, the role of ITCH in pancreatic cancer progression has not been described. Here we report that ITCH transcript and protein expression mimic metastatic trait in pancreatic cancer patients and cell lines. Loss-of-function studies of ITCH showed that the gene product is responsible for inducing metastasis in vivo. We furthermore show that hsa-miR-106b, which itself is down regulated in metastatic pancreatic cancer, directly interacts and inhibit ITCH expression. ITCH and hsa-miR-106b are thus potential biomarkers for pancreatic cancer prognosis.

  3. Expression and Functional Role of Orphan Receptor GPR158 in Prostate Cancer Growth and Progression

    PubMed Central

    Patel, Nitin; Itakura, Tatsuo; Jeong, Shinwu; Liao, Chun-Peng; Roy-Burman, Pradip; Zandi, Ebrahim; Groshen, Susan; Pinski, Jacek; Coetzee, Gerhard A.; Gross, Mitchell E.; Fini, M. Elizabeth

    2015-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC. PMID:25693195

  4. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    PubMed

    Patel, Nitin; Itakura, Tatsuo; Jeong, Shinwu; Liao, Chun-Peng; Roy-Burman, Pradip; Zandi, Ebrahim; Groshen, Susan; Pinski, Jacek; Coetzee, Gerhard A; Gross, Mitchell E; Fini, M Elizabeth

    2015-01-01

    Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC. PMID:25693195

  5. Outpatient management without initial assessment for febrile patients undergoing adjuvant chemotherapy for breast cancer

    PubMed Central

    Kimura, Kosei; Tanaka, Satoru; Iwamoto, Mitsuhiko; Fujioka, Hiroya; Sato, Nayuko; Terasawa, Risa; Kawaguchi, Kanako; Matsuda, Junna; Umezaki, Nodoka; Uchiyama, Kazuhisa

    2016-01-01

    The purpose of this study was to retrospectively analyze the feasibility of outpatient management without initial assessment for febrile patients undergoing adjuvant chemotherapy for breast cancer. A total of 131 consecutive patients with breast cancer treated with adjuvant or neoadjuvant chemotherapy from 2011 to 2013 at Osaka Medical College Hospital (Osaka, Japan) were retrospectively reviewed. In the case of developing a fever (body temperature, ≥38°C), the outpatients had been instructed to take previously prescribed oral antibiotics for 3 days without any initial assessment, and if no improvement had occurred by then, they were required to visit the hospital for examination and to undergo treatment based on the results of a risk assessment for complications. The primary aim of the present study was to assess the outcome of febrile episodes, while the secondary aim was to assess the incidence of febrile episodes, hospitalizations, and the type of chemotherapy. The 131 patients received 840 chemotherapy administrations. Fifty-five patients (42.0%) had a total of 75 febrile episodes after 840 chemotherapy administrations (8.9%). Treatment failure occurred in 12 of the 75 episodes (16.0%) in 11 of the 55 patients (20.0%). Only four episodes required hospitalization. Treatment success was achieved in 63 episodes (84.0%). In conclusion, the feasibility of outpatient management without initial assessment was evaluated in the present study for febrile patients undergoing adjuvant chemotherapy for breast cancer, and the outpatient strategy regimen may be safe and convenient for these patients. PMID:27699031

  6. Outpatient management without initial assessment for febrile patients undergoing adjuvant chemotherapy for breast cancer

    PubMed Central

    Kimura, Kosei; Tanaka, Satoru; Iwamoto, Mitsuhiko; Fujioka, Hiroya; Sato, Nayuko; Terasawa, Risa; Kawaguchi, Kanako; Matsuda, Junna; Umezaki, Nodoka; Uchiyama, Kazuhisa

    2016-01-01

    The purpose of this study was to retrospectively analyze the feasibility of outpatient management without initial assessment for febrile patients undergoing adjuvant chemotherapy for breast cancer. A total of 131 consecutive patients with breast cancer treated with adjuvant or neoadjuvant chemotherapy from 2011 to 2013 at Osaka Medical College Hospital (Osaka, Japan) were retrospectively reviewed. In the case of developing a fever (body temperature, ≥38°C), the outpatients had been instructed to take previously prescribed oral antibiotics for 3 days without any initial assessment, and if no improvement had occurred by then, they were required to visit the hospital for examination and to undergo treatment based on the results of a risk assessment for complications. The primary aim of the present study was to assess the outcome of febrile episodes, while the secondary aim was to assess the incidence of febrile episodes, hospitalizations, and the type of chemotherapy. The 131 patients received 840 chemotherapy administrations. Fifty-five patients (42.0%) had a total of 75 febrile episodes after 840 chemotherapy administrations (8.9%). Treatment failure occurred in 12 of the 75 episodes (16.0%) in 11 of the 55 patients (20.0%). Only four episodes required hospitalization. Treatment success was achieved in 63 episodes (84.0%). In conclusion, the feasibility of outpatient management without initial assessment was evaluated in the present study for febrile patients undergoing adjuvant chemotherapy for breast cancer, and the outpatient strategy regimen may be safe and convenient for these patients.

  7. Paraneoplastic syndrome and underlying breast cancer: a worsening rash despite initiation of chemotherapy.

    PubMed

    Ahuja, Shradha; Makkar, Priyanka; Gupta, Sorab; Vigoda, Ivette

    2016-05-01

    Skin may show the first clinical evidence of systemic disease and can be the first clue to malignancy in 1% of cases. Dermatomyositis is an immunologically mediated inflammatory myopathy characterized by proximal muscle weakness, muscle inflammation, and characteristic skin findings. It has an incidence of 1 in 100,000 patients. In 15%-30% cases of dermatomyositis, an underlying malignancy is the cause of paraneoplastic syndrome. Ovarian and breast cancer in women and lung cancer in men are the most common malignancies associated with dermatomyositis. Here we report the case of a 55-year-old postmenopausal woman who initially presented with a facial rash. She was treated for chemical dermatitis without resolution of symptoms and was subsequently found to have dermatomyositis associated with stage IV invasive ductal carcinoma of the breast. In most cases, the skin changes resolve after treatment for the underlying malignancy has been initiated, but in this case of paraneoplastic dermatomyositis, the rash worsened with initiation of treatment for underlying breast cancer. PMID:27258056

  8. HEF1, a Novel Target of Wnt Signaling, Promotes Colonic Cell Migration and Cancer Progression

    PubMed Central

    Li, Yingchun; Bavarva, Jasmin H.; Wang, Zemin; Guo, Jianhui; Qian, Chiping; Thibodeau, Stephen N.; Golemis, Erica A.; Liu, Wanguo

    2011-01-01

    Misregulation of the canonical Wnt/β-catenin pathway and aberrant activation of Wnt signaling target genes are common in colorectal cancer and contribute to cancer progression. Altered expression of HEF1 (Human Enhancer of Filamentation 1, also known as NEDD9 or Cas-L) has been implicated in progression of melanoma, breast, and colorectal cancer. However, the regulation of HEF1 and the role of HEF1 in colorectal cancer tumorigenesis are not fully understood. We here identify HEF1 as a novel Wnt signaling target. The expression of HEF1 was up-regulated by Wnt3a, β-catenin, and Dvl2 in a dose-dependent fashion, and was suppressed following β-catenin down-regulation by shRNA. In addition, elevated HEF1 mRNA and protein levels were observed in colorectal cancer cell lines and primary tumor tissues, as well as in the colon and adenoma polyps of Apcmin/+ mice. Moreover, HEF1 levels in human colorectal tumor tissues increased with the tumor grade. Chromatin immunoprecipitation (ChIP) assays and HEF1 promoter analyses revealed three functional TCF-binding sites in the promoter of HEF1 responsible for HEF1 induction by Wnt signaling. Ectopic expression of HEF1 increased cell proliferation and colony formation, while down-regulation of HEF1 in SW480 cells by shRNA had the opposite effects and inhibited the xenograft tumor growth. Furthermore, overexpression of HEF1 in SW480 cells promoted cell migration and invasion. Together, our results determined a novel role of HEF1 as a mediator of the canonical Wnt/β-catenin signaling pathway for cell proliferation, migration, and tumorigenesis, as well as an important player in colorectal tumorigenesis and progression. HEF1 may represent an attractive candidate for drug targeting in colorectal cancer. PMID:21317929

  9. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    2015-04-01

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  10. A phylogenetic model for understanding the effect of gene duplication on cancer progression.

    PubMed

    Ma, Qin; Reeves, Jaxk H; Liberles, David A; Yu, Lili; Chang, Zheng; Zhao, Jing; Cui, Juan; Xu, Ying; Liu, Liang

    2014-03-01

    As biotechnology advances rapidly, a tremendous amount of cancer genetic data has become available, providing an unprecedented opportunity for understanding the genetic mechanisms of cancer. To understand the effects of duplications and deletions on cancer progression, two genomes (normal and tumor) were sequenced from each of five stomach cancer patients in different stages (I, II, III and IV). We developed a phylogenetic model for analyzing stomach cancer data. The model assumes that duplication and deletion occur in accordance with a continuous time Markov Chain along the branches of a phylogenetic tree attached with five extended branches leading to the tumor genomes. Moreover, coalescence times of the phylogenetic tree follow a coalescence process. The simulation study suggests that the maximum likelihood approach can accurately estimate parameters in the phylogenetic model. The phylogenetic model was applied to the stomach cancer data. We found that the expected number of changes (duplication and deletion) per gene for the tumor genomes is significantly higher than that for the normal genomes. The goodness-of-fit test suggests that the phylogenetic model with constant duplication and deletion rates can adequately fit the duplication data for the normal genomes. The analysis found nine duplicated genes that are significantly associated with stomach cancer. PMID:24371277

  11. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  12. Mapping cancer cell metabolism with13C flux analysis: Recent progress and future challenges

    PubMed Central

    Duckwall, Casey Scott; Murphy, Taylor Athanasaw; Young, Jamey Dale

    2013-01-01

    The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of13C metabolic flux analysis (MFA) to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case. PMID:23961260

  13. MiR181c inhibits ovarian cancer metastasis and progression by targeting PRKCD expression

    PubMed Central

    Yao, Lijuan; Wang, Li; Li, Fengxia; Gao, Xihai; Wei, Xuegong; Liu, Zhihui

    2015-01-01

    MicroRNAs (miRNAs) regulate many important cancer related gene expression in the posttranscriptional process. Dysregulated expression of miRNAs has been observed in numerous human cancers including ovarian cancer. In this study, we found that the expression of the miR-181c was significantly decreased in ovarian cancer tissue and in tissues with lymph node metastasis when compared with their control samples, respectively. Moreover, among pathological stages, the expression of miR-181c was significantly decreased in the tissues with IV stage compared with other stages. In vitro, miR-181c significantly inhibited the proliferation, metastasis of A2780 cell line, and induced G1 phase arrest. Through bioinformatics prediction, protein kinase C delta (PRKCD) was identified as a target gene of miR-181c. Western blot results showed that PRKCD was increased in ovarian cancer tissue, in tissues with lymph node metastasis and IV stage of ovarian cancer pathological samples. After knocking down PRKCD, the cell cycle of A2780 cells was also arrested in G1 phase. The proliferation and the metastasis of A2780 cells were reduced. The dual luciferase reporter experiments showed that miR-181c regulated the expression of PRKCD by combining with its 3’UTR. These results indicate that miR-181c inhibits ovarian cancer metastasis and progression by targeting PRKCD expression. PMID:26629004

  14. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    SciTech Connect

    Chu, Tian-Li; Zhao, Hong-Meng; Li, Yue; Chen, Ao-Xiang; Sun, Xuan; Ge, Jie

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  15. A phylogenetic model for understanding the effect of gene duplication on cancer progression

    PubMed Central

    Ma, Qin; Reeves, Jaxk H.; Liberles, David A.; Yu, Lili; Chang, Zheng; Zhao, Jing; Cui, Juan; Xu, Ying; Liu, Liang

    2014-01-01

    As biotechnology advances rapidly, a tremendous amount of cancer genetic data has become available, providing an unprecedented opportunity for understanding the genetic mechanisms of cancer. To understand the effects of duplications and deletions on cancer progression, two genomes (normal and tumor) were sequenced from each of five stomach cancer patients in different stages (I, II, III and IV). We developed a phylogenetic model for analyzing stomach cancer data. The model assumes that duplication and deletion occur in accordance with a continuous time Markov Chain along the branches of a phylogenetic tree attached with five extended branches leading to the tumor genomes. Moreover, coalescence times of the phylogenetic tree follow a coalescence process. The simulation study suggests that the maximum likelihood approach can accurately estimate parameters in the phylogenetic model. The phylogenetic model was applied to the stomach cancer data. We found that the expected number of changes (duplication and deletion) per gene for the tumor genomes is significantly higher than that for the normal genomes. The goodness-of-fit test suggests that the phylogenetic model with constant duplication and deletion rates can adequately fit the duplication data for the normal genomes. The analysis found nine duplicated genes that are significantly associated with stomach cancer. PMID:24371277

  16. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b-Mediated Malignant Progression.

    PubMed

    Picon-Ruiz, Manuel; Pan, Chendong; Drews-Elger, Katherine; Jang, Kibeom; Besser, Alexandra H; Zhao, Dekuang; Morata-Tarifa, Cynthia; Kim, Minsoon; Ince, Tan A; Azzam, Diana J; Wander, Seth A; Wang, Bin; Ergonul, Burcu; Datar, Ram H; Cote, Richard J; Howard, Guy A; El-Ashry, Dorraya; Torné-Poyatos, Pablo; Marchal, Juan A; Slingerland, Joyce M

    2016-01-15

    Consequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential. We found that the interaction between adipocytes and cancer cells increased the secretion of proinflammatory cytokines. Prolonged culture of cancer cells with adipocytes or cytokines increased the proportion of mammosphere-forming cells and of cells expressing stem-like markers in vitro. Furthermore, contact with immature adipocytes increased the abundance of cancer cells with tumor-forming and metastatic potential in vivo. Mechanistic investigations demonstrated that cancer cells cultured with immature adipocytes or cytokines activated Src, thus promoting Sox2, c-Myc, and Nanog upregulation. Moreover, Sox2-dependent induction of miR-302b further stimulated cMYC and SOX2 expression and potentiated the cytokine-induced cancer stem cell-like properties. Finally, we found that Src inhibitors decreased cytokine production after coculture, indicating that Src is not only activated by adipocyte or cytokine exposures, but is also required to sustain cytokine induction. These data support a model in which cancer cell invasion into local fat would establish feed-forward loops to activate Src, maintain proinflammatory cytokine production, and increase tumor-initiating cell abundance and metastatic progression. Collectively, our findings reveal new insights underlying increased breast cancer mortality in obese individuals and provide a novel preclinical rationale to test the efficacy of Src inhibitors for breast cancer treatment.

  17. Breast Cancer Patients Have Greatly Benefited from the Progress in Molecular Oncology

    PubMed Central

    Groner, Bernd L.; Hynes, Nancy E.

    2016-01-01

    Cancer research has become a global enterprise, and the number of researchers, as well as the cost for their activities, has skyrocketed. The budget for the National Cancer Institute of the United States National Institutes of Health alone was US$5.2 billion in 2015. Since most of the research is funded by public money, it is perfectly legitimate to ask if these large expenses are worth it. In this brief commentary, we recapitulate some of the breakthroughs that mark the history of breast cancer research over the past decades and emphasize the resulting benefits for afflicted women. In 1971, only 40% of women diagnosed with breast cancer would live another 10 years. Today, nearly 80% of women reach that significant milestone in most developed countries. This dramatic change has afforded breast cancer patients many productive years and a better quality of life. Progress resulted largely from advances in the understanding of the molecular details of the disease and their translation into innovative, rationally designed therapies. These developments are founded on the revolution in molecular and cellular biology, an entirely new array of methods and technologies, the enthusiasm, optimism, and diligence of scientists and clinicians, and the considerable funding efforts from public and private sources. We were lucky to be able to spend our productive years in a period of scientific upheaval in which methods and concepts were revolutionized and that allowed us to contribute, within the global scientific community, to the progress in basic science and clinical practice. PMID:27684370

  18. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin1

    PubMed Central

    Couderc, Christophe; Boin, Alizée; Fuhrmann, Laetitia; Vincent-Salomon, Anne; Mandati, Vinay; Kieffer, Yann; Mechta-Grigoriou, Fatima; Del Maestro, Laurence; Chavrier, Philippe; Vallerand, David; Brito, Isabelle; Dubois, Thierry; De Koning, Leanne; Bouvard, Daniel; Louvard, Daniel; Gautreau, Alexis; Lallemand, Dominique

    2016-01-01

    The Hippo signaling network is a key regulator of cell fate. In the recent years, it was shown that its implication in cancer goes well beyond the sole role of YAP transcriptional activity and its regulation by the canonical MST/LATS kinase cascade. Here we show that the motin family member AMOTL1 is an important effector of Hippo signaling in breast cancer. AMOTL1 connects Hippo signaling to tumor cell aggressiveness. We show that both canonical and noncanonical Hippo signaling modulates AMOTL1 levels. The tumor suppressor Merlin triggers AMOTL1 proteasomal degradation mediated by the NEDD family of ubiquitin ligases through direct interaction. In parallel, YAP stimulates AMOTL1 expression. The loss of Merlin expression and the induction of Yap activity that are frequently observed in breast cancers thus result in elevated AMOTL1 levels. AMOTL1 expression is sufficient to trigger tumor cell migration and stimulates proliferation by activating c-Src. In a large cohort of human breast tumors, we show that AMOTL1 protein levels are upregulated during cancer progression and that, importantly, the expression of AMOTL1 in lymph node metastasis appears predictive of the risk of relapse. Hence we uncover an important mechanism by which Hippo signaling promotes breast cancer progression by modulating the expression of AMOTL1. PMID:26806348

  19. IκB kinases increase Myc protein stability and enhance progression of breast cancer cells

    PubMed Central

    2011-01-01

    Background Both IκB kinase (IKK) complex and oncgenic protein Myc play important roles in cancer progression, including cancer cell invasiveness and metastasis. The levels of Myc is regulated by the phosphorylation of Myc at Thr58 and Ser62. Results In this study, we show that the expression of Myc is associated with IKKα and IKKβ in breast cancers and that Myc is an IKKs substrate. Suppression of IKK activity by either chemical inhibitor or transfection of kinase-dead mutants decreases the phosphorylation of Myc at Ser62 and enhances the degradation of Myc. Consequently, these treatments decrease the tumorigenic and invasive ability of breast cancer cells. Furthermore, doxorubicin, a frequently used anticancer drug in breast cancer, activates IKKs and Myc, thereby increasing invasiveness and tumorigenesis of breast carcinoma MCF7 cells. Inhibition of IKKs prevents these doxorubicin-induced effects. Conclusions Our study indicates that IKKs tightly regulate Myc expression through prolonging protein stability, and suggests that IKKs are potentially therapeutic targets and that suppression of IKKs may be used following chemotherapy to reduce the risk of treatment-induced tumor progression. PMID:21575199

  20. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  1. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  2. FOXE1 Association with Differentiated Thyroid Cancer and Its Progression

    PubMed Central

    Penna-Martinez, Marissa; Epp, Friederike; Kahles, Heinrich; Ramos-Lopez, Elizabeth; Hinsch, Nora; Hansmann, Martin-Leo; Selkinski, Ivan; Grünwald, Frank; Holzer, Katharina; Bechstein, Wolf O.; Zeuzem, Stefan; Vorländer, Christian

    2014-01-01

    Background: Single nucleotide polymorphisms (SNPs) near thyroid transcription factor genes (FOXE1 rs965513/NKX2-1 rs944289) have been shown to be associated with differentiated thyroid cancer (DTC) in Caucasoid populations. We investigated the role of those SNPs in German patients with DTC and also extended our analysis to tumor stages and lymphocytic infiltration of the tumors (ITL). Methods: Patients with DTC (n=243; papillary, PTC; follicular, FTC) and healthy controls (HC; n=270) were analyzed for the rs965513 and rs944289 SNPs. Results: The case-control analysis for rs965513 SNP showed that the genotypes “AA,” “AG,” and minor allele “A” were more frequent in patients with DTC than in HC (pronounced in PTC pgenotype=0.000084, pallele=0.006 than FTC pgenotype=0.29 and pallele=0.06). Furthermore, subgroup analysis of the DTC patients stratified for primary tumor stage (T1–T2, T3–T4), the absence or presence of regional lymph node metastases (N0, N1), for distant metastases (M0, M1), as well as for ITL, showed an association of rs965513 with stages T1–T2, T1–T3, N1, and absence of ITL. The NKX2-1 SNP rs944289, however, was not associated with DTC. Conclusion: Our results confirm that the FOXE1 rs965513 SNP confers an increased risk for DTC in the German population, particularly allele “A” and the genotypes “AA” and “AG” for PTC. This increased risk was also observed in advanced tumor stages and absence of ITL, which may reflect the course of a more aggressive disease. The NKX2-1 rs944289 SNP, however, appears to play a secondary role in the development of DTC in the German population. PMID:24325646

  3. Diagnosis and treatment of recurrent laryngeal cancer following initial nonsurgical therapy.

    PubMed

    Agra, Ivan Marcelo Gonçalves; Ferlito, Alfio; Takes, Robert P; Silver, Carl E; Olsen, Kerry D; Stoeckli, Sandro J; Strojan, Primož; Rodrigo, Juan P; Gonçalves Filho, João; Genden, Eric M; Haigentz, Missak; Khafif, Avi; Weber, Randal S; Zbären, Peter; Suárez, Carlos; Hartl, Dana M; Rinaldo, Alessandra; Kim, Kwang Hyun; Kowalski, Luiz P

    2012-05-01

    Surgery is the preferred modality for curative treatment of recurrent laryngeal cancer after failure of nonsurgical treatments. Patients with initial early-stage cancer experiencing recurrence following radiotherapy often have more advanced-stage tumors by the time the recurrence is recognized. About one third of such recurrent cancers are suitable for conservation surgery. Endoscopic resection with the CO(2) laser or open partial laryngectomy (partial vertical, supracricoid, or supraglottic laryngectomies) have been used. The outcomes of conservation surgery appear better than those after total laryngectomy, because of selection bias. Transoral laser surgery is currently used more frequently than open partial laryngectomy for treatment of early-stage recurrence, with outcomes equivalent to open surgery but with less associated morbidity. Laser surgery has also been employed for selective cases of advanced recurrent disease, but patient selection and expertise are required for application of this modality to rT3 tumors. In general, conservation laryngeal surgery is a safe and effective treatment for localized recurrences after radiotherapy for early-stage glottic cancer. Recurrent advanced-stage cancers should generally be treated by total laryngectomy. PMID:21484925

  4. Dynamics of cancer progression and suppression: A novel evolutionary game theory based approach.

    PubMed

    Banerjee, Jeet; Ranjan, Tanvi; Layek, Ritwik Kumar

    2015-01-01

    In this paper, a novel mathematical approach is proposed for the dynamics of progression and suppression of cancer. We define mutant cell density, ρ(μ) (μ × ρ), as a primary factor in cancer dynamics, and use logistic growth model and replicator equation for defining the dynamics of total cell density (ρ) and mutant fraction (μ), respectively. Furthermore, in the proposed model, we introduce an analytical expression for a control parameter D (drug), to suppress the proliferation of mutants with extra fitness level σ. Lastly, we present a comparison of the proposed model with some existing models of tumour growth.

  5. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients.

    PubMed

    Kehlet, S N; Sanz-Pamplona, R; Brix, S; Leeming, D J; Karsdal, M A; Moreno, V

    2016-01-01

    During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy controls using well-characterized and validated ELISAs. Serum levels of the biomarkers were significantly elevated in colorectal cancer patients compared to subjects with adenomas (C1M, Pro-C3, C3M) and controls (C1M, Pro-C3). When patients were stratified according to their tumour stage, all four biomarkers were able to differentiate stage IV metastatic patients from all other stages. Combination of all markers with age and gender in a logistic regression model discriminated between metastatic and non-metastatic patients with an AUROC of 0.80. The data suggest that the levels of these collagen remodeling biomarkers may be a measure of tumour activity and invasiveness and may provide new clinical tools for monitoring of patients with advanced stage colorectal cancer. PMID:27465284

  6. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients

    PubMed Central

    Kehlet, S. N.; Sanz-Pamplona, R.; Brix, S.; Leeming, D. J.; Karsdal, M. A.; Moreno, V.

    2016-01-01

    During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy controls using well-characterized and validated ELISAs. Serum levels of the biomarkers were significantly elevated in colorectal ca