Science.gov

Sample records for cancer initiation progression

  1. Tobacco Use Initiation | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Reprogramming bladder cancer cells for studying cancer initiation and progression.

    PubMed

    Iskender, Banu; Izgi, Kenan; Canatan, Halit

    2016-10-01

    The induced pluripotent stem cell (iPSC) technology is the forced expression of specific transcription factors in somatic cells resulting in transformation into self-renewing, pluripotent cells which possess the ability to differentiate into any type of cells in the human body. While malignant cells could also be reprogrammed into iPSC-like cells with lower efficiency due to the genetic and epigenetic barriers in cancer cells, only a limited number of cancer cell types could be successfully reprogrammed until today. In the present study, we aimed at reprogramming two bladder cancer cell lines HTB-9 and T24 using a non-integrating Sendai virus (SeV) system. We have generated six sub-clones using distinct combinations of four factors-OCT4, SOX2, KLF4 and c-MYC-in two bladder cancer cell lines. Only a single sub-clone, T24 transduced with 4Fs, gave rise to iPSC-like cells. Bladder cancer cell-derived T24 4F cells represent unique features of pluripotent cells such as epithelial-like morphology, colony-forming ability, expression of pluripotency-associated markers and bearing the ability to differentiate in vitro. This is the first study focusing on the reprogramming susceptibility of two different bladder cancer cell lines to nuclear reprogramming. Further molecular characterisation of T24 4F cells could provide a better insight for biomarker research in bladder carcinogenesis and could offer a valuable tool for the development of novel therapeutic approaches in bladder carcinoma.

  3. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-15-1-0095 TITLE: Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...pathways in ovarian stem cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT

  4. Identification and Targeting of Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis

    DTIC Science & Technology

    2012-10-01

    Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis PRINCIPAL INVESTIGATOR: Justin Drake CONTRACTING...PROJECT NUMBER Justin Drake and Owen Witte 5e. TASK NUMBER Email: jdrake@mednet.ucla.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...of tyrosine kinase networks during prostate cancer progression Justin M. Drakea, Nicholas A. Grahamb,c, Tanya Stoyanovaa, Amir Sedghia, Andrew S

  5. Deciphering the Translational Determinants of Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-07-01

    cellular invasion ( P -value 0.009), cell proliferation ( P -value 0.04), metabolism ( P -value 0.0002), and regulators of protein modification ( P -value 0.01...ribosomal proteins, 6 elongation factors, and 4 translation initiation factors ( P -value 7.5e-82)(Fig. 2a). Therefore, this class of mTOR responsive mRNAs...pre-treatment with 1µg/ml doxycycline followed by transfection of respective 5’UTR constructs (mean + SEM, n = 9, * P ɘ.0001, t-test)(Right panel

  6. Tight Junctions: A Barrier to the Initiation and Progression of Breast Cancer?

    PubMed Central

    Brennan, Kieran; Offiah, Gozie; McSherry, Elaine A.; Hopkins, Ann M.

    2010-01-01

    Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression. PMID:19920867

  7. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression.

    PubMed

    McConkey, David J; Lee, Sangkyou; Choi, Woonyoung; Tran, Mai; Majewski, Tadeusz; Lee, Sooyong; Siefker-Radtke, Arlene; Dinney, Colin; Czerniak, Bogdan

    2010-01-01

    Urothelial cancer has served as one of the most important sources of information about the mutational events that underlie the development of human solid malignancies. Although "field effects" that affect the entire bladder mucosa appear to initiate disease, tumors develop along 2 distinct biological "tracks" that present vastly different challenges for clinical management. Recent whole genome methodologies have facilitated even more rapid progress in the identification of the molecular mechanisms involved in bladder cancer initiation and progression. Specifically, whole organ mapping combined with high resolution, high throughput SNP analyses have identified a novel class of candidate tumor suppressors ("forerunner genes") that localize near more familiar tumor suppressors but are disrupted at an earlier stage of cancer development. Furthermore, whole genome comparative genomic hybridization (CGH) and mRNA expression profiling have demonstrated that the 2 major subtypes of urothelial cancer (papillary/superficial and non-papillary/muscle-invasive) are truly distinct molecular entities, and in recent work our group has discovered that muscle-invasive tumors express molecular markers characteristic of a developmental process known as "epithelial-to-mesenchymal transition" (EMT). Emerging evidence indicates that urothelial cancers contain subpopulations of tumor-initiating cells ("cancer stem cells") but the phenotypes of these cells in different tumors are heterogeneous, raising questions about whether or not the 2 major subtypes of cancer share a common precursor. This review will provide an overview of these new insights and discuss priorities for future investigation.

  8. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression

    PubMed Central

    Sansone, Luigi; Limana, Federica; Arcangeli, Tania; De Santis, Elena; Polese, Milena; Fini, Massimo; Russo, Matteo A.

    2016-01-01

    The presence of ROS is a constant feature in living cells metabolizing O2. ROS concentration and compartmentation determine their physiological or pathological effects. ROS overproduction is a feature of cancer cells and plays several roles during the natural history of malignant tumor. ROS continuously contribute to each step of cancerogenesis, from the initiation to the malignant progression, acting directly or indirectly. In this review, we will (a) underline the role of ROS in the pathway leading a normal cell to tumor transformation and progression, (b) define the multiple roles of ROS during the natural history of a tumor, (c) conciliate many conflicting data about harmful or beneficial effects of ROS, (d) rethink the importance of oncogene and tumor suppressor gene mutations in relation to the malignant progression, and (e) collocate all the cancer hallmarks in a mechanistic sequence which could represent a “physiological” response to the initial growth of a transformed stem/pluripotent cell, defining also the role of ROS in each hallmark. We will provide a simplified sketch about the relationships between ROS and cancer. The attention will be focused on the contribution of ROS to the signaling of HIF, NFκB, and Sirtuins as a leitmotif of cancer initiation and progression. PMID:26798421

  9. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression

    PubMed Central

    Godoy, Guilherme; Gakis, Georgios; Smith, Carolyn L.; Fahmy, Omar

    2016-01-01

    Epidemiologic studies have long demonstrated clear differences in incidence and progression of bladder cancer between genders suggesting that the mechanisms of development and progression in these tumors have a strong association with steroid hormonal pathways. Such observations led to preclinical studies investigating the role of androgen and estrogen receptors, as well as their cognate hormones in bladder cancer initiation and progression. Using various in vitro cell line assays and in vivo mouse models, studies have elucidated different mechanisms and signaling pathways through which these steroid receptors may participate in this disease. More recently, RNA expression data from multiple studies revealed a luminal subtype of bladder cancer that exhibited an estrogen receptor signaling pathway, making it a strong candidate for further consideration of targeted therapies in the future. Despite the promising preclinical data demonstrating potential roles for both antiandrogen and antiestrogen strategies targeting these pathways in different stages of bladder cancer, only two clinical trials are currently active and accruing patients for such clinical studies. Targeted therapies in bladder cancer are a large unmet need and have the potential to change treatment paradigms and improve oncological outcomes of patients with bladder cancer. PMID:27376135

  10. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    PubMed Central

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  11. Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective.

    PubMed

    Naushad, Shaik Mohammad; Reddy, Cheruku Apoorva; Kumaraswami, Konda; Divyya, Shree; Kotamraju, Srigiridhar; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadha Rao; Kutala, Vijay Kumar

    2014-03-01

    Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by

  12. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression

    PubMed Central

    Madka, Venkateshwar; Brewer, Misty; Ritchie, Rebekah L.; Lightfoot, Stan; Kumar, Gaurav; Sadeghi, Michael; Patlolla, Jagan Mohan R.; Yamada, Hiroshi Y.; Cruz-Monserrate, Zobeida; May, Randal; Houchen, Courtney W.; Steele, Vernon E.; Rao, Chinthalapally V.

    2015-01-01

    Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes. Genetic ablation of cyclo-oxygenase-2 (COX-2) decreased DclK1 in GEM. Induction of inflammation/pancreatitis with cerulein in GEM mice increased DclK1, and the novel dual COX/5-lipoxygenase (5-LOX) inhibitor licofelone reduced it. Dietary licofelone significantly inhibited the incidence of PDAC and carcinoma in situ with significant inhibition of pancreatic CSCs. Licofelone suppressed pancreatic tumor COX-2 and 5-LOX activities and modulated miRNAs characteristic of CSC and inflammation in correlation with PDAC inhibition. These results offer a preclinical proof of concept to target the inflammation initiation to inhibit cancer stem cells early for improving the treatment of pancreatic cancers, with immediate clinical implications for repositioning dual COX/5-LOX inhibitors in human trials for high risk patients. PMID:25906749

  13. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  14. Short-form Ron is a novel determinant of ovarian cancer initiation and progression

    PubMed Central

    Moxley, Katherine M.; Wang, Luyao; Welm, Alana L.; Bieniasz, Magdalena

    2016-01-01

    Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment. PMID:27551332

  15. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression

    PubMed Central

    Koelwyn, Graeme J.; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W.

    2016-01-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer. PMID:26676894

  16. Spontaneous initiation, promotion and progression of colorectal cancer in the novel A/J Min/+ mouse.

    PubMed

    Sødring, Marianne; Gunnes, Gjermund; Paulsen, Jan Erik

    2016-04-15

    The C57BL/6J multiple intestinal neoplasia (Min/+) mouse is a widely used murine model for familial adenomatous polyposis, a hereditary form of human colorectal cancer. However, it is a questionable model partly because the vast majority of tumors arise in the small intestine, and partly because the fraction of tumors that progress to invasive carcinomas is minuscule. A/J mice are typically more susceptible to carcinogen-induced colorectal cancer than C57BL/6J mice. To investigate whether the novel Min/+ mouse on the A/J genetic background could be a better model for colorectal cancer, we examined the spontaneous intestinal tumorigenesis in 81 A/J Min/+ mice ranging in age from 4 to 60 weeks. The A/J Min/+ mouse exhibited a dramatic increase in number of colonic lesions when compared to what has been reported for the conventional Min/+ mouse; however, an increase in small intestinal lesions did not occur. In addition, this novel mouse model displayed a continual development of colonic lesions highlighted by the transition from early lesions (flat ACF) to tumors over time. In mice older than 40 weeks, 13 colonic (95% CI: 8.7-16.3) and 21 small intestinal (95% CI: 18.6-24.3) tumors were recorded. Notably, a considerable proportion of those lesions progressed to carcinomas in both the colon (21%) and small intestine (51%). These findings more closely reflect aspects of human colorectal carcinogenesis. In conclusion, the novel A/J Min/+ mouse may be a relevant model for initiation, promotion and progression of colorectal cancer.

  17. Complex role for the immune system in initiation and progression of pancreatic cancer.

    PubMed

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  18. Complex role for the immune system in initiation and progression of pancreatic cancer

    PubMed Central

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-01-01

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed. PMID:25170202

  19. Interleukin-6 Prevents the Initiation but Enhances the Progression of Lung Cancer.

    PubMed

    Qu, Zhaoxia; Sun, Fan; Zhou, Jingjiao; Li, Liwen; Shapiro, Steven D; Xiao, Gutian

    2015-08-15

    Recent studies suggest that high expression of the proinflammatory cytokine IL6 is associated with poor survival of lung cancer patients. Accordingly, IL6 has been a target of great interest for lung cancer therapy. However, the role of IL6 in lung cancer has not been determined yet. Here, we demonstrate that IL6 plays opposite roles in the initiation and growth of lung cancer in a mouse model of lung cancer induced by the K-Ras oncogene. We find that compared with wild-type mice, IL6-deficient mice developed much more lung tumors after an activating mutant of K-Ras was induced in the lungs. However, lung tumors developed in IL6-deficient mice were significantly smaller. Notably, both the lung tumor-suppressing and -promoting functions of IL6 involve its ability in activating the transcription factor STAT3. IL6/STAT3 signaling suppressed lung cancer initiation through maintaining lung homeostasis, regulating lung macrophages, and activating cytotoxic CD8 T cells under K-Ras oncogenic stress, whereas it promoted lung cancer cell growth through inducing the cell proliferation regulator cyclin D1. These studies reveal a previously unexplored role of IL6/STAT3 signaling in maintaining lung homeostasis and suppressing lung cancer induction. These studies also significantly improve our understanding of lung cancer and provide a molecular basis for designing IL6/STAT3-targeted therapies for this deadliest human cancer.

  20. Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression

    PubMed Central

    Sharma, Divya Khandige; Bressler, Kamiko; Patel, Harshil; Balasingam, Nirujah

    2016-01-01

    Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation. PMID:28083147

  1. MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer

    PubMed Central

    Lee, Kyungjin; Ferguson, Lynnette R

    2016-01-01

    Colorectal cancer is a major global cause of morbidity and mortality. Current strategies employed to increase detection of early, curable stages of this disease are contributing to a reduction of the negative health impact from it. While there is a genetic component to the risk of disease, diet and environment are known to have major effects on the risk of an individual for developing the disease. However, there is the potential to reduce the impact of this disease further by preventing disease development. Biomarkers which can either predict the risk for or early stages of colorectal cancer could allow intervention at a time when prospects could be modified by environmental factors, including lifestyle and diet choices. Thus, such biomarkers could be used to identify high risk individuals who would benefit from lifestyle and dietary interventions to prevent this disease. This review will give an overview on one type of biomarker in the form of microRNAs, which have the potential to predict an individual’s risk for colorectal cancer, as well as providing a highly sensitive and non-invasive warning of disease presence and/or progression. MicroRNA biomarkers which have been studied and whose levels look promising for this purpose include MiR-18a, MiR-21, MiR-92a, MiR-135b, MiR-760, MiR-601. Not only have several individual microRNAs appeared promising as biomarkers, but panels of these may be even more useful. Furthermore, understanding dietary sources and ways of dietary modulation of these microRNAs might be fruitful in reducing the incidence and slowing the progression of colorectal cancer. PMID:27672263

  2. Differential Requirement for Src-family Tyrosine Kinases in the Initiation, Progression and Metastasis of Prostate Cancer

    PubMed Central

    Gelman, Irwin H.; Peresie, Jennifer; Eng, Kevin H.; Foster, Barbara A.

    2014-01-01

    Prostate cancer (CaP) recurrence after androgen ablation therapy (ADT) remains a significant cause of mortality in aging men. Malignant progression and metastasis are typically driven by genetic and epigenetic changes controlled by the androgen receptor (AR). However, evidence suggests that activated non-receptor tyrosine kinases, including those of the Src family (SFK), directly phosphorylate AR, thereby activating its transcriptional activity in the absence of serum androgen levels. To ascertain whether CaP progression and metastasis require SFK members an autochthonous transgenic adenocarcinoma (AD) of the mouse prostate (TRAMP) model was crossed into Src-, Lyn- or Fyn-null backgrounds. Primary-site CaP formation was dependent on Src, to a lesser extent, Lyn, but not Fyn. Only Src−/−;TRAMP prostate tumors were marked by reactive stroma. SFK deficiency did not affect progression to neuroendocrine (NE) disease, although there were fewer new cancer cases initiating after 34 weeks in the SFK−/−;TRAMP mice compared to TRAMP controls. Fifteen to 21% of older (>33 weeks) Lyn- or Fyn-null TRAMP mice lacking primary-site tumors suffered from aggressive metastatic AD growths, compared with 3% of TRAMP mice. Taken with the data that TRAMP mice lacking Src or Lyn exhibited fewer macroscopic metastases compared to Fyn−/−;TRAMP and TRAMP controls, this suggests that SFK can either promote or suppress specific parameters of metastatic growth, possibly depending on cross-talk with primary tumors. These data identify critical, yet potentially opposing roles played by various SFKs in the initiation and metastatic potential of CaP using the TRAMP model. Implications: Genetically defined mouse models indicate a critical role for Src tyrosine kinase in prostate cancer initiation and metastatic progression. PMID:25053806

  3. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression

    PubMed Central

    Lee, Jong Hun; Khor, Tin Oo; Shu, Limin; Su, Zheng-Yuan; Fuentes, Francisco; Kong, Ah-Ng Tony

    2013-01-01

    Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2–Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including

  4. Role of Lysophospholipids in the Initiation, Progression and Therapy of Breast Cancer

    DTIC Science & Technology

    2005-06-01

    autotaxin levels areincreased approximately 28 fold in breast cancer cells isolated directly from patients.This should result in increased LPA and S1P ...apoptosis in breast cancer cells.We have utilized a novel Si1P antibody to neutralize S1P in vitro and are currentlytreating mice with breast cancer...epithelium. We have obtained a LPP transgenic mouse to determine theeffects of degradation of LPA and S1P on breast function and tumorigenesis by

  5. Progress in Initiator Modeling

    SciTech Connect

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  6. Identification and Targeting of Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis

    DTIC Science & Technology

    2013-12-01

    18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a . REPORT U b . ABSTRACT U c. THIS PAGE U UU 86 19b. TELEPHONE NUMBER...man. Parts a and b are completed. We have initiated Part c and currently developing a library of tyrosine kinases for functional validation. a . We...from primary prostate or metastatic tissue. ( B ) Further evaluation of a separate run of 10 metastatic CRPC lesions reveals patient-specific and

  7. Metastasis Initiating Cells in Primary Prostate Cancer Tissues From Transurethral Resection of the Prostate (TURP) Predicts Castration-Resistant Progression and Survival of Prostate Cancer Patients

    PubMed Central

    Li, Qinlong; Li, Quanlin; Nuccio, Jill; Liu, Chunyan; Duan, Peng; Wang, Ruoxiang; Jones, Lawrence W.; Chung, Leland W. K.; Zhau, Haiyen E.

    2016-01-01

    BACKGROUND We previouslyreported that the activation of RANK and c-Met signaling components in both experimental mouse models and human prostate cancer (PC) specimens predicts bone metastatic potential and PC patient survival. This study addresses whether a population of metastasis-initiating cells (MICs) known to express a stronger RANKL, phosphorylated c-Met (p-c-Met), and neuropilin-1 (NRP1) signaling network than bystander or dormant cells (BDCs) can be detected in PC tissues from patients subjected to transurethral resection of the prostate (TURP) for urinary obstruction prior to the diagnosis of PC with or without prior hormonal manipulation, and whether the relative abundance of MICs over BDCs could predict castration-resistant progression and PC patient survival. METHODS We employed a multiplexed quantum-dot labeling (mQDL) protocol to detect and quantify MICs and BDCs at the single cell level in TURP tissues obtained from 44 PC patients with documented overall survival and castration resistance status. RESULTS PC tissues with a higher number of MICs and an activated RANK signaling network, including increased expression of RANKL, p-c-Met, and NRP1 compared to BDCs, were found to correlate with the development of castration resistance and overall survival. CONCLUSIONS The assessment of PC cells with MIC and BDC phenotypes in primary PC tissues from hormone-naïve patients can predict the progression to castration resistance and the overall survival of PC patients. PMID:25990623

  8. A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression

    PubMed Central

    Casado-Medrano, Victoria; Barrio-Real, Laura; García-Rostán, Ginesa; Baumann, Matti; Rocks, Oliver; Caloca, María J.

    2016-01-01

    β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression. PMID:27058424

  9. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer.

    PubMed

    Saloman, Jami L; Albers, Kathryn M; Li, Dongjun; Hartman, Douglas J; Crawford, Howard C; Muha, Emily A; Rhim, Andrew D; Davis, Brian M

    2016-03-15

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.

  10. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer

    PubMed Central

    Saloman, Jami L.; Albers, Kathryn M.; Li, Dongjun; Hartman, Douglas J.; Crawford, Howard C.; Muha, Emily A.; Rhim, Andrew D.; Davis, Brian M.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations. PMID:26929329

  11. Initial Study of Radiological and Clinical Efficacy Radioembolization Using 188Re-Human Serum Albumin (HSA) Microspheres in Patients with Progressive, Unresectable Primary or Secondary Liver Cancers

    PubMed Central

    Nowicki, Mirosław L.; Ćwikła, Jarosław B.; Sankowski, Artur J.; Shcherbinin, Sergey; Grimes, Josh; Celler, Anna; Buscombe, John R.; Bator, Andrzej; Pech, Maciej; Mikołajczak, Renata; Pawlak, Dariusz

    2014-01-01

    Background The aim of this initial study was to evaluate the clinical and radiological effectiveness of radioembolization (RE) using 188Re-Human Serum Albumin (HSA) microspheres in patients with advanced, progressive, unresectable primary or secondary liver cancers, not suitable to any other form of therapy. Material/Methods Overall, we included 13 patients with 20 therapy sessions. Clinical and radiological responses were assessed at 6 weeks after therapy, and then every 3 months. The objective radiological response was classified according to Response Evaluation Criteria in Solid Tumors (RECIST) v.1.0 by sequential MRI. Adverse events were evaluated using NCI CTCAE v.4.03. Results There were 4 patients with hepatocellular carcinoma (HCC), 6 with metastatic colorectal cancer (mCRC), 2 with neuroendocrine carcinoma (NEC), and 1 patient with ovarian carcinoma. Mean administered activity of 188Re HSA was 7.24 GBq (range 3.8–12.4) A high microspheres labeling efficacy of over 97±2.1% and low urinary excretion of 188Re (6.5±2.3%) during first 48-h follow-up. Median overall survival (OS) for all patients was 7.1 months (CI 6.2–13.3) and progression-free survival (PFS) was 5.1 months (CI 2.4–9.9). In those patients who had a clinical partial response (PR), stable disease (SD), and disease progression (DP) as assessed 6 weeks after therapy, the median OS was 9/5/4 months, respectively, and PFS was 5/2/0 months, respectively. The treatment adverse events (toxicity) were at an acceptable level. Initially and after 6 weeks, the CTC AE was grade 2, while after 3 months it increased to grade 3 in 4 subjects. This effect was mostly related to rapid cancer progression in this patient subgroup. Conclusions The results of this preliminary study indicate that RE using 188Re HSA is feasible and a viable option for palliative therapy in patients with extensive progressive liver cancer. It was well tolerated by most patients, with a low level of toxicity during the 3 months of

  12. Sphingosylphosphorylcholine in cancer progress

    PubMed Central

    Yue, Hong-Wei; Jing, Qing-Chuan; Liu, Ping-Ping; Liu, Jing; Li, Wen-Jing; Zhao, Jing

    2015-01-01

    Sphingosylphosphorylcholine (SPC) is a naturally occurring bioactive sphingolipid in blood plasma, metabolizing from the hydrolysis of the membrane sphingolipid. It has been shown to exert multifunctional role in cell physiological regulation either as an intracellular second messenger or as an extracellular agent through G protein coupled receptors (GPCRs). Because of elevated levels of SPC in malicious ascites of patients with cancer, the role of SPC in tumor progression has prompted wide interest. The factor was reported to affect the proliferation and/or migration of many cancer cells, including pancreatic cancer cells, epithelial ovarian carcinoma cells, rat C6 glioma cells, neuroblastoma cells, melanoma cells, and human leukemia cells. This review covers current knowledge of the role of SPC in tumor. PMID:26550104

  13. Life After Cancer | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Prostate Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Kidney Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Lung Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Ovarian Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Colorectal Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Breast Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Cervical Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Colorectal Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Bladder Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Breast Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Arsenic | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Home | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Radon | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Prevention | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Introduction | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  10. Diagnosis | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Sunburn | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Weight | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Mortality | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Survival | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Incidence | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Benzene | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Acknowledgements | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Nitrate | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Cadmium | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Targeting ECM Disrupts Cancer Progression.

    PubMed

    Venning, Freja A; Wullkopf, Lena; Erler, Janine T

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

  1. Targeting ECM Disrupts Cancer Progression

    PubMed Central

    Venning, Freja A.; Wullkopf, Lena; Erler, Janine T.

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression. PMID:26539408

  2. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer

    PubMed Central

    Stokum, Jesse A.; Schneider, Craig S.; Ozawa, Tatsuya; Xu, Su; Galisteo, Rebeca; Castellani, Rudolph J.; Kim, Anthony J.; Simard, J. Marc; Winkles, Jeffrey A.; Holland, Eric C.; Woodworth, Graeme F.

    2017-01-01

    Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS) virus / tumor virus receptor-A (tv-a) transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a) transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI) and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  3. Accelerating Progress Against Cancer

    Cancer.gov

    Investment in cancer research is making a difference, but we still must overcome disparities in cancer incidence and mortality, and expand research to detect cancers earlier and develop more effective, less-toxic treatments. NCI supports research studies and programs across the country that are working to further advance cancer, research, and clinical care.

  4. Progress in breast cancer: overview.

    PubMed

    Arteaga, Carlos L

    2013-12-01

    This edition of CCR Focus titled Research in Breast Cancer: Frontiers in Genomics, Biology, and Clinical Investigation reviews six topics that cover areas of translational research of high impact in breast cancer. These topics represent areas of breast cancer research where significant progress has occurred but also where very important challenges remain. The papers in this CCR Focus section are contributed by experts in the respective areas of investigation. Herein, key aspects of these contributions and the research directions they propose are reviewed.

  5. Connected Health and Progress against Cancer

    Cancer.gov

    An NCI Cancer Currents blog post about a new report from President’s Cancer Panel outlining how connective technologies can promote cancer prevention, enhance patients’ treatment experience, and accelerate progress in cancer research.

  6. Hyaluronan, Inflammation, and Breast Cancer Progression

    PubMed Central

    Schwertfeger, Kathryn L.; Cowman, Mary K.; Telmer, Patrick G.; Turley, Eva A.; McCarthy, James B.

    2015-01-01

    Breast cancer-induced inflammation in the tumor reactive stroma supports invasion and malignant progression and is contributed to by a variety of host cells including macrophages and fibroblasts. Inflammation appears to be initiated by tumor cells and surrounding host fibroblasts that secrete pro-inflammatory cytokines and chemokines and remodel the extracellular matrix (ECM) to create a pro-inflammatory “cancerized” or tumor reactive microenvironment that supports tumor expansion and invasion. The tissue polysaccharide hyaluronan (HA) is an example of an ECM component within the cancerized microenvironment that promotes breast cancer progression. Like many ECM molecules, the function of native high-molecular weight HA is altered by fragmentation, which is promoted by oxygen/nitrogen free radicals and release of hyaluronidases within the tumor microenvironment. HA fragments are pro-inflammatory and activate signaling pathways that promote survival, migration, and invasion within both tumor and host cells through binding to HA receptors such as CD44 and RHAMM/HMMR. In breast cancer, elevated HA in the peri-tumor stroma and increased HA receptor expression are prognostic for poor outcome and are associated with disease recurrence. This review addresses the critical issues regarding tumor-induced inflammation and its role in breast cancer progression focusing specifically on the changes in HA metabolism within tumor reactive stroma as a key factor in malignant progression. PMID:26106384

  7. Spatial Moran models, II: cancer initiation in spatially structured tissue

    PubMed Central

    Foo, J; Leder, K

    2016-01-01

    We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947

  8. Management of progressive metastatic prostate cancer.

    PubMed

    Waselenko, J K; Dawson, N A

    1997-10-01

    Metastatic prostate cancer is a growing health problem and is the second leading cause of cancer death in men. While the response of patients with metastatic prostate cancer to initial hormonal manipulation is excellent, the majority of patients eventually progress. As a result, a growing number of patients and their physicians need-to-find acceptable therapeutic alternatives. Fortunately, the number of therapies in the management armamentarium is growing and includes: alternative hormonal therapies, chemotherapy, radioisotopes, and investigational agents. The major focus of treatment has shifted to palliation and quality of life. The decline of prostate-specific antigen (PSA) has become another important end point as evidence supporting a correlation with prolonged survival mounts. Enrolling eligible patients in clinical trials is critical to the development of new treatment strategies for this difficult disease.

  9. [Initiation, promotion, initiation experiments with radon and cigarette smoke: Lung tumors in rats]. Progress report

    SciTech Connect

    Moolgavkar, S.H.

    1994-10-01

    During the past several years, the authors have made considerable progress in modeling carcinogenesis in general, and in modeling radiation carcinogenesis, in particular. They present an overview of their progress in developing stochastic carcinogenesis models and applying them to experimental and epidemiologic data sets. Traditionally, cancer models have been used for the analysis of incidence (or prevalence) data in epidemiology and time to tumor data in experimental studies. The relevant quantities for the analysis of these data are the hazard function and the probability of tumor. The derivation of these quantities is briefly described here. More recently, the authors began to use these models for the analysis of data on intermediate lesions on the pathway to cancer. Such data are available in experimental carcinogenesis studies, in particular in initiation and promotion studies on the mouse skin and the rat liver. If however, quantitative information on intermediate lesions on the pathway to lung cancer were to be come available at some future date, the methods that they have developed for the analysis of initiation-promotion experiments could easily be applied to the analysis of these lesions. The mathematical derivations here are couched in terms of a particular two-mutation model of carcinogenesis. Extension to models postulating more than two mutations is not always straightforward.

  10. Secondhand Smoke Exposure | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Basic Research and Progress against Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against cancer. The graphic shows the research milestones that led to the development and approval of crizotinib (Xalkori®) to treat certain non-small cell lung cancers.

  12. Basic Research and Progress against Pediatric Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against childhood cancers. Shows the milestones that led to development and approval of dinutuximab (Unituxin®) to treat neuroblastoma, a cancer seen mainly in children.

  13. End of Life | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Early Detection | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Adult Tobacco Use | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Data Sources | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Director's Message | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Indoor Tanning | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Data Resources | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Treatment Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Frequently Asked Questions | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Alcohol Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Secondhand Smoke | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Smoking Cessation | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Custom Report | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Fat Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Youth Tobacco Use | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Tobacco Use | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. Chemical Exposures | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  10. Prevention Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Red Meat Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Quitting Smoking | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. About the Report | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Report Highlights | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Stage at Diagnosis | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. NCI Dictionary | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. HPV Immunization | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Physical Activity | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Contact Us | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Heme oxygenase-1 in macrophages controls prostate cancer progression.

    PubMed

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-10-20

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression.We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells.In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression.

  2. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  3. Tumour progression and the nature of cancer.

    PubMed Central

    Clark, W. H.

    1991-01-01

    The nature of neoplasia and its sometime end result, cancer, has been studied by exposition and explanation of the sequential lesions of tumour progression. Neoplastic lesions were divided into four classes on the basis of growth characteristics and whether lesional growth is confined to one or more tissue compartments. Class IA, the initial lesion, an orderly, probably clonal growth, usually differentiates and disappears. Class IB: Failure to differentiate accompanied by disorderly growth. Class IC: Randomly dispersed atypical cells, constituting a precursor state. Class II, intermediate lesions, apparently arising from the atypical cells, show temporally unrestricted growth within the tissue compartment of origin. Class III lesions, primary invasive cancers, show temporally unrestricted growth in two or more tissue compartments and metastasise along different paths, a property associated with extracellular matrix interaction. The metastatic pathways may result from different subsets of cells in the primary cancer. Class IV lesions are the metastases. It was concluded that, all neoplasms develop in the same way, have the same general behavioural characteristics, and, when malignant, all interact with the extracellular matrix of the primary and the secondary sites. The origins and development of cancer are considered to be pluralistic and not due to a discrete change in a cell, whose progeny, as a result of that discrete change, carries all of the information required to explain the almost limitless events of a neoplastic system. Images Figure 4 PMID:1911211

  4. Financial Burden of Cancer Care | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Life After Cancer Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Cancer Survivors and Obesity | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Cancer Survivors and Smoking | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Cancer Survivors and Physical Activity | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. SOX4 is essential for prostate tumorigenesis initiated by PTEN ablation | Office of Cancer Genomics

    Cancer.gov

    Understanding remains incomplete of the mechanisms underlying initiation and progression of prostate cancer, the most commonly diagnosed cancer in American men. The transcription factor SOX4 is overexpressed in many human cancers, including prostate cancer, suggesting it may participate in prostate tumorigenesis. In this study, we investigated this possibility by genetically deleting Sox4 in a mouse model of prostate cancer initiated by loss of the tumor suppressor Pten.

  10. MicroRNA and Breast Cancer Progression

    DTIC Science & Technology

    2007-08-01

    AD_________________ Award Number: W81XWH-05-1-0428 TITLE: MicroRNA and Breast Cancer Progression...3. DATES COVERED (From - To) 15 JUL 2005 - 14 JUL 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER MicroRNA and Breast Cancer Progression 5b...We hypothesized that certain miRNA species are differentially expressed in the normal breast epithelium and breast cancer cells. Our concept was that

  11. Role of mitochondrial dysfunction in cancer progression

    PubMed Central

    Hsu, Chia-Chi; Tseng, Ling-Ming

    2016-01-01

    Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca2+, or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy. PMID:27022139

  12. Progress Report 2013. Turnaround Arts Initiative

    ERIC Educational Resources Information Center

    Stoelinga, Sara Ray; Joyce, Katie; Silk, Yael

    2013-01-01

    This interim progress report provides a look at Turnaround Arts schools in their first year, including: (1) a summary of the evaluation design and research questions; (2) a preliminary description of strategies used to introduce the arts in Turnaround Arts schools; and (3) a summary of school reform indicators and student achievement data at…

  13. [Cancer initiating cell theory: popularity and controversies].

    PubMed

    Chen, Hua; Huang, Qiang; Dong, Jun; Lan, Qing

    2006-06-01

    The cancer stem cell model proposes that most tumors are derived from a single cell that is transformed into a cancer-initiating cell (cancer stem cell). Cancer stem cells have the capacity to proliferate, differentiate, and form tumors in vivo. However, the origin of cancer stem cells remains controversial. Normal stem cells are regarded as an ideal candidate for the origin of cancer stem cells when take similar characters and signaling pathways between them into consideration. In addition,cell fusion is an important physiologic process during development and tissue repair,and is closely related to several fundamental features of tumors,and thus could be involved in the development of cancer stem cells.

  14. Inflammation in prostate cancer progression and therapeutic targeting

    PubMed Central

    Stark, Timothy; Livas, Lydia

    2015-01-01

    Chronic inflammation contributes to the onset and progression of human cancer, via modifications in the tumor microenvironment by remodeling the extracellular matrix (ECM) and initiating epithelial mesenchymal transition (EMT). At the biological level, chronically inflamed cells release cytokines that are functionally dictating a constitutively active stroma, promoting tumor growth and metastasis. In prostate cancer, inflammation correlates with increased development of “risk factor” lesions or proliferative inflammatory atrophy (PIA). Chronic inflammation in benign prostate biopsy specimens can be associated with high-grade prostate tumors in adjacent areas. In this article, we discuss the current understanding of the incidence of inflammation in prostate cancer progression and the significance of the process in therapeutic targeting of specific inflammatory signaling pathways and critical effectors during tumor progression. Further understanding of the process of chronic inflammation in prostate tumor progression to metastasis will enable development and optimization of novel therapeutic modalities for the treatment of high-risk patients with advanced disease. PMID:26816843

  15. Studying the Role of Eukaryotic Translation Initiation Factor 4E (eIF4E) Phosphorylation by MNK1/2 Kinases in Prostate Cancer Development and Progression

    DTIC Science & Technology

    2013-06-01

    Krop,  I.  E.,  Rousseau ,  C.,  Cocolakis,  E.,  Borden,  K.  L.,  Benz,  C.  C.,  and Miller, W.  H.,  Jr.  (2011) Clin Cancer Res 17, 2874‐2884  7...S., Long, J. C., and Caceres, J. F. (2006) Mol Cell Biol 26, 5744‐5758  15.  Buxade, M., Parra, J. L.,  Rousseau , S., Shpiro, N., Marquez, R

  16. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Cancer.gov

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  17. Timing of multikinase inhibitor initiation in differentiated thyroid cancer.

    PubMed

    Brose, Marcia S; Smit, Jan Wa; Lin, Chia-Chi; Pitoia, Fabian; Fellous, Marc; DeSanctis, Yoriko; Schlumberger, Martin; Tori, Masayuki; Sugitani, Iwao

    2017-03-07

    There are limited treatment options for patients with radioactive iodine-refractory, progressive differentiated thyroid cancer. Although there is consensus that multikinase inhibitor therapy should be considered in patients with progressive disease with considerable tumor load or symptomatic disease, uncertainty exists on the optimal timing to treat with a multikinase inhibitor, especially for asymptomatic patients. RIFTOS MKI is an international, prospective, open-label, multicenter, noninterventional study with the primary objective to compare the time to symptomatic progression from study entry in asymptomatic patients with radioactive iodine -refractory, progressive differentiated thyroid cancer for whom there is a decision to initiate multikinase inhibitors at study entry (cohort 1) with those for whom there is a decision to not initiate multikinase inhibitors at study entry (cohort 2). Secondary endpoints are overall survival and progression-free survival, which will be compared between cohorts 1 and 2. Additional secondary endpoints are postprogression survival from time of symptomatic progression, duration of and response to each systemic treatment regimen, and dosing of sorafenib throughout the treatment period. Asymptomatic, multikinase inhibitor-naive patients aged ≥18 years with histologically/cytologically documented differentiated thyroid cancer that is radioactive iodine-refractory are eligible. Patients may receive any therapy for differentiated thyroid cancer, including sorafenib or other multikinase inhibitors if indicated and decided on by the treating physician. In total, 700 patients are estimated to be enrolled from >20 countries. Final analysis will be performed once the last enrolled patient has been followed up with for 24 months. (ClinicalTrials.gov identifier: NCT02303444).

  18. Human Cancer Models Initiative | Office of Cancer Genomics

    Cancer.gov

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  19. DISCOIDIN DOMAIN RECEPTOR TYROSINE KINASES: NEW PLAYERS IN CANCER PROGRESSION

    PubMed Central

    Valiathan, Rajeshwari R.; Marco, Marta; Leitinger, Birgit; Kleer, Celina G.; Fridman, Rafael

    2012-01-01

    Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has translated into novel therapeutic strategies that target these cell surface receptors in the treatment of cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the Discoidin Domain Receptors (DDRs) play a role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to, and are activated by collagen. Hence, the DDRs are part of the signaling networks that translate information from the extracellular matrix thereby acting as key regulators of cell-matrix interactions. Under physiological conditions, DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific and context dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes the current knowledge on DDR expression and function in cancer and discusses the potential implications of DDRs in cancer biology. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutics targets in cancer. PMID

  20. Algorithmic methods to infer the evolutionary trajectories in cancer progression

    PubMed Central

    Graudenzi, Alex; Ramazzotti, Daniele; Sanz-Pamplona, Rebeca; De Sano, Luca; Mauri, Giancarlo; Moreno, Victor; Antoniotti, Marco; Mishra, Bud

    2016-01-01

    The genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next-generation sequencing data and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent work on the “selective advantage” relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications because it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations, and progression model inference. We demonstrate PiCnIc’s ability to reproduce much of the current knowledge on colorectal cancer progression as well as to suggest novel experimentally verifiable hypotheses. PMID:27357673

  1. Recent Progress in Pancreatic Cancer

    PubMed Central

    Wolfgang, Christopher L.; Herman, Joseph M.; Laheru, Daniel A.; Klein, Alison P.; Erdek, Michael A.; Fishman, Elliot K.; Hruban, Ralph H.

    2013-01-01

    Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in our understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer. PMID:23856911

  2. Preventing Breast Cancer: Making Progress

    MedlinePlus

    ... medical literature, the Study of Tamoxifen and Raloxifene (STAR) trial was started in 1998. That study enrolled ... in the BCPT. Studies, such as BCPT and STAR, involve women who have not had breast cancer, ...

  3. Progress on Simulating the Initiation of Vacuum Insulator Flashover

    DTIC Science & Technology

    2009-06-01

    of a +45° angled insulator as well as pictures demonstrating anode and cathode initiated flashover events [2]. In order to focus our attention on...Progress on Simulating the Initiation of Vacuum Insulator Flashover M.P. Perkins, T.L. Houck, J.B. Javedani, G.E. Vogtlin, D.A. Goerz Lawrence...In this article we will discuss physics models that have been implemented in a PIC code to better understand the initiation of flashover . The PIC

  4. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2013-11-01

    21. Mehta,P.P. (2007) Introduction: A tribute to cell-cell channels. J Membr.Biol, 217, 5-12. 22. Mehta,P., Bertram ,J., and Loewenstein,W. (1986...activated protein kinase (p44/Erk1, p42/Erk2) activation. Carcinogenesis, 25, 669-680. 29. King,T.J. and Bertram ,J.S. (2005) Connexins as targets...217, 13-19. 42. Mehta,P., Bertram ,J., and Loewenstein,W. (1989) The actions of retinoids on cellular growth correlate with their actions on gap

  5. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-09-01

    2006) Capacity of the Golgi Apparatus for Cargo Transport Prior to Complete Assembly. Mol.Biol.Cell, 17, 4105-4117. Parmender P. Mehta, Ph.D... Golgi -resident protein [31], Giantin, a Golgi -associated structural protein [32] and Caveolin 2 (Cav-2) [30], which are the makers for the secretory...endocytic itinerary of this mutant? We wished to investigate whether or not it traffics to the cell surface via endoplasmic reticulum and Golgi and

  6. Cancer nanomedicine: progress, challenges and opportunities.

    PubMed

    Shi, Jinjun; Kantoff, Philip W; Wooster, Richard; Farokhzad, Omid C

    2017-01-01

    The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

  7. Host Factors and Cancer Progression: Biobehavioral Signaling Pathways and Interventions

    PubMed Central

    Lutgendorf, Susan K.; Sood, Anil K.; Antoni, Michael H.

    2010-01-01

    Whereas evidence for the role of psychosocial factors in cancer initiation has been equivocal, support continues to grow for links between psychological factors such as stress, depression, and social isolation and progression of cancer. In vitro, in vivo, and clinical studies show that stress- related processes can impact pathways implicated in cancer progression, including immuno-regulation, angiogenesis, and invasion. Contributions of systemic factors, such as stress hormones to the crosstalk between tumor and stromal cells, appear to be critical in modulating downstream signaling pathways with important implications for disease progression. Inflammatory pathways may also be implicated in fatigue and other factors related to quality of life. Although substantial evidence supports a positive effect of psychosocial interventions on quality of life in cancer, the clinical evidence for efficacy of stress-modulating psychosocial interventions in slowing cancer progression remains inconclusive, and the biobehavioral mechanisms that might explain such effects are still being established. This article reviews research findings to date and outlines future avenues of research in this area. PMID:20644093

  8. Catalog of genetic progression of human cancers: breast cancer.

    PubMed

    Desmedt, Christine; Yates, Lucy; Kulka, Janina

    2016-03-01

    With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.

  9. Cancer Statistics

    MedlinePlus

    ... and the Precision Medicine Initiative® Cancer Moonshot℠ Progress Annual Report to the Nation Cancer Snapshots Milestones in Cancer ... Find research about a specific cancer type Progress Annual Report to the Nation Cancer Portfolio Snapshots Milestones in ...

  10. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression.

    PubMed

    Feng, Shu; Dakhova, Olga; Creighton, Chad J; Ittmann, Michael

    2013-04-15

    Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. There is broad evidence that fibroblast growth factor (FGF) receptors are important in prostate cancer initiation and progression, but the contribution of particular FGFs in this disease is not fully understood. The FGF family members FGF19, FGF21, and FGF23 comprise a distinct subfamily that circulate in serum and act in an endocrine manner. These endocrine FGFs require α-Klotho (KL) and/or β-Klotho (KLB), two related single-pass transmembrane proteins restricted in their tissue distribution, to act as coreceptors along with classic FGF receptors (FGFR) to mediate potent biologic activity. Here we show that FGF19 is expressed in primary and metastatic prostate cancer tissues, where it functions as an autocrine growth factor. Exogenous FGF19 promoted the growth, invasion, adhesion, and colony formation of prostate cancer cells at low ligand concentrations. FGF19 silencing in prostate cancer cells expressing autocrine FGF19 decreased invasion and proliferation in vitro and tumor growth in vivo. Consistent with these observations, KL and/or KLB were expressed in prostate cancer cells in vitro and in vivo, raising the possibility that additional endocrine FGFs may also exert biologic effects in prostate cancer. Our findings support the concept that therapies targeting FGFR signaling may have efficacy in prostate cancer and highlight FGF19 as a relevant endocrine FGF in this setting.

  11. Biobehavioral Approaches to Cancer Progression and Survival

    PubMed Central

    Lutgendorf, Susan K.; Andersen, Barbara L.

    2014-01-01

    Over the last decade, there have been groundbreaking strides in our understanding of the multiple biological pathways by which psychosocial and behavioral factors can affect cancer progression. It is now clear that biobehavioral factors not only affect cellular immunity but both directly and indirectly modulate fundamental processes in cancer growth, including inflammation, angiogenesis, invasion, and metastasis. There is also an emerging understanding of how psychological and behavioral factors used in interventions can impact these physiological processes. This review outlines our current understanding of the physiological mechanisms by which psychological, social, and behavioral processes can affect cancer progression. The intervention literature is discussed, along with recommendations for future research to move the field of biobehavioral oncology forward. PMID:25730724

  12. Caveolin-1 and prostate cancer progression.

    PubMed

    Freeman, Michael R; Yang, Wei; Di Vizio, Dolores

    2012-01-01

    Caveolin-1 was identified in the 1990s as a marker of aggressive prostate cancer. The caveolin-1 protein localizes to vesicular structures called caveolae and has been shown to bind and regulate many signaling proteins involved in oncogenesis. Caveolin-1 also has lipid binding properties and mediates aspects of cholesterol and fatty acid metabolism and can elicit biological responses in a paracrine manner when secreted. Caveolin-1 is also present in the serum of prostate cancer patients and circulating levels correlate with extent of disease. Current evidence indicates that increased expression of caveolin-1 in prostate adenocarcinoma cells and commensurate downregulation of the protein in prostate stroma, mediate progression to the castration-resistant phase of prostate cancer through diverse pathways. This chapter summarizes the current state of our understanding of the cellular and physiologic mechanisms in which caveolin-1 participates in the evolution of prostate cancer cell phenotypes.

  13. Pancreatic Cancer: Progress and Challenges in a Rapidly Moving Field.

    PubMed

    Collisson, Eric A; Olive, Kenneth P

    2017-03-01

    "Pancreatic Cancer: Advances in Science and Clinical Care," a Special Conference of the American Association for Cancer Research, was held in Orlando, FL, on May 12 to 15, bringing together more than 450 basic, translational, clinical, and epidemiologic pancreatic cancer researchers as well as pancreatic cancer patients, survivors, and advocates. Pancreatic cancer remains one of the great challenges in medicine, but the accelerating pace of research and early hints of clinical successes to come were palpable throughout the meeting. Prominent meeting themes included immunology and the tumor microenvironment, heterogeneity of both the epithelial and stromal compartments, personalized medicine efforts to integrate molecular information into clinical practice, new approaches to early detection, and clinical trials using a host of novel targeted therapies. Adding to the vibrant atmosphere of the meeting, a coalition of pancreatic cancer research and support foundations participated, with several innovative initiatives announced by individual organizations. We present here a summary of meeting highlights, a series of "success factors" that will benchmark the progress of the field over the next 2 years, and three challenges to the pancreatic cancer research community as it moves toward to the goal of extending patient survival. Cancer Res; 77(5); 1060-2. ©2017 AACR.

  14. Progress Against Prostate Cancer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Prostate Cancer Progress Against Prostate Cancer Past Issues / Winter 2010 Table of Contents Click ... This can narrow the urethra, decreasing urine flow. Prostate cancer is made up of cells the body does ...

  15. Financial Burden of Cancer Care - Life After Cancer Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

    PubMed Central

    Li, Jiarong; Karaplis, Andrew C.; Huang, Dao C.; Siegel, Peter M.; Camirand, Anne; Yang, Xian Fang; Muller, William J.; Kremer, Richard

    2011-01-01

    Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention. PMID:22056386

  17. Chk1 promotes replication fork progression by controlling replication initiation.

    PubMed

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-09-14

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity.

  18. The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer

    PubMed Central

    Krogan, Nevan J.; Lippman, Scott; Agard, David A.; Ashworth, Alan; Ideker, Trey

    2017-01-01

    Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, called The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these Cancer Cell Maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. PMID:26000852

  19. Noncoding RNAs in gastric cancer: Research progress and prospects

    PubMed Central

    Zhang, Meng; Du, Xiang

    2016-01-01

    Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC. PMID:27547004

  20. Cell Polarity Proteins in Breast Cancer Progression.

    PubMed

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  1. Multiscale Models of Breast Cancer Progression

    PubMed Central

    Chakrabarti, Anirikh; Verbridge, Scott; Stroock, Abraham D.; Fischbach, Claudia; Varner, Jeffrey D.

    2013-01-01

    Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. This series of events is highly complex, involving multiple cell types interacting with (and shaping) the microenvironment. Multiscale mathematical models have emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes occurring on the systemic scale, with the molecular signaling processes occurring on the cellular and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling across multiple length scales, with an emphasis on the integration of intracellular signal transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis. Then, we summarized the development of tissue engineering platforms which could provide highfidelity ex vivo experimental models to identify and validate multiscale simulations. Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular networks with the microenvironment. We present models of a variety of cancers, in addition to breast cancer specific models. Taken together, we expect as the sophistication of the simulations increase, that multiscale modeling and bottom-up agent-based models in particular will become an increasingly important platform technology for basic scientific discovery, as well as the identification and validation of potentially novel therapeutic targets. PMID:23008097

  2. A Mathematical-Biological Joint Effort to Investigate the Tumor-Initiating Ability of Cancer Stem Cells

    PubMed Central

    Fornari, Chiara; Beccuti, Marco; Lanzardo, Stefania; Conti, Laura; Balbo, Gianfranco; Cavallo, Federica; Calogero, Raffaele A.; Cordero, Francesca

    2014-01-01

    The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by combining mathematical modeling and experimental data to understand tumor dynamics and to generate new experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression, which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth, and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred from the available biological data and these dependencies were used to characterize the dynamics of cancer subpopulations during the initial phase of ErbB2+ mammary cancer progression. PMID:25184361

  3. RNA editing, epitranscriptomics, and processing in cancer progression.

    PubMed

    Witkin, Keren L; Hanlon, Sean E; Strasburger, Jennifer A; Coffin, John M; Jaffrey, Samie R; Howcroft, T Kevin; Dedon, Peter C; Steitz, Joan A; Daschner, Phil J; Read-Connole, Elizabeth

    2015-01-01

    The transcriptome is extensively and dynamically regulated by a network of RNA modifying factors. RNA editing enzymes APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and ADAR (adenosine deaminase, RNA-specific) irreversibly recode primary RNA sequences, whereas newly described methylases (writers) and de-methylases (erasers) dynamically alter RNA molecules in response to environmental conditions. RNA modifications can affect RNA splicing, nuclear-cytoplasmic transport, translation, and regulation of gene expression by RNA interference. In addition, tRNA base modifications, processing, and regulated cleavage have been shown to alter global patterns of mRNA translation in response to cellular stress pathways. Recent studies, some of which were discussed at this workshop, have rekindled interest in the emerging roles of RNA modifications in health and disease. On September 10th, 2014, the Division of Cancer Biology, NCI sponsored a workshop to explore the role of epitranscriptomic RNA modifications and tRNA processing in cancer progression. The workshop attendees spanned a scientific range including chemists, virologists, and RNA and cancer biologists. The goal of the workshop was to explore the interrelationships between RNA editing, epitranscriptomics, and RNA processing and the enzymatic pathways that regulate these activities in cancer initiation and progression. At the conclusion of the workshop, a general discussion focused on defining the major challenges and opportunities in this field, as well as identifying the tools, technologies, resources and community efforts required to accelerate research in this emerging area.

  4. CRCHD Launches National Colorectal Cancer Outreach and Screening Initiative

    Cancer.gov

    The NCI CRCHD launches National Screen to Save Colorectal Cancer Outreach and Screening Initiative which aims to increase colorectal cancer screening rates among racially and ethnically diverse and rural communities.

  5. NFAT Proteins: Emerging Roles in Cancer Progression

    PubMed Central

    Mancini, Maria; Toker, Alex

    2010-01-01

    Preface The roles of nuclear factor of activated T cells (NFAT) transcription factors have been extensively studied in the immune system. However, ubiquitous expression of NFAT isoforms in mammalian tissues has been recently observed, as well as an emerging role for these transcription factors in human cancer. Various NFAT isoforms are functional in tumor cells and multiple compartments in the tumor microenvironment including fibroblasts, endothelial cells and infiltrating immune cells. How do NFAT isoforms regulate the complex interplay between these compartments during carcinoma progression? The answers lie with the multiple functions attributed to NFAT including cell growth, survival, invasion and angiogenesis. In addition to sorting out the complex role of NFAT in cancer we face the challenge of targeting this pathway therapeutically. PMID:19851316

  6. Rapidly progressive glomerulonephritis after immunotherapy for cancer.

    PubMed

    Parker, M G; Atkins, M B; Ucci, A A; Levey, A S

    1995-04-01

    Cytokines have been used in experimental and standard protocols for immune enhancement for cancer. The combination of interleukin-2 and interferon-alpha 2 beta has been used in experimental protocols for metastatic renal cell carcinoma. A man who developed rapidly progressive renal failure after receiving this combination therapy is reported. A renal biopsy revealed a pauci-immune crescentic glomerulonephritis. Antineutrophil cytoplasmic antibodies and antiglomerular basement membrane antibodies were absent. The spectrum of renal disease and potentially related extrarenal manifestations associated with interleukin-2 and inteferon-alpha are reviewed. A pathogenesis of altered cell-mediated immunity, consistent with abnormalities in extrarenal organs after immune enhancement, is proposed.

  7. Analysis of Dachsous2 in Breast Cancer Progression and Recurrence

    DTIC Science & Technology

    2010-10-01

    definitive conclusion. pg. 4 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 MCF7 MDA-MB- 231 Hs 578T MCF-10A MCF-12A SKOV3 MOLT - 4 RPMI 8226 SW 872...2010 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-08-1-0631 Analysis of Dachsous2 in Breast Cancer Progression and Recurrence 5b. GRANT...Ds2 that could be used in paraffin section analysis of tumour samples from ANN patients. We initially generated 4 antisera to the entire

  8. The Academic Progression in Nursing Initiative: The Final Year Outcomes.

    PubMed

    Gerardi, Tina

    2017-02-01

    In 2012, the American Organization of Nurse Executives (AONE), representing the Tri-Council of Nursing, namely, AONE, the American Association of Colleges of Nursing, the American Nurses Association, and the National League for Nursing, was selected by the Robert Wood Johnson Foundation as the national program office for the Academic Progression in Nursing (APIN) initiative. This article discusses the impact APIN has had in the 9 states that received APIN grants, essential elements for successful APIN projects, and highlights of the last year of the grant in moving closer to the 80/20 goal from the Institute of Medicine.

  9. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression.

    PubMed

    Sridaran, Dhivya; Ramamoorthi, Ganesan; MahaboobKhan, Rasool; Kumpati, Premkumar

    2016-10-01

    During tumorigenesis, cancer cells generate complex, unresolved interactions with the surrounding oxystressed cellular milieu called tumor microenvironment (TM) that favors spread of cancer to other body parts. This dissemination of cancer cells from the primary tumor site is the main clinical challenge in cancer treatment. In addition, the significance of enhanced oxidative stress in TM during cancer progression still remains elusive. Thus, the present study was performed to investigate the molecular and cytoskeletal alterations in breast cancer cells associated with oxystressed TM that potentiates metastasis. Our results showed that depending on the extent of oxidative stress in TM, cancer cells exhibited enhanced migration and survival with reduction of chemosensitivity. Corresponding ultrastructural analysis showed radical cytoskeletal modifications that reorganize cell-cell interactions fostering transition of epithelial cells to mesenchymal morphology (EMT) marking metastasis, which was reversed upon antioxidant treatment. Decreased E-cadherin and increased vimentin, Twist1/2 expression corroborated the initiation of EMT in oxystressed TM-influenced cells. Further evaluation of cellular energetics demonstrated significant metabolic reprogramming with inclination towards glucose or external glutamine from TM as energy source depending on the breast cancer cell type. These observations prove the elemental role of oxystressed TM in cancer progression, initiating EMT and metabolic reprogramming. Further cell-type specific metabolomic analysis would unravel the alternate mechanisms in cancer progression for effective therapeutic intervention. Graphical abstract Schematic representation of the study and proposed mechanism of oxystressed TM influenced cancer progression. Cancer cells exhibit a close association with tumor microenvironment (TM), and oxystressed TM enhances cancer cell migration and survival and reduces chemosensitivity. Oxystressed TM induces dynamic

  10. Incidence and Mortality Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Diet - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Smoke-free Home Rules | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. UV Exposure and Sun Protective Practices | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Sun-Protective Behavior | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Medicaid Coverage of Tobacco Dependency Treatments | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Tobacco Policy/Regulatory Factors | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Diet, Physical Activity, and Weight | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Clinicians' Advice to Quit Smoking | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Fruit and Vegetable Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Person-Years of Life Lost | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Secondhand Smoke - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Smoking Cessation - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Recent Updates and Archive | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Tobacco Company Marketing Expenditures | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. HPV Immunization - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Chemical Exposures - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Methodology for Characterizing Trends | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Trends at a Glance | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. Tobacco Use - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  10. Cancer stem cell targeted therapy: progress amid controversies.

    PubMed

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-12-29

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.

  11. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  12. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production.

  13. Castration Induced Neuroendocrine Mediated Progression of Prostate Cancer

    DTIC Science & Technology

    2007-09-01

    androgen -insensitive prostate cancer patients based upon our work. 15. SUBJECT TERMS Prostate Cancer , Neuroendocrine, Progression...two androgen - ines PC-3 and DU-145 by examining the status of publication. a Src kinase inhibitor AZ independent prostate cancer cell l...differentiation in prostate cancer . AR activation. Together with our studies in the chimeric growth of androgen -sensitive and androgen -insensitive cells,

  14. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation

    PubMed Central

    Zasadil, Lauren M.; Britigan, Eric M. C.; Ryan, Sean D.; Kaur, Charanjeet; Guckenberger, David J.; Beebe, David J.; Moser, Amy R.; Weaver, Beth A.

    2016-01-01

    Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the ApcMin/+ mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. ApcMin/+ cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E+/−;ApcMin/+ doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with ApcMin/+ animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy. PMID:27146113

  15. Role of GGAP/PIKE-A in prostate cancer progression

    DTIC Science & Technology

    2009-05-01

    isoform which also contains a COOH-terminal Arf-GAP domain and two ankyrin repeats . Both of these proteins can bind PI3-K via their proline-rich...may contribute to increased activity of GGAP2 in prostate cancer. In summary, GGAP2 may promote prostate cancer growth and progression via...that they may contribute to the functions of GGAP2 in prostate cancer. In summary, GGAP2 may promote prostate cancer growth and progression via

  16. Chemokines in Cancer Development and Progression and Their Potential as Targeting Molecules for Cancer Treatment

    PubMed Central

    Mukaida, Naofumi; Sasaki, So-ichiro; Baba, Tomohisa

    2014-01-01

    Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer. PMID:24966464

  17. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation.

    PubMed

    Fantozzi, Anna; Gruber, Dorothea C; Pisarsky, Laura; Heck, Chantal; Kunita, Akiko; Yilmaz, Mahmut; Meyer-Schaller, Nathalie; Cornille, Karen; Hopfer, Ulrike; Bentires-Alj, Mohamed; Christofori, Gerhard

    2014-03-01

    An epithelial-mesenchymal transition (EMT) underlies malignant tumor progression and metastatic spread by enabling cancer cells to depart from the primary tumor, invade surrounding tissue, and disseminate to distant organs. EMT also enriches for cancer stem cells (CSC) and increases the capacity of cancer cells to initiate and propagate tumors upon transplantation into immune-deficient mice, a major hallmark of CSCs. However, the molecular mechanisms promoting the tumorigenicity of cancer cells undergoing an EMT and of CSCs have remained widely elusive. We here report that EMT confers efficient tumorigenicity to murine breast cancer cells by the upregulated expression of the proangiogenic factor VEGF-A and by increased tumor angiogenesis. On the basis of these data, we propose a novel interpretation of the features of CSCs with EMT-induced, VEGF-A-mediated angiogenesis as the connecting mechanism between cancer cell stemness and tumor initiation.

  18. Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach.

    PubMed

    Kim, Eunjung; Rebecca, Vito; Fedorenko, Inna V; Messina, Jane L; Mathew, Rahel; Maria-Engler, Silvya S; Basanta, David; Smalley, Keiran S M; Anderson, Alexander R A

    2013-12-01

    We present an integrated study to understand the key role of senescent fibroblasts in driving melanoma progression. Based on the hybrid cellular automata paradigm, we developed an in silico model of normal skin. The model focuses on key cellular and microenvironmental variables that regulate interactions among keratinocytes, melanocytes, and fibroblasts, key components of the skin. The model recapitulates normal skin structure and is robust enough to withstand physical as well as biochemical perturbations. Furthermore, the model predicted the important role of the skin microenvironment in melanoma initiation and progression. Our in vitro experiments showed that dermal fibroblasts, which are an important source of growth factors in the skin, adopt a secretory phenotype that facilitates cancer cell growth and invasion when they become senescent. Our coculture experiments showed that the senescent fibroblasts promoted the growth of nontumorigenic melanoma cells and enhanced the invasion of advanced melanoma cells. Motivated by these experimental results, we incorporated senescent fibroblasts into our model and showed that senescent fibroblasts transform the skin microenvironment and subsequently change the skin architecture by enhancing the growth and invasion of normal melanocytes. The interaction between senescent fibroblasts and the early-stage melanoma cells leads to melanoma initiation and progression. Of microenvironmental factors that senescent fibroblasts produce, proteases are shown to be one of the key contributing factors that promoted melanoma development from our simulations. Although not a direct validation, we also observed increased proteolytic activity in stromal fields adjacent to melanoma lesions in human histology. This leads us to the conclusion that senescent fibroblasts may create a prooncogenic skin microenvironment that cooperates with mutant melanocytes to drive melanoma initiation and progression and should therefore be considered as a

  19. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    PubMed Central

    Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y

    2017-01-01

    The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872

  20. Immunological Targeting of Tumor Initiating Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    AD Award Number: W81XWH-13-1-0369 TITLE: Immunological Targeting of Tumor Initiating Prostate Cancer Cells PRINCIPAL...5a. CONTRACT NUMBER Immunological Targeting of Tumor Initiating Prostate Cancer Cells 5b. GRANT NUMBER W81XWH13-1-0369 5c... prostate cancer . In two specific aims, we proposed to first identify novel antigenic targets on these castrate resistant luminal epithelial cells (CRLEC

  1. Initial surgical management of thyroid cancer.

    PubMed

    Witt, Robert L

    2008-01-01

    The rapid increase in the rate of papillary thyroid cancer is likely caused by improved surveillance. A significant trend toward total thyroidectomy for low-risk differentiated thyroid cancer is present in the United States after a paradigm shift from treatment of macroscopic disease to the treatment of macroscopic and microscopic disease by increasingly sensitive tests. Compelling arguments for thyroid lobectomy and total thyroidectomy for low-risk thyroid cancer remain. The relatively small number of deaths from thyroid cancer, the small number of clinical thyroid cancers, and the huge number of incidental thyroid cancers are indicative of how little we understand the biology of this disease. Clinical medicine awaits biologic markers to refine treatment recommendations.

  2. Autophagy in malignant transformation and cancer progression

    PubMed Central

    Galluzzi, Lorenzo; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Amaravadi, Ravi K; Baehrecke, Eric H; Cecconi, Francesco; Codogno, Patrice; Debnath, Jayanta; Gewirtz, David A; Karantza, Vassiliki; Kimmelman, Alec; Kumar, Sharad; Levine, Beth; Maiuri, Maria Chiara; Martin, Seamus J; Penninger, Josef; Piacentini, Mauro; Rubinsztein, David C; Simon, Hans-Uwe; Simonsen, Anne; Thorburn, Andrew M; Velasco, Guillermo; Ryan, Kevin M; Kroemer, Guido

    2015-01-01

    Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. PMID:25712477

  3. Autophagy in malignant transformation and cancer progression.

    PubMed

    Galluzzi, Lorenzo; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Amaravadi, Ravi K; Baehrecke, Eric H; Cecconi, Francesco; Codogno, Patrice; Debnath, Jayanta; Gewirtz, David A; Karantza, Vassiliki; Kimmelman, Alec; Kumar, Sharad; Levine, Beth; Maiuri, Maria Chiara; Martin, Seamus J; Penninger, Josef; Piacentini, Mauro; Rubinsztein, David C; Simon, Hans-Uwe; Simonsen, Anne; Thorburn, Andrew M; Velasco, Guillermo; Ryan, Kevin M; Kroemer, Guido

    2015-04-01

    Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.

  4. Solitary Fibrous Tumor of the Prostate Which Was Initially Misdiagnosed as Prostate Cancer

    PubMed Central

    Osamu, Soma; Murasawa, Hiromi; Yoneyama, Takahiro; Koie, Takuya; Ohyama, Chikara

    2017-01-01

    Solitary fibrous tumor (SFT) of the prostate is a very rare tumor. We report a case of 65-year-old man with SFT of the prostate which was initially misdiagnosed as prostate cancer. Finally, we performed total prostatectomy and the tumor was histologically diagnosed as SFT of the prostate. The patient's clinical course has progressed favorably with no obvious recurrence 18 months postoperatively.

  5. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2013-09-01

    5 equally-spaced axial CT slices we calculated necessary PTV margins for each fraction. We then auto -fused each CBCT scan with the treatment...and veterans, such as breast cancer and metastatic cancer. The Calypso® 4D Localization System is a FDA Class II device, utilized to track both...treating left-sided breast cancer, which allows sparing of the heart. We have thus far treated 23 patients using these approved external beacons. The

  6. Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression.

    PubMed

    Tafani, Marco; De Santis, Elena; Coppola, Luigi; Perrone, Giulietta A; Carnevale, Ilaria; Russo, Andrea; Pucci, Bruna; Carpi, Angelo; Bizzarri, Mariano; Russo, Matteo A

    2014-02-01

    Thyroid cancer is a common endocrine-related cancer with a higher incidence in women than in men. Thyroid tumors are classified on the basis of their histopathology as papillary, follicular, medullary, and undifferentiated or anaplastic. Epidemiological and in vitro or in vivo studies have suggested a correlation between incidence of thyroid malignancies and hormones. In particular, growing evidence indicates a role of estrogens and estrogen receptors (ERs) in thyroid tumorigenesis, reprogramming and progression. In this scenario, estrogens are hypothesized to contribute to the observed female predominance of thyroid cancer in reproductive years. However, the precise contribution of estrogens in thyroid proliferative disease initiation and progression is not well understood. HIF-1α and NF-κB are two transcription factors very frequently activated in tumors and involved in tumor growth, progression and resistance to chemotherapy. In fact, HIF-1α and NF-κB together regulate transcription of over a thousand genes that, in turn, control vital cellular processes such as adaptation to the hypoxia, metabolic and differentiation reprogramming, inflammatory-reparative response, extracellular matrix digestion, migration and invasion, adhesion, etc. Because of this wide involvement, they could control in an integrated manner the origin of the malignant phenotype. Interestingly, hypoxia and inflammation have been sequentially bridged in tumors by the discovery that alarmin receptors genes such as RAGE, P2X7 and some TLRs are activated by HIF-1α; and that, in turn, alarmin receptors strongly activate NF-κB and proinflammatory gene expression, evidencing all the hallmarks of the malignant phenotype. Recently, a large number of drugs have been identified that inhibit one or both transcription factors with promising results in terms of controlling tumor progression. In addition, many of these inhibitors are natural compounds or off-label drugs already used to cure other

  7. RhoE is required for contact inhibition and negatively regulates tumor initiation and progression

    PubMed Central

    Hernández-Sánchez, Marta; Poch, Enric; Guasch, Rosa M.; Ortega, Joaquín; López-Almela, Inmaculada; Palmero, Ignacio; Pérez-Roger, Ignacio

    2015-01-01

    RhoE is a small GTPase involved in the regulation of actin cytoskeleton dynamics, cell cycle and apoptosis. The role of RhoE in cancer is currently controversial, with reports of both oncogenic and tumor-suppressive functions for RhoE. Using RhoE-deficient mice, we show here that the absence of RhoE blunts contact-inhibition of growth by inhibiting p27Kip1 nuclear translocation and cooperates in oncogenic transformation of mouse primary fibroblasts. Heterozygous RhoE+/gt mice are more susceptible to chemically induced skin tumors and RhoE knock-down results in increased metastatic potential of cancer cells. These results indicate that RhoE plays a role in suppressing tumor initiation and progression. PMID:26036260

  8. RhoE is required for contact inhibition and negatively regulates tumor initiation and progression.

    PubMed

    Hernández-Sánchez, Marta; Poch, Enric; Guasch, Rosa M; Ortega, Joaquín; López-Almela, Inmaculada; Palmero, Ignacio; Pérez-Roger, Ignacio

    2015-07-10

    RhoE is a small GTPase involved in the regulation of actin cytoskeleton dynamics, cell cycle and apoptosis. The role of RhoE in cancer is currently controversial, with reports of both oncogenic and tumor-suppressive functions for RhoE. Using RhoE-deficient mice, we show here that the absence of RhoE blunts contact-inhibition of growth by inhibiting p27Kip1 nuclear translocation and cooperates in oncogenic transformation of mouse primary fibroblasts. Heterozygous RhoE+/gt mice are more susceptible to chemically induced skin tumors and RhoE knock-down results in increased metastatic potential of cancer cells. These results indicate that RhoE plays a role in suppressing tumor initiation and progression.

  9. Role of Reactive Stroma in Prostate Cancer Progression

    DTIC Science & Technology

    2008-02-01

    AD_________________ Award Number: W81XWH-04-1-0189 TITLE: Role of Reactive Stroma in Prostate Cancer Progression PRINCIPAL INVESTIGATOR: David R...REPORT TYPE Final 3. DATES COVERED 12 JAN 2004 - 11 JAN 2008 4. TITLE AND SUBTITLE Role of Reactive Stroma in Prostate Cancer Progression 5a. CONTRACT...the reactive stroma of experimental prostate cancer . Using a modified approach, we are placing an inducible Cre recombinase behind the FAP gene

  10. Role of MicroRNA Genes in Breast Cancer Progression

    DTIC Science & Technology

    2006-08-01

    AD_________________ Award Number: W81XWH-05-1-0483 TITLE: Role of microRNA Genes in Breast Cancer ...proposal, we asked if miRNA expression is altered as cells progress through the different stages of cancer . Through our microarray experiments, we have...shown that many miRNAs are differentially regulated as cells progress through cancer stages. A general trend in miRNA expression emerges from this work

  11. [Research progress on mechanisms of modern medicine in cancer metastasis].

    PubMed

    Chen, Hui; Qu, Jing-Lian; Gong, Jie-Ning

    2014-08-01

    Cancer metastasis is the most dangerous stage of tumorigenesis and evolution, the primary cause of death in cancer patients. Clinically, more than 60% of cancer patients have found metastasis at the time of examination. Modern medicine has made significant progress on the mechanisms of cancer metastasis in recent years, from the simple "anatomy and machinery" theory forward to the "seed and soil" theory, then to the "microenvironmental" theory and the "cancer stem cell" theory. The emerging "cancer stem cell" theory successfully explains phenomenon such as tumor genetic heterogeneity, anoikis resistance, tumor dormancy, providing more new targets and ideas for the diagnosis and treatment of cancer metastasis.

  12. The AURORA initiative for metastatic breast cancer.

    PubMed

    Zardavas, D; Maetens, M; Irrthum, A; Goulioti, T; Engelen, K; Fumagalli, D; Salgado, R; Aftimos, P; Saini, K S; Sotiriou, C; Campbell, P; Dinh, P; von Minckwitz, G; Gelber, R D; Dowsett, M; Di Leo, A; Cameron, D; Baselga, J; Gnant, M; Goldhirsch, A; Norton, L; Piccart, M

    2014-11-11

    Metastatic breast cancer is one of the leading causes of cancer-related mortality among women in the Western world. To date most research efforts have focused on the molecular analysis of the primary tumour to dissect the genotypes of the disease. However, accumulating evidence supports a molecular evolution of breast cancer during its life cycle, with metastatic lesions acquiring new molecular aberrations. Recognising this critical gap of knowledge, the Breast International Group is launching AURORA, a large, multinational, collaborative metastatic breast cancer molecular screening programme. Approximately 1300 patients with metastatic breast cancer who have received no more than one line of systemic treatment for advanced disease will, after giving informed consent, donate archived primary tumour tissue, as well as will donate tissue collected prospectively from the biopsy of metastatic lesions and blood. Both tumour tissue types, together with a blood sample, will then be subjected to next generation sequencing for a panel of cancer-related genes. The patients will be treated at the discretion of their treating physicians per standard local practice, and they will be followed for clinical outcome for 10 years. Alternatively, depending on the molecular profiles found, patients will be directed to innovative clinical trials assessing molecularly targeted agents. Samples of outlier patients considered as 'exceptional responders' or as 'rapid progressors' based on the clinical follow-up will be subjected to deeper molecular characterisation in order to identify new prognostic and predictive biomarkers. AURORA, through its innovative design, will shed light onto some of the unknown areas of metastatic breast cancer, helping to improve the clinical outcome of breast cancer patients.

  13. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2012-09-01

    technique for treating left-sided breast cancer, which allows sparing of the heart. The Calypso system provides a previously unavailable level of...from both centers. Task 6. Post-prostatectomy Daily Target Guided Radiotherapy Using Real-Time, State-of-the-Art Motion Tracking with the Calypso...the skin surface to track breathing motion during a breath-hold technique for left-sided breast cancer treatment. Analysis would reveal the

  14. Differential roles of STAT3 in the initiation and growth of lung cancer.

    PubMed

    Zhou, J; Qu, Z; Yan, S; Sun, F; Whitsett, J A; Shapiro, S D; Xiao, G

    2015-07-01

    Signal transducer and activator of transcription 3 (STAT3) is linked to multiple cancers, including pulmonary adenocarcinoma. However, the role of STAT3 in lung cancer pathogenesis has not been determined. Using lung epithelial-specific inducible knockout strategies, we demonstrate that STAT3 has contrasting roles in the initiation and growth of both chemically and genetically induced lung cancers. Selective deletion of lung epithelial STAT3 in mice before cancer induction by the smoke carcinogen, urethane, resulted in increased lung tissue damage and inflammation, K-Ras oncogenic mutations and tumorigenesis. Deletion of lung epithelial STAT3 after establishment of lung cancer inhibited cancer cell proliferation. Simultaneous deletion of STAT3 and expression of oncogenic K-Ras in mouse lung elevated pulmonary injury, inflammation and tumorigenesis, but reduced tumor growth. These studies indicate that STAT3 prevents lung cancer initiation by maintaining pulmonary homeostasis under oncogenic stress, whereas it facilitates lung cancer progression by promoting cancer cell growth. These studies also provide a mechanistic basis for targeting STAT3 to lung cancer therapy.

  15. Optimizing initial chemotherapy for metastatic pancreatic cancer.

    PubMed

    Mantripragada, Kalyan C; Safran, Howard

    2016-05-01

    The two combination chemotherapy regimens FOLFIRINOX and gemcitabine plus nab-paclitaxel represent major breakthroughs in the management of metastatic pancreatic cancer. Both regimens showed unprecedented survival advantage in the setting of front-line therapy. However, their application for treatment of patients in the community is challenging because of significant toxicities, thus limiting potential benefits to a narrow population of patients. Modifications to the dose intensity or schedule of those regimens improve their tolerability, while likely retaining survival advantage over single-agent chemotherapy. Newer strategies to optimize these two active regimens in advanced pancreatic cancer are being explored that can help personalize treatment to individual patients.

  16. Non-muscle myosins in tumor progression, cancer cell invasion and metastasis

    PubMed Central

    Ouderkirk, J. L.; Krendel, M.

    2014-01-01

    The actin cytoskeleton, which regulates cell polarity, adhesion, and migration, can influence cancer progression, including initial acquisition of malignant properties by normal cells, invasion of adjacent tissues, and metastasis to distant sites. Actin-dependent molecular motors, myosins, play key roles in regulating tumor progression and metastasis. In this review, we examine how non-muscle myosins regulate neoplastic transformation and cancer cell migration and invasion. Members of the myosin superfamily can act as either enhancers or suppressors of tumor progression. This review summarizes the current state of knowledge on how mutations or epigenetic changes in myosin genes and changes in myosin expression may affect tumor progression and patient outcomes and discusses the proposed mechanisms linking myosin inactivation or upregulation to malignant phenotype, cancer cell migration, and metastasis. PMID:25087729

  17. Mouse Models of Follicular and Papillary Thyroid Cancer Progression

    PubMed Central

    Russo, Marika A.; Arciuch, Valeria G. Antico; Di Cristofano, Antonio

    2011-01-01

    A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas. PMID:22654848

  18. Regulated lysosomal exocytosis mediates cancer progression

    PubMed Central

    Machado, Eda; White-Gilbertson, Shai; van de Vlekkert, Diantha; Janke, Laura; Moshiach, Simon; Campos, Yvan; Finkelstein, David; Gomero, Elida; Mosca, Rosario; Qiu, Xiaohui; Morton, Christopher L.; Annunziata, Ida; d’Azzo, Alessandra

    2015-01-01

    Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf−⁄− mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance. PMID:26824057

  19. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    SciTech Connect

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle.

  20. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression

    PubMed Central

    Federico, Lorenzo; Jeong, Kang Jin; Vellano, Christopher P.; Mills, Gordon B.

    2016-01-01

    The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers. PMID:25977291

  1. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    PubMed Central

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  2. Survival, Smoking, Physical Activity, and Obesity - Life After Cancer Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Bladder, Breast, and Colorectal Cancer- Treatment Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Kidney, Lung, Ovarian, and Prostate Cancer - Treatment Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Breast, Cervical, and Colorectal Cancers - Early Detection Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2015-09-01

    and whether this difference changed the outcome for palliative patients, 6) use of the Calypso system, and other advanced radiation therapy equipment...use of advanced technology radiation therapy techniques, such as IMRT and VMAT, in treating palliative patients. The main obstacle to overcome in...treating low-to-intermediate risk prostate cancer with intensity modulated radiation therapy (IMRT) using an electromagnetic localization system. IMRT

  7. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2014-09-01

    routine clinical use, 2) whether the use of Vac-Lok® immobilization devices are necessary when patients are treated using the Calypso system, 3...using breath-hold technique for left-sided breast cancer patients treated with adjuvant radiation therapy, with the benefit of confirmatory tracking...required for each patient thereby reducing the cost of care and increasing treatment capacity within the military delivery system; enabling research to

  8. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression

    PubMed Central

    Mukaida, Naofumi; Sasaki, Soichiro

    2016-01-01

    Tumor microenvironments have a crucial role in cancer initiation and progression, and share many molecular and pathological features with wound healing process. Unless treated, tumors, however, do not heal in contrast to wounds that heal within a limited time framework. Wounds heal in coordination of a myriad of types of cells, particularly endothelial cells, leukocytes, and fibroblasts. Similar sets of cells also contribute to cancer initiation and progression, and as a consequence, anti-cancer treatment strategies have been proposed and tested by targeting endothelial cells and/or leukocytes. Compared with endothelial cells and leukocytes, less attention has been paid to the roles of cancer-associated fibroblasts (CAFs), fibroblasts present in tumor tissues, because their heterogeneity hinders the elucidation on them at cellular and molecular levels. Here, we will discuss the origin of CAFs and their crucial roles in cancer initiation and progression, and the possibility to develop a novel type of anti-cancer treatment by manipulating the migration and functions of CAFs. PMID:27340347

  9. Androgen deprivation modulates gene expression profile along prostate cancer progression.

    PubMed

    Volante, Marco; Tota, Daniele; Giorcelli, Jessica; Bollito, Enrico; Napoli, Francesca; Vatrano, Simona; Buttigliero, Consuelo; Molinaro, Luca; Gontero, Paolo; Porpiglia, Francesco; Tucci, Marcello; Papotti, Mauro; Berruti, Alfredo; Rapa, Ida

    2016-10-01

    Androgen deprivation therapy (ADT) is the standard of care for metastatic prostate cancer and initially induces tumor regression, but invariably results in castration-resistant prostate cancer through various mechanisms, incompletely discovered. Our aim was to analyze the dynamic modulation, determined by ADT, of the expression of selected genes involved in the pathogenesis and progression of prostate cancer (TMPRSS2:ERG, WNT11, SPINK1, CHGA, AR, and SPDEF) using real-time polymerase chain reaction in a series of 59 surgical samples of prostate carcinomas, including 37 cases preoperatively treated with ADT and 22 untreated cases, and in 43 corresponding biopsies. The same genes were analyzed in androgen-deprived and control LNCaP cells. Three genes were significantly up-modulated (WNT11 and AR) or down-modulated (SPDEF) in patients treated with ADT versus untreated cases, as well as in androgen-deprived LNCaP cells. The effect of ADT on CHGA gene up-modulation was almost exclusively detected in cases positive for the TMPRSS2:ERG fusion. The correlation between biopsy and surgical samples was poor for most of the tested genes. Gene expression analysis of separate tumor areas from the same patient showed an extremely heterogeneous profile in the 6 tested cases (all untreated). In conclusion, our results strengthened the implication of ADT in promoting a prostate cancer aggressive phenotype and identified potential biomarkers, with special reference to the TMPRSS2:ERG fusion, which might favor the development of neuroendocrine differentiation in hormone-treated patients. However, intratumoral heterogeneity limits the use of gene expression analysis as a potential prognostic or predictive biomarker in patients treated with ADT.

  10. Initiation of Massive Landsliding through Progressive Strength Reduction in Volcanoes

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Keith, T. C.; Kayen, R. E.; Iverson, N. R.; Iverson, R. M.; Brien, D. L.

    2011-12-01

    Landslides that sculpt deeply into volcano edifices can be extremely large. For example, the 1980 collapse of Mount St. Helens (MSH) volcano generated a 2.8 km3 debris-avalanche deposit from a series of massive retrogressive failures. Rock shear strength plays a fundamental role in such landsliding, yet pertinent data from modern volcano collapse surfaces are rare. The collapse crater at MSH affords access to rocks directly from the failure surface of the1980 massive landslide. We used a combination of field observations, laboratory strength tests designed to mimic conditions in the pre-collapse edifice, and quasi-3D slope-stability analyses to investigate the effects of progressive strength reduction, caused by pre-collapse deformation, on the instability of the volcano's edifice. Within the MSH crater, we observed that the basal shear zone from the outermost initial landslide block (Block I) of the 1980 failure formed primarily in pervasively shattered older dacitic dome rocks; shearing was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. We collected relatively undisturbed tube samples and disturbed bulk samples of the shattered dacite from near the slip surface of Block I. Using a triaxial testing device, equipped with high-pressure components to mimic overburden stresses in the pre-collapse edifice, we determined the quasi-static drained shear strength of the undisturbed samples. These tests indicated a peak angle of internal friction, φ, of 35° and a residual φ (after undergoing axial strain up to 20%) of 29°. We also determined residual shear strength using a specially constructed large-volume ring-shear apparatus that imposed large quasi-static shear strains exceeding 100%. These tests yielded a similar residual strength, with φ of 27°. Prior to its catastrophic collapse in 1980, the MSH edifice was deformed northward tens of meters by an intruding cryptodome, which likely caused shearing along a summit fault and

  11. A dietary restriction influences the progression but not the initiation of MSG-Induced nonalcoholic steatohepatitis.

    PubMed

    Fujimoto, Makoto; Tsuneyama, Koichi; Nakanishi, Yuko; Salunga, Thucydides L; Nomoto, Kazuhiro; Sasaki, Yoshiyuki; Iizuka, Seiichi; Nagata, Mitsunobu; Suzuki, Wataru; Shimada, Tsutomu; Aburada, Masaki; Shimada, Yutaka; Gershwin, M Eric; Selmi, Carlo

    2014-03-01

    The metabolic syndrome is a major worldwide health care issue and a dominant risk factor for cardiovascular disease. The liver manifestations of this syndrome include nonalcoholic fatty liver disease (NAFLD) and its progressive variant nonalcoholic steatohepatitis (NASH). Although significant research has been performed, the basic pathogenesis of NAFLD/NASH remains controversial and effective treatments are still unavailable. We have previously reported on a murine model of NASH induced by the neonatal injection of monosodium glutamate (MSG), which includes the clinical manifestations of central obesity, diabetes, hyperlipidemia, and ultimately liver inflammation, fibrosis, and cancer. Although MSG is considered a safe food additive, its administration to pregnant rats increases the voracity and growth hormone levels in the offspring. To further understand the biology of this model, we have investigated the influence of the calorie intake on these clinical manifestations by feeding animals a restrictive diet. MSG-treated animals fed a restrictive diet continue to manifest obesity and early stage NASH but have improvements in serum lipid profiles. At 12 months of age, mice had manifestations of obesity, whether animals were fed a restricted or control diet, but animals fed a restrictive diet had a reduction in the progression of NASH. In conclusion, MSG appears to be a critical factor in the initiation of obesity, whereas calorie intake may modulate the progression of disease.

  12. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  13. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  14. Incidence of brain metastasis at initial presentation of lung cancer

    PubMed Central

    Villano, J. Lee; Durbin, Eric B.; Normandeau, Chris; Thakkar, Jigisha P.; Moirangthem, Valentina; Davis, Faith G.

    2015-01-01

    Background No reliable estimates are available on the incidence of brain metastasis (BM) in cancer patients. This information is valuable for planning patient care and developing measures that may prevent or decrease the likelihood of metastatic brain disease. Methods We report the first population-based analysis on BM incidence at cancer diagnosis using the Kentucky Cancer Registry (KCR) and Alberta Cancer Registry (ACR). All cancer cases with BM were identified from KCR and ACR, with subsequent focus on metastases from lung primaries; the annual number of BMs at initial presentation was derived. Comparisons were made between Kentucky and Alberta for the stage and site of organ involvement of lung cancer. Results Low incidence of BM was observed in the United States until mandatory reporting began in 2010. Both the KCR and ACR recorded the highest incidence of BM from lung cancer, with total BM cases at initial presentation occurring at 88% and 77%, respectively. For lung cancer, stage IV was the most common stage at presentation for both registries and ranged from 45.9% to 57.2%. When BM from lung was identified, the most common synchronous organ site of metastasis was osseous, occurring at 28.4%. Conclusion Our analysis from the Kentucky and Alberta cancer registries similarly demonstrated the aggressive nature of lung cancer and its propensity for BM at initial presentation. Besides widespread organ involvement, no synchronous organ site predicted BM in lung cancer. BM is a common and important clinical outcome, and use of registry data is becoming more available. PMID:24891450

  15. A Genetic Interaction Screen for Breast Cancer Progression Driver Genes

    DTIC Science & Technology

    2013-06-01

    AD_________________ Award Number: W81XWH-12-1-0082 TITLE: A Genetic Interaction Screen for Breast...COVERED 1 2012 - 3 2013 4. TITLE AND SUBTITLE A Genetic Interaction Screen for Breast Cancer Progression Driver Genes 5a. CONTRACT NUMBER...analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes

  16. Neither Saints nor Sinners: Initial Reporting of the "Progressive" Case.

    ERIC Educational Resources Information Center

    Swain, Bruce M.

    1980-01-01

    Examines the circumstances of the 1979 "Progressive" case, in which the federal government quashed an article about hydrogen bomb production. Notes reportorial lapses that prevented a full and balanced account of the situation. (RL)

  17. Genes Involved in Oxidation and Prostate Cancer Progression

    DTIC Science & Technology

    2008-01-01

    association of genes and prostate cancer progression from these simulated nested case - control studies to what would be observed if the entire...Control Sampling: Methods for Nested Case - Control Studies of Candidate Genes and Prostate Cancer Progression”. This work forms one aim of MS Wang’s...prostate cancer risk: results from two large nested case - control studies . Carcinogenesis. 2007 Nov 13; [Epub ahead of print] PMID: 17999989 Dr

  18. Research progress in the treatment of small cell lung cancer

    PubMed Central

    Qiu, Yan-fang; Liu, Zhi-gang; Yang, Wen-juan; Zhao, Yu; Tang, Jiao; Tang, Wei-zhi; Jin, Yi; Li, Fang; Zhong, Rui; Wang, Hui

    2017-01-01

    Small cell lung cancer (SCLC) accounts for approximately 10-15% of all lung cancers. No significant improvement has been made for patients with SCLC in the past several decades. The main progresses were the thoracic radiation and prophylactic cranial irradiation (PCI) that improved the patient survival rate. For patients with limited disease and good performance status (PS), concurrent chemoradiotherapy (CCRT) followed by PCI should be considered. For extensive disease, the combination of etoposide and platinum-based chemotherapy remains the standard treatment and consolidative thoracic radiotherapy is beneficial for patients who have a significant respond to initial chemotherapy. However, the prognosis still remains poor. Recently, efforts have been focused on molecular targets and immunotherapy. But numerous molecular targets methods have failed to show a significant clinical benefit in patients with SCLC. It is anticipated that further development of research will depend on the on-going trials for molecular targeted therapy and immunotherapy which are promising and may improve the outcomes for SCLC in the next decade. PMID:28123595

  19. miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases.

    PubMed

    Xu, Qinhong; Li, Pei; Chen, Xin; Zong, Liang; Jiang, Zhengdong; Nan, Ligang; Lei, Jianjun; Duan, Wanxing; Zhang, Dong; Li, Xuqi; Sha, Huanchen; Wu, Zheng; Ma, Qingyong; Wang, Zheng

    2015-06-10

    MicroRNAs are involved in the initiation and progression of pancreatic cancer. In this study, we showed that miR-221/222 is overexpressed in pancreatic cancer. MiR-221/222 overexpression significantly promoted pancreatic cancer cell proliferation and invasion while inhibiting apoptosis. The expression of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 was increased in miR-221/222 mimic-transfected pancreatic cancer cells. Validation experiments identified TIMP-2 as a direct target of miR-221/222. These data indicate that overexpressed miR-221/222 may play an oncogenic role in pancreatic cancer by inducing the expression of MMP-2 and MMP-9, thus leading to cancer cell invasion.

  20. GPR56 Plays Varying Roles in Endogenous Cancer Progression

    PubMed Central

    Xu, Lei; Begum, Shahinoor; Barry, Marc; Crowley, Denise; Yang, Liquan; Bronson, Roderick T.; Hynes, Richard O.

    2011-01-01

    GPR56, a non-classical adhesion receptor, was previously reported to suppress tumor growth and metastasis in xenograft models using human melanoma cell lines. To understand whether GPR56 plays similar roles in the development of endogenous tumors, we analyzed cancer progression in Gpr56−/− mice using a variety of transgenic cancer models. Our results showed that GPR56 suppressed prostate cancer progression in the TRAMP model on a mixed genetic background, similar to its roles in progression of melanoma xenografts. However, its roles in other cancer types appeared to be complex. It had marginal effects on tumor onset of mammary tumors in the MMTV-PyMT model, but had no effects on subsequent tumor progression in either the MMTV-PyMT mice or the melanoma model, Ink4a/Arf−/− tyr-Hras. These results indicate diverse roles of GPR56 in cancer progression and provide the first genetic evidence for the involvement of an adhesion GPCR in endogenous cancer development. PMID:20333450

  1. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    SciTech Connect

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; Hung, Ming -Szu; Hsieh, David; Au, Alfred; Jablons, David M.; You, Liang

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods: Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.

  2. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less

  3. Role of Aquaporin 1 Signalling in Cancer Development and Progression

    PubMed Central

    Tomita, Yoko; Dorward, Hilary; Yool, Andrea J.; Smith, Eric; Townsend, Amanda R.; Price, Timothy J.; Hardingham, Jennifer E.

    2017-01-01

    Cancer is a major health burden worldwide. Despite the advances in our understanding of its pathogenesis and continued improvement in cancer management and outcomes, there remains a strong clinical demand for more accurate and reliable biomarkers of metastatic progression and novel therapeutic targets to abrogate angiogenesis and tumour progression. Aquaporin 1 (AQP1) is a small hydrophobic integral transmembrane protein with a predominant role in trans-cellular water transport. Recently, over-expression of AQP1 has been associated with many types of cancer as a distinctive clinical prognostic factor. This has prompted researchers to evaluate the link between AQP1 and cancer biological functions. Available literature implicates the role of AQP1 in tumour cell migration, invasion and angiogenesis. This article reviews the current understanding of AQP1-facilitated tumour development and progression with a focus on regulatory mechanisms and downstream signalling pathways. PMID:28146084

  4. GPR56 in cancer progression: current status and future perspective.

    PubMed

    Yang, Liquan; Xu, Lei

    2012-04-01

    Cell adhesion is a critical process during cancer progression and is mediated by transmembrane receptors. Recently, GPR56, a member of the adhesion family of G protein-coupled receptors, was established as a new type of adhesion receptor that binds to extracellular matrix proteins and shown to play inhibitory roles in melanoma progression. Further studies revealed that the extracellular portion and the seven transmembrane domains of GPR56 function antagonistically to regulate VEGF production and angiogenesis via a signaling pathway mediated by PKCα. Tissue transglutaminase was identified as the first extracellular matrix protein that binds to GPR56. It is a crosslinking enzyme in the extracellular matrix but is also expressed in the cytosol. Tissue transglutaminase plays pleiotropic roles in cancer progression. Whether and how it might mediate GPR56-regulated cancer progression awaits further investigation.

  5. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer

    PubMed Central

    Bernstein, Carol; Bernstein, Harris

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy. PMID:25987950

  6. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer.

    PubMed

    Bernstein, Carol; Bernstein, Harris

    2015-05-15

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.

  7. Rectal prolapse as initial clinical manifestation of colon cancer.

    PubMed

    Chen, C-W; Hsiao, C-W; Wu, C-C; Jao, S-W

    2008-04-01

    Rectal prolapse as the initial clinical manifestation of colorectal cancer is uncommon. We describe the case of a 75-year-old woman who was diagnosed as having adenocarcinoma of the sigmoid colon after presenting with complete rectal prolapse. The tumor caused rectosigmoid intussusception and then it prolapsed out through the anus. She underwent rectosigmoidectomy and rectopexy. The postoperative course was uneventful. The relationship between colorectal cancer and rectal prolapse has not been clearly established. This case report describes an unusual presentation of colorectal cancer. It suggests that rectal prolapse can present as the initial symptom of colorectal cancer and may also be a presenting feature of the occult intra-abdominal pathology. The importance of adequate investigation such as colonoscopy should be emphasized in patients who develop a new onset of rectal prolapse.

  8. Extensions to the modeling of initiation and progression: applications to substance use and abuse.

    PubMed

    Neale, Michael C; Harvey, Eric; Maes, Hermine H M; Sullivan, Patrick F; Kendler, Kenneth S

    2006-07-01

    Twin data can provide valuable insight into the relationship between the stages of phenomena such as disease or substance abuse. Initiation of substance use may be caused by factors that are the same as, partially shared with, or completely independent of those that cause progression from use to abuse. Comparison of rates of progression among the cotwins of twins who do vs. do not initiate provides indirect information about the relationship between initiation and progression. Existing models for this relationship have been difficult to extend because they are usually expressed in terms of explicit integrals. In this paper, the problem is overcome by regarding the analysis of twin data on initiation and progression as a special case of missing data, in which individuals who do not initiate are regarded as having missing data on progression measures. Using the general framework for the analysis of ordinal data with missing values available in Mx makes extensions that include other variables much easier. The effects of continuous covariates such as age on initiation and progression becomes simple. Also facilitated are the examination of initiation and progression in two or more substances, and transition models with two or more steps. The methods are illustrated with data on the effects of cohort on liability to cannabis use and abuse, bivariate analysis of tobacco use and dependence and cannabis use and abuse, and the relationships between initiation of smoking, regular smoking and nicotine dependence. Other suitable applications include the relationship between symptoms and diagnosis, such as fears and the progression to phobia.

  9. The extracellular matrix: A dynamic niche in cancer progression

    PubMed Central

    Lu, Pengfei; Weaver, Valerie M.

    2012-01-01

    The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche. PMID:22351925

  10. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis.

    PubMed

    Colombo, Michela; Mirandola, Leonardo; Reidy, Adair; Suvorava, Natallia; Konala, Venu; Chiaramonte, Raffaella; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Nugyen, Diane D; Dalhbeck, Scott; Cobos, Everardo; Figueroa, Jose A; Chiriva-Internati, Maurizio

    2015-03-01

    Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.

  11. Putative cancer-initiating stem cells in cell culture models for molecular subtypes of clinical breast cancer

    PubMed Central

    TELANG, NITIN

    2015-01-01

    Cancer-initiating stem cells (CISC) represent a minor subpopulation of heterogeneous breast cancer. CISC are responsible for the acquired resistance to conventional chemoendocrine therapy and eventual relapse observed in patients with breast cancer. Certain molecular subtypes of clinical breast cancer that exhibit differential expression of genes coding for hormone and growth factor receptors differ in their response to conventional chemoendocrine therapy and targeted therapeutic inhibitors. Thus, the development of reliable cell culture models for CISC may provide a valuable experimental approach for the study of stem cell-targeted therapy for the treatment of breast cancer. The present study utilized optimized cell culture systems as experimental models for different molecular subtypes of clinical breast cancer, including luminal A, human epidermal growth factor receptor (HER)-2-enriched and triple negative breast cancer. Biomarker end points, including control of homeostatic growth, cancer risk and drug resistance, were quantitatively analyzed in the selected models. The results of the analyses indicated that, compared with the non-tumorigenic controls, the cell models representing the aforementioned molecular subtypes of clinical breast cancer exhibited aberrant cell cycle progression, downregulated cellular apoptosis and loss of control of homeostatic growth, as evidenced by hyperproliferation. Additionally, these models displayed persistent cancer risk, as indicated by their high incidence and frequency of anchorage-independent (AI) colony formation in vitro and their tumor development capacity in vivo. Furthermore, in the presence of maximum cytostatic drug concentrations, the drug-resistant phenotypes isolated from the parental drug-sensitive cell lines representing luminal A, HER-2-enriched and triple negative breast cancer exhibited an 11.5, 5.0 and 6.2 fold increase in cell growth, and a 5.6, 5.4 and 4.4 fold increase in the number of AI colonies

  12. [Epigenetic alterations in cervical cancer progression].

    PubMed

    Ríos-Romero, Magdalena; Soto-Valladares, Ana Guadalupe; Piña-Sánchez, Patricia

    2015-01-01

    Despite the use of the screening test, such as Papanicolaou, and the detection of human papillomavirus (HPV), cervical cancer remains as a public health problem in México and it is the second leading cause of death for malignant neoplasias among women. High-risk HPV infection is the main risk factor for the development of premalignant lesions and cervical cancer; however, HPV infection is not the only factor; there are various genetic and epigenetic alterations required for the development of neoplasias; some of them have been described and even in some cases they have been suggested as biomarkers for prognosis. However, in contrast with other cancer types, such as breast cancer, in cervical cancer the use of biomarkers has not been established for clinical applications. Unlike genetic alterations, epigenetic alterations are potentially reversible; in this sense, their characterization is important, since they have not only a potential use as biomarkers, but they also could represent new therapeutic targets for treatment of cervical cancer. This review describes some of the more common epigenetic alterations in cervical cancer and its potential use in routine clinical practice.

  13. Neutrophils support lung colonization of metastasis-initiating breast cancer cells.

    PubMed

    Wculek, Stefanie K; Malanchi, Ilaria

    2015-12-17

    Despite progress in the development of drugs that efficiently target cancer cells, treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However, the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression.

  14. Neutrophils support lung colonization of metastasis-initiating breast cancer cells

    PubMed Central

    Wculek, Stefanie K.; Malanchi, Ilaria

    2015-01-01

    Despite progress in the development of drugs efficiently targeting cancer cells, treatments of metastatic tumours are often ineffective. The now well established dependency of cancer cells on their microenvironment1 suggests that targeting the non-cancer cell component of the tumour might form the basis for the development of novel therapeutic approaches. However, the as yet poorly characterised contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumourigenesis is still controversial2-4. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissue by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacologic inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression. PMID:26649828

  15. Akt isoform specific effects in ovarian cancer progression

    PubMed Central

    Linnerth-Petrik, Nicolle M.; Santry, Lisa A.; Moorehead, Roger; Jücker, Manfred

    2016-01-01

    Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer. PMID:27533079

  16. Integrated Proteomic and Metabolic Analysis of Breast Cancer Progression

    PubMed Central

    Shaw, Patrick G.; Chaerkady, Raghothama; Wang, Tao; Vasilatos, Shauna; Huang, Yi; Van Houten, Bennett; Pandey, Akhilesh; Davidson, Nancy E.

    2013-01-01

    One of the most persistent hallmarks of cancer biology is the preference of tumor cells to derive energy through glycolysis as opposed to the more efficient process of oxidative phosphorylation (OXPHOS). However, little is known about the molecular cascades by which oncogenic pathways bring about this metabolic switch. We carried out a quantitative proteomic and metabolic analysis of the MCF10A derived cell line model of breast cancer progression that includes parental cells and derivatives representing three different tumor grades of Ras-driven cancer with a common genetic background. A SILAC (Stable Isotope Labeling by Amino acids in Cell culture) labeling strategy was used to quantify protein expression in conjunction with subcellular fractionation to measure dynamic subcellular localization in the nucleus, cytosol and mitochondria. Protein expression and localization across cell lines were compared to cellular metabolic rates as a measure of oxidative phosphorylation (OXPHOS), glycolysis and cellular ATP. Investigation of the metabolic capacity of the four cell lines revealed that cellular OXPHOS decreased with breast cancer progression independently of mitochondrial copy number or electron transport chain protein expression. Furthermore, glycolytic lactate secretion did not increase in accordance with cancer progression and decreasing OXPHOS capacity. However, the relative expression and subcellular enrichment of enzymes critical to lactate and pyruvate metabolism supported the observed extracellular acidification profiles. This analysis of metabolic dysfunction in cancer progression integrated with global protein expression and subcellular localization is a novel and useful technique for determining organelle-specific roles of proteins in disease. PMID:24086712

  17. 76 FR 66932 - The National Cancer Institute (NCI) Announces the Initiation of a Public Private Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Initiation of a Public Private Industry Partnership on Translation of Nanotechnology in Cancer (TONIC) To Promote Translational Research and Development Opportunities of Nanotechnology-Based Cancer Solutions AGENCY: National Cancer Institute (NCI), Office of Cancer Nanotechnology Research (OCNR),...

  18. PEG-3, a nontransforming cancer progression gene, is a positive regulator of cancer aggressiveness and angiogenesis.

    PubMed

    Su, Z Z; Goldstein, N I; Jiang, H; Wang, M N; Duigou, G J; Young, C S; Fisher, P B

    1999-12-21

    Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 (PEG-3), whose expression directly correlates with cancer progression and acquisition of oncogenic potential by transformed rodent cells. We presently demonstrate that forced expression of PEG-3 in tumorigenic rodent cells, and in human cancer cells, increases their oncogenic potential in nude mice as reflected by a shorter tumor latency time and the production of larger tumors with increased vascularization. Moreover, inhibiting endogenous PEG-3 expression in progressed rodent cancer cells by stable expression of an antisense expression vector extinguishes the progressed cancer phenotype. Cancer aggressiveness of PEG-3 expressing rodent cells correlates directly with increased RNA transcription, elevated mRNA levels, and augmented secretion of vascular endothelial growth factor (VEGF). Furthermore, transient ectopic expression of PEG-3 transcriptionally activates VEGF in transformed rodent and human cancer cells. Taken together these data demonstrate that PEG-3 is a positive regulator of cancer aggressiveness, a process regulated by augmented VEGF production. These studies also support an association between expression of a single nontransforming cancer progression-inducing gene, PEG-3, and the processes of cancer aggressiveness and angiogenesis. In these contexts, PEG-3 may represent an important target molecule for developing cancer therapeutics and inhibitors of angiogenesis.

  19. Cancer stem cells as the engine of unstable tumor progression.

    PubMed

    Solé, Ricard V; Rodríguez-Caso, Carlos; Deisboeck, Thomas S; Saldaña, Joan

    2008-08-21

    Genomic instability is considered by many authors the key engine of tumorigenesis. However, mounting evidence indicates that a small population of drug resistant cancer cells can also be a key component of tumor progression. Such cancer stem cells would define a compartment effectively acting as the source of most tumor cells. Here we study the interplay between these two conflicting components of cancer dynamics using two types of tissue architecture. Both mean field and multicompartment models are studied. It is shown that tissue architecture affects the pattern of cancer dynamics and that unstable cancers spontaneously organize into a heterogeneous population of highly unstable cells. This dominant population is in fact separated from the low-mutation compartment by an instability gap, where almost no cancer cells are observed. The possible implications of this prediction are discussed.

  20. The role of gelatinases in colorectal cancer progression and metastasis.

    PubMed

    Mook, Olaf R F; Frederiks, Wilma M; Van Noorden, Cornelis J F

    2004-12-17

    Various proteases are involved in cancer progression and metastasis. In particular, gelatinases, matrix metalloproteinase-2 (MMP-2) and MMP-9, have been implicated to play a role in colon cancer progression and metastasis in animal models and patients. In the present review, the clinical relevance and the prognostic value of messenger ribonucleic acid (mRNA) and protein expression and proenzyme activation of MMP-2 and MMP-9 are evaluated in relation to colorectal cancer. Expression of tissue inhibitors of MMPs (TIMPs) in relation with MMP expression in cancer tissues and the relevance of detection of plasma or serum levels of MMP-2 and/or MMP-9 and TIMPs for prognosis are also discussed. Furthermore, involvement of MMP-2 and MMP-9 in experimental models of colorectal cancer is reviewed. In vitro studies have suggested that gelatinase is expressed in cancer cells but animal models indicated that gelatinase expression in non-cancer cells in tumors contributes to cancer progression. In fact, interactions between cancer cells and host tissues have been shown to modulate gelatinase expression in host cells. Inhibition of gelatinases by synthetic MMP inhibitors has been considered to be an attractive approach to block cancer progression. However, despite promising results in animal models, clinical trials with MMP inhibitors have been disappointing so far. To obtain more insight in the (patho)physiological functions of gelatinases, regulation of MMP-2 and MMP-9 expression is discussed. Mitogen activated protein kinase (MAPK) signalling has been shown to be involved in regulation of gelatinase expression in both cancer cells and non-cancer cells. Expression can be triggered by a variety of stimuli including growth factors, cytokines and extracellular matrix (ECM) components. On the other hand, MMP-2 and MMP-9 activity regulates bioavailability and activity of growth factors and cytokines, affects the immune response and is involved in angiogenesis. Because of the

  1. Progressing from Initially Ambiguous Functional Analyses: Three Case Examples

    ERIC Educational Resources Information Center

    Tiger, Jeffrey H.; Fisher, Wayne W.; Toussaint, Karen A.; Kodak, Tiffany

    2009-01-01

    Most often functional analyses are initiated using a standard set of test conditions, similar to those described by Iwata, Dorsey, Slifer, Bauman, and Richman [Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). "Toward a functional analysis of self-injury." "Journal of Applied Behavior Analysis, 27", 197-209…

  2. Education For All (EFA) - Fast Track Initiative Progress Report 30046

    ERIC Educational Resources Information Center

    World Bank Education Advisory Service, 2004

    2004-01-01

    Launched in June 2002, the Education For All-Fast Track Initiative (FTI) is a performance-based program focusing on the implementation of sustainable policies in support of universal primary completion (UPC) and the required resource mobilization. During its twenty months of implementation, FTI has delivered on results, which give reason for…

  3. Clinical Cancer Advances 2017: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology.

    PubMed

    Burstein, Harold J; Krilov, Lada; Aragon-Ching, Jeanny B; Baxter, Nancy N; Chiorean, E Gabriela; Chow, Warren Allen; De Groot, John Frederick; Devine, Steven Michael; DuBois, Steven G; El-Deiry, Wafik S; Epstein, Andrew S; Heymach, John; Jones, Joshua Adam; Mayer, Deborah K; Miksad, Rebecca A; Pennell, Nathan A; Sabel, Michael S; Schilsky, Richard L; Schuchter, Lynn Mara; Tung, Nadine; Winkfield, Karen Marie; Wirth, Lori J; Dizon, Don S

    2017-02-01

    . Importantly, the advances described in this report would not have been possible without the individuals who volunteered to participate in clinical trials as part of their treatment. To turn the promising vision of a cancer moonshot into meaningful advances, we need sustained, robust federal funding for continued research and innovation. Approximately 30% of the research highlighted in this report was funded, at least in part, through federal dollars appropriated to the National Institutes of Health or the National Cancer Institute. Without this federal investment-unique internationally in scale, duration, and impact for decades-I fear we may lose the forward momentum needed to further the progress we see highlighted in this report. Federal lawmakers can further fuel progress by advancing initiatives that facilitate the use of big data to achieve the common good of high-quality care for all patients. Such programs, like ASCO's CancerLinQ, will rapidly increase the pace of progress and dramatically expand the reach of treatment advances to the millions of patients who are living with cancer today or who will do so in the future. This investment will yield medical, scientific, economic, and societal benefits for years to come. Much work still lies ahead. Many questions remain about how cancer develops and spreads and how best to treat it. As you read through Clinical Cancer Advances 2017, I hope you are as inspired as I am by the gains the clinical cancer research community has made over the past year and by the promise of a new era of advances just over the horizon. Daniel F Hayes, MD, FASCO, FACP ASCO President, 2016 to 2017.

  4. 78 FR 44136 - Submission for OMB review; 30-day Comment Request: National Cancer Institute (NCI) Cancer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Cancer Institute (NCI) Cancer Nanotechnology Platform Partnership Scientific Progress Reports SUMMARY..., Center for Strategic Scientific Initiatives, Office of Cancer Nanotechnology Research, National Cancer... (NCI) Alliance for Nanotechnology in Cancer Platform Partnership Scientific Progress Reports,...

  5. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation.

    PubMed

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-04-18

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.

  6. Neutrophil extracellular traps in cancer progression.

    PubMed

    Cools-Lartigue, Jonathan; Spicer, Jonathan; Najmeh, Sara; Ferri, Lorenzo

    2014-11-01

    Neutrophils are being increasingly recognized as an important element in tumor progression. They have been shown to exert important effects at nearly every stage of tumor progression with a number of studies demonstrating that their presence is critical to tumor development. Novel aspects of neutrophil biology have recently been elucidated and its contribution to tumorigenesis is only beginning to be appreciated. Neutrophil extracellular traps (NETs) are neutrophil-derived structures composed of DNA decorated with antimicrobial peptides. They have been shown to trap and kill microorganisms, playing a critical role in host defense. However, their contribution to tumor development and metastasis has recently been demonstrated in a number of studies highlighting NETs as a potentially important therapeutic target. Here, studies implicating NETs as facilitators of tumor progression and metastasis are reviewed. In addition, potential mechanisms by which NETs may exert these effects are explored. Finally, the ability to target NETs therapeutically in human neoplastic disease is highlighted.

  7. Transcriptional network of androgen receptor in prostate cancer progression.

    PubMed

    Takayama, Ken-ichi; Inoue, Satoshi

    2013-08-01

    The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

  8. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  9. Chemokines: key players in cancer progression and metastasis

    PubMed Central

    Singh, Rajesh; Lilladr, James W.; Singh, Shailesh

    2013-01-01

    Instructed cell migration is a fundamental component of various biological systems and is critical to the pathogenesis of many diseases including cancer. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. However, functional mechanisms of chemokine are not well implicit, which is crucial for designing new therapeutics to control tumor growth and metastasis. Multiple functions and mode of actions have been advocated for chemokines and their receptors in the progression of primary and secondary tumors. In this review, we have discussed current advances in understanding the role of the chemokines and their corresponding receptor in tumor progression and metastasis. PMID:21622291

  10. Regulator of G protein signaling 6 is a novel suppressor of breast tumor initiation and progression

    PubMed Central

    Fisher, Rory A.

    2013-01-01

    Breast cancer is a large global health burden and the most frequently diagnosed malignancy in women worldwide. Here, we utilize RGS6− /− mice to interrogate the role of regulator of G protein signaling 6 (RGS6), localized to the ductal epithelium in mouse and human breast, as a novel tumor suppressor in vivo. RGS6− /− mice exhibit accelerated 7,12-dimethylbenza[α]anthracene (DMBA)-induced tumor initiation and progression, as well as decreased overall survival. Analysis of carcinogenic aberrations in the mammary glands of DMBA-treated mice revealed a failure of the DNA damage response concurrent with augmented oncogenesis in RGS6−/− animals. Furthermore, RGS6 suppressed cell growth induced by either human epidermal growth factor receptor 2 or estrogen receptor activation in both MCF-7 breast cancer cells and mammary epithelial cells (MECs). MECs isolated from RGS6−/− mice also showed a deficit in DMBA-induced ATM/p53 activation, reactive oxygen species generation and apoptosis confirming that RGS6 is required for effective activation of the DNA damage response in these cells, a critical countermeasure against carcinogen-mediated genotoxic stress. The ability of RGS6 to simultaneously enhance DNA-damage-induced apoptotic signaling and suppress oncogenic cell growth likely underlie the accelerated tumorigenesis and cellular transformation observed in DMBA-treated RGS6−/− mice and isolated MECs, respectively. Unsurprisingly, spontaneous tumor formation was also seen in old female RGS6−/− but not in wild-type mice. Our finding that RGS6 is downregulated in all human breast cancer subtypes independent of their molecular classification indicates that obtaining a means to restore the growth suppressive and pro-apoptotic actions of RGS6 in breast might be a viable means to treat a large spectrum of breast tumors. PMID:23598467

  11. Regulator of G protein signaling 6 is a novel suppressor of breast tumor initiation and progression.

    PubMed

    Maity, Biswanath; Stewart, Adele; O'Malley, Yunxia; Askeland, Ryan W; Sugg, Sonia L; Fisher, Rory A

    2013-08-01

    Breast cancer is a large global health burden and the most frequently diagnosed malignancy in women worldwide. Here, we utilize RGS6(-/-) mice to interrogate the role of regulator of G protein signaling 6 (RGS6), localized to the ductal epithelium in mouse and human breast, as a novel tumor suppressor in vivo. RGS6(-/-) mice exhibit accelerated 7,12-dimethylbenza[α]anthracene (DMBA)-induced tumor initiation and progression, as well as decreased overall survival. Analysis of carcinogenic aberrations in the mammary glands of DMBA-treated mice revealed a failure of the DNA damage response concurrent with augmented oncogenesis in RGS6(-/-) animals. Furthermore, RGS6 suppressed cell growth induced by either human epidermal growth factor receptor 2 or estrogen receptor activation in both MCF-7 breast cancer cells and mammary epithelial cells (MECs). MECs isolated from RGS6(-/-) mice also showed a deficit in DMBA-induced ATM/p53 activation, reactive oxygen species generation and apoptosis confirming that RGS6 is required for effective activation of the DNA damage response in these cells, a critical countermeasure against carcinogen-mediated genotoxic stress. The ability of RGS6 to simultaneously enhance DNA-damage-induced apoptotic signaling and suppress oncogenic cell growth likely underlie the accelerated tumorigenesis and cellular transformation observed in DMBA-treated RGS6(-/-) mice and isolated MECs, respectively. Unsurprisingly, spontaneous tumor formation was also seen in old female RGS6(-/-) but not in wild-type mice. Our finding that RGS6 is downregulated in all human breast cancer subtypes independent of their molecular classification indicates that obtaining a means to restore the growth suppressive and pro-apoptotic actions of RGS6 in breast might be a viable means to treat a large spectrum of breast tumors.

  12. MicroRNAs to Pathways in Prostate Cancer Progression

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0474 TITLE: “ MICRORNAS TO PATHWAYS IN PROSTATE CANCER...2013 – 29 th Sept,2014 4. TITLE AND SUBTITLE MicroRNAs to Pathways in Prostate Cancer Progression 5a. CONTRACT NUMBER - 5b. GRANT NUMBER W81XWH...the proposal focuses on a class of non-coding RNAs called microRNAs that function to suppress large networks of genes during cell fate transitions

  13. HGF-MET in cancer progression and biomarker discovery.

    PubMed

    Matsumoto, Kunio; Umitsu, Masataka; De Silva, Dinuka M; Roy, Arpita; Bottaro, Donald P

    2017-01-08

    Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3-D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases respectively for invasion-metastasis and resistance against targeted drugs in cancers. Recent studies indicated that MET in tumor-derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma. In lung cancer, gene amplification-induced MET activation and ligand-dependent MET activation in autocrine/paracrine manner are causes for resistance to EGF receptor tyrosine kinase inhibitors and ALK inhibitors. HGF secreted in the tumor microenvironment contributes to the innate and acquired resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET, and phosphor-MET have been confirmed to be associated with disease progression, metastasis, therapy response, and survival. Higher serum/plasma HGF levels are associated with therapy resistance and/or metastasis, while lower HGF levels are associated with progression-free survival and overall survival after treatment with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant melanoma. Urinary soluble MET levels in patients with bladder cancer are higher than those in patients without bladder cancer and associated with disease progression. Some of the multi-kinase inhibitors that target MET have received regulatory approval, whereas none of the selective HGF-MET inhibitors have shown efficacy in phase III clinical trials. Validation of the HGF-MET pathway as a critical driver in cancer development/progression and utilization of appropriate biomarkers are key to development and approval of HGF-MET inhibitors for clinical use. This article is protected by copyright. All rights reserved.

  14. Progressing From Initially Ambiguous Functional Analyses: Three Case Examples

    PubMed Central

    Tiger, Jeffrey H.; Fisher, Wayne W.; Toussaint, Karen A.; Kodak, Tiffany

    2009-01-01

    Most often functional analyses are initiated using a standard set of test conditions, similar to those described by Iwata, Dorsey, Slifer, Bauman, and Richman (1982/1994). These test conditions involve the careful manipulation of motivating operations, discriminative stimuli, and reinforcement contingencies to determine the events related to the occurrence and maintenance of problem behavior. Some individuals display problem behavior that is occasioned and reinforced by idiosyncratic or otherwise unique combinations of environmental antecedents and consequences of behavior, which are unlikely to be detected using these standard assessment conditions. For these individuals, modifications to the standard test conditions or the inclusion of novel test conditions may result in clearer assessment outcomes. The current study provides three case examples of individuals whose functional analyses were initially undifferentiated; however, modifications to the standard conditions resulted in the identification of behavioral functions and the implementation of effective function-based treatments. PMID:19233611

  15. Health initiatives for the prevention of skin cancer.

    PubMed

    Greinert, Rüdiger; Breitbart, Eckhard W; Mohr, Peter; Volkmer, Beate

    2014-01-01

    Skin cancer is the most frequent type of cancer in white population worldwide. However, because the most prominent risk factor-solar UV-radiation and/or artificial UV from sunbeds-is known, skin cancer is highly preventable be primary prevention. This prevention needs, that the public is informed by simple and balanced messages about the possible harms and benefits of UV-exposure and how a person should behave under certain conditions of UV-exposure. For this purpose information and recommendations for the public must be age- and target-group specific to cover all periods of life and to reach all sub-groups of a population, continuously. There is a need that political institutions together with Health Institutions and Societies (e.g., European Commission, WHO, EUROSKIN, ICNIRP, etc.), which are responsible for primary prevention of skin cancer, find a common language to inform the public, in order not to confuse it. This is especially important in connection with the ongoing Vitamin D debate, where possible positive effects of UV have to be balanced with the well known skin cancer risk of UV. A continuously ongoing evaluation of interventions and programs in primary prevention is a pre-requisite to assess the effectiveness of strategies. There is surely no "no message fits all" approach, but balanced information in health initiatives for prevention of skin cancer, which use evidence-base strategies, will further be needed in the future to reduce the incidence, morbidity and mortality skin cancer.

  16. The role of MTDH/AEG-1 in the progression of cancer

    PubMed Central

    Shi, Xue; Wang, Xin

    2015-01-01

    Cancer progression is driven by an accumulation of numerous genetic and epigenetic alterations in cancer cells themselves as well as constructional changes in their microenvironment. Metadherin (MTDH)/Astrocyte elevated gene-1 (AEG-1) has emerged in recent years as a key contributor to the carcinogenic process in diverse organs and tissues. As a multifunctional mediator of carcinogenesis, MTDH/AEG-1 has been found to be involved in multiple signaling pathways, such as: PI3K/Akt, NF-κB, Wnt/β-catenin and MAPK. Overexpression of MTDH/AEG-1 is observed in a variety of cancers belonging to all biological systems, and has crucial relevance with cancer progression, including initiation, proliferation, invasion, metastasis and chemoresistance. In addition, a plethora of studies have convincingly demonstrated that MTDH/AEG-1 overexpression markedly correlates with poor clinical prognosis. These findings suggest that MTDH/AEG-1 may be used as a potential biomarker for the diagnosis of cancer, monitoring of cancer progression, and target therapies which may simultaneously inhibit tumor growth, block metastasis, and intensify the efficacy of chemotherapeutic treatments. PMID:26131054

  17. Recent Progress on Nutraceutical Research in Prostate Cancer

    PubMed Central

    Li, Yiwei; Ahmad, Aamir; Kong, Dejuan; Bao, Bin; Sarkar, Fazlul H.

    2014-01-01

    Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate Cancer (PCa) is most frequently diagnosed cancer and second leading cause of cancer-related death in men in US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3’-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to down-regulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC) related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug-resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival. PMID:24375392

  18. Milk and the risk and progression of cancer.

    PubMed

    Rock, Cheryl L

    2011-01-01

    Observational evidence suggests that nutritional factors contribute to a substantial proportion of cancer cases, and milk contains numerous bioactive substances that could affect risk and progression of cancer. Cancer results from multiple genetic and epigenetic events over time, so demonstrating a specific effect of nutrients or other bioactive food components in human cancer is challenging. Epidemiological evidence consistently suggests that milk intake is protective against colorectal cancer. Calcium supplements have been shown to reduce risk for recurrence of adenomatous polyps. Calcium supplementation has not been observed to reduce risk for colon cancer, although long latency and baseline calcium intake affect interpretation of these results. High calcium intake from both food and supplements is associated with increased risk for advanced or fatal prostate cancer. Results from epidemiological studies examining the relationship between intake of dairy foods and breast or ovarian cancer risk are not consistent. Animal studies have suggested that galactose may be toxic to ovarian cells, but results from epidemiological studies that have examined ovarian cancer risk and milk and/or lactose intakes are mixed. Dietary guidelines for cancer prevention encourage meeting recommended levels of calcium intake primarily through food choices rather than supplements, and choosing low-fat or nonfat dairy foods.

  19. Angiogenesis in prostate cancer: onset, progression and imaging.

    PubMed

    Russo, Giovanna; Mischi, Massimo; Scheepens, Wout; De la Rosette, Jean J; Wijkstra, Hessel

    2012-12-01

    What's known on the subject? and What does the study add? Today, angiogenesis is known to play a key role in cancer growth and development. Emerging cancer treatments are based on the suppression of angiogenesis, and modern imaging techniques investigate changes in the microvasculature that are caused by angiogenesis. As for other forms of cancers, angiogenesis is well recognised as a fundamental process in the development of prostate cancer. The novelty of this extensive report on angiogenesis in cancer, with particular attention on prostate cancer and the imaging techniques able to detect it, is the new prospective to the subject. In contrast with the other available reviews, this report goes from 'theory' to 'practice', establishing a clear link between angiogenesis development and imaged angiogenesis features. Once the key role of angiogenesis in the development of cancer and in particular prostate cancer has been fully described, attention is turned to the current imaging methods with the potential to assess the angiogenesis process and, as a consequence, to detect and localise prostate cancer. • As confirmed by all available statistics, cancer represents a major clinical and societal problem in the developed world. The form of cancer with the highest incidence in men is prostate cancer. For prostate cancer, as well as for most forms of cancer, detection of the disease at an early stage is critical to reduce mortality and morbidity. • Today, it is well known that pathological angiogenesis represents a crucial step in cancer development and progression. Comparable with most forms of cancer, angiogenesis also plays a fundamental role for prostate cancer growth. • As a consequence, angiogenesis is an ideal target not only for novel anti-angiogenic therapies, but also for modern imaging techniques that aim at cancer localisation by detection of angiogenic microvascular changes. • These techniques are mainly based on magnetic resonance, ultrasound, and

  20. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    NASA Astrophysics Data System (ADS)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile; Forné, Thierry; Lesne, Annick

    2016-08-01

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  1. c-FOS suppresses ovarian cancer progression by changing adhesion

    PubMed Central

    Oliveira-Ferrer, L; Rößler, K; Haustein, V; Schröder, C; Wicklein, D; Maltseva, D; Khaustova, N; Samatov, T; Tonevitsky, A; Mahner, S; Jänicke, F; Schumacher, U; Milde-Langosch, K

    2014-01-01

    Background: C-Fos was initially described as oncogene, but was associated with favourable prognosis in ovarian cancer (OvCa) patients. The molecular and functional aspects underlying this effect are still unknown. Methods: Using stable transfectants of SKOV3 and OVCAR8 cells, proliferation, migration, invasion and apoptotic potential of c-FOS-overexpressing clones and controls were compared. Adherence to components of the extracellular matrix was analysed in static assays, and adhesion to E-selectin, endothelial and mesothelial cells in dynamic flow assays. The effect of c-FOS in vivo was studied after intraperitoneal injection of SKOV3 clones into SCID mice, and changes in gene expression were determined by microarray analysis. Results: Tumour growth after injection into SCID mice was strongly delayed by c-FOS overexpression, with reduction of lung metastases and circulating tumour cells. In vitro, c-FOS had only weak influence on proliferation and migration, but was strongly pro-apoptotic. Adhesion to components of the extracellular matrix (collagen I, IV) and to E-selectin, endothelial and mesothelial cells was significantly reduced in c-FOS-overexpressing OvCa cells. This corresponds to deregulation of adhesion proteins and glycosylation enzymes in microarray analysis. Conclusion: In addition to its known pro-apoptotic effect, c-FOS might influence OvCa progression by changing the adhesion of OvCa cells to peritoneal surfaces. PMID:24322891

  2. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting

    PubMed Central

    Nandana, Srinivas; Chung, Leland WK

    2014-01-01

    Skeletal metastasis in advanced prostate cancer (PCa) patients remains a significant cause of morbidity and mortality. Research utilizing animal models during the past decade has reached a consensus that PCa progression and distant metastasis can be tackled at the molecular level. Although there are a good number of models that have shown to facilitate the study of PCa initiation and progression at the primary site, models that mimic the distant dissemination of cancer cells, particularly bone metastasis, are scarce. Despite this limitation, the field has gleaned valuable knowledge on the underlying molecular mechanisms and pathways of PCa progression, including local invasion and distant metastasis, and has moved forward in developing the concepts of current therapeutic modalities. The purpose of this review is to put together recent work on pathways that are currently being targeted for therapy, as well as other prospective novel therapeutic targets to be developed in the future against metastatic and potentially lethal PCa in patients. PMID:25374910

  3. Recent Progress in the Diagnosis and Treatment of Ovarian Cancer

    PubMed Central

    Jelovac, Danijela; Armstrong, Deborah K.

    2013-01-01

    Epithelial ovarian cancer is the most lethal of the gynecologic malignancies, largely due to the advanced stage at diagnosis in most patients. Screening strategies using ultrasound and the cancer antigen (CA) 125 tumor marker are currently under study and may lower stage at diagnosis but have not yet been shown to improve survival. Women who have inherited a deleterious mutation in the BRCA1 or BRCA2 gene and those with the Lynch syndrome (hereditary nonpolyposis colorectal cancer) have the highest risk of developing ovarian cancer but account for only approximately 10% of those with the disease. Other less common and less well-defined genetic syndromes may increase the risk of ovarian cancer, but their contribution to genetic risk is small. A clear etiology for sporadic ovarian cancer has not been identified, but risk is affected by reproductive and hormonal factors. Surgery has a unique role in ovarian cancer, as it is used not only for diagnosis and staging but also therapeutically, even in patients with widely disseminated, advanced disease. Ovarian cancer is highly sensitive to chemotherapy drugs, particularly the platinum agents, and most patients will attain a remission with initial treatment. Recent advances in the delivery of chemotherapy using the intraperitoneal route have further improved survival after initial therapy. Although the majority of ovarian cancer patients will respond to initial chemotherapy, most will ultimately develop disease recurrence. Chemotherapy for recurrent disease includes platinum-based, multiagent regimens for women whose disease recurs more than 6 to 12 months after the completion of initial therapy and sequential single agents for those whose disease recurs earlier. New targeted biologic agents, particularly those involved with the vascular endothelial growth factor pathway and those targeting the poly (ADP-ribose) polymerase (PARP) enzyme, hold great promise for improving the outcome of ovarian cancer. PMID:21521830

  4. Progress on Simulating the Initiation of Vacuum Insulator Flashover

    SciTech Connect

    Perkins, M P; Houck, T L; Javedani, J B; Vogtlin, G E; Goerz, D A

    2009-06-26

    Vacuum insulators are critical components in many pulsed power systems. The insulators separate the vacuum and non-vacuum regions, often under great stress due to high electric fields. The insulators will often flashover at the dielectric vacuum interface for electric field values much lower than for the bulk breakdown through the material. Better predictive models and computational tools are needed to enable insulator designs in a timely and inexpensive manner for advanced pulsed power systems. In this article we will discuss physics models that have been implemented in a PIC code to better understand the initiation of flashover. The PIC code VORPAL has been ran on the Linux cluster Hera at LLNL. Some of the important physics modules that have been implemented to this point will be discussed for simple angled insulators. These physics modules include field distortion due to the dielectric, field emission, secondary electron emission, insulator charging, and the effects of magnitude fields. In the future we will incorporate physics modules to investigate the effects of photoemission, electron stimulated desorption, and gas ionization. This work will lead to an improved understanding of flashover initiation and better computational tools for advanced insulator design.

  5. Progressing from initially ambiguous functional analyses: three case examples.

    PubMed

    Tiger, Jeffrey H; Fisher, Wayne W; Toussaint, Karen A; Kodak, Tiffany

    2009-01-01

    Most often functional analyses are initiated using a standard set of test conditions, similar to those described by Iwata, Dorsey, Slifer, Bauman, and Richman [Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). Toward a functional analysis of self-injury. Journal of Applied Behavior Analysis, 27, 197-209 (Reprinted from Analysis and Intervention in Developmental Disabilities, 2, 3-20, 1982)]. These test conditions involve the careful manipulation of motivating operations, discriminative stimuli, and reinforcement contingencies to determine the events related to the occurrence and maintenance of problem behavior. Some individuals display problem behavior that is occasioned and reinforced by idiosyncratic or otherwise unique combinations of environmental antecedents and consequences of behavior, which are unlikely to be detected using these standard assessment conditions. For these individuals, modifications to the standard test conditions or the inclusion of novel test conditions may result in clearer assessment outcomes. The current study provides three case examples of individuals whose functional analyses were initially undifferentiated; however, modifications to the standard conditions resulted in the identification of behavioral functions and the implementation of effective function-based treatments.

  6. Recent progress in nanotechnology for cancer therapy.

    PubMed

    Tang, Mu-Fei; Lei, Lei; Guo, Sheng-Rong; Huang, Wen-Lin

    2010-09-01

    The application of nanotechnology significantly benefits clinical practice in cancer diagnosis, treatment, and management. Especially, nanotechnology offers a promise for the targeted delivery of drugs, genes, and proteins to tumor tissues and therefore alleviating the toxicity of anticancer agents in healthy tissues. This article reviews current nanotechnology platforms for anticancer drug delivery, including polymeric nanoparticles, liposomes, dendrimers, nanoshells, carbon nanotubes, superparamagnetic nanoparticles, and nucleic acid-based nanoparticles [DNA, RNA interference (RNAi), and antisense oligonucleotide (ASO)] as well as nanotechnologies for combination therapeutic strategies, for example, nanotechnologies combined with multidrug-resistance modulator, ultrasound, hyperthermia, or photodynamic therapy. This review raises awareness of the advantages and challenges for the application of these therapeutic nanotechnologies, in light of some recent advances in nanotechnologic drug delivery and cancer therapy.

  7. SPANXB2 and Prostate Cancer Progression

    DTIC Science & Technology

    2013-10-01

    that SPANX-B2 may be the key regulator of prostate cancer aggressive cell behavior and metastasis. In this report, for the first time, we illustrate...that regulatory role of SPANXB2 in PC3 cells by using shRNA knockdown technique. Knockdown of SPANXB2 in PC3 cells significantly reduces the cell ...proliferation, migration, and invasion ability compared with the wild type PC3 cells . Additionally, co-culture of these knockdown cells with stromas

  8. AR Alternative Splicing and Prostate Cancer Progression

    DTIC Science & Technology

    2012-07-01

    the PCR target regions . For conventional PCR, genomic DNA was amplified using a Taq Polymerase PCR kit (Qia- gen), according to the manufacturer’s...n repeats and AT-rich sequence in both of these regions (Fig. 4C). It is common for the endpoints of genomic deletions or insertions to map to...rearrangements under- lying TE- related genetic diseases, including cancer (29), and often arise through NAHR. However, sequencing the 22Rv1 AR break fusion

  9. Geranylgeranylacetone inhibits ovarian cancer progression in vitro and in vivo

    SciTech Connect

    Hashimoto, Kae; Morishige, Ken-ichirou . E-mail: mken@gyne.med.osaka-u.ac.jp; Sawada, Kenjiro; Ogata, Seiji; Tahara, Masahiro; Shimizu, Shoko; Sakata, Masahiro; Tasaka, Keiichi; Kimura, Tadashi

    2007-04-27

    Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation.

  10. Differential action of glycoprotein hormones: significance in cancer progression.

    PubMed

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  11. Vertebral Metastasis as the Initial Manifestation of Colon Cancer

    PubMed Central

    Jain, Tushina; Williams, Renee; Liechty, Benjamin

    2016-01-01

    Oncology guidelines currently recommend against performing colonoscopies in the workup of adenocarcinoma of unknown primary unless colonic malignancy is otherwise suggested by clinical signs or symptoms. We present 2 cases of metastatic colonic adenocarcinoma that presented only with neurologic symptoms from vertebral metastasis. Although bony metastases are a rare presentation of colon cancer and colonoscopy is not warranted in the initial workup of adenocarcinoma of unknown primary, we describe these cases as a reminder that bony metastases do not rule out a colon cancer diagnosis. PMID:27807574

  12. Vertebral Metastasis as the Initial Manifestation of Colon Cancer.

    PubMed

    Jain, Tushina; Williams, Renee; Liechty, Benjamin; Ann Chen, Lea

    2016-08-01

    Oncology guidelines currently recommend against performing colonoscopies in the workup of adenocarcinoma of unknown primary unless colonic malignancy is otherwise suggested by clinical signs or symptoms. We present 2 cases of metastatic colonic adenocarcinoma that presented only with neurologic symptoms from vertebral metastasis. Although bony metastases are a rare presentation of colon cancer and colonoscopy is not warranted in the initial workup of adenocarcinoma of unknown primary, we describe these cases as a reminder that bony metastases do not rule out a colon cancer diagnosis.

  13. New Progress of Epigenetic Biomarkers in Urological Cancer

    PubMed Central

    Cao, Ziyi

    2016-01-01

    Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers. PMID:27594736

  14. Clinical trial designs for rare diseases: Studies developed and discussed by the International Rare Cancers Initiative

    PubMed Central

    Bogaerts, Jan; Sydes, Matthew R.; Keat, Nicola; McConnell, Andrea; Benson, Al; Ho, Alan; Roth, Arnaud; Fortpied, Catherine; Eng, Cathy; Peckitt, Clare; Coens, Corneel; Pettaway, Curtis; Arnold, Dirk; Hall, Emma; Marshall, Ernie; Sclafani, Francesco; Hatcher, Helen; Earl, Helena; Ray-Coquard, Isabelle; Paul, James; Blay, Jean-Yves; Whelan, Jeremy; Panageas, Kathy; Wheatley, Keith; Harrington, Kevin; Licitra, Lisa; Billingham, Lucinda; Hensley, Martee; McCabe, Martin; Patel, Poulam M.; Carvajal, Richard; Wilson, Richard; Glynne-Jones, Rob; McWilliams, Rob; Leyvraz, Serge; Rao, Sheela; Nicholson, Steve; Filiaci, Virginia; Negrouk, Anastassia; Lacombe, Denis; Dupont, Elisabeth; Pauporté, Iris; Welch, John J.; Law, Kate; Trimble, Ted; Seymour, Matthew

    2015-01-01

    Background The past three decades have seen rapid improvements in the diagnosis and treatment of most cancers and the most important contributor has been research. Progress in rare cancers has been slower, not least because of the challenges of undertaking research. Settings The International Rare Cancers Initiative (IRCI) is a partnership which aims to stimulate and facilitate the development of international clinical trials for patients with rare cancers. It is focused on interventional – usually randomised – clinical trials with the clear goal of improving outcomes for patients. The key challenges are organisational and methodological. A multi-disciplinary workshop to review the methods used in ICRI portfolio trials was held in Amsterdam in September 2013. Other as-yet unrealised methods were also discussed. Results The IRCI trials are each presented to exemplify possible approaches to designing credible trials in rare cancers. Researchers may consider these for use in future trials and understand the choices made for each design. Interpretation Trials can be designed using a wide array of possibilities. There is no ‘one size fits all’ solution. In order to make progress in the rare diseases, decisions to change practice will have to be based on less direct evidence from clinical trials than in more common diseases. PMID:25542058

  15. American Society of Clinical Oncology Obesity Initiative: Rationale, Progress, and Future Directions.

    PubMed

    Ligibel, Jennifer A; Wollins, Dana

    2016-12-10

    Obesity is increasingly being linked to the risk of developing and dying from cancer. In recognition of the growing contribution of obesity to cancer risk and outcomes, ASCO made obesity and cancer one of its core initiatives in 2014. The goals of this initiative included raising awareness of the relationship between obesity and cancer, providing tools and resources to oncology providers and patients to help encourage conversations regarding weight management in cancer survivors, fostering a robust research agenda, and advocating for access to evidence-based weight management programs for cancer survivors. Efforts to date have included developing patient and provider toolkits focused on weight management and physical activity, publishing a policy statement outlining ASCO's initiatives in this area, and hosting a summit focused on obesity research in cancer populations. As ASCO has defined its priorities in the area of obesity and cancer, it has become increasingly clear that obesity is a problem that extends far beyond its impact on cancer risk and outcomes. Many groups, including those focused on heart disease, diabetes, and endocrinology, have been developing, testing, and implementing obesity prevention and treatment strategies for years. As ASCO moves forward with its obesity initiative, the next steps will focus on forging collaboration with groups working on obesity-related initiatives both within and outside of the field of cancer to learn from their efforts and to partner with them on efforts to increase the education of medical professionals; raising awareness in lay populations regarding the negative health consequences of obesity and effective strategies to foster weight loss; developing collaborative research initiatives; and working together to advocate for the societal changes that will be needed to combat the obesity epidemic in the United States and beyond.

  16. Vitamin D, intermediary metabolism and prostate cancer tumor progression

    PubMed Central

    Wang, Wei-Lin W.; Tenniswood, Martin

    2014-01-01

    Epidemiological data have demonstrated an inverse association between serum vitamin D3 levels, cancer incidence and related mortality. However, the effects of vitamin D on prostate cancer biology and its utility for prevention of prostate cancer progression are not as well-defined. The data are often conflicting: some reports suggest that vitamin D3 induces apoptosis in androgen dependent prostate cancer cell lines, while others suggest that vitamin D3 only induces cell cycle arrest. Recent molecular studies have identified an extensive synergistic crosstalk between the vitamin D- and androgen-mediated mRNA and miRNA expression, adding an additional layer of post-transcriptional regulation to the known VDR- and AR-regulated gene activation. The Warburg effect, the inefficient metabolic pathway that converts glucose to lactate for rapid energy generation, is a phenomenon common to many different types of cancer. This process supports cell proliferation and promotes cancer progression via alteration of glucose, glutamine and lipid metabolism. Prostate cancer is a notable exception to this general process since the metabolic switch that occurs early during malignancy is the reverse of the Warburg effect. This “anti-Warburg effect” is due to the unique biology of normal prostate cells that harbor a truncated TCA cycle that is required to produce and secret citrate. In prostate cancer cells, the TCA cycle activity is restored and citrate oxidation is used to produce energy for cancer cell proliferation. 1,25(OH)2D3 and androgen together modulates the TCA cycle via transcriptional regulation of zinc transporters, suggesting that 1,25(OH)2D3 and androgen maintain normal prostate metabolism by blocking citrate oxidation. These data demonstrate the importance of androgens in the anti-proliferative effect of vitamin D in prostate cancer and highlight the importance of understanding the crosstalk between these two signaling pathways. PMID:24860512

  17. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. Focus Meeting 2, ``Astronomical Heritage: Progressing the UNESCO-IAU Initiative'' Introduction and overview

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive; Sidorenko, Anna

    2016-10-01

    Marking seven years of formal cooperation between the IAU and the UNESCO World Heritage Centre to implement UNESCO's ``Astronomy and World Heritage'' Thematic Initiative, this Focus Meeting reviewed achievements, challenges, and progress on particular World Heritage List nomination projects.

  19. UG311, An Oncofetal Marker Lost with Prostate Cancer Progression

    DTIC Science & Technology

    2001-04-01

    i~iit,• S... -{ $. .. .. ,, . .. .. . . .... . .. . ... . >FIGURE THE IGF AXIS IN THE DEVELOPMENT AND PROGRESSION OF PROSTATE CANCER. Christopher W...19. 55. Chan, J.M., Stampfer , M.J., Giovannucci, E., Gann, P.H., et al. 1998, Science, 279, 563. 56. Wolk, A., Mantzoros, C.S., Andersson, S.O

  20. Global threat reduction initiative Russian nuclear material removal progress

    SciTech Connect

    Cummins, Kelly

    2008-07-15

    In December 1999 representatives from the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) started discussing a program to return to Russia Soviet- or Russian-supplied highly enriched uranium (HEU) fuel stored at the Russian-designed research reactors outside Russia. Trilateral discussions among the United States, Russian Federation, and the International Atomic Energy Agency (IAEA) have identified more than 20 research reactors in 17 countries that have Soviet- or Russian-supplied HEU fuel. The Global Threat Reduction Initiative's Russian Research Reactor Fuel Return Program is an important aspect of the U.S. Government's commitment to cooperate with the other nations to prevent the proliferation of nuclear weapons and weapons-usable proliferation-attractive nuclear materials. To date, 496 kilograms of Russian-origin HEU have been shipped to Russia from Serbia, Latvia, Libya, Uzbekistan, Romania, Bulgaria, Poland, Germany, and the Czech Republic. The pilot spent fuel shipment from Uzbekistan to Russia was completed in April 2006. (author)

  1. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    PubMed Central

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  2. Molecular therapy of colorectal cancer: progress and future directions.

    PubMed

    Weng, Wenhao; Feng, Junlan; Qin, Huanlong; Ma, Yanlei

    2015-02-01

    Colorectal cancer (CRC) remains one of the most common types of cancer and leading causes of cancer death worldwide. Although the introduction of cytotoxic drugs such as oxaliplatin, irinotecan and fluorouracil has improved the treatment of advanced CRC, the individual response to chemoradiotherapy varies tremendously from one patient to another. However, recent progress in CRC molecular therapies may provide new insight into the treatment of this disease. Currently, components of the EGFR, VEGF, Wnt and NF-kB pathways are the most important targets for CRC therapy. This review chronicles the development of molecular CRC therapies over the past few decades. We also provide an update on the current progress of research concerning the molecular pathways leading to CRC and discuss the possible implications for CRC therapy.

  3. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?

    PubMed Central

    Sabharwal, Simran S.; Schumacker, Paul T.

    2015-01-01

    Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy. PMID:25342630

  4. Depression in cancer: The many biobehavioral pathways driving tumor progression.

    PubMed

    Bortolato, Beatrice; Hyphantis, Thomas N; Valpione, Sara; Perini, Giulia; Maes, Michael; Morris, Gerwyn; Kubera, Marta; Köhler, Cristiano A; Fernandes, Brisa S; Stubbs, Brendon; Pavlidis, Nicholas; Carvalho, André F

    2017-01-01

    Major Depressive Disorder (MDD) is common among cancer patients, with prevalence rates up to four-times higher than the general population. Depression confers worse outcomes, including non-adherence to treatment and increased mortality in the oncology setting. Advances in the understanding of neurobiological underpinnings of depression have revealed shared biobehavioral mechanisms may contribute to cancer progression. Moreover, psychosocial stressors in cancer promote: (1) inflammation and oxidative/nitrosative stress; (2) a decreased immunosurveillance; and (3) a dysfunctional activation of the autonomic nervous system and of the hypothalamic-pituitaryadrenal axis. Consequently, the prompt recognition of depression among patients with cancer who may benefit of treatment strategies targeting depressive symptoms, cognitive dysfunction, fatigue and sleep disturbances, is a public health priority. Moreover, behavioral strategies aiming at reducing psychological distress and depressive symptoms, including addressing unhealthy diet and life-style choices, as well as physical inactivity and sleep dysfunction, may represent important strategies not only to treat depression, but also to improve wider cancer-related outcomes. Herein, we provide a comprehensive review of the intertwined biobehavioral pathways linking depression to cancer progression. In addition, the clinical implications of these findings are critically reviewed.

  5. Regulation of cancer progression by β-endorphin neuron

    PubMed Central

    Sarkar, Dipak K.; Murugan, Sengottuvelan; Zhang, Changqing; Boyadjieva, Nadka

    2011-01-01

    It is becoming increasingly clear that stressful life events can impact cancer growth and metastasis by modulating nervous, endocrine and immune systems. The purpose of this review is to briefly describe the process by which stress may potentiate carcinogenesis and how reducing body stress may prevent cancer growth and progression. The opioid peptide beta-endorphin (BEP) plays a critical role in brining the stress axis to a state of homeostasis. We have recently shown that enhancement of endogenous levels of BEP in the hypothalamus via BEP neuron transplantation suppresses stress response, promotes immune function and reduces the incidence of cancer in rat models of prostate and breast cancers. The cancer preventive effect of BEP is mediated through the suppression of sympathetic neuronal function that results in an increased peripheral natural killer (NK) cell and macrophage activities, elevated levels of anti-inflammatory cytokines and reduced levels of inflammatory cytokines. BEP inhibition of tumor progression also involves alteration in the tumor microenvironment, possibly due to suppression of catecholamine and inflammatory cytokines production that are known to alter DNA repair, cell-matrix attachments, angiogenic process and epithelial-mesenchymal transition. Thus, BEP cell therapy may offer some therapeutic value in cancer prevention. PMID:22287549

  6. Clinical cancer advances 2011: Annual Report on Progress Against Cancer from the American Society of Clinical Oncology.

    PubMed

    Vogelzang, Nicholas J; Benowitz, Steven I; Adams, Sylvia; Aghajanian, Carol; Chang, Susan Marina; Dreyer, Zoann Eckert; Janne, Pasi A; Ko, Andrew H; Masters, Greg A; Odenike, Olatoyosi; Patel, Jyoti D; Roth, Bruce J; Samlowski, Wolfram E; Seidman, Andrew D; Tap, William D; Temel, Jennifer S; Von Roenn, Jamie H; Kris, Mark G

    2012-01-01

    A message from ASCO'S President. It has been forty years since President Richard Nixon signed the National Cancer Act of 1971, which many view as the nation's declaration of the "War on Cancer." The bill has led to major investments in cancer research and significant increases in cancer survival. Today, two-thirds of patients survive at least five years after being diagnosed with cancer compared with just half of all diagnosed patients surviving five years after diagnosis in 1975. The research advances detailed in this year's Clinical Cancer Advances demonstrate that improvements in cancer screening, treatment, and prevention save and improve lives. But although much progress has been made, cancer remains one of the world's most serious health problems. In the United States, the disease is expected to become the nation's leading cause of death in the years ahead as our population ages. I believe we can accelerate the pace of progress, provided that everyone involved in cancer care works together to achieve this goal. It is this viewpoint that has shaped the theme for my presidential term: Collaborating to Conquer Cancer. In practice, this means that physicians and researchers must learn from every patient's experience, ensure greater collaboration between members of a patient's medical team, and involve more patients in the search for cures through clinical trials. Cancer advocates, insurers, and government agencies also have important roles to play. Today, we have an incredible opportunity to improve the quality of cancer care by drawing lessons from the real-world experiences of patients. The American Society of Clinical Oncology (ASCO) is taking the lead in this area, in part through innovative use of health information technology. In addition to our existing quality initiatives, ASCO is working with partners to develop a comprehensive rapid-learning system for cancer care. When complete, this system will provide physicians with personalized, real

  7. The Role of Cytokines in Breast Cancer Development and Progression

    PubMed Central

    Esquivel-Velázquez, Marcela; Ostoa-Saloma, Pedro; Palacios-Arreola, Margarita Isabel; Nava-Castro, Karen E.; Castro, Julieta Ivonne

    2015-01-01

    Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders. PMID:25068787

  8. Yin and Yang of Heparanase in Breast Cancer Initiation

    DTIC Science & Technology

    2012-04-01

    less effective in stimulating breast tumor initiation and progression. Experimental procedures and results Sulodexide treatment accelerates PyMT...mediated tumorigenesis. Sulodexide is a mixture of dermatan sulfate (20%) and low-molecular-weight heparin (80%) (Keryx Biopharmaceuticals, Inc...New York). We examined the ability of sulodexide to inhibit HPR1 activity by using a novel ELISA method developed in my laboratory (3-7). As shown

  9. Spinning Reserve From Hotel Load Response: Initial Progress

    SciTech Connect

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby and Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial

  10. Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens.

    PubMed

    Uttam, Shikhar; Pham, Hoa V; LaFace, Justin; Leibowitz, Brian; Yu, Jian; Brand, Randall E; Hartman, Douglas J; Liu, Yang

    2015-11-15

    Early cancer detection currently relies on screening the entire at-risk population, as with colonoscopy and mammography. Therefore, frequent, invasive surveillance of patients at risk for developing cancer carries financial, physical, and emotional burdens because clinicians lack tools to accurately predict which patients will actually progress into malignancy. Here, we present a new method to predict cancer progression risk via nanoscale nuclear architecture mapping (nanoNAM) of unstained tissue sections based on the intrinsic density alteration of nuclear structure rather than the amount of stain uptake. We demonstrate that nanoNAM detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis who did and did not develop colon cancer up to 13 years after their initial colonoscopy. NanoNAM of the initial biopsies correctly classified 12 of 15 patients who eventually developed colon cancer and 15 of 18 who did not, with an overall accuracy of 85%. Taken together, our findings demonstrate great potential for nanoNAM in predicting cancer progression risk and suggest that further validation in a multicenter study with larger cohorts may eventually advance this method to become a routine clinical test.

  11. Impact of Disease Progression Date Determination on Progression-free Survival Estimates in Advanced Lung Cancer

    PubMed Central

    Qi, Yingwei; Ziegler, Allen; Katie, L.; Hillman, Shauna L.; Redman, Mary W.; Schild, Steven E.; Gandara, David R.; Adjei, Alex A.; Mandrekar, Sumithra J.

    2012-01-01

    PURPOSE Progression-free survival (PFS) based endpoints are controversial; however in advanced lung cancer, overall survival is largely influenced by the progression status. We thus evaluated the impact of progression date (PD) determination approach on PFS estimates. METHODS Individual patient data from 21 trials (14 NCCTG; 7 SWOG) were used. Reported progression date (RPD) was defined as either the scan date or the clinical deterioration date. PD was determined using 4 methods (M): RPD (M1), one day after last progression-free scan (M2), midpoint between last progression-free scan and RPD (M3), and using an interval censoring approach (M4). PFS was estimated using Kaplan-Meier (M1, M2, M3), and maximum likelihood (M4). Simulation studies were performed to understand the impact of the length of time elapsed between the last progression-free scan and the PD on time to progression (TTP) estimates. RESULTS PFS estimates using RPD were the highest, with M2 being the most conservative. M3 and M4 were similar due to majority of progressions occurring during treatment (i.e., frequent disease assessments). M3 was less influenced by the length of the assessment schedules (%difference from true TTP <1.5%) compared to M1 (11% to 30%) and M2 (-8% to -29%). The overall study conclusion was unaffected by the method used for randomized trials. CONCLUSION The magnitude of difference in the PFS estimates is large enough to alter trial conclusions in advanced lung cancer. Standards for PD determination, use of sensitivity analyses, and randomized trials are critical when designing trials and reporting efficacy using PFS based endpoints. PMID:22434489

  12. The role of MT2-MMP in cancer progression

    SciTech Connect

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-03-05

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  13. NF-κB gene signature predicts prostate cancer progression

    PubMed Central

    Jin, Renjie; Yi, Yajun; Yull, Fiona E.; Blackwell, Timothy S.; Clark, Peter E.; Koyama, Tatsuki; Smith, Joseph A.; Matusik, Robert J.

    2014-01-01

    In many prostate cancer (PCa) patients, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage PCa would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with PCa progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse PCa model when compared to Hi-Myc alone. Using the non-malignant NF-κB activated androgen depleted mouse prostate, a NF-κB Activated Recurrence Predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with PCa. This transgenic mouse model derived gene signature provides a useful and unique molecular profile for human PCa prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery. PMID:24686169

  14. Inferring Tree Causal Models of Cancer Progression with Probability Raising

    PubMed Central

    Mauri, Giancarlo; Antoniotti, Marco; Mishra, Bud

    2014-01-01

    Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models. PMID:25299648

  15. Progress and remaining challenges for cancer control in Latin America and the Caribbean.

    PubMed

    Strasser-Weippl, Kathrin; Chavarri-Guerra, Yanin; Villarreal-Garza, Cynthia; Bychkovsky, Brittany L; Debiasi, Marcio; Liedke, Pedro E R; Soto-Perez-de-Celis, Enrique; Dizon, Don; Cazap, Eduardo; de Lima Lopes, Gilberto; Touya, Diego; Nunes, Joāo Soares; St Louis, Jessica; Vail, Caroline; Bukowski, Alexandra; Ramos-Elias, Pier; Unger-Saldaña, Karla; Brandao, Denise Froes; Ferreyra, Mayra E; Luciani, Silvana; Nogueira-Rodrigues, Angelica; de Carvalho Calabrich, Aknar Freire; Del Carmen, Marcela G; Rauh-Hain, Jose Alejandro; Schmeler, Kathleen; Sala, Raúl; Goss, Paul E

    2015-10-01

    Cancer is one of the leading causes of mortality worldwide, and an increasing threat in low-income and middle-income countries. Our findings in the 2013 Commission in The Lancet Oncology showed several discrepancies between the cancer landscape in Latin America and more developed countries. We reported that funding for health care was a small percentage of national gross domestic product and the percentage of health-care funds diverted to cancer care was even lower. Funds, insurance coverage, doctors, health-care workers, resources, and equipment were also very inequitably distributed between and within countries. We reported that a scarcity of cancer registries hampered the design of credible cancer plans, including initiatives for primary prevention. When we were commissioned by The Lancet Oncology to write an update to our report, we were sceptical that we would uncover much change. To our surprise and gratification much progress has been made in this short time. We are pleased to highlight structural reforms in health-care systems, new programmes for disenfranchised populations, expansion of cancer registries and cancer plans, and implementation of policies to improve primary cancer prevention.

  16. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression.

    PubMed

    Cheung, Otto K-W; Cheng, Alfred S-L

    2016-01-01

    Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  17. CMTM8 inhibits the carcinogenesis and progression of bladder cancer

    PubMed Central

    GAO, DENGHUI; HU, HAO; WANG, YING; YU, WEIDONG; ZHOU, JIANHUA; WANG, XIAOFENG; WANG, WEIPING; ZHOU, CHUNYAN; XU, KEXIN

    2015-01-01

    Bladder cancer is the most common tumor of the urinary tract. The incidence of bladder cancer has increased in the last few decades, thus novel molecular markers for early diagnosis and more efficacious treatment are urgently needed. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 8 (CMTM8) is downregulated in several types of cancers and is associated with tumor progression. However, CMTM8 expression has been unexplored in bladder cancer to date. Our results revealed that the expression of CMTM8 was negative in 46 of 74 (62.2%) bladder cancer samples via immunohistochemistry assay. CMTM8 downregulation was associated with advancing tumor stage and tumor grade. CMTM8 was successfully overexpressed by lentivirus in EJ and T24 cells, and the CCK-8 and Transwell assays showed that CMTM8 overexpression decreased cell proliferation, migration and invasion in vitro. In tumor xenografts upregulation of CMTM8 inhibited tumor growth and lymph node metastasis in vivo. In conclusion, overexpression of CMTM8 in bladder cancer results in reduced malignant cell growth, migration and invasion, which could make it a potential therapeutic target in the treatment of bladder cancer. PMID:26503336

  18. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    PubMed Central

    Cheung, Otto K.-W.; Cheng, Alfred S.-L.

    2016-01-01

    Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management. PMID:27703473

  19. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy

    PubMed Central

    Poillet-Perez, Laura; Despouy, Gilles; Delage-Mourroux, Régis; Boyer-Guittaut, Michaël

    2014-01-01

    Cancer formation is a complex and highly regulated multi-step process which is highly dependent of its environment, from the tissue to the patient. This complexity implies the development of specific treatments adapted to each type of tumor. The initial step of cancer formation requires the transformation of a healthy cell to a cancer cell, a process regulated by multiple intracellular and extracellular stimuli. The further steps, from the anarchic proliferation of cancer cells to form a primary tumor to the migration of cancer cells to distant organs to form metastasis, are also highly dependent of the tumor environment but of intracellular molecules and pathways as well. In this review, we will focus on the regulatory role of reactive oxygen species (ROS) and autophagy levels during the course of cancer development, from cellular transformation to the formation of metastasis. These data will allow us to discuss the potential of this molecule or pathway as putative future therapeutic targets. PMID:25590798

  20. [Research progress of lung cancer with leptomeningeal metastasis].

    PubMed

    Ma, Chunhua; Jiang, Rong; Li, Jinduo; Wang, Bin; Sun, Liwei; Lv, Yuan

    2014-09-20

    Leptomeningeal metastases is one of the most serious complications of lung cancer, the patients with poor prognosis. Leptomeningeal metastasis in patients with lack specificity of clinical manifestations. The main clinical performance are the damage of cerebral symptoms, cranial nerve and spinal nerve. The diagnosis primarily based on the history of tumor, clinical symptoms, enhance magnetic resnance image (MRI) scan and cerebrospinal fluid cytology. In recent years, new ways of detecting clinically, significantly increase the rate of early detection of leptomeningeal metastases. The effect of comprehensive treatments are still sad. The paper make a review of research progress in pathologic physiology, clinical manifestations, diagnosis methods and treatments of lung cancer with leptomeningeal metastases.

  1. The molecular biology of medullary thyroid carcinoma: A model for cancer development and progression

    SciTech Connect

    Nelkin, B.D.; de Bustros, A.C.; Mabry, M.; Baylin, S.B. )

    1989-06-02

    Medullary thyroid carcinoma (MTC) is an important human cancer for the study of molecular abnormalities that underlie initiation of neoplasia and subsequent cellular changes during tumor progression. Thus tumor can occur in different inherited forms, each mediated by autosomal dominant genetic events. Germline abnormalities on chromosome 10 are linked to at least one type of genetic MTC, multiple endocrine neoplasia type II. These studies of chromosome 10 in DNA from MTC tumors failed to detect frequent loss of polymorphic DNA markers, suggesting that the genetic mechanisms involved in MTC development may be different from those for other inherited cancers such as retinoblastoma. During tumor progression of MTC, abnormalities develop in expression of the mature phenotype of the endocrine cell from which the tumor arises. In cell culture, chemical modulation or gene insertion can lead to partial correction of these defects in differentiation capacity by activating cellular signaling processes. These studies offer opportunities to dissect the molecular events that regulate endocrine cell differentiation, to determine the precise abnormalities that may underlie the initiation and tumor progression events in MTC and related cancers, and, thereby, to identify new targets for therapeutic intervention.

  2. ADAM10: a new player in breast cancer progression?

    PubMed Central

    Mullooly, Maeve; McGowan, Patricia M; Kennedy, Susan A; Madden, Stephen F; Crown, John; O' Donovan, Norma; Duffy, Michael J

    2015-01-01

    Background: The ADAM proteases are best known for their role in shedding the extracellular domain of transmembrane proteins. Among the transmembrane proteins shed by ADAM10 are notch, HER2, E-cadherin, CD44, L1 and the EGFR ligands, EGF and betacellulin. As cleavage of several of these proteins has been implicated in cancer formation and progression, we hypothesised that ADAM10 is also involved in these processes. Methods: ADAM10 expression was decreased by RNA interference and the effects of this on cell numbers, invasion and migration were determined. We also examined the effect of ADAM10 inhibition on breast cancer cell line invasion and migration. Results: Using the triple-negative (TN) breast cancer cell lines, BT20, MDA-MB-231 and the non-TN cell line MDA-MB-453, knockdown of ADAM10 expression significantly decreased in vitro migration (P<0.01; for each cell line). Similarly, treatment with the ADAM10-selective inhibitor GI254023X reduced migration in the three cell lines (for BT20, P<0.001; for MDA-MB-231, P=0.005; for MDA-MB-453, P=0.023). In contrast, neither knockdown of ADAM10 nor treatment with the ADAM10-selective inhibitor GI254023X significantly affected cell numbers. Using extracts of primary breast cancers, higher levels of ADAM10 were found more frequently in high-grade vs low-grade tumours (P<0.001) and in oestrogen receptor (ER)-negative compared with ER-positive tumours (P=0.005). Analysis of pooled publicly available data sets found that high levels of ADAM10 mRNA were associated with adverse outcome in patients with the basal subtype of breast cancer. Conclusions: Based on our combined cell line and breast cancer extract data, we conclude that ADAM10 is likely to be involved in breast cancer progression, especially in the basal subtype. PMID:26284334

  3. Progress with palbociclib in breast cancer: latest evidence and clinical considerations

    PubMed Central

    Rocca, Andrea; Schirone, Alessio; Maltoni, Roberta; Bravaccini, Sara; Cecconetto, Lorenzo; Farolfi, Alberto; Bronte, Giuseppe; Andreis, Daniele

    2016-01-01

    Deregulation of the cell cycle is a hallmark of cancer, and research on cell cycle control has allowed identification of potential targets for anticancer treatment. Palbociclib is a selective inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6), which are involved, with their coregulatory partners cyclin D, in the G1-S transition. Inhibition of this step halts cell cycle progression in cells in which the involved pathway, including the retinoblastoma protein (Rb) and the E2F family of transcription factors, is functioning, although having been deregulated. Among breast cancers, those with functioning cyclin D-CDK4/6-Rb-E2F are mainly hormone-receptor (HR) positive, with some HER2-positive and rare triple-negative cases. Deregulation results from genetic or otherwise occurring hyperactivation of molecules subtending cell cycle progression, or inactivation of cell cycle inhibitors. Based on results of randomized clinical trials, palbociclib was granted accelerated approval by the US Food and Drug Administration (FDA) for use in combination with letrozole as initial endocrine-based therapy for metastatic disease in postmenopausal women with HR-positive, HER2-negative breast cancer, and was approved for use in combination with fulvestrant in women with HR-positive, HER2-negative advanced breast cancer with disease progression following endocrine therapy. This review provides an update of the available knowledge on the cell cycle and its regulation, on the alterations in cyclin D-CDK4/6-Rb-E2F axis in breast cancer and their roles in endocrine resistance, on the preclinical activity of CDK4/6 inhibitors in breast cancer, both as monotherapy and as partners of combinatorial synergic treatments, and on the clinical development of palbociclib in breast cancer. PMID:28203301

  4. Progress with palbociclib in breast cancer: latest evidence and clinical considerations.

    PubMed

    Rocca, Andrea; Schirone, Alessio; Maltoni, Roberta; Bravaccini, Sara; Cecconetto, Lorenzo; Farolfi, Alberto; Bronte, Giuseppe; Andreis, Daniele

    2017-02-01

    Deregulation of the cell cycle is a hallmark of cancer, and research on cell cycle control has allowed identification of potential targets for anticancer treatment. Palbociclib is a selective inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6), which are involved, with their coregulatory partners cyclin D, in the G1-S transition. Inhibition of this step halts cell cycle progression in cells in which the involved pathway, including the retinoblastoma protein (Rb) and the E2F family of transcription factors, is functioning, although having been deregulated. Among breast cancers, those with functioning cyclin D-CDK4/6-Rb-E2F are mainly hormone-receptor (HR) positive, with some HER2-positive and rare triple-negative cases. Deregulation results from genetic or otherwise occurring hyperactivation of molecules subtending cell cycle progression, or inactivation of cell cycle inhibitors. Based on results of randomized clinical trials, palbociclib was granted accelerated approval by the US Food and Drug Administration (FDA) for use in combination with letrozole as initial endocrine-based therapy for metastatic disease in postmenopausal women with HR-positive, HER2-negative breast cancer, and was approved for use in combination with fulvestrant in women with HR-positive, HER2-negative advanced breast cancer with disease progression following endocrine therapy. This review provides an update of the available knowledge on the cell cycle and its regulation, on the alterations in cyclin D-CDK4/6-Rb-E2F axis in breast cancer and their roles in endocrine resistance, on the preclinical activity of CDK4/6 inhibitors in breast cancer, both as monotherapy and as partners of combinatorial synergic treatments, and on the clinical development of palbociclib in breast cancer.

  5. The wound healing, chronic fibrosis, and cancer progression triad

    PubMed Central

    Rybinski, Brad; Franco-Barraza, Janusz

    2014-01-01

    For decades tumors have been recognized as “wounds that do not heal.” Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing. PMID:24520152

  6. MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis.

    PubMed

    Ma, Huabin; Pan, Jin-Shui; Jin, Li-Xin; Wu, Jianfeng; Ren, Yan-Dan; Chen, Pengda; Xiao, Changchun; Han, Jiahuai

    2016-07-01

    The miR-17~92 microRNA (miRNA) cluster host gene is upregulated in a broad spectrum of human cancers including colorectal cancer (CRC). Previous studies have shown that miR-17~92 promotes tumorigenesis and cancer angiogenesis in some tumor models. However, its role in the initiation and progression of CRC remains unknown. In this study, we found that transgenic mice overexpressing miR-17~92 specifically in epithelial cells of the small and large intestines exhibited decreased tumor size and tumor angiogenesis in azoxymethane and dextran sulfate sodium salt (AOM-DSS)-induced CRC model as compared to their littermates control. Further study showed that miR-17~92 inhibited the progression of CRC via suppressing tumor angiogenesis through targeting multiple tumor angiogenesis-inducing genes, TGFBR2, HIF1α, and VEGFA in vivo and in vitro. Collectively, we demonstrated that miR-17~92 suppressed tumor progression by inhibiting tumor angiogenesis in a genetically engineered mouse model, indicating the presence of cellular context-dependent pro- and anti-cancer effects of miR-17~92.

  7. Graphene as Cancer Theranostic Tool: Progress and Future Challenges

    PubMed Central

    Orecchioni, Marco; Cabizza, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2015-01-01

    Nowadays cancer remains one of the main causes of death in the world. Current diagnostic techniques need to be improved to provide earlier diagnosis and treatment. Traditional therapy approaches to cancer are limited by lack of specificity and systemic toxicity. In this scenario nanomaterials could be good allies to give more specific cancer treatment effectively reducing undesired side effects and giving at the same time accurate diagnosis and successful therapy. In this context, thanks to its unique physical and chemical properties, graphene, graphene oxide (GO) and reduced graphene (rGO) have recently attracted tremendous interest in biomedicine including cancer therapy. Herein we analyzed all studies presented in literature related to cancer fight using graphene and graphene-based conjugates. In this context, we aimed at the full picture of the state of the art providing new inputs for future strategies in the cancer theranostic by using of graphene. We found an impressive increasing interest in the material for cancer therapy and/or diagnosis. The majority of the works (73%) have been carried out on drug and gene delivery applications, following by photothermal therapy (32%), imaging (31%) and photodynamic therapy (10%). A 27% of the studies focused on theranostic applications. Part of the works here discussed contribute to the growth of the theranostic field covering the use of imaging (i.e. ultrasonography, positron electron tomography, and fluorescent imaging) combined to one or more therapeutic modalities. We found that the use of graphene in cancer theranostics is still in an early but rapidly growing stage of investigation. Any technology based on nanomaterials can significantly enhance their possibility to became the real revolution in medicine if combines diagnosis and therapy at the same time. We performed a comprehensive summary of the latest progress of graphene cancer fight and highlighted the future challenges and the innovative possible

  8. Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer

    PubMed Central

    Hallett, Robin M.; Girgis-Gabardo, Adele; Gwynne, William D.; Giacomelli, Andrew O.; Bisson, Jennifer N.P.; Jensen, Jeremy E.; Dvorkin-Gheva, Anna; Hassell, John A.

    2016-01-01

    Accumulating data suggests that the initiation and progression of human breast tumors is fueled by a rare subpopulation of tumor cells, termed breast tumor-initiating cells (BTIC), which resist radiotherapy and chemotherapy. Consequently, therapies that abrogate BTIC activity are needed to achieve durable cures for breast cancer patients. To identify such therapies we used a sensitive assay to complete a high-throughput screen of small molecules, including approved drugs, with BTIC-rich mouse mammary tumor cell populations. We found that inhibitors of the serotonin reuptake transporter (SERT) and serotonin receptors, which include approved drugs used to treat mood disorders, were potent inhibitors of mouse BTIC activity as determined by functional sphere-forming assays and the initiation of tumor formation by transplant of drug-exposed tumor cells into syngeneic mice. Moreover, sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), synergized with docetaxel (Taxotere) to shrink mouse breast tumors in vivo. Hence drugs targeting the serotonergic system might be repurposed to treat breast cancer patients to afford more durable breast cancer remissions. PMID:27447971

  9. The dual role of asporin in breast cancer progression

    PubMed Central

    Simkova, Dana; Kharaishvili, Gvantsa; Korinkova, Gabriela; Ozdian, Tomas; Suchánková-Kleplová, Tereza; Soukup, Tomas; Krupka, Michal; Galandakova, Adela; Dzubak, Petr; Janikova, Maria; Navratil, Jiri; Kahounova, Zuzana; Soucek, Karel; Bouchal, Jan

    2016-01-01

    Asporin has been reported as a tumor suppressor in breast cancer, while asporin-activated invasion has been described in gastric cancer. According to our in silico search, high asporin expresion associates with significantly better relapse free survival (RFS) in patients with low-grade tumors but RFS is significantly worse in patients with grade 3 tumors. In line with other studies, we have confirmed asporin expression by RNA scope in situ hybridization in cancer associated fibroblasts. We have also found asporin expression in the Hs578T breast cancer cell line which we confirmed by quantitative RT-PCR and western blotting. From multiple testing, we found that asporin can be downregulated by bone morphogenetic protein 4 while upregulation may be facilited by serum-free cultivation or by three dimensional growth in stiff Alvetex scaffold. Downregulation by shRNA inhibited invasion of Hs578T as well as of CAFs and T47D cells. Invasion of asporin-negative MDA-MB-231 and BT549 breast cancer cells through collagen type I was enhanced by recombinant asporin. Besides other investigations, large scale analysis of aspartic acid repeat polymorphism will be needed for clarification of the asporin dual role in progression of breast cancer. PMID:27409832

  10. The Receptor Tyrosine Kinase AXL in Cancer Progression

    PubMed Central

    Rankin, Erinn B.; Giaccia, Amato J.

    2016-01-01

    The AXL receptor tyrosine kinase (AXL) has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy. PMID:27834845

  11. Clinical implications of epithelial cell plasticity in cancer progression.

    PubMed

    Aparicio, Luis A; Blanco, Moisés; Castosa, Raquel; Concha, Ángel; Valladares, Manuel; Calvo, Lourdes; Figueroa, Angélica

    2015-09-28

    In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients.

  12. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.

    PubMed

    Taniguchi, Naoyuki; Kizuka, Yasuhiko

    2015-01-01

    Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer.

  13. Macrophages promote the progression of premalignant mammary lesions to invasive cancer.

    PubMed

    Carron, Emily C; Homra, Samuel; Rosenberg, Jillian; Coffelt, Seth B; Kittrell, Frances; Zhang, Yiqun; Creighton, Chad J; Fuqua, Suzanne A; Medina, Daniel; Machado, Heather L

    2017-01-31

    Breast cancer initiation, progression and metastasis rely on a complex interplay between tumor cells and their surrounding microenvironment. Infiltrating immune cells, including macrophages, promote mammary tumor progression and metastasis; however, less is known about the role of macrophages in early stage lesions. In this study, we utilized a transplantable p53-null model of early progression to characterize the immune cell components of early stage lesions. We show that macrophages are recruited to ductal hyperplasias with a high tumor-forming potential where they are differentiated and polarized toward a tumor-promoting phenotype. These macrophages are a unique subset of macrophages, characterized by pro-inflammatory, anti-inflammatory and immunosuppressive factors. Macrophage ablation studies showed that macrophages are required for both early stage progression and primary tumor formation. These studies suggest that therapeutic targeting of tumor-promoting macrophages may not only be an effective strategy to block tumor progression and metastasis, but may also have critical implications for breast cancer prevention.

  14. IL-17A-producing CD30(+) Vδ1 T cells drive inflammation-induced cancer progression.

    PubMed

    Kimura, Yoshitaka; Nagai, Nao; Tsunekawa, Naoki; Sato-Matsushita, Marimo; Yoshimoto, Takayuki; Cua, Daniel J; Iwakura, Yoichiro; Yagita, Hideo; Okada, Futoshi; Tahara, Hideaki; Saiki, Ikuo; Irimura, Tatsuro; Hayakawa, Yoshihiro

    2016-09-01

    Although it has been suspected that inflammation is associated with increased tumor metastasis, the exact type of immune response required to initiate cancer progression and metastasis remains unknown. In this study, by using an in vivo tumor progression model in which low tumorigenic cancer cells acquire malignant metastatic phenotype after exposure to inflammation, we found that IL-17A is a critical cue for escalating cancer cell malignancy. We further demonstrated that the length of exposure to an inflammatory microenvironment could be associated with acquiring greater tumorigenicity and that IL-17A was critical for amplifying such local inflammation, as observed in the production of IL-1β and neutrophil infiltration following the cross-talk between cancer and host stromal cells. We further determined that γδT cells expressing Vδ1 semi-invariant TCR initiate cancer-promoting inflammation by producing IL-17A in an MyD88/IL-23-dependent manner. Finally, we identified CD30 as a key molecule in the inflammatory function of Vδ1T cells and the blockade of this pathway targeted this cancer immune-escalation process. Collectively, these results reveal the importance of IL-17A-producing CD30(+) Vδ1T cells in triggering inflammation and orchestrating a microenvironment leading to cancer progression.

  15. Patient-derived Mammosphere and Xenograft Tumour Initiation Correlates with Progression to Metastasis.

    PubMed

    Eyre, Rachel; Alférez, Denis G; Spence, Kath; Kamal, Mohamed; Shaw, Frances L; Simões, Bruno M; Santiago-Gómez, Angélica; Sarmiento-Castro, Aida; Bramley, Maria; Absar, Mohammed; Saad, Zahida; Chatterjee, Sumohan; Kirwan, Cliona; Gandhi, Ashu; Armstrong, Anne C; Wardley, Andrew M; O'Brien, Ciara S; Farnie, Gillian; Howell, Sacha J; Clarke, Robert B

    2016-12-01

    Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.

  16. [Autophagy contributes to the initiation of pancreatic cancer].

    PubMed

    Iovanna, Juan L

    2017-03-01

    The pancreatic adenocarcinoma initiation results from the interaction of genetic events combined with multiple other factors. Among the genetic alterations that contribute to the pathogenesis of this disease, the mutation of the KRAS oncogene is required but not sufficient to trigger this cancer. Pancreatitis, an inflammatory disease, facilitates and accelerates the transformation of pancreatic cells when the KRAS oncogene is mutated. Of note, the repertoire of molecular mediators of pancreatitis which are responsible of the promotion of KRAS-mediated transformation is not completely defined. Importantly, autophagy has been proposed as one of the cellular mechanisms contributing to pancreatic carcinogenesis, especially in the initial phases, in which the oncogene KRAS appears to play its leading role. In addition, autophagy is strongly induced during pancreatitis. Although some aspects of autophagy in pancreatic cancer development are not completely established, we can affirm that overexpression of VMP1, an inducer of autophagy which is specifically activated in pancreas during pancreatitis, improves the development of pancreatic precancerous lesions PanINs when the oncogene KRAS is mutated. In addition, inhibition of the autophagic flux with chloroquine inhibits the KRAS pro-tumor effect in the pancreas. In conclusion, activation of expression of VMP1 improves the pro-tumor role of KRAS in pancreas.

  17. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    SciTech Connect

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-02-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  18. SPINK1 promotes colorectal cancer progression by downregulating Metallothioneins expression

    PubMed Central

    Tiwari, R; Pandey, S K; Goel, S; Bhatia, V; Shukla, S; Jing, X; Dhanasekaran, S M; Ateeq, B

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world, and second leading cause of cancer deaths in the US. Although, anti-EGFR therapy is commonly prescribed for CRC, patients harboring mutations in KRAS or BRAF show poor treatment response, indicating an ardent demand for new therapeutic targets discovery. SPINK1 (serine peptidase inhibitor, Kazal type 1) overexpression has been identified in many cancers including the colon, lung, breast and prostate. Our study demonstrates the functional significance of SPINK1 in CRC progression and metastases. Stable knockdown of SPINK1 significantly decreases cell proliferation, invasion and soft agar colony formation in the colon adenocarcinoma WiDr cells. Conversely, an increase in these oncogenic phenotypes was observed on stimulation with SPINK1-enriched conditioned media (CM) in multiple benign models such as murine colonic epithelial cell lines, MSIE and YAMC (SPINK3-negative). Mechanistically, SPINK1 promotes tumorigenic phenotype by activating phosphatidylinositol 3-kinase (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways, and the SPINK1-positive WiDr cells are sensitive to AKT and MEK inhibitors. Importantly, SPINK1 silencing mediated upregulation of various Metallothionein isoforms, considered as tumor suppressors in CRC, confer sensitivity to doxorubicin, which strengthens the rationale for using the combinatorial treatment approach for the SPINK1-positive CRC patients. Furthermore, in vivo studies using chicken chorioallantoic membrane assay, murine xenograft studies and metastasis models further suggest a pivotal role of SPINK1 in CRC progression and metastasis. Taken together, our study demonstrates an important role for the overexpressed SPINK1 in CRC disease progression, a phenomenon that needs careful evaluation towards effective therapeutic target development. PMID:26258891

  19. Tumor-derived exosomes and their role in cancer progression

    PubMed Central

    Whiteside, Theresa L

    2017-01-01

    Tumor cells actively produce, release and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon the contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as non-invasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. PMID:27117662

  20. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    PubMed

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.

  1. Interaction of tumor cells and lymphatic vessels in cancer progression.

    PubMed

    Alitalo, A; Detmar, M

    2012-10-18

    Metastatic spread of cancer through the lymphatic system affects hundreds of thousands of patients yearly. Growth of new lymphatic vessels, lymphangiogenesis, is activated in cancer and inflammation, but is largely inactive in normal physiology, and therefore offers therapeutic potential. Key mediators of lymphangiogenesis have been identified in developmental studies. During embryonic development, lymphatic endothelial cells derive from the blood vascular endothelium and differentiate under the guidance of lymphatic-specific regulators, such as the prospero homeobox 1 transcription factor. Vascular endothelial growth factor-C (VEGF-C) and VEGF receptor 3 signaling are essential for the further development of lymphatic vessels and therefore they provide a promising target for inhibition of tumor lymphangiogenesis. Lymphangiogenesis is important for the progression of solid tumors as shown for melanoma and breast cancer. Tumor cells may use chemokine gradients as guidance cues and enter lymphatic vessels through intercellular openings between endothelial cell junctions or, possibly, by inducing larger discontinuities in the endothelial cell layer. Tumor-draining sentinel lymph nodes show enhanced lymphangiogenesis even before cancer metastasis and they may function as a permissive 'lymphovascular niche' for the survival of metastatic cells. Although our current knowledge indicates that the development of anti-lymphangiogenic therapies may be beneficial for the treatment of cancer patients, several open questions remain with regard to the frequency, mechanisms and biological importance of lymphatic metastases.

  2. Involvement of human papillomavirus infections in prostate cancer progression.

    PubMed

    Al Moustafa, Ala-Eddin

    2008-08-01

    High-risk human papillomaviruses (HPVs) are sexually transmitted and have been associated with several human carcinomas especially cervical and colorectal. On the other hand, a small number of studies have examined the presence of high-risk HPV in human prostate cancer tissues. Currently, the presence and role of high-risk HPV infections in prostate carcinogenesis remain unclear because of the limited number of investigations. This raises the question whether high-risk HPV infections play any role in human prostate cancer development. However, other investigators and our group were able to immortalize normal and cancer prostate epithelial cells in vitro by E6/E7 of HPV type 16. In this paper, we propose the hypothesis that normal and cancer prostate epithelial cells are susceptible to persistent HPV infections; therefore, high-risk HPV infections play an important role in the progression of prostate cancer. We believe that an international collaboration of epidemiological studies and more molecular biology investigations are necessary to answer these important questions.

  3. Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis

    PubMed Central

    Tong, Dali; Liu, Gaolei; Lan, Weihua; Zhang, Dianzheng; Xiao, Hualiang; Zhang, Yao; Huang, Zaoming; Yang, Junjie; Zhang, Jun; Jiang, Jun

    2016-01-01

    Cancer stem cells (CSCs) are a sub-population of tumor cells playing essential roles in initiation, differentiation, recurrence, metastasis and development of drug resistance of various cancers, including bladder cancer. Although multiple lines of evidence suggest that metformin is capable of repressing CSC repopulation in different cancers, the effect of metformin on bladder cancer CSCs remains largely unknown. Using the N-methyl-N-nitrosourea (MNU)-induced rat orthotropic bladder cancer model, we demonstrated that metformin is capable of repressing bladder cancer progression from both mild to moderate/severe dysplasia lesions and from carcinoma in situ (CIS) to invasive lesions. Metformin also can arrest bladder cancer cells in G1/S phases, which subsequently leads to apoptosis. And also metformin represses bladder cancer CSC repopulation evidenced by reducing cytokeratin 14 (CK14+) and octamer-binding transcription factor 3/4 (OCT3/4+) cells in both animal and cellular models. More importantly, we found that metformin exerts these anticancer effects by inhibiting COX2, subsequently PGE2 as well as the activation of STAT3. In conclusion, we are the first to systemically demonstrate in both animal and cell models that metformin inhibits bladder cancer progression by inhibiting stem cell repopulation through the COX2/PGE2/STAT3 axis. PMID:27058422

  4. Cyr61 promotes breast tumorigenesis and cancer progression

    SciTech Connect

    Tsai, Miaw-Sheue; Bogart, Daphne F.; Castaneda, Jessica M.; Li, Patricia; Lupu, Ruth

    2002-01-16

    Cyr61, a member of the CCN family of genes, is an angiogenic factor. We have shown that it is overexpressed in invasive and metastatic human breast cancer cells and tissues. Here, we investigated whether Cyr61 is necessary and/or sufficient to bypass the ''normal'' estrogen (E2) requirements for breast cancer cell growth. Our results demonstrate that under E2-depleted condition, Cyr61 is sufficient to induce MCF-7 cells grow in the absence of E2. MCF-7 cells transfected with Cyr61 (MCF-7/Cyr61) became E2-independent but still E2-responsive. On the other hand, MCF-7/vector cells remain E2-dependent. MCF-7/Cyr61 cells acquire an antiestrogen-resistant phenotype, one of the most common clinical occurrences during breast cancer progression. MCF-7/Cyr61 cells are anchorage-independent and capable of forming Matrigel outgrowth patterns in the absence of E2. ERa expression in MCF-7/Cyr61 cells is decreased although still functional. Additionally, MCF-7/Cyr61 cells are tumorigenic in ovariectomized athymic nude mice. The tumors resemble human invasive carcinomas with increased vascularization and overexpression of vascular endothelial growth factor (VEGF). Our results demonstrate that Cyr61 is a tumor-promoting factor and a key regulator of breast cancer progression. This study provides evidence that Cyr61 is sufficient to induce E2-independence and anti-E2 resistance, and to promote invasiveness in vitro, and to induce tumorigenesis in vivo, all of which are characteristics of an aggressive breast cancer phenotype.

  5. Finasteride Reduces the Risk of Low-Grade Prostate Cancer in Men 55 and Older

    MedlinePlus

    ... and the Precision Medicine Initiative® Cancer Moonshot℠ Progress Annual Report to the Nation Cancer Snapshots Milestones in Cancer ... Find research about a specific cancer type Progress Annual Report to the Nation Cancer Portfolio Snapshots Milestones in ...

  6. STAT1 drives tumor progression in serous papillary endometrial cancer.

    PubMed

    Kharma, Budiman; Baba, Tsukasa; Matsumura, Noriomi; Kang, Hyun Sook; Hamanishi, Junzo; Murakami, Ryusuke; McConechy, Melissa M; Leung, Samuel; Yamaguchi, Ken; Hosoe, Yuko; Yoshioka, Yumiko; Murphy, Susan K; Mandai, Masaki; Hunstman, David G; Konishi, Ikuo

    2014-11-15

    Recent studies of the interferon-induced transcription factor STAT1 have associated its dysregulation with poor prognosis in some cancers, but its mechanistic contributions are not well defined. In this study, we report that the STAT1 pathway is constitutively upregulated in type II endometrial cancers. STAT1 pathway alteration was especially prominent in serous papillary endometrial cancers (SPEC) that are refractive to therapy. Our results defined a "SPEC signature" as a molecular definition of its malignant features and poor prognosis. Specifically, we found that STAT1 regulated MYC as well as ICAM1, PD-L1, and SMAD7, as well as the capacity for proliferation, adhesion, migration, invasion, and in vivo tumorigenecity in cells with a high SPEC signature. Together, our results define STAT1 as a driver oncogene in SPEC that modulates disease progression. We propose that STAT1 functions as a prosurvival gene in SPEC, in a manner important to tumor progression, and that STAT1 may be a novel target for molecular therapy in this disease.

  7. Initial Progress of Children Identified with Disabilities in Michigan's Reading First Schools

    ERIC Educational Resources Information Center

    Katz, Lauren A.; Stone, C. Addison; Carlisle, Joanne F.; Corey, Douglas Lyman; Zeng, Ji

    2008-01-01

    This 2-year longitudinal study examined initial evidence of progress in reading for 1,512 children with and without identified speech-language and/or learning disabilities (LD-SLD) in the context of the explicit literacy instruction provided in Michigan's Reading First (RF)schools. The findings suggested that children with LD-SLD labels…

  8. Initial Experience of Head and Neck Cancer Patients Treated in an Oncologist Led Palliative Cancer Care Clinic at a Tertiary Cancer Care Center in Uttar Pradesh: Is the Initiative of a Full-fledged Palliative Care for Cancer Patients Justified

    PubMed Central

    Lal, Punita; Verma, Mranalini; Kumar, Gaurav; Shrivastava, Resham; Kumar, Shaleen

    2016-01-01

    Introduction: Poor socioeconomic status and illiteracy attribute to the advanced presentation of head and neck cancer (HNC) patients in India and are candidates for palliation in our setup. We set up a palliative cancer care clinic (PCCC), and an audit of initial 153 HNC patients is presented. Aims and Objectives: To assess the impact of palliative cancer care services. Methodology: Data of advanced HNC patients suited for palliation were collected to document demography, symptomatology, cancer treatment, and supportive care. Results: One hundred and fifty-three patients were seen during January 2013 to March 2015 in the PCCC. Seventy-two (47%) referral cases were due to disease progression and 81 (53%) due to de novo advanced cases. Median follow-up for this group was 5.3 months. Ninety (59%) cases needed some degree of assistance for their normal activities. Sixty-seven (44%) patients belonged to poor socioeconomic status and 65 (43%) were educated up to equivalent of high school. One hundred and thirty-five (88%) patients had an adequate family support. Pain was the most common presenting symptom in 134 (87%) cases with adequate relief in 112 (84%) patients with another 13 (09%) could not be assessed. Overall median duration of symptoms was 6 months. Cancer-directed therapy was used in 143 (93%) patients. Near the end of life in 47 (73%) out of 63 documented cases, caregivers were psychologically prepared for the inevitable. Conclusion: The role of palliative care team in alleviating physical, psychosocial, and emotional issues of patient and family members was significant. PCCC seems to be a feasible working model in our setup. PMID:27803571

  9. Defining the radiobiology of prostate cancer progression: An important question in translational prostate cancer research

    PubMed Central

    Vourganti, Srinivas; Donaldson, Jeffrey; Johnson, Linda; Turkbey, Baris; Bratslavsky, Gennady; Kotula, Leszek

    2015-01-01

    Prostate cancer is one of the most common malignancies affecting men worldwide. High mortality rates from advanced and metastatic prostate cancer in the United States are contrasted by a relatively indolent course in the majority of cases. This gives hope for finding methods that could direct personalized diagnostic, preventative, and treatment approaches to patients with prostate cancer. Recent advances in multiparametric magnetic resonance imaging (MP-MRI) offer a noninvasive diagnostic intervention which allows correlation of prostate tumor image characteristics with underlying biologic evidence of tumor progression. The power of MP-MRI includes examination of both local invasion and nodal disease and might overcome the challenges of analyzing the multifocal nature of prostate cancer. Future directions include a careful analysis of the genomic signature of individual prostatic lesions utilizing image-guided biopsies. This review examines the diagnostic potential of MRI in prostate cancer. PMID:24879423

  10. Tumor-derived exosomes in oncogenic reprogramming and cancer progression.

    PubMed

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2015-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell-cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication-the release of membrane vesicles known as exosomes-has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression.

  11. Effects of Progressive Muscle Relaxation Therapy in Colorectal Cancer Patients.

    PubMed

    Kim, Kyeng Jin; Na, Yeon Kyung; Hong, Hae Sook

    2016-08-01

    This study aimed to examine the effect of progressive muscle relaxation therapy (PMRT) on cortisol level, the Stress Arousal Checklist (SACL) score, blood pressure, and heart rate in colorectal cancer patients undergoing laparoscopic surgery. Forty-six patients were divided into control and experimental groups. Cortisol levels, blood pressure, and heart rate were measured before surgery and between 8:00 and 11:00 a.m. on the first, third, and fifth days after surgery. SACL score was measured before surgery and on the fifth day after surgery at the same time points. PMRT was performed twice a day for 5 days. Analyses of covariance with advanced covariate levels and t tests showed that PMRT helps colorectal cancer patients achieve a lower stress response and provides an important basis for stress control.

  12. Macrophages as Key Drivers of Cancer Progression and Metastasis

    PubMed Central

    Nielsen, Sebastian R.

    2017-01-01

    Macrophages are one of the most abundant immune cells in the tumour microenvironment of solid tumours and their presence correlates with reduced survival in most cancers. Macrophages are present at all stages of tumour progression and stimulate angiogenesis, tumour cell invasion, and intravasation at the primary site. At the metastatic site, macrophages and monocytes prepare for the arrival of disseminated tumour cells and promote their extravasation and survival by inhibiting immune-mediated clearance or by directly engaging with tumour cells to activate prosurvival signalling pathways. In addition, macrophages promote the growth of disseminated tumour cells at the metastatic site by organising the formation of a supportive metastatic niche. The development of agents inhibiting the recruitment or the protumorigenic effector functions of macrophages in both the primary tumour and at the metastatic site is a promising strategy to improve cancer survival in the future. PMID:28210073

  13. Prolonged time to progression with fulvestrant for metastatic breast cancer.

    PubMed

    Mello, Celso A L; Chinen, Ludmilla T D; da Silva, Samantha Cabral Severino; do Nascimento Matias, Carolina; Benevides, Carlos Frederico; Gimenes, Daniel Luiz; Fanelli, Marcello F

    2011-06-01

    Although the incidence of breast cancer has been declining in recent years, the disease is still one of the leading causes of cancer deaths in women. Recently, breast cancer has been treated with innovative approaches that use hormone-sensitive therapies. This is because in at least one-third of breast cancers, estrogens mediated via the estrogen receptor pathway act as endocrine growth factors. Fulvestrant has been studied as both first- and second-line therapy for locally advanced and metastatic breast cancer, but few studies have shown its effect as third-line therapy alone. To observe the disease time to progression (TTP) obtained with fulvestrant when used on metastatic breast cancer as first-, second-, and also third-line therapy. We also aimed to correlate the TTP obtained with fulvestrant with hormone receptor, HER2 expression, and metastatic site. This was a cohort study that retrospectively examined medical records of 73 postmenopausal women with advanced breast cancer who were treated with fulvestrant (250 mg/month i.m. injection) and followed at the Department of Medical Oncology at Hospital do Cancer A. C. Camargo in São Paulo, Brazil from August 2003 to December 2006. The median TTP with fulvestrant was about 11 months. When used as the first-line therapy, TTP was about 13 months; when used as second-line, TTP was about 6 months; and when used as third-line, it was about 12 months. No statistically significant difference was observed regarding the therapy line. In patients with positive ER tumors, TTP was 11 months. No significant difference in TTP was observed in negative ER tumors (TTP = 10 months). In patients with positive PgR tumors, TTP was 13 months and for negative PgR, TTP was 6 months (P = 0.008). According to the HER2 status, the TTP was 5 months for HER2+ and 10 months for HER2-. Our findings indicate that fulvestrant is an effective alternative for treatment of metastatic breast cancer.

  14. Impact of intracellular ion channels on cancer development and progression.

    PubMed

    Peruzzo, Roberta; Biasutto, Lucia; Szabò, Ildikò; Leanza, Luigi

    2016-10-01

    Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.

  15. Sister Mary Joseph's nodule as initial pancreatic cancer manifestation.

    PubMed

    Vallejo Bernad, Cristina; Casamayor Franco, María Carmen; Hakim Alonso, Sofía

    2017-02-01

    We report the case of an 85-year-old female patient who presented with umbilical pain associated with an indurated growth, the whole being apparently consistent with incarcerated umbilical hernia, which prompted an urgent surgical procedure for its removal. The pathology study revealed dermal infiltration by a malignancy. Gland tumor cells expressed an immunohistochemical profile initially consistent with a pancreatic origin. In view of these findings a CT scan was performed, which revealed a pancreatic tail tumor as well as multiple hepatic metastasis. Skin metastasis is a rare sign usually reflecting a carcinoma of unknown origin. Umbilical skin metastasis, called Sister Mary Joseph´s nodule, reflect an intra-abdominal tumor, being pancreatic cancer strange.

  16. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression.

    PubMed

    Cirri, Paolo; Chiarugi, Paola

    2012-06-01

    Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumour progression, with a particular focus on the biunivocal interplay between CAFs and cancer cells leading to the activation of the epithelial-mesenchymal transition programme and the achievement of stem cell traits, as well as to the metabolic reprogramming of both stromal and cancer cells. Recent advances on the role of CAFs in the preparation of metastatic niche, as well as the controversial origin of CAFs, are discussed in light of the new emerging therapeutic implications of targeting CAFs.

  17. Progress in the detection of neoplastic progress and cancer by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakker Schut, Tom C.; Stone, Nicholas; Kendall, Catherine A.; Barr, Hugh; Bruining, Hajo A.; Puppels, Gerwin J.

    2000-05-01

    Early detection of cancer is important because of the improved survival rates when the cancer is treated early. We study the application of NIR Raman spectroscopy for detection of dysplasia because this technique is sensitive to the small changes in molecular invasive in vivo detection using fiber-optic probes. The result of an in vitro study to detect neoplastic progress of esophageal Barrett's esophageal tissue will be presented. Using multivariate statistics, we developed three different linear discriminant analysis classification models to predict tissue type on the basis of the measured spectrum. Spectra of normal, metaplastic and dysplasia tissue could be discriminated with an accuracy of up to 88 percent. Therefore Raman spectroscopy seems to be a very suitable technique to detect dysplasia in Barrett's esophageal tissue.

  18. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment.

  19. Smoke-free Workplace Rules and Laws | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. UV Exposure and Sun-Protective Behavior - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Weight and Physical Activity - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Incidence and Stage at Diagnosis - Diagnosis Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Tobacco Policy/Regulatory Factors - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Navigating the Trends and Most Recent Estimates Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Progress in systemic chemotherapy of primary breast cancer: an overview.

    PubMed

    Hortobagyi, G N

    2001-01-01

    Substantial progress has been made in the multidisciplinary management of primary breast cancer during the last 30 years. Adjuvant chemotherapy has been shown to significantly reduce the annual risk of cancer recurrence and mortality, and these effects persist even 15 years after diagnosis. Combination chemotherapy is superior to single-agent therapy and anthracycline-containing regimens. Those that combine an anthracycline with 5-fluorouracil and cyclophosphamide are more effective than regimens without an anthracycline. Six cycles of a single regimen appear to provide optimal benefit. Dose reductions below the standard range are associated with inferior results. Dose increases that require growth factor or hematopoietic stem cell support are under investigation; at this time, the existing results provide no compelling reason to use this strategy outside a clinical trial. Regimens using fixed crossover designs with two non-cross-resistant regimens are being evaluated. The addition of a taxane to anthracycline-containing regimens is currently under intense scrutiny, and preliminary analysis of the first three clinical trials has shown encouraging, albeit not compelling, results. For patients with estrogen receptor-positive breast cancer, the sequential administration of chemotherapy and 5 years of tamoxifen therapy provides additive benefits. No compelling evidence exists to combine ovarian ablation with chemotherapy. Most side effects and toxic effects are self-limited, although premature menopause requires monitoring and preventive interventions to preserve bone mineral density. The small risk of acute leukemia is of concern, and additional research to develop safer regimens is clearly indicated. The overall effect of optimal local/regional treatment combined with an anthracycline-containing adjuvant chemotherapy and a taxane (and, for patients with estrogen receptor-positive tumors, 5 years of tamoxifen therapy) is a greater than 50% reduction in annual risks of

  6. Mitotic abnormalities leading to cancer predisposition and progression.

    PubMed

    Cavenee, W K

    1989-01-01

    The development of human cancer is generally thought to entail a series of events that cause a progressively more malignant phenotype. Such a hypothesis predicts that tumor cells of the ultimate stage will carry each of the events, cells of the penultimate stage will carry each of the events less the last one, and so on. That is to say a dissection of the pathway from a normal cell to a fully malignant tumor may be viewed as the unraveling of a nested set of aberrations. In experiments designed to elucidate these events, we have compared genotypic combinations at genomic loci defined by restriction endonuclease recognition site variation in normal and tumor tissues from patients with various forms and stages of cancer. The first step, inherited predisposition, is best described for retinoblastoma in which a recessive mutation of a locus residing in the 13q14 region of the genome is unmasked by aberrant, but specific, mitotic chromosomal segregation. A similar mechanism involving the distal short arm of chromosome 17 is apparent in astrocytic tumors and the event is shared by cells in each malignancy stage. This is distinct from a loss of heterozygosity for loci on chromosome 10 which is restricted to the ultimate stage, glioblastoma multiforme. These results suggest a genetic approach to defining degrees of tumor progression and means for determining the genomic locations of genes involved in the pathway as a prelude to their molecular isolation and characterization.

  7. Chromothripsis and progression-free survival in metastatic colorectal cancer

    PubMed Central

    Skuja, Elina; Kalniete, Dagnija; Nakazawa-Miklasevica, Miki; Daneberga, Zanda; Abolins, Arnis; Purkalne, Gunta; Miklasevics, Edvins

    2017-01-01

    Metastatic dissemination of the primary tumor is the major cause of death in colorectal cancer (CRC) patients. Multiple chromosomal breaks and chromothripsis, a phenomenon involving multiple chromosomal fragmentations occurring in a single catastrophic event, are associated with cancer genesis, progression and developing of metastases. The aim of this study was to evaluate the effect of chromothripsis and total breakpoint count (breakpoint instability index) on progression-free survival (PFS). A total of 19 patients with metastatic CRC (mCRC) receiving FOLFOX first-line palliative chemotherapy between August, 2011 and October, 2012 were selected for this study. The results indicated that the highest breakpoint count was observed in chromosomes 1, 2 and 6. Chromothripsis was detected in 52.6% of the study patients. Furthermore, chromothripsis was associated with an increased median PFS (mPFS; 14 vs. 8 months, respectively; P=0.03), but an association with overall survival was not identified. The present study demonstrated that chromothripsis affected CRC patient survival, suggesting a role for this event as a prognostic and predictive marker in mCRC treatment. PMID:28357089

  8. Establishing the colitis-associated cancer progression mouse models.

    PubMed

    Zheng, Haiming; Lu, Zhanjun; Wang, Ruhua; Chen, Niwei; Zheng, Ping

    2016-12-01

    Inflammatory bowel disease (IBD) has been reported as an important inducer of colorectal cancer (CRC). The most malignant IBD-associated CRC type has been highlighted as colitis-associated cancer (CAC). However, lack of CAC cases and difficulties of the long follow-up research have challenged researchers in molecular mechanism probing. Here, we established pre-CAC mouse models (dextran sulfate sodium [DSS] group and azoxymethane [AOM] group) and CAC mouse model (DSS/AOM group) to mimic human CAC development through singly or combinational treatment with DSS and AOM followed by disease activity index analysis. We found that these CAC mice showed much more severe disease phenotype, including serious diarrhea, body weight loss, rectal prolapse and bleeding, bloody stool, tumor burden, and bad survival. By detecting expression patterns of several therapeutic targets-Apc, p53, Kras, and TNF-α-in these mouse models through western blot, histology analysis, qRT-PCR, and ELISA methods, we found that the oncogene Kras expression remained unchanged, while the tumor suppressors-Apc and p53 expression were both significantly downregulated with malignancy progression from pre-CAC to CAC, and TNF-α level was elevated the most in CAC mice blood which is of potential clinical use. These data indicated the successful establishment of CAC development mouse models, which mimics human CAC well both in disease phenotype and molecular level, and highlighted the promoting role of inflammation in CAC progression. This useful tool will facilitate the further study in CAC molecular mechanism.

  9. TES inhibits colorectal cancer progression through activation of p38

    PubMed Central

    Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang

    2016-01-01

    The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777

  10. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases.

    PubMed

    Tabarés-Seisdedos, Rafael; Dumont, Nancy; Baudot, Anaïs; Valderas, Jose M; Climent, Joan; Valencia, Alfonso; Crespo-Facorro, Benedicto; Vieta, Eduard; Gómez-Beneyto, Manuel; Martínez, Salvador; Rubenstein, John L

    2011-06-01

    In the past 5 years, several leading groups have attempted to explain why individuals with Down's syndrome have a reduced risk of many solid tumours and an increased risk of leukaemia and testicular cancer. Niels Bohr, the Danish physicist, noted that a paradox could initiate progress. We think that the paradox of a medical disorder protecting against cancer could be formalised in a new model of inverse cancer morbidity in people with other serious diseases. In this Personal View, we review evidence from epidemiological and clinical studies that supports a consistently lower than expected occurrence of cancer in patients with Down's syndrome, Parkinson's disease, schizophrenia, diabetes, Alzheimer's disease, multiple sclerosis, and anorexia nervosa. Intriguingly, most comorbidities are neuropsychiatric or CNS disorders. We provide a brief overview of evidence indicating genetic and molecular connections between cancer and these complex diseases. Inverse comorbidity could be a valuable model to investigate common or related pathways or processes and test new therapies, but, most importantly, to understand why certain people are protected from the malignancy.

  11. Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer.

    PubMed

    Berridge, Michael V; Dong, Lanfeng; Neuzil, Jiri

    2015-08-15

    Mitochondrial DNA (mtDNA), encoding 13 out of more than 1,000 proteins of the mitochondrial proteome, is of paramount importance for the bioenergetic machinery of oxidative phosphorylation that is required for tumor initiation, propagation, and metastasis. In stark contrast to the widely held view that mitochondria and mtDNA are retained and propagated within somatic cells of higher organisms, recent in vitro and in vivo evidence demonstrates that mitochondria move between mammalian cells. This is particularly evident in cancer where defective mitochondrial respiration can be restored and tumor-forming ability regained by mitochondrial acquisition. This paradigm shift in cancer cell biology and mitochondrial genetics, concerning mitochondrial movement between cells to meet bioenergetic needs, not only adds another layer of plasticity to the armory of cancer cells to correct damaged mitochondria, but also points to potentially new therapeutic approaches.

  12. Progressive lung cancer determined by expression profiling and transcriptional regulation.

    PubMed

    Han, Namshik; Dol, Zulkifli; Vasieva, Olga; Hyde, Russell; Liloglou, Triantafillos; Raji, Olaide; Brambilla, Elisabeth; Brambilla, Christian; Martinet, Yves; Sozzi, Gabriella; Risch, Angela; Montuenga, Luis M; Brass, Andy; Field, John K

    2012-07-01

    Clinically, our ability to predict disease outcome for patients with early stage lung cancer is currently poor. To address this issue, tumour specimens were collected at surgery from non-small cell lung cancer (NSCLC) patients as part of the European Early Lung Cancer (EUELC) consortium. The patients were followed-up for three years post-surgery and patients who suffered progressive disease (PD, tumour recurrence, metastasis or a second primary) or remained disease-free (DF) during follow-up were identified. RNA from both tumour and adjacent-normal lung tissue was extracted from patients and subjected to microarray expression profiling. These samples included 36 adenocarcinomas and 23 squamous cell carcinomas from both PD and DF patients. The microarray data was subject to a series of systematic bioinformatics analyses at gene, network and transcription factor levels. The focus of these analyses was 2-fold: firstly to determine whether there were specific biomarkers capable of differentiating between PD and DF patients, and secondly, to identify molecular networks which may contribute to the progressive tumour phenotype. The experimental design and analyses performed permitted the clear differentiation between PD and DF patients using a set of biomarkers implicated in neuroendocrine signalling and allowed the inference of a set of transcription factors whose activity may differ according to disease outcome. Potential links between the biomarkers, the transcription factors and the genes p21/CDKN1A and Myc, which have previously been implicated in NSCLC development, were revealed by a combination of pathway analysis and microarray meta-analysis. These findings suggest that neuroendocrine-related genes, potentially driven through p21/CDKN1A and Myc, are closely linked to whether or not a NSCLC patient will have poor clinical outcome.

  13. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians

    PubMed Central

    Van Cutsem, Eric; Verheul, Henk M. W.; Flamen, Patrik; Rougier, Philippe; Beets-Tan, Regina; Glynne-Jones, Rob; Seufferlein, Thomas

    2016-01-01

    The use of imaging in colorectal cancer (CRC) has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET) and computed tomography (CT). Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI) is a more versatile technique and dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG)-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner. PMID:27589804

  14. Desmoglein 3: A Help or a Hindrance in Cancer Progression?

    PubMed Central

    Brown, Louise; Wan, Hong

    2015-01-01

    Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression. PMID:25629808

  15. Tumor-derived exosomes in cancer progression and treatment failure.

    PubMed

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  16. Immunotherapy for Brain Cancer: Recent Progress and Future Promise

    PubMed Central

    Jackson, Christopher M.; Lim, Michael; Drake, Charles G.

    2016-01-01

    Immunotherapy is emerging as the newest pillar of cancer treatment, with the potential to assume a place alongside surgical debulking, radiotherapy, and chemotherapy. Early experiences with antitumor vaccines demonstrated the feasibility and potential efficacy of this approach, and newer agents, such as immune checkpoint blocking antibodies and modern vaccine platforms, have ushered in a new era. These efforts are headlined by work in melanoma, prostate cancer, and renal cell carcinoma; however, substantial progress has been achieved in a variety of other cancers, including high-grade gliomas. A recurrent theme of this work is that immunotherapy is not a one-size-fits-all solution. Rather, dynamic, tumor-specific interactions within the tumor microenvironment continually shape the immunologic balance between tumor elimination and escape. High-grade gliomas are a particularly fascinating example. These aggressive, universally fatal tumors are highly resistant to radiotherapy and chemotherapy and inevitably recur after surgical resection. Located in the immune-privileged central nervous system, high-grade gliomas also use an array of defenses that serve as direct impediments to immune attack. Despite these challenges, vaccines have shown activity against high-grade gliomas, and anecdotal, preclinical, and early clinical data bolster the notion that durable remission is possible with immunotherapy. Realizing this potential, however, will require an approach tailored to the unique aspects of glioma biology. PMID:24771646

  17. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression?

    PubMed Central

    Petrosyan, Armen

    2015-01-01

    The Golgi apparatus-complex is a highly dynamic organelle which is considered the “heart” of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the “black reaction,” and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins. PMID:27064441

  18. Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment

    PubMed Central

    Zhang, Pengcheng; Hu, Chunhua; Ran, Wei; Meng, Jia; Yin, Qi; Li, Yaping

    2016-01-01

    Treatments of high specificity are desirable for cancer therapy. Light-triggered nanotheranostics (LTN) mediated cancer therapy could be one such treatment, as they make it possible to visualize and treat the tumor specifically in a light-controlled manner with a single injection. Because of their great potential in cancer therapy, many novel and powerful LTNs have been developed, and are mainly prepared from photosensitizers (PSs) ranging from small organic dyes such as porphyrin- and cyanine-based dyes, semiconducting polymers, to inorganic nanomaterials such as gold nanoparticles, transition metal chalcogenides, carbon nanotubes and graphene. Using LTNs and localized irradiation in combination, complete tumor ablation could be achieved in tumor-bearing animal models without causing significant toxicity. Given their great advances and promising future, we herein review LTNs that have been tested in vivo with a highlight on progress that has been made in the past a couple of years. The current challenges faced by these LTNs are also briefly discussed. PMID:27217830

  19. The effect of vascular endothelial growth factor in the progression of bladder cancer and diabetic retinopathy

    PubMed Central

    Aldebasi, Yousef H; Rahmani, Arshad H; Khan, Amjad A; Aly, Salah Mesalhy

    2013-01-01

    Bladder cancer and diabetic retinopathy is a major public health and economical burden worldwide. Despite its high prevalence, the molecular mechanisms that induce or develop bladder carcinomas and diabetic retinopathy progression are poorly understood but it might be due to the disturbance in balance between angiogenic factors such as VEGF and antiangiogenic factors such as pigment epithelium derived growth factor. VEGF is one of the important survival factors for endothelial cells in the process of normal physiological and abnormal angiogenesis and induce the expression of antiapoptotic proteins in the endothelial cells. It is also the major initiator of angiogenesis in cancer and diabetic retinopathy, where it is up-regulated by oncogenic expression and different type of growth factors. The alteration in VEGF and VEGF receptors gene and overexpression, determines a diseases phenotype and ultimately the patient’s clinical outcome. However, expressional and molecular studies were made on VEGF to understand the exact mechanism of action in the genesis and progression of bladder carcinoma and diabetic retinopathy , but still how VEGF mechanism involve in such type of disease progression are not well defined. Some other factors also play a significant role in the process of activation of VEGF pathways. Therefore, further detailed analysis via molecular and therapeutic is needed to know the exact mechanisms of VEGF in the angiogenesis pathway. The detection of these types of diseases at an early stage, predict how it will behave and act in response to treatment through regulation of VEGF pathways. The present review aimed to summarize the mechanism of alteration of VEGF gene pathways, which play a vital role in the development and progression of bladder cancer and diabetic retinopathy. PMID:23641300

  20. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  1. Disease progression in non-erosive reflux disease (NERD): impact of initial esophageal acid exposure.

    PubMed

    Chen, C L; Liu, T T; Yi, C H

    2010-11-01

    We investigated the 5-year clinical course in a cohort of patients with typical reflux symptoms and negative endoscopy. Prospective follow-up was conducted in patients with non-erosive reflux disease (NERD) for at least 5 years after initial evaluation with esophageal pH monitoring and upper gastrointestinal endoscopy. Within the last year of follow-up, reflux symptoms occurred in 27 of the 30 patients (90%). Twenty-five of twenty-seven symptomatic patients (93%) were on acid suppression therapy. The majority of our patients (70%) remained unchanged regarding their endoscopic status over 5 years. Progression to erosive esophagitis occurred in four patients with Los Angeles (LA) A (13%), three patients with LA B (10%), and two patients with LA C (7%). The presence of pathological acid exposure did not alter the presence of reflux symptoms over 5 years. Disease progression to erosive esophagitis occurred more frequently in patients with pathological acid exposure than those without pathological acid exposure (P= 0.025). Most NERD patients have symptoms and require acid suppression therapy 5 years after their initial diagnosis. Initial pathological acid exposure does not influence the use of acid suppression; however, it does influence the progression of NERD within 5 years of follow-up.

  2. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    SciTech Connect

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  3. LKB1 Inhibits HPV-Associated Cancer Progression by Targeting Cellular Metabolism

    PubMed Central

    Zeng, Qinghua; Chen, Jianfeng; Li, Yining; Werle, Kaitlin D.; Zhao, Rui-Xun; Quan, Cheng-Shi; Wang, Yi-Shu; Zhai, Ying-Xian; Wang, Jian-Wei; Youssef, Mariam; Cui, Rutao; Liang, Jiyong; Genovese, Nicholas; Chow, Louise T.; Li, Yu-Lin; Xu, Zhi-Xiang

    2016-01-01

    Liver kinase B1 (LKB1) is mutationally inactivated in Peutz-Jeghers syndrome and in a variety of cancers including human papillomavirus (HPV)-caused cervical cancer. However, the significance of LKB1 mutations in cervical cancer initiation and progress has not been examined. Herein, we demonstrated that, in mouse embryonic fibroblasts, loss of LKB1 and transduction of HPV16 E6/E7 had an additive effect on constraining cell senescence while promoting cell proliferation and increasing glucose consumption, lactate production, and ATP generation. Knock-down of LKB1 increased and ectopic expression of LKB1 decreased glycolysis, anchorage-independent cell growth, and cell migration and invasion in HPV transformed cells. In the tumorigenesis and lung metastasis model in syngeneic mice, depletion of LKB1 markedly increased tumor metastatic colonies in lungs without affecting subcutaneous tumor growth. We showed that HPV16 E6/E7 enhanced the expression of hexokinase-ll (HK-II) in the glycolytic pathway through elevated c-MYC. Ectopic LKB1 reduced HK-II along with glycolysis. The inverse relationship between HK-II and LKB1 was also observed in normal and HPV-associated cervical lesions. We propose that LKB1 acts as a safeguard against HPV-stimulated aerobic glycolysis and tumor progression. These findings may eventually aid in the development of therapeutic strategy for HPV-associated malignancies by targeting cell metabolism. PMID:27546620

  4. Changes in cellular mechanical properties during onset or progression of colorectal cancer

    PubMed Central

    Ciasca, Gabriele; Papi, Massimiliano; Minelli, Eleonora; Palmieri, Valentina; De Spirito, Marco

    2016-01-01

    Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC. PMID:27621568

  5. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  6. Long Island Breast Cancer Study Project (Past Initiative)

    Cancer.gov

    The Long Island Breast Cancer Study Project is a multistudy effort to investigate whether environmental factors are responsible for breast cancer in Suffolk and Nassau counties, NY, as well as in Schoharie County, NY, and Tolland County, CT.

  7. Implementation of Timeline Reforms Speeds Initiation of National Cancer Institute–Sponsored Trials

    PubMed Central

    2013-01-01

    Background The National Cancer Institute (NCI) organized the Operational Efficiency Working Group in 2008 to develop recommendations for improving the speed with which NCI-sponsored clinical trials move from the idea stage to a protocol open to patient enrollment. Methods Given the many stakeholders involved, the Operational Efficiency Working Group advised a multifaceted approach to mobilize the entire research community to improve their business processes. New staff positions to monitor progress, protocol-tracking Web sites, and strategically planned conference calls were implemented. NCI staff and clinical teams at Cooperative Groups and Cancer Centers strived to achieve new target timelines but, most important, agreed to abide by absolute deadlines. For phase I–II studies and phase III studies, the target timelines are 7 months and 10 months, whereas the absolute deadlines were set at 18 and 24 months, respectively. Trials not activated by the absolute deadline are automatically disapproved. Results The initial experience is encouraging and indicates a reduction in development times for phase I–II studies from the historical median of 541 days to a median of 442 days, an 18.3% decrease. The experience with phase III studies to date, although more limited (n = 25), demonstrates a 45.7% decrease in median days. Conclusions Based upon this progress, the NCI and the investigator community have agreed to reduce the absolute deadlines to 15 and 18 months for phase I–II and III trials, respectively. Emphasis on initiating trials rapidly is likely to help reduce the time it takes for clinical trial results to reach patients in need of new treatments. PMID:23776198

  8. In situ quantification of genomic instability in breast cancer progression

    SciTech Connect

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  9. Topical immunomodulators--progress towards treating inflammation, infection, and cancer.

    PubMed

    Hengge, U R; Benninghoff, B; Ruzicka, T; Goos, M

    2001-10-01

    Immunomodulators include both immunostimulatory and immunosuppressive agents. Only recently have the basic mechanisms of topical immunotherapy been elucidated. Besides topical contact sensitisers (eg, diphencyprone or dinitrochlorobenzene), newer agents of the imidazoquinoline family such as imiquimod and resiquimod act by inducing cytokine secretion from monocytes or macrophages (interferon-alpha, interleukin-12, tumour-necrosis factor-alpha). The locally generated immune milieu leads to a Th1-dominance and cell-mediated immunity that have been used clinically to treat viral infections such as human papillomavirus (HPV), herpes simplex virus (HSV), mollusca, and cancerous lesions including initial squamous cell and basal cell carcinoma in immunocompetent and immunosuppressed patients. While these agents improve antigen-presentation by dendritic cells, they also act on B cells and lead to the synthesis of antibodies such as IgG2a much like the recently discovered immunostimulatory CpG-sequences that stimulate innate immunity. These sequences act as "danger signals" since they occur in bacterial and viral DNA, but are selectively methylated and inactivated in the mammalian genome. They share the induction of the same cytokines as imidazoquinolines but they show different magnitudes and kinetics of response. Topical immunotherapy with immunostimulatory agents shows potential for effective and patient-friendly treatment of inflammatory, infectious, and cancerous skin diseases. Immunoenhancers such as imdazoquinolines and CpG-sequences also have adjuvant properties that could improve conventional (protein) and DNA vaccination against cancer, atopy, and allergies.

  10. Molecular genetics of human cancer predisposition and progression.

    PubMed

    Cavenee, W K; Scrable, H J; James, C D

    1991-04-01

    The development of human cancer is generally thought to entail a series of events that cause a progressively more malignant phenotype. Such a hypothesis predicts that tumor cells of the ultimate stage will carry each of the events, cells of the penultimate stage will carry each of the events less the last one and so on. A dissection of the pathway from a normal cell to a fully malignant tumor may thus be viewed as the unraveling of a nested set of aberrations. In experiments designed to elucidate these events we have compared genotypic combinations at genomic loci defined by restriction endonuclease recognition site variation in normal and tumor tissues from patients with various forms and stages of cancer. The first step, inherited predisposition, is best described for retinoblastoma in which a recessive mutation of a locus residing in the 13q14 region of the genome is unmasked by aberrant, but specific, mitotic chromosomal segregation. Similar mechanisms involving the distal short arm of chromosome 17 are apparent in astrocytic tumors and the events are shared by cells in each malignancy state. DNA sequencing indicates that these events accomplish the homozygosis of mutant alleles of the p53 gene. Copy number amplification of the epidermal growth factor receptor gene occurs in intermediate and late-stage tumors whereas loss of heterozygosity for loci on chromosome 10 is restricted to the ultimate stage, glioblastoma multiforme. These results suggest a genetic approach to defining degrees of tumor progression and the locations of genes involved in the pathway as a prelude to their molecular isolation and characterization.

  11. [Hormone receptors and HER-2 changes during breast cancer progression: clinical implications].

    PubMed

    Jacot, William; Pouderoux, Stéphane; Bibeau, Frédéric; Leaha, Cristina; Chateau, Marie-Christine; Chapelle, Angélique; Romieu, Gilles

    2011-10-01

    Breast cancer remains a major public health problem. Even if there is an increase in this cancer curability, metastatic breast cancer remains a lethal disease in the vast majority of cases. Therapeutic advances in the chemotherapeutic and targeted therapies fields induced an increase in survival, however the proportion of long survivors remains low. Phenotypic instability, an early process initiated during tumour progression, and continued on the metastatic stage of the disease, can be one of the putative hypotheses explaining these results. An increasing amount of scientific data are pledging for a reanalysis of the phenotypic profile regarding hormone receptors and HER-2 status of metastatic lesions in order to identify drugable targets and allow individualisation of the treatment of these metastatic breast cancer patients. Phenotypic changes between the primary tumour and the paired metastatic lymph nodes are a challenging pitfall, raising the question of which site has to be assessed in the adjuvant treatment decision process. This article presents a comprehensive analysis of the frequency of theses phenotypic changes altogether with new modalities to evaluate this phenotypic status.

  12. Connexin's Connection in Breast Cancer Growth and Progression

    PubMed Central

    2016-01-01

    Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease. PMID:27642298

  13. Apigenin blocks IKKα activation and suppresses prostate cancer progression.

    PubMed

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-10-13

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.

  14. Role of proprotein convertases in prostate cancer progression.

    PubMed

    Couture, Frédéric; D'Anjou, François; Desjardins, Roxane; Boudreau, François; Day, Robert

    2012-11-01

    Better understanding of the distinct and redundant functions of the proprotein convertase (PC) enzyme family within pathophysiological states has a great importance for potential therapeutic strategies. In this study, we investigated the functional redundancy of PCs in prostate cancer in the commonly used androgen-sensitive LNCaP and the androgen-independent DU145 human cell lines. Using a lentiviral-based shRNA delivery system, we examined in vitro and in vivo cell proliferation characteristics of knockdown cell lines for the endogenous PCs furin, PACE4, and PC7 in both cell lines. Of the three PCs, only PACE4 was essential to maintain a high-proliferative status, as determined in vitro using XTT proliferation assays and in vivo using tumor xenografts in nude mice. Furin knockdowns in both cell lines had no effects on cell proliferation or tumor xenograft growth. Paradoxically, PC7 knockdowns reduced in vitro cellular proliferation but had no effect in vivo. Because PCs act within secretion pathways, we showed that conditioned media derived from PACE4 knockdown cells had very poor cell growth-stimulating effects in vitro. Immunohistochemistry of PACE4 knockdown tumors revealed reduced Ki67 and higher p27(KIP) levels (proliferation and cell cycle arrest markers, respectively). Interestingly, we determined that the epidermal growth factor receptor signaling pathway was activated in PC7 knockdown tumors only, providing some explanations of the paradoxical effects of PC7 silencing in prostate cancer cell lines. We conclude that PACE4 has a distinct role in maintaining proliferation and tumor progression in prostate cancer and this positions PACE4 as a relevant therapeutic target for this disease.

  15. MRI-based biomechanical imaging: initial study on early plaque progression and vessel remodeling

    PubMed Central

    Zheng, Jie; Abendschein, Dana R.; Okamoto, Ruth J.; Yang, Deshan; McCommis, Kyle S.; Misselwitz, Bernd; Gropler, Robert J.; Tang, Dalin

    2010-01-01

    The goal of the study is to develop a noninvasive magnetic resonance imaging (MRI)-based biomechanical imaging technique to address biomechanical pathways of atherosclerotic progression and regression in vivo using a 3D fluid-structure interaction (FSI) model. Initial in vivo study was carried out in an early plaque model in pigs that underwent balloon-overstretch injury to the left carotid arteries. Consecutive MRI scans were performed while the pigs were maintained on high cholesterol (progression) or normal chow (regression), with an injection of a plaque-targeted contrast agent, Gadofluorine M. At the end of study, the specimens of carotid arterial segments were dissected and underwent dedicated mechanical testing to determine their material properties. 3D FSI computational model was applied to calculate structure stress and strain distribution. The plaque structure resembles early plaque with thickened intima. Lower maximal flow shear stress correlates with the growth of plaque volume during progression, but not during regression. In contrast, maximal principle structure stress/stain (stress-P1 and strain-P1) were shown to correlate strongly with the change in the plaque dimension during regression, but moderately during progression. This MRI-based biomechanical imaging method may allow for noninvasive dynamic assessment of local hemodynamic forces on the development of atherosclerotic plaques in vivo. PMID:19559552

  16. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24

    PubMed Central

    Bhutia, Sujit K.; Das, Swadesh K.; Azab, Belal; Menezes, Mitchell E.; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival. PMID:23720015

  17. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer.

    PubMed

    Dokukin, M E; Guz, N V; Woodworth, C D; Sokolov, I

    2015-03-10

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.

  18. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C. D.; Sokolov, I.

    2015-03-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.

  19. Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression

    DTIC Science & Technology

    2015-10-01

    specifically packaged in these 40-100 nm microvesicles and secreted from prostate cancer cells are important in the progression to aggressive disease...behavior of aggressive human prostate cancer cell lines in vitro as well as in vivo using mouse xenograft models. 15. SUBJECT TERMS microRNAs, exosomes...microvesicles and secreted from prostate cancer cells are important in the progression to aggressive disease. In this exploratory award, we are

  20. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.

    PubMed

    Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K

    2010-11-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.

  1. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites

    PubMed Central

    Ammerman, Michelle L.; Presnyak, Vladimir; Fisk, John C.; Foda, Bardees M.; Read, Laurie K.

    2010-01-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs. PMID:20855539

  2. Serological Monitoring Is Key To Sustain Progress of the Maternal and Neonatal Tetanus Elimination Initiative

    PubMed Central

    Pasetti, Marcela F.

    2016-01-01

    In this issue of Clinical and Vaccine Immunology, Scobie and colleagues (H. M. Scobie et al., Clin Vaccine Immunol 23:546–554, 2016, http://dx.doi.org/10.1128/CVI.00052-16) report a nationwide serosurvey of tetanus immunity in >2,000 Cambodian women of child-bearing age to monitor progress toward maternal and neonatal tetanus elimination. This commentary discusses vaccines as interventions for disease control, elimination, and eradication and emphasizes the importance of the tools needed to monitor the effectiveness of initiatives that deliver the vaccines programmatically. PMID:27226278

  3. Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression.

    PubMed

    Jackson, C B; Judd, L M; Menheniott, T R; Kronborg, I; Dow, C; Yeomans, N D; Boussioutas, A; Robb, L; Giraud, A S

    2007-10-01

    H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130(757FF) mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions

  4. Do subtle breast cancers attract visual attention during initial impression?

    NASA Astrophysics Data System (ADS)

    Nodine, Calvin F.; Mello-Thoms, Claudia; Weinstein, Susan P.; Kundel, Harold L.; Toto, Lawrence C.

    2000-04-01

    Women who undergo regular mammographic screening afford mammographers a unique opportunity to compare current mammograms with prior exams. This comparison greatly assists mammographers in detecting early breast cancer. A question that commonly arises when a cancer is detected under regular periodic screening conditions is whether the caner is new, or was it missed on the prior exam? This is a difficult question to answer by retrospective analysis, because knowledge of the status of the current exam biases the interpretation of the prior exam. To eliminate this bias and provide some degree of objectivity in studying this question, we looked at whether experienced mammographers who had no prior knowledge of a set of test cases fixated on potential cancer-containing regions on mammograms from cases penultimate to cancer detection. The results show that experienced mammographers cannot recognize most malignant cancers selected by retrospective analysis.

  5. miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer.

    PubMed

    Wang, Xijun; Guo, Hongmei; Yao, Banjamin; Helms, Julia

    2017-03-27

    Oral tongue squamous cell carcinoma (TSCC) is one of the most lethal cancers within the oral cavity and its prognosis remains dismal due to the paucity of effective therapeutic targets. The formation of cancer-initiating cells (CICs) and epithelial-mesenchymal transition (EMT) are pivotal events involved in the dismal prognosis. They have been shown to be related to the resistance to cisplatin treatment. In the present study, we showed that TRIM14 induced formation of cancer-initiating cells and EMT in TSCC SCC25 cells. Its overexpression promoted cisplatin resistance in the SCC25 cells. We found that overexpression of miR-15b suppressed TRIM14 and inhibited CIC phenotypes in the SCC25 cells. Moreover, overexpression of miR-15b promoted mesenchymal-epithelial transition (MET) in the SCC25 cells and sensitized cisplatin-resistant SCC25 (SCC25-res) cells to cisplatin. Thus, we conclude that miR-15b inhibited cancer stem cell phenotypes and its restoration reversed the chemoresistance of cisplatin by targeting TRIM14 in TSCC. Elucidating the molecular mechanism of EMT and cancer stem cells in TSCC may further aid in the understanding of the pathogenesis and progression of the disease, and offer novel targets for the discovery of new drugs.

  6. FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7.

    PubMed

    Bai, Yu-Pan; Shang, Kun; Chen, Huan; Ding, Fei; Wang, Zhen; Liang, Chen; Xu, Ye; Sun, Meng-Hong; Li, Ying-Yi

    2015-10-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in the tumor stroma, are important modifiers of tumour progression. In the present study, we observed that azoxymethane and dextran sodium sulfate treatments induced increasingly severe colorectal mucosal inflammation and the intratumoural accumulation of CAFs. Fibroblast growth factor (FGF)-1 and FGF-3 were detected in infiltrating cells, and FGFR4, the specific receptor for FGF-1 and FGF-3, was detected in colon cancer tissues. The phosphorylation of FGFR4 enhanced the production of metalloproteinase (MMP)-7 and mitogen-activated protein kinase kinase (Mek)/extracellular signal-regulated kinase (Erk), which was accompanied by excessive vessel generation and cell proliferation. Moreover, we separated CAFs, pericarcinoma fibroblasts (PFs), and normal fibroblasts (NFs) from human colon tissue specimens to characterize the function of CAFs. We observed that CAFs secrete more FGF-1/-3 than NFs and PFs and promote cancer cell growth and angiogenesis through the activation of FGFR4, which is followed by the activation of Mek/Erk and the modulation of MMP-7 expression. The administration of FGF-1/-3-neutralizing antibodies or the treatment of cells with FGFR4 siRNA or the FGFR4 inhibitor PD173074 markedly suppressed colon cancer cell proliferation and neovascularization. These observations suggest a crucial role for CAFs and FGF signaling in the initiation and progression of colorectal cancer. The inhibition of the FGF signaling pathway may be a useful strategy for the treatment of colon cancer.

  7. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  8. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2008-03-01

    and cancer: back to Virchow? Lancet 2001;357:539-45. 4. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7. 5. Kusmartsev S...Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 2001;166:5398-406. 40. Kusmartsev S...cancer. Nature 420:860- 867. 5. Kusmartsev , S., and D. I. Gabrilovich. 2002. Immature myeloid cells and cancer- associated immune suppression. Cancer

  9. The Importance of the PI3K/AKT/MTOR Pathway in the Progression of Ovarian Cancer

    PubMed Central

    Dobbin, Zachary C.; Landen, Charles N.

    2013-01-01

    Ovarian cancer is the fifth most common cause of death due to cancer in women despite being the tenth in incidence. Unfortunately, the five-year survival rate is only 45%, which has not improved much in the past 30 years. Even though the majority of women have successful initial therapy, the low rate of survival is due to the eventual recurrence and succumbing to their disease. With the recent release of the Cancer Genome Atlas for ovarian cancer, it was shown that the PI3K/AKT/mTOR pathway was one of the most frequently mutated or altered pathways in patients’ tumors. Researching how the PI3K/AKT/mTOR pathway affects the progression and tumorigensis of ovarian cancer will hopefully lead to new therapies that will increase survival for women. This review focuses on recent research on the PI3K/AKT/mTOR pathway and its role in the progression and tumorigensis of ovarian cancer. PMID:23591839

  10. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    PubMed

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  11. Targeting cancer-initiating cell drug-resistance: a roadmap to a new-generation of cancer therapies?

    PubMed

    Alama, Angela; Orengo, Anna Maria; Ferrini, Silvano; Gangemi, Rosaria

    2012-05-01

    The occurrence of drug resistance in oncology accounts for treatment failure and relapse of diverse tumor types. Cancers contain cells at various stages of differentiation together with a limited number of 'cancer-initiating cells' able to self-renew and divide asymmetrically, driving tumorigenesis. Cancer-initiating cells display a range of self-defense systems that include almost all mechanisms of drug-resistance. Different molecular pathways and markers, identified in this malignant sub-population, are becoming targets for novel compounds and for monoclonal antibodies, which may be combined with conventional drugs. These interventions might eliminate drug-resistant cancer-initiating cells and lead to remission or cure of cancer patients.

  12. The Alzheimer’s Disease Neuroimaging Initiative 2 Biomarker Core: A review of progress and plans

    PubMed Central

    Kang, Ju-Hee; Korecka, Magdalena; Figurski, Michal J.; Toledo, Jon B.; Blennow, Kaj; Zetterberg, Henrik; Waligorska, Teresa; Brylska, Magdalena; Fields, Leona; Shah, Nirali; Soares, Holly; Dean, Robert A.; Vanderstichele, Hugo; Petersen, Ronald C.; Aisen, Paul S.; Saykin, Andrew J.; Weiner, Michael W.; Trojanowski, John Q.; Shaw, Leslie M.

    2016-01-01

    Introduction We describe Alzheimer’s Disease Neuroimaging Initiative (ADNI) Biomarker Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (Aβ1–42), t-tau, and p-tau181 analytical performance, definition of Alzheimer’s disease (AD) profile for plaque, and tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; progress in standardization; and new studies using ADNI biofluids. Methods Review publications authored or coauthored by ADNI Biomarker core faculty and selected non-ADNI studies to deepen the understanding and interpretation of CSF Aβ1–42, t-tau, and p-tau181 data. Results CSFAD biomarker measurements with the qualified AlzBio3 immunoassay detects neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies in non-ADNI living subjects followed by the autopsy confirmation of AD. Collaboration across ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals because of genetic/environmental factors that increase/decrease resilience to AD pathologies. Discussion Further studies will refine this model and enable the use of biomarkers studied in ADNI clinically and in disease-modifying therapeutic trials. PMID:26194312

  13. Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells

    PubMed Central

    Morrison, Brian J.

    2012-01-01

    Cancer initiating cells (CICs) represent a unique cell population essential for the maintenance and growth of tumors. Most in vivo studies of CICs utilize human tumor xenografts in immunodeficient mice. These models provide limited information on the interaction of CICs with the host immune system and are of limited value in assessing therapies targeting CICs, especially immune-based therapies. To assess this, a syngeneic cancer model is needed. We examined the sphere-forming capacity of thirteen murine lung cancer cell lines and identified TC-1 and a metastatic subclone of Lewis lung carcinoma (HM-LLC) as cell lines that readily formed and maintained spheres over multiple passages. TC-1 tumorspheres were not enriched for expression of CD133 or CD44, putative CIC markers, nor did they demonstrate Hoechst 33342 side population staining or Aldefluor activity compared to adherent TC-1 cells. However, in tumorsphere culture, these cells exhibited self-renewal and long-term symmetric division capacity and expressed more Oct-4 compared to adherent cells. HM-LLC sphere-derived cells exhibited increased Oct-4, CD133, and CD44 expression, demonstrated a Hoechst 33342 side population and Aldefluor activity compared to adherent cells or a low metastatic subclone of LLC (LM-LLC). In syngeneic mice, HM-LLC sphere-derived cells required fewer cells to initiate tumorigenesis compared to adherent or LM-LLC cells. Similarly TC-1 sphere-derived cells were more tumorigenic than adherent cells in syngeneic mice. In contrast, in immunocompromised mice, less than 500 sphere or adherent TC-1 cells and less than 1,000 sphere or adherent LLC cells were required to initiate a tumor. We suggest that no single phenotypic marker can identify CICs in murine lung cancer cell lines. Tumorsphere culture may provide an alternative approach to identify and enrich for murine lung CICs. Furthermore, we propose that assessing tumorigenicity of murine lung CICs in syngeneic mice better models the

  14. Discovery of genes from feces correlated with colorectal cancer progression

    PubMed Central

    Lee, Chia-Long; Huang, Chi-Jung; Yang, Shung-Haur; Chang, Chun-Chao; Huang, Chi-Cheng; Chien, Chih-Cheng; Yang, Ruey-Neng

    2016-01-01

    Colorectal cancer (CRC) is considered to develop slowly via a progressive accumulation of genetic mutations. Markers of CRC may serve to provide the basis for decision-making, and may assist in cancer prevention, detection and prognostic prediction. DNA and messenger (m)RNA molecules that are present in human feces faithfully represent CRC manifestations. In the present study, exogenous mouse cells verified the feasibility of total fecal RNA as a marker of CRC. Furthermore, five significant genes encoding solute carrier family 15, member 4 (SLC15A4), cluster of differentiation (CD)44, 3-oxoacid CoA-transferase 1 (OXCT1), placenta-specific 8 (PLAC8) and growth arrest-specific 2 (GAS2), which are differentially expressed in the feces of CRC patients, were verified in different CRC cell lines using quantitative polymerase chain reaction. The present study demonstrated that the mRNA level of SLC15A4 was increased in the majority of CRC cell lines evaluated (SW1116, LS123, Caco-2 and T84). An increased level of CD44 mRNA was only detected in an early-stage CRC cell line, SW1116, whereas OXCT1 was expressed at higher levels in the metastatic CRC cell line CC-M3. In addition, two genes, PLAC8 and GAS2, were highly expressed in the recurrent CRC cell line SW620. Genes identified in the feces of CRC patients differed according to their clinical characteristics, and this differential expression was also detected in the corresponding CRC cell lines. In conclusion, feces represent a good marker of CRC and can be interpreted through the appropriate CRC cell lines. PMID:27900008

  15. Cancer-Associated Fibroblasts and Their Putative Role in Potentiating the Initiation and Development of Epithelial Ovarian Cancer1

    PubMed Central

    Schauer, Isaiah G; Sood, Anil K; Mok, Samuel; Liu, Jinsong

    2011-01-01

    The progression of ovarian cancer, from cell transformation through invasion of normal tissue, relies on communication between tumor cells and their adjacent stromal microenvironment. Through a natural selection process, an autocrine-paracrine communication loop establishes reciprocal reinforcement of growth and migration signals. Thus, the cancer-activated stromal response is similar to an off-switch-defective form of the normal, universal response needed to survive insult or injury. It is becoming clearer within the cancer literature base that tumor stroma plays a bimodal role in cancer development: it impedes neoplastic growth in normal tissue while encouraging migration and tumor growth in a co-opted desmoplastic response during tumor progression. In this review, we discuss this reciprocal influence that ovarian cancer epithelial cells may have on ovarian stromal cell-reactive phenotype, stromal cell behavior, disrupted signaling networks, and tumor suppressor status in the stroma, within the context of cancer fibroblast studies from alternate cancer tissue settings. We focus on the exchange of secreted factors, in particular interleukin 1β and SDF-1α, between activated fibroblasts and cancer cells as a key area for future investigation and therapeutic development. A better understanding of the bidirectional reliance of early epithelial cancer cells on activated stromal cells could lead to the identification of novel diagnostic stromal markers and targets for therapy. PMID:21532880

  16. Signaling Through the PI 3-K, Akt, and SGK Pathway in Breast Cancer Progression

    DTIC Science & Technology

    2011-10-01

    ANSI Std. Z39.18 The aggressive behavior of malignant breast cancer is determined by a complex array of signaling pathways that regulate cell...Akt signaling promotes cancer progression. Many of the enzymes that regulate PI 3-K signaling are frequently mutated in human breast cancer , thereby...K, PIK3CA, is the most frequently mutated oncogene in breast cancer . However, recent studies have demonstrated that distinct Akt isoforms can either

  17. Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors.

    PubMed

    Shenoy, Anitha K; Fisher, Robert C; Butterworth, Elizabeth A; Pi, Liya; Chang, Lung-Ji; Appelman, Henry D; Chang, Myron; Scott, Edward W; Huang, Emina H

    2012-10-01

    Ulcerative colitis (UC) increases the risk of colorectal cancer (CRC), but the mechanisms involved in colitis-to-cancer transition (CCT) are not well understood. CCT may involve a inflammation-dysplasia-carcinoma progression sequence compared with the better characterized adenoma-carcinoma progression sequence associated with sporadic CRC. One common thread may be activating mutations in components of the Wnt/β-catenin signaling pathway, which occur commonly as early events in sporadic CRC. To examine this hypothesis, we evaluated possible associations between Wnt/β-catenin signaling and CCT based on the cancer stem cell (CSC) model. Wnt/β-catenin immunostaining indicated that UC patients have a level of Wnt-pathway-active cells that is intermediate between normal colon and CRC. These UC cells exhibiting activation of the Wnt pathway constituted a major subpopulation (52% + 7.21) of the colonic epithelial cells positive for aldehyde dehydrogenase (ALDH), a putative marker of precursor colon CSC (pCCSC). We further fractionated this subpopulation of pCCSC using a Wnt pathway reporter assay. Over successive passages, pCCSCs with the highest Wnt activity exhibited higher clonogenic and tumorigenic potential than pCCSCs with the lowest Wnt activity, thereby establishing the key role of Wnt activity in driving CSC-like properties in these cells. Notably, 5/20 single cell injections of high-Wnt pCCSC resulted in tumor formation, suggesting a correlation with CCT. Attenuation of Wnt/β-catenin in high-Wnt pCCSC by shRNA-mediated downregulation or pharmacological inhibition significantly reduced tumor growth rates. Overall, the results of our study indicates (i) that early activation of Wnt/β-catenin signaling is critical for CCT and (ii) that high levels of Wnt/β-catenin signaling can further demarcate high-ALDH tumor-initiating cells in the nondysplastic epithelium of UC patients. As such, our findings offer plausible diagnostic markers and therapeutic target in the

  18. Role of CDH13 promoter methylation in the carcinogenesis, progression, and prognosis of colorectal cancer

    PubMed Central

    Ye, Meng; Huang, Tao; Li, Jinyun; Zhou, Chongchang; Yang, Ping; Ni, Chao; Chen, Si

    2017-01-01

    Abstract Background: H-cadherin (CDH13) is commonly downregulated through promoter methylation in various cancers. However, the role of CDH13 promoter methylation status in patients with colorectal cancer (CRC) remains to be clarified. Methods: Eligible articles were identified from online electronic database based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement criteria. The pooled odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were calculated and analyzed. Results: Eventually, a total of nine studies were included in this meta-analysis, including 488 CRC, 298 adjacent, 144 normal, 68 premalignant tissues. The results demonstrated that CDH13 promoter methylation was notably higher in CRC than in normal, adjacent, and premalignant tissues (cancer tissues vs normal tissues: OR = 16.94, P < 0.001; cancer tissues vs adjacent tissues: OR = 20.06, P < 0.001; cancer tissues vs premalignant tissues: OR = 2.23, P = 0.038). CDH13 promoter methylation had a significantly increased risk for poorly differentiated CRC (OR = 4.07, P = 0.001). CDH13 promoter methylation was not associated with sex status, tumor stage, and lymph node status (all P > 0.05). One study with 85 CRC patients reported that CDH13 promoter methylation was correlated with poor prognosis in overall survival (OS). Conclusions: CDH13 promoter methylation may play an important role in the initiation and progression of CRC, and may be correlated with OS of patients with CRC. Additional studies with large sample sizes are needed to further confirm our findings in the future. PMID:28121942

  19. Therapeutic Targeting of Alternative Translation Initiation in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    investigation within the next 6 months. Cell type specific cancer cell killing of the prototype oncolytic poliovirus , PVS-RIPO, depends on selective...demanded by FDA. 15. SUBJECT TERMS Translation, eIF4E, eIF4G, IRES, Cancer, Poliovirus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...genetically recombinant poliovirus . Moreover, my work has laid the groundwork for correlative testing and efficacy studies of a vast array of protein kinase

  20. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression Genetically Hyper-Muscular Mice

    DTIC Science & Technology

    2006-07-01

    1-0424 TITLE: Does Skeletal Muscle Mass Influence Breast Cancer ? Evaluating Mammary Tumorigenesis and Progression in...SUBTITLE Does Skeletal Muscle Mass Influence Breast Cancer ? Evaluating Mammary 5a. CONTRACT NUMBER Tumorigenesis and Progression in Genetically...activity independently reduce breast cancer . Conversely, obesity and insulin resistance are associated with increased breast cancer incidence

  1. Genomic Analyses of Breast Cancer Progression Reveal Distinct Routes of Metastasis Emergence

    PubMed Central

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Brasch-Andersen, Charlotte; Lænkholm, Anne-Vibeke; Knoop, Ann S.; Jensen, Jeanette Dupont; Bak, Martin; Mollenhauer, Jan; Thomassen, Mads; Kruse, Torben A.

    2017-01-01

    A main controversy in cancer research is whether metastatic abilities are present in the most advanced clone of the primary tumor or result from independently acquired aberrations in early disseminated cancer cells as suggested by the linear and the parallel progression models, respectively. The genetic concordance between different steps of malignant progression is mostly unexplored as very few studies have included cancer samples separated by both space and time. We applied whole exome sequencing and targeted deep sequencing to 26 successive samples from six patients with metastatic estrogen receptor (ER)-positive breast cancer. Our data provide support for both linear and parallel progression towards metastasis. We report for the first time evidence of metastasis-to-metastasis seeding in breast cancer. Our results point to three distinct routes of metastasis emergence. This may have profound clinical implications and provides substantial novel molecular insights into the timing and mutational evolution of breast cancer metastasis. PMID:28276460

  2. Computational approach for deriving cancer progression roadmaps from static sample data.

    PubMed

    Sun, Yijun; Yao, Jin; Yang, Le; Chen, Runpu; Nowak, Norma J; Goodison, Steve

    2017-01-20

    As with any biological process, cancer development is inherently dynamic. While major efforts continue to catalog the genomic events associated with human cancer, it remains difficult to interpret and extrapolate the accumulating data to provide insights into the dynamic aspects of the disease. Here, we present a computational strategy that enables the construction of a cancer progression model using static tumor sample data. The developed approach overcame many technical limitations of existing methods. Application of the approach to breast cancer data revealed a linear, branching model with two distinct trajectories for malignant progression. The validity of the constructed model was demonstrated in 27 independent breast cancer data sets, and through visualization of the data in the context of disease progression we were able to identify a number of potentially key molecular events in the advance of breast cancer to malignancy.

  3. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression.

    PubMed

    Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong

    2016-09-01

    Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.

  4. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  5. Cell cycle-coupled expansion of AR activity promotes cancer progression.

    PubMed

    McNair, C; Urbanucci, A; Comstock, C E S; Augello, M A; Goodwin, J F; Launchbury, R; Zhao, S G; Schiewer, M J; Ertel, A; Karnes, J; Davicioni, E; Wang, L; Wang, Q; Mills, I G; Feng, F Y; Li, W; Carroll, J S; Knudsen, K E

    2017-03-23

    The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.

  6. T‐cadherin in prostate cancer: relationship with cancer progression, differentiation and drug resistance

    PubMed Central

    Dasen, Boris; Vlajnic, Tatjana; Mengus, Chantal; Ruiz, Christian; Bubendorf, Lukas; Spagnoli, Giulio; Wyler, Stephen; Erne, Paul; Resink, Thérèse J

    2016-01-01

    prostate cancer progression and response to therapy. PMID:28138401

  7. HIV Testing in Patients With Cancer at the Initiation of Therapy at a Large US Comprehensive Cancer Center

    PubMed Central

    Hwang, Jessica P.; Granwehr, Bruno P.; Torres, Harrys A.; Suarez-Almazor, Maria E.; Giordano, Thomas P.; Barbo, Andrea G.; Lin, Heather Y.; Fisch, Michael J.; Chiao, Elizabeth Y.

    2015-01-01

    Purpose: To determine the rates of HIV testing and infection among patients with cancer at initiation of systemic cancer therapy. Methods: We conducted a retrospective cohort study of adults with cancer who registered at a comprehensive cancer center from January 2004 through April 2011 and received systemic cancer therapy. We determined rates of HIV-1/2 and/or Western blot testing and HIV positivity at initiation of systemic cancer therapy. Multivariable logistic regression was used to determine predictors of HIV testing. Results: Of 18,874 patients with cancer who received systemic cancer therapy during the study period, 3,514 (18.6%) were tested for HIV at initiation of cancer therapy. The prevalence of positive HIV test results was 1.2% (41 of 3,514), and the prevalence of newly diagnosed HIV was 0.3% (12 of 3,514). The HIV testing rate was lower in black than in white patients (13.7% v 19.2%), but the prevalence of positive test results was higher in black patients (4.5%) than in any other racial/ethnic group. Among patients with AIDS-defining cancers (eg, non-Hodgkin lymphoma and cervical cancer), predictors of HIV testing were history of non-Hodgkin lymphoma, younger age, and registration after 2006. Among patients with non–AIDS-defining cancers, predictors of HIV testing were younger age, registration after 2006, male sex, history of illicit drug use or sexually transmitted disease, having a hematologic malignancy, and black race. Conclusion: The prevalence of HIV infection among patients with cancer was 1.2%, higher than the 0.1% prevalence threshold above which national guidelines recommend routine opt-out testing; however, the overall HIV testing rate was low. PMID:26243649

  8. ELF5-Mediated AR Activation Regulates Prostate Cancer Progression

    PubMed Central

    Li, Kai; Guo, Yongmin; Yang, Xiong; Zhang, Zhihong; Zhang, Changwen; Xu, Yong

    2017-01-01

    The transcription factor E74-like factor 5 (ELF5) is a potent antioncogene that can prevent epithelial-mesenchymal transition (EMT) and metastasis in prostate cancer (PCa). However, little is known how it suppress the tumor growth and if it can interact with androgen receptor (AR). In this study, we find that the ELF5 is frequently expressed in AR activated PCa cells, where it binds to AR acting as a physiological partner and negatively regulates its transcriptional activity. In addition, the interaction between ELF5 and AR is androgen-dependent. Downregulation of ELF5 by shRNA increases the expression of AR-response genes and the progression of PCa. Moreover, ELF5 is a AR-dependent gene that its expression can be induced by androgen and suppressed by antiandrogen treatment. Notably, forced reduction of ELF5 in LNCaP cells facilitates the binding of AR to ARE in ELF5 gene and enabling its transcription, so that low level ELF5 can turn up its own expression by the negative feedback loop. PMID:28287091

  9. ELF5-Mediated AR Activation Regulates Prostate Cancer Progression.

    PubMed

    Li, Kai; Guo, Yongmin; Yang, Xiong; Zhang, Zhihong; Zhang, Changwen; Xu, Yong

    2017-03-13

    The transcription factor E74-like factor 5 (ELF5) is a potent antioncogene that can prevent epithelial-mesenchymal transition (EMT) and metastasis in prostate cancer (PCa). However, little is known how it suppress the tumor growth and if it can interact with androgen receptor (AR). In this study, we find that the ELF5 is frequently expressed in AR activated PCa cells, where it binds to AR acting as a physiological partner and negatively regulates its transcriptional activity. In addition, the interaction between ELF5 and AR is androgen-dependent. Downregulation of ELF5 by shRNA increases the expression of AR-response genes and the progression of PCa. Moreover, ELF5 is a AR-dependent gene that its expression can be induced by androgen and suppressed by antiandrogen treatment. Notably, forced reduction of ELF5 in LNCaP cells facilitates the binding of AR to ARE in ELF5 gene and enabling its transcription, so that low level ELF5 can turn up its own expression by the negative feedback loop.

  10. The lack of predictors for rapid progression in prostate cancer patients receiving sipuleucel-T.

    PubMed

    Ng, Laura; Heck, Wendy; Lavsa, Stacey; Crowther, David; Atkinson, Brad; Xiao, Lianchun; Araujo, John

    2013-05-06

    Sipuleucel-T is an immunotherapy indicated for the treatment of metastatic prostate cancer. It offers a new mechanism to treat prostate cancer without the side effects of hormone therapies and chemotherapies. In previous studies sipuleucel-T did not delay disease progression, but demonstrated an overall survival benefit compared to placebo. While clinical trials have evaluated the effects of sipuleucel-T on overall survival and progression, more studies are needed to evaluate its effectiveness and role in the management of prostate cancer. The objective of this study is to identify the incidence and possible predictors for disease progression in patients receiving sipuleucel-T. A retrospective review of patients who received sipuleucel-T between 1 September 2010 and 11 October 2011 was conducted (n = 36). Patients who changed therapy or died within 120 days were classified as experiencing rapid progression. Potential predictors of rapid progression were examined using logistic regression. Seven patients met criteria for rapid progression. Progression occurred in 72.2% of all patients. The median days to progression was 158. No significant predictors of rapid progression were identified. Currently no predictors have been found to be associated with rapid progression in prostate cancer patients on sipuleucel-T.

  11. Exploratory analysis of osteoarthritis progression among medication users: data from the Osteoarthritis Initiative

    PubMed Central

    Driban, Jeffrey B.; Lo, Grace H.; Eaton, Charles B.; Lapane, Kate L.; Nevitt, Michael; Harvey, William F.; McCulloch, Charles E.; McAlindon, Timothy E.

    2016-01-01

    Background: We conducted an exploratory analysis of osteoarthritis progression among medication users in the Osteoarthritis Initiative to identify interventions or pathways that may be associated with disease modification and therefore of interest for future clinical trials. Methods: We used participants from the Osteoarthritis Initiative with annual medication inventory data between the baseline and 36-month follow-up visit (n = 2938). Consistent medication users were defined for each medication classification as a participant reporting at all four annual visits that they were regularly using an oral prescription medication at the time of the visit. The exploratory analysis focused on medication classes with 40 or more users. The primary outcome measures were medial tibiofemoral joint space width change and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) knee pain score change (12–36-month visits). Within each knee, we explored eight comparisons between users and matched or unmatched nonusers (defined two ways). An effect size of each comparison was calculated. Medication classes had potential signals if (a) both knees had less progression among users compared with nonusers, or (b) there was less progression based on structure and symptoms in one knee. Results: We screened 28 medication classes. Six medication classes had signals for fewer structural changes and better knee pain changes: alpha-adrenergic blockers, antilipemic (excluding statins and fibric acid), anticoagulants, selective serotonin reuptake inhibitors, antihistamines, and antineoplastic agents. Four medication classes had signals for structural changes alone: anti-estrogen (median effect size = 0.28; range = −0.41–0.64), angiotensin-converting enzyme inhibitors (median effect size = 0.13; range = −0.08–0.28), beta-adrenergic blockers (median effect size = 0.09; range = 0.01–0.30), and thyroid agents (median effect size = 0.04; range = −0.05–0.14). Thiazide

  12. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression

    PubMed Central

    Lucas, Morghan C.; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  13. MicroRNA-613 targets FMNL2 and suppresses progression of colorectal cancer

    PubMed Central

    Li, Bai; Xie, Zhongshi; Li, Zhihong; Chen, Si; Li, Bo

    2016-01-01

    Increasing evidence indicates that dysregulation of miRNAs is involved in the initiation and progression of colorectal cancer (CRC). MicroRNA (miR)-613 has been reported to function as a tumor suppressor in many cancers. However, the precise role of miR-613 in CRC progression is unclear. This study aimed to investigate the role and underlying mechanism of miR-613 in growth and metastasis of CRC. Real-time quantitative PCR (qPCR) and western blot techniques were used to assess expression of miR-613 and formin-like 2 (FMNL2) in CRC cell lines and tissues. Luciferase reporter assays were conducted to investigate the association between miR-613 and FMNL2. Proliferation, wound healing, and transwell invasion assays, as well as flow cytometric analysis, were performed to evaluate the effect of miR-613 on proliferation, migration, invasion, and cell-cycle status, respectively, of CRC cells. We found that miR-613 was significantly downregulated in CRC cell lines and tissue samples, and correlated closely with TNM stage. miR-613 suppressed CRC cell proliferation, migration, and invasion, and induced cell-cycle arrest at G1 phase. FMNL2 was identified as a direct target of miR-613 in CRC cells. Importantly, FMNL2 overexpression rescued miR-613-induced suppression of proliferation, migration, and invasion of CRC cells. These results suggest that miR-613 functions as a tumor suppressor in the progression of CRC by regulating FMNL2. PMID:28078018

  14. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.

    PubMed

    Rogalinska, Malgorzata

    2016-01-01

    Mitochondria play important roles as energetic centers. Mutations in mitochondrial DNA (mtDNA) were found in several diseases, including cancers. Studies on cytoplasmic hybrids (cybrids) confirm that directed mutation introduced into mtDNA could be a reason for cancer induction. Mitochondria could also be a factor linking cancer transformation and progression. The importance of mitochondria in cancer also confirms their involvement in the resistance to treatment. Resistance to treatment of cancer cells can frequently be a reason for glycolysis acceleration. It could be explained by cancer cells' high proliferation index and high energy request. The involvement of mitochondria in metabolic disturbances of several metabolic diseases, including cancers, was reported. These data confirm that cancer induction, as well as cancer progression, could have metabolic roots. The aberrant products observed in prostate cells involved in the Krebs cycle could promote cancer progression. These multiple relationships between alterations on a genetic level translated into disturbances in cellular metabolism and their potential relation with epigenetic control of gene expression make cancerogenesis more complicated and prognoses' success in studies on cancer etiology more distant in time.

  15. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium.

    PubMed

    Tucker, Matthew R; Okada, Takashi; Johnson, Susan D; Takaiwa, Fumio; Koltunow, Anna M G

    2012-05-01

    Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.

  16. Practical Approaches to Evaluating Progress and Outcomes in Community-Wide Teen Pregnancy Prevention Initiatives.

    PubMed

    Tevendale, Heather D; Condron, D Susanne; Garraza, Lucas Godoy; House, L Duane; Romero, Lisa M; Brooks, Megan A M; Walrath, Christine

    2017-03-01

    This paper presents an overview of the key evaluation components for a set of community-wide teen pregnancy prevention initiatives. We first describe the performance measures selected to assess progress toward meeting short-term objectives on the reach and quality of implementation of evidence-based teen pregnancy prevention interventions and adolescent reproductive health services. Next, we describe an evaluation that will compare teen birth rates in intervention communities relative to synthetic control communities. Synthetic controls are developed via a data-driven technique that constructs control communities by combining information from a pool of communities that are similar to the intervention community. Finally, we share lessons learned thus far in the evaluation of the project, with a focus on those lessons that may be valuable for local communities evaluating efforts to reduce teen pregnancy.

  17. FGF19 Contributes to Tumor Progression in Gastric Cancer by Promoting Migration and Invasion.

    PubMed

    Wang, Shuang; Zhao, Daqi; Tian, Ruihua; Shi, Hailong; Chen, Xiangming; Liu, Wenzhi; Wei, Lin

    2016-01-01

    Gastric cancer is the fourth most common type of cancer and second leading cause of cancer-related death in the world. Since patients are often diagnosed at a late stage, very few effective therapies are left in the arsenal. FGF19, as a hormone, has been reported to promote tumor growth in various types of cancer; however, its function in gastric cancer remains unknown. In the current study, we showed that FGF19 is overexpressed in gastric cancer and is associated with depth of invasion, lymph node metastasis, and TNM stage. In addition, in vitro experiments demonstrated that FGF19 is able to enhance migration and invasion abilities of gastric cancer cells. Given its great potency in gastric cancer progression, FGF19 may be an effective target of treatment for advanced gastric cancer patients.

  18. The role of pleomorphic adenoma gene-like 2 in gastrointestinal cancer development, progression, and prognosis.

    PubMed

    Liu, Bo; Lu, Chong; Song, Yong-Xi; Gao, Peng; Sun, Jing-Xu; Chen, Xiao-Wan; Wang, Mei-Xian; Dong, Yu-Lan; Xu, Hui-Mian; Wang, Zhen-Ning

    2014-01-01

    Numerous previous studies have revealed that pleomorphic adenoma gene-like 2 (PLAGL2) is a transcription factor that is active in cancer progression. The aim of this study was to investigate the role of PLAGL2 in the development, progression and prognosis of gastrointestinal cancer. Immunohistochemical analysis revealed that PLAGL2 was expressed in gastrointestinal tumors and adjacent normal tissues. The expression of PLAGL2 was significantly higher in 225 colorectal cancer tissues than in 66 adjacent non-tumor tissues (P = 0.037). However, expression was not significantly different between 286 gastric tumors and 57 adjacent non-tumor tissues (P = 0.352). Moreover, the PLAGL2 expression level significantly correlated with the depth of tumor invasion in colorectal cancer (P = 0.030). However, the PLAGL2 expression level significantly correlated with tumor size in gastric cancer (P = 0.046). Furthermore, we performed survival analyses and found that neither higher nor lower PLAGL2 expression was a prognostic factor in gastrointestinal cancer. Our findings indicate that PALGL2 serves as a tumor oncoprotein in the development and progression of colorectal cancer. However, the role of this protein in the development, progression and prognosis of gastric cancer is uncertain. Further investigation into the molecular mechanisms of PLAGL2 activity in gastrointestinal cancer is warranted.

  19. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression

    PubMed Central

    Xie, Dacheng; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Wang, Liang; Wei, Wenfei; Zhu, Anna; Gao, Yong; Xie, Keping; Quan, Ming

    2015-01-01

    Transcriptional co-activator with PDZ binding motif (TAZ) is a transducer of the Hippo pathway and promotes cancer development and progression. In the present study, we sought to determine the roles and underlying mechanisms of elevated expression and activation of TAZ in pancreatic cancer development and progression. The mechanistic role of TAZ and Hippo signaling in promotion of pancreatic cancer development and progression was examined using cell culture, molecular biology, and mouse models. The relevance of our experimental and mechanistic findings was validated using human pancreatic tumor specimens. We found that TAZ expression was markedly higher in pancreatic tumors than in normal pancreatic tissue. Further analysis of the correlation of TAZ expression with tissue microarray clinicopathologic parameters revealed that this expression was positively associated with tumor differentiation. Also, TAZ expression was higher in pancreatic cancer cell lines than in pancreatic ductal epithelial cells. TAZ activation in pancreatic cancer cells promoted their proliferation, migration, invasion, and epithelial-mesenchymal transition. Further mechanistic studies demonstrated that aberrant expression and activation of TAZ in pancreatic cancer cells resulted from suppression of the expression of Merlin, a positive regulator upstream of the Hippo pathway, and that the oncogenic function of TAZ in pancreatic cancer cells was mediated by TEA/ATTS domain transcription factors. Therefore, TAZ functioned as an oncogene and promoted pancreatic cancer epithelial-mesenchymal transition and progression. TAZ thus may be a target for effective therapeutic strategies for pancreatic cancer. PMID:26416426

  20. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities.

    PubMed

    DeSantis, Carol E; Siegel, Rebecca L; Sauer, Ann Goding; Miller, Kimberly D; Fedewa, Stacey A; Alcaraz, Kassandra I; Jemal, Ahmedin

    2016-07-01

    In this article, the American Cancer Society provides the estimated number of new cancer cases and deaths for blacks in the United States and the most recent data on cancer incidence, mortality, survival, screening, and risk factors for cancer. Incidence data are from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries, and mortality data are from the National Center for Health Statistics. Approximately 189,910 new cases of cancer and 69,410 cancer deaths will occur among blacks in 2016. Although blacks continue to have higher cancer death rates than whites, the disparity has narrowed for all cancers combined in men and women and for lung and prostate cancers in men. In contrast, the racial gap in death rates has widened for breast cancer in women and remained level for colorectal cancer in men. The reduction in overall cancer death rates since the early 1990s translates to the avoidance of more than 300,000 deaths among blacks. In men, incidence rates from 2003 to 2012 decreased for all cancers combined (by 2.0% per year) as well as for the top 3 cancer sites (prostate, lung, and colorectal). In women, overall rates during the corresponding time period remained unchanged, reflecting increasing trends in breast cancer combined with decreasing trends in lung and colorectal cancer rates. Five-year relative survival is lower for blacks than whites for most cancers at each stage of diagnosis. The extent to which these disparities reflect unequal access to health care versus other factors remains an active area of research. Progress in reducing cancer death rates could be accelerated by ensuring equitable access to prevention, early detection, and high-quality treatment. CA Cancer J Clin 2016;66:290-308. © 2016 American Cancer Society.

  1. Mouse Model of Human Breast Cancer Initiated by a Fusion Oncogene

    DTIC Science & Technology

    2006-09-01

    AD_________________ Award Number: W81XWH-05-1-0502 TITLE: Mouse Model of Human Breast Cancer ...TYPE Final 3. DATES COVERED (From - To) 15 AUG 2005 - 14 AUG 2006 4. TITLE AND SUBTITLE Mouse Model of Human Breast Cancer Initiated by a Fusion...SUPPLEMENTARY NOTES 14. ABSTRACT: In this study, we generated a novel mouse model of human breast cancer based on a recurrent chromosomal

  2. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact between Epithelial Cells and Fibroblasts

    DTIC Science & Technology

    2012-04-01

    between MCF-DCIS cells and human mammary fibroblasts (HMFs) in breast cancer progression by employing a microfluidic -based compartmentalized 3D co-culture platform enabling both contact-free and contact-associated co-cultures.

  3. Kidney cancer progression linked to shifts in tumor metabolism

    Cancer.gov

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  4. Progress through Collaboration - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the areas of sharing proteomics reagents and protocols and also in regulatory science.

  5. Depth-resolved nanoscale nuclear architecture mapping for early prediction of cancer progression

    NASA Astrophysics Data System (ADS)

    Uttam, Shikhar; Pham, Hoa V.; LaFace, Justin; Hartman, Douglas J.; Liu, Yang

    2016-03-01

    Effective management of patients who are at risk of developing invasive cancer is a primary challenge in early cancer detection. Techniques that can help establish clear-cut protocols for successful triaging of at-risk patients have the potential of providing critical help in improving patient care while simultaneously reducing patient cost. We have developed such a technique for early prediction of cancer progression that uses unstained tissue sections to provide depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of heterogeneity in optical density alterations manifested in precancerous lesions during cancer progression. We present nanoNAM and its application to predicting cancer progression in a well-established mouse model of spontaneous carcinogenesis: ApcMin/+ mice.

  6. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2006-03-01

    420:860. 5. Kusmartsev , S., and D. I. Gabrilovich. 2002. Immature myeloid cells and cancer- associated immune suppression. Cancer Immunol Immunother 51...166:5398. 20. Kusmartsev , S. A., Y. Li, and S. H. Chen. 2000. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation...Chronic inflammation and cancer. On- cology 16: 217–226. 4. Coussens, L. M., and Z. Werb. 2002. Inflammation and cancer. Nature 420: 860–867. 5. Kusmartsev

  7. Adhesion-Linked Protein Tyrosine Phosphatases, Morphogenesis and Breast Cancer Progression

    DTIC Science & Technology

    2004-07-01

    Award Number: DAMD17-03-1-0496 TITLE: Adhesion-linked Protein Tyrosine Phosphatases, Morphogenesis and Breast Cancer Progression PRINCIPAL...Adhesion-linked Protein Tyrosine Phosphatases, DAMD17-03-1-0496 Morphogenesis and Breast Cancer Progression 6. AUTHOR(S) Valerie M. Weaver, Ph.D. 7...we identified the Band 4.1 PTPs MEG1 and D1 as two candidate PTP metastasis suppressors. Our studies show that during MEC differentiation PTP MEG1

  8. Adhesion-Linked Protein Tyrosine Phosphatases, Morphogenesis and Breast Cancer Progression

    DTIC Science & Technology

    2005-07-01

    Phosphatases, Morphogenesis and Breast Cancer Progression PRINCIPAL INVESTIGATOR: Valerie M. Weaver Ph.D. CONTRACTING... Cancer Progression 5b. GRANT NUMBER DAMD17-03-1-0496 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Valerie M. Weaver Ph.D. 5e...tissue and identified the Band 4.1 PTPs MEG1 and D1 as candidate PTP metastasis suppressor genes. We demonstrated that MEG1 and D1 expression rise

  9. PACE Continuous Innovation Indicators-a novel tool to measure progress in cancer treatments.

    PubMed

    Paddock, Silvia; Brum, Lauren; Sorrow, Kathleen; Thomas, Samuel; Spence, Susan; Maulbecker-Armstrong, Catharina; Goodman, Clifford; Peake, Michael; McVie, Gordon; Geipel, Gary; Li, Rose

    2015-01-01

    Concerns about rising health care costs and the often incremental nature of improvements in health outcomes continue to fuel intense debates about 'progress' and 'value' in cancer research. In times of tightening fiscal constraints, it is increasingly important for patients and their representatives to define what constitutes 'value' to them. It is clear that diverse stakeholders have different priorities. Harmonisation of values may be neither possible nor desirable. Stakeholders lack tools to visualise or otherwise express these differences and to track progress in cancer treatments based on variable sets of values. The Patient Access to Cancer care Excellence (PACE) Continuous Innovation Indicators are novel, scientifically rigorous progress trackers that employ a three-step process to quantify progress in cancer treatments: 1) mine the literature to determine the strength of the evidence supporting each treatment; 2) allow users to weight the analysis according to their priorities and values; and 3) calculate Evidence Scores (E-Scores), a novel measure to track progress, based on the strength of the evidence weighted by the assigned value. We herein introduce a novel, flexible value model, show how the values from the model can be used to weight the evidence from the scientific literature to obtain E-Scores, and illustrate how assigning different values to new treatments influences the E-Scores. The Indicators allow users to learn how differing values lead to differing assessments of progress in cancer research and to check whether current incentives for innovation are aligned with their value model. By comparing E-Scores generated by this tool, users are able to visualise the relative pace of innovation across areas of cancer research and how stepwise innovation can contribute to substantial progress against cancer over time. Learning from experience and mapping current unmet needs will help to support a broad audience of stakeholders in their efforts to

  10. Prostate Cancer Progression and Serum Sibling (Small Integrin Binding N-Linked Glycoprotein) Levels

    DTIC Science & Technology

    2008-10-01

    treatment ; and to establish serum-based measurements which maximize sensitivity and specificity of SIBLINGs as markers for prostate cancer detection as...well as for prostate cancer progression and response to treatment . Although the laboratory is still blinded to staging and progression data at this...significant financial costs and mental stress. In addition both DRE and PSA can’t detect early tumors and are sometimes uninformative in terms of predicting

  11. Evaluating Progress in Radon Control Activities for Lung Cancer Prevention in National Comprehensive Cancer Control Program Plans, 2011-2015.

    PubMed

    Acree, Pascal; Puckett, Mary; Neri, Antonio

    2017-04-04

    Radon is the second leading cause of lung cancer among smokers and the leading cause among nonsmokers. The Centers for Disease Control and Prevention's National Comprehensive Cancer Control Program (NCCCP) funds every state, seven tribes, seven territories and the District of Columbia to develop formal cancer plans that focus efforts in cancer control. A 2010 review of cancer plans identified radon-related activities in 27 (42%) plans. Since then, 37 coalitions have updated their plans with new or revised cancer control objectives. There has also been recent efforts to increase awareness about radon among cancer coalitions. This study assesses NCCCP grantees current radon activities and changes since the 2010 review. We reviewed all 65 NCCCP grantee cancer plans created from 2005 to 2015 for radon related search terms and categorized plans by radon activities. The program's most recent annual progress report to CDC was also reviewed. We then compared the results from the updated plans with the findings from the 2010 review to assess changes in radon activities among cancer coalitions. Changes in state radon laws between 2010 and 2015 were also assessed. While a number of cancer plans have added or expanded radon-specific activities since 2010, approximately one-third of NCCCP grantees still do not include radon in their cancer plans. Cancer programs can consider addressing radon through partnership with existing radon control programs to further reduce the risk of lung cancer, especially among non-smokers.

  12. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression.

    PubMed

    Santos, Gilson C; da Silva, Ana P A; Feldman, Lucas; Ventura, Grasiella M; Vassetzky, Yegor; de Moura Gallo, Claudia V

    2015-04-01

    In the present paper we aimed to characterize epigenetic aspects and analyze TP53 transcription in the 21 T series, composed of breast cell lines: non-cancerous H16N2; Atypical Ductal Hyperplasia 21PT; Ductal Carcinoma in situ 21NT and Invasive Metastatic Carcinoma 21MT1. We detected a global genomic hypomethylation in 21NT and 21MT1. The histone modification markers analysis showed an important global decrease of the active chromatin mark H4Ac in 21MT1 relative to the other cell lines while the repressive mark H3K9Me3 were not significantly altered. The mRNA levels of DNA methylation and histone modification key enzymes are consistent with the observed genomic hypomethylation and histone hypoacetylation. The expression of DNMT3A/B increased at the initial stages of oncogenesis and the expression of DNMT1 and HAT1 decreased at the advanced stages of breast cancer. Using a confocal immunofluorescent assay, we observed that H4Ac was mostly located at the periphery and the repressive mark H3K9Me3, at the center of 21NT and 21MT1 cells nuclei. TP53 P1 promoter was found to be in an open chromatin state, with a relatively high enrichment of H4Ac and similar TP53 transcription levels in all 21 T cell lines. In conclusion, we observed epigenetic alterations (global genome hypomethylation, global hypoacetylation and accumulation of pericentric heterochromatin) in metastatic breast cancer cells of the 21 T series. These alterations may act at later stages of breast cancer progression and may not affect TP53 transcription at the P1 promoter.

  13. The global state of palliative care-progress and challenges in cancer care.

    PubMed

    Reville, Barbara; Foxwell, Anessa M

    2014-07-01

    All persons have a right to palliative care during cancer treatment and at the end-of-life. The World Health Organization (WHO) defines palliative care as a medical specialty that addresses physical, psychological, social, legal, and spiritual domains of care by an interdisciplinary team of professional and lay health care providers. Widespread adoption of this universal definition will aid policy development and educational initiatives on a national level. The need for palliative care is expanding due to the aging of the world's population and the increase in the rate of cancer in both developed and developing countries. However, in one third of the world there is no access to palliative care for persons with serious or terminal illness. Palliative care improves symptoms, most frequently pain, and improves quality of life for patients and their families, especially in the terminal disease phase. Accessibility to palliative care services, adequately trained health care professionals, availability of essential medicines, and gaps in education vary greatly throughout the world. Pain management is an integral concept in the practice of palliative care; however, opioiphobia, insufficient supply of opioids, and regulatory restrictions contribute to undue suffering for millions. Ongoing advocacy efforts call for increased awareness, palliative care integration with cancer care, and public and professional education. Enacting necessary change will require the engagement of health ministries and the recognition of the unique needs and resources of each country. The aim of this review is to examine progress in palliative care development and explore some of the barriers influencing cancer care across the globe.

  14. Quality assurance in the treatment of colorectal cancer: the EURECCA initiative.

    PubMed

    Breugom, A J; Boelens, P G; van den Broek, C B M; Cervantes, A; Van Cutsem, E; Schmoll, H J; Valentini, V; van de Velde, C J H

    2014-08-01

    Colorectal cancer is one of the most common cancers in Europe. Over the past few decades, important advances have been made in screening, staging and treatment of colorectal cancer. However, considerable variation between and within European countries remains, which implies that further improvements are possible. The most important remaining question now is: when are we, health care professionals, delivering the best available care to patients with colon or rectal cancer? Currently, quality assurance is a major issue in colorectal cancer care and quality assurance awareness is developing in almost all disciplines involved in the treatment of colorectal cancer patients. Quality assurance has shown to be effective in clinical trials. For example, standardisation and quality control were introduced in the Dutch TME trial and led to marked improvements of local control and survival in rectal cancer patients. Besides, audit structures can also be very effective in monitoring cancer management and national audits showed to further improve outcome in colorectal cancer patients. To reduce the differences between European countries, an international, multidisciplinary, outcome-based quality improvement programme, European Registration of Cancer Care (EURECCA), has been initiated. In the near future, the EURECCA dataset will perform research on subgroups as elderly patients or patients with comorbidities, which are often excluded from trials. For optimal colorectal cancer care, quality assurance in guideline formation and in multidisciplinary team management is also of great importance. The aim of this review was to create greater awareness and to give an overview of quality assurance in the management of colorectal cancer.

  15. Chemoprevention of Prostate Cancer Initiation in a Novel Transgenic Mouse Model by Targeting 15-Lipoxygenase-1

    DTIC Science & Technology

    2008-02-01

    either omega (n)-3 or n-6 polyunsaturated fatty acids ( PUFAs ) directly impact PCa tumor growth. Furthermore, the FLiMP mice, which overexpress human 15...effects of excessive n-6 LA diet consumption in the progression of PCa. 15. SUBJECT TERMS Linoleic acid ; LO or LOX, lipoxygenase; PUFA , Polyunsaturated... fatty acid ; PCa, Prostate Cancer, MMHCC, Mouse Models of Human Cancer Consortium; IHC, immunohistochemistry; H & E, Hematoxylin and Eosin; FLiMP

  16. Molecular regulation of galectin-3 expression and therapeutic implication in cancer progression.

    PubMed

    Wang, Lei; Guo, Xiu-Li

    2016-03-01

    Galectin-3, a multifunctional protein, distributes inside and outside cells and plays an important role in tumor cell adhesion, proliferation, differentiation, angiogenesis, and metastasis in multiple tumors. Changes in galectin-3 expression are commonly seen in cancer and pre-cancerous conditions. Therefore, to understand the molecular regulation of galectin-3 expression could aid the development of new approach for cancer treatment. This review summarizes different expression of galectin-3 in cancer cells and patients' serum, the regulation mechanism and the potential therapeutic targets of galectin-3 in cancer progression.

  17. Yin and Yang of Heparanase in Breast Cancer Initiation

    DTIC Science & Technology

    2014-09-01

    Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes ...Results Sulodexide treatment accelerates PyMT-mediated tumorigenesis. Sulodexide is a mixture of dermatan sulfate (20%) and low-molecular-weight...sulodexide treatment at the dose of 35 mg/kg/day significantly shortened tumor latency, compared to the untreated control group (p=0.018). Also, Log

  18. 78 FR 27974 - Proposed Collection; 60-Day Comment Request: National Cancer Institute (NCI) Alliance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Cancer Institute (NCI) Alliance for Nanotechnology in Cancer Platform Partnership Scientific Progress... for Strategic Scientific Initiatives, Office of Cancer Nanotechnology Research, National Cancer... this publication. Proposed Collection: National Cancer Institute (NCI) Alliance for Nanotechnology...

  19. EMT in cervical cancer: its role in tumour progression and response to therapy.

    PubMed

    Qureshi, Rehana; Arora, Himanshu; Rizvi, M A

    2015-01-28

    The prognosis of cervical patients significantly decreases as the cancer metastasizes to other parts of the body. The epithelial to mesenchymal transition (EMT) plays an important role in cervical cancer progression and metastasis. Recurrence is the primary cause of the increased number of deaths due to cervical cancer. Oncogenes, such as AEG1, Sam-68, FTS and miR-361-5p, induce EMT in cervical cancer. Tumour suppressors, such as LMX-1, SFRP1, klotho, and miR-155, suppress EMT in cervical cancer. Factors such as hypoxia, the radiation dose, cytokines, proteins, transcription factors, and signalling pathways also play an important role in the induction, progression and maintenance of EMT in cervical cancer. Overall, this review describes a wide range of factors with potential roles in EMT that have been identified to date, and this information could be important for the development of new and more effective therapeutics that ameliorate the negative impact of cervical pathogenesis via EMT.

  20. Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman.

    PubMed

    Mirzal, Andri; Chaudhry, Shafique Ahmad

    2016-01-01

    Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide.

  1. Wnt/beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression

    DTIC Science & Technology

    2014-07-01

    Axis Controls Prostate Cancer Progression PRINCIPAL INVESTIGATOR: Xiuping Yu CONTRACTING ORGANIZATION: Vanderbilt University...COVERED 01 July 2013 - 30 June 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Wnt/beta-Catenin, Foxa2, and CXCR4 axis controls prostate cancer ...development of castration resistant prostate cancer . Our previous studies have shown that Foxa2 is a Wnt/beta-catenin target gene in prostates. Our

  2. PDCD6 is an independent predictor of progression free survival in epithelial ovarian cancer

    PubMed Central

    2012-01-01

    Background Programmed cell death 6 (PDCD6) beside its known proapoptotic functions may be a player in survival pathways in cancer. The purpose of this study is to further explore the roles of PDCD6 in epithelial ovarian cancer. Methods Lentiviral vector with shRNA for PDCD6 was used to investigate the effects of PDCD6 knockdown on cell growth, cell cycle, apoptosis and motility in ovarian cancer cells. Two hundred twelve epithelial ovarian cancer tissues were analyzed for mRNA expression of PDCD6 using RT-PCR. Associations of its expression with clinical pathological factors, progression free and overall survival were evaluated. Results PDCD6 is highly expressed in metastatic ovarian cancer cells and positively regulates cell migration and invasion. Significantly, the level of PDCD6 expression in epithelial ovarian cancer correlates with clinical progression. Patients with medium or high levels of PDCD6 mRNA were at higher risk for disease progression, compared to those with low levels (HR, 1.29; P = 0.024 for medium levels; and HR, 1.57; P = 0.045 for high levels) after adjusting for age, disease stage, tumor grade, histologic type and residual tumor size. Kaplan-Meier survival analysis demonstrated similar results. However, no association was found between PDCD6 expression and overall survival. Conclusions PDCD6 seems to play an important role in ovarian cancer progression and it may be an independent predictor of progression free survival in epithelial ovarian cancer. Further studies are needed to more completely elucidate the molecular mechanisms of PDCD6 involve in ovarian cancer progression. PMID:22369209

  3. Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells.

    PubMed

    Dubash, Taronish D; Hoffmann, Christopher M; Oppel, Felix; Giessler, Klara M; Weber, Sarah; Dieter, Sebastian M; Hüllein, Jennifer; Zenz, Thorsten; Herbst, Friederike; Scholl, Claudia; Weichert, Wilko; Werft, Wiebke; Benner, Axel; Schmidt, Manfred; Schneider, Martin; Glimm, Hanno; Ball, Claudia R

    2016-02-28

    Within primary colorectal cancer (CRC) a subfraction of all tumor-initiating cells (TIC) drives long-term progression in serial xenotransplantation. It has been postulated that efficient maintenance of TIC activity in vitro requires serum-free spheroid culture conditions that support a stem-like state of CRC cells. To address whether tumorigenicity is indeed tightly linked to such a stem-like state in spheroids, we transferred TIC-enriched spheroid cultures to serum-containing adherent conditions that should favor their differentiation. Under these conditions, primary CRC cells did no longer grow as spheroids but formed an adherent cell layer, up-regulated colon epithelial differentiation markers, and down-regulated TIC-associated markers. Strikingly, upon xenotransplantation cells cultured under either condition equally efficient formed serially transplantable tumors. Clonal analyses of individual lentivirally marked TIC clones cultured under either culture condition revealed no systematic differences in contributing clone numbers, indicating that phenotypic differentiation does not select for few individual clones adapted to unfavorable culture conditions. Our results reveal that CRC TIC can be propagated under conditions previously thought to induce their elimination. This phenotypic plasticity allows addressing primary human CRC TIC properties in experimental settings based on adherent cell growth.

  4. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression

    PubMed Central

    Cohen-Dvashi, Hadas; Ben-Chetrit, Nir; Russell, Roslin; Carvalho, Silvia; Lauriola, Mattia; Nisani, Sophia; Mancini, Maicol; Nataraj, Nishanth; Kedmi, Merav; Roth, Lee; Köstler, Wolfgang; Zeisel, Amit; Yitzhaky, Assif; Zylberg, Jacques; Tarcic, Gabi; Eilam, Raya; Wigelman, Yoav; Will, Rainer; Lavi, Sara; Porat, Ziv; Wiemann, Stefan; Ricardo, Sara; Schmitt, Fernando; Caldas, Carlos; Yarden, Yosef

    2015-01-01

    Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells. PMID:25678558

  5. Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition.

    PubMed

    Kong, Jienan; Di, Chunchan; Piao, Junjie; Sun, Jie; Han, Longzhe; Chen, Liyan; Yan, Guanghai; Lin, Zhenhua

    2016-04-12

    Cervical cancer is the third most common cancer in females worldwide. The treatment options for advanced cervical cancer are limited, leading to high mortality. Ezrin is a membrane-cytoskeleton-binding protein recently reported to act as a tumor promoter, and we previously indicated that the aberrant localization and overexpression of Ezrin could be an independent effective biomarker for prognostic evaluation of cervical cancers. In this study, we identified Ezrin as a regulator of epithelial-mesenchymal transition (EMT) and metastasis in cervical cancer. Ezrin knock-down inhibited anchorage-independent growth, cell migration, and invasion of cervical cancer cell lines in vitro and in vivo. EMT was inhibited in Ezrin-depleted cells, with up-regulation of E-cadherin and Cytokeratin-18 (CK-18) and down-regulation of mesenchymal markers. Ezrin knock-down also induced Akt phosphorylation. These results implicate Ezrin as an EMT regulator and tumor promoter in cervical cancer, and down-regulation of Ezrin suppressed cervical cancer progression, possibly via the phosphoinositide 3-kinase/Akt pathway. Furthermore, the expression pattern of Ezrin protein was closely related with the lymphovascular invasion status of cervical cancer by immunohistochemistry, and the survival analysis revealed that the cervical cancer patients with the perinuclear Ezrin expression pattern had longer survival time than those with the cytoplasmic Ezrin expression pattern. Ezrin thus represents a promising target for the development of novel and effective strategies aimed at preventing the progression of cervical cancer.

  6. CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's Progression Markers Initiative study.

    PubMed

    Kang, Ju-Hee; Mollenhauer, Brit; Coffey, Christopher S; Toledo, Jon B; Weintraub, Daniel; Galasko, Douglas R; Irwin, David J; Van Deerlin, Vivianna; Chen-Plotkin, Alice S; Caspell-Garcia, Chelsea; Waligórska, Teresa; Taylor, Peggy; Shah, Nirali; Pan, Sarah; Zero, Pawel; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Tanner, Caroline M; Simuni, Tanya; Singleton, Andrew; Toga, Arthur W; Chowdhury, Sohini; Trojanowski, John Q; Shaw, Leslie M

    2016-06-01

    The development of biomarkers to predict the progression of Parkinson's disease (PD) from its earliest stage through its heterogeneous course is critical for research and therapeutic development. The Parkinson's Progression Markers Initiative (PPMI) study is an ongoing international multicenter, prospective study to validate biomarkers in drug-naïve PD patients and matched healthy controls (HC). We quantified cerebrospinal fluid (CSF) alpha-synuclein (α-syn), amyloid-beta1-42 (Aβ1-42), total tau (t-tau), and tau phosphorylated at Thr181 (p-tau) in 660 PPMI subjects at baseline, and correlated these data with measures of the clinical features of these subjects. We found that CSF α-syn, t-tau and p-tau levels, but not Aβ1-42, were significantly lower in PD compared with HC, while the diagnostic value of the individual CSF biomarkers for PD diagnosis was limited due to large overlap. The level of α-syn, but not other biomarkers, was significantly lower in PD patients with non-tremor-dominant phenotype compared with tremor-dominant phenotype. In addition, in PD patients the lowest Aβ1-42, or highest t-tau/Aβ1-42 and t-tau/α-syn quintile in PD patients were associated with more severe non-motor dysfunction compared with the highest or lowest quintiles, respectively. In a multivariate regression model, lower α-syn was significantly associated with worse cognitive test performance. APOE ε4 genotype was associated with lower levels of Aβ1-42, but neither with PD diagnosis nor cognition. Our data suggest that the measurement of CSF biomarkers in early-stage PD patients may relate to disease heterogeneity seen in PD. Longitudinal observations in PPMI subjects are needed to define their prognostic performance.

  7. Annexin II-Dependent Mechanism of Breast Cancer Progression

    DTIC Science & Technology

    2010-11-01

    carcinoma patients [13]. The p roliferative ef fects o f TA M w ere d emonstrated in vivo in mice with mammary cancer . The macrophage colony...associated macrophages . Crit Rev Oncol/Hematol 2008; 66 (1): 1-9. [5] Pollard JW. Macrophages define the invasive microenvironment in breast cancer . J...related inflammation: the macrophage connection. Cancer Lett 2008; 267 (2): 204-15. [9] Lin E Y, Pollard JW . T umor-associated m acrophages p ress

  8. The Role of SF2 in Prostate Cancer Progression

    DTIC Science & Technology

    2011-04-01

    polymorphism. Cancer Lett 1995;93:165–70. 3. Rojas P, Benavides F, Blando J, et al. Enhanced skin carcinogenesis and lack of thymus hyperplasia in transgenic...AD_________________ Award Number: W81XWH-10-1-0239 TITLE: The Role of SF2 in Prostate Cancer ...REPORT TYPE Annual 3. DATES COVERED 1 April 2010 – 31 March 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of SF2 in Prostate Cancer

  9. Cancer initiating-cells are enriched in the CA9 positive fraction of primary cervix cancer xenografts

    PubMed Central

    Marie-Egyptienne, Delphine Tamara; Chaudary, Naz; Kalliomäki, Tuula; Hedley, David William; Hill, Richard Peter

    2017-01-01

    Numerous studies have suggested that Cancer Initiating Cells (CIC) can be identified/enriched in cell populations obtained from solid tumors based on the expression of cell surface marker proteins. We used early passage primary cervix cancer xenografts to sort cells based on the expression of the intrinsic hypoxia marker Carbonic Anhydrase 9 (CA9) and tested their cancer initiation potential by limiting dilution assay. We demonstrated that CICs are significantly enriched in the CA9+ fraction in 5/6 models studied. Analyses of the expression of the stem cell markers Oct4, Notch1, Sca-1 & Bmi1 showed a trend toward an increase in the CA9+ populations, albeit not significant. We present evidence that enhanced autophagy does not play a role in the enhanced growth of the CA9+ cells. Our study suggests a direct in vivo functional link between hypoxic cells and CICs in primary cervix cancer xenografts. PMID:27901496

  10. UNESCO's Astronomy and World Heritage Initiative: Progress to Date and Future Priorities

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2013-01-01

    UNESCO’s thematic initiative on Astronomy and World Heritage was created in 2005 “to establish a link between science and culture on the basis of research aimed at acknowledging the cultural and scientific values of properties connected with astronomy”. Since 2008, when a formal Memorandum of Understanding (MoU) was signed between the IAU and UNESCO to work together to advance the Initiative, the IAU, through its Working Group on Astronomy and World Heritage, has been working to help identify, safeguard and promote the world’s most valuable cultural properties connected with astronomy. The Working Group’s first major deliverable was the Thematic Study on the Heritage Sites of Astronomy and Archaeoastronomy, which was prepared in collaboration with ICOMOS, the Advisory Body to UNESCO that assesses World Heritage List applications relating to cultural heritage. Published in 2010, this has been endorsed by the World Heritage Centre as a basis for developing specific guidelines for UNESCO member states on the inscription of astronomical properties. The IAU’s General Assembly in Beijing saw the launch of perhaps the most significant deliverable from the Initiative to date, the Portal to the Heritage of Astronomy (www.astronomicalheritage.net) which is a dynamic, publicly accessible database, discussion forum, and document-repository on astronomical heritage sites throughout the world, whether or not they are on UNESCO’s World Heritage List. In recent months the Working Group has completed a set of nine “Extended Case Studies", which raise a wide range of general issues, varying from the integrity of astronomical sightlines at ancient sites to the preservation of dark skies at modern observatories. Given the progress that has been made to date, how would we wish to see the Initiative develop in the future and what should be the Working Group’s priorities in the coming months and years? Among the suggestions I shall be discussing is that the WG should

  11. Identification and Function of Ets Target Genes Involved in Lung Cancer Progression

    DTIC Science & Technology

    2013-10-01

    Non-Small Cell Lung Cancer (NSCLC) Progression and Metastasis”. Jun Li1, Julian Carretero2, Carl J O’Hara3, Anne Hinds1, Guetchyn Millien1, Mary C...Primary Adenocarcinoma in Lung” Anita Malek , MD; Hasmeena Kathuria, MD; and Carl O’Hara, MD 12 Conclusions In this progress report, we...Expression in Non-Small Cell Lung Cancer (NSCLC) Progression and Metastasis Jun Li1, Julian Carretero2, Carl J O’Hara3, Anne Hinds1, Guetchyn Millien1

  12. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    PubMed Central

    Hawk, Mark A.; McCallister, Chelsea; Schafer, Zachary T.

    2016-01-01

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression. PMID:27754368

  13. Role of autonomous androgen receptor signaling in prostate cancer initiation is dichotomous and depends on the oncogenic signal.

    PubMed

    Memarzadeh, Sanaz; Cai, Houjian; Janzen, Deanna M; Xin, Li; Lukacs, Rita; Riedinger, Mireille; Zong, Yang; DeGendt, Karel; Verhoeven, Guido; Huang, Jiaoti; Witte, Owen N

    2011-05-10

    The steroid hormone signaling axis is thought to play a central role in initiation and progression of many hormonally regulated epithelial tumors. It is unclear whether all cancer-initiating signals depend on an intact hormone receptor signaling machinery. To ascertain whether cell autonomous androgen receptor (AR) is essential for initiation of prostate intraepithelial neoplasia (PIN), the response of AR-null prostate epithelia to paracrine and cell autonomous oncogenic signals was assessed in vivo by using the prostate regeneration model system. Epithelial-specific loss of AR blocked paracrine FGF10-induced PIN, whereas the add back of exogenous AR restored this response. In contrast, PIN initiated by cell-autonomous, chronic-activated AKT developed independent of epithelial AR signaling. Our findings demonstrate a selective role for AR in the initiation of PIN, dependent on the signaling pathways driving tumor formation. Insights into the role of hormone receptor signaling in the initiation of epithelial tumors may help define this axis as a target for chemoprevention of carcinomas.

  14. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression

    PubMed Central

    Kolb, Ryan; Phan, Liem; Borcherding, Nicholas; Liu, Yinghong; Yuan, Fang; Janowski, Ann M.; Xie, Qing; Markan, Kathleen R.; Li, Wei; Potthoff, Matthew J.; Fuentes-Mattei, Enrique; Ellies, Lesley G.; Knudson, C. Michael; Lee, Mong-Hong; Yeung, Sai-Ching J.; Cassel, Suzanne L.; Sutterwala, Fayyaz S.; Zhang, Weizhou

    2016-01-01

    Obesity is associated with an increased risk of developing breast cancer and is also associated with worse clinical prognosis. The mechanistic link between obesity and breast cancer progression remains unclear, and there has been no development of specific treatments to improve the outcome of obese cancer patients. Here we show that obesity-associated NLRC4 inflammasome activation/ interleukin (IL)-1 signalling promotes breast cancer progression. The tumour microenvironment in the context of obesity induces an increase in tumour-infiltrating myeloid cells with an activated NLRC4 inflammasome that in turn activates IL-1β, which drives disease progression through adipocyte-mediated vascular endothelial growth factor A (VEGFA) expression and angiogenesis. Further studies show that treatment of mice with metformin inhibits obesity-associated tumour progression associated with a marked decrease in angiogenesis. This report provides a causal mechanism by which obesity promotes breast cancer progression and lays out a foundation to block NLRC4 inflammasome activation or IL-1β signalling transduction that may be useful for the treatment of obese cancer patients. PMID:27708283

  15. California Breast Cancer Prevention Initiatives: Setting a research agenda for prevention.

    PubMed

    Sutton, P; Kavanaugh-Lynch, M H E; Plumb, M; Yen, I H; Sarantis, H; Thomsen, C L; Campleman, S; Galpern, E; Dickenson, C; Woodruff, T J

    2015-07-01

    The environment is an underutilized pathway to breast cancer prevention. Current research approaches and funding streams related to breast cancer and the environment are unequal to the task at hand. We undertook the California Breast Cancer Prevention Initiatives, a four-year comprehensive effort to set a research agenda related to breast cancer, the environment, disparities and prevention. We identified 20 topics for Concept Proposals reflecting a life-course approach and the complex etiology of breast cancer; considering the environment as chemical, physical and socially constructed exposures that are experienced concurrently: at home, in the community and at work; and addressing how we should be modifying the world around us to promote a less carcinogenic environment. Redirecting breast cancer research toward prevention-oriented discovery could significantly reduce the incidence and associated disparities of the disease among future generations.

  16. Salt Reduction Initiatives around the World – A Systematic Review of Progress towards the Global Target

    PubMed Central

    Trieu, Kathy; Neal, Bruce; Hawkes, Corinna; Dunford, Elizabeth; Campbell, Norm; Rodriguez-Fernandez, Rodrigo; Legetic, Branka; McLaren, Lindsay; Barberio, Amanda; Webster, Jacqui

    2015-01-01

    Objective To quantify progress with the initiation of salt reduction strategies around the world in the context of the global target to reduce population salt intake by 30% by 2025. Methods A systematic review of the published and grey literature was supplemented by questionnaires sent to country program leaders. Core characteristics of strategies were extracted and categorised according to a pre-defined framework. Results A total of 75 countries now have a national salt reduction strategy, more than double the number reported in a similar review done in 2010. The majority of programs are multifaceted and include industry engagement to reformulate products (n = 61), establishment of sodium content targets for foods (39), consumer education (71), front-of-pack labelling schemes (31), taxation on high-salt foods (3) and interventions in public institutions (54). Legislative action related to salt reduction such as mandatory targets, front of pack labelling, food procurement policies and taxation have been implemented in 33 countries. 12 countries have reported reductions in population salt intake, 19 reduced salt content in foods and 6 improvements in consumer knowledge, attitudes or behaviours relating to salt. Conclusion The large and increasing number of countries with salt reduction strategies in place is encouraging although activity remains limited in low- and middle-income regions. The absence of a consistent approach to implementation highlights uncertainty about the elements most important to success. Rigorous evaluation of ongoing programs and initiation of salt reduction programs, particularly in low- and middle- income countries, will be vital to achieving the targeted 30% reduction in salt intake. PMID:26201031

  17. Split-Course, High-Dose Palliative Pelvic Radiotherapy for Locally Progressive Hormone-Refractory Prostate Cancer

    SciTech Connect

    Gogna, Nirdosh Kumar; Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn; Burmeister, Elizabeth; Holt, Tanya

    2012-06-01

    Purpose: Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. Methods and Materials: A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. Results: The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. Conclusions: The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported.

  18. The Haiti Breast Cancer Initiative: Initial Findings and Analysis of Barriers-to-Care Delaying Patient Presentation

    PubMed Central

    Sharma, Ketan; Costas, Ainhoa; Damuse, Ruth; Hamiltong-Pierre, Jean; Pyda, Jordan; Ong, Cecilia T.; Shulman, Lawrence N.; Meara, John G.

    2013-01-01

    Background. In Haiti, breast cancer patients present at such advanced stages that even modern therapies offer modest survival benefit. Identifying the personal, sociocultural, and economic barriers-to-care delaying patient presentation is crucial to controlling disease. Methods. Patients presenting to the Hôpital Bon Sauveur in Cange were prospectively accrued. Delay was defined as 12 weeks or longer from initial sign/symptom discovery to presentation, as durations greater than this cutoff correlate with reduced survival. A matched case-control analysis with multivariate logistic regression was used to identify factors predicting delay. Results. Of N = 123 patients accrued, 90 (73%) reported symptom-presentation duration and formed the basis of this study: 52 patients presented within 12 weeks of symptoms, while 38 patients waited longer than 12 weeks. On logistic regression, lower education status (OR = 5.6, P = 0.03), failure to initially recognize mass as important (OR = 13.0, P < 0.01), and fear of treatment cost (OR = 8.3, P = 0.03) were shown to independently predict delayed patient presentation. Conclusion. To reduce stage at presentation, future interventions must educate patients on the recognition of initial breast cancer signs and symptoms and address cost concerns by providing care free of charge and/or advertising that existing care is already free. PMID:23840209

  19. Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression.

    PubMed

    Hsu, Kai-Wen; Hsieh, Rong-Hong; Huang, Kuo-Hung; Fen-Yau Li, Anna; Chi, Chin-Wen; Wang, Tzu-Yin; Tseng, Min-Jen; Wu, Kou-Juey; Yeh, Tien-Shun

    2012-08-01

    Gastric carcinoma is one of the most common malignancies and a lethal cancer in the world. Notch signaling and transcription factors STAT3 (signal transducer and activator of transcription 3) and Twist regulate tumor development and are critical regulators of gastric cancer progression. Herein, the relationship among Notch, STAT3 and Twist pathways in the control of gastric cancer progression was studied. We found that Twist and phosphorylated STAT3 levels were promoted by the activated Notch1 receptor in human stomach adenocarcinoma SC-M1, embryonic kidney HEK293 and erythroleukemia K562 cells. Notch1 signaling dramatically induced Twist promoter activity through a C promoter binding factor-1-independent manner and STAT3 phosphorylation. Overexpression of Notch1 receptor intracellular domain (N1IC) enhanced the interaction between nuclear STAT3 and Twist promoter in cells. Gastric cancer progression of SC-M1 cells was promoted by N1IC through STAT3 phosphorylation and Twist expression including colony formation, migration and invasion. STAT3 regulated gastric cancer progression of SC-M1 cells via Twist. N1IC also elevated the progression of other gastric cancer cells such as AGS and KATO III cells through STAT3 and Twist. The N1IC-promoted tumor growth and lung metastasis of SC-M1 cells in mice were suppressed by the STAT3 inhibitor JSI-124 and Twist knockdown. Furthermore, Notch1 and Notch ligand Jagged1 expressions were significantly associated with phosphorylated STAT3 and Twist levels in gastric cancer tissues of patients. Taken together, these results suggest that Notch1/STAT3/Twist signaling axis is involved in progression of human gastric cancer and modulation of this cascade has potential for the targeted combination therapy.

  20. Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis

    PubMed Central

    Feng, Dingqing; Yan, Keqin; Zhou, Ying; Liang, Haiyan; Liang, Jing; Zhao, Weidong; Dong, Zhongjun; Ling, Bin

    2016-01-01

    The human papillomavirus (HPV) oncoproteins E6 and E7 are risk factors that are primarily responsible for the initiation and progression of cervical cancer, and they play a key role in immortalization and transformation by reprogramming differentiating host epithelial cells. It is unclear how cervical epithelial cells transform into tumor-initiating cells (TICs). Here, we observed that the germ stem cell protein Piwil2 is expressed in pre-cancerous and malignant lesions of the cervix and cervical cancer cell lines with the exception of the non-HPV-infected C33a cell line. Knockdown of Piwil2 by shRNA led to a marked reduction in proliferation and colony formation, in vivo tumorigenicity, chemo-resistance, and the proportion of cancer stem-like cells. In contrast, Piwil2 overexpression induced malignant transformation of HaCaT cells and the acquisition of tumor-initiating capabilities. Gene-set enrichment analysis revealed embryonic stem cell (ESC) identity, malignant biological behavior, and specifically, activation targets of the cell reprogramming factors c-Myc, Klf4, Nanog, Oct4, and Sox2 in Piwil2-overexpressing HaCaT cells. We further confirmed that E6 and E7 reactivated Piwil2 and that E6 and E7 overexpression resulted in a similar gene-set enrichment pattern as Piwil2 overexpression in HaCaT cells. Moreover, Piwil2 overexpression or E6 and E7 activation induced H3K9 acetylation but reduced H3K9 trimethylation, which contributed to the epigenetic reprogramming and ESC signature maintenance, as predicted previously. Our study demonstrates that Piwil2, reactivated by the HPV oncoproteins E6 and E7, plays an essential role in the transformation of cervical epithelial cells to TICs via epigenetics-based cell reprogramming. PMID:27602489

  1. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  2. Antibody-based immunotherapy of solid cancers: progress and possibilities.

    PubMed

    Nicodemus, Christopher F

    2015-01-01

    Monoclonal antibodies remain a primary product option for novel cancer treatment. The properties of an antibody are a function of the antigen specificity and constant region incorporated. The rapid advance in molecular understanding of cancer biology and the host-tumor interaction has defined a new range of targets for antibody development. The clinical success of the checkpoint inhibitors has validated immune modulation and mobilization as a therapeutic approach. Solid cancers are distinguished from hematologic malignancies because the solid tumor stroma contains significant tumor promoting and immune dampening elements less prominent in hematologic cancer. This review highlights how engineered monoclonal antibody products are emerging as potential cornerstones of new more personalized cancer treatment paradigms that target both tumor and the stromal environment.

  3. Antibody-based immunotherapy of solid cancers: progress and possibilities

    PubMed Central

    Nicodemus, Christopher F

    2015-01-01

    Monoclonal antibodies remain a primary product option for novel cancer treatment. The properties of an antibody are a function of the antigen specificity and constant region incorporated. The rapid advance in molecular understanding of cancer biology and the host–tumor interaction has defined a new range of targets for antibody development. The clinical success of the checkpoint inhibitors has validated immune modulation and mobilization as a therapeutic approach. Solid cancers are distinguished from hematologic malignancies because the solid tumor stroma contains significant tumor promoting and immune dampening elements less prominent in hematologic cancer. This review highlights how engineered monoclonal antibody products are emerging as potential cornerstones of new more personalized cancer treatment paradigms that target both tumor and the stromal environment. PMID:26314410

  4. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression.

    PubMed

    Vincan, Elizabeth; Barker, Nick

    2008-01-01

    The constitutive activation of beta-catenin-dependent ('canonical') Wnt signalling is a necessary initiating event in the genesis of most colorectal cancers. As this constitutive activation occurs through genetic mutation of one of the down-stream components of the signalling pathway, it was presumed that additional regulation of beta-catenin-dependent Wnt signalling would be inconsequential. However, it is now recognised that additional modulation of beta-catenin-dependent Wnt signalling is involved in tumour progression, and many of the genes associated with tumour invasion and metastasis are beta-catenin/TCF transcriptional target genes that are dynamically regulated during cancer progression. Intriguingly, the demonstration that naturally occurring inhibitors of Wnt-Frizzled (FZD) interaction are bona fide tumour suppressors in this cancer suggests that additional modulation of Wnt signalling is via the upstream components of the pathway. This is corroborated by recent studies that demonstrate tumour-promoting roles for Wnt and FZD per se. Moreover, both beta-catenin-dependent and beta-catenin-independent Wnt/FZD-mediated signalling is implicated during the dynamic and reversible EMT and MET that underscore colorectal cancer progression. Importantly, therapeutic targeting of the Wnt signalling pathway at the plasma membrane is clearly indicated by the profound anti-tumour activity of small molecule inhibitors and dominant-negative receptor constructs that target the receptor complex. The potential to effectively target EMT and MET processes at the plasma membrane via the upstream components of the Wnt signalling pathway offers new hope for anti-cancer therapy.

  5. Initial stages of oxidation of metals and alloys. Progress report, August 1, 1979-April 30, 1980

    SciTech Connect

    Blakely, J.M.

    1980-04-01

    An experimental research program on metal surface oxidation has been initiated. Studies of Be and of Fe-Ni single crystal surfaces are underway using the techniques of Auger and electron loss spectroscopy and low energy electron diffraction. A detailed study of the Auger line shape from clean cleaved Be (0001) planes has provided a standard against which all previous work may be composed. Progress has been made in preparing clean Be surfaces by ion sputtering techniques, computer processing of Auger data and some preliminary LEED studies have been made both of clean and oxygen covered surfaces. A liquid nitrogen cold stage for ribbon type single crystal samples has been constructed. The composition of the (100) surface of a Ni-60, Fe-40 single crystal has been in vestigated over the temperature range from 25 to 900/sup 0/C. Under uhv conditions only very slight enrichment in Fe occurs. Preliminary studies have also been made of surface structure and of C and S segregation to this Fe-Ni (100) surface.

  6. The Alzheimer’s Disease Neuroimaging Initiative: Progress report and future plans

    PubMed Central

    Weiner, Michael W.; Aisen, Paul S.; Jack, Clifford R.; Jagust, William J.; Trojanowski, John Q.; Shaw, Leslie; Saykin, Andrew J.; Morris, John C.; Cairns, Nigel; Beckett, Laurel A.; Toga, Arthur; Green, Robert; Walter, Sarah; Soares, Holly; Snyder, Peter; Siemers, Eric; Potter, William; Cole, Patricia E.; Schmidt, Mark

    2010-01-01

    The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year re-search project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD. PMID:20451868

  7. NOP14 suppresses breast cancer progression by inhibiting NRIP1/Wnt/β-catenin pathway.

    PubMed

    Lei, Jin-Ju; Peng, Rou-Jun; Kuang, Bo-Hua; Yuan, Zhong-Yu; Qin, Tao; Liu, Wen-Sheng; Guo, Yun-Miao; Han, Hui-Qiong; Lian, Yi-Fan; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Chen, Li-Zhen; Feng, Qi-Sheng; Xu, Miao; Feng, Lin; Bei, Jin-Xin; Zeng, Yi-Xin

    2015-09-22

    NOP14, which is functionally conserved among eukaryotes, has been implicated in cancer development. Here, we show that NOP14 is poorly expressed in breast cancer cells and invasive breast cancer tissues. In vivo and in vitro studies indicated that NOP14 suppressed the tumorigenesis and metastasis of breast cancer cells. Further investigations revealed that NOP14 enhanced ERα expression and inhibited the Wnt/β-catenin pathway by up-regulating NRIP1 expression. Survival analysis indicated that low NOP14 expression was significantly associated with poor overall survival (P = 0.0006) and disease-free survival (P = 0.0007), suggesting that NOP14 is a potential prognostic factor in breast cancer. Taken together, our findings reveal that NOP14 may suppress breast cancer progression and provide new insights into the development of targeted therapeutic agents for breast cancer.

  8. Cancer Therapeutic Resistance: Progress and Perspectives (April 7-8, 2016 - Barcelona, Spain).

    PubMed

    Hutchinson, E; Pujana, M A; Arribas, J

    2016-06-01

    At the Cancer Therapeutic Resistance: Progress and Perspectives conference, in Barcelona, Spain, April 7-8, 2016, researchers, clinicians and students gathered to discuss our current understanding of intrinsic and acquired resistance of tumors to cancer therapies and to explore how to translate strategies to predict risk or overcome resistance to the clinic. The sessions covered a wide range of topics, including cancer omics, molecular classification, clinically relevant tumor models, biomarkers and novel therapeutic targets, and personalized medicine, with talks from many international experts in the field. This report highlights the main presentations that demonstrate the progress being made in predicting and identifying drug resistance in patients with cancer, personalized approaches to direct treatment and understanding the mechanisms involved. With better models of human cancer and powerful high-throughput screening techniques, translation to the clinic leading to tangible benefits for patients is attainable.

  9. Role of B Cell Development Marker CD10 in Cancer Progression and Prognosis

    PubMed Central

    Mishra, Deepshikha; Singh, Sunita

    2016-01-01

    The human CD10 antigen is a single pass, type II transmembrane, 100 kD cell surface glycoprotein belonging to peptidase M13 family. Identified in common acute lymphoblastic leukemia as a cancer specific antigen, CD10 is a cell surface ectoenzyme widely expressed on different types of cells. Earlier, it was used only as a cell surface marker to identify and differentiate between haematological malignancies. Later, reported to be present in various malignancies, it is thought to play significant role in cancer development and progression. Regulated expression of CD10 is necessary for angiogenesis and so forth. However its expression level is found to be deregulated in different cancers. In some cancers, it acts as tumor suppressor and inhibits tumor progression whereas in others it has tumor promoting tendency. However, its role in tumorigenesis remains unclear. This review summarises structural features, functions, and probable role of CD10 in cancer development. PMID:27965895

  10. The role of the androgen receptor in the development and progression of bladder cancer.

    PubMed

    Li, Yi; Izumi, Koji; Miyamoto, Hiroshi

    2012-07-01

    Men are at a higher risk of developing bladder cancer than women. Since bladder cancer cell lines and tissues were found to express the androgen receptor, efforts have been made to inspect whether androgen-mediated androgen receptor signals are implicated in bladder carcinogenesis as well as cancer progression. Mounting evidence supports the view that bladder cancer is a member of the endocrine-related tumors and may clearly explain the gender-specific difference in the incidence. However, the underlying mechanisms of how androgen receptor signals regulate bladder cancer growth are still far from fully characterized. Moreover, it remains controversial whether the androgen receptor pathway always plays a dominant role in bladder cancer progression. In this review, we summarize the available data on the involvement of androgen receptor signaling in bladder cancer. In particular, current evidence demonstrating the stimulatory effects of androgens on tumor progression or, more convincingly, tumorigenesis via the androgen receptor pathway may offer great potential for androgen deprivation as a therapeutic or chemopreventive option in patients with bladder cancer.

  11. A novel 2-pyrone derivative, BHP, impedes oncogenic KRAS-driven malignant progression in breast cancer.

    PubMed

    Kim, Rae-Kwon; Suh, Yongjoon; Lim, Eun-Jung; Yoo, Ki-Chun; Lee, Ga-Haeng; Cui, Yan-Hong; Son, Arang; Hwang, Eunji; Uddin, Nizam; Yi, Joo-Mi; Kang, Seok-Gu; Lee, Su-Jae

    2013-08-28

    Elevated KRAS expression has been frequently associated with cancer progression including breast cancer; however, therapeutic approaches targeting KRAS have been widely unsuccessful and KRAS mutant cancers remain unsolved problem in cancer therapy. In this study, we found that a new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one (BHP) can block KRAS-driven breast cancer progression. Importantly, treatment with BHP effectively suppressed the migratory and invasive properties along with epithelial-mesenchymal transition (EMT) in MDA-MB231 breast cancer cells that carry oncogenic KRAS and mesenchymal malignant phenotypes. In parallel, BHP also sensitized the cells to anticancer treatment. Consistently, forced-expression of oncogenic KRAS bestowed the migratory and invasive properties, mesenchymal transition and resistance to anticancer treatment into normal human mammalian breast cells MCF10A and relatively non-malignant MCF7 and SK-BR3 breast cancer cells; however, treatment with BHP blocked those KRAS-induced malignant phenotypes. Notably, BHP interfered the interaction of KRAS with Raf-1 in concentration-dependent manner, thereby blocking the downstream effectors of KRAS signaling that is PI3K/AKT and ERK. Taken together, our findings indicate that the BHP, an α-pyrone derivative, suppresses malignant breast cancer progression by targeting of oncogenic KRAS signaling pathways.

  12. The Hedgehog Signaling Networks in Lung Cancer: The Mechanisms and Roles in Tumor Progression and Implications for Cancer Therapy

    PubMed Central

    2016-01-01

    Lung cancer is the most common cause of cancer-related death worldwide and is classified into small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Several gene mutations that contribute to aberrant cell proliferation have been identified in lung adenocarcinoma, a part of NSCLC. Various anticancer drugs that target these mutated molecules have been developed for NSCLC treatment. However, although molecularly targeted drugs are initially effective for patients, the 5-year survival rate remains low because of tumor relapse. Therefore, more effective drugs for lung cancer treatment should be developed. The hedgehog (HH) signaling pathway contributes to organ development and stem cell maintenance, and aberrant activation of this signaling pathway is observed in various cancers including lung cancer. In lung cancer, HH signaling pathway upregulates cancer cell proliferation and maintains cancer stem cells as well as cancer-associated fibroblasts (CAFs). Furthermore, physical contact between CAFs and NSCLC cells induces HH signaling pathway activation in NSCLC cells to enhance their metastatic potential. Therefore, HH signaling pathway inhibitors could be a useful option for lung cancer therapy. PMID:28105432

  13. Cell-cycle coupled expansion of AR activity promotes cancer progression

    PubMed Central

    McNair, Christopher; Urbanucci, Alfonso; Comstock, Clay E.S.; Augello, Michael A.; Goodwin, Jonathan F.; Launchbury, Rosalind; Zhao, Shuang; Schiewer, Mathew J.; Ertel, Adam; Karnes, Jeffrey; Davicioni, Elai; Wang, Liguo; Wang, Qianben; Mills, Ian G.; Feng, Felix Y.; Li, Wei; Carroll, Jason S.; Knudsen, Karen E.

    2016-01-01

    The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle (“Cell Cycle Common”), versus those that were specifically enriched in a subset of cell cycle phases (“Phase Restricted”). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide-desaturase 1 (DEGS1) was identified as an AR regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention, and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention. PMID:27669432

  14. Glucose Metabolism in the Progression of Prostate Cancer

    PubMed Central

    Cutruzzolà, Francesca; Giardina, Giorgio; Marani, Marina; Macone, Alberto; Paiardini, Alessandro; Rinaldo, Serena; Paone, Alessio

    2017-01-01

    Prostate cancer is one of the most common types of cancer in western country males but the mechanisms involved in the transformation processes have not been clearly elucidated. Alteration in cellular metabolism in cancer cells is recognized as a hallmark of malignant transformation, although it is becoming clear that the biological features of metabolic reprogramming not only differ in different cancers, but also among different cells in a type of cancer. Normal prostate epithelial cells have a peculiar and very inefficient energy metabolism as they use glucose to synthesize citrate that is secreted as part of the seminal liquid. During the transformation process, prostate cancer cells modify their energy metabolism from inefficient to highly efficient, often taking advantage of the interaction with other cell types in the tumor microenvironment that are corrupted to produce and secrete metabolic intermediates used by cancer cells in catabolic and anabolic processes. We recapitulate the metabolic transformations occurring in the prostate from the normal cell to the metastasis, highlighting the role of the microenvironment and summarizing what is known on the molecular mechanisms involved in the process. PMID:28270771

  15. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment.

    PubMed

    Guerrero-Zotano, Angel; Mayer, Ingrid A; Arteaga, Carlos L

    2016-12-01

    Anti-cancer cancer-targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Mutations in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway are freqcuently found in breast cancers and associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK/mTOR are currently in clinical trials, mainly in combination with endocrine therapy and anti-HER2 therapy. These drugs are the focus of this review.

  16. TGF-β Signaling in Gastrointestinal Cancers: Progress in Basic and Clinical Research

    PubMed Central

    Yokobori, Takehiko; Nishiyama, Masahiko

    2017-01-01

    Transforming growth factor (TGF)-β superfamily proteins have many important biological functions, including regulation of tissue differentiation, cell proliferation, and migration in both normal and cancer cells. Many studies have reported that TGF-β signaling is associated with disease progression and therapeutic resistance in several cancers. Similarly, TGF-β-induced protein (TGFBI)—a downstream component of the TGF-β signaling pathway—has been shown to promote and/or inhibit cancer. Here, we review the state of basic and clinical research on the roles of TGF-β and TGFBI in gastrointestinal cancers. PMID:28106769

  17. Early versus delayed initiation of adjuvant treatment for pancreatic cancer

    PubMed Central

    Kim, Hyoung Woo; Lee, Jong-Chan; Lee, Jongchan; Kim, Jin Won; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor showing a tendency for early recurrence, even after curative resection. Although adjuvant treatment improves survival, it is unclear whether early adjuvant treatment initiation yields better outcomes in patients with PDAC. Methods We retrospectively enrolled 113 patients who underwent chemotherapy or chemoradiotherapy after curative resection of PDAC: Fifty-six and 57 patients were in the early and delayed groups, respectively based on the median time of treatment initiation (35 days [range, 20–83 days]). Results Patient baseline characteristics were comparable in both groups, except for grade III or IV postoperative complications (5.4% in the early group vs. 22.8% in the delayed group). With a median 20.3-month follow-up, the overall survival (OS) and disease-free survival (DFS) times were 29.5 and 14.7 months, respectively. The early group had significantly prolonged OS (39.1 vs. 21.1 months, p = 0.018) and DFS (18.8 vs. 10.0 months, p = 0.034), compared to the delayed group. Among 71 patients who completed planned adjuvant treatment, patients in the early group tended to have longer, though not statistically significant, OS and DFS times than those in the delayed group. In 67 patients without postoperative complications, patients in the early group had longer OS (42.8 vs. 20.5 months, p = 0.002) and DFS (19.6 vs. 9.1 months, p = 0.005) than those in the delayed group. By multivariate analysis, incompletion of treatment (hazard ratio [HR]: 4.039, 95% confidence interval [CI]: 2.334–6.992), delayed treatment initiation (HR: 1.822, 95% CI: 1.081–3.070), and positive angiolymphatic invasion (HR: 2.116, 95% CI: 1.160–3.862) were significantly associated with shorter OS. Conclusions Adjuvant treatment should be delivered earlier and completed for better outcomes in resected PDAC patients, especially without postoperative complications. PMID:28301556

  18. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis

    PubMed Central

    Hsu, Ya-Ling; Hung, Jen-Yu; Chiang, Shin-Yi; Jian, Shu-Fang; Wu, Cheng-Ying; Lin, Yi-Shiuan; Tsai, Ying-Ming; Chou, Shah-Hwa; Tsai, Ming-Ju; Kuo, Po-Lin

    2016-01-01

    Communication between cancer cells and their microenvironment plays an important role in cancer development, but the precise mechanisms by which cancer-associated fibroblasts (CAF) impact anti-cancer immunity and cancer progression in lung cancer are poorly understood. Here, we report that lung fibroblasts when activated by lung cancer cells produce tryptophan metabolite kynurenine (Kyn) that inhibits dendritic cells' differentiation and induces cancer growth as well as migration. We identified TDO2 (tryptophan 2,3-dioxygenase) as the main enzyme expressed in fibroblasts capable of tryptophan metabolism. Mechanistically, condition medium of CAF or exogenous kynurenine stimulated AKT, with no lysine 1 (WNK1) and cAMP response element-bindingprotein (CREB) phosphorylation in lung cancer cells. Inhibition of the AKT/CREB pathway prevents cancer proliferation, while inhibition of the AKT/ WNK1 reverted epithelial-to-mesenchymal transition and cancer migration induced by kynurenine. Moreover, we also demonstrate that lung cancer-derived galectin-1 contributes to the upregulation of TDO2 in CAF through an AKT-dependent pathway. Immunohistochemical analysis of lung cancer surgical specimens revealed increased TDO2 expression in the fibroblasts adjacent to the cancer. Furthermore, in vivo studies showed that administration of TDO2 inhibitor significantly improves DCs function and T cell response, and decreases tumor metastasis in mice. Taken together, our data identify the feedback loop, consisting of cancer-derived galectin-1 and CAF-producing kynurenine, that sustains lung cancer progression. These findings suggest that targeting this pathway may be a promising therapeutic strategy. PMID:27050278

  19. Mortality and Person-Years of Life Lost - End of Life Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. [Mechanisms of plant polyphenols anti-cancer effects. I. Blockade of carcinogenesis initiation].

    PubMed

    Zinov'eva, V N; Spasov, A A

    2012-01-01

    Mechanisms of anti-cancer effects of polyphenols, found in fruits, vegetables, spices and representing parts of daily nutrition, have been considered. These compounds may be the basis for development of cancer preventive preparations. They can block carcinogenesis initiation by inactivation of exogenous or endogenous genotoxic molecules including reactive oxygen species. Another mechanism consists in inhibition of activity and synthesis of carcinogen-metabolizing enzymes. Plant polyphenols also induce expression of antioxidant and detoxification enzymes genes.

  1. Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone

    PubMed Central

    Delliaux, Carine; Gervais, Manon; Kan, Casina; Benetollo, Claire; Pantano, Francesco; Vargas, Geoffrey; Bouazza, Lamia; Croset, Martine; Bala, Yohann; Leroy, Xavier; Rosol, Thomas J; Rieusset, Jennifer; Bellahcène, Akeila; Castronovo, Vincent; Aubin, Jane E; Clézardin, Philippe; Duterque-Coquillaud, Martine; Bonnelye, Edith

    2016-01-01

    Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFβ1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated with ERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events. PMID:27776343

  2. Retrospective study of the effect of disease progression on patient reported outcomes in HER-2 negative metastatic breast cancer patients

    PubMed Central

    2011-01-01

    Background This retrospective study evaluated the impact of disease progression and of specific sites of metastasis on patient reported outcomes (PROs) that assess symptom burden and health related quality of life (HRQoL) in women with metastatic breast cancer (mBC). Methods HER-2 negative mBC patients (n = 102) were enrolled from 7 U.S. community oncology practices. Demographic, disease and treatment characteristics were abstracted from electronic medical records and linked to archived Patient Care Monitor (PCM) assessments. The PCM is a self-report measure of symptom burden and HRQoL administered as part of routine care in participating practices. Linear mixed models were used to examine change in PCM scores over time. Results Mean age was 57 years, with 72% of patients Caucasian, and 25% African American. Median time from mBC diagnosis to first disease progression was 8.8 months. Metastasis to bone (60%), lung (28%) and liver (26%) predominated at initial metastatic diagnosis. Results showed that PCM items assessing fatigue, physical pain and trouble sleeping were sensitive to either general effects of disease progression or to effects associated with specific sites of metastasis. Progression of disease was also associated with modest but significant worsening of General Physical Symptoms, Treatment Side Effects, Acute Distress and Impaired Performance index scores. In addition, there were marked detrimental effects of liver metastasis on Treatment Side Effects, and of brain metastasis on Acute Distress. Conclusions Disease progression has a detrimental impact on cancer-related symptoms. Delaying disease progression may have a positive impact on patients' HRQoL. PMID:21689425

  3. The Role of Central Metabolism in Prostate Cancer Progression

    DTIC Science & Technology

    2012-07-01

    our goal is to: 1. To identify differentially expressed proteins and phosphoproteins in prostate cancer cells from patients on high ω-3 and control...serum/ plasma samples within the next three months and finish the global expression proteomics part of the project within the next six months. 15...SUBJECT TERMS Biomarker, proteomics, prostate cancer, 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME

  4. Predicting Prostate Cancer Progression at Time of Diagnosis

    DTIC Science & Technology

    2013-07-01

    Active surveillance incorporates serial PSA measurements , physical examinations, and repeat prostate biopsies to monitor for either the presence of occult...reflecting events throughout the prostate gland and suitable for repeat measurements over time. PCA3 and the TMPRSS2:ERG fusion are 2 prostate cancer... measurements of TMPRSS2:ERG transcript levels associate with cancer volume and grade at prosta- tectomy, and upgrading from biopsy histologic assess- ments (31

  5. SPINK 1 Protein Expression and Prostate Cancer Progression

    PubMed Central

    Flavin, Richard; Pettersson, Andreas; Hendrickson, Whitney K.; Fiorentino, Michelangelo; Finn, Stephen; Kunz, Lauren; Judson, Gregory L.; Lis, Rosina; Bailey, Dyane; Fiore, Christopher; Nuttall, Elizabeth; Martin, Neil E.; Stack, Edward; Penney, Kathryn L.; Rider, Jennifer R.; Sinnott, Jennifer; Sweeney, Christopher; Sesso, Howard D.; Fall, Katja; Giovannucci, Edward; Kantoff, Philip; Stampfer, Meir; Loda, Massimo; Mucci, Lorelei A.

    2014-01-01

    Purpose SPINK1 over-expression has been described in prostate cancer and is linked with poor prognosis in many cancers. The objective of this study was to characterize the association between SPINK1 over-expression and prostate cancer specific survival. Experimental Design The study included 879 participants in the US Physicians’ Health Study and Health Professionals Follow–Up Study, diagnosed with prostate cancer (1983 – 2004) and treated by radical prostatectomy. Protein tumor expression of SPINK1 was evaluated by immunohistochemistry on tumor tissue microarrays. Results 74/879 (8%) prostate cancer tumors were SPINK1 positive. Immunohistochemical data was available for PTEN, p-Akt, pS6, stathmin, androgen receptor (AR) and ERG (as a measure of the TMPRSS2:ERG translocation). Compared to SPINK1 negative tumors, SPINK1 positive tumors showed higher PTEN and stathmin expression, and lower expression of AR (p<0.01). SPINK1 over-expression was seen in 47 of 427 (11%) ERG negative samples and in 19 of 427 (4%) ERG positive cases (p=0.0003). We found no significant associations between SPINK1 status and Gleason grade or tumor stage. There was no association between SPINK1 expression and biochemical recurrence (p=0.56). Moreover, there was no association between SPINK1 expression and prostate cancer mortality (there were 75 lethal cases of prostate cancer during a mean of 13.5 years follow-up [HR 0.71 (95% confidence interval 0.29–1.76)]). Conclusions Our results suggest that SPINK1 protein expression may not be a predictor of recurrence or lethal prostate cancer amongst men treated by radical prostatectomy. SPINK1 and ERG protein expression do not appear to be entirely mutually exclusive, as some previous studies have suggested. PMID:24687926

  6. A Genetic Interaction Screen for Breast Cancer Progression Driver Genes

    DTIC Science & Technology

    2014-08-01

    target with therapeutics to treat cancer. Thus, novel high throughput strategies are needed to identify and functionally characterize cancer genes. An...and regulatory pathways, anatomical structures, and physiological and behavioral characteristics are also well conserved from mice to humans. To...We have further characterized one of the identified genes, Grik3, and have found that it regualtes the cell cycle, but not apoptosis, by inducing the

  7. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

    PubMed Central

    Feinberg, Andrew P.; Koldobskiy, Michael A.; Göndör, Anita

    2016-01-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of ‘tumour progenitor genes’. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: ‘epigenetic mediators’, corresponding to the tumour progenitor genes suggested earlier; ‘epigenetic modifiers’ of the mediators, which are frequently mutated in cancer; and ‘epigenetic modulators’ upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  8. Stat3 Activation in Urothelial Stem Cells Leads to Direct Progression to Invasive Bladder Cancer

    PubMed Central

    Ho, Philip Levy; Lay, Erica Julianne; Jian, Weiguo; Parra, Diana; Chan, Keith Syson

    2012-01-01

    Two subtypes of human bladder cancer, noninvasive papillary and muscle-invasive cancer, develop through independent pathologic and molecular pathways. Human invasive bladder cancer frequently develops without prior clinical evidence of a noninvasive tumor stage. However, an animal model that recapitulates this unique clinical progression of invasive bladder cancer has not yet been developed. In this study, we created a novel transgenic mouse model of invasive bladder cancer by targeting an active dimerized form of Stat3 to the basal cells of bladder epithelium. When exposed to the carcinogen nitrosamine, Stat3-transgenic mice developed invasive cancer directly from carcinoma in situ (CIS), bypassing the noninvasive papillary tumor stage. Remarkably, invasive bladder cancer driven by active Stat3 was predominantly composed of stem cells, which were characterized by cytokeratin 14 (CK14) staining and enhanced tumor sphere-forming ability. Active Stat3 was also shown to localize to the nucleus of human invasive bladder cancers that were primarily composed of CK14+ stem cells. Together, our findings show that Stat3-induced stem cell expansion plays a critical role in the unique clinical progression of invasive bladder cancer through the CIS pathway. PMID:22532166

  9. Tubal ligation and risk of endometrial cancer: Findings from the Women’s Health Initiative

    PubMed Central

    Winer, Ira; Lehman, Amy; Wactawski-Wende, Jean; Robinson, Randall; Simon, Michael; Cote, Michele

    2015-01-01

    Objective Bilateral tubal ligation (BTL) is a common form of birth control in the United States. There is limited, contradictory data examining BTL and the risk of endometrial cancer and none examining type I and type II cancers separately. We investigated the association between BTL and endometrial cancer risk utilizing the Women’s Health Initiative (WHI) Observational (OS) and Dietary Modification (DM) Studies. Methods Demographic information and history of BTL were obtained from the baseline questionnaires from 76,483 WHI participants in the OS and DM. Univariable and multivariable models were used to examine the association of BTL with type I and type II endometrial cancers. Results 1,137 women were diagnosed with incident endometrial cancer (972 type I and 128 type II) over a mean follow-up of 11.3 years. Overall, 14,499 women (19%) had undergone BTL. There were no statistically significant associations noted between BTL or age at BTL for type I or type II cancers. Conclusion We examined the largest patient cohort to date in an effort to determine the impact of BTL on endometrial cancer risk. In the WHI trial we observed no overall effect of BTL on the risk of type I or type II endometrial cancer, suggesting that patients undergoing this popular birth-control method likely do not have an associated change in their baseline risk for endometrial cancer. PMID:26825831

  10. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells.

    PubMed

    Hooda, Jagmohan; Cadinu, Daniela; Alam, Md Maksudul; Shah, Ajit; Cao, Thai M; Sullivan, Laura A; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  11. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation.

    PubMed

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A; Day, Robert

    2015-02-28

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer.

  12. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation

    PubMed Central

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A.; Day, Robert

    2015-01-01

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer. PMID:25682874

  13. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells

    PubMed Central

    Chang, Po-Hsiang; Sekine, Keisuke; Chao, Hsiao-Mei; Hsu, Shan-hui; Chern, Edward

    2017-01-01

    Cancer stem cells (CSCs), a small population of cancer cells, have been considered to be the origin of cancer initiation, recurrence, and metastasis. Tumor microenvironment provides crucial signals for CSCs to maintain stem cell properties and promotes tumorigenesis. Therefore, establishment of an appropriate cell culture system to mimic the microenvironment for CSC studies is an important issue. In this study, we grew colon and hepatocellular carcinoma (HCC) cells on chitosan membranes and evaluated the tumor progression and the CSC properties. Experimental results showed that culturing cancer cells on chitosan increased cell motility, drug resistance, quiescent population, self-renewal capacity, and the expression levels of stemness and CSC marker genes, such as OCT4, NANOG, CD133, CD44, and EpCAM. Furthermore, we demonstrated that chitosan might activate canonical Wnt/β-catenin-CD44 axis signaling in CD44positive colon cancer cells and noncanonical Wnt-STAT3 signaling in CD44negative HCC cells. In conclusion, chitosan as culture substrates activated the essential signaling of CSCs and promoted CSC properties. The chitosan culture system provides a convenient platform for the research of CSC biology and screening of anticancer drugs. PMID:28367998

  14. Biomarkers to Distinguish Aggressive Cancers from Non-aggressive or Non-progressing Cancer — EDRN Public Portal

    Cancer.gov

    Distinguishing aggressive cancers from non-aggressive or non-progressing cancers is an issue of both clinical and public health importance particularly for those cancers with an available screening test. With respect to breast cancer, mammographic screening has been shown in randomized trials to reduce breast cancer mortality, but given the limitations of its sensitivity and specificity some breast cancers are missed by screening. These so called interval detected breast cancers diagnosed between regular screenings are known to have a more aggressive clinical profile. In addition, of those cancers detected by mammography some are indolent while others are more likely to recur despite treatment. The pilot study proposed herein is highly responsive to the EDRN supplement titled “Biomarkers to Distinguish Aggressive Cancers from Nonaggressive or Non-progressing Cancers” in that it addresses both of the research objectives related to these issues outlined in the notice for this supplement: Aim 1: To identify biomarkers in tumor tissue related to risk of interval detected vs. mammography screen detected breast cancer focusing on early stage invasive disease. We will compare gene expression profiles using the whole genome-cDNA-mediated Annealing, Selection, extension and Ligation (DASL) assay of 50 screen detected cancers to those of 50 interval detected cancers. Through this approach we will advance our understanding of the molecular characteristics of interval vs. screen detected breast cancers and discover novel biomarkers that distinguish between them. Aim 2: To identify biomarkers in tumor tissue related to risk of cancer recurrence among patients with screen detected early stage invasive breast cancer. Using the DASL assay we will compare gene expression profiles from screen detected early stage breast cancer that either recurred within five years or never recurred within five years. These two groups of patients will be matched on multiple factors including

  15. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression

    PubMed Central

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K.; Wang, Yang; Yip, Yim Ling; Law, Simon Y. K.; Chan, Kin Tak; Lee, Nikki P. Y.; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L. M.

    2017-01-01

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression. PMID:28186102

  16. Curcumin inhibits cancer progression through regulating expression of microRNAs.

    PubMed

    Zhou, Siying; Zhang, Sijie; Shen, Hongyu; Chen, Wei; Xu, Hanzi; Chen, Xiu; Sun, Dawei; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-02-01

    Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.

  17. Invited commentary: progress in the nutritional epidemiology of ovary cancer.

    PubMed

    Mettlin, C J

    1991-09-01

    Researchers do not understand what causes ovarian cancer. Some studies find galactose to be toxic to oocytes which renders ovaries susceptible to cancer. 1 hypothesis is that high levels of lactose consumption and retained ability to digest lactose (lactase persistence) lead to high levels of galactose exposure which increases the ovarian cancer risk. Denmark, Sweden, and Switzerland have the highest risk of ovarian cancer in the world. They also have the highest levels of lactase persistence and among the highest levels of milk supply for the population. Conversely, Hong Kong, Japan, Shanghai, and Singapore have low ovarian cancer risk, low consumption of milk, and low levels of lactase persistence. yet other researchers using the same data did not find per capita availability of milk to be significant independent of nondairy animal fat. Lactase persistence did have an independent association, however, but data was not standardized across populations. In a case control study, researchers took the dietary history of 11 dairy products to measure lactose consumption. A significant increase in ovarian cancer risk only existed with frequent intake of yogurt and cottage cheese. Researchers hypothesized that the prehydrolyzed lactose in both foods was the main contributor. Using the case control data, others found an increased risk for total lactose intake in women who never used oral contraceptives (OCs). The strongest predictor to date is the lactose/transferase ratio, yet those who found this association did not define this index based on an earlier study or examination. 1 problem with these studies is that dietary fat confounds the association. 2 studies showed that low fat milk was associated with decreased risk, even though both milks have the same lactose content. Another problem is that the subsets of exposure or subgroups of the population are unpredictable. Further research in nutritional epidemiology of ovarian cancer is needed.

  18. Physician-Initiated Stop-Smoking Program for Patients Receiving Treatment for Early-Stage Cancer

    ClinicalTrials.gov

    2015-10-06

    Bladder Cancer; Breast Cancer; Colorectal Cancer; Head and Neck Cancer; Lung Cancer; Lymphoma; Prostate Cancer; Testicular Germ Cell Tumor; Tobacco Use Disorder; Unspecified Adult Solid Tumor, Protocol Specific

  19. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression.

    PubMed

    Chang, Shuai; Liu, Junsong; Guo, Shaochun; He, Shicai; Qiu, Guanglin; Lu, Jing; Wang, Jin; Fan, Lin; Zhao, Wei; Che, Xiangming

    2016-06-01

    A long non-coding RNA named HOTTIP (HOXA transcript at the distal tip) coordinates the activation of various 5' HOXA genes which encode master regulators of development through targeting the WDR5/MLL complex. HOTTIP acts as an oncogene in several types of cancers, whereas its biological function in gastric cancer has never been studied. In the present study, we investigated the role of HOTTIP in gastric cancer. We found that HOTTIP was upregulated in gastric cancer cell lines. Knockdown of HOTTIP in gastric cancer cells inhibited cell proliferation, migration and invasion. Moreover, downregulation of HOTTIP led to decreased expression of homeobox protein Hox-A13 (HOXA13) in gastric cancer cell lines. HOXA13 was involved in HOTTIP‑induced malignant phenotypes of gastric cancer cells. Our data showed that the levels of HOTTIP and HOXA13 were both markedly upregulated in gastric cancer tissues compared with their counterparts in non-tumorous tissues. Furthermore, the expression levels of HOTTIP and HOXA13 were both higher in gastric cancer which was poorly differentiated, at advanced TNM stages and exhibited lymph node-metastasis. Spearman analyses indicated that HOTTIP and HOXA13 had a highly positive correlation both in non-tumor mucosae and cancer lesions. Collectively, these findings suggest that HOTTIP and HOXA13 play important roles in gastric cancer progression and provide a new insight into therapeutic treatment for the disease.

  20. miR-125b can enhance skin tumor initiation and promote malignant progression by repressing differentiation and prolonging cell survival.

    PubMed

    Zhang, Liang; Ge, Yejing; Fuchs, Elaine

    2014-11-15

    Previously, we identified miR-125b as a key regulator of the undifferentiated state of hair follicle stem cells. Here, we show that in both mice and humans, miR-125b is abundantly expressed, particularly at early stages of malignant progression to squamous cell carcinoma (SCC), the second most prevalent cancer worldwide. Moreover, when elevated in normal murine epidermis, miR-125b promotes tumor initiation and contributes to malignant progression. We further show that miR-125b can confer "oncomiR addiction" in early stage malignant progenitors by delaying their differentiation and favoring an SCC cancer stem cell (CSC)-like transcriptional program. To understand how, we systematically identified and validated miR125b targets that are specifically associated with tumors that are dependent on miR-125b. Through molecular and genetic analysis of these targets, we uncovered new insights underlying miR-125b's oncogenic function. Specifically, we show that, on the one hand, mir-125b directly represses stress-responsive MAP kinase genes and associated signaling. On the other hand, it indirectly prolongs activated (phosphorylated) EGFR signaling by repressing Vps4b (vacuolar protein-sorting 4 homolog B), encoding a protein implicated in negatively regulating the endosomal sorting complexes that are necessary for the recycling of active EGFR. Together, these findings illuminate miR-125b as an important microRNA regulator that is shared between normal skin progenitors and their early malignant counterparts.