Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury?
Khaksari, Mohammad; Rajizadeh, Mohammad Amin; Bejeshk, Mohammad Abbas; Soltani, Zahra; Motamedi, Sina; Moramdi, Fatemeh; Islami, Masoud; Shafa, Shahriyar; Khosravi, Sepehr
2018-06-01
Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-TBI. Brain water and Evans blue contents were determined, 24 and 5 hr after TBI, respectively. Intracranial pressure (ICP) and neurologic outcome were evaluated at -1, 1, 4 and 24 hr after TBI. Oxidant index [malondialdehyde (MDA)] was determined 24 hr after TBI. Brain water and Evans blue contents, and MDA and ICP levels increased in TBI and vehicle groups in comparison with the sham group. Candesartan attenuated the TBI-induced brain water and Evans blue contents, and ICP and MDA enhancement. The neurologic score enhanced following candesartan administration, 24 hr after TBI. The blockage of AT1R may be neuroprotective by decreasing ICP associated with the reduction of lipid peroxidation, brain edema, and blood-brain barrier (BBB) permeability, which led to the improvement of neurologic outcome.
Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas
2014-11-01
Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome.
Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas
2014-01-01
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. Methods: In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. Results: In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Conclusion: Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome. PMID:25429176
Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.
Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J
2015-11-01
See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury. Published by Oxford University Press on behalf of the Guarantors of Brain 2015. This work is written by US Government employees and is in the public domain in the US.
Thakur, Kuldeep Singh; Prakash, Atish; Bisht, Rohit; Bansal, Puneet Kumar
2015-12-01
Tardive dyskinesia is a serious motor disorder of the orofacial region, resulting from chronic neuroleptic treatment of schizophrenia. Candesartan (AT1 antagonist) and lisinopril (ACE inhibitor) has been reported to possess antioxidant and neuroprotective effects. The present study is designed to investigate the effect of candesartan and lisinopril on haloperidol-induced orofacial dyskinesia and oxidative damage in rats. Tardive dyskinesia was induced by administering haloperidol (1 mg/kg i.p.) and concomitantly treated with candesartan (3 and 5 mg/kg p.o.) and lisinopril (10 and 15 mg/kg p.o.) for 3 weeks in male Wistar rats. Various behavioral parameters were assessed on days 0, 7, 14 and 21 and biochemical parameters were estimated at day 22. Chronic administration of haloperidol significantly increased stereotypic behaviors in rats, which were significantly improved by administration of candesartan and lisinopril. Chronic administration of haloperidol significantly increased oxidative stress and neuro-inflammation in the striatum region of the rat's brain. Co-administration of candesartan and lisinopril significantly attenuated the oxidative damage and neuro-inflammation in the haloperidol-treated rat. The present study supports the therapeutic use of candesartan and lisinopril in the treatment of typical antipsychotic-induced orofacial dyskinesia and possible antioxidant and neuro-inflammatory mechanisms. © The Author(s) 2014.
Culman, Juraj; Jacob, Toni; Schuster, Sven O; Brolund-Spaether, Kjell; Brolund, Leonie; Cascorbi, Ingolf; Zhao, Yi; Gohlke, Peter
2017-09-01
The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.
Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.
2016-01-01
High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496
Russell, David; Stålhammar, Jan; Bodegard, Johan; Hasvold, Pål; Thuresson, Marcus; Kjeldsen, Sverre E
2011-03-01
Merging data from existing electronic patient records, and electronic hospital discharge and cause of death registers, is a fast and relatively inexpensive method for comparing different treatments with regard to clinical outcome. This study compared the effects of antihypertensive treatment with candesartan or losartan on cardiovascular disease (CVD) using Swedish registers. Patients without previous CVD who were prescribed candesartan (n=7329) or losartan (n=6771) for hypertension during 1999-2007 at 72 Swedish primary care centers were followed for up to 9 years. Both medications were given according to current recommendations, and there was no difference observed in achieved blood pressures. The authors have previously shown that candesartan lowered the risk of all CVD (primary composite end point) more so than losartan (adjusted hazard ratio, 0.86; 95% confidence interval, 0.77-0.96). Candesartan also had a significantly better effect with regards to reducing the development of heart failure, cardiac arrhythmias, and peripheral arterial disease. In the present analysis, the authors found that candesartan, compared with losartan, reduced the risk of all CVD, irrespective of sex, age, previous antihypertensive treatment, baseline blood pressure, and presence of diabetes. These clinical findings may reflect differences between candesartan and losartan in their binding characteristics to the angiotensin type 1 receptor. © 2010 Wiley Periodicals, Inc.
Færch, Louise H; Thorsteinsson, Birger; Tarnow, Lise; Holst, Jens Juul; Kjær, Troels; Kanters, Jørgen; Larroude, Charlotte; Dela, Flemming; Pedersen-Bjergaard, Ulrik
2015-12-01
High spontaneous activity of the renin-angiotensin system (RAS) results in more pronounced cognitive impairment and more prolonged QTc interval during hypoglycaemia in type 1 diabetes. We tested whether angiotensin II receptor blockade improves cerebral and cardiovascular function during hypoglycaemia. Nine patients with type 1 diabetes and high spontaneous RAS activity were included in a double-blind, randomised, cross-over study on the effect of angiotensin II receptor antagonist (candesartan 32 mg) or placebo for one week on cognitive function, cardiovascular parameters, hormonal counter-regulatory response, substrate mobilisation, and symptoms during hypoglycaemia induced by two hyperinsulinaemic, hypoglycaemic clamps. Compared to placebo, candesartan did neither change performance of the cognitive tests nor the EEG at a plasma glucose concentration of 2.6±0.2 mmol/l. During candesartan treatment, the QT interval in the ECG was not affected. No effect of candesartan was observed in the hormonal counter-regulatory responses, in substrate concentrations, or in symptom scores. A 36% reduced glucose infusion rate during hypoglycaemia with candesartan was observed. In conclusion candesartan has no effect on cerebral function during mild experimental hypoglycaemia in subjects with type 1 diabetes and high RAS activity. Candesartan may reduce glucose utilisation or increase endogenous glucose production during hypoglycaemia. © The Author(s) 2014.
Candesartan cilexetil: an angiotensin II receptor blocker.
Stoukides, C A; McVoy, H J; Kaul, A F
1999-12-01
To summarize and critique the medical literature on candesartan cilexetil, an angiotensin II receptor blocker (ARB). MEDLINE searches (January 1966-January 1999) and manufacturer prescribing literature were used to identify articles on candesartan cilexetil. Bibliographies were also reviewed for germane articles. Study and review articles describing the chemistry, human pharmacology, pharmacodynamics, pharmacokinetics, placebo-controlled trials, comparative trials, and clinical application of candesartan cilexetil based on the published literature and premarketing clinical trials were reviewed. All literature on the use of candesartan cilexetil for treating hypertension and congestive heart failure were included. ARBs are a new class of drugs with increasing use in treating hypertension. Studies are ongoing to determine the role of these agents in preventing remodeling after myocardial infarction and in patients with congestive heart failure. Candesartan cilexetil is among the newest drugs in the class that includes losartan, irbesartan, and valsartan. Candesartan cilexetil has more than 1000 times more affinity for the angiotensin II, type AT1 receptor ARBs, and the binding affinity and competitive angiotensin II receptor antagonism is stronger than that of losartan. Clinical studies in patients with hypertension have demonstrated that candesartan cilexetil, in doses of 4-16 mg, is more effective in reducing sitting diastolic blood pressure than are placebo and losartan 50 mg. Candesartan cilexetil has demonstrated reductions in blood pressure comparable to those of enalapril, with the rate of adverse events greater in the enalapril group. Dosage adjustments are not necessary in elderly patients or in patients with mild hepatic or renal dysfunction. In diabetic patients, blood glucose, hemoglobinA1c, and serum lipids are not affected. The clinical studies demonstrated that the adverse effect profile of candesartan cilexetil was similar to that of placebo and there were no dose-dependent adverse effects. Candesartan cilexetil provides an alternative antihypertensive therapy that is well tolerated and effective in reducing blood pressure in a wide range of patients. Due to its greater binding affinity to the angiotensin II receptor, candesartan cilexetil appears to have a longer antihypertensive effect than losartan. This may be advantageous in decreasing morbidity and mortality associated with hypertension, although further studies are required to validate this potential advantage.
Candesartan Attenuates Diabetic Retinal Vascular Pathology by Restoring Glyoxalase-I Function
Miller, Antonia G.; Tan, Genevieve; Binger, Katrina J.; Pickering, Raelene J.; Thomas, Merlin C.; Nagaraj, Ram H.; Cooper, Mark E.; Wilkinson-Berka, Jennifer L.
2010-01-01
OBJECTIVE Advanced glycation end products (AGEs) and the renin-angiotensin system (RAS) are both implicated in the development of diabetic retinopathy. How these pathways interact to promote retinal vasculopathy is not fully understood. Glyoxalase-I (GLO-I) is an enzyme critical for the detoxification of AGEs and retinal vascular cell survival. We hypothesized that, in retina, angiotensin II (Ang II) downregulates GLO-I, which leads to an increase in methylglyoxal-AGE formation. The angiotensin type 1 receptor blocker, candesartan, rectifies this imbalance and protects against retinal vasculopathy. RESEARCH DESIGN AND METHODS Cultured bovine retinal endothelial cells (BREC) and bovine retinal pericytes (BRP) were incubated with Ang II (100 nmol/l) or Ang II+candesartan (1 μmol/l). Transgenic Ren-2 rats that overexpress the RAS were randomized to be nondiabetic, diabetic, or diabetic+candesartan (5 mg/kg/day) and studied over 20 weeks. Comparisons were made with diabetic Sprague-Dawley rats. RESULTS In BREC and BRP, Ang II induced apoptosis and reduced GLO-I activity and mRNA, with a concomitant increase in nitric oxide (NO•), the latter being a known negative regulator of GLO-I in BRP. In BREC and BRP, candesartan restored GLO-I and reduced NO•. Similar events occurred in vivo, with the elevated RAS of the diabetic Ren-2 rat, but not the diabetic Sprague-Dawley rat, reducing retinal GLO-I. In diabetic Ren-2 rats, candesartan reduced retinal acellular capillaries, inflammation, and inducible nitric oxide synthase and NO•, and restored GLO-I. CONCLUSIONS We have identified a novel mechanism by which candesartan improves diabetic retinopathy through the restoration of GLO-I. PMID:20852029
Chaturvedi, Nish; Porta, Massimo; Klein, Ronald; Orchard, Trevor; Fuller, John; Parving, Hans Henrik; Bilous, Rudy; Sjølie, Anne Katrin
2008-10-18
Results of previous studies suggest that renin-angiotensin system blockers might reduce the burden of diabetic retinopathy. We therefore designed the DIabetic REtinopathy Candesartan Trials (DIRECT) Programme to assess whether candesartan could reduce the incidence and progression of retinopathy in type 1 diabetes. Two randomised, double-blind, parallel-design, placebo-controlled trials were done in 309 centres worldwide. Participants with normotensive, normoalbuminuric type 1 diabetes without retinopathy were recruited to the DIRECT-Prevent 1 trial and those with existing retinopathy were recruited to DIRECT-Protect 1, and were assigned to candesartan 16 mg once a day or matching placebo. After 1 month, the dose was doubled to 32 mg. Investigators and participants were unaware of the treatment allocation status. The primary endpoints were incidence and progression of retinopathy and were defined as at least a two-step and at least a three-step increase on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, respectively. These trials are registered with ClinicalTrials.gov, numbers NCT00252733 for DIRECT-Prevent 1 and NCT00252720 for DIRECT-Protect 1. 1421 participants (aged 18-50 years) were randomly assigned to candesartan (n=711) or to placebo (n=710) in DIRECT-Prevent 1, and 1905 (aged 18-55 years) to candesartan (n=951) or to placebo (n=954) in DIRECT-Protect 1. Incidence of retinopathy was seen in 178 (25%) participants in the candesartan group versus 217 (31%) in the placebo group. Progression of retinopathy occurred in 127 (13%) participants in the candesartan group versus 124 (13%) in the placebo group. Hazard ratio (HR for candesartan vs placebo) was 0.82 (95% CI 0.67-1.00, p=0.0508) for incidence of retinopathy and 1.02 (0.80-1.31, p=0.85) for progression of retinopathy. The post-hoc outcome of at least a three-step increase for incidence yielded an HR of 0.65 (0.48-0.87, p=0.0034), which was attenuated but still significant after adjustment for baseline characteristics (0.71, 0.53-0.95, p=0.046). Final ETDRS level was more likely to have improved with candesartan treatment in both DIRECT-Prevent 1 (odds 1.16, 95% CI 1.05-1.30, p=0.0048) and DIRECT-Protect 1 (1.12, 95% CI 1.01-1.25, p=0.0264). Adverse events did not differ between the treatment groups. Although candesartan reduces the incidence of retinopathy, we did not see a beneficial effect on retinopathy progression.
Rayner, Brian L; Trinder, Yvonne A; Baines, Donette; Isaacs, Sedick; Opie, Lionel H
2006-02-01
Hyperuricemia may counter benefits of blood pressure (BP) reduction, although this is controversial. We examined the effects of candesartan and losartan on uric acid, creatinine, and fibrinogen. Patients with hypertension and serum uric acid > or = 0.42 mmol/L (7 mg/dL) associated with diuretics were randomized to receive losartan 50 to 100 mg or candesartan 8 to 16 mg for 24 weeks. At randomization and after 24 weeks, systolic and diastolic BP, serum uric acid, creatinine, and fibrinogen were measured. A total of 59 patients were entered into the study (30 in the losartan and 29 in the candesartan group). Mean systolic and diastolic BP were reduced in the candesartan group, from 156 mm Hg at baseline to 132 mm Hg at 24 weeks, and from 90.9 to 80.8 mm Hg respectively, P < .0001), and in the losartan group from 150.3 to 132 mm Hg and from 89.6 to 77.6 respectively, P < 0001). Overall mean values of fibrinogen levels were again reduced from 4.39 g/L at baseline to 4.01 g/L at 24 weeks (P < .02). Mean values of serum uric acid in the losartan and candesartan groups were similar at baseline (0.44 and 0.46 mmol/L, respectively), but they were lower in the losartan group after 24 weeks (0.39 and 0.48 mmol/L, P = .01). Twelve patients (44%) in the candesartan group had a 10% increase in serum creatinine compared with four patients (14.2%) in the losartan group (P < .02). Candesartan and losartan lowered BP, but only losartan reduced uric acid. The lowering of fibrinogen in both groups may explain the reduction in stroke with angiotensin receptor blockers. The effect of persistent hyperuricemia on renal function requires further study.
Murad, H.A.; Gazzaz, Z.J.; Ali, S.S.; Ibraheem, M.S.
2017-01-01
Minimal hepatic encephalopathy is more common than the acute syndrome. Losartan, the first angiotensin-II receptor blocker (ARB), and candesartan, another widely-used ARB, have protected against developing fibrogenesis, but there is no clear data about their curative antifibrotic effects. The current study was designed to examine their effects in an already-established model of hepatic fibrosis and also their effects on the associated motor dysfunction. Low-grade chronic liver failure (CLF) was induced in 3-month old Sprague-Dawley male rats using thioacetamide (TAA, 50 mg·kg−1·day−1) intraperitoneally for 2 weeks. The TAA-CLF rats were randomly divided into five groups (n=8) treated orally for 14 days (mg·kg−1·day−1) as follows: TAA (distilled water), losartan (5 and 10 mg/kg), and candesartan (0.1 and 0.3 mg/kg). Rats were tested for rotarod and open-field tests. Serum and hepatic biochemical markers, and hepatic histopathological changes were evaluated by H&E and Masson's staining. The TAA-CLF rats showed significant increases of hepatic malondialdehyde, hepatic expression of tumor necrosis factor-α (TNF-α), and serum ammonia, alanine aminotransferase, γ-glutamyl transferase, TNF-α, and malondialdehyde levels as well as significant decreases of hepatic and serum glutathione levels. All treatments significantly reversed these changes. The histopathological changes were moderate in losartan-5 and candesartan-0.1 groups and mild in losartan-10 and candesartan-0.3 groups. Only candesartan significantly improved TAA-induced motor dysfunction. In conclusion, therapeutic antifibrotic effects of losartan and candesartan in thioacetamide-induced hepatic fibrosis in rats are possibly through angiotensin-II receptor blocking, antioxidant, and anti-inflammatory activities. Improved motor dysfunction by candesartan could be attributed to better brain penetration and slower “off-rate” from angiotensin-II receptors. Clinical trials are recommended. PMID:28953991
Murad, H A; Gazzaz, Z J; Ali, S S; Ibraheem, M S
2017-09-21
Minimal hepatic encephalopathy is more common than the acute syndrome. Losartan, the first angiotensin-II receptor blocker (ARB), and candesartan, another widely-used ARB, have protected against developing fibrogenesis, but there is no clear data about their curative antifibrotic effects. The current study was designed to examine their effects in an already-established model of hepatic fibrosis and also their effects on the associated motor dysfunction. Low-grade chronic liver failure (CLF) was induced in 3-month old Sprague-Dawley male rats using thioacetamide (TAA, 50 mg·kg-1·day-1) intraperitoneally for 2 weeks. The TAA-CLF rats were randomly divided into five groups (n=8) treated orally for 14 days (mg·kg-1·day-1) as follows: TAA (distilled water), losartan (5 and 10 mg/kg), and candesartan (0.1 and 0.3 mg/kg). Rats were tested for rotarod and open-field tests. Serum and hepatic biochemical markers, and hepatic histopathological changes were evaluated by H&E and Masson's staining. The TAA-CLF rats showed significant increases of hepatic malondialdehyde, hepatic expression of tumor necrosis factor-α (TNF-α), and serum ammonia, alanine aminotransferase, γ-glutamyl transferase, TNF-α, and malondialdehyde levels as well as significant decreases of hepatic and serum glutathione levels. All treatments significantly reversed these changes. The histopathological changes were moderate in losartan-5 and candesartan-0.1 groups and mild in losartan-10 and candesartan-0.3 groups. Only candesartan significantly improved TAA-induced motor dysfunction. In conclusion, therapeutic antifibrotic effects of losartan and candesartan in thioacetamide-induced hepatic fibrosis in rats are possibly through angiotensin-II receptor blocking, antioxidant, and anti-inflammatory activities. Improved motor dysfunction by candesartan could be attributed to better brain penetration and slower "off-rate" from angiotensin-II receptors. Clinical trials are recommended.
Wu, Liang; Tian, You-Yong; Shi, Jing-Ping; Xie, Wei; Shi, Jian-Quan; Lu, Jie; Zhang, Ying-Dong
2013-08-26
Recent studies indicated that angiotensin II (Ang II) receptor blockers could reduce neurotoxins-induced dopaminergic (DA) cell death, but the underlying mechanisms are still unclear. Given that endoplasmic reticulum (ER) stress plays a major role in rotenone-induced neuronal apoptosis, we investigated whether candesartan cilexetil, a selective and high-affinity Ang II receptor antagonist, could protect the DA neuron via reducing ER stress in a chronic rotenone rat model for Parkinson's disease (PD). Our data showed that candesartan cilexetil could ameliorate the descent latency in catalepsy tests, and decrease rotenone-induced DA neuron apoptosis. Moreover, candesartan cilexetil has been found to play a protective role via down-regulating the expression of activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), and p53 upregulated modulator of apoptosis (Puma). Thus, our experiments strongly suggest that administration of candesartan cilexetil protects DA neuron involving blocking ER stress, possibly via inhibiting activation of the ATF4-CHOP-Puma pathway, which could provide new insight into clinical therapeutics for PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Miura, Shin-ichiro; Okabe, Atsutoshi; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro
2014-01-01
The angiotensin II type 1 (AT1) receptor blocker (ARB) candesartan strongly reduces blood pressure (BP) in patients with hypertension and has been shown to have cardioprotective effects. A new ARB, azilsartan, was recently approved and has been shown to provide a more potent 24-h sustained antihypertensive effect than candesartan. However, the molecular interactions of azilsartan with the AT1 receptor that could explain its strong BP-lowering activity are not yet clear. To address this issue, we examined the binding affinities of ARBs for the AT1 receptor and their inverse agonist activity toward the production of inositol phosphate (IP), and we constructed docking models for the interactions between ARBs and the receptor. Azilsartan, unlike candesartan, has a unique moiety, a 5-oxo-1,2,4-oxadiazole, in place of a tetrazole ring. Although the results regarding the binding affinities of azilsartan and candesartan demonstrated that these ARBs interact with the same sites in the AT1 receptor (Tyr113, Lys199 and Gln257), the hydrogen bonding between the oxadiazole of azilsartan-Gln257 is stronger than that between the tetrazole of candesartan-Gln257, according to molecular docking models. An examination of the inhibition of IP production by ARBs using constitutively active mutant receptors indicated that inverse agonist activity required azilsartan–Gln257 interaction and that azilsartan had a stronger interaction with Gln257 than candesartan. Thus, we speculate that azilsartan has a unique binding behavior to the AT1 receptor due to its 5-oxo-1,2,4-oxadiazole moiety and induces stronger inverse agonism. This property of azilsartan may underlie its previously demonstrated superior BP-lowering efficacy compared with candesartan and other ARBs. PMID:23034464
Miura, Shin-ichiro; Okabe, Atsutoshi; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro
2013-02-01
The angiotensin II type 1 (AT(1)) receptor blocker (ARB) candesartan strongly reduces blood pressure (BP) in patients with hypertension and has been shown to have cardioprotective effects. A new ARB, azilsartan, was recently approved and has been shown to provide a more potent 24-h sustained antihypertensive effect than candesartan. However, the molecular interactions of azilsartan with the AT(1) receptor that could explain its strong BP-lowering activity are not yet clear. To address this issue, we examined the binding affinities of ARBs for the AT(1) receptor and their inverse agonist activity toward the production of inositol phosphate (IP), and we constructed docking models for the interactions between ARBs and the receptor. Azilsartan, unlike candesartan, has a unique moiety, a 5-oxo-1,2,4-oxadiazole, in place of a tetrazole ring. Although the results regarding the binding affinities of azilsartan and candesartan demonstrated that these ARBs interact with the same sites in the AT(1) receptor (Tyr(113), Lys(199) and Gln(257)), the hydrogen bonding between the oxadiazole of azilsartan-Gln(257) is stronger than that between the tetrazole of candesartan-Gln(257), according to molecular docking models. An examination of the inhibition of IP production by ARBs using constitutively active mutant receptors indicated that inverse agonist activity required azilsartan-Gln(257) interaction and that azilsartan had a stronger interaction with Gln(257) than candesartan. Thus, we speculate that azilsartan has a unique binding behavior to the AT(1) receptor due to its 5-oxo-1,2,4-oxadiazole moiety and induces stronger inverse agonism. This property of azilsartan may underlie its previously demonstrated superior BP-lowering efficacy compared with candesartan and other ARBs.
Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice.
Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi
2016-01-01
A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure-natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In conclusion, azilsartan (but not candesartan) improved salt sensitivity possibly by decreasing NHE3 expression via ubiquitin-proteasomal degradation.
Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice
Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M.; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi
2016-01-01
A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure—natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In conclusion, azilsartan (but not candesartan) improved salt sensitivity possibly by decreasing NHE3 expression via ubiquitin—proteasomal degradation. PMID:26807585
Sjølie, Anne Katrin; Klein, Ronald; Porta, Massimo; Orchard, Trevor; Fuller, John; Parving, Hans Henrik; Bilous, Rudy; Chaturvedi, Nish
2008-10-18
Diabetic retinopathy remains a leading cause of visual loss in people of working age. We examined whether candesartan treatment could slow the progression and, secondly, induce regression of retinopathy in people with type 2 diabetes. We did a randomised, double-blind, parallel-group, placebo-controlled trial in 309 centres worldwide. We recruited normoalbuminuric, normotensive, or treated hypertensive people with type 2 diabetes with mild to moderately severe retinopathy and assigned them to candesartan 16 mg once a day or placebo. After a month, the dose was doubled to 32 mg once per day. Investigators and patients were unaware of the treatment allocation status. Progression of retinopathy was the primary endpoint, and regression was a secondary endpoint. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00252694. 1905 participants (aged 37-75 years) were randomised to candesartan (n=951) or placebo (n=954). 161 (17%) patients in the candesartan group and 182 (19%) in the placebo group had progression of retinopathy by three steps or more on the Early Treatment Diabetic Retinopathy Study scale. The risk of progression of retinopathy was non-significantly reduced by 13% in patients on candesartan compared with those on placebo (hazard ratio [HR] 0.87, 95% CI 0.70-1.08, p=0.20). Regression on active treatment was increased by 34% (1.34, 1.08-1.68, p=0.009). HRs were not attenuated by adjustment for baseline risk factors or changes in blood pressure during the trial. An overall change towards less severe retinopathy by the end of the trial was observed in the candesartan group (odds 1.17, 95% CI 1.05-1.30, p=0.003). Adverse events did not differ between the treatment groups. Treatment with candesartan in type 2 diabetic patients with mild to moderate retinopathy might induce improvement of retinopathy.
Wei, Fen; Jia, Xiu-Jie; Yu, Su-Qin; Gu, Ye; Wang, Li; Guo, Xiao-Mei; Wang, Min; Zhu, Feng; Cheng, Xiang; Wei, Yu-Miao; Zhou, Zi-Hua; Fu, Micheal; Liao, Yu-Hua
2011-03-01
Anti-angiotensin II receptor subtype 1 (AT1 receptor) autoantibodies have previously been shown in sera of hypertensive patients. This study assessed whether anti-AT1-receptor autoantibody in serum is correlated with the efficacy of an AT1-receptor blocker (ARB; candesartan)-based regimen in hypertensive patients after 8 weeks of treatment. The Study of Optimal Treatment in Hypertensive Patients with Anti-AT1-Receptor Autoantibodies is a multicentre, randomised, blinded endpoint, open-label, parallel-group comparison clinical trial conducted in five centres in Wuhan, China. Treatment is designed as stepwise added-on therapy to reduce blood pressure (BP) < 140/90 mm Hg. 512 patients with moderate to severe primary hypertension were randomly assigned to an 8-week treatment with either ARB (candesartan)-based regimen (n=257) or ACE inhibitor (imidapril)-based regimen (n=255). Systolic and diastolic BP was reduced significantly in both treatment groups. The candesartan-based regimen achieved a significantly greater systolic BP reduction than imdapril (30.8 ± 10.3 vs 28.8 ± 10.3 mm Hg, p = 0.023). In those anti-AT1 receptor autoantibody-positive hypertensive patients, the mean systolic BP at baseline was higher than in the anti-AT1 receptor autoantibody-negative group (160.5 ± 16.5 vs 156.2 ± 17.7 mm Hg; p = 0.006). The mean BP reduction was greater in the candesartan-based regimen than the imidapril-based regimen (-35.4 ± 9.8/16.9 ± 6.9 vs -29.4 ± 9.8/14.2 ± 6.9 mm Hg; p = 0.000 and 0.002, respectively), and more patients on imidapril required add-on medications to achieve BP control (94% vs 86%; p=0.03). No correlation was observed between the titre of anti-AT1 receptor autoantibody and the efficacy of candesartan-based therapy. In those anti-AT1 receptor autoantibody-negative patients similar BP lowering was reached in the candesartan and the imidapril-based regimens. An ARB-based regimen is more effective in BP lowering than an ACE inhibitor-based regimen in the presence of anti-AT1 receptor autoantibodies. Trial registration number This trial has been registered at http://www.register.clinicaltrials.gov/ (identifier: NCT00360763).
Sánchez-Lemus, Enrique; Honda, Masaru; Saavedra, Juan M.
2012-01-01
Centrally acting Angiotensin II AT1 receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 µg/kg) with or without three days of pretreatment with the ARB candesartan (1 mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ1 receptors and reduced mRNA expression of the GABAA receptor γ2 subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ1 receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ1 binding, and decreased γ2 subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF1 receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF2 receptor binding was undetectable, but CRF2 mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ1 receptor expression; and that the stress-induced BZ1 receptor expression is under the control of AT1 receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ1 receptors. PMID:22503782
Kario, Kazuomi; Enya, Kazuaki; Sugiura, Kenkichi; Ikeda, Yoshinori
2014-01-01
Morning blood pressure (BP) surge is reported as a risk factor for cardiovascular events and end-organ damage independent of the 24-h BP level. Controlling morning BP surge is therefore important to help prevent onset of cardiovascular disease. We compared the efficacy of azilsartan and candesartan in controlling morning systolic BP (SBP) surges by analyzing relevant ambulatory BP monitoring data in patients with/without baseline BP surges. As part of a 16-week randomized, double-blind study of azilsartan (20–40 mg once daily) and candesartan (8–12 mg once daily) in Japanese patients with essential hypertension, an exploratory analysis was carried out using ambulatory BP monitoring at baseline and week 14. The effects of study drugs on morning BP surges, including sleep trough surge (early morning SBP minus the lowest night-time SBP) and prewaking surge (early morning SBP minus SBP before awakening), were evaluated. Patients with sleep trough surge of at least 35 mmHg were defined by the presence of a morning BP surge (the ‘surge group’). Sleep trough surge and prewaking surge data were available at both baseline and week 14 in 548 patients, 147 of whom (azilsartan 76; candesartan 71) had a baseline morning BP surge. In surge group patients, azilsartan significantly reduced both the sleep trough surge and the prewaking surge at week 14 compared with candesartan (least squares means of the between-group differences −5.8 mmHg, P=0.0395; and −5.7 mmHg, P=0.0228, respectively). Once-daily azilsartan improved sleep trough surge and prewaking surge to a greater extent than candesartan in Japanese patients with grade I–II essential hypertension. PMID:24710336
Rakugi, Hiromi; Kario, Kazuomi; Enya, Kazuaki; Sugiura, Kenkichi; Ikeda, Yoshinori
2014-06-01
Morning blood pressure (BP) surge is reported as a risk factor for cardiovascular events and end-organ damage independent of the 24-h BP level. Controlling morning BP surge is therefore important to help prevent onset of cardiovascular disease. We compared the efficacy of azilsartan and candesartan in controlling morning systolic BP (SBP) surges by analyzing relevant ambulatory BP monitoring data in patients with/without baseline BP surges. As part of a 16-week randomized, double-blind study of azilsartan (20-40 mg once daily) and candesartan (8-12 mg once daily) in Japanese patients with essential hypertension, an exploratory analysis was carried out using ambulatory BP monitoring at baseline and week 14. The effects of study drugs on morning BP surges, including sleep trough surge (early morning SBP minus the lowest night-time SBP) and prewaking surge (early morning SBP minus SBP before awakening), were evaluated. Patients with sleep trough surge of at least 35 mmHg were defined by the presence of a morning BP surge (the 'surge group'). Sleep trough surge and prewaking surge data were available at both baseline and week 14 in 548 patients, 147 of whom (azilsartan 76; candesartan 71) had a baseline morning BP surge. In surge group patients, azilsartan significantly reduced both the sleep trough surge and the prewaking surge at week 14 compared with candesartan (least squares means of the between-group differences -5.8 mmHg, P=0.0395; and -5.7 mmHg, P=0.0228, respectively). Once-daily azilsartan improved sleep trough surge and prewaking surge to a greater extent than candesartan in Japanese patients with grade I-II essential hypertension.
Grosso, A M; Bodalia, P N; Macallister, R J; Hingorani, A D; Moon, J C; Scott, M A
2011-03-01
The UK National Health Service (NHS) currently spends in excess of £250 million per annum on angiotensin II receptor blockers (ARBs) for the treatment of hypertension and heart failure; with candesartan currently dominating the market. With the recent introduction of generic losartan, we set out to directly compare the branded market leader to its now cheaper alternative. The primary objectives were to compare the blood pressure (BP) lowering efficacy and cardiovascular outcomes of candesartan and losartan in the treatment of essential hypertension and chronic heart failure, respectively. The secondary objective was to model their comparative incremental cost-effectiveness in a UK NHS setting. The Cochrane Central Register of Controlled Trials (Cochrane Library 2009, issue 2), which contains the Hypertension and Heart Group's specialist register, Medline (1950-February 2010), and Embase (1980-February 2010) were included in the search strategy. Selection criteria were randomised studies of candesartan versus losartan in adults (> 18 years). The main outcome measures were as follows: Hypertension: mean change from baseline in trough (24 h postdose) systolic and diastolic BP. Heart failure: composite of cardiovascular death and hospital admission for management of heart failure. Two reviewers applied inclusion criteria, assessed trial quality, and extracted data. Eight (three of which met inclusion criteria) and zero trials compared candesartan directly with losartan in the treatment of hypertension and heart failure, respectively. A between-treatment difference of -1.96 mmHg [95% confidence interval (CI) -2.40 to -1.51] for trough diastolic BP and -3.00 mmHg (95% CI -3.79 to -2.22) for trough systolic BP in favour of candesartan was observed. Based on this differential, a 10-year Markov model estimates the cost per quality-adjusted life-year gained to exceed £40,000 for using candesartan in place of generic losartan. Candesartan reduces BP to a slightly greater extent when compared with losartan, however, such difference is unlikely to be cost-effective based on current acquisition costs, perceived NHS affordability thresholds and use of combination regimens. We could find no robust evidence supporting the superiority of candesartan over losartan in the treatment of heart failure. We therefore recommend using generic losartan as the ARB of choice which could save the UK NHS approximately £200 million per annum in drug costs. © 2011 Blackwell Publishing Ltd.
Fujikawa, Keita; Hasebe, Naoyuki; Kikuchi, Kenjiro
2005-07-01
Societal interest in pharmaco-economic analysis is increasing in Japan. In this study, the cost-effectiveness of low-dose combination therapy with controlled release nifedipine plus candesartan and up-titrated monotherapy with candesartan was estimated, based on the results of the NICE-Combi study. The NICE-Combi study was a double-blind, parallel arm, randomized clinical trial to compare the efficacy of low-dose combination therapy of controlled release nifedipine (20 mg/day) plus candesartan (8 mg/day) vs. up-titrated monotherapy of candesartan (12 mg/day) on blood pressure control in Japanese patients with mild to severe essential hypertension who were not sufficiently controlled by the conventional dose of candesartan (8 mg/ day). The incremental cost effectiveness of each cohort during the 8-week randomization period was compared, from the perspective of a third-party payer (i.e., insurers). The average total cost per patient was 29,943 Japanese yen for the combination therapy group and 33,182 Japanese yen for the candesartan monotherapy group, while the rate of achievement of the target blood pressure was significantly higher in the combination therapy group than in the up-titrated monotherapy group. In the combination therapy group, higher efficacy and lower incremental treatment cost ("Dominance") were observed when compared to the monotherapy group. The sensitivity analyses also supported the results. In conclusion, these results suggest that combination therapy with controlled release nifedipine and low-dose candesartan (8 mg) is "dominant" to up-titrated candesartan monotherapy for the management of essential hypertension. This conclusion was robust to sensitivity analysis.
Wright, A D; Dodson, P M
2010-01-01
The pathogenesis and medical management of diabetic retinopathy is reviewed. The importance of good control of blood glucose and blood pressure remain key elements in the prevention and treatment of diabetic retinopathy, and a number of specific metabolic pathways have been identified that may be useful additional targets for therapeutic intervention. Trial data, however, aimed specifically to answer the questions of optimum medical management are limited, so the DIRECT study of renin-angiotensin blockade using oral candesartan 32 mg daily is a welcome addition to our knowledge. This arose from the promising improvement of retinopathy outcomes in the EUCLID study of lisinopril in type I diabetes. In DIRECT, 5 years of candesartan treatment in type I diabetes reduced the incidence of retinopathy by two or more steps (EDTRS) in severity by 18% (P=0.0508) and, in a post hoc analysis, reduced the incidence of retinopathy by three-step progression by 35% (P=0.034). In type I diabetes patients there was no effect on progression of established retinopathy. In contrast, in type II diabetes, 5 years of candesartan treatment resulted in 34% regression of retinopathy (P=0.009). Importantly, an overall significant change towards less-severe retinopathy was noted in both type I and II diabetes (P
White, Michel; Lepage, Serge; Lavoie, Joel; De Denus, Simon; Leblanc, Marie-Hélène; Gossard, Denis; Whittom, Lucette; Racine, Normand; Ducharme, Anique; Dabouz, Farida; Rouleau, Jean-Lucien; Touyz, Rhian
2007-03-01
We assessed the effects of candesartan in addition to angiotensin-converting enzyme (ACE) inhibitors on N-terminal pro-type natriuretic peptide (Nt-proBNP), systemic markers of inflammation and oxidative stress as well as on glucose regulation in patients with heart failure (HF). Eighty patients with HF ages 62.5 +/- 8.4 years presenting mostly with New York Heart Association class II symptoms (class II = 57.5%, III = 41.3%), and mean left ventricular ejection fraction 27.1 +/- 7.3% were recruited. The patients were randomized to receive candesartan titrated to 32 mg 1 per day versus placebo in double-blind fashion for 6 months. Nt-proBNP, markers of inflammation and oxidative stress, glucose, insulin, and fasting insulin resistance index were analyzed. Candesartan decreased Nt-proBNP (median value = 12.4% versus -20.4%; [candesartan] P = .05), and high-sensitivity C-reactive protein (hsCRP) (+5.32% versus -20.3% [candesartan]; P = 0.046), without significantly influencing serum interleukin-6, interleukin-18, adhesion molecules, or markers of oxidative stress. Blood glucose decreased in patients treated with candesartan with a significantly greater effect in patients with higher blood glucose levels (P < .01 for interaction). The addition of candesartan to ACE inhibitor and beta-blocker decreases Nt-proBNP and hsCRP, but does not change the other markers of inflammation or oxidative stress in patients with heart failure. Dual angiotensin-II suppression also decreased blood glucose with a greater impact in patients with higher blood glucose level.
Takahara, Mitsuyoshi; Shiraiwa, Toshihiko; Shindo, Megumi; Arai, Akie; Kusuda, Yuko; Katakami, Naoto; Kaneto, Hideaki; Matsuoka, Taka-Aki; Shimomura, Iichiro
2014-09-01
We investigated whether 10 mg per day of azilsartan, one-half of the normal dosage, would be non-inferior to 8 mg per day of candesartan cilexetil for controlling blood pressure in Japanese patients with hypertension. In this open-label, randomized, crossover trial, 309 hypertensive Japanese adults treated with 8-mg candesartan cilexetil were randomized into two arms and received either 10-mg azilsartan or 8-mg candesartan cilexetil in a crossover manner. The primary efficacy outcome was systolic blood pressure, and the margin of non-inferiority was set to be 2.5 mm Hg. The participants were 67±11 years old, and 180 (58%) were male. The baseline systolic and diastolic blood pressure levels were 127.1±13.2 and 69.7±11.2 mm Hg, respectively. During the study period, the difference in systolic blood pressure between the treatments with 10-mg azilsartan and 8-mg candesartan cilexetil was -1.7 mm Hg, with the two-sided 95% confidence interval (CI) ranged from -3.2 to -0.2 mm Hg. The upper boundary of the 95% CI was below the margin of 2.5 mm Hg, confirming the non-inferiority of 10-mg azilsartan to 8-mg candesartan cilexetil. The difference also reached significance (P=0.037). The corresponding difference in diastolic blood pressure was -1.4 (95% CI: -2.4 to -0.4) mm Hg (P=0.006). Treatment with 10-mg azilsartan was similar to 8-mg candesartan cilexetil in its association with rare adverse events. In conclusion, 10-mg azilsartan was non-inferior to 8-mg candesartan cilexetil for controlling systolic blood pressure in Japanese hypertensive patients already being treated with 8-mg candesartan cilexetil.
Porta, M; Hainer, J W; Jansson, S-O; Malm, A; Bilous, R; Chaturvedi, N; Fuller, J H; Klein, R; Orchard, T; Parving, H-H; Sjølie, A-K
2011-06-01
The teratogenic consequences of angiotensin-converting enzyme inhibitors angiotensin receptor blockers (ARBs) during the second and third trimesters of pregnancy are well described. However, the consequences of exposure during the first trimester are unclear, especially in diabetes. We report the experience from DIRECT (DIabetic REtinopathy and Candesartan Trials), three placebo-controlled studies designed to examine the effects of an ARB, candesartan, on diabetic retinopathy. Over 4 years or longer, 178 normotensive women with type 1 diabetes (86 randomised to candesartan, 32 mg once daily, and 92 assigned to placebo) became pregnant (total of 208 pregnancies). More than half of patients were exposed to candesartan or placebo prior to or in early pregnancy, but all discontinued it at an estimated 8 weeks from the last menstrual period. Full-term pregnancies (51 vs 50), premature deliveries (21 vs 27), spontaneous miscarriages (12 vs 15), elective terminations (15 vs 14) and other outcomes (1 vs 2) were similar in the candesartan and placebo groups. There were two stillbirths and two 'sick babies' in the candesartan group, and one stillbirth, eight 'sick babies' and one cardiac malformation in the placebo group. The risk for fetal consequences of ARBs in type 1 diabetes may not be high if exposure is clearly limited to the first trimester. Long-term studies in fertile women can be conducted with ARBs during pregnancy, provided investigators diligently stop their administration upon planning or detection of pregnancy. ClinicalTrials.gov DIRECT-Prevent 1 NCT00252733; DIRECT-Protect 1 NCT00252720; DIRECT-Protect 2 NCT00252694. The study was funded jointly by AstraZeneca and Takeda.
López-Jaramillo, Patricio; Pradilla, Lina P; Lahera, Vicente; Sieger, Federico A Silva; Rueda-Clausen, Christian F; Márquez, Gustavo A
2006-01-01
Background The raising prevalence of type-2 diabetes mellitus and obesity has been recognized as a major problem for public health, affecting both developed and developing countries. Impaired fasting plasma glucose has been previously associated with endothelial dysfunction, higher levels of inflammatory markers and increased risk of developing insulin resistance and cardiovascular events. Besides life-style changes, the blockade of the renin-angiotensin system has been proposed as a useful alternative intervention to improve insulin resistance and decrease the number of new type-2 diabetes cases. The aim of this clinical trial is to study the effect of the treatment with Candesartan, an angiotensin II receptor antagonist, on the insulin resistance, the plasma levels of adipoquines, oxidative stress and prothrombotic markers, in a group of non diabetic, non hypertensive, dysglycemic and obese subjects. Methods and design A randomized, double blind, cross-over, placebo-controlled, clinical trial was designed to assess the effects of Candesartan (up to 32 mg/day during 6 months) on the Homeostasis Model Assessment (HOMA) index, lipid profile, protrombotic state, oxidative stress and plasma levels of inflammatory markers. The participants will be recruited in the "Fundación Cardiovascular de Colombia". Subjects who fullfil selection criteria will receive permanent educational, nutritional and exercise support during their participation in the study. After a 15 days-run-in period with placebo and life-style recommendations, the patients who have a treatment compliance equal or greater than 80% will be randomlly assigned to one of the treatment groups. Group A will receive Candesartan during 6 months and placebo during 6 months. Group B will receive placebo during the first 6 months, and then, Candesartan during the last 6 months. Control visits will be programed monthly and all parameters of interest will be evaluated every 6 months. Hypothesis Treatment with Candesartan, could improve the HOMA index, the response to the oral glucose tolerance test and reduce the plasma levels of adipoquines, oxidative stress and prothrombotic markers, in non diabetic, non hypertense subjects with dysglycemia and abdominal obesity, recruited from a population at high risk of developing insulin resistance. These effects are independent of the changes in arterial blood pressure. Trial registration: NCT00319202 PMID:16959033
Damman, Kevin; Solomon, Scott D; Pfeffer, Marc A; Swedberg, Karl; Yusuf, Salim; Young, James B; Rouleau, Jean L; Granger, Christopher B; McMurray, John J V
2016-12-01
We investigated the association between worsening renal function (WRF) that occurs during renin-angiotensin-aldosterone system inhibition initation and outcome in heart failure (HF) patients with preserved ejection fraction (HFPEF) and compared this with HF patients with reduced ejection fraction (HFREF). We examined changes in estimated glomerular filtration rate (GFR) and the relationship between WRF (defined as ≥26.5 µmol/L and ≥25% increase in serum creatinine from baseline to 6 weeks) and outcome, according to randomized treatment, in patients with HFREF (EF <45%; n = 1569) and HFPEF (EF ≥45%; n = 836) in the CHARM programme. The primary outcome was cardiovascular death or HF hospitalization. Estimated GFR decreased 9.0 ± 21 vs. 4.0 ± 21 mL/min/1.73 m 2 with candesartan and placebo, respectively, and this was similar in HFREF and HFPEF. WRF developed more frequently with candesartan, 16% vs. 7%, P < 0.001, with similar findings in patients with HFREF and HFPEF. WRF was associated with a higher risk of the primary outcome: multivariable hazard ratio (HR) 1.26, 95% confidence interval 1.03-1.54, P = 0.022, in both treatment groups, and in both HFREF and HFPEF (P for interaction 0.98). In HFREF, WRF was mostly related to HF hospitalization, while in HFPEF, WRF seemed more associated with mortality. GFR decreased more and WRF was more common with candesartan compared with placebo, and this was similar in HFREF and HFPEF. WRF was associated with worse outcomes in HFREF and HFPEF. Although no formal interaction was present, the association between candesartan treatment, WRF, and type of clinical outcome was slightly different between HFREF and HFPEF. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Gawryś, Olga; Baranowska, Iwona; Gawarecka, Katarzyna; Świeżewska, Ewa; Dyniewicz, Jolanta; Olszyński, Krzysztof H; Masnyk, Marek; Chmielewski, Marek; Kompanowska-Jezierska, Elżbieta
2018-04-01
Novel lipid-based carriers, composed of cationic derivatives of polyisoprenoid alcohols (amino-prenols, APrens) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), were designed. The carriers, which were previously shown to be nontoxic to living organisms, were now tested if suitable for administration of candesartan, an antihypertensive drug. Spontaneously hypertensive rats (SHR) received injections of candesartan (0.1 mg/kg body weight per day; s.c.) in freshly prepared carriers for two weeks. The rats' arterial pressure was measured by telemetry. Urine and blood collection were performed in metabolic cages. In a separate group of SHR, the pharmacokinetics of the new formulation was evaluated after a single subcutaneous injection. The antihypertensive activity of candesartan administered in DOPE dispersions containing APrens was distinctly greater than that of candesartan dispersions composed of DOPE only or administered in the classic solvent (sodium carbonate). The pharmacokinetic parameters clearly demonstrated that candesartan in APren carriers reached the bloodstream more rapidly and in much greater concentration (almost throughout the whole observation) than the same drug administered in dispersions of DOPE only or in solvent. Serum creatinine (P Cr ) decreased significantly only in the group receiving candesartan in carriers with APrens (from 0.80 ± 0.04 to 0.66 ± 0.09 mg/dl; p < 0.05), whereas in the other groups P Cr remained at the same level after treatment. Moreover, the new derivatives increased the loading capacity of the carriers, which is a valuable feature for any drug delivery system. Taken together, our findings led us to conclude that APrens are potentially valuable components of lipid-based drug carriers.
Rakugi, Hiromi; Enya, Kazuaki; Sugiura, Kenkichi; Ikeda, Yoshinori
2012-05-01
Azilsartan is a novel angiotensin receptor blocker being developed for hypertension treatment. This 16-week, multicenter, randomized, double-blind study compared the efficacy and safety of azilsartan (20-40 mg once daily by forced titration) and its ability to provide 24-h blood pressure (BP) control, with that of candesartan cilexetil (candesartan; 8-12 mg once daily by forced titration) in 622 Japanese patients with grade I-II essential hypertension. Efficacy was evaluated by clinic-measured sitting BP, and by ambulatory BP monitoring (ABPM) at week 14. Participants (mean age: 57 years, 61% males) had a mean baseline sitting BP of 159.8/100.4 mm Hg. The mean change from baseline in sitting diastolic BP at week 16 (primary endpoint) was -12.4 mm Hg in the azilsartan group and -9.8 mm Hg in the candesartan group, demonstrating a statistically significant greater reduction with azilsartan vs. candesartan (difference: -2.6 mm Hg, 95% confidence interval (CI): -4.08 to -1.22 mm Hg, P=0.0003). The week 16 (secondary endpoint) mean change from baseline in sitting systolic BP was -21.8 mm Hg and -17.5 mm Hg, respectively, a significant decrease with azilsartan vs. candesartan (difference: -4.4 mm Hg, 95% CI: -6.53 to -2.20 mm Hg, P<0.0001). On ABPM, the week 14 mean changes from baseline in diastolic and systolic BP were also significantly greater with azilsartan over a 24-h period, and during the daytime, night-time and early morning. Safety and tolerability were similar among the two groups. These data demonstrate that once-daily azilsartan provides a more potent 24-h sustained antihypertensive effect than that of candesartan but with equivalent safety.
Uehara, G; Takeda, H
2008-01-01
Using the cardio-ankle vascular index (CAVI) as an indicator, we assessed improvement of arterial stiffness in 95 outpatients with hypertension complicated by type 2 diabetes mellitus who were treated orally for >or= 12 months with telmisartan 40 mg/day, losartan 50 mg/day or candesartan 8 mg/day. At 1 year, in the telmisartan and losartan groups CAVI did not change whereas in the candesartan group CAVI showed a statistically significant decrease of 2.70%. Although telmisartan is believed to enhance the activity of peroxisome proliferator-activated receptor (PPAR-gamma) in vitro, it did not ameliorate arterial stiffness in our patients. Candesartan, however, improved arterial stiffness independently of blood pressure lowering and without PPAR-gamma agonist action, possibly by direct action resulting from its potent affinity and binding capacity for the angiotensin II type 1 receptor. We conclude that candesartan is a potentially useful therapy against arterial stiffness in hypertensive patients with type 2 diabetes mellitus.
Candesartan cilexetil loaded nanodelivery systems for improved oral bioavailability.
Dudhipala, Narendar; Veerabrahma, Kishan
2017-02-01
Candesartan cilexetil (CC), an antihypertensive drug, has low oral bioavailability due to poor solubility and hepatic first-pass metabolism. These are major limitations in oral delivery of CC. Several approaches are known to reduce the problems of solubility and improve the bioavailability of CC. Among various approaches, nanotechnology-based delivery of CC has potential to overcome the challenges associated with the oral administration. This review focuses on various nano-based delivery systems available and tried for improving the aqueous solubility, dissolution and consequently bioavailability of CC upon oral administration. Of all, solid lipid nanoparticles appear to be promising delivery system, based on current reported results, for delivery of CC, as this system improved the oral bioavailability and possessed prolonged pharmacodynamic effect.
... or in combination with other medications to treat high blood pressure. Candesartan is also used alone or in combination ... smoothly and the heart to pump more efficiently.High blood pressure is a common condition, and when not treated ...
Rakugi, Hiromi; Kario, Kazuomi; Enya, Kazuaki; Igeta, Masataka; Ikeda, Yoshinori
2013-09-01
Abnormal variations in night-time hypertension such as "non-dipping" type (< 10% decrease in nocturnal systolic blood pressure [SBP] from daytime SBP) are a risk factor for cardiovascular events independent of 24-h BP. As part of a randomized, double-blind study of azilsartan (20-40 mg once daily) and candesartan (8-12 mg once daily) in Japanese patients with essential hypertension, an exploratory analysis was performed using ambulatory BP monitoring (ABPM) at baseline and Week 14. Effects of study drugs on nocturnal BP variations according to patients' nocturnal SBP dipping status were evaluated. ABPM data were available for 273 patients treated with azilsartan and 275 with candesartan. In the dipping group (≥ 10% decrease from daytime SBP), azilsartan produced a greater reduction from baseline in daytime than in night-time SBP (- 14.1 and - 10.9 mmHg, respectively), and the change in daytime SBP was significantly greater with azilsartan than with candesartan (p = 0.0077). In the non-dipping group, azilsartan produced a greater reduction from baseline in night-time than in daytime SBP (- 20.2 and - 9.9 mmHg, respectively), and reductions in both night-time SBP (p = 0.02) and daytime SBP (p = 0.0042) were significantly greater with azilsartan than with candesartan. Once-daily azilsartan improved non-dipping night-time SBP to a greater extent than candesartan in Japanese patients with grade I-II essential hypertension.
Sezai, Akira; Soma, Masayoshi; Hata, Mitsumasa; Yoshitake, Isamu; Unosawa, Satoshi; Wakui, Shinji; Shiono, Motomi
2011-01-01
Various angiotensin II receptor blockers are widely used for the treatment of hypertension in recent years. The results of large-scale clinical studies have shown that they have various efficacies: not only hypotensive effects but also organ protective effects. In this study, the effects of a change-over from candesartan to olmesartan on renin-angiotensin-aldsterone system, cardiomegaly and peripheral circulation were studied. Participants enrolled in this trial were outpatients with essential hypertension after cardiac surgery who had received candesartan for more than one year. Fifty-six patients switched from candesartan to olmesartan. The primary endpoints were 1) renin activity, angiotensin II, aldosterone, and 2) left ventricular mass index (LVMI). It was clear that angiotensin II and aldosterone are decreased by the potent hypotensive effects of olmesartan in a change-over from candesartan to olmesartan. Since LVMI and BNP were decreased, inhibitory effects on myocardial hypertrophy were also confirmed. In the present study, left ventricular hypertrophy and on arterial compliance were inhibited by a decrease in angiotensin II and aldosterone due to the change-over to olmesartan. In the future, protective effects on organs will be clarified by long-term observations.
Rogers, Jennifer K; Pocock, Stuart J; McMurray, John J V; Granger, Christopher B; Michelson, Eric L; Östergren, Jan; Pfeffer, Marc A; Solomon, Scott D; Swedberg, Karl; Yusuf, Salim
2014-01-01
Heart failure is characterized by recurrent hospitalizations, but often only the first event is considered in clinical trial reports. In chronic diseases, such as heart failure, analysing all events gives a more complete picture of treatment benefit. We describe methods of analysing repeat hospitalizations, and illustrate their value in one major trial. The Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM)-Preserved study compared candesartan with placebo in 3023 patients with heart failure and preserved systolic function. The heart failure hospitalization rates were 12.5 and 8.9 per 100 patient-years in the placebo and candesartan groups, respectively. The repeat hospitalizations were analysed using the Andersen-Gill, Poisson, and negative binomial methods. Death was incorporated into analyses by treating it as an additional event. The win ratio method and a method that jointly models hospitalizations and mortality were also considered. Using repeat events gave larger treatment benefits than time to first event analysis. The negative binomial method for the composite of recurrent heart failure hospitalizations and cardiovascular death gave a rate ratio of 0.75 [95% confidence interval (CI) 0.62-0.91, P = 0.003], whereas the hazard ratio for time to first heart failure hospitalization or cardiovascular death was 0.86 (95% CI 0.74-1.00, P = 0.050). In patients with preserved EF, candesartan reduces the rate of admissions for worsening heart failure, to a greater extent than apparent from analysing only first hospitalizations. Recurrent events should be routinely incorporated into the analysis of future clinical trials in heart failure. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Matsumoto, Sachiko; Shimabukuro, Michio; Fukuda, Daiju; Soeki, Takeshi; Yamakawa, Ken; Masuzaki, Hiroaki; Sata, Masataka
2014-01-31
Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. (1) Vascular endothelium-dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan's higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox.
Sun, Yanxiang; Liao, Yuhua; Yuan, Yong; Feng, Li; Ma, Shihui; Wei, Feng; Wang, Min; Zhu, Feng
2014-01-01
The autoantibodies against angiotensin AT1 receptors (AT1-AAs) in patients with essential hypertension exhibited an agonistic action like angiotensin II and maintained high blood pressure (BP). Angiotensin II receptor gene (AGTR1) polymorphisms were associated with BP response to RAS inhibition in the hypertensive population. Furthermore, the BP response to AT1 receptor blockers varied significantly among individuals with hypertension. We hypothesized that the polymorphisms of the AGTR1 and AT1-AAs might affect antihypertensive response to AT1 receptor blockers based in patients with primary hypertension. Patients who received a candesartan-based regimen came from the SOT-AT1 study (Study of Optimal Treatment in Hypertensive Patients with Anti-AT1-Receptor Autoantibodies). The established enzyme-labeled immunosorbent assay was used to detect AT1-AAs in the sera of the patients. Genotype 3 single nucleotide polymorphisms in AGTR1 gene was used by DNA sequencing. The correlations among AT1-AAs, AGTR1 gene polymorphisms or haplotypes, and the antihypertensive effect candesartan-based were analyzed using SPSS. The percentage of systolic BP reduction that was candesartan-based was greater in AT1-AA positive groups than in AT1-AA negative ones (21 ± 8 vs. 18 ± 9; P = .001). Meanwhile, systolic BP reduction that was candesartan-based was more significant in the group of rs5186 AC genotypes than AA homozygotes after adjusting for other confounding factors (37.55 ± 13.7 vs. 32.47 ± 17.27 mm Hg; adjusted P = .028). Furthermore, haplotypes (GCC) and (AAC) had impacts on the antihypertensive effect of candesartan therapy. The AT1-AAs, AGTR1 gene polymorphisms and haplotypes solely or jointly have influences on candesartan-based antihypertensive response in patients with primary hypertension. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Rakugi, Hiromi; Enya, Kazuaki; Sugiura, Kenkichi; Ikeda, Yoshinori
2012-01-01
Azilsartan is a novel angiotensin receptor blocker being developed for hypertension treatment. This 16-week, multicenter, randomized, double-blind study compared the efficacy and safety of azilsartan (20–40 mg once daily by forced titration) and its ability to provide 24-h blood pressure (BP) control, with that of candesartan cilexetil (candesartan; 8–12 mg once daily by forced titration) in 622 Japanese patients with grade I–II essential hypertension. Efficacy was evaluated by clinic-measured sitting BP, and by ambulatory BP monitoring (ABPM) at week 14. Participants (mean age: 57 years, 61% males) had a mean baseline sitting BP of 159.8/100.4 mm Hg. The mean change from baseline in sitting diastolic BP at week 16 (primary endpoint) was −12.4 mm Hg in the azilsartan group and −9.8 mm Hg in the candesartan group, demonstrating a statistically significant greater reduction with azilsartan vs. candesartan (difference: −2.6 mm Hg, 95% confidence interval (CI): −4.08 to −1.22 mm Hg, P=0.0003). The week 16 (secondary endpoint) mean change from baseline in sitting systolic BP was −21.8 mm Hg and −17.5 mm Hg, respectively, a significant decrease with azilsartan vs. candesartan (difference: −4.4 mm Hg, 95% CI: −6.53 to −2.20 mm Hg, P<0.0001). On ABPM, the week 14 mean changes from baseline in diastolic and systolic BP were also significantly greater with azilsartan over a 24-h period, and during the daytime, night-time and early morning. Safety and tolerability were similar among the two groups. These data demonstrate that once-daily azilsartan provides a more potent 24-h sustained antihypertensive effect than that of candesartan but with equivalent safety. PMID:22278628
Candesartan: widening indications for this angiotensin II receptor blocker?
Mendis, B; Page, S R
2009-08-01
Candesartan cilexetil is one of a number of drugs of the angiotensin II receptor blocker (ARB) class. Their principal mode of action involves competitive blockade of the angiotensin II type 1 receptor, thereby modulating the activity of the rennin-angiotensin-aldosterone system. Angiotensin II receptor blocker therapy has been proven to be well tolerated and effective in the management of hypertension, chronic heart failure with left ventricular dysfunction and the prevention and progression of diabetic renal disease. Candesartan is a highly potent, long-acting and selective angiotensin II type 1 receptor blocker. It was launched in 1998 for the treatment of hypertension. Its use has increased dramatically, with recently published data suggesting benefit in the treatment of stroke, heart failure, diabetic renal disease and most recently in preventing the development of or delaying the progression of diabetic retinopathy. In this article we review the literature on the use of ARB drugs in general before focusing on candesartan.
Gulati, Geeta; Heck, Siri Lagethon; Ree, Anne Hansen; Hoffmann, Pavel; Schulz-Menger, Jeanette; Fagerland, Morten W.; Gravdehaug, Berit; von Knobelsdorff-Brenkenhoff, Florian; Bratland, Åse; Storås, Tryggve H.; Hagve, Tor-Arne; Røsjø, Helge; Steine, Kjetil; Geisler, Jürgen; Omland, Torbjørn
2016-01-01
Abstract Aims Contemporary adjuvant treatment for early breast cancer is associated with improved survival but at the cost of increased risk of cardiotoxicity and cardiac dysfunction. We tested the hypothesis that concomitant therapy with the angiotensin receptor blocker candesartan or the β-blocker metoprolol will alleviate the decline in left ventricular ejection fraction (LVEF) associated with adjuvant, anthracycline-containing regimens with or without trastuzumab and radiation. Methods and results In a 2 × 2 factorial, randomized, placebo-controlled, double-blind trial, we assigned 130 adult women with early breast cancer and no serious co-morbidity to the angiotensin receptor blocker candesartan cilexetil, the β-blocker metoprolol succinate, or matching placebos in parallel with adjuvant anticancer therapy. The primary outcome measure was change in LVEF by cardiac magnetic resonance imaging. A priori, a change of 5 percentage points was considered clinically important. There was no interaction between candesartan and metoprolol treatments (P = 0.530). The overall decline in LVEF was 2.6 (95% CI 1.5, 3.8) percentage points in the placebo group and 0.8 (95% CI −0.4, 1.9) in the candesartan group in the intention-to-treat analysis (P-value for between-group difference: 0.026). No effect of metoprolol on the overall decline in LVEF was observed. Conclusion In patients treated for early breast cancer with adjuvant anthracycline-containing regimens with or without trastuzumab and radiation, concomitant treatment with candesartan provides protection against early decline in global left ventricular function. PMID:26903532
Alhusban, Ahmed; Kozak, Anna; Pillai, Bindu; Ahmed, Heba; Sayed, Mohammed A; Johnson, Maribeth H; Ishrat, Tauheed; Ergul, Adviye; Fagan, Susan C
2017-01-01
Stroke is a leading cause of adult disability worldwide. Improving stroke outcome requires an orchestrated interplay that involves up regulation of pro-survival pathways and a concomitant suppression of pro-apoptotic mediators. In this investigation, we assessed the involvement of eNOS in the AT1 blocker-mediated protective and pro-recovery effects in animals with hypertension. We also evaluated the effect of acute eNOS inhibition in hypertensive animals. To achieve these goals, spontaneously hypertensive rats (SHR) were implanted with blood pressure transmitters, and randomized to receive either an eNOS inhibitor (L-NIO) or saline one hour before cerebral ischemia induction. After 3 hours of ischemia, animals were further randomized to receive either candesartan or saline at the time of reperfusion and sacrificed either 24 hours or 7 days later. Candesartan induced an early protective effect that was independent of eNOS inhibition (50% improvement in motor function). However, the protective effect of candesartan was associated with about five fold up regulation of BDNF expression and about three fold reduction in ER stress markers, in an eNOS dependent manner. The early benefit of a single dose of candesartan, present at 24 hours after stroke, was diminished at 7 days, perhaps due to a failure to induce an angiogenic response in these hypertensive animals. In conclusion, our findings demonstrate an early prorecovery effect of candesartan at both functional and molecular levels. Candesartan induced prorecovery signaling was mediated through eNOS. This effect was not maintained at 7 days after experimental ischemia.
Gulati, Geeta; Heck, Siri Lagethon; Ree, Anne Hansen; Hoffmann, Pavel; Schulz-Menger, Jeanette; Fagerland, Morten W; Gravdehaug, Berit; von Knobelsdorff-Brenkenhoff, Florian; Bratland, Åse; Storås, Tryggve H; Hagve, Tor-Arne; Røsjø, Helge; Steine, Kjetil; Geisler, Jürgen; Omland, Torbjørn
2016-06-01
Contemporary adjuvant treatment for early breast cancer is associated with improved survival but at the cost of increased risk of cardiotoxicity and cardiac dysfunction. We tested the hypothesis that concomitant therapy with the angiotensin receptor blocker candesartan or the β-blocker metoprolol will alleviate the decline in left ventricular ejection fraction (LVEF) associated with adjuvant, anthracycline-containing regimens with or without trastuzumab and radiation. In a 2 × 2 factorial, randomized, placebo-controlled, double-blind trial, we assigned 130 adult women with early breast cancer and no serious co-morbidity to the angiotensin receptor blocker candesartan cilexetil, the β-blocker metoprolol succinate, or matching placebos in parallel with adjuvant anticancer therapy. The primary outcome measure was change in LVEF by cardiac magnetic resonance imaging. A priori, a change of 5 percentage points was considered clinically important. There was no interaction between candesartan and metoprolol treatments (P = 0.530). The overall decline in LVEF was 2.6 (95% CI 1.5, 3.8) percentage points in the placebo group and 0.8 (95% CI -0.4, 1.9) in the candesartan group in the intention-to-treat analysis (P-value for between-group difference: 0.026). No effect of metoprolol on the overall decline in LVEF was observed. In patients treated for early breast cancer with adjuvant anthracycline-containing regimens with or without trastuzumab and radiation, concomitant treatment with candesartan provides protection against early decline in global left ventricular function. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Nitescu, Nicoletta; DiBona, Gerald F; Grimberg, Elisabeth; Guron, Gregor
2010-01-01
The aim was to examine the role of angiotensin II type 1 receptors in dynamic autoregulation of renal blood flow (RBF) in endotoxemia. Experiments were performed on anesthetized rats 16 h after intraperitoneal lipopolysaccharide (LPS) or vehicle administration. After baseline measurements, groups Sham-Saline, LPS-Saline and LPS-Candesartan received isotonic saline or candesartan (10 μg kg(-1) i.v.). Data were collected during eight consecutive 20-min clearance periods (C1-8). Transfer function (TF) analysis in the frequency domain was used to examine dynamic autoregulation of RBF. Endotoxemic rats showed an approximate 50% reduction in glomerular filtration rate (GFR) and RBF (p < 0.05 vs. Sham-Saline). Candesartan significantly increased RBF (+40 ± 6% vs. baseline; p < 0.05) but did not significantly influence GFR. Endotoxemic animals showed a normal myogenic response but had elevated TF gain values in the frequency range of the tubuloglomerular feedback mechanism (TGF; 0.01-0.03 Hz) reflecting impaired autoregulation (periods C3-4, 2.2 ± 1.6 vs. -2.6 ± 0.6 dB, p < 0.05, and C7-8, -0.4 ± 1.3 vs. -4.0 ± 0.8 dB, p < 0.05; in groups LPS-Saline and Sham-Saline, respectively). Candesartan normalized TF gain in this frequency range (periods C7-8, -6.1 ± 2.3 dB in group LPS-Candesartan, p < 0.05 vs. LPS-Saline). Candesartan ameliorates the adverse effect of endotoxin on the TGF component of dynamic autoregulation of RBF. Copyright © 2010 S. Karger AG, Basel.
Kuriyama, Satoru; Otsuka, Yasushi; Ueda, Hiroyuki; Sugano, Naoki; Yoshizawa, Takeo; Yamada, Taku; Hosoya, Tatsuo
2011-02-01
A 38-year-old female patient on peritoneal dialysis (PD) due to type 1 diabetic nephropathy with a well-preserved residual renal function did not respond well to the conventional antihypertensive therapy consisting of candesartan, furosemide, and bunazosin. Switching candesartan for a fixed combination formula of candesartan plus hydrochlorothiazide (HCTZ) while the rest of the other two agents remained unchanged led to the remarkable reduction in both systolic and diastolic blood pressure (BP) without significant changes in the cardiothoracic ratio (CTR), body weight (BW), and residual renal function. This case suggests that when used in combination, diuretics acting on different functional segment of the nephron hold greater potential for enhanced antihypertensive effect, especially in patients on PD whose residual renal function is well preserved. A small dose of HCTZ with an angiotensin II receptor blocker (ARB) may partially explain the therapeutic benefit of this combination therapy in terms of a reliable hypotensive effect, a better adherence, and fewer side effects.
2012-01-01
Background Angiotensin receptor blockers (ARBs) are reported to provide direct protection to many organs by controlling inflammation and decreasing oxidant stress in patients without arteriosclerosis. This study aimed to evaluate (1) whether an ARB (candesartan) decreases values for inflammatory parameters in hypertensive patients with type 2 diabetes mellitus of long duration accompanied by arteriosclerosis and (2) whether there any predictors of which patients would receive the benefits of organ protection by candesartan. Methods We administered candesartan therapy (12 mg daily) for 6 months and evaluated whether there was improvement in serum inflammatory parameters high molecular weight adiponectin (HMW-ADN), plasminogen activator inhibitor-1 (PAI-1), highly sensitive C-reactive protein (Hs-CRP), vascular cell adhesion molecule-1 (VCAM-1) in serum and urinary-8-hydroxydeoxyguanosine (U-8-OHdG). We then analyzed the relationship between the degree of lowering of blood pressure and inflammatory factors and the relationship between pulse pressure and inflammatory factors. Finally, we analyzed predictive factors in patients who received the protective benefit of candesartan. Results After 6 months of treatment, significant improvements from baseline values were observed in all patients in HMW-ADN and PAI-1 but not in Hs-CRP, VCAM-1 and U-8-OHdG. Multilinear regression analysis was performed to determine which factors could best predict changes in HMW-ADN and PAI-1. Changes in blood pressure were not significant predictors of changes in metabolic factors in all patients. We found that the group with baseline pulse pressure <60 mmHg had improved HMW-ADN and PAI-1 values compared with the group with baseline pulse pressure ≥ 60 mmHg. These results suggest that pulse pressure at baseline could be predictive of changes in HMW-ADN and PAI-1. Conclusions Candesartan improved inflammatory parameters (HMW-ADN and PAI-1) in hypertensive patients with type 2 diabetes mellitus of long duration independent of blood pressure changes. Patients with pulse pressure <60 mmHg might receive protective benefits by candesartan. Trial registration UMIN000007921 PMID:23034088
Meredith, P A; Murray, L S; McInnes, G T
2010-08-01
Informed by the findings from prospective observational studies and randomized outcome trials, guidelines for the management of hypertension acknowledge that the benefit of treatment can be attributed largely to blood pressure (BP) reduction. Therefore, quantification of differential BP lowering of different agents within classes of anti-hypertensives is of practical importance. The objective of this analysis was to compare the efficacy of candesartan and losartan with respect to reduction in systolic and diastolic BP (SBP and DBP). A systematic literature search of databases from 1980 to 1 October 2008 identified 13 studies in which candesartan and losartan were compared in randomized trials in hypertensive patients. Data from 4066 patients were included in the analysis using a random effect model. Mean changes in SBP and DBP were compared for each drug alone and after stratification for dose and for combination with hydrochlorothiazide (HCTZ). On the basis of all the data, the weighted mean difference favoured candesartan-3.22 mm Hg (95% confidence interval (CI) 2.16, 4.29) for SBP and 2.21 mm Hg (95% CI 1.34, 3.07) for DBP. These findings were consistent when analyses according to dose and combination with HCTZ were carried out. Thus, it can be concluded that at currently recommended doses, candesartan is more effective than losartan in lowering BP.
Hasvold, L P; Bodegård, J; Thuresson, M; Stålhammar, J; Hammar, N; Sundström, J; Russell, D; Kjeldsen, S E
2014-11-01
Differences in clinical effectiveness between angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) in the primary treatment of hypertension are unknown. The aim of this retrospective cohort study was to assess the prevention of type 2 diabetes and cardiovascular disease (CVD) in patients treated with ARBs or ACEis. Patients initiated on enalapril or candesartan treatment in 71 Swedish primary care centers between 1999 and 2007 were included. Medical records data were extracted and linked with nationwide hospital discharge and cause of death registers. The 11,725 patients initiated on enalapril and 4265 on candesartan had similar baseline characteristics. During a mean follow-up of 1.84 years, 36,482 patient-years, the risk of new diabetes onset was lower in the candesartan group (hazard ratio (HR) 0.81, 95% confidence interval (CI) 0.69-0.96, P=0.01) compared with the enalapril group. No difference between the groups was observed in CVD risk (HR 0.99, 95% CI 0.87-1.13, P=0.86). More patients discontinued treatment in the enalapril group (38.1%) vs the candesartan group (27.2%). In a clinical setting, patients initiated on candesartan treatment had a lower risk of new-onset type 2 diabetes and lower rates of drug discontinuation compared with patients initiated on enalapril. No differences in CVD risk were observed.
Sjølie, A K; Klein, R; Porta, M; Orchard, T; Fuller, J; Parving, H H; Bilous, R; Aldington, S; Chaturvedi, N
2011-03-01
To study the association between baseline retinal microaneurysm score and progression and regression of diabetic retinopathy, and response to treatment with candesartan in people with diabetes. This was a multicenter randomized clinical trial. The progression analysis included 893 patients with Type 1 diabetes and 526 patients with Type 2 diabetes with retinal microaneurysms only at baseline. For regression, 438 with Type 1 and 216 with Type 2 diabetes qualified. Microaneurysms were scored from yearly retinal photographs according to the Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. Retinopathy progression and regression was defined as two or more step change on the ETDRS scale from baseline. Patients were normoalbuminuric, and normotensive with Type 1 and Type 2 diabetes or treated hypertensive with Type 2 diabetes. They were randomized to treatment with candesartan 32 mg daily or placebo and followed for 4.6 years. A higher microaneurysm score at baseline predicted an increased risk of retinopathy progression (HR per microaneurysm score 1.08, P < 0.0001 in Type 1 diabetes; HR 1.07, P = 0.0174 in Type 2 diabetes) and reduced the likelihood of regression (HR 0.79, P < 0.0001 in Type 1 diabetes; HR 0.85, P = 0.0009 in Type 2 diabetes), all adjusted for baseline variables and treatment. Candesartan reduced the risk of microaneurysm score progression. Microaneurysm counts are important prognostic indicators for worsening of retinopathy, thus microaneurysms are not benign. Treatment with renin-angiotensin system inhibitors is effective in the early stages and may improve mild diabetic retinopathy. Microaneurysm scores may be useful surrogate endpoints in clinical trials. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
Hong, Kwangseok; Li, Min; Nourian, Zahra; Meininger, Gerald A; Hill, Michael A
2017-12-01
Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT 1 R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT 1 R when activated by mechanical stress or angiotensin II and whether this modulates AT 1 R-mediated vasoconstriction. To determine whether activation of the AT 1 R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT 1 R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT 1 R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT 1 R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT 1 R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT 1 R activation results in translocation of RGS5 toward the plasma membrane, limiting AT 1 R-mediated vasoconstriction through its role in G q/11 protein-dependent signaling. © 2017 American Heart Association, Inc.
2014-01-01
Background Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. Methods We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. Results (1) Vascular endothelium–dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. Conclusions These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan’s higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox. PMID:24485356
Fujita, Tomoyoshi; Hirooka, Kazuyuki; Nakamura, Takehiro; Itano, Toshifumi; Nishiyama, Akira; Nagai, Yukiko; Shiraga, Fumio
2012-06-26
To investigate the mechanism of the neuroprotective effects of the angiotensin II type 1 receptor (AT1-R) blocker against retinal ischemia-reperfusion injury in the rat. Retinal ischemia was induced by increasing intraocular pressure. Glutamate release from the rat retina and intravitreal PO(2) (partial pressure of oxygen) profiles were monitored during and after ischemia using a microdialysis biosensor and oxygen-sensitive microelectrodes. ELISA was used to measure changes in the expression of AT1-R. Retinal mRNA expressions of p47phox and p67phox were measured by real-time polymerase chain reaction. Reactive oxygen species (ROS) were measured using dihydroethidium. Administration of candesartan, which is an AT1-R blocker (ARB), suppressed ischemia-induced increases in the extracellular glutamate. Candesartan also attenuated the increase in intravitreal PO(2) during reperfusion. AT1-R expression peaked at 12 hours after reperfusion. Although there was an increase in the retinal mRNA expression of p47phox and p64phox at 12 hours after the reperfusion, administration of candesartan suppressed these expressions. The production of ROS that was detected at 12 hours after reperfusion was also suppressed by the administration of candesartan or apocynin. NADPH oxidase-mediated ROS production increased at 12 hours after reperfusion. Candesartan may protect neurons by decreasing extracellular glutamate immediately after reperfusion and by attenuating oxidative stress via a modulation of the AT1-R signaling that occurs during ischemic insult.
Jusufovic, Mirza; Sandset, Else Charlotte; Bath, Philip M; Berge, Eivind
2016-08-01
Early blood pressure-lowering treatment appears to be beneficial in patients with acute intracerebral haemorrhage and potentially in ischaemic stroke. We used a new method for analysis of vascular events in the Scandinavian Candesartan Acute Stroke Trial to see if the effect was dependent on the timing of treatment. Scandinavian Candesartan Acute Stroke Trial was a randomized controlled and placebo-controlled trial of candesartan within 30 h of ischaemic or haemorrhagic stroke. Of 2029 patients, 231 (11.4%) had a vascular event (vascular death, nonfatal stroke or nonfatal myocardial infarction) during the first 6 months. The modified Rankin Scale (mRS) score following a vascular event was used to categorize vascular events in order of severity: no event (n = 1798), minor (mRS 0-2, n = 59), moderately severe (mRS 3-4, n = 57) and major event (mRS 5-6, n = 115). We used ordinal logistic regression for analysis and adjusted for predefined prognostic variables. Candesartan had no overall effect on vascular events (adjusted common odds ratio 1.11, 95% confidence interval 0.84-1.47, P = 0.48), and the effects were the same in ischaemic and haemorrhagic stroke. Among the patients treated within 6 h, the adjusted common odds ratio for vascular events was 0.37, 95% confidence interval 0.16-0.84, P = 0.02, and there was no heterogeneity of effect between ischaemic and haemorrhagic strokes. Ordinal analysis of vascular events showed no overall effect of candesartan in the subacute phase of stroke. The effect of treatment given within 6 h of stroke onset appears promising, and will be addressed in ongoing trials. Ordinal analysis of vascular events is feasible and can be used in future trials.
Gurunath, Surampalli; Nanjwade, Basavaraj K; Patil, P A
2015-01-01
The aim of the study is to explore the pharmacokinetic behavior of candesartan solid dispersions prepared by different pharmaceutical interventions using P-gp inhibitor in rabbits to validate the effectiveness of naringin as a pharmaceutical excipient in enhancing the oral delivery of lipophilic candesartan cilexetil. Male albino rabbits (1-1.5 kg) were orally administered pure CAN suspensions and various candesartan solid dispersions (10 mg/kg) with and without naringin (15 mg/kg) and blood samples were collected at specified time points. CAN plasma samples were measured using HPLC. After oral dosing of pure CAN suspension, the mean AUC0-8 h was found to be 0.14 ± 0.09 μgh/ml which was increased significantly, i.e. 0.52 ± 0.13 μgh/ml with freeze-dried solid dispersions in the presence of naringin (p < 0.01). Similarly, the mean Cmax of pure CAN suspension increased from 35.81 ± 0.13 μg/ml (without naringin) to 112.23 ± 0.13 μg/ml (freeze-dried solid dispersions with naringin) (p < 0.01). A 3.7-folds increase in apparent bioavailability was noticed with freeze-dried solid dispersions with naringin as compared to free CAN suspension administered alone. These results are quite stimulating for further development of a clinically useful oral formulation of candesartan cilexetil based on P-gp inhibition using naringin, a natural flavonoid as a pharmaceutical excipient.
Kumar, Namala Durga Atchuta; Babu, K. Sudhakar; Gosada, Ullas; Sharma, Nitish
2012-01-01
Introduction: A selective, specific, and sensitive “Ultra High-Pressure Liquid Chromatography” (UPLC) method was developed for determination of candesartan cilexetil impurities as well asits degradent in tablet formulation. Materials and Methods: The chromatographic separation was performed on Waters Acquity UPLC system and BEH Shield RP18 column using gradient elution of mobile phase A and B. 0.01 M phosphate buffer adjusted pH 3.0 with Orthophosphoric acid was used as mobile phase A and 95% acetonitrile with 5% Milli Q Water was used as mobile phase B. Ultraviolet (UV) detection was performed at 254 nm and 210 nm, where (CDS-6), (CDS-5), (CDS-7), (Ethyl Candesartan), (Desethyl CCX), (N-Ethyl), (CCX-1), (1 N Ethyl Oxo CCX), (2 N Ethyl Oxo CCX), (2 N Ethyl) and any unknown impurity were monitored at 254 nm wavelength, and two process-related impurities, trityl alcohol and MTE impurity, were estimated at 210 nm. Candesartan cilexetil andimpurities were chromatographed with a total run time of 20 min. Results: Calibration showed that the response of impurity was a linear function of concentration over the range limit of quantification to 2 μg/mL (r2≥0.999) and the method was validated over this range for precision, intermediate precision, accuracy, linearity, and specificity. For the precision study, percentage relative standard deviation of each impurity was <15% (n=6). Conclusion: The method was found to be precise, accurate, linear, and specific. The proposed method was successfully employed for estimation of candesartan cilexetil impurities in pharmaceutical preparations. PMID:23781475
Mengden, Thomas; Hübner, Reinhold; Bramlage, Peter
2011-01-01
Background Fixed-dose combinations of candesartan 32 mg and hydrochlorothiazide (HCTZ) have been shown to be effective in clinical trials. Upon market entry we conducted a noninterventional study to document the safety and effectiveness of this fixed-dose combination in an unselected population in primary care and to compare blood pressure (BP) values obtained during office measurement (OBPM) with ambulatory blood pressure measurement (ABPM). Methods CHILI CU Soon was a prospective, noninterventional, noncontrolled, open-label, multicenter study with a follow-up of at least 10 weeks. High-risk patients aged ≥18 years with previously uncontrolled hypertension were started on candesartan 32 mg in a fixed-dose combination with either 12.5 mg or 25 mg HCTZ. OBPM and ABPM reduction and adverse events were documented. Results A total of 4131 patients (52.8% male) with a mean age of 63.0 ± 11.0 years were included. BP was 162.1 ± 14.8/94.7 ± 9.2 mmHg during office visits at baseline. After 10 weeks of candesartan 32 mg/12.5 mg or 25 mg HCTZ, mean BP had lowered to 131.7 ± 10.5/80.0 ± 6.6 mmHg (P < 0.0001 for both comparisons). BP reduction was comparable irrespective of prior or concomitant medication. In patients for whom physicians regarded an ABPM to be necessary (because of suspected noncontrol over 24 hours), ABP at baseline was 158.2/93.7 mmHg during the day and 141.8/85.2 mmHg during the night. At the last visit, BP had significantly reduced to 133.6/80.0 mmHg and 121.0/72.3 mmHg, respectively, resulting in 20.8% being normotensive over 24 hours (<130/80 mmHg). The correlation between OBPM and ABPM was good (r = 0.589 for systolic BP and r = 0.389 for diastolic BP during the day). Of those who were normotensive upon OBPM, 35.1% had high ABPM during the day, 49.3% were nondippers, and 3.4% were inverted dippers. Forty-nine adverse events (1.19%) were reported, of which seven (0.17%) were regarded as serious. Conclusion Candesartan 32 mg in a fixed-dose combination with either 12.5 mg or 25 mg HCTZ is safe and effective for further BP lowering irrespective of prior antihypertensive drug class not being able to control BP. PMID:22241950
The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy.
Sjølie, A K; Chaturvedi, N
2002-08-01
Retinopathy is the most common complication of diabetes, and a leading cause of blindness in people of working age. Optimal blood pressure and metabolic control can reduce the risk of diabetic retinopathy, but are difficult to achieve in clinical practice. In the EUCLID Study, the angiotensin converting enzyme (ACE) inhibitor lisinopril reduced the risk of progression of retinopathy by approximately 50%, and also significantly reduced the risk of progression to proliferative retinopathy. These findings are consistent with extensive evidence that the renin-angiotensin system is expressed in the eye, and that adverse effects of angiotensin II on retinal angiogenesis and function can be inhibited by ACE inhibitors or angiotensin II-receptor blockers. However, in the EUCLID Study retinopathy was not a primary end-point and the study was not sufficiently powered for the eye-related outcomes. Hence, the Diabetic Retinopathy Candesartan Trials (DIRECT) programme has been established to determine whether AT(1)-receptor blockade with candesartan can prevent the incidence and progression of diabetic retinopathy. This programme comprises three studies, involving a total of 4500 patients recruited from about 300 centres worldwide. The patients are normotensive or treated hypertensive individuals, and so the DIRECT programme should assess the potential of an AT(1)-receptor blocker to protect against the pathological changes in the eye following diabetes.
Wang, Xingxu; Ye, Yong; Gong, Hui; Wu, Jian; Yuan, Jie; Wang, Shijun; Yin, Peipei; Ding, Zhiwen; Kang, Le; Jiang, Qiu; Zhang, Weijing; Li, Yang; Ge, Junbo; Zou, Yunzeng
2016-08-01
Angiotensin II (AngII) type 1 receptor blockers (ARBs) have been effectively used in hypertension and cardiac remodeling. However, the differences among them are still unclear. We designed this study to examine and compare the effects of several ARBs widely used in clinics, including Olmesartan, Candesartan, Telmisartan, Losartan, Valsartan and Irbesartan, on the ACE-AngII-AT1 axis and the ACE2-Ang(1-7)-Mas axis during the development of cardiac remodeling after pressure overload. Although all of the six ARBs, attenuated the development of cardiac hypertrophy and heart failure induced by transverse aortic constriction (TAC) for 2 or 4weeks in the wild-type mice evaluated by echocardiography and hemodynamic measurements, the degree of attenuation by Olmesartan, Candesartan and Losartan tended to be larger than that of the other three drugs tested. Additionally, the degree of downregulation of the ACE-AngII-AT1 axis and upregulation of the ACE2-Ang(1-7)-Mas axis was higher in response to Olmesartan, Candesartan and Losartan administration in vivo and in vitro. Moreover, in angiotensinogen-knockdown mice, TAC-induced cardiac hypertrophy and heart failure were inhibited by Olmesartan, Candesartan and Losartan but not by Telmisartan, Valsartan and Irbesartan administration. Furthermore, only Olmesartan and Candesartan could downregulate the ACE-AngII-AT1 axis and upregulate the ACE2-Ang(1-7)-Mas axis in vitro. Our data suggest that Olmesartan, Candesartan and Losartan could effectively inhibit pressure overload-induced cardiac remodeling even when with knockdown of Ang II, possibly through upregulation of the expression of the ACE2-Ang(1-7)-Mas axis and downregulation of the expression of the ACE-AngII-AT1 axis. In contrast, Telmisartan, Valsartan and Irbesartan only played a role in the presence of AngII, and Losartan had no effect in the presence of AngII in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Souza Gomes, Júlia Ariana; de Souza, Greicy Coelho; Berk, Michael; Cavalcante, Lígia Menezes; de Sousa, Francisca Cléa F; Budni, Josiane; de Lucena, David Freitas; Quevedo, João; Carvalho, André F; Macêdo, Danielle
2015-11-01
Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Namba, Masashi; Kim, Shokei; Zhan, Yumei; Nakao, Takafumi; Iwao, Hiroshi
2002-05-01
The mechanism and treatment of hypertensive systolic heart failure are not well defined. We compared the effect of an angiotensin-converting enzyme inhibitor (cilazapril, 10 mg/kg), an angiotensin receptor blocker (candesartan, 3 mg/kg), a calcium channel blocker (benidipine, 1, 3 or 6 mg/kg), and the same calcium channel blocker combined with renin-angiotensin blockers on systolic heart failure in Dahl salt-sensitive (DS) rats. DS rats were fed an 8% Na diet from 6 weeks of age and then subjected to the above drug treatments. Benidipine (1 mg/kg), cilazapril, and candesartan had compatible hypotensive effects and similar beneficial effects on cardiac hypertrophy, gene expression, and survival rate. The combination of benidipine with cilazapril or candesartan was found to have no additional beneficial effects on the above parameters, with the exception of a reduction in atrial natriuretic polypeptide gene expression. On the other hand, candesartan normalized serum creatinine, but serum creatinine was unaffected by either benidipine at 1 or 3 mg/kg or cilazapril. Further, the combined use of benidipine and either candesartan or cilazapril resulted in an additional reduction of urinary albumin excretion in DS rats. Thus systolic heart failure in DS rats is mainly mediated by hypertension, while renal dysfunction of DS rats is due to both hypertension and the AT1 receptor itself. These findings suggest that the combination of a calcium channel blocker with an AT1 receptor blocker or ACE inhibitor may be more effective in treating the renal dysfunction associated with systolic heart failure than monotherapy with either agent alone. However, further studies will be needed before reaching any definitive conclusion on the efficacy of this combination therapy in patients with heart failure.
Shirai, Ken; Watanabe, Kenichi; Ma, Meilei; Wahed, Mir I I; Inoue, Mikio; Saito, Yuki; Suresh, Palaniyandi Selvaraj; Kashimura, Takeshi; Tachikawa, Hitoshi; Kodama, Makoto; Aizawa, Yoshifusa
2005-01-01
We examined effects of an angiotensin-II receptor blockers, candesartan cilexetil, in rats with dilated cardiomyopathy after autoimmune myocarditis. Candesartan cilexetil showed angiotensin-II blocking action in a dose-dependent manner in rats with dilated cardiomyopathy. Twenty-eight days after immunization, surviving Lewis rats were divided into four groups and given candesartan cilexetil at 0.05 mg/kg, 0.5 mg/kg or 5 mg/kg per day (Group-C0.05, n = 15, Group-C0.5, n = 15 and Group-C5, n = 15, respectively) or vehicle alone (Group-V, n = 15). After oral administration for 1 month, the left ventricular end-diastolic pressure and heart weight/body weight ratio were lower in Group-C0.05 (13.3+/-1.1 mmHg and 3.7+/-0.2 g/kg, respectively), in Group-C0.5 (8.0+/-0.9 mmHg and 3.3+/-0.1 g/kg, respectively) and in Group-C5 (5.5+/-1 mmHg and 3.1+/-0.1 g/kg, respectively) than in Group-V (13.5+/-1.0 mmHg and 3.8+/-0.2 g/kg, respectively). The area of myocardial fibrosis was also lower in Group-C0.05 (25+/-3%), in Group-C0.5 (20+/-3%), and in Group-C5 (12+/-1%) than in Group-V (32+/-4%). Furthermore, expressions of transforming growth factor-beta1 and collagen-III mRNA were suppressed in Group-C0.05 (349+/-23% and 395+/-22%, respectively), Group-C0.5 (292+/-81% and 364+/-42%, respectively) and in Group-C5 (204+/-63% and 259+/-33%, respectively) compared with those in Group-V (367+/-26% and 437+/-18%, respectively). These results suggest that candesartan cilexetil can improve the function of inefficient heart.
Effects of antihypertensive drugs on central blood pressure in humans: a preliminary observation.
Agnoletti, Davide; Zhang, Yi; Borghi, Claudio; Blacher, Jacques; Safar, Michel E
2013-08-01
Central blood pressure (BP) is considered a better predictor of cardiovascular events than brachial BP. Modifications of central, beyond brachial BP, can be assessed by pressure amplification, a potential new cardiovascular risk factor. Comparison between drugs' effect on central hemodynamics has been poorly studied. Our aim was to assess the hemodynamic effect of a 12-week treatment with amlodipine 5mg, or candesartan 8mg, or indapamide sustained-release 1.5mg, in comparison with placebo. We analyzed 145 out-patients with essential hypertension in primary prevention enrolled in the Natrilix SR Versus Candesartan and Amlodipine in the Reduction of Systolic Blood Pressure in Hypertensive Patients (X-CELLENT) study, a multicenter, randomized, double-blinded, placebo-controlled trial. Arterial stiffness, central BP, pressure amplification, and wave reflection were measured by applanation tonometry. Baseline characteristics of patients were homogeneous between groups. After treatment, we found that active drugs produced similar reduction of both central and peripheral BPs, with no significant interdrug differences (all P < 0.05; excluded peripheral pulse pressure, compared with placebo). Second, amlodipine (1.9% ± 15.3%), candesartan (3.0% ± 14.6%) and indapamide (4.1% ± 14.4%) all increased pulse pressure amplification, but only indapamide was statistically different from placebo (P = 0.02). Finally, no significant changes were observed on pulse wave velocity, heart rate, and augmentation index. The 3 antihypertensive drugs similarly reduced peripheral and central BP, as compared with placebo, but a significant increase in pulse pressure amplification was obtained only with indapamide, independently of arterial stiffness modifications. 3283161 by BIOPHARMA.
Jackson, Kristy L.; Marques, Francine Z.; Lim, Kyungjoon; Davern, Pamela J.; Head, Geoffrey A.
2018-01-01
Objective: Genetically hypertensive BPH/2J mice are recognized as a neurogenic model of hypertension, primarily based on sympathetic overactivity and greater neuronal activity in cardiovascular regulatory brain regions. Greater activity of the central renin angiotensin system (RAS) and reactive oxygen species (ROS) reportedly contribute to other models of hypertension. Importantly the peripheral RAS contributes to the hypertension in BPH/2J mice, predominantly during the dark period of the 24 h light cycle. The aim of the present study was to determine whether central AT1 receptor stimulation and the associated ROS signaling contribute to hypertension in BPH/2J mice in a circadian dependent manner. Methods: Blood pressure (BP) was measured in BPH/2J and normotensive BPN/3J mice (n = 7–8) via pre-implanted telemetry devices. Acute intracerebroventricular (ICV) microinjections of AT1 receptor antagonist, candesartan, and the superoxide dismutase (SOD) mimetic, tempol, were administered during the dark and light period of the 24 h light cycle via a pre-implanted ICV guide cannula. In separate mice, the BP effect of ICV infusion of the AT1 receptor antagonist losartan for 7 days was compared with subcutaneous infusion to determine the contribution of the central RAS to hypertension in BPH/2J mice. Results: Candesartan administered ICV during the dark period induced depressor responses which were 40% smaller in BPH/2J than BPN/3J mice (Pstrain < 0.05), suggesting AT1 receptor stimulation may contribute less to BP maintenance in BPH/2J mice. During the light period candesartan had minimal effect on BP in either strain. ICV tempol had comparable effects on BP between strains during the light and dark period (Pstrain > 0.08), suggesting ROS signaling is also not contributing to the hypertension in BPH/2J mice. Chronic ICV administration of losartan (22 nmol/h) had minimal effect on BPN/3J mice. By contrast in BPH/2J mice, both ICV and subcutaneously administered losartan induced similar hypotensive responses (−12.1 ± 1.8 vs. −14.7 ± 1.8 mmHg, Proute = 0.31). Conclusion: While central effects of peripheral losartan cannot be excluded, we suggest the hypotensive effect of chronic ICV losartan was likely peripherally mediated. Thus, based on both acute and chronic AT1 receptor inhibition and acute ROS inhibition, our findings suggest that greater activation of central AT1 receptors or ROS are unlikely to be mediating the hypertension in BPH/2J mice. PMID:29615926
Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.
2012-01-01
Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465
Yamane, Tsuyoshi; Fujii, Yoko; Orito, Kensuke; Osamura, Kaori; Kanai, Takao; Wakao, Yoshito
2008-12-01
To compare the effects of candesartan cilexetil and enalapril maleate on right ventricular myocardial remodeling in dogs with experimentally induced pulmonary stenosis. 24 Beagles. 18 dogs underwent pulmonary arterial banding (PAB) to induce right ventricular pressure overload, and 6 healthy dogs underwent sham operations (thoracotomy only [sham-operated group]). Dogs that underwent PAB were allocated to receive 1 of 3 treatments (6 dogs/group): candesartan (1 mg/kg, PO, q 24 h [PABC group]), enalapril (0.5 mg/kg, PO, q 24 h [PABE group]), or no treatment (PABNT group). Administration of treatments was commenced the day prior to surgery; control dogs received no cardiac medications. Sixty days after surgery, right ventricular wall thickness was assessed echocardiographically and plasma renin activity, angiotensin-converting enzyme activity, and angiotensin I and II concentrations were assessed; all dogs were euthanatized, and collagenous fiber area, cardiomyocyte diameter, and tissue angiotensin-converting enzyme and chymase-like activities in the right ventricle were evaluated. After 60 days of treatment, right ventricular wall thickness, cardiomyocyte diameter, and collagenous fiber area in the PABNT and PABE groups were significantly increased, compared with values in the PABC and sham-operated groups. Chymase-like activity was markedly greater in the PABE group than in other groups. Results indicated that treatment with candesartan but not enalapril effectively prevented myocardial remodeling in dogs with experimentally induced subacute right ventricular pressure overload.
Additive renoprotective effect of candesartan and tetrahydrobiopterin in rats after 5/6 nephrectomy.
Podjarny, Eduardo; Bernheim, Joelle; Hasdan, Galit; Karsh, Dorit; Rashid, Gloria; Green, Janice; Katz, Bernardo; Bernheim, Jacques
2007-07-01
Chronic treatment with candesartan cilexetil (C) improves the outcome of rats after 5/6 nephrectomy (Nx). Tetrahydrobiopterin (BH4), an essential cofactor for appropriate endothelial nitric oxide synthase (eNOS) activity, prevents an increase in blood pressure (BP) in Nx rats when given immediately after surgery. In the present study, we evaluated the renoprotective effect of a combined treatment. Five groups of rats were studied: SHAM (sham-operated rats, n=12); SNx (untreated 5/6 nephrectomized rats, n=15); C (SNx rats treated with candesartan cilexetil, 5 mg/kg/day per os, n=11); C+BH4 (SNx rats treated with candesartan cilexetil and BH4, 10 mg/kg/day intraperitoneally, n=11); and BH4 (SNx rats treated with BH4, 10 mg/kg/day intraperitoneally, n=11). Treatment began 30 days after surgery, when hypertension and renal insufficiency have developed. This day was considered as day 1 of treatment for statistical comparisons. The study was continued until 50% mortality was achieved in the SNx rats (4 months after surgery). The survival rates were 100% for SHAM, 47% for SNx, 50% for BH4, 64% for C and 80% for C+BH4 (P<0.05 vs all). Untreated Nx rats developed hypertension, proteinuria (UP) and severe renal insufficiency. Mortality was associated with a lower renal function and increased urine protein excretion. In C and C+BH4 rats, systolic blood pressure (SBP) decreased significantly. BH4 alone had a mild non-significant effect on SBP. C and C+BH4 treatments attenuated significantly the increase in proteinuria found in SNx animals. The weight of the remnant kidneys as well as the severity of glomerulosclerosis were significantly lower in the C+BH4 rats. This study shows that in subnephrectomized rats, addition of BH4 to a treatment with candesartan had an additive renoprotective effect. The mechanism of such action may include a better control of BP associated with a blockade of actions of angiotensin II (Ag II), an improvement in nitric oxide synthesis and a balanced redox.
Musko, Monika; Sznitowska, Malgorzata
2014-12-01
Available tablets or capsules for adults are often used to prepare extemporaneously formulated medicines appropriate for children. The most acceptable drug forms in pediatric population are oral liquids and pharmacists use commercial dispersing media to compound syrups from an active substance or from tablets available on the market. In many countries ready-to-use dispersing media are not available or refunded, but pharmacists can use other compounded media, providing their compatibility and stability are proven. The aim of this study was to formulate and evaluate the stability of syrups with candesartan cilexetil (1 mg mL-1) and valsartan (4 mg mL-1) extemporaneously prepared using commercial tablets (Diovan® and Atacand®). The following three different suspending media, which could be easily made in a pharmacy, were investigated: V1 - with xanthan gum (0.5 %), V2 - the USP/NF vehicle for oral solution and V3 - the medium based on a simple sucrose syrup. The stability of preparations was studied during 35 days of storage in a dark place at controlled temperature of 25 and 4 °C. During the study, microscopic observation was carried out and pH, viscosity, and concentration of candesartan cilexetil and valsartan were analyzed. Syrups with valsartan prepared with V2 and V3 media were stable for 3 or 4 weeks when stored at 25 °C, while syrups with candesartan were stable for as long as 35 days. For syrups prepared using V1 medium, the 14-day expiry date was not achieved because of microbial deterioration.
Takahara, A; Nakamura, Y; Wagatsuma, H; Aritomi, S; Nakayama, A; Satoh, Y; Akie, Y; Sugiyama, A
2009-01-01
Background and purpose: The heart of the canine model of chronic atrioventricular block is known to have a ventricular electrical remodelling, which mimics the pathophysiology of long QT syndrome. Using this model, we explored a new pharmacological therapeutic strategy for the prevention of cardiac sudden death. Experimental approach: The L-type Ca2+ channel blocker amlodipine (2.5 mg·day−1), L/N-type Ca2+ channel blocker cilnidipine (5 mg·day−1), or the angiotensin II receptor blocker candesartan (12 mg·day−1) was administered orally to the dogs with chronic atrioventricular block for 4 weeks. Electropharmacological assessments with the monophasic action potential (MAP) recordings and blood sample analyses were performed before and 4 weeks after the start of drug administration. Key results: Amlodipine and cilnidipine decreased the blood pressure, while candesartan hardly affected it. The QT interval, MAP duration and beat-to-beat variability of the ventricular repolarization period were shortened only in the cilnidipine group, but such effects were not observed in the amlodipine or candesartan group. Plasma concentrations of adrenaline, angiotensin II and aldosterone decreased in the cilnidipine group. In contrast, plasma concentrations of angiotensin II and aldosterone were elevated in the amlodipine group, whereas in the candesartan group an increase in plasma levels of angiotensin II and a decrease in noradrenaline and adrenaline concentrations were observed. Conclusions and implications: Long-term blockade of L/N-type Ca2+ channels ameliorated the ventricular electrical remodelling in the hypertrophied heart which causes the prolongation of the QT interval. This could provide a novel therapeutic strategy for the treatment of cardiovascular diseases. PMID:19785655
Mancia, G; Cha, G; Gil-Extremera, B; Harvey, P; Lewin, A J; Villa, G; Kjeldsen, S E
2017-03-01
The DISTINCT study (reDefining Intervention with Studies Testing Innovative Nifedipine GITS-Candesartan Therapy) investigated the efficacy and safety of nifedipine GITS/candesartan cilexetil combinations vs respective monotherapies and placebo in patients with hypertension. This descriptive sub-analysis examined blood pressure (BP)-lowering effects in high-risk participants, including those with renal impairment (estimated glomerular filtration rate<90 ml min -1 , n=422), type 2 diabetes mellitus (n=202), hypercholesterolaemia (n=206) and cardiovascular (CV) risk factors (n=971), as well as the impact of gender, age and body mass index (BMI). Participants with grade I/II hypertension were randomised to treatment with nifedipine GITS (N) 20, 30, 60 mg and/or candesartan cilexetil (C) 4, 8, 16, 32 mg or placebo for 8 weeks. Mean systolic BP and diastolic BP reductions after treatment in high-risk participants were greater, overall, with N/C combinations vs respective monotherapies or placebo, with indicators of a dose-response effect. Highest rates of BP control (ESH/ESC 2013 guideline criteria) were also achieved with highest doses of N/C combinations in each high-risk subgroup. The benefits of combination therapy vs monotherapy were additionally observed in patient subgroups categorised by gender, age or BMI. All high-risk participants reported fewer vasodilatory adverse events in the pooled N/C combination therapy than the N monotherapy group. In conclusion, consistent with the DISTINCT main study outcomes, high-risk participants showed greater reductions in BP and higher control rates with N/C combinations compared with respective monotherapies and lesser vasodilatory side-effects compared with N monotherapy.
Examination of the effect of changing to azilsartan from candesartan in renal transplant patients.
Ishii, T; Yasuda, M; Saito, Y; Mori, Y; Hayashi, T; Uemura, H; Nose, K; Nishioka, T
2014-01-01
Azilsartan, an angiotensin receptor blocker (ARB), was administered to renal transplant recipients to investigate the safety and antihypertensive effect in addition to its ARB-characteristic organ-protective effect. The subjects were 20 patients (18 males, 2 females; baseline serum creatinine 2.39 ± 1.33 mg/dL) responding poorly to candesartan, who suffered albuminuria (>0.3 g/g creatinine) and hypertension (>140/90 mm Hg) following renal transplantation. Three months after candesartan was switched to azilsartan 20 mg/d, blood pressure, creatinine-corrected urinary albumin excretion, urinary L-type acid binding protein, urinary 8-hydroxydeoxyguano-sine, serum creatinine, and estimated glomerular filtration rate were evaluated. Thirteen patients received cyclosporine (65.0%) and 7 received tacrolimus (35.0%). Another hypertensive (calcium antagonist) agent was combined in 7 (35.0%). Systolic blood pressure significantly decreased from 139.5 mm Hg (baseline) from 128.7 mm Hg (at 3 months), whereas no significant changes were observed for diastolic blood pressure. The percentage of patients achieving the target level of antihypertensive effect (blood pressure < 130/80 mm Hg) significantly improved from 30.0% (baseline) to 70.0% (at 3 months). No significant changes were observed in renal graft function, oxidative stress marker level, or biochemical examination findings. Sufficient antihypertensive effect was demonstrated soon after switching to azilsartan. However, no significant change was found in renal damage markers. Long-term study must be conducted to confirm the protective effect azilsartan on the transplanted kidney, as found with candesartan. The safety of azilsartan was demonstrated. If the transplanted kidney protection is demonstrated, this drug is expected to contribute to the improved long-term prognosis of renal transplant recipients. Copyright © 2014 Elsevier Inc. All rights reserved.
Ismail, Basma; Hadizad, Tayebeh; Antoun, Rawad; Lortie, Mireille; deKemp, Robert A; Beanlands, Rob S B; DaSilva, Jean N
2015-11-01
The angiotensin II type 1 receptor (AT1R) is responsible for the main effects of the renin-angiotensin system (RAS), and its expression pattern is altered in several diseases. The [(11)C]methylated derivatives of the clinically used AT1R blocker (ARB) losartan and its active metabolite EXP3174, that binds with higher affinity to AT1R, were evaluated as potential PET imaging tracers in rat kidneys. [(11)C]Methyl-losartan and [(11)C]methyl-EXP3174 were synthesized by [(11)C]methylation of the tetrazole-protected analogs using [11C]methyl iodide. Tissue uptake and binding selectivity of [(11)C]methyl-losartan were assessed by ex-vivo biodistribution and in-vitro autoradiography. Radiolabeled metabolites in rat plasma and kidneys were analysed by column-switch HPLC. Both tracers were evaluated with small animal PET imaging. Due to better pharmacokinetics, [(11)C]methyl-EXP3174 was further investigated via PET by co-injection with AT1R antagonist candesartan or the AT2R antagonist PD123,319. Binding selectivity to renal AT1 over AT2 and Mas receptors was demonstrated for [(11)C]methyl-losartan. Plasma metabolite analysis at 10 min revealed stability of [(11)C]methyl-losartan and [(11)C]methyl-EXP3174 with the presence of unchanged tracer at 70.8 ± 9.9% and 81.4 ± 6.0%, of total radioactivity, respectively. Contrary to [(11)C]methyl-losartan, co-injection of candesartan with [(11)C]methyl-EXP3174 reduced the proportion of unchanged tracer (but not metabolites), indicating that these metabolites do not bind to AT1R in rat kidneys. MicroPET images for both radiotracers displayed high kidney-to-background contrast. Candesartan significantly reduced [(11)C]methyl-EXP3174 uptake in the kidney, whereas no difference was observed following PD123,319 indicating binding selectivity for AT1R. [(11)C]Methyl-EXP3174 displayed a favorable binding profile compared to [(11)C]methyl-losartan for imaging renal AT1Rs supporting further studies to assess its full potential as a quantitative probe for AT1R via PET. Copyright © 2015. Published by Elsevier Inc.
Lochard, Nadheige; Thibault, Gaétan; Silversides, David W; Touyz, Rhian M; Reudelhuber, Timothy L
2004-06-11
Angiotensin IV (Ang IV) is a metabolite of the potent vasoconstrictor angiotensin II (Ang II). Because specific binding sites for this peptide have been reported in numerous tissues including the brain, it has been suggested that a specific Ang IV receptor (AT4) might exist. Bolus injection of Ang IV in brain ventricles has been implicated in learning, memory, and localized vasodilatation. However, the functions of Ang IV in a physiological context are still unknown. In this study, we generated a transgenic (TG) mouse model that chronically releases Ang IV peptide specifically in the brain. TG mice were found to be hypertensive by the tail-cuff method as compared with control littermates. Treatment with the angiotensin-converting enzyme inhibitor captopril had no effect on blood pressure, but surprisingly treatment with the Ang II AT1 receptor antagonist candesartan normalized the blood pressure despite the fact that the levels of Ang IV in the brains of TG mice were only 4-fold elevated over the normal endogenous level of Ang peptides. Calcium mobilization assays performed on cultured CHO cells chronically transfected with the AT1 receptor confirm that low-dose Ang IV can mobilize calcium via the AT1 receptor only in the presence of Ang II, consistent with an allosteric mechanism. These results suggest that chronic elevation of Ang IV in the brain can induce hypertension that can be treated with angiotensin II AT1 receptor antagonists.
Brasil, Taíz F S; Fassini, Aline; Corrêa, Fernando M
2018-01-01
The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.
Surampalli, Gurunath; K Nanjwade, Basavaraj; Patil, P A
2015-01-01
The aim of this study was to corroborate the effects of naringin, a P-glycoprotein inhibitor, on the intestinal absorption and pharmacokinetics of candesartan (CDS) from candesartan cilexetil (CAN) solid dispersions using in-situ rat models. Intestinal transport and absorption studies were examined by in-situ single pass perfusion and closed-loop models. We evaluated the intestinal membrane damage in the presence of naringin by measuring the release of protein and alkaline phosphatase (ALP). We noticed 1.47-fold increase in Peff of CDS from freeze-dried CAN-loaded solid dispersions with naringin (15 mg/kg, w/w) when compared with freeze-dried solid dispersion without naringin using in-situ single pass intestinal perfusion model. However, no intestinal membrane damage was observed in the presence of naringin. Our findings from in-situ closed-loop pharmacokinetic studies showed 1.34-fold increase in AUC with elevated Cmax and shortened tmax for freeze-dried solid dispersion with naringin as compared to freeze-dried solid dispersion without naringin. This study demonstrated that increased solubilization (favored by freeze-dried solid dispersion) and efflux pump inhibition (using naringin), the relative bioavailability of CDS can be increased, suggesting an alternative potential for improving oral bioavailability of CAN.
Wolska, Eliza; Kluk, Anna; Zarazińska, Magda; Boniecka, Magdalena; Sznitowska, Małgorzata
2016-01-01
To ensure safe oral administration, pediatric patients require an appropriate dosage form to be swallowed without relevant difficulties. Ex tempore hydrated powders, forming viscous pulp "on a spoon", have recently gained much interest as pediatric formulations. The aim of this study was to evaluate the viscosity-increasing substances and disintegrants, alone or in mixtures, as excipients suitable for preparing such formulations, with candesartan and valsartan chosen as model active substances. The mixtures of excipients were prepared in the form of powders, granules or lyophilizates, which were evaluated in terms of their ability to form a homogenous mass after hydration with a small amount of water. The best compositions were tested with candesartan cilexetil and valsartan (2% and 10% w/w, respectively). Performed studies include macroscopic, organoleptic and microscopic observations, as well as a textural analysis, determination of gelation time and rheological measurements. Mixtures of guar gum, lactose and one of the disintegrants (F-Melt M, Prosolv 50, Prosolv Easy, Lycatab, Pharmaburst, Pearlitol) demonstrated the best properties. With regard to drug-incorporating formulations, granules were evaluated as the most satisfying form, while the functional properties of lyophilized formulations were poor. Granules with candesartan cilexetil (2%) were found to be the most promising for further development.
Singh, Bhupinder; Lokhandae, Rama S; Dwivedi, Ashish; Sharma, Sandeep; Dubey, Naveen
2014-04-01
A validated ultra-performance liquid chromatography mass spectrometric method (UPLC-MS/MS) was used for the simultaneous quantitation of candesartan (CN) and hydrochlorothiazide (HCT) in human plasma. The analysis was performed on UPLC-MS/MS system using turbo ion spray interface. Negative ions were measured in multiple reaction monitoring (MRM) mode. The analytes were extracted using a liquid-liquid extraction (LLE) method by using 0.1 mL of plasma volume. The lower limit of quantitation for CN and HCT was 1.00 ng/mL whereas the upper limit of quantitation was 499.15 ng/mL and 601.61 ng/mL for CN and HCT respectively. CN d 4 and HCT- 13 Cd 2 were used as the internal standards for CN and HCT respectively. The chromatography was achieved within 2.0 min run time using a C18 Phenomenex, Gemini NX (100 mm×4.6 mm, 5 µm) column with organic mixture:buffer solution (80:20, v/v) at a flow rate of 0.800 mL/min. The method has been successfully applied to establish the bioequivalence of candesartan cilexetil (CNC) and HCT immediate release tablets with reference product in human subjects.
Sugiyama, Tetsuya; Okuno, Takashi; Fukuhara, Masayuki; Oku, Hidehiro; Ikeda, Tsunehiko; Obayashi, Hiroshi; Ohta, Mitsuhiro; Fukui, Michiaki; Hasegawa, Goji; Nakamura, Naoto
2007-09-01
The effects of an angiotensin II receptor blocker (ARB) on the accumulation of one of advanced glycation end products (AGEs), pentosidine, expression of vascular endothelial growth factor (VEGF) and retinal function were investigated in Spontaneously Diabetic Torii (SDT) rats. Candesartan, an ARB, was administered to SDT rats from 10 to 44 weeks of age and the results compared with untreated SDT rats and SD rats. Electroretinograms (ERGs) were recorded to evaluate retinal function. At 44 weeks of age, pentosidine was quantified in the vitreous, lens and plasma using high-performance liquid chromatography (HPLC). Real-time reverse transcription-PCR (RT-PCR) analysis was also performed in order to measure VEGF mRNA expression in the retina. Histological changes were examined and immunohistochemistry for pentosidine performed on the retina and retinal microvasculature. In untreated SDT rats, the amplitudes of a- and b-waves, oscillatory potentials were reduced significantly at 44 weeks of age compared with the 10-week levels, whereas they remained unchanged in SDT rats treated with candesartan. The concentration of pentosidine in the vitreous and lens did not change in treated SDT rats but increased in untreated SDT rats. Retinal VEGF mRNA expression was inhibited in treated SDT rats. Histologically, proliferative tissue was detected around the optic disc, with pentosidine being detected only in untreated SDT rats. Our findings indicate the ARB may inhibit the development of diabetic retinopathy by reducing the accumulation of pentosidine, one of AGEs and expression of VEGF in the retina.
Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh
2016-10-01
Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.
da Silva Novaes, Antônio; Ribeiro, Rosemara Silva; Pereira, Luciana Guilhermino; Borges, Fernanda Teixeira; Boim, Mirian Aparecida
2018-02-17
Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT 1 and AT 2 ), defined as intracrine response. The aim of this study was to examine the presence of AT 1 and AT 2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT 1 through an intracrine mechanism. Subcellular distribution of AT 1 and AT 2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.
Lee, Yen-Ying; Hsiao, Paul; Lin, You-Meei; Yen, Yu-Hsuan; Chen, Hsiang-Yin
2012-01-01
Therapeutic interchange is not a common practice in the medical society in Asia. We used clinic blood pressure readings, patients' tolerance, and cost saving as measures to evaluate the impact of a therapeutic interchange program implemented at a medical center in Taiwan. Taipei Medical University-Wan Fang Hospital initiated a therapeutic interchange program involving angiotensin II receptor blockers (ARBs). Data were retrospectively collected for 444 outpatients who were converted from other ARBs to candesartan. Evaluation of therapeutic efficacy, adverse effects associated with therapy, and drug costs was conducted before and after the program implementation. Patients whose treatment was converted to candesartan experienced no statistically significant differences in blood pressure, and the average number of antihypertensive agents used per patient remained unchanged. A direct cost savings of US$62,237 was estimated for the 444 patients studied. Only 3.15% of the patients developed adverse drug reactions potentially related to candesartan, and none required hospitalization. Based on the results of this retrospective chart review, the present ARB therapeutic interchange program was successfully developed and implemented. This is the first study to establish the positive impact of a well-run ARB therapeutic interchange program in Taiwan. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Nixon, R M; Müller, E; Lowy, A; Falvey, H
2009-05-01
To compare the efficacy of valsartan in systolic (SBP) and diastolic blood pressure (DBP) reduction with other angiotensin II receptor blockers (ARBs) in essential hypertension. Systematic literature search of databases between October 1997 and May 2008. Meta-analysis of short-term, double-blind, parallel group, randomised controlled trials (RCTs) for treatment of adult hypertension (DBP: 90-115 mmHg). Random-effects meta-regression adjusting for baseline blood pressure (BP) was used to analyse the data. Mean change in SBP and DBP was estimated for each individual drug and dose combination. In all, 31 RCTs (n = 13,110 patients) were included in the analysis. Six studies include trial arms with candesartan, six irbesartan, 13 losartan, two olmesartan, five telmisartan and 12 valsartan. The weighted average reduction in mean SBP and DBP for valsartan 160 mg was -15.32 mmHg (95% CI: -17.09, -13.63) and -11.3 mmHg (95% CI: -12.15, -10.52) and for 320 mg was -15.85 mmHg (95% CI: -17.60, -14.12) and -11.97 mmHg (95% CI: -12.81, -11.16); these are statistically significantly greater reductions compared with losartan 100 mg, which was -12.01 mmHg (95% CI: -13.78, -10.25) and -9.37 mmHg (95% CI: -10.18, -8.54) for SBP and DBP respectively. There is evidence that valsartan 160 mg reduces SBP and DBP more than irbesartan 150 mg and reduced DBP more than candesartan 16 mg. No other statistically significant difference in efficacy is demonstrated. Valsartan administered at 160 or 320 mg is more effective at lowering BP than losartan 100 mg and shows comparable efficacy to other ARBs in patients with essential hypertension.
DiBona, G F; Jones, S Y
2001-04-01
To determine the effects of physiological alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity (RSNA) and its arterial baroreflex regulation, angiotensin II type 1 receptor antagonists were microinjected into the rostral ventrolateral medulla of anesthetized rats consuming a low, normal, or high sodium diet that were instrumented for simultaneous measurement of arterial pressure and RSNA. Plasma renin activity was increased in rats fed a low sodium diet and decreased in those fed a high sodium diet. Losartan (50, 100, and 200 pmol) decreased heart rate and RSNA (but not mean arterial pressure) dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a high sodium diet. Candesartan (1, 2, and 10 pmol) decreased mean arterial pressure, heart rate, and RSNA dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a normal or high sodium diet. [D-Ala(7)]Angiotensin-(1-7) (100, 200, and 1000 pmol) did not affect mean arterial pressure, heart rate, or RSNA in rats fed either a low or a high sodium diet. In rats fed a low sodium diet, candesartan reset the arterial baroreflex control of RSNA to a lower level of arterial pressure, and in rats with congestive heart failure, candesartan increased the arterial baroreflex gain of RSNA. Physiological alterations in the endogenous activity of the renin-angiotensin system influence the bradycardic, vasodepressor, and renal sympathoinhibitory responses to rostral ventrolateral medulla injection of antagonists to angiotensin II type 1 receptors but not to angiotensin-(1-7) receptors.
DiBona, G F
2003-03-01
Administration of angiotensin II (angII) into the cerebral ventricles or specific brain sites impairs arterial baroreflex regulation of renal sympathetic nerve activity (SNA). Further insight into this effect was derived from: (a) using specific non-peptide angII receptor antagonists to assess the role of endogenous angII acting on angII receptor subtypes, (b) microinjection of angII receptor antagonists into brain sites behind an intact blood-brain barrier to assess the role of endogenous angII of brain origin and (c) alterations in dietary sodium intake, a known physiological regulator of activity of the renin-angiotensin system (RAS), to assess the ability to physiologically regulate the activity of the brain RAS. In rats in balance on low, normal or dietary sodium intake, losartan or candesartan was injected into the lateral cerebral ventricle or the rostral ventrolateral medulla (RVLM) and the effects on basal renal SNA and the arterial baroreflex sigmoidal relationship between renal SNA and arterial pressure were determined. With both routes of administration, the effects were proportional to the activity of the RAS as indexed by plasma renin activity (PRA). The magnitude of both the decrease in basal renal SNA and the parallel resetting of arterial baroreflex regulation of renal SNA to a lower arterial pressure was greatest in low-sodium rats with highest PRA and least in high-sodium rats with lowest PRA. Disinhibition of the paraventricular nucleus (PVN) by injection of bicuculline causes pressor, tachycardic and renal sympathoexcitatory responses mediated via an angiotensinergic projection from PVN to RVLM. In comparison with responses in normal sodium rats, these responses were greatly diminished in high-sodium rats and greatly enhanced in low-sodium rats. Physiological changes in the activity of the RAS produced by alterations in dietary sodium intake regulate the contribution of endogenous angII of brain origin in the modulation of arterial baroreflex regulation of renal SNA.
Candesartan ameliorates impaired fear extinction induced by innate immune activation.
Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T
2016-02-01
Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.
Occhieppo, Victoria Belén; Marchese, Natalia Andrea; Rodríguez, Iara Diamela; Basmadjian, Osvaldo Martin; Baiardi, Gustavo; Bregonzio, Claudia
2017-06-01
The use of psychostimulants, such as amphetamine (Amph), is associated with inflammatory processes, involving glia and vasculature alterations. Brain Angiotensin II (Ang II), through AT 1 -receptors (AT 1 -R), modulates neurotransmission and plays a crucial role in inflammatory responses in brain vasculature and glia. Our aim for the present work was to evaluate the role of AT 1 -R in long-term alterations induced by repeated exposure to Amph. Astrocyte reactivity, neuronal survival and brain microvascular network were analysed at the somatosensory cortex. Thermal nociception was evaluated as a physiological outcome of this brain area. Male Wistar rats (250-320 g) were administered with AT 1 -R antagonist Candesartan/vehicle (3 mg/kg p.o., days 1-5) and Amph/saline (2.5 mg/kg i.p., days 6-10). The four experimental groups were: Veh-Sal, CV-Sal, Veh-Amph, CV-Amph. On day 17, the animals were sacrificed and their brains were processed for Nissl staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) and von Willebrand factor. In another group of animals, thermal nociception was evaluated using hot plate test, in the four experimental groups, on day 17. Data were analysed with two-way anova followed by Bonferroni test. Our results indicate that Amph exposure induces an increase in: neuronal apoptosis, astrocyte reactivity and microvascular network, evaluated as an augmented occupied area by vessels, branching points and their tortuosity. Moreover, Amph exposure decreased the thermal nociception threshold. Pretreatment with the AT 1 -R blocker prevented the described alterations induced by this psychostimulant. The decreased thermal nociception and the structural changes in somatosensory cortex could be considered as extended neuroadaptative responses to Amph, involving AT 1 -R activation. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Combining neuroendocrine inhibitors in heart failure: reflections on safety and efficacy.
Jneid, Hani; Moukarbel, George V; Dawson, Bart; Hajjar, Roger J; Francis, Gary S
2007-12-01
Neuroendocrine activation in heart failure has become the major target of pharmacotherapy for this growing epidemic. Agents targeting the renin-angiotensin-aldosterone and sympathetic nervous systems have shown cardiovascular and survival benefits in clinical trials. Beta-blockers and angiotensin-converting enzyme (ACE) inhibitors remain the mainstream initial therapy. The benefits of aldosterone antagonists have been demonstrated in advanced heart failure (spironolactone) and after myocardial infarction complicated by left ventricular dysfunction and heart failure (eplerenone). Emerging clinical evidence demonstrated that angiotensin receptor blockers may be a reasonable alternative to ACE inhibitors in patients with heart failure (candesartan) and following myocardial infarction complicated by heart failure or left ventricular dysfunction (valsartan). Angiotensin receptor blockers (candesartan) also provided incremental benefits when added to ACE inhibitors in chronic heart failure. Thus, combining neuroendocrine inhibitors in heart failure appears both biologically plausible and evidence-based. However, this approach raised concerns about side effects, such as hypotension, renal insufficiency, hyperkalemia, and others. Close follow-up and implementation of evidence-based medicine (ie, using agents and doses proven beneficial in clinical trials) should therefore be undertaken when combining neuroendocrine inhibitors.
Mizuno, Hiroyuki; Hoshide, Satoshi; Tomitani, Naoko; Kario, Kazuomi
2017-10-01
Data are sparse regarding ambulatory blood pressure (BP) reduction of up-titration from a standard dose to a high dose in both nifedipine controlled-release (CR) and amlodipine. This was a prospective, randomized, multicenter, open-label trial. Fifty-one uncontrolled hypertensives medicated by two or more antihypertensive drugs including a renin-angiotensin system inhibitor and a calcium antagonist were randomly assigned to either the nifedipine CR (80 mg)/candesartan (8 mg) group or the amlodipine (10 mg)/candesartan (8 mg) group. The changes in 24-hr BP were comparable between the groups. The nifedipine group demonstrated a significant decrease in their urinary albumin creatinine ratio, whereas the amlodipine group demonstrated a significant decrease in their NTproBNP level. However, there was no significant difference in any biomarkers between the two groups. Nifedipine showed an almost equal effect on ambulatory blood pressure as amlodipine. Their potentially differential effects on renal protection and NTproBNP should be tested in larger samples.
Clinical trials update from the European Society of Cardiology: CHARM, BASEL, EUROPA and ESTEEM.
Coletta, Alison P; Cleland, John G F; Freemantle, Nick; Loh, Huan; Memon, Anwar; Clark, Andrew L
2003-10-01
This article contains a series of reports on recent research developments in the field of heart failure. Reports of key presentations made at the European Society of Cardiology meeting, held in Vienna, Austria, between 30 August and 3 September 2003 are reported. In the CHARM study, candesartan reduced cardiovascular deaths and hospital admissions for heart failure, both in patients who were already taking an ACE-inhibitor and in those who were ACE intolerant. However, results in patients with preserved left ventricular function were less conclusive. The BASEL study supports the use of B-type natriuretic peptide testing to confirm the diagnosis of heart failure in patients presenting with acute dyspnoea. In EUROPA, the largest ever study of secondary prevention of coronary artery disease, long-term treatment with perindopril reduced the incidence of cardiovascular death, myocardial infarction (MI) and cardiac arrest. The ESTEEM study showed that the oral thrombin inhibitor ximelagatran plus aspirin was more effective than aspirin alone in the prophylaxis of major cardiovascular events following MI.
Jones, Emma S; Del Borgo, Mark P; Kirsch, Julian F; Clayton, Daniel; Bosnyak, Sanja; Welungoda, Iresha; Hausler, Nicholas; Unabia, Sharon; Perlmutter, Patrick; Thomas, Walter G; Aguilar, Marie-Isabel; Widdop, Robert E
2011-03-01
Novel AT(2)R ligands were designed by substituting individual β-amino acid in the sequence of the native ligand angiotensin II (Ang II). Relative ATR selectivity and functional vascular assays (in vitro AT(2)R-mediated vasorelaxation and in vivo vasodepressor action) were determined. In competition binding experiments using either AT(1)R- or AT(2)R- transfected HEK-293 cells, only β-Asp(1)-Ang II and Ang II fully displaced [(125)I]-Ang II from AT(1)R. In contrast, β-substitutions at each position of Ang II exhibited AT(2)R affinity, with β-Tyr(4)-Ang II and β-Ile(5)-Ang II exhibiting ≈ 1000-fold AT(2)R selectivity. In mouse aortic rings, β-Tyr(4)-Ang II and β-Ile(5)-Ang II evoked vasorelaxation that was sensitive to blockade by the AT(2)R antagonist PD123319 and the nitric oxide synthase inhibitor L-NAME. When tested with a low level of AT(1)R blockade, β-Ile(5)-Ang II (15 pmol/kg per minute IV for 4 hours) reduced blood pressure (BP) in conscious spontaneously hypertensive rats (β-Ile(5)-Ang II plus candesartan, -24 ± 4 mm Hg) to a greater extent than candesartan alone (-11 ± 3 mm Hg, n=7, P<0.05), an effect that was abolished by concomitant PD123319 infusion. However, in an identical experimental protocol, β-Tyr(4)-Ang II had no influence on BP (n=10), and it was less stable than β-Ile(5)-Ang II in plasma stability assays. Thus, this study demonstrated that a single β-amino acid substitution resulted in a compound that demonstrated both in vitro vasorelaxation and in vivo depressor activity via AT(2)R. This approach to the design and synthesis of novel AT(2)R-selective peptidomimetics shows great potential to provide insight into AT(2)R function.
Characterization of 18F-FPyKYNE-Losartan for Imaging AT1 Receptors.
Hachem, Maryam; Tiberi, Mario; Ismail, Basma; Hunter, Chad R; Arksey, Natasha; Hadizad, Tayebeh; Beanlands, Rob S; deKemp, Robert A; DaSilva, Jean N
2016-10-01
Most physiologic effects of the renin angiotensin system (RAS) are mediated via the angiotensin (Ang) type 1 receptor (AT 1 R). The 18 F-FPyKYNE derivative of the clinically used AT 1 R blocker losartan exhibits high binding selectivity for kidney AT 1 R and rapid metabolism in rats. The aim of this study was to further assess the binding profile of this novel PET agent for imaging AT 1 R in rats and pigs. In vitro binding assays were performed with 18 F-FPyKYNE-losartan in rat kidneys. Male Sprague-Dawley rats were used to assess dosimetry, antagonistic efficacy via blood pressure measurements, and presence of labeled metabolites in kidneys. Test-retest PET imaging, blocking with AT 1 R antagonist candesartan (10 mg/kg), and plasma metabolism analysis were performed in female Yorkshire pigs. 18 F-FPyKYNE-losartan bound with high affinity (dissociation constant of 49.4 ± 18.0 nM and maximal binding of 348 ± 112 fmol/mm 2 ) to rat kidney AT 1 R. It bound strongly to plasma proteins in rats (97%), and its labeled metabolites displayed minimal interference on renal AT 1 R binding. FPyKYNE-losartan fully antagonized the Ang II pressor effect, albeit with 4-fold potency reduction (the effective dose inhibiting 50% of the Ang II-induced maximal pressor response of 25.5 mg/kg) relative to losartan. PET imaging exhibited high kidney-to-blood contrast and slow renal clearance, with an SUV of 14.1 ± 6.2. Excellent reproducibility was observed in the calculated test-retest variability (7.2% ± 0.75%). Only hydrophilic-labeled metabolites were present in plasma samples, and renal retention was reduced (-60%) at 10-15 min after blockade with candesartan. 18 F-FPyKYNE-losartan has a favorable binding profile and displays high potential for translational work in humans as an AT 1 R PET imaging agent. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Effect of dietary sodium intake on central angiotensinergic pathways.
DiBona, Gerald F; Jones, Susan Y
2002-06-28
The role of central angiotensinergic pathways in the cardiovascular regulation has been examined using the microinjection of angiotensin peptides and angiotensin receptor antagonists. However, in such studies, neither the overall nor the local level of activity of the renin-angiotensin system is generally known. Herein, physiological changes in the endogenous level of activity of the renin-angiotensin system were produced by alterations in the dietary sodium intake. Microinjection of the angiotensin II AT1 receptor antagonists losartan or candesartan into the rostral ventrolateral medulla produced the bradycardic, depressor and renal sympathoinhibitory responses which were greater in low sodium diet rats with stimulated activity of the renin-angiotensin system than in high sodium diet rats with suppressed activity of the renin-angiotensin system activity. The renal sympathoexcitatory responses to activation of the paraventricular nucleus by microinjection of bicuculline, known to be dependent on the excitatory synaptic inputs to the rostral ventrolateral medulla mediated by AT1 receptors, were greater in low sodium diet rats than in high sodium rats. These observations support the view that physiologically regulated angiotensin peptides of the brain origin exert a local paracrine or autocrine action on sites that influence the renal sympathetic nerve activity.
Kjeldsen, Sverre E; Os, Ingrid; Høieggen, Aud; Beckey, Kim; Gleim, Gilbert W; Oparil, Suzanne
2005-01-01
We discuss combination therapy with angiotensin receptor antagonists (angiotensin receptor blockers; ARBs) and thiazide diuretics in light of the independent actions of both types of agents, and the adverse effects of both agents independently and in the context of the physiologic synergy achieved in using these agents together. ARBs counteract many of the adverse events associated with the use of thiazide diuretics and have been shown to reduce the occurrence of new-onset diabetes mellitus. We also review outcome trials in patients with hypertension (such as LIFE [Losartan Intervention For Endpoint reduction in hypertension], VALUE [Valsartan Antihypertensive Long-term Use Evaluation], and SCOPE [Study on COgnition and Prognosis in the Elderly]), in which losartan, valsartan, and candesartan cilexetil were used in combination with hydrochlorothiazide. Fixed combination ARB/hydrochlorothiazide agents make sense as initial therapy for patients in whom BP is >20/10 mm Hg above goal.
Paudel, Anjan; Ameeduzzafar; Imam, Syed Sarim; Fazil, Mohd; Khan, Shahroz; Hafeez, Abdul; Ahmad, Farhan Jalees; Ali, Asgar
2017-01-01
The objective of this study was to formulate and optimize Candesartan Cilexetil (CC) loaded nanostructured lipid carriers (NLCs) for enhanced oral bioavailability. Glycerol monostearate (GMS), Oleic acid, Tween 80 and Span 40 were selected as a solid lipid, liquid lipid, surfactant and co- surfactant, respectively. The CC-NLCs were prepared by hot emulsion probe sonication technique and optimized using experimental design approach. The formulated CC-NLCs were evaluated for various physicochemical parameters and further optimized formulation (CC-NLC-Opt) was assessed for in vivo pharmacokinetic and pharmacodynamic activity. The optimized formulation (CC-NLC-Opt) showed particle size (183.5±5.89nm), PDI (0.228±0.13), zeta potential (-28.2±0.99mV), and entrapment efficiency (88.9±3.69%). The comparative in vitro release study revealed that CC-NLC-Opt showed significantly better (p<0.05) release and enhanced permeation as compared to CC-suspension. The in vivo pharmacokinetic study gave many folds increase in oral bioavailability than CC suspension, which was further confirmed by antihypertensive activity in a murine model. Thus, the results of ex vivo permeation, pharmacokinetic study and pharmacodynamics study suggest the potential of CC-NLCs for improved oral delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Development of Orodispersible Tablets of Candesartan Cilexetil-β-cyclodextrin Complex
Sravya, Maddukuri; Deveswaran, Rajamanickam; Bharath, Srinivasan; Basavaraj, Basappa Veerbadraiah; Madhavan, Varadharajan
2013-01-01
The aim of this study was to investigate the use of inclusion complexation technique employing β-cyclodextrin in improving the dissolution profile of candesartan cilexetil, a BCS class-II drug, and to formulate the inclusion complex into orodispersible tablets. The inclusion complexes were formed by physical mixing, kneading, coevaporation, and lyophilisation methods. Inclusion complexes were characterized by FTIR, DSC, XRD, NMR, and mass spectral studies. Inclusion complexes prepared using kneading, and lyophilisation techniques in the molar ratio 1 : 5 with β-cyclodextrin were used for formulating orodispersible tablets by direct compression with different superdisintegrants like croscarmellose sodium, crospovidone, sodium starch glycolate, and low substituted hydroxypropyl cellulose in varying concentrations. The directly compressible powder was evaluated for precompression parameters, and the prepared orodispersible tablets were evaluated for postcompression parameters. Drug-excipient compatibility studies showed no interaction, and characterization proved the formation of inclusion complex. In vitro disintegration time was found to be within 3 minutes, and all the formulations showed complete drug release of 100% within 20 minutes. The optimized formulation was found to be stable after 6 months and showed no significant change in drug content. This work proved β-cyclodextrins to be effective solubilizing agent in improving the solubility of poorly water soluble drugs. PMID:26555987
Marchese, Natalia Andrea; Artur de laVillarmois, Emilce; Basmadjian, Osvaldo Martin; Perez, Mariela Fernanda; Baiardi, Gustavo; Bregonzio, Claudia
2016-03-01
Angiotensin II, by activation of its brain AT1-receptors, plays an active role as neuromodulator in dopaminergic transmission. These receptors participate in the development of amphetamine-induced behavioral and dopamine release sensitization. Dopamine is involved in cognitive processes and provides connectivity between brain areas related to these processes. Amphetamine by its mimetic activity over dopamine neurotransmission elicits differential responses after acute administration or after re-exposure following long-term withdrawal periods in different cognitive processes. The purpose of this study is to evaluate the AT1-receptor involvement in the acute and long-term amphetamine-induced alterations in long-term memory and in cellular-related events. Male Wistar rats (250-300 g) were used in this study. Acute effects: Amphetamine (0.5/2.5 mg/kg i.p.) was administered after post-training in the inhibitory avoidance (IA) response. The AT1-receptor blocker Losartan was administered i.c.v. before a single dose of amphetamine (0.5 mg/kg i.p.). Long-term effects: The AT1-receptors blocker Candesartan (3 mg/kg p.o.) was administered for 5 days followed by 5 consecutive days of amphetamine (2.5 mg/kg/day, i.p.). The neuroadaptive changes were evidenced after 1 week of withdrawal by an amphetamine challenge (0.5 mg/kg i.p.). The IA response, the neuronal activation pattern, and the hippocampal synaptic transmission were evaluated. The impairing effect in the IA response of post-training acute amphetamine was partially prevented by Losartan. The long-term changes induced by repeated amphetamine (resistance to acute amphetamine interference in the IA response, neurochemical altered response, and increased hippocampal synaptic transmission) were prevented by AT1-receptors blockade. AT1-receptors are involved in the acute alterations and in the neuroadaptations induced by repeated amphetamine associated with neurocognitive processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp; Goshima, Hazuki; Ozawa, Ayako
2012-03-30
Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stemmore » (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT{sub 1}R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT{sub 1}R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.« less
Renna, N. F.; Lembo, C.; Diez, E.; Miatello, R. M.
2013-01-01
(1) This study aims to demonstrate the causal involvement of renin angiotensin system (RAS) and oxidative stress (OS) on vascular inflammation in an experimental model of metabolic syndrome (MS) achieved by fructose administration to spontaneously hypertensive rats (FFHR) during 12 weeks. (2) Chronic treatment with candesartan (C) (10 mg/kg per day for the last 6 weeks) or 4OH-Tempol (T) (10−3 mmol/L in drinking water for the last 6 weeks) reversed the increment in metabolic variables and systolic blood pressure. In addition, chronic C treatment reverted cardiovascular remodeling but not T. (3) Furthermore, chronic treatment with C was able to completely reverse the expression of NF-κB and VCAM-1, but T only reduced the expression. C reduced the expression of proatherogenic cytokines as CINC2, CINC3, VEGF, Leptin, TNF-alpha, and MCP-1 and also significantly reduced MIP-3, beta-NGF, and INF-gamma in vascular tissue in this experimental model. T was not able to substantially modify the expression of these cytokines. (4) The data suggest the involvement of RAS in the expression of inflammatory proteins at different vascular levels, allowing the creation of a microenvironment suitable for the creation, perpetuation, growth, and destabilization of vascular injury. PMID:23365721
Renna, N F; Lembo, C; Diez, E; Miatello, R M
2013-01-01
(1) This study aims to demonstrate the causal involvement of renin angiotensin system (RAS) and oxidative stress (OS) on vascular inflammation in an experimental model of metabolic syndrome (MS) achieved by fructose administration to spontaneously hypertensive rats (FFHR) during 12 weeks. (2) Chronic treatment with candesartan (C) (10 mg/kg per day for the last 6 weeks) or 4OH-Tempol (T) (10(-3) mmol/L in drinking water for the last 6 weeks) reversed the increment in metabolic variables and systolic blood pressure. In addition, chronic C treatment reverted cardiovascular remodeling but not T. (3) Furthermore, chronic treatment with C was able to completely reverse the expression of NF-κB and VCAM-1, but T only reduced the expression. C reduced the expression of proatherogenic cytokines as CINC2, CINC3, VEGF, Leptin, TNF-alpha, and MCP-1 and also significantly reduced MIP-3, beta-NGF, and INF-gamma in vascular tissue in this experimental model. T was not able to substantially modify the expression of these cytokines. (4) The data suggest the involvement of RAS in the expression of inflammatory proteins at different vascular levels, allowing the creation of a microenvironment suitable for the creation, perpetuation, growth, and destabilization of vascular injury.
Kamalakkannan, V; Puratchikody, A; Ramanathan, L
2013-01-01
Candesartan cilexetil (CC) is a newer class of angiotensin II receptor antagonist used for the treatment of hypertension. The solubility of the CC is very poor and its oral bioavailability is only 15%. The controlledrelease polar lipid microparticles of CC (formulations F1, F2, F3 and F4) were prepared using variable erodible lipophilic excipients like hydrogenated castor oil, stearic acid, cetostearyl alcohol and carnauba wax by fusion method. The particle sizes of polar lipid microparticles were less than 50 microns and they were irregular in shape. Drug content ranged between 98.96 ± 2.1 and 101.9 ± 1.6% were present in all the formulations. The formulation F3 showed better drug release throughout the study period in a controlled release manner. Moreover, the in vitro release showed that all the formulations were best fitted to Higuchi model. Accelerated stability studies indicated that there was no significant changes in the chemical and physical characteristics of the formulated drug product during initial and at the end of the study period. The FTIR and DSC studies showed that there was no interaction between the drug and lipophilic excipients and no polymorphic transitions in all formulations. The X-ray diffraction peak of solid dispersion indicated that the crystalline nature of CC disappeared and no new peaks could be observed, suggesting the absence of interaction between drug and excipients. PMID:24019822
Goudev, Assen
2014-01-01
Post-marketing observational studies are valuable for establishing the real-world effectiveness of treatment regimens in routine clinical practice as they typically monitor a diverse population of patients over many months. This article reviews recent observational studies of angiotensin receptor blockers (ARBs) for the management of hypertension: the 6-month eprosartan POWER study (n~29,400), the 3-month valsartan translational research programme (n~19,500), the 9-month irbesartan Treat to Target study (n=14,200), the 6-month irbesartan DO-IT survey (n~3300) and the 12-week candesartan CHILI survey programme (n=4600). Reduction in blood pressure with ARBs reported across these studies appears to be comparable for the different agents, although direct comparisons between studies cannot be made owing to different treatment durations and baseline patient demographics. Of these studies, the eprosartan POWER study, 2 of the 7 studies in the valsartan translational research programme, and the candesartan CHILI Triple T study measured total cardiovascular risk, as recommended in the 2013 European Society of Cardiology-European Society of Hypertension guidelines. The POWER study confirmed the value of the Systemic Coronary Risk Evaluation (SCORE) to accurately assess total cardiovascular risk. With the advent of new healthcare practices, such as the use of electronic health records (EHRs), observational studies in larger patient populations will become possible. In the future, algorithms embedded in EHR systems could evolve as decision support tools to inform on patient care. PMID:24847388
RAS blockade with ARB and ACE inhibitors: current perspective on rationale and patient selection.
Werner, Christian; Baumhäkel, Magnus; Teo, Koon K; Schmieder, Roland; Mann, Johannes; Unger, Thomas; Yusuf, Salim; Böhm, Michael
2008-07-01
Cardiovascular disease represents a continuum that starts with risk factors such as hypertension and progresses to atherosclerosis, target organ damage, and ultimately to myocardial infarction, heart failure, stroke or death. Renin-angiotensin system (RAS) blockade with angiotensin converting enzyme (ACE) inhibitors or angiotensin AT(1)-receptor blockers (ARBs) has turned out to be beneficial at all stages of this continuum. Both classes of agent can prevent or reverse endothelial dysfunction and atherosclerosis, thereby reducing the risk of cardiovascular events. Such a reduction has been shown mainly for ACE inhibitors in patients with coronary artery disease, but recent studies revealed that ARBs are not inferior in this respect. However, no such data are currently available on the combination of these drugs. Both ACE inhibitors and ARBs have been shown to reduce target organ damage in organs such as the kidney, brain and heart, and to decrease cardiovascular mortality and morbidity in patients with congestive heart failure. Experimental data point to an influence of ACE inhibitors and ARBs on the number and function of endothelial progenitor cells revealing additional mechanisms of action of these drugs. The VALIANT trial has shown equivalent effects of ARB valsartan and the ACE-inhibitor captopril in patients post myocardial infarction, but the dual RAS-blockade, compared to monotherapy, did not further reduce events. In secondary prevention, the most-recently published ONTARGET study provides evidence that on top of a better tolerability AT(1)-receptors antagonists are equal to ACE inhibitors in the prevention of clinical endpoints like cardiovascular mortality and morbidity, myocardial infarction and stroke. The combined RAS blockade, however, achieved no further benefits in vascular high-risk patients and was associated with more adverse events. In chronic heart failure, ValHeFT and CHARM-ADDED have shown that combined RAS inhibition with ACE inhibitor and valsartan or candesartan reduced morbidity and mortality in certain patient subgroups. Accumulating evidence also points to benefits of the combination therapy in individuals with proteinuric nephropathies. In conclusion, while combined RAS-inhibition is not generally indicated in patients along the cardio-reno-vascular continuum, it has already proven to be effective in heart failure patients with incomplete neuroendocrine blockade. In secondary prevention, monotherapy with either RAS inhibitor is equally efficacious. Furthermore, novel pharmacologic agents such as renin inhibitors may prove useful in preventing common side effects of RAS blockade such as angiotensin escape and AT(1)-receptor upregulation, giving clinicians additional therapeutic tools to optimally treat the individual patient.
A putative placebo analysis of the effects of LCZ696 on clinical outcomes in heart failure
McMurray, John; Packer, Milton; Desai, Akshay; Gong, Jianjian; Greenlaw, Nicola; Lefkowitz, Martin; Rizkala, Adel; Shi, Victor; Rouleau, Jean; Solomon, Scott; Swedberg, Karl; Zile, Michael R.; Andersen, Karl; Arango, Juan Luis; Arnold, Malcolm; Be˘lohlávek, Jan; Böhm, Michael; Boytsov, Sergey; Burgess, Lesley; Cabrera, Walter; Chen, Chen-Huan; Erglis, Andrejs; Fu, Michael; Gomez, Efrain; Gonzalez, Angel; Hagege, Albert-Alain; Katova, Tzvetana; Kiatchoosakun, Songsak; Kim, Kee-Sik; Bayram, Edmundo; Martinez, Felipe; Merkely, Bela; Mendoza, Iván; Mosterd, Arend; Negrusz-Kawecka, Marta; Peuhkurinen, Keijo; Ramires, Felix; Refsgaard, Jens; Senni, Michele; Sibulo, Antonio S.; Silva-Cardoso, José; Squire, Iain; Starling, Randall C.; Vinereanu, Dragos; Teerlink, John R.; Wong, Raymond
2015-01-01
Aims Although active-controlled trials with renin–angiotensin inhibitors are ethically mandated in heart failure with reduced ejection fraction, clinicians and regulators often want to know how the experimental therapy would perform compared with placebo. The angiotensin receptor-neprilysin inhibitor LCZ696 was compared with enalapril in PARADIGM-HF. We made indirect comparisons of the effects of LCZ696 with putative placebos. Methods and results We used the treatment-arm of the Studies Of Left Ventricular Dysfunction (SOLVD-T) as the reference trial for comparison of an ACE inhibitor to placebo and the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity-Alternative trial (CHARM-Alternative) as the reference trial for comparison of an ARB to placebo. The hazard ratio of LCZ696 vs. a putative placebo was estimated through the product of the hazard ratio of LCZ696 vs. enalapril (active-control) and that of the historical active-control (enalapril or candesartan) vs. placebo. For the primary composite outcome of cardiovascular death or heart failure hospitalization in PARADIGM-HF, the relative risk reduction with LCZ696 vs. a putative placebo from SOLVD-T was 43% (95%CI 34–50%; P < 0.0001) with similarly large effects on cardiovascular death (34%, 21–44%; P < 0.0001) and heart failure hospitalization (49%, 39–58%; P < 0.0001). For all-cause mortality, the reduction compared with a putative placebo was 28% (95%CI 15–39%; P < 0.0001). Putative placebo analyses based on CHARM-Alternative gave relative risk reductions of 39% (95%CI 27–48%; P < 0.0001) for the composite outcome of cardiovascular death or heart failure hospitalization, 32% (95%CI 16–45%; P < 0.0001) for cardiovascular death, 46% (33–56%; P < 0.0001) for heart failure hospitalization, and 26% (95%CI 11–39%; P < 0.0001) for all-cause mortality. Conclusion These indirect comparisons of LCZ696 with a putative placebo show that the strategy of combined angiotensin receptor blockade and neprilysin inhibition led to striking reductions in cardiovascular and all-cause mortality, as well as heart failure hospitalization. These benefits were obtained even though LCZ696 was added to comprehensive background beta-blocker and mineralocorticoid receptor antagonist therapy. PMID:25416329
Takeishi, Yasuchika; Minamihaba, Osamu; Yamauchi, Sou; Arimoto, Takanori; Hirono, Osamu; Takahashi, Hiroki; Akiyama, Hideyuki; Miyamoto, Takuya; Nitobe, Joji; Nozaki, Naoki; Tachibana, Hidetada; Okuyama, Masaki; Fukui, Akio; Kubota, Isao; Okada, Akio; Takahashi, Kazuei
2004-04-01
Heart failure is a major and growing public health problem with a high mortality rate. Although recent studies have demonstrated that a variety of metabolic and/or neurohumoral factors are involved in the progression of this syndrome, the precise mechanisms responsible for this complex condition are poorly understood. To examine 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) kinetics in the early phase soon after tracer injection in patients with congestive heart failure (CHF), we performed dynamic single-photon emission computed tomography (SPECT). Twenty-six patients with CHF and eight control subjects were examined. The consecutive 15 images of 2-min dynamic SPECT were acquired for 30 min after injection. In the early phase after injection (0-4 min), a significant amount of radioactivity existed in the blood pool. After 6 min, the myocardial 123I-BMIPP image was clear and thus the washout rate of 123I-BMIPP from 6 to 30 min was calculated. The washout rate of 123I-BMIPP from the myocardium was faster in patients with CHF than in the controls (8 +/- 4 vs. -5 +/- 3%, p < 0.01). The washout rate of 123I-BMIPP demonstrated positive correlation with left ventricular (LV) end-diastolic volume index (R = 0.54, p < 0.02) and inverse correlation with LV ejection fraction (R = 0.53, p <0.02). Patients were given the angiotensin II type-1 receptor antagonist candesartan for 6 months, and dynamic SPECT was repeated. The enhanced washout rate of 123I-BMIPP in CHF was reduced after treatment with candesartan (p < 0.05). These data suggest that (1) enhanced washout of 123I-BMIPP was observed soon after injection in patients with CHF, (2) the activation of angiotensin II signaling pathway is involved as an intracellular mechanism for enhanced 123I-BMIPP washout in heart failure, and (3) improvement in fatty acid metabolism may represent a new mechanism for beneficial effects of angiotensin II receptor blockade on cardiac function and survival in patients with heart failure. 123I-BMIPP washout in the early phase obtained from dynamic SPECT may be a new marker for evaluating the severity of heart failure and the effects of medical treatment.
Takahashi, Satoru; Uemura, Hiroji; Seeni, Azman; Tang, Mingxi; Komiya, Masami; Long, Ne; Ishiguro, Hitoshi; Kubota, Yoshinobu; Shirai, Tomoyuki
2012-10-01
With the limited strategies for curative treatment of castration-resistant prostate cancer (CRPC), public interest has focused on the potential prevention of prostate cancer. Recent studies have demonstrated that an angiotensin II receptor blocker (ARB) has the potential to decrease serum prostate-specific antigen (PSA) level and improve performance status in CRPC patients. These facts prompted us to investigate the direct effects of ARBs on prostate cancer growth and progression. Transgenic rat for adenocarcinoma of prostate (TRAP) model established in our laboratory was used. TRAP rats of 3 weeks of age received ARB (telmisartan or candesartan) at the concentration of 2 or 10 mg/kg/day in drinking water for 12 weeks. In vitro analyses for cell growth, ubiquitylation or reporter gene assay were performed using LNCaP cells. We found that both telmisartan and candesartan attenuated prostate carcinogenesis in TRAP rats by augmentation of apoptosis resulting from activation of caspases, inactivation of p38 MAPK and down-regulation of the androgen receptor (AR). Further, microarray analysis demonstrated up-regulation of estrogen receptor β (ERβ) by ARB treatment. In both parental and androgen-independent LNCaP cells, ARB inhibited both cell growth and AR-mediated transcriptional activity. ARB also exerted a mild additional effect on AR-mediated transcriptional activation by the ERβ up-regulation. An intervention study revealed that PSA progression was prolonged in prostate cancer patients given an ARB compared with placebo control. These data provide a new concept that ARBs are promising potential chemopreventive and chemotherapeutic agents for prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.
Satturwar, Prashant; Eddine, Mohamad Nasser; Ravenelle, François; Leroux, Jean-Christophe
2007-03-01
The objective of the present study was to investigate the influence of chemical structure and molecular weight of pH-sensitive block copolymers on their self-assembling properties, the loading and the release of candesartan cilexetil (CDN). Block copolymers of poly(ethylene glycol) and t-butyl methacrylate, iso-butyl acrylate, n-butyl acrylate or propyl methacrylate were synthesized by atom transfer radical polymerization. pH-sensitivity was obtained by hydrolysis of t-butyl groups. The poorly water-soluble drug CDN was incorporated in the micelles and the in vitro drug release was evaluated as a function of pH. The critical aggregation concentration of hydrolyzed copolymers (pK(a)=6.2-6.6) was higher compared to the unhydrolyzed ones. Dynamic light scattering studies and atomic force microscopy images revealed uniform size micelles with aggregation numbers ranging from 60 to 160. The entrapment efficiency of CDN was generally found to be above 90%, with drug loading levels reaching approximately 20% (w/w). Differential scanning calorimetry studies showed the amorphous nature of entrapped CDN. The release of CDN from pH-sensitive micelles was triggered upon an increase in pH from 1.2 to 7.2. These findings suggest that the PEG-b-poly(alkyl(meth)acrylate-co-methacrylic acid)s can self-assemble to form micelles which exhibit high loading capacities for CDN and release the drug in a pH-dependent fashion.
Diz, Debra I.; Garcia-Espinosa, Maria A.; Gegick, Stephen; Tommasi, Ellen N.; Ferrario, Carlos M.; Tallant, E. Ann; Chappell, Mark C.; Gallagher, Patricia E.
2009-01-01
Injections of the angiotensin(1–7) [Ang(1–7)] antagonist [d-Ala7]-Ang(1–7) into the nucleus of the solitary tract (NTS) of Sprague–Dawley rats reduce baroreceptor reflex sensitivity (BRS) for control of heart rate by ~40%, whereas injections of the angiotensin II (Ang II) type 1 receptor antagonist candesartan increase BRS by 40% when reflex bradycardia is assessed. The enzyme angiotensin-converting enzyme 2 (ACE2) is known to convert Ang II to Ang(1–7). We report that ACE2 activity, as well as ACE and neprilysin activities, are present in plasma membrane fractions of the dorsomedial medulla of Sprague–Dawley rats. Moreover, we show that BRS for reflex bradycardia is attenuated (1.16±0.29 ms mmHg−1 before versus 0.33±0.11 ms mmHg−1 after; P < 0.05; n = 8) 30–60 min following injection of the selective ACE2 inhibitor MLN4760 (12 pmol in 120 nl) into the NTS. These findings support the concept that within the NTS, local synthesis of Ang(1–7) from Ang II is required for normal sensitivity for the baroreflex control of heart rate in response to increases in arterial pressure. PMID:18356558
Gurunath, S; Nanjwade, Baswaraj K; Patila, P A
2014-07-01
Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.
Gurunath, S.; Nanjwade, Baswaraj K.; Patila, P.A.
2013-01-01
Objective Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. Methods In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2–2%). Gibbs free energy (ΔGtro) values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. Results FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Conclusion Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability. PMID:25067902
Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi
2018-03-23
Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT 1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT 1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT 1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT 1 receptors is necessary. To identify the robust inverse agonist for active state of AT 1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT 1 receptors and active-state N111G mutant AT 1 receptors. Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT 1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT 1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT 1 receptors compared with the ground-state WT-AT 1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT 1 receptors. In contrast, interactions between eprosartan and N111G-AT 1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT 1 receptor activation are warranted. © 2018 The British Pharmacological Society.
Belal, Tarek S; Daabees, Hoda G; Abdel-Khalek, Magdi M; Mahrous, Mohamed S; Khamis, Mona M
2013-04-01
A new simple spectrophotometric method was developed for the determination of binary mixtures without prior separation. The method is based on the generation of ratio spectra of compound X by using a standard spectrum of compound Y as a divisor. The peak to trough amplitudes between two selected wavelengths in the ratio spectra are proportional to concentration of X without interference from Y . The method was demonstrated by determination of two drug combinations. The first consists of the two antihyperlipidemics: atorvastatin calcium (ATV) and ezetimibe (EZE), and the second comprises the antihypertensives: candesartan cilexetil (CAN) and hydrochlorothiazide (HCT). For mixture 1, ATV was determined using 10 μg/mL EZE as the divisor to generate the ratio spectra, and the peak to trough amplitudes between 231 and 276 nm were plotted against ATV concentration. Similarly, by using 10 μg/mL ATV as divisor, the peak to trough amplitudes between 231 and 276 nm were found proportional to EZE concentration. Calibration curves were linear in the range 2.5-40 μg/mL for both drugs. For mixture 2, divisor concentration was 7.5 μg/mL for both drugs. CAN was determined using its peak to trough amplitudes at 251 and 277 nm, while HCT was estimated using the amplitudes between 251 and 276 nm. The measured amplitudes were linearly correlated to concentration in the ranges 2.5-50 and 1-30 μg/mL for CAN and HCT, respectively. The proposed spectrophotometric method was validated and successfully applied for the assay of both drug combinations in several laboratory-prepared mixtures and commercial tablets.
Belal, Tarek S.; Daabees, Hoda G.; Abdel-Khalek, Magdi M.; Mahrous, Mohamed S.; Khamis, Mona M.
2012-01-01
A new simple spectrophotometric method was developed for the determination of binary mixtures without prior separation. The method is based on the generation of ratio spectra of compound X by using a standard spectrum of compound Y as a divisor. The peak to trough amplitudes between two selected wavelengths in the ratio spectra are proportional to concentration of X without interference from Y. The method was demonstrated by determination of two drug combinations. The first consists of the two antihyperlipidemics: atorvastatin calcium (ATV) and ezetimibe (EZE), and the second comprises the antihypertensives: candesartan cilexetil (CAN) and hydrochlorothiazide (HCT). For mixture 1, ATV was determined using 10 μg/mL EZE as the divisor to generate the ratio spectra, and the peak to trough amplitudes between 231 and 276 nm were plotted against ATV concentration. Similarly, by using 10 μg/mL ATV as divisor, the peak to trough amplitudes between 231 and 276 nm were found proportional to EZE concentration. Calibration curves were linear in the range 2.5–40 μg/mL for both drugs. For mixture 2, divisor concentration was 7.5 μg/mL for both drugs. CAN was determined using its peak to trough amplitudes at 251 and 277 nm, while HCT was estimated using the amplitudes between 251 and 276 nm. The measured amplitudes were linearly correlated to concentration in the ranges 2.5–50 and 1–30 μg/mL for CAN and HCT, respectively. The proposed spectrophotometric method was validated and successfully applied for the assay of both drug combinations in several laboratory-prepared mixtures and commercial tablets. PMID:29403805
de Diego, Marta; Godoy, Ricardo; Mennickent, Sigrid; Vergara, Carola; Miranda, Daniel; Navarro, Pía
2018-02-01
Development, validation and comparison of two stability-indicating LC methods, one with photodiode array detector (DAD) and the other with evaporative light scattering detector (ELSD), were performed for simultaneous determination of candesartan cilexetil (CANC) and hydrochlorothiazide (HCTZ), in pharmaceutical samples. A RP-18 column (125 mm × 4 mm, 5 μm) was used for separation of CANC, HCTZ and its major degradation products, using acetonitrile and phosphate buffer (pH 6.0) for DAD method and acetonitrile and water with acetic acid and triethylamine (pH 4.1) for ELSD method, as mobile phase in a gradient mode. The response with ELSD was fitted to a power function and the DAD response by a linear model over a range of 32-160 μg/mL for CANC and 25-125 μg/mL for HCTZ. The precision and accuracy of the methods were similar, with RSD below 3.0% and recovery between 98.1% and 103.9%. The drugs were subjected to stress conditions of hydrolysis, oxidation, photolysis, humidity and temperature. The degradation products were satisfactory separated from the main peaks and from each other. Both drugs mainly degrade by hydrolysis, showing the formation of one degradation product for HCTZ and two for CANC; its identification was conducted by LC/MS/MS. The methods were successfully applied to the analysis of CANC and HCTZ in combined commercial tablets. The performance of DAD and ELSD methods are comparable, therefore both methods are suitable for stability study and determination of CANC and HCTZ in pharmaceutical samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.
DiBona, Gerald F; Jones, Susan Y
2003-08-01
To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus and aortic depressor nerve stimulation, respectively.
Schilders, Joyce E M; Wu, Haiyan; Boomsma, Frans; van den Meiracker, Anton H; Danser, A H Jan
2014-08-01
Not all hypertensive patients respond well to ACE inhibition. Here we determined whether renin-angiotensin system (RAS) phenotyping, i.e., the measurement of renin or ACE, can predict the individual response to RAS blockade, either chronically (enalapril vs. enalapril + candesartan) or acutely (enalapril ± hydrochlorothiazide, HCT). Chronic enalapril + candesartan induced larger renin rises, but did not lower blood pressure (BP) more than enalapril. Similar observations were made for enalapril + HCT vs. enalapril when given acutely. Baseline renin predicted the peak changes in BP chronically, but not acutely. Baseline ACE levels had no predictive value. Yet, after acute drug intake, the degree of ACE inhibition, like Δrenin, did correlate with ΔBP. Only the relationship with Δrenin remained significant after chronic RAS blockade. Thus, a high degree of ACE inhibition and a steep renin rise associate with larger acute responses to enalapril. However, variation was large, ranging >50 mm Hg for a given degree of ACE inhibition or Δrenin. The same was true for the relationships between Δrenin and ΔBP, and between baseline renin and the maximum reduction in BP in the chronic study. Our data do not support that RAS phenotyping will help to predict the individual BP response to RAS blockade. Notably, these conclusions were reached in a carefully characterized, homogenous population, and when taking into account the known fluctuations in renin that relate to gender, age, ethnicity, salt intake and diuretic treatment, it seems unlikely that a cut-off renin level can be defined that has predictive value.
Surampalli, Gurunath; Nanjwade, Basavaraj K; Patil, P A; Chilla, Rakesh
2016-09-01
The aim of this study was to develop a novel tablet formulation of amorphous candesartan cilexetil (CAN) solid dispersion involving effective P-gp inhibition for optimal drug delivery by direct compression (DC) method. To accomplish DC, formulation blends were evaluated for micromeritic properties. The Carr index, Hausner ratio, flow rate and cotangent of the angle α were determined. The tablets with and without naringin prepared by DC technique were evaluated for average weight, hardness, disintegration time and friability assessments. The drug release profiles were determined to study the dissolution kinetics. In vivo pharmacokinetic studies were conducted in rabbits. Accelerated stability studies were performed for tablets at 40 ± 2 °C/75% RH ± 5% for 6 months. FTIR studies confirmed no discoloration, liquefaction and physical interaction between naringin and drug. The results indicated that tablets prepared from naringin presented a dramatic release (82%) in 30 min with a similarity factor (76.18), which is most likely due to the amorphous nature of drug and the higher micromeritic properties of blends. Our findings noticed 1.7-fold increase in oral bioavailability of tablet prepared from naringin with mean C max and AUC 0-12 h values as 35.81 ± 0.13 μg/mL and 0.14 ± 0.09 μg h/mL, respectively. The tablets with and without naringin prepared by DC technique were physically and chemically stable under accelerated stability conditions upon storage for 6 months. These results are attractive for further development of an oral tablet formulation of CAN through P-gp inhibition using naringin, a natural flavonoid as a pharmaceutical excipient.
Isegawa, Kengo; Hirooka, Yoshitaka; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji
2015-01-01
Abnormal elevation of blood pressure in early morning (rest-to-active phase) is suggested to cause cardiovascular events. We investigated whether azilsartan (AZL), a novel potent angiotensin receptor blocker, suppresses blood pressure elevation from the light-rest to dark-active phase in spontaneously hypertensive rats (SHRs). AZL has a sustained depressor effect around the rest-to-active phase in SHRs to a greater extent than candesartan (CAN), despite their similar depressor effects for over 24 h. AZL did not cause sympathoexcitation. These results suggest that AZL has a more sustained depressor effect than CAN around the rest-to-active phase in SHRs, and might have advantages for early morning hypertension.
Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure.
Sandhu, Alexander T; Goldhaber-Fiebert, Jeremy D; Owens, Douglas K; Turakhia, Mintu P; Kaiser, Daniel W; Heidenreich, Paul A
2016-05-01
This study aimed to evaluate the cost-effectiveness of the CardioMEMS (CardioMEMS Heart Failure System, St Jude Medical Inc, Atlanta, Georgia) device in patients with chronic heart failure. The CardioMEMS device, an implantable pulmonary artery pressure monitor, was shown to reduce hospitalizations for heart failure and improve quality of life in the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) trial. We developed a Markov model to determine the hospitalization, survival, quality of life, cost, and incremental cost-effectiveness ratio of CardioMEMS implantation compared with usual care among a CHAMPION trial cohort of patients with heart failure. We obtained event rates and utilities from published trial data; we used costs from literature estimates and Medicare reimbursement data. We performed subgroup analyses of preserved and reduced ejection fraction and an exploratory analysis in a lower-risk cohort on the basis of the CHARM (Candesartan in Heart failure: Reduction in Mortality and Morbidity) trials. CardioMEMS reduced lifetime hospitalizations (2.18 vs. 3.12), increased quality-adjusted life-years (QALYs) (2.74 vs. 2.46), and increased costs ($176,648 vs. $156,569), thus yielding a cost of $71,462 per QALY gained and $48,054 per life-year gained. The cost per QALY gained was $82,301 in patients with reduced ejection fraction and $47,768 in those with preserved ejection fraction. In the lower-risk CHARM cohort, the device would need to reduce hospitalizations for heart failure by 41% to cost <$100,000 per QALY gained. The cost-effectiveness was most sensitive to the device's durability. In populations similar to that of the CHAMPION trial, the CardioMEMS device is cost-effective if the trial effectiveness is sustained over long periods. Post-marketing surveillance data on durability will further clarify its value. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schupp, Nicole; Schinzel, Reinhard; Heidland, August; Stopper, Helga
2005-06-01
In patients with chronic renal failure, cancer incidence is increased. This may be related to an elevated level of genomic damage, which has been demonstrated by micronuclei formation as well as by comet assay analysis. Advanced glycation end products (AGEs) are markedly elevated in renal failure. In the comet assay, the model AGEs methylglyoxal- and carboxy(methyl)lysine-modified bovine serum albumin (BSA) induced significant DNA damage in colon, kidney, and liver cells. The addition of antioxidants prevented AGE-induced DNA damage, suggesting enhanced formation of reactive oxygen species (ROS). The coincubation with dimethylfumarate (DMF), an inhibitor of NF-κB translocation, reduced the genotoxic effect, thereby underscoring the key role of NF-κB in this process. One of the genes induced by NF-κB is angiotensinogen. The ensuing proteolytic activity yields angiotensin II, which evokes oxidative stress as well as proinflammatory responses. A modulator of the renin-angiotensin system (RAS), the angiotensin II (Ang II) receptor 1 antagonist, candesartan, yielded a reduction of the AGE-induced DNA damage, connecting the two signal pathways, RAS and AGE signaling. We were able to identify important participants in AGE-induced DNA damage: ROS, NF-κB, and Ang II, as well as modulators to prevent this DNA damage: antioxidants, DMF, and AT1 antagonists.
Protein disulfide isomerase regulates renal AT1 receptor function and blood pressure in rats.
Wang, Xitao; Asghar, Mohammad
2017-08-01
The role and mechanism of renal protein disulfide isomerase (PDI) in blood pressure regulation has not been tested before. Here, we test this possibility in Sprague-Dawley rats. Rats were treated with PDI inhibitor bacitracin (100 mg·kg -1 ip·day -1 for 14 days), and then blood pressure and renal angiotensin II type 1 (AT 1 ) receptor function were determined in anesthetized rats. Renal AT 1 receptor function was determined as the ability of candesartan (an AT 1 receptor blocker) to increase diuresis and natriuresis. A second set of vehicle- and bacitracin-treated rats was used to determine biochemical parameters. Systolic blood pressure as well as diastolic blood pressure increased in bacitracin-treated compared with vehicle-treated rats. Compared with vehicle, bacitracin-treated rats showed increased diuresis and natriuresis in response to candesartan (10-µg iv bolus dose) suggesting higher AT 1 receptor function in these rats. These were associated with higher renin activities in the plasma and renal tissues. Furthermore, urinary 8-isoprostane and kidney injury molecule-1 levels were higher and urinary antioxidant capacity was lower in bacitracin-treated rats. Renal protein carbonyl and nitrotyrosine levels also were higher in bacitracin- compared with vehicle-treated rats, suggesting oxidative stress burden in bacitracin-treated rats. Moreover, PDI activity decreased and its protein levels increased in renal tissues of bacitracin-treated rats. Also, nuclear levels of Nrf2 transcription factor, which regulates redox homeostasis, were decreased in bacitracin-treated rats. Furthermore, tissue levels of Keap1, an Nrf2 inhibitory molecule, and tyrosine 216-phosphorylated GSK3β protein, an Nrf2 nuclear export protein, were increased in bacitracin-treated rats. These results suggest that renal PDI by regulating Keap1-Nrf2 pathway acts as an antioxidant, maintaining redox balance, renal AT 1 receptor function, and blood pressure in rats. Copyright © 2017 the American Physiological Society.
Konishi, Masahiro; Nagashima, Kei; Kanosue, Kazuyuki
2002-11-15
Salt loading decreases body core temperature (T(core)) at neutral ambient temperature (26 degrees C) and increases heat-escape/cold-seeking behaviour in desalivated rats. In this study, we tested the hypothesis that brain angiotensin II (AII) and arginine vasopressin (AVP) are associated with these responses. Surgically desalivated rats (n = 28) were administered an injection (S.C., 10 ml kg(-1)) of either normal saline (154 mM, NS) or hypertonic saline (2500 mM, HS) following an intracerebroventricular injection (10 microl kg(-1)) of an AII AT(1)-receptor antagonist (candesartan, 5 microg microl(-1)), an AVP V(1)-receptor antagonist ((beta-mercapto-beta, beta-cyclopenta-methylene propionyl(1), O-Me-Tyr(2), Arg(8))-vasopressin, 0.5 microg microl(-1)), or normal saline (154 mM). Each rat was placed in a behaviour box, first at 26 degrees C for 1 h to allow the measurement of baseline T(core) and movement. The ambient temperature was then elevated to 40 degrees C for the next 2 h, during which time the rat was able to trigger a 0 degrees C air reward for 30 s by moving into a specific area of the box (operant behaviour). The S.C. HS significantly decreased baseline T(core) at 26 degrees C (36.5 +/- 0.1 degrees C) and increased counts of operant behaviour at 40 degrees C (57 +/- 3) compared with results obtained following S.C. NS injection (37.4 +/- 0.1 degrees C and 42 +/- 1, respectively). These responses to s.c. HS were inhibited by the intracerebroventricular injection of AT(1) (37.3 +/- 0.1 degrees C and 43 +/- 2, respectively; P < 0.05) and V(1) antagonists (37.2 +/- 0.2 degrees C and 42 +/- 2, respectively; P < 0.05), although administration of both antagonists with S.C. NS had no effect. These results suggest that brain AII and AVP are involved in the decrease in T(core) observed at neutral ambient temperature and the increase in heat-escape/cold-seeking behaviour in response to osmotic stimulation, via the central AT(1) and V(1) receptors, respectively
[Azilsartan: a new angiotensin receptor blocker].
Rakugi, Hiromi; Enya, Kazuaki
2012-09-01
Azilsartan is a new ARB with the specific and potent angiotensin II receptor binding-inhibitory effect and more continuous angiotensin II antagonistic and antihypertensive actions in pre-clinical studies compared with other ARBs. The controlled clinical study in Japanese hypertensive patients indicates that once-daily azilsartan dose provides more potent 24-hour sustained antihypertensive effect than that of candesartan but with equivalent safety. Azilsartan was confirmed to improve more potently the insulin-resistance in SHR and type 2 diabetic mice and suppress more prominently the urinary albumin excretion in type 2 diabetic fatty rats than other ARBs. Thus, azilsartan is a unique antihypertensive agent with the profile of more beneficial pharmacological activity, and could provide higher rates of hypertension control over 24-hour following once daily administration.
Golubović, Jelena; Protić, Ana; Otašević, Biljana; Zečević, Mira
2016-04-01
QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans. Copyright © 2015 Elsevier B.V. All rights reserved.
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-11-30
The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.
Monophasic demyelination reduces brain growth in children
Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis
2017-01-01
Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515
Monophasic demyelination reduces brain growth in children.
Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis
2017-05-02
To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.
A Comparative Effectiveness Meta-Analysis of Drugs for the Prophylaxis of Migraine Headache
2015-01-01
Objective To compare the effectiveness and side effects of migraine prophylactic medications. Design We performed a network meta-analysis. Data were extracted independently in duplicate and quality was assessed using both the JADAD and Cochrane Risk of Bias instruments. Data were pooled and network meta-analysis performed using random effects models. Data Sources PUBMED, EMBASE, Cochrane Trial Registry, bibliography of retrieved articles through 18 May 2014. Eligibility Criteria for Selecting Studies We included randomized controlled trials of adults with migraine headaches of at least 4 weeks in duration. Results Placebo controlled trials included alpha blockers (n = 9), angiotensin converting enzyme inhibitors (n = 3), angiotensin receptor blockers (n = 3), anticonvulsants (n = 32), beta-blockers (n = 39), calcium channel blockers (n = 12), flunarizine (n = 7), serotonin reuptake inhibitors (n = 6), serotonin norepinephrine reuptake inhibitors (n = 1) serotonin agonists (n = 9) and tricyclic antidepressants (n = 11). In addition there were 53 trials comparing different drugs. Drugs with at least 3 trials that were more effective than placebo for episodic migraines included amitriptyline (SMD: -1.2, 95% CI: -1.7 to -0.82), -flunarizine (-1.1 headaches/month (ha/month), 95% CI: -1.6 to -0.67), fluoxetine (SMD: -0.57, 95% CI: -0.97 to -0.17), metoprolol (-0.94 ha/month, 95% CI: -1.4 to -0.46), pizotifen (-0.43 ha/month, 95% CI: -0.6 to -0.21), propranolol (-1.3 ha/month, 95% CI: -2.0 to -0.62), topiramate (-1.1 ha/month, 95% CI: -1.9 to -0.73) and valproate (-1.5 ha/month, 95% CI: -2.1 to -0.8). Several effective drugs with less than 3 trials included: 3 ace inhibitors (enalapril, lisinopril, captopril), two angiotensin receptor blockers (candesartan, telmisartan), two anticonvulsants (lamotrigine, levetiracetam), and several beta-blockers (atenolol, bisoprolol, timolol). Network meta-analysis found amitriptyline to be better than several other medications including candesartan, fluoxetine, propranolol, topiramate and valproate and no different than atenolol, flunarizine, clomipramine or metoprolol. Conclusion Several drugs good evidence supporting efficacy. There is weak evidence supporting amitriptyline’s superiority over some drugs. Selection of prophylactic medication should be tailored according to patient preferences, characteristics and side effect profiles. PMID:26172390
Effect of dietary fiber on the level of free angiotensin II receptor blocker in vitro.
Iwazaki, Ayano; Takahashi, Kazuhiro; Tamezane, Yui; Tanaka, Kenta; Nakagawa, Minami; Imai, Kimie; Nakanishi, Kunio
2014-01-01
The interaction between angiotensin II type 1 (AT1) receptor blockers (ARBs), such as losartan potassium (LO), candesartan (CA), and telmisartan (TE), and dietary fiber was studied as to the level of free ARB in vitro. When ARB was incubated with soluble (sodium alginate, pectin, and glucomannan) or insoluble (cellulose and chitosan) dietary fiber, the levels of free LO, TE, and CA decreased. This resulted only from mixing the dietary fiber with the ARBs and differed among the types of dietary fiber, and the pH and electrolytes in the mixture. The levels of free LO and TE tended to decrease with a higher concentration of sodium chloride in pH 1.2 fluid. These results suggest that it is important to pay attention to the possible interactions between ARBs and dietary fiber.
Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats.
Feng, Yangzheng; Fratkins, Jonathan D; LeBlanc, Michael H
2004-01-19
Tamoxifen, an estrogen receptor modulator, is neuroprotective in adult rats. Does tamoxifen reduce brain injury in the rat pup? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of hypoxia (8% oxygen). Tamoxifen (10 mg/kg) or vehicle was given i.p. 5 min prior to hypoxia, or 5 min after reoxygenation, with a second dose given 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere 22 days following hypoxia and gross and microscopic morphology. Tamoxifen pre-treatment reduced brain weight loss from 21.5+/-4.0% in vehicle pups (n=27) to 2.6+/-2.5% in the treated pups (n=22, P<0.05). Treatment 5 min after reoxygenation reduced brain weight loss from 27.5+/-4.0% in vehicle pups (n=42) to 12.0+/-3.9% in the treated pups (n=30, P<0.05). Tamoxifen reduces brain injury in the neonatal rat.
Silberstein, Stephen D.
2015-01-01
Purpose of Review: This article reviews the evidence base for the preventive treatment of migraine. Recent Findings: Evidence-based guidelines for the preventive treatment of migraine have recently been published by the American Academy of Neurology (AAN) and the Canadian Headache Society (CHS), providing valuable guidance for clinicians. Strong evidence exists to support the use of metoprolol, timolol, propranolol, divalproex sodium, sodium valproate, and topiramate for migraine prevention, according to the AAN. Based on best available evidence, adverse event profile, and expert consensus, topiramate, propranolol, nadolol, metoprolol, amitriptyline, gabapentin, candesartan, Petasites (butterbur), riboflavin, coenzyme Q10, and magnesium citrate received a strong recommendation for use from the CHS. Summary: Migraine preventive drug treatments are underutilized in clinical practice. Principles of preventive treatment are important to improve compliance, minimize side effects, and improve patient outcomes. Choice of preventive treatment of migraine should be based on the presence of comorbid and coexistent illness, patient preference, reproductive potential and planning, and best available evidence. PMID:26252585
Minocycline Attenuates Iron-Induced Brain Injury.
Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya
2016-01-01
Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.
Pan, Yijun; Short, Jennifer L; Choy, Kwok H C; Zeng, Annie X; Marriott, Philip J; Owada, Yuji; Scanlon, Martin J; Porter, Christopher J H; Nicolazzo, Joseph A
2016-11-16
Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5 +/+ and FABP5 -/- mice using a battery of memory paradigms. FABP5 -/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14 C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5 +/+ and FABP5 -/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14 C-DHA uptake into brain endothelial cells and brain capillaries of FABP5 -/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5 +/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5 -/- mice are associated with reduced CNS access of DHA. Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5 -/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function. Copyright © 2016 the authors 0270-6474/16/3611756-13$15.00/0.
Weaver, Jessica Lee; Matheson, Paul J; Matheson, Amy; Graham, Victoria S; Downard, Cynthia; Garrison, Richard Neal; Smith, Jason W
2018-04-18
Brain death is associated with significant inflammation within the kidneys, which may contribute to reduced graft survival. Direct peritoneal resuscitation (DPR) has been shown to reduce systemic inflammation after brain death. To determine its effects, brain dead rats were resuscitated with normal saline (targeted intravenous fluid, TIVF) to maintain a mean arterial pressure of 80 mmHg and DPR animals also received 30cc of intraperitoneal peritoneal dialysis solution. Rats were euthanized at zero, two, four, and six hours after brain death. Pro-inflammatory cytokines were measured using ELISA. Levels of IL-1β, TNF-α, and IL-6 in the kidney were significantly increased as early as two hours after brain death and significantly decreased with DPR. Levels of leukocyte adhesion molecules ICAM and VCAM increased after brain death and were decreased with DPR (ICAM 2.33{plus minus}0.14 v 0.42{plus minus}0.04 p=0.002, VCAM 82.6{plus minus}5.8 v 37.3{plus minus}1.9 p=0.002 at four hours) as were E-selectin and P-selectin (E-selectin 25605 v 16144 p=0.005, P-selectin 82.5{plus minus}3.3 v 71.0{plus minus}2.3 p=0.009 at four hours). Use of DPR reduces inflammation and adhesion molecule expression in the kidneys, and is associated with reduced macrophages and neutrophils on immunohistochemistry. Using DPR in brain dead donors has the potential to reduce the immunologic activity of transplanted kidneys and could improve graft survival.
Hook, Gregory; Hook, Vivian; Kindy, Mark
2015-01-01
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740
Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.
2016-01-01
SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871
Hutter-Paier, Birgit; Huttunen, Henri J; Puglielli, Luigi; Eckman, Christopher B; Kim, Doo Yeon; Hofmeister, Alexander; Moir, Robert D; Domnitz, Sarah B; Frosch, Matthew P; Windisch, Manfred; Kovacs, Dora M
2004-10-14
Amyloid beta-peptide (Abeta) accumulation in specific brain regions is a pathological hallmark of Alzheimer's disease (AD). We have previously reported that a well-characterized acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, inhibits Abeta production in cell-based experiments. Here, we assessed the efficacy of CP-113,818 in reducing AD-like pathology in the brains of transgenic mice expressing human APP(751) containing the London (V717I) and Swedish (K670M/N671L) mutations. Two months of treatment with CP-113,818 reduced the accumulation of amyloid plaques by 88%-99% and membrane/insoluble Abeta levels by 83%-96%, while also decreasing brain cholesteryl-esters by 86%. Additionally, soluble Abeta(42) was reduced by 34% in brain homogenates. Spatial learning was slightly improved and correlated with decreased Abeta levels. In nontransgenic littermates, CP-113,818 also reduced ectodomain shedding of endogenous APP in the brain. Our results suggest that ACAT inhibition may be effective in the prevention and treatment of AD by inhibiting generation of the Abeta peptide.
Elango, Chinnasamy; Jayachandaran, Kasevan Sawaminathan; Niranjali Devaraj, S
2009-12-01
In our present investigation the neuroprotective effect of alcoholic extract of Hawthorn (Crataegus oxycantha) was evaluated against middle cerebral artery occlusion induced ischemia/reperfusion injury in rats. Male Sprague-Dawley rats were pretreated with 100 mg/kg body weight of the extract by oral gavage for 15 days. The middle cerebral artery was then occluded for 75 min followed by 24 h of reperfusion. The pretreated rats showed significantly improved neurological behavior with reduced brain infarct when compared to vehicle control rats. The glutathione level in brain was found to be significantly (p<0.05) low in vehicle control rats after 24 h of reperfusion when compared to sham operated animals. However, in Hawthorn extract pretreated rats the levels were found to be close to that of sham. Malondialdehyde levels in brain of sham and pretreated group were found to be significantly lower than the non-treated vehicle group (p<0.05). The nitric oxide levels in brain were measured and found to be significantly (p<0.05) higher in vehicle than in sham or extract treated rats. Our results suggest that Hawthorn extract which is a well known prophylactic for cardiac conditions may very well protect the brain against ischemia-reperfusion. The reduced brain damage and improved neurological behavior after 24 h of reperfusion in Hawthorn extract pretreated group may be attributed to its antioxidant property which restores glutathione levels, circumvents the increase in lipid peroxidation and nitric oxide levels thereby reducing peroxynitrite formation and free radical induced brain damage.
Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers.
Culbertson, Christopher S; Bramen, Jennifer; Cohen, Mark S; London, Edythe D; Olmstead, Richard E; Gan, Joanna J; Costello, Matthew R; Shulenberger, Stephanie; Mandelkern, Mark A; Brody, Arthur L
2011-05-01
Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Randomized, double-blind, before-after controlled trial. Academic brain imaging center. Thirty nicotine-dependent smokers (paid volunteers). Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions.
Patel, Hitesh C; Hayward, Carl; Dungu, Jason N; Papadopoulou, Sofia; Saidmeerasah, Abdel; Ray, Robin; Di Mario, Carlo; Shanmugam, Nesan; Cowie, Martin R; Anderson, Lisa J
2017-07-01
To investigate the effect of the different eligibility criteria used by phase III clinical studies in heart failure with preserved ejection fraction (HFpEF) on patient selection, phenotype, and survival. We applied the key eligibility criteria of 7 phase III HFpEF studies (Digitalis Investigation Group Ancillary, Candesartan in Patients With Chronic Heart Failure and Preserved Left-Ventricular Ejection Fraction, Perindopril in Elderly People With Chronic Heart Failure, Irbesartan in Heart Failure With Preserved Systolic Function, Japanese Diastolic Heart Failure, Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist, and Efficacy and Safety of LCZ696 Compared to Valsartan, on Morbidity and Mortality in Heart Failure Patients With Preserved Ejection Fraction [PARAGON-HF; ongoing]) to a typical and well-characterized HFpEF population (n = 557) seen in modern European cardiological practice. Follow-up was available for a minimum of 24 months in each patient. Increasing the number of study eligibility criteria identifies a progressively smaller group of patients from real-life practice suitable for recruitment into clinical trials; using the J-DHF criteria, 81% of our clinic patients would have been eligible, whereas the PARAGON-HF criteria significantly reduced this proportion to 32%. The patients identified from our clinical population had similar mortality rates using the different criteria, which were consistently higher than those reported in the actual clinic trials. Trial eligibility criteria have become stricter with time, which reduces the number of eligible patients, affecting both generalizability of any findings and feasibility of completing an adequately powered trial. We could not find evidence that the additional criteria used in more recent randomized trials in HFpEF have identified patients at higher risk of all-cause mortality. Copyright © 2017 Elsevier Inc. All rights reserved.
Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I
2017-08-01
Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.
Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee
2017-12-30
In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.
Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.
Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2015-07-01
Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.
Yuan, Zhi-Xin; Rapoport, Stanley I
2015-10-01
Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.
Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun
2010-01-01
Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450
USDA-ARS?s Scientific Manuscript database
Prior research has identified reduced reward-related brain activation as a promising endophenotype for the early identification of adolescents with major depressive disorder. However, it is unclear whether reduced reward-related brain activation constitutes a true vulnerability for major depressive ...
Newson, Penny; Lynch-Frame, Ann; Roach, Rebecca; Bennett, Sarah; Carr, Vaughan; Chahl, Loris A
2005-01-01
Schizophrenia is considered to be a neurodevelopmental disorder with origins in the prenatal or neonatal period. Brains from subjects with schizophrenia have enlarged ventricles, reduced cortical thickness (CT) and increased neuronal density in the prefrontal cortex compared with those from normal subjects. Subjects with schizophrenia have reduced pain sensitivity and niacin skin flare responses, suggesting that capsaicin-sensitive primary afferent neurons might be abnormal in schizophrenia. This study tested the hypothesis that intrinsic somatosensory deprivation, induced by neonatal capsaicin treatment, causes changes in the brains of rats similar to those found in schizophrenia. Wistar rats were treated with capsaicin, 50 mg kg−1 subcutaneously, or vehicle (control) at 24–36 h of life. At 5–7 weeks behavioural observations were made, and brains removed, fixed and sectioned. The mean body weight of capsaicin-treated rats was not significantly different from control, but the mean brain weight of male, but not female, rats, was significantly lower than control. Capsaicin-treated rats were hyperactive compared with controls. The hyperactivity was abolished by haloperidol. Coronal brain sections of capsaicin-treated rats had smaller cross-sectional areas, reduced CT, larger ventricles and aqueduct, smaller hippocampal area and reduced corpus callosum thickness, than brain sections from control rats. Neuronal density was increased in several cortical areas and the caudate putamen, but not in the visual cortex. It is concluded that neonatal capsaicin treatment of rats produces brain changes that are similar to those found in brains of subjects with schizophrenia. PMID:16041396
Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W
2017-03-01
Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance in individuals at genetic risk for Alzheimer's disease, with the caveat that the order of causal effects cannot be inferred from cross-sectional studies. These results underscore the importance of documenting head injuries even within the mild range as they may interact with genetic risk to produce negative long-term health consequences such as neurodegenerative disease. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.
BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE
Cunnane, SC; Nugent, S; Roy, M; Courchesne-Loyer, A; Croteau, E; Tremblay, S; Castellano, A; Pifferi, F; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; Allard, M; Barberger-Gateau, P; Fulop, T; Rapoport, S
2012-01-01
Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may include defects in glucose transport at the blood-brain barrier, glycolysis, and/or mitochondrial function. Methodological issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization which, in turn, may increase the risk of declining brain glucose uptake, at least in some regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e. that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and, hence, reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to – (i) improve insulin sensitivity by improving systemic glucose utilization, or (ii) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia. PMID:21035308
Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong
2017-12-01
Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart Association, Inc.
Slotkin, Theodore A; Ko, Ashley; Seidler, Frederic J
2018-06-20
Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation. Copyright © 2018. Published by Elsevier B.V.
Li, Guang-Hui; Liu, Yong; Tang, Jin-Liang; Zhang, Dong; Zhou, Pu; Yang, Ding-Qiang; Ma, Chuan-Kun
2012-09-01
The recurrence and progression of brain metastases after brain irradiation are a major cause of mortality and morbidity in patients with cancer. The risk of radiation-induced neurotoxicity and efficacy probably leads oncologists to not consider re-irradiation. We report the case of a 48-year-old Asian male diagnosed with squamous cell lung cancer and multiple brain metastases initially treated with 40 Gy whole-brain radiotherapy and 20 Gy partial brain boost. Fourteen gray stereotactic radiosurgery as salvage for brain metastases in the left occipital lobe was performed after initial irradiation. The recurrence of brain metastases in the left occipital lobe was demonstrated on magnetic resonance imaging at 9 months after initial radiotherapy. He received the second course of 28 Gy stereotactic radiosurgery for the recurrent brain metastases in the left occipital lobe. The third relapse of brain metastases was demonstrated by a magnetic resonance imaging scan at 7 months after the second radiotherapy. The third course of irradiation was performed because he refused to undergo surgical resection of the recurrent brain metastases. The third course of irradiation used a pulsed reduced dose-rate radiotherapy technique. It was delivered in a series of 0.2 Gy pulses separated by 3-min intervals. The recurrent brain metastases were treated with a dose of 60 Gy using 30 daily fractions of 2 Gy. Despite the brain metastases receiving 162 Gy irradiation, this patient had no apparent acute or late neurologic toxicities and showed clinical improvement. This is the first report of the pulsed reduced dose-rate radiotherapy technique being used as the third course of radiotherapy for recurrent brain metastases.
Effect of Bupropion Treatment on Brain Activation Induced by Cigarette-Related Cues in Smokers
Culbertson, Christopher S.; Bramen, Jennifer; Cohen, Mark S.; London, Edythe D.; Olmstead, Richard E.; Gan, Joanna J.; Costello, Matthew R.; Shulenberger, Stephanie; Mandelkern, Mark A.; Brody, Arthur L.
2011-01-01
Context Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. Objective To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Design Randomized, double-blind, before-after controlled trial. Setting Academic brain imaging center. Participants Thirty nicotine-dependent smokers (paid volunteers). Interventions Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Main Outcome Measures Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Results Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Conclusions Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions. PMID:21199957
Coleman, Leon G.; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T.
2013-01-01
Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5g/kg, s.c., 2 hours apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV+IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology. PMID:22572057
Morley, Wendy A; Seneff, Stephanie
2014-01-01
The number of sports-related concussions has been steadily rising in recent years. Diminished brain resilience syndrome is a term coined by the lead author to describe a particular physiological state of nutrient functional deficiency and disrupted homeostatic mechanisms leading to increased susceptibility to previously considered innocuous concussion. We discuss how modern day environmental toxicant exposure, along with major changes in our food supply and lifestyle practices, profoundly reduce the bioavailability of neuro-critical nutrients such that the normal processes of homeostatic balance and resilience are no longer functional. Their diminished capacity triggers physiological and biochemical 'work around' processes that result in undesirable downstream consequences. Exposure to certain environmental chemicals, particularly glyphosate, the active ingredient in the herbicide, Roundup(®), may disrupt the body's innate switching mechanism, which normally turns off the immune response to brain injury once danger has been removed. Deficiencies in serotonin, due to disruption of the shikimate pathway, may lead to impaired melatonin supply, which reduces the resiliency of the brain through reduced antioxidant capacity and alterations in the cerebrospinal fluid, reducing critical protective buffering mechanisms in impact trauma. Depletion of certain rare minerals, overuse of sunscreen and/or overprotection from sun exposure, as well as overindulgence in heavily processed, nutrient deficient foods, further compromise the brain's resilience. Modifications to lifestyle practices, if widely implemented, could significantly reduce this trend of neurological damage.
Efficacy of azilsartan medoxomil with chlorthalidone in hypertension.
Baker, William L; Nigro, Stefanie C; White, William B
2014-07-01
Azilsartan medoxomil (AZL) is the most recently approved angiotensin receptor blocker (ARB) for treating patients with hypertension. A fixed-dose combination product with AZL and the thiazide-like diuretic chlorthalidone (CLD) is now available to treat individuals who require additional blood pressure lowering. For this review, a literature search was conducted using MEDLINE and the keywords and MeSH terms azilsartan, azilsartan medoxomil, chlorthalidone, thiazide, blood pressure and hypertension. References for retrieved articles were also scanned for relevant citations. No language restrictions were used. AZL is structurally related to candesartan and has been shown to provide more potent angiotensin receptor antagonism versus other ARBs. CLD is a thiazide-like diuretic with a longer half-life and greater blood pressure lowering efficacy than hydrochlorothiazide. The combination of AZL plus CLD has superior efficacy to other ARBs alone or in combination with hydrochlorothiazide based on extensive evaluation in clinical trials. This superior efficacy is not offset by a large imbalance in clinically important adverse events.
Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.
2013-01-01
Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking. PMID:21223304
Thalidomide Reduces Hemorrhage of Brain Arteriovenous Malformations in a Mouse Model.
Zhu, Wan; Chen, Wanqiu; Zou, Dingquan; Wang, Liang; Bao, Chen; Zhan, Lei; Saw, Daniel; Wang, Sen; Winkler, Ethan; Li, Zhengxi; Zhang, Meng; Shen, Fanxia; Shaligram, Sonali; Lawton, Michael; Su, Hua
2018-05-01
Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current treatments for bAVM are all associated with considerable risks. There is no safe method to prevent bAVM hemorrhage. Thalidomide reduces nose bleeding in patients with hereditary hemorrhagic telangiectasia, an inherited disorder characterized by vascular malformations. In this study, we tested whether thalidomide and its less toxic analog, lenalidomide, reduce bAVM hemorrhage using a mouse model. bAVMs were induced through induction of brain focal activin-like kinase 1 ( Alk1 , an AVM causative gene) gene deletion and angiogenesis in adult Alk1 -floxed mice. Thalidomide was injected intraperitoneally twice per week for 6 weeks, starting either 2 or 8 weeks after AVM induction. Lenalidomide was injected intraperitoneally daily starting 8 weeks after AVM induction for 6 weeks. Brain samples were collected at the end of the treatments for morphology, mRNA, and protein analyses. The influence of Alk1 downregulation on PDGFB (platelet-derived growth factor B) expression was also studied on cultured human brain microvascular endothelial cells. The effect of PDGFB in mural cell recruitment in bAVM was explored by injection of a PDGFB overexpressing lentiviral vector to the mouse brain. Thalidomide or lenalidomide treatment reduced the number of dysplastic vessels and hemorrhage and increased mural cell (vascular smooth muscle cells and pericytes) coverage in the bAVM lesion. Thalidomide reduced the burden of CD68 + cells and the expression of inflammatory cytokines in the bAVM lesions. PDGFB expression was reduced in ALK1-knockdown human brain microvascular endothelial cells and in mouse bAVM lesion. Thalidomide increased Pdgfb expression in bAVM lesion. Overexpression of PDGFB mimicked the effect of thalidomide. Thalidomide and lenalidomide improve mural cell coverage of bAVM vessels and reduce bAVM hemorrhage, which is likely through upregulation of Pdgfb expression. © 2018 American Heart Association, Inc.
Ruban, Angela; Biton, Inbal E; Markovich, Arik; Mirelman, David
2015-02-02
This study describes the use of in vivo magnetic resonance spectrocopy (MRS) to monitor brain glutamate and lactate levels in a paraoxon (PO) intoxication model. Our results show that the administration of recombinant glutamate-oxaloacetate transaminase (rGOT) in combination with oxaloacetate (OxAc) significantly reduces the brain-accumulated levels of glutamate. Previously we have shown that the treatment causes a rapid decrease of blood glutamate levels and creates a gradient between the brain and blood glutamate levels which leads to the efflux of excess brain glutamate into the blood stream thereby reducing its potential to cause neurological damage. The fact that this treatment significantly decreased the brain glutamate and lactate levels following PO intoxication suggests that it could become a new effective neuroprotective agent.
Alferink, Judith; Hofmann, Andrea; Howland, Shanshan W.; Rénia, Laurent; Limmer, Andreas; Specht, Sabine; Hoerauf, Achim
2018-01-01
Malaria ranks among the most important infectious diseases worldwide and affects mostly people living in tropical countries. Mechanisms involved in disease progression are still not fully understood and specific treatments that might interfere with cerebral malaria (CM) are limited. Here we show that administration of doxycycline (DOX) prevented experimental CM (ECM) in Plasmodium berghei ANKA (PbA)-infected C57BL/6 wildtype (WT) mice in an IL-10-independent manner. DOX-treated mice showed an intact blood-brain barrier (BBB) and attenuated brain inflammation. Importantly, if WT mice were infected with a 20-fold increased parasite load, they could be still protected from ECM if they received DOX from day 4–6 post infection, despite similar parasitemia compared to control-infected mice that did not receive DOX and developed ECM. Infiltration of T cells and cytotoxic responses were reduced in brains of DOX-treated mice. Analysis of brain tissue by RNA-array revealed reduced expression of chemokines and tumour necrosis factor (TNF) in brains of DOX-treated mice. Furthermore, DOX-administration resulted in brains of the mice in reduced expression of matrix metalloproteinase 2 (MMP2) and granzyme B, which are both factors associated with ECM pathology. Systemic interferon gamma production was reduced and activated peripheral T cells accumulated in the spleen in DOX-treated mice. Our results suggest that DOX targeted inflammatory processes in the central nervous system (CNS) and prevented ECM by impaired brain access of effector T cells in addition to its anti-parasitic effect, thereby expanding the understanding of molecular events that underlie DOX-mediated therapeutic interventions. PMID:29438386
Schmidt, Kim E; Kuepper, Janina M; Schumak, Beatrix; Alferink, Judith; Hofmann, Andrea; Howland, Shanshan W; Rénia, Laurent; Limmer, Andreas; Specht, Sabine; Hoerauf, Achim
2018-01-01
Malaria ranks among the most important infectious diseases worldwide and affects mostly people living in tropical countries. Mechanisms involved in disease progression are still not fully understood and specific treatments that might interfere with cerebral malaria (CM) are limited. Here we show that administration of doxycycline (DOX) prevented experimental CM (ECM) in Plasmodium berghei ANKA (PbA)-infected C57BL/6 wildtype (WT) mice in an IL-10-independent manner. DOX-treated mice showed an intact blood-brain barrier (BBB) and attenuated brain inflammation. Importantly, if WT mice were infected with a 20-fold increased parasite load, they could be still protected from ECM if they received DOX from day 4-6 post infection, despite similar parasitemia compared to control-infected mice that did not receive DOX and developed ECM. Infiltration of T cells and cytotoxic responses were reduced in brains of DOX-treated mice. Analysis of brain tissue by RNA-array revealed reduced expression of chemokines and tumour necrosis factor (TNF) in brains of DOX-treated mice. Furthermore, DOX-administration resulted in brains of the mice in reduced expression of matrix metalloproteinase 2 (MMP2) and granzyme B, which are both factors associated with ECM pathology. Systemic interferon gamma production was reduced and activated peripheral T cells accumulated in the spleen in DOX-treated mice. Our results suggest that DOX targeted inflammatory processes in the central nervous system (CNS) and prevented ECM by impaired brain access of effector T cells in addition to its anti-parasitic effect, thereby expanding the understanding of molecular events that underlie DOX-mediated therapeutic interventions.
Brain gamma-aminobutyric acid deficiency in dialysis encephalopathy.
Sweeney, V P; Perry, T L; Price, J D; Reeve, C E; Godolphin, W J; Kish, S J
1985-02-01
We measured levels of gamma-aminobutyric acid (GABA) in the CSF and in the autopsied brain of patients with dialysis encephalopathy. GABA concentrations were low in the CSF of three of five living patients. Mean GABA content was reduced by 30 to 50% in five brain regions (frontal, occipital, and cerebellar cortex, caudate nucleus, and medial dorsal thalamus) in five fatal cases. GABA content was normal in brain regions where GABA is characteristically reduced in Huntington's disease. Choline acetyltransferase activity was diminished (by 25 to 35%) in cerebral cortex of the dialysis encephalopathy patients.
Riboflavin and migraine: the bridge over troubled mitochondria.
Colombo, Bruno; Saraceno, Lorenzo; Comi, Giancarlo
2014-05-01
Brain energy metabolism has been found to be disturbed in migraine. A mitochondrial defect may reduce the threshold for migraine attacks both increasing neuronal excitability and leading migrainous brain to a hyper-responsiveness to triggering stimuli. Riboflavin, a major co-factor in oxidative metabolism, may overcome this impairment. RCT studies in adult confirmed that riboflavin is safe and probably effective in migraine prophylaxis, based on level B evidence. Improving brain energy metabolism may reduce the susceptibility to migraine when brain energy demand increases due to both physiological and biopsychological factors.
Yin, Terry; Lindley, Timothy E.; Albert, Gregory W.; Ahmed, Raheel; Schmeiser, Peter B.; Grady, M. Sean; Howard, Matthew A.; Welsh, Michael J.
2013-01-01
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 − after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 − administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI. PMID:23991103
Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation.
Ko, Andrew L; Magown, Philippe; Ozpinar, Alp; Hamzaoglu, Vural; Burchiel, Kim J
2018-05-30
Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement. © 2018 S. Karger AG, Basel.
Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.
Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio
2013-05-01
Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
Disrupted functional connectome in antisocial personality disorder.
Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang
2017-08-01
Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.
Disrupted functional connectome in antisocial personality disorder
Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen
2017-01-01
Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949
Ordóñez-Gutiérrez, Lara; Re, Francesca; Bereczki, Erika; Ioja, Eniko; Gregori, Maria; Andersen, Alina J; Antón, Marta; Moghimi, S Moein; Pei, Jin-Jing; Masserini, Massimo; Wandosell, Francisco
2015-02-01
The accumulation of extracellular amyloid-beta (Aβ) peptide and intracellular neurofibrillary tangles in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). It is thought that an equilibrium exists between Aβ in the brain and in the peripheral blood and thus, it was hypothesized that shifting this equilibrium towards the blood by enhancing peripheral clearance might reduce Aβ levels in the brain: the 'sink effect'. We tested this hypothesis by intraperitoneally injecting APP/PS1 transgenic mice with small unilamellar vesicles containing either phosphatidic acid or cardiolipin over 3weeks. This treatment reduced significantly the amount of Aβ in the plasma and the brain levels of Aβ were lighter affected. Nevertheless, this dosing regimen did modulate tau phosphorylation and glycogen synthase kinase 3 activities in the brain, suggesting that the targeting of circulating Aβ may be therapeutically relevant in AD. Intraperitoneal injection of small unilamellar vesicles containing phosphatidic acid or cardiolipin significantly reduced the amount of amyloid-beta (Aß) peptide in the plasma in a rodent model. Brain levels of Aß were also affected - although to a lesser extent - suggesting that targeting of circulating Aß may be therapeutically relevant of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Chourbaji, Sabine; Hellweg, Rainer; Brandis, Dorothee; Zörner, Björn; Zacher, Christiane; Lang, Undine E; Henn, Fritz A; Hörtnagl, Heide; Gass, Peter
2004-02-05
The "neurotrophin hypothesis" of depression predicts that depressive disorders in humans coincide with a decreased activity and/or expression of brain-derived neurotrophic factor (BDNF) in the brain. Therefore, we investigated whether mice with a reduced BDNF expression due to heterozygous gene disruption demonstrate depression-like neurochemical changes or behavioral symptoms. BNDF protein levels of adult BDNF(+/-) mice were reduced to about 60% in several brain areas investigated, including the hippocampus, frontal cortex, striatum, and hypothalamus. The content of monoamines (serotonin, norepinephrine, and dopamine) as well as of serotonin and dopamine degradation products was unchanged in these brain regions. By contrast, choline acetyltransferase activity was significantly reduced by 19% in the hippocampus of BDNF(+/-) mice, indicating that the cholinergic system of the basal forebrain is critically dependent on sufficient endogenous BDNF levels in adulthood. Moreover, BDNF(+/-) mice exhibited normal corticosterone and adrenocorticotropic hormone (ACTH) serum levels under baseline conditions and following immobilization stress. In a panel of behavioral tests investigating locomotor activity, exploration, anxiety, fear-associated learning, and behavioral despair, BDNF(+/-) mice were indistinguishable from wild-type littermates. Thus, a chronic reduction of BDNF protein content in adult mice is not sufficient to induce neurochemical or behavioral alterations that are reminiscent of depressive symptoms in humans.
Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo
2016-12-13
BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). CONCLUSIONS Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.
Evidence for brain glucose dysregulation in Alzheimer's disease.
An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav
2018-03-01
It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.
Evans, I M; Pickard, M R; Sinha, A K; Leonard, A J; Sampson, D C; Ekins, R P
2002-12-01
Maternal hypothyroidism during pregnancy impairs brain function in human and rat offspring, but little is known regarding the influence of maternal hyperthyroidism on neurodevelopment. We have previously shown that the expression of neuronal and glial differentiation markers in fetal brain is compromised in hypothyroid rat dam pregnancies and have now therefore extended this investigation to hyperthyroid rat dams. Study groups comprised partially thyroidectomised dams, implanted with osmotic pumps infusing either vehicle (TX dams) or a supraphysiological dose of thyroxine (T4) (HYPER dams), and euthyroid dams infused with vehicle (N dams). Cytoskeletal protein abundance was determined in fetal brain at 21 days of gestation by immunoblot analysis. Relative to N dams, circulating total T4 levels were reduced to around one-third in TX dams but were doubled in HYPER dams. Fetal brain weight was increased in HYPER dams, whereas litter size and fetal body weight were reduced in TX dams. Glial fibrillary acidic protein expression was similar in HYPER and TX dams, being reduced in both cases relative to N dams. alpha-Internexin (INX) abundance was reduced in HYPER dams and increased in TX dams, whereas neurofilament 68 (NF68) exhibited increased abundance in HYPER dams. Furthermore, INX was inversely related to - and NF68 directly related to - maternal serum total T4 levels, independently of fetal brain weight. In conclusion, maternal hyperthyroidism compromises the expression of neuronal cytoskeletal proteins in late fetal brain, suggestive of a pattern of accelerated neuronal differentiation.
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
Allen, Rachael S.; Sayeed, Iqbal; Oumarbaeva, Yuliya; Morrison, Katherine C.; Choi, Paul H.; Pardue, Machelle T.; Stein, Donald G.
2018-01-01
Background/Objective To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. Methods MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane × receptor were assessed in retinas and brains at 24 and 48 h using western blots. Results Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain. Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. Conclusion Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury. PMID:27802245
Allen, Rachael S; Sayeed, Iqbal; Oumarbaeva, Yuliya; Morrison, Katherine C; Choi, Paul H; Pardue, Machelle T; Stein, Donald G
2016-11-22
To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane X receptor were assessed in retinas and brains at 24 and 48 h using western blots. Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain.Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury.
Haghnejad Azar, Adel; Oryan, Shahrbanoo; Bohlooli, Shahab; Panahpour, Hamdollah
2017-01-01
This study was conducted to examine the neuroprotective effects of α-tocopherol against edema formation and disruption of the blood-brain barrier (BBB) following transient focal cerebral ischemia in rats. Ninety-six male Sprague-Dawley rats were divided into 3 major groups (n = 32 in each), namely the sham, and control and α-tocopherol-treated (30 mg/kg) ischemic groups. Transient focal cerebral ischemia (90 min) was induced by occlusion of the left middle cerebral artery. At the end of the 24-hour reperfusion period, the animals were randomly selected and used for 4 investigations (n = 8) in each of the 3 main groups: (a) assessment of neurological score and measurement of infarct size, (b) detection of brain edema formation by the wet/dry method, (c) evaluation of BBB permeability using the Evans blue (EB) extravasation technique, and (d) assessment of the malondialdehyde (MDA) and reduced glutathione (GSH) concentrations using high-performance liquid chromatography methods. Induction of cerebral ischemia in the control group produced extensive brain edema (brain water content 83.8 ± 0.11%) and EB leakage into brain parenchyma (14.58 ± 1.29 µg/g) in conjunction with reduced GSH and elevated MDA levels (5.86 ± 0.31 mmol/mg and 63.57 ± 5.42 nmol/mg, respectively). Treatment with α-tocopherol significantly lowered brain edema formation and reduced EB leakage compared with the control group (p < 0.001, 80.1 ± 0.32% and 6.66 ± 0.87 µg/g, respectively). Meanwhile, treatment with α-tocopherol retained tissue GSH levels and led to a lower MDA level (p < 0.01, 10.17 ± 0.83 mmol/mg, and p < 0.001, 26.84 ± 4.79 nmol/mg, respectively). Treatment with α-tocopherol reduced ischemic edema formation and produced protective effects on BBB function following ischemic stroke occurrence. This effect could be through increasing antioxidant activity. © 2016 S. Karger AG, Basel.
Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan
2011-01-01
Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma. PMID:21957448
Changes in Neuroactive Steroid Concentrations After Preterm Delivery in the Guinea Pig
Hirst, Jonathan J.; Palliser, Hannah K.
2013-01-01
Background: Preterm birth is a major cause of neurodevelopmental disorders. Allopregnanolone, a key metabolite of progesterone, has neuroprotective and developmental effects in the brain. The objectives of this study were to measure the neuroactive steroid concentrations following preterm delivery in a neonatal guinea pig model and assess the potential for postnatal progesterone replacement therapy to affect neuroactive steroid brain and plasma concentrations in preterm neonates. Methods: Preterm (62-63 days) and term (69 days) guinea pig pups were delivered by cesarean section and tissue was collected at 24 hours. Plasma progesterone, cortisol, allopregnanolone, and brain allopregnanolone concentrations were measured by immunoassay. Brain 5α-reductase (5αR) expression was determined by Western blot. Neurodevelopmental maturity of preterm neonates was assessed by immunohistochemistry staining for myelination, glial cells, and neurons. Results: Brain allopregnanolone concentrations were significantly reduced after birth in both preterm and term neonates. Postnatal progesterone treatment in preterm neonates increased brain and plasma allopregnanolone concentrations. Preterm neonates had reduced myelination, low birth weight, and high mortality compared to term neonates. Brain 5αR expression was also significantly reduced in neonates compared to fetal expression. Conclusions: Delivery results in a loss of neuroactive steroid concentrations resulting in a premature reduction in brain allopregnanolone in preterm neonates. Postnatal progesterone therapy reestablished neuroactive steroid levels in preterm brains, a finding that has implications for postnatal growth following preterm birth that occurs at a time of neurodevelopmental immaturity. PMID:23585339
MRI-Based Measurement of Brain Stem Cross-Sectional Area in Relapsing-Remitting Multiple Sclerosis.
Chivers, Tomos R; Constantinescu, Cris S; Tench, Christopher R
2015-01-01
To determine if patients with relapsing-remitting multiple sclerosis (RRMS) have a reduced brain stem cross-sectional area (CSA) compared to age- and sex-matched controls. The brain stem is a common site of involvement in MS. However, relatively few imaging studies have investigated brain stem atrophy. Brain magnetic resonance imaging (MRI) was performed on patients and controls using a 1.5T MRI scanner with a quadrature head coil. Three-dimensional magnetization-prepared rapid acquisition gradient-echo (MPRAGE) images with 128 contiguous slices, covering the whole brain and brain stem and a T2-weighted image with 3 mm transverse contiguous images were acquired. We measured the brain stem CSA at three sites, the midbrain, the pons, and the medulla oblongata in 35 RRMS patients and 35 controls using a semiautomated algorithm. CSA readings were normalized using the total external cranial volume to reduce normal population variance and increase statistical power. A significant CSA reduction was found in the midbrain (P ≤ .001), pons (P ≤ .001), and the medulla oblongata (P = .047) postnormalization. A CSA reduction of 9.3% was found in the midbrain, 8.7% in the pons, and 6.5% in the medulla oblongata. A significantly reduced, normalized brain stem CSA was detected in all areas of the brain stem of the RRMS patients, when compared to age- and gender-matched controls. Lack of detectable upper cervical cord atrophy in the same patients suggests some independence of the MS pathology in these regions. Copyright © 2015 by the American Society of Neuroimaging.
Varvel, Nicholas H; Neher, Jonas J; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M; Miller, Richard J; Dingledine, Raymond
2016-09-20
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood-brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2(+)) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3(+) T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2(+) monocytes could represent a viable method for alleviating the deleterious consequences of SE.
Varvel, Nicholas H.; Neher, Jonas J.; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M.; Miller, Richard J.; Dingledine, Raymond
2016-01-01
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood–brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2+) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3+ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating the deleterious consequences of SE. PMID:27601660
Stoyanova, Raliza S.; Baron-Cohen, Simon; Calder, Andrew J.
2013-01-01
Individuals with Autism Spectrum Conditions (ASC) have difficulties in social interaction and communication, which is reflected in hypoactivation of brain regions engaged in social processing, such as medial prefrontal cortex (mPFC), amygdala and insula. Resting state studies in ASC have identified reduced connectivity of the default mode network (DMN), which includes mPFC, suggesting that other resting state networks incorporating ‘social’ brain regions may also be abnormal. Using Seed-based Connectivity and Group Independent Component Analysis (ICA) approaches, we looked at resting functional connectivity in ASC between specific ‘social’ brain regions, as well as within and between whole networks incorporating these regions. We found reduced functional connectivity within the DMN in individuals with ASC, using both ICA and seed-based approaches. Two further networks identified by ICA, the salience network, incorporating the insula and a medial temporal lobe network, incorporating the amygdala, showed reduced inter-network connectivity. This was underlined by reduced seed-based connectivity between the insula and amygdala. The results demonstrate significantly reduced functional connectivity within and between resting state networks incorporating ‘social’ brain regions. This reduced connectivity may result in difficulties in communication and integration of information across these networks, which could contribute to the impaired processing of social signals in ASC. PMID:22563003
Reducing proactive aggression through non-invasive brain stimulation
Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T.
2015-01-01
Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991
Regional growth and atlasing of the developing human brain
Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel
2016-01-01
Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811
Regional growth and atlasing of the developing human brain.
Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel
2016-01-15
Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Harris, B A; Andrews, P J D; Murray, G D
2007-01-01
Heat loss from the upper airways and through the skull are physiological mechanisms of brain cooling which have not been fully explored clinically. This randomized, crossover, factorial trial in 12 brain-injured, orally intubated patients investigated the effect of enhanced nasal airflow (high flow unhumidified air with 20 p.p.m. nitric oxide gas) and bilateral head fanning on frontal lobe brain temperature and selective brain cooling. After a 30 min baseline, each patient received the four possible combinations of the interventions--airflow, fanning, both together, no intervention--in randomized order. Each combination was delivered for 30 min and followed by a 30 min washout, the last 5 min of which provided the baseline for the next intervention. The difference in mean brain temperature over the last 5 min of the preceding washout minus the mean over the last 5 min of intervention, was 0.15 degrees C with nasal airflow (P=0.001, 95% CI 0.06-0.23 degrees C) and 0.26 degrees C with head fanning (P<0.001, 95% CI 0.17-0.34 degrees C). The estimate of the combined effect of airflow and fanning on brain temperature was 0.41 degrees C. Selective brain cooling did not occur. Physiologically, this study demonstrates that heat loss through the upper airways and through the skull can reduce parenchymal brain temperature in brain-injured humans and the onset of temperature reduction is rapid. Clinically, in ischaemic stroke, a temperature decrease of 0.27 degrees C may reduce the relative risk of poor outcome by 10-20%. Head fanning may have the potential to achieve a temperature decrease of this order.
ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors.
Danilov, Sergei M; Tovsky, Stan I; Schwartz, David E; Dull, Randal O
2017-07-01
Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient's response. To investigate whether interindividual variability in the response to ACE inhibitors is explained by the "ACE phenotype"-for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient's blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Due to the fact that "20% of patients do not respond to ACEI by blood pressure drop," the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.
Autonomic control of the heart is altered in Sprague-Dawley rats with spontaneous hydronephrosis
Arnold, Amy C.; Shaltout, Hossam A.; Gilliam-Davis, Shea; Kock, Nancy D.
2011-01-01
The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P < 0.05). The evoked BRS to increases, but not decreases, in pressure was lower in hydronephrotic rats (1.06 ± 0.06 normal vs. 0.72 ± 0.10 mild/moderate vs. 0.63 ± 0.07 ms/mmHg severe; P < 0.05). Spectral analysis methods confirmed reduced parasympathetic function in hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II. PMID:21460193
Kahan, Natan R; Chinitz, David P; Blackman, Shimon; Waitman, Dan-Andrei; Vardy, Daniel A
2011-12-01
To evaluate whether rescinding the prior authorization (PA) requirement (managerial pre-approval) for losartan in an health maintenance organization (HMO) could reduce prescribing of the more expensive angiotensin receptor blockers (ARBs). HMO physicians were notified that losartan would no longer require PA, and appropriate changes were made to the electronic prescribing computer program. The monthly distribution by drug of the number of prescriptions for ARBs dispensed for new patients was calculated before and after the policy change from data captured from electronic records. The proportion of patients (percentage and 95% confidence interval) treated with losartan who met the criteria for treatment with ARBs (hypertension or cardiac insufficiency in patients who have developed adverse effects in response to angiotensin-converting enzyme inhibitors or macroproteinuria) during the first month after the PA requirement was rescinded was calculated. The total number of PA requests for ARBs declined by 48.6% from 961 in December 2008, the month before the policy change, to 494 the following January, rising again to 651 during January 2010. Prescription incidence changed from 121 to 255 patients treated per month (114% increase) for losartan, from 15 to 16 (6.7% increase) for candesartan, and from 89 to 71 (20.2% decrease) for valsartan. The duration of effect for decrease in ARB requests for the more expensive drugs was approximately 1 year. Only 23.3% (95% confidence interval 18.1-28.4) of patients receiving losartan met the criteria for receiving ARBs. Rescinding the PA requirement for this drug alone was an effective limited-duration strategy for reduction of prescription of relatively expensive drugs. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Differential pharmacology and benefit/risk of azilsartan compared to other sartans.
Kurtz, Theodore W; Kajiya, Takashi
2012-01-01
Azilsartan, an angiotensin II type 1 (AT(1)) receptor blocker (ARB), was recently approved by regulatory authorities for treatment of hypertension and is the 8th ARB to join the clinical market. This article discusses the medical reasons for introducing a new AT(1) receptor blocker and reviews the experimental and clinical studies that have compared the functional properties of azilsartan to those of other ARBs. The main question addressed is: Does azilsartan have distinguishing features that should motivate choosing it over any of the other sartans for use in clinical practice? Based on studies conducted to date in hypertensive patients without serious comorbidities, azilsartan appears to be characterized by a superior ability to control 24-hour systolic blood pressure (BP) relative to other widely used ARBs including valsartan, olmesartan, and candesartan, and presumably others as well (eg, losartan). Compared to these other ARBs, azilsartan may increase the BP target control and response rate by an absolute value of 8%-10%. Greater antihypertensive effects of azilsartan might be due in part to its unusually potent and persistent ability to inhibit binding of angiotensin II to AT(1) receptors. Preclinical studies have indicated that azilsartan may also have potentially beneficial effects on cellular mechanisms of cardiometabolic disease and insulin sensitizing activity that could involve more than just blockade of AT(1) receptors and/or reduction in BP. However, the clinical relevance of these additional actions is unknown. Given that the general ability of antihypertensive drugs to protect against target organ damage is largely mediated by their ability to decrease BP, the enhanced antihypertensive effects of azilsartan should serve to justify clinical interest in this ARB relative to other molecules in the class that have a lower capacity to reduce BP.
Differential pharmacology and benefit/risk of azilsartan compared to other sartans
Kurtz, Theodore W; Kajiya, Takashi
2012-01-01
Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), was recently approved by regulatory authorities for treatment of hypertension and is the 8th ARB to join the clinical market. This article discusses the medical reasons for introducing a new AT1 receptor blocker and reviews the experimental and clinical studies that have compared the functional properties of azilsartan to those of other ARBs. The main question addressed is: Does azilsartan have distinguishing features that should motivate choosing it over any of the other sartans for use in clinical practice? Based on studies conducted to date in hypertensive patients without serious comorbidities, azilsartan appears to be characterized by a superior ability to control 24-hour systolic blood pressure (BP) relative to other widely used ARBs including valsartan, olmesartan, and candesartan, and presumably others as well (eg, losartan). Compared to these other ARBs, azilsartan may increase the BP target control and response rate by an absolute value of 8%–10%. Greater antihypertensive effects of azilsartan might be due in part to its unusually potent and persistent ability to inhibit binding of angiotensin II to AT1 receptors. Preclinical studies have indicated that azilsartan may also have potentially beneficial effects on cellular mechanisms of cardiometabolic disease and insulin sensitizing activity that could involve more than just blockade of AT1 receptors and/or reduction in BP. However, the clinical relevance of these additional actions is unknown. Given that the general ability of antihypertensive drugs to protect against target organ damage is largely mediated by their ability to decrease BP, the enhanced antihypertensive effects of azilsartan should serve to justify clinical interest in this ARB relative to other molecules in the class that have a lower capacity to reduce BP. PMID:22399858
Cortisol reduces cell proliferation in the telencephalon of rainbow trout (Oncorhynchus mykiss).
Sørensen, Christina; Bohlin, Linda C; Øverli, Øyvind; Nilsson, Göran E
2011-03-28
The fish brain grows throughout life, and new cells are added continuously in all major brain areas. As in mammals, the rate of adult brain cell proliferation in fish can be regulated by external factors including environmental complexity and interaction with conspecifics. We have recently demonstrated that the stress experienced by subordinate rainbow trout in social hierarchies leads to a marked suppression of brain cell proliferation in the telencephalon, and that this is accompanied by an increase in plasma levels of cortisol. Corticosteroid hormones are known to suppress adult neurogenesis in mammals, and to investigate whether this is also the case in fish, rainbow trout were fed feed containing either a low or a high dose of cortisol for 6 days. Compared to control animals receiving regular feed, both cortisol treated groups had significantly elevated cortisol levels 24h after the last feeding, with the high group having levels comparable to those previously reported in socially stressed fish. To quantify cell proliferation, immunohistochemistry for proliferating cell nuclear antigen (PCNA) was performed to identify actively cycling cells. The density of PCNA-positive nuclei in the telencephalon was reduced by about 50% in both cortisol treated groups. The effect of cortisol on brain cell proliferation did not reflect a general down regulation of growth, as only the high cortisol group had reduced growth rate, and there was no correlation between brain cell proliferation and growth rate in any group. These results indicate that the reduced proliferative activity seen in brains of socially stressed fish is mediated by cortisol, and that there is a similar suppressive effect of cortisol on brain cell proliferation in the teleost forebrain as in the mammalian hippocampus. Copyright © 2010 Elsevier Inc. All rights reserved.
Mayurasakorn, Korapat; Niatsetskaya, Zoya V; Sosunov, Sergey A; Williams, Jill J; Zirpoli, Hylde; Vlasakov, Iliyan; Deckelbaum, Richard J; Ten, Vadim S
2016-01-01
Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4-5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8-9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA.
Asadi, Yasin; Gorjipour, Fazel; Behrouzifar, Sedigheh; Vakili, Abedin
2018-06-07
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood-brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P < 0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P < 0.001) without changing BBB permeability (P > 0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P < 0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.
Sosunov, Sergey A.; Williams, Jill J.; Zirpoli, Hylde; Vlasakov, Iliyan; Deckelbaum, Richard J.; Ten, Vadim S.
2016-01-01
Background and Purpose Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. Methods 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4–5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8–9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Results Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Conclusions Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA. PMID:27513579
Zhang, Lihua; Cheng, Huilin; Shi, Jixin; Chen, Jun
2007-02-01
The protective effect against ischemic stroke by systemic hypothermia is limited by the cooling rate and it has severe complications. This study was designed to evaluate the effect of SBH induced by epidural cooling on infarction volume in a swine model of PMCAO. Permanent middle cerebral artery occlusion was performed in 12 domestic swine assigned to groups A and B. In group A, the cranial and rectal temperatures were maintained at normal range (37 degrees C-39 degrees C) for 6 hours after PMCAO. In group B, cranial temperature was reduced to moderate (deep brain, <30 degrees C) and deep (brain surface, <20 degrees C) temperature and maintained at that level for 5 hours after 1 hour after PMCAO, by the epidural cooling method. All animals were euthanized 6 hours after MCAO; their brains were sectioned and stained with 2,3,5-triphenyltetrazolium chloride and their infarct volumes were calculated. The moderate and deep brain temperature (at deep brain and brain surface) can be induced by rapid epidural cooling, whereas the rectal temperature was maintained within normal range. The infarction volume after PMCAO was significantly reduced by epidural cooling compared with controls (13.73% +/- 1.82% vs 5.62% +/- 2.57%, P < .05). The present study has demonstrated, with histologic confirmation, that epidural cooling may be a useful strategy for reducing infarct volume after the onset of ischemia.
Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study.
Vallès, Astrid; Martí, Octavi; Armario, Antonio
2005-06-01
We have recently found that a single endotoxin administration to rats reduced the hypothalamic-pituitary-adrenal response to another endotoxin administration 4 weeks later, which may be an example of the well-known phenomenon of endotoxin tolerance. However, the time elapsed between the two doses of endotoxin was long enough to consider the above results as an example of late tolerance, whose mechanisms are poorly characterized. To know if the brain plays a role in this phenomenon and to characterize the putative areas involved, we compared the c-fos mRNA response after a final dose of endotoxin in animals given vehicle or endotoxin 4 weeks before. Endotoxin caused a widespread induction of c-fos mRNA in the brain, similar to that previously reported by other laboratories. Whereas most of the brain areas were not sensitive to the previous experience with endotoxin, a few showed a reduced response in endotoxin-pretreated rats: the parvocellular and magnocellular regions of the paraventricular hypothalamic nucleus, the central amygdala, the lateral division of the bed nucleus and the locus coeruleus. We hypothesize that late tolerance to endotoxin may involve plastic changes in the brain, likely to be located in the central amygdala. The reduced activation of the central amygdala in rats previously treated with endotoxin may, in turn, reduce the activation of other brain areas, including the hypothalamic paraventicular nucleus.
Chew, Wai Kit; Ambu, Stephen; Mak, Joon Wah
2012-01-01
Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC0–∞) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC0–∞ values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment. PMID:22271863
Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E
2008-11-15
We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.
Wang, Lei; Gama, Clarissa S.; Barch, Deanna M.
2017-01-01
Abstract Background: Schizophrenia (SZ) is often characterized by cognitive and intellectual impairment. However, there is much heterogeneity across individuals, suggesting different trajectories of the illness. Recent findings have shown brain volume differences across subgroups of individuals with psychosis (SZ and bipolar disorder), such that those with intellectual and cognitive impairments presented evidence of early cerebral disruption, while those with cognitive but not intellectual impairments showed evidence of progressive brain abnormalities. Our aim was to investigate the relations of cognition and intellectual functioning with brain structure abnormalities in a sample of SZ compared to unaffected individuals. Methods: 92 individuals with SZ and 94 healthy controls part of the Northwestern University Schizophrenia Data and Software Tool (NUSDAST) underwent neuropsychological assessment and structural magnetic resonance imaging (MRI). Individuals with SZ were divided into subgroups according their estimated premorbid crystallized intellectual (ePMC-IQ) and cognitive performance. Brain volumes differences were investigated across groups. Results: SZ with ePMC-IQ and cognitive impairments had reduced total brain volume (TBV), intracranial volume (ICV), TBV corrected for ICV, and cortical gray matter volume, as well as reduced cortical thickness, and insula volumes. SZ with cognitive impairment but intact ePMC-IQ showed only reduced cortical gray matter volume and cortical thickness. Conclusions: These data provide additional evidence for heterogeneity in SZ. Impairments in cognition associated with reduced ePMC-IQ were related to evidence of broad brain structural alterations, including suggestion of early cerebral disruption. In contrast, impaired cognitive functioning in the context of more intact intellectual functioning was associated with cortical alterations that may reflect neurodegeneration. PMID:27369471
Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente
2014-06-01
Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.
Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain
2014-09-01
Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua
2018-04-01
Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.
Sevenich, Lisa; Bowman, Robert L.; Mason, Steven D.; Quail, Daniela F.; Rapaport, Franck; Elie, Benelita T.; Brogi, Edi; Brastianos, Priscilla K.; Hahn, William C.; Holsinger, Leslie J.; Massagué, Joan; Leslie, Christina S.; Joyce, Johanna A.
2014-01-01
Metastasis remains the most common cause of death in most cancers, with limited therapies for combating disseminated disease. While the primary tumor microenvironment is an important regulator of cancer progression, it is less well understood how different tissue environments influence metastasis. We analyzed tumor-stroma interactions that modulate organ tropism of brain, bone and lung metastasis in xenograft models. We identified a number of potential modulators of site-specific metastasis, including cathepsin S as a regulator of breast-to-brain metastasis. High cathepsin S expression at the primary site correlated with decreased brain metastasis-free survival in breast cancer patients. Both macrophages and tumor cells produce cathepsin S, and only the combined depletion significantly reduced brain metastasis in vivo. Cathepsin S specifically mediates blood-brain barrier transmigration via proteolytic processing of the junctional adhesion molecule (JAM)-B. Pharmacological inhibition of cathepsin S significantly reduced experimental brain metastasis, supporting its consideration as a therapeutic target for this disease. PMID:25086747
Jaeger, Laura B; Dohgu, Shinya; Hwang, Mark C; Farr, Susan A; Murphy, M Paul; Fleegal-DeMotta, Melissa A; Lynch, Jessica L; Robinson, Sandra M; Niehoff, Michael L; Johnson, Steven N; Kumar, Vijaya B; Banks, William A
2009-01-01
Decreased clearance is the main reason amyloid-beta protein (Abeta) is increased in the brains of patients with Alzheimer's disease (AD). The neurovascular hypothesis states that this decreased clearance is caused by impairment of low density lipoprotein receptor related protein-1 (LRP-1), the major brain-to-blood transporter of Abeta at the blood-brain barrier (BBB). As deletion of the LRP-1 gene is a lethal mutation, we tested the neurovascular hypothesis by developing a cocktail of phosphorothioate antisenses directed against LRP-1 mRNA. We found these antisenses in comparison to random antisense selectively decreased LRP-1 expression, reduced BBB clearance of Abeta42, increased brain levels of Abeta42, and impaired learning ability and recognition memory in mice. These results support dysfunction of LRP-1 at the BBB as a mechanism by which brain levels of Abeta could increase and AD would be promoted.
The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model.
Liu, Hui; Kato, Yukinari; Erzinger, Stephanie A; Kiriakova, Galina M; Qian, Yongzhen; Palmieri, Diane; Steeg, Patricia S; Price, Janet E
2012-12-07
Brain metastasis is an increasingly common complication for breast cancer patients; approximately 15- 30% of breast cancer patients develop brain metastasis. However, relatively little is known about how these metastases form, and what phenotypes are characteristic of cells with brain metastasizing potential. In this study, we show that the targeted knockdown of MMP-1 in breast cancer cells with enhanced brain metastatic ability not only reduced primary tumor growth, but also significantly inhibited brain metastasis. Two variants of the MDA-MB-231 human breast cancer cell line selected for enhanced ability to form brain metastases in nude mice (231-BR and 231-BR3 cells) were found to express high levels of matrix metalloproteinase-1 (MMP-1). Short hairpin RNA-mediated stable knockdown of MMP-1 in 231-BR and 231-BR3 cells were established to analyze tumorigenic ability and metastatic ability. Short hairpin RNA-mediated stable knockdown of MMP-1 inhibited the invasive ability of MDA-MB 231 variant cells in vitro, and inhibited breast cancer growth when the cells were injected into the mammary fat pad of nude mice. Reduction of MMP-1 expression significantly attenuated brain metastasis and lung metastasis formation following injection of cells into the left ventricle of the heart and tail vein, respectively. There were significantly fewer proliferating cells in brain metastases of cells with reduced MMP-1 expression. Furthermore, reduced MMP-1 expression was associated with decreased TGFα release and phospho-EGFR expression in 231-BR and BR3 cells. Our results show that elevated expression of MMP-1 can promote the local growth and the formation of brain metastases by breast cancer cells.
van Vliet, Danique; Bruinenberg, Vibeke M; Mazzola, Priscila N; van Faassen, Martijn Hjr; de Blaauw, Pim; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Kema, Ido P; Heiner-Fokkema, M Rebecca; van der Zee, Eddy A; van Spronsen, Francjan J
2016-11-01
Phenylketonuria treatment consists mainly of a Phe-restricted diet, which leads to suboptimal neurocognitive and psychosocial outcomes. Supplementation of large neutral amino acids (LNAAs) has been suggested as an alternative dietary treatment strategy to optimize neurocognitive outcome in phenylketonuria and has been shown to influence 3 brain pathobiochemical mechanisms in phenylketonuria, but its optimal composition has not been established. In order to provide additional pathobiochemical insight and develop optimal LNAA treatment, several targeted LNAA supplements were investigated with respect to all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria. Pah-enu2 (PKU) mice received 1 of 5 different LNAA-supplemented diets beginning at postnatal day 45. Control groups included phenylketonuria mice receiving an isonitrogenic and isocaloric high-protein diet or the AIN-93M diet, and wild-type mice receiving the AIN-93M diet. After 6 wk, brain and plasma amino acid profiles and brain monoaminergic neurotransmitter concentrations were measured. Brain Phe concentrations were most effectively reduced by supplementation of LNAAs, such as Leu and Ile, with a strong affinity for the LNAA transporter type 1. Brain non-Phe LNAAs could be restored on supplementation, but unbalanced LNAA supplementation further reduced brain concentrations of those LNAAs that were not (sufficiently) included in the LNAA supplement. To optimally ameliorate brain monoaminergic neurotransmitter concentrations, LNAA supplementation should include Tyr and Trp together with LNAAs that effectively reduce brain Phe concentrations. The requirement for Tyr supplementation is higher than it is for Trp, and the relative effect of brain Phe reduction is higher for serotonin than it is for dopamine and norepinephrine. The study shows that all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria can be targeted by specific LNAA supplements. The study thus provides essential information for the development of optimal LNAA supplementation as an alternative dietary treatment strategy to optimize neurocognitive outcome in patients with phenylketonuria. © 2016 American Society for Nutrition.
Effects of Wen Dan Tang on insomnia-related anxiety and levels of the brain-gut peptide Ghrelin.
Wang, Liye; Song, Yuehan; Li, Feng; Liu, Yan; Ma, Jie; Mao, Meng; Wu, Fengzhi; Wu, Ying; Li, Sinai; Guan, Binghe; Liu, Xiaolan
2014-01-15
Ghrelin, a brain-gut peptide that induces anxiety and other abnormal emotions, contributes to the effects of insomnia on emotional behavior. In contrast, the traditional Chinese Medicine remedy Wen Dan Tang reduces insomnia-related anxiety, which may perhaps correspond to changes in the brain-gut axis. This suggests a possible relationship between Wen Dan Tang's pharmacological mechanism and the brain-gut axis. Based on this hypothesis, a sleep-deprived rat model was induced and Wen Dan Tang was administered using oral gavage during model establishment. Wen Dan Tang significantly reduced insomnia-related anxiety and prevented Ghrelin level decreases following sleep deprivation, especially in the hypothalamus. Increased expression of Ghrelin receptor mRNA in the hypothalamus was also observed, suggesting that reduced anxiety may be a result of Wen Dan Tang's regulation of Ghrelin-Ghrelin receptors.
The glia doctrine: addressing the role of glial cells in healthy brain ageing.
Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone
2013-10-01
Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V
2013-01-01
To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.
Reducing proactive aggression through non-invasive brain stimulation.
Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T
2015-10-01
Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia
Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph
2015-01-01
Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury. PMID:26311776
Swaminathan, Suresh Kumar; Ahlschwede, Kristen M; Sarma, Vidur; Curran, Geoffry L; Omtri, Rajesh S; Decklever, Teresa; Lowe, Val J; Poduslo, Joseph F; Kandimalla, Karunya K
2018-05-01
Impaired brain clearance of amyloid-beta peptides (Aβ) 40 and 42 across the blood-brain barrier (BBB) is believed to be one of the pathways responsible for Alzheimer's disease (AD) pathogenesis. Hyperinsulinemia prevalent in type II diabetes was shown to damage cerebral vasculature and increase Aβ accumulation in AD brain. However, there is no clarity on how aberrations in peripheral insulin levels affect Aβ accumulation in the brain. This study describes, for the first time, an intricate relation between plasma insulin and Aβ transport at the BBB. Upon peripheral insulin administration in wild-type mice: the plasma clearance of Aβ40 increased, but Aβ42 clearance reduced; the plasma-to-brain influx of Aβ40 increased, and that of Aβ42 reduced; and the clearance of intracerebrally injected Aβ40 decreased, whereas Aβ42 clearance increased. In hCMEC/D3 monolayers (in vitro BBB model) exposed to insulin, the luminal uptake and luminal-to-abluminal permeability of Aβ40 increased and that of Aβ42 reduced; the abluminal-to-luminal permeability of Aβ40 decreased, whereas Aβ42 permeability increased. Moreover, Aβ cellular trafficking machinery was altered. In summary, Aβ40 and Aβ42 demonstrated distinct distribution kinetics in plasma and brain compartments, and insulin differentially modulated their distribution. Cerebrovascular disease and metabolic disorders may disrupt this intricate homeostasis and aggravate AD pathology.
Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse.
Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna; Seyfried, Thomas N
2010-07-23
GBM (glioblastoma multiforme) is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction) for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2014-03-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.
Researching and Reducing the Health Burden of Stroke
... the result of continuing research to map the brain and interface it with a computer to enable stroke patients to regain function. How important is the new effort to map the human brain? The brain is more complex than any computer ...
Cheng, Tian; Wang, Wenzhu; Li, Qian; Han, Xiaoning; Xing, Jing; Qi, Cunfang; Lan, Xi; Wan, Jieru; Potts, Alexa; Guan, Fangxia; Wang, Jian
2016-01-01
Traumatic brain injury (TBI), which leads to disability, dysfunction, and even death, is a prominent health problem worldwide with no effective treatment. A brain-permeable flavonoid named (−)-epicatechin (EC) modulates redox/oxidative stress and has been shown to be beneficial for vascular and cognitive function in humans and for ischemic and hemorrhagic stroke in rodents. Here we examined whether EC is able to protect the brain against TBI-induced brain injury in mice and if so, whether it exerts neuroprotection by modulating the NF-E2-related factor (Nrf2) pathway. We used the controlled cortical impact model to mimic TBI. EC was administered orally at 3 h after TBI and then every 24 h for either 3 or 7 days. We evaluated lesion volume, brain edema, white matter injury, neurologic deficits, cognitive performance and emotion-like behaviors, neutrophil infiltration, reactive oxygen species (ROS), and a variety of injury-related protein markers. Nrf2 knockout mice were used to determine the role of the Nrf2 signaling pathway after EC treatment. In wild-type mice, EC significantly reduced lesion volume, edema, and cell death and improved neurologic function on days 3 and 28; cognitive performance and depression-like behaviors were also improved with EC administration. In addition, EC reduced white matter injury, heme oxygenase-1 expression, and ferric iron deposition after TBI. These changes were accompanied by attenuation of neutrophil infiltration and oxidative insults, reduced activity of matrix metalloproteinase 9, decreased Keap 1 expression, increased Nrf2 nuclear accumulation, and increased expression of superoxide dismutase 1 and quinone 1. However, EC did not significantly reduce lesion volume or improve neurologic deficits in Nrf2 knockout mice after TBI. Our results show that EC protects the TBI brain by activating the Nrf2 pathway, inhibiting heme oxygenase-1 protein expression, and reducing iron deposition. The latter two effects could represent an Nrf2-independent mechanism in this model of TBI. PMID:26724590
Hormigo, A; Friedlander, D R; Brittis, P A; Zagzag, D; Grumet, M
2001-04-01
A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.
Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses.
Bouyssi-Kobar, Marine; du Plessis, Adré J; McCarter, Robert; Brossard-Racine, Marie; Murnick, Jonathan; Tinkleman, Laura; Robertson, Richard L; Limperopoulos, Catherine
2016-11-01
Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks' GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI. Copyright © 2016 by the American Academy of Pediatrics.
Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses
Bouyssi-Kobar, Marine; du Plessis, Adré J.; McCarter, Robert; Brossard-Racine, Marie; Murnick, Jonathan; Tinkleman, Laura; Robertson, Richard L.
2016-01-01
BACKGROUND AND OBJECTIVES: Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. METHODS: Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. RESULTS: We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks’ GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. CONCLUSIONS: These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI. PMID:27940782
Being fat and smart: A comparative analysis of the fat-brain trade-off in mammals.
Heldstab, Sandra A; van Schaik, Carel P; Isler, Karin
2016-11-01
Humans stand out among non-aquatic mammals by having both an extremely large brain and a relatively large amount of body fat. To understand the evolution of this human peculiarity we report a phylogenetic comparative study of 120 mammalian species, including 30 primates, using seasonal variation in adult body mass as a proxy of the tendency to store fat. Species that rely on storing fat to survive lean periods are expected to be less active because of higher costs of locomotion and have increased predation risk due to reduced agility. Because a fat-storage strategy reduces the net cognitive benefit of a large brain without reducing its cost, such species should be less likely to evolve a larger brain than non-fat-storing species. We therefore predict that the two strategies to buffer food shortages (storing body fat and cognitive flexibility) are compensatory, and therefore predict negative co-evolution between relative brain size and seasonal variation in body mass. This trade-off is expected to be stronger in predominantly arboreal species than in more terrestrial ones, as the cost of transporting additional adipose depots is higher for climbing than for horizontal locomotion. We did, indeed, find a significant negative correlation between brain size and coefficient of variation (CV) in body mass in both sexes for the subsample of arboreal species, both in all mammals and within primates. In predominantly terrestrial species, in contrast, this correlation was not significant. We therefore suggest that the adoption of habitually terrestrial locomotor habits, accompanied by a reduced reliance on climbing, has allowed for a primate of our body size the unique human combination of unusually large brains and unusually large adipose depots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu
2014-01-01
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475
Shinohara, Mitsuru; Sato, Naoyuki; Kurinami, Hitomi; Takeuchi, Daisuke; Takeda, Shuko; Shimamura, Munehisa; Yamashita, Toshihide; Uchiyama, Yasuo; Rakugi, Hiromi; Morishita, Ryuichi
2010-01-01
Epidemiological studies suggest that statins (hydroxymethylglutaryl-CoA reductase inhibitors) could reduce the risk of Alzheimer disease. Although one possible explanation is through an effect on β-amyloid (Aβ) metabolism, its effect remains to be elucidated. Here, we explored the molecular mechanisms of how statins influence Aβ metabolism. Fluvastatin at clinical doses significantly reduced Aβ and amyloid precursor protein C-terminal fragment (APP-CTF) levels among APP metabolites in the brain of C57BL/6 mice. Chronic intracerebroventricular infusion of lysosomal inhibitors blocked these effects, indicating that up-regulation of the lysosomal degradation of endogenous APP-CTFs is involved in reduced Aβ production. Biochemical analysis suggested that this was mediated by enhanced trafficking of APP-CTFs from endosomes to lysosomes, associated with marked changes of Rab proteins, which regulate endosomal function. In primary neurons, fluvastatin enhanced the degradation of APP-CTFs through an isoprenoid-dependent mechanism. Because our previous study suggests additive effects of fluvastatin on Aβ metabolism, we examined Aβ clearance rates by using the brain efflux index method and found its increased rates at high Aβ levels from brain. As LRP1 in brain microvessels was increased, up-regulation of LRP1-mediated Aβ clearance at the blood-brain barrier might be involved. In cultured brain microvessel endothelial cells, fluvastatin increased LRP1 and the uptake of Aβ, which was blocked by LRP1 antagonists, through an isoprenoid-dependent mechanism. Overall, the present study demonstrated that fluvastatin reduced Aβ level by an isoprenoid-dependent mechanism. These results have important implications for the development of disease-modifying therapy for Alzheimer disease as well as understanding of Aβ metabolism. PMID:20472556
Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.
Kobayashi, Kenji; Hsu, Ming
2017-07-19
Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. Copyright © 2017 the authors 0270-6474/17/376972-11$15.00/0.
Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty
2017-01-01
Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. PMID:28626019
Laeger, Thomas; Reed, Scott D.; Henagan, Tara M.; Fernandez, Denise H.; Taghavi, Marzieh; Addington, Adele; Münzberg, Heike; Martin, Roy J.; Hutson, Susan M.
2014-01-01
Intracerebroventricular injections of leucine are sufficient to suppress food intake, but it remains unclear whether brain leucine signaling represents a physiological signal of protein balance. We tested whether variations in dietary and circulating levels of leucine, or all three branched-chain amino acids (BCAAs), contribute to the detection of reduced dietary protein. Of the essential amino acids (EAAs) tested, only intracerebroventricular injection of leucine (10 μg) was sufficient to suppress food intake. Isocaloric low- (9% protein energy; LP) or normal- (18% protein energy) protein diets induced a divergence in food intake, with an increased consumption of LP beginning on day 2 and persisting throughout the study (P < 0.05). Circulating BCAA levels were reduced the day after LP diet exposure, but levels subsequently increased and normalized by day 4, despite persistent hyperphagia. Brain BCAA levels as measured by microdialysis on day 2 of diet exposure were reduced in LP rats, but this effect was most prominent postprandially. Despite these diet-induced changes in BCAA levels, reducing dietary leucine or total BCAAs independently from total protein was neither necessary nor sufficient to induce hyperphagia, while chronic infusion of EAAs into the brain of LP rats failed to consistently block LP-induced hyperphagia. Collectively, these data suggest that circulating BCAAs are transiently reduced by dietary protein restriction, but variations in dietary or brain BCAAs alone do not explain the hyperphagia induced by a low-protein diet. PMID:24898843
Bcl-2 upregulation and neuroprotection in guinea pig brain following chronic simvastatin treatment.
Franke, Cornelia; Nöldner, Michael; Abdel-Kader, Reham; Johnson-Anuna, Leslie N; Gibson Wood, W; Müller, Walter E; Eckert, Gunter P
2007-02-01
The present study determined if chronic simvastatin administration in vivo would provide neuroprotection in brain cells isolated from guinea pigs after challenge with the Bcl-2 inhibitor HA 14-1 or the NO donor sodium nitroprusside (SNP). Bcl-2 levels were significantly increased in brains of simvastatin-treated guinea pigs while levels of the pro-apoptotic protein Bax were significantly reduced. The ratio of Bax/Bcl-2, being a critical factor of the apoptotic state of cells, was significantly reduced in simvastatin-treated animals. Cholesterol levels in the brain remained unchanged in the simvastatin group. Brain cells isolated from simvastatin-treated guinea pigs were significantly less vulnerable to mitochondrial dysfunction and caspase-activation. These results provide new insight into potential mechanisms for the protective actions of statins within the CNS where programmed cell death has been implicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumsey, J.M.; Duara, R.; Grady, C.
The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic ratesmore » (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.« less
Neurogenesis in the aging brain.
Apple, Deana M; Solano-Fonseca, Rene; Kokovay, Erzsebet
2017-10-01
Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain Friendly School Libraries
ERIC Educational Resources Information Center
Sykes, Judith Anne
2006-01-01
This title gives concrete practical examples of how to align school library programs and instructional practice with the six key concepts of brain-compatible learning: increasing input to the brain; increasing experiential data; multiple source feedback; reducing threat; involving students in learning decision making; and interdisciplinary unit…
Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J
2016-01-01
Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410
Mehta, Dharmini C; Short, Jennifer L; Nicolazzo, Joseph A
2013-12-02
Memantine (MEM) is prescribed in mono and combination therapies for treating the symptoms of moderate to severe Alzheimer's disease (AD). Despite MEM being widely prescribed with other AD and non-AD medicines, very little is known about its mechanism of transport across the blood-brain barrier (BBB), and whether the nature of this transport lends MEM to a potential for drug-drug interactions at the BBB. Therefore, the purpose of this study was to characterize the mechanisms facilitating MEM brain uptake in Swiss Outbred mice using an in situ transcardiac perfusion technique, and identify the putative transporter involved in MEM disposition into the brain. Following transcardiac perfusion of MEM with increasing concentrations, the brain uptake of MEM was observed to be saturable. Furthermore, MEM brain uptake was reduced (up to 55%) by various cationic transporter inhibitors (amantadine, quinine, tetraethylammonium, choline and carnitine) and was dependent on extracellular pH, while being independent of membrane depolarization and the presence of Na(+) in the perfusate. In addition, MEM brain uptake was observed to be sensitive to changes in intracellular pH, hence, likely to be driven by H(+)/MEM antiport mechanisms. Taken together, these findings implicate the involvement of an organic cation transporter regulated by proton antiport mechanisms in the transport of MEM across the mouse BBB, possibly the organic cation/carnitine transporter, OCTN1. These studies also clearly demonstrate the brain uptake of MEM is significantly reduced by other cationic compounds, highlighting the need to consider the possibility of drug interactions with MEM at the BBB, potentially leading to reduced brain uptake and, therefore, altered efficacy of MEM when used in patients on multidrug regimens.
Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua
2018-06-05
Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong
2017-10-01
Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis.
Smart, DeeDee; Garcia-Glaessner, Alejandra; Palmieri, Diane; Wong-Goodrich, Sarah J; Kramp, Tamalee; Gril, Brunilde; Shukla, Sudhanshu; Lyle, Tiffany; Hua, Emily; Cameron, Heather A; Camphausen, Kevin; Steeg, Patricia S
2015-10-01
Most cancer patients with brain metastases are treated with radiation therapy, yet this modality has not yet been meaningfully incorporated into preclinical experimental brain metastasis models. We applied two forms of whole brain radiation therapy (WBRT) to the brain-tropic 231-BR experimental brain metastasis model of triple-negative breast cancer. When compared to sham controls, WBRT as 3 Gy × 10 fractions (3 × 10) reduced the number of micrometastases and large metastases by 87.7 and 54.5 %, respectively (both p < 0.01); whereas a single radiation dose of 15 Gy × 1 (15 × 1) was less effective, reducing metastases by 58.4 % (p < 0.01) and 47.1 % (p = 0.41), respectively. Neuroinflammation in the adjacent brain parenchyma was due solely to a reaction from metastases, and not radiotherapy, while adult neurogenesis in brains was adversely affected following both radiation regimens. The nature of radiation resistance was investigated by ex vivo culture of tumor cells that survived initial WBRT ("Surviving" cultures). The Surviving cultures surprisingly demonstrated increased radiosensitivity ex vivo. In contrast, re-injection of Surviving cultures and re-treatment with a 3 × 10 WBRT regimen significantly reduced the number of large and micrometastases that developed in vivo, suggesting a role for the microenvironment. Micrometastases derived from tumor cells surviving initial 3 × 10 WBRT demonstrated a trend toward radioresistance upon repeat treatment (p = 0.09). The data confirm the potency of a fractionated 3 × 10 WBRT regimen and identify the brain microenvironment as a potential determinant of radiation efficacy. The data also nominate the Surviving cultures as a potential new translational model for radiotherapy.
Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric
2014-01-01
Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058
Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun
2016-02-23
We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.
Chen, Keyan; Wang, Nan; Diao, Yugang; Dong, Wanwei; Sun, YingJie; Liu, Lidan; Wu, Xiuying
2017-01-01
Cardiopulmonary bypass (CPB) is prone to inducing brain injury during open heart surgery. A hydrogen-rich solution (HRS) can prevent oxidation and apoptosis, and inhibit inflammation. This study investigated effects of HRS on brain injury induced by CPB and regulatory mechanisms of the PI3K/Akt/GSK3β signaling pathway. A rat CPB model and an in vitro cell hypoxia model were established. After HRS treatment, Rat behavior was measured using neurological deficit score; Evans blue (EB) was used to assess permeability of the blood-brain barrier (BBB); HE staining was used to observe pathological changes; Inflammatory factors and brain injury markers were detected by ELISA; the PI3K/Akt/GSK3β pathway-related proteins and apoptosis were assessed by western blot, immunohistochemistry and qRT -PCR analyses of brain tissue and neurons. After CPB, brain tissue anatomy was disordered, and cell structure was abnormal. Brain tissue EB content increased. There was an increase in the number of apoptotic cells, an increase in expression of Bax and caspase-3, a decrease in expression of Bcl2, and increases in levels of Akt, GSK3β, P-Akt, and P-GSK3β in brain tissue. HRS treatment attenuated the inflammatory reaction ,brain tissue EB content was significantly reduced and significantly decreased expression levels of Bax, caspase-3, Akt, GSK3β, P-Akt, and P-GSK3β in the brain. After adding the PI3K signaling pathway inhibitor, LY294002, to rat cerebral microvascular endothelial cells (CMECs), HRS could reduce activated Akt expression and downstream regulatory gene phosphorylation of GSK3β expression, and inhibit CMEC apoptosis. The PI3K/Akt/GSK3β signaling pathway plays an important role in the mechanism of CPB-induced brain injury. HRS can reduce CPB-induced brain injury and inhibit CMEC apoptosis through the PI3K/Akt/GSK3β signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.
Brunse, Anders; Abbaspour, Afrouz; Sangild, Per Torp
2018-06-06
Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (n = 43-44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (n = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal micro-glial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and- 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants. © 2018 S. Karger AG, Basel.
Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne
2015-01-01
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461
Is donation after cardiac death reducing the brain-dead donor pool in Australia?
Sampson, Brett G; O'Callaghan, Gerry P; Russ, Graeme R
2013-03-01
Donation after cardiac death (DCD) has increased faster than donation after brain death (DBD) in Australia. However, DBD is the preferred pathway because it provides more organs per donor, the donation process is simpler and transplant outcomes are optimised. To determine if the increase in DCD has reduced the brain-dead donor pool in Australia. Retrospective analysis of records of organ donors (intended and actual) with brain injury as the cause of death from 2001 to 2011 in Australian intensive care units. Change in median ventilation period, over time, before brain-death determination in DBD donors (as DCD increased); a decreased median ventilation period in DBD donors being consistent with the conversion of DBD to DCD. As DCD (n = 311) increased, the median ventilation period in DBD donors (n = 2218) did not fall overall (P = 0.83), in all jurisdictions (P > 0.25) and for all causes of death (P > 0.3). The proportion of patients ventilated for less than 2 days was unchanged over time in both DBD (P = 1) and DCD (P = 0.99). The overall ventilation period in DCD donors (3.8 days; interquartile range [IQR], 2.1-6.3 days), exceeded the ventilation period in DBD donors (1.3 days; IQR, 1.0-2.4 days; P < 0.0001). DCD ventilation period was significantly longer in all jurisdictions, for all causes of death and annually (P < 0.05). In Australia, brain-injured donors appear to be ventilated long enough to allow progression to brain death before proceeding to DCD. Therefore, DCD is unlikely to have reduced the brain-dead donor pool.
Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F
2010-07-09
Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang
2017-03-01
Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.
Antoniou, Tony; Camacho, Ximena; Yao, Zhan; Gomes, Tara; Juurlink, David N.; Mamdani, Muhammad M.
2013-01-01
Background: Telmisartan, unlike other angiotensin-receptor blockers, is a partial agonist of peroxisome proliferator–activated receptor-γ, a property that has been associated with improvements in surrogate markers of cardiovascular health in small trials involving patients with diabetes. However, whether this property translates into a reduced risk of cardiovascular events and death in these patients is unknown. We sought to explore the risk of myocardial infarction, stroke and heart failure in patients with diabetes who were taking telmisartan relative to the risk of these events occurring in patients taking other angiotensin-receptor blockers. Methods: We conducted a population-based, retrospective cohort study of Ontario residents with diabetes aged 66 years and older who started treatment with candesartan, irbesartan, losartan, telmisartan or valsartan between Apr. 1, 2001, and Mar. 31, 2011. Our primary outcome was a composite of admission to hospital for acute myocardial infarction, stroke or heart failure. We examined each outcome individually in secondary analyses, in addition to all-cause mortality. Results: We identified 54 186 patients with diabetes who started taking an angiotensin-receptor blocker during the study period. After multivariable adjustment, patients who took either telmisartan (adjusted hazard ratio [HR] 0.85, 95% confidence interval [CI] 0.74–0.97) or valsartan (adjusted HR 0.86, 95% CI 0.77–0.95) had a lower risk of the composite outcome compared with patients who took irbesartan. In contrast, no significant difference in risk was seen between other angiotensin-receptor blockers and irbesartan. In secondary analyses, we found a reduced risk of admission to hospital for heart failure with telmisartan compared with irbesartan (adjusted HR 0.79, 95% CI 0.66–0.96), but no significant differences in risk were seen between angiotensin-receptor blockers in our other secondary analyses. Interpretation: Compared with other angiotensin-receptor blockers, telmisartan and valsartan were both associated with a lower risk of admission to hospital for acute myocardial infarction, stroke or heart failure among older adults with diabetes and hypertension. Telmisartan and valsartan may therefore be the preferred angiotensin-receptor blockers for use in these patients. PMID:23836857
Han, Yuwei; Su, Jingyuan; Liu, Xiujuan; Zhao, Yuan; Wang, Chenchen; Li, Xiaoming
2017-07-01
This study aims to clarify the neuroprotective effect of naringin on early brain injury (EBI) following subarachnoid hemorrhage (SAH) and the possible mechanisms of naringin in the treatment of SAH. The endovascular puncture model was performed to induce SAH model in rats and the efficacy of 40mg/kg and 80mg/kg naringin were tested by intraperitoneally administration. SAH grade, neurological score, brain edema, blood-brain barrier permeability, the changes of oxidative stress related factors, apoptosis-related proteins, mitogen-activated protein kinase (MAPK) signaling pathway and neuronal morphology were detected to analyze the potential effect of naringin against SAH. The results demonstrated that naringin significantly ameliorated EBI, including SAH severity, neurologic deficits, brain edema and blood-brain barrier integrity by attenuating SAH-induced oxidative stress and apoptosis, and reduced the oxidant damage and apoptosis by inhibiting the activation of MAPK signaling pathway, which suggested a therapeutic potential of naringin in providing neuroprotection after SAH. Copyright © 2016 Elsevier Inc. All rights reserved.
Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain*
Hou, Sheng Tao; Jiang, Susan X.; Zaharia, L. Irina; Han, Xiumei; Benson, Chantel L.; Slinn, Jacqueline; Abrams, Suzanne R.
2016-01-01
Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (−)-PA in mouse and rat brains. (−)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (−)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (−)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (−)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (−)-PA level in the brain reduced ischemic brain injury, whereas reducing the (−)-PA level using a monoclonal antibody against (−)-PA increased ischemic injury. Collectively, these studies showed for the first time that (−)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. PMID:27864367
Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.
Hou, Sheng Tao; Jiang, Susan X; Zaharia, L Irina; Han, Xiumei; Benson, Chantel L; Slinn, Jacqueline; Abrams, Suzanne R
2016-12-30
Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Brain glucose content in fetuses of ethanol-fed rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullen, G.; Singh, S.P.; Snyder, A.K.
1986-03-01
The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less
Rigor, Robert R; Hawkins, Brian T; Miller, David S
2010-07-01
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.
Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian
2014-10-01
Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pharmacological interventions for hypertension in children.
Chaturvedi, Swasti; Lipszyc, Deborah H; Licht, Christoph; Craig, Jonathan C; Parekh, Rulan
2014-02-01
Hypertension is a major risk factor for stroke, coronary artery disease and kidney damage in adults. There is a paucity of data on the long-term sequelae of persistent hypertension in children, but it is known that children with hypertension have evidence of end organ damage and are at risk of hypertension into adulthood. The prevalence of hypertension in children is rising, most likely due to a concurrent rise in obesity rates. In children with hypertension, non-pharmacological measures are often recommended as first-line therapy, but a significant proportion of children will eventually require pharmacological treatment to reduce blood pressure, especially those with evidence of end organ damage at presentation or during follow-up. A systematic review of the effects of antihypertensive agents in children has not previously been conducted. To determine the dose-related effects of different classes of antihypertensive medications, as monotherapy compared to placebo; as combination therapy compared to placebo or a single medication; or in comparisons of various doses within the same class, on systolic or diastolic blood pressure (or both) in children with hypertension. We searched the Cochrane Hypertension Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 9), Ovid MEDLINE (1946 to October 2013), Ovid EMBASE (1974 to October 2013) and bibliographic citations. The selection criteria were deliberately broad due to there being few clinical trials in children. We included randomised controlled trials (RCTs) of at least two weeks duration comparing antihypertensive agents either as monotherapy or combination therapy with either placebo or another medication, or comparing different doses of the same medication, in children with hypertension. Hypertension was defined as an average (over a minimum of three readings) systolic or diastolic blood pressure (or both) on the 95(th) percentile or above for age, height and gender. Two authors independently selected relevant studies, extracted data and assessed risk of bias. We summarised data, where possible, using a random-effects model. Formal assessment of heterogeneity was not possible because of insufficient data. A total of 21 trials evaluated antihypertensive medications of various drug classes in 3454 hypertensive children with periods of follow-up ranging from three to 24 weeks. There were five RCTs comparing an antihypertensive drug directly with placebo, 12 dose-finding trials, two trials comparing calcium channel blockers with angiotensin receptor blockers, one trial comparing a centrally acting alpha blocker with a diuretic and one trial comparing an angiotensin-converting enzyme inhibitor with an angiotensin receptor blocker. No randomised trial was identified that evaluated the effectiveness of antihypertensive medications on target end organ damage. The trials were of variable quality and most were funded by pharmaceutical companies.Among the angiotensin receptor blockers, candesartan (one trial, n = 240), when compared to placebo, reduced systolic blood pressure by 6.50 mmHg (95% confidence interval (CI) -9.44 to -3.56) and diastolic blood pressure by 5.50 mmHg (95% CI -9.62 to -1.38) (low-quality evidence). High dose telmisartan (one trial, n = 76), when compared to placebo, reduced systolic blood pressure by -8.50 (95% CI -13.79 to -3.21) but not diastolic blood pressure (-4.80, 95% CI -9.50 to 0.10) (low-quality evidence). Beta blocker (metoprolol, one trial, n = 140), when compared with placebo , significantly reduced systolic blood pressure by 4.20 mmHg (95% CI -8.12 to -0.28) but not diastolic blood pressure (-3.20 mmHg 95% CI -7.12 to 0.72) (low-quality evidence). Beta blocker/diuretic combination (Bisoprolol/hydrochlorothiazide, one trial, n = 94)when compared with placebo , did not result in a significant reduction in systolic blood pressure (-4.0 mmHg, 95% CI -8.99 to -0.19) but did have an effect on diastolic blood pressure (-4.50 mmHg, 95% CI -8.26 to -0.74) (low-quality evidence). Calcium channel blocker (extended-release felodipine,one trial, n = 133) was not effective in reducing systolic blood pressure (-0.62 mmHg, 95% CI -2.97 to 1.73) or diastolic blood pressure (-1.86 mmHg, 95% CI -5.23 to 1.51) when compared with placebo. Further, there was no consistent dose response observed among any of the drug classes. The adverse events associated with the antihypertensive agents were mostly minor and included headaches, dizziness and upper respiratory infections. Overall, there are sparse data informing the use of antihypertensive agents in children, with outcomes reported limited to blood pressure and not end organ damage. The most data are available for candesartan, for which there is low-quality evidence of a modest lowering effect on blood pressure. We did not find evidence of a consistent dose response relationship for escalating doses of angiotensin receptor blockers, calcium channel blockers or angiotensin-converting enzyme inhibitors. All agents appear safe, at least in the short term.
Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.
Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A
2016-01-01
The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.
Outcomes of intrathecal baclofen therapy in patients with cerebral palsy and acquired brain injury
Yoon, Young Kwon; Lee, Kil Chan; Cho, Han Eol; Chae, Minji; Chang, Jin Woo; Chang, Won Seok; Cho, Sung-Rae
2017-01-01
Abstract Intrathecal baclofen (ITB) has been known to reduce spasticity which did not respond to oral medications and botulinum toxin treatment. However, few results have been reported comparing the effects of ITB therapy in patients with cerebral palsy (CP) and acquired brain injury. This study aimed to investigate beneficial and adverse effects of ITB bolus injection and pump therapy in patients with CP and to compare outcomes to patients with acquired brain injury such as traumatic brain injury and hypoxic brain injury. ITB test trials were performed in 37 patients (19 CP and 18 acquired brain injury). Based on ambulatory function, CP patients were divided into 2 groups: 11 patients with nonambulatory CP and 8 patients with ambulatory CP. Change of spasticity was evaluated using the Modified Ashworth Scale. Additional positive or negative effects were also evaluated after ITB bolus injection. In patients who received ITB pump implantation, outcomes of spasticity, subjective satisfaction and adverse events were evaluated until 12 months post-treatment. After ITB bolus injection, 32 patients (86.5%) (CP 84.2% versus acquired brain injury 88.9%) showed a positive response of reducing spasticity. However, 8 patients with CP had negative adverse effects. Particularly, 3 ambulatory CP patients showed standing impairment and 1 ambulatory CP patient showed impaired gait pattern such as foot drop because of excessive reduction of lower extremity muscle tone. Ambulatory CP patients received ITB pump implantation less than patients with acquired brain injury after ITB test trials (P = .003 by a chi-squared test). After the pump implantation, spasticity was significantly reduced within 1 month and the effect maintained for 12 months. Seventeen patients or their caregivers (73.9%) were very satisfied, whereas 5 patients (21.7%) suffered from adverse events showed no subjective satisfaction. In conclusion, ITB therapy was effective in reducing spasticity in patients with CP and acquired brain injury. Before ITB pump implantation, it seems necessary to perform the ITB bolus injection to verify beneficial effects and adverse effects especially in ambulatory CP. PMID:28834868
Maldonado, Maria; Molfese, David L; Viswanath, Humsini; Curtis, Kaylah; Jones, Ashley; Hayes, Teresa G; Marcelli, Marco; Mediwala, Sanjay; Baldwin, Philip; Garcia, Jose M; Salas, Ramiro
2018-06-01
Little is known about the brain mechanisms underlying cancer-associated weight loss (C-WL) in humans despite this condition negatively affecting their quality of life and survival. We tested the hypothesis that patients with C-WL have abnormal connectivity in homeostatic and hedonic brain pathways together with altered brain activity during food reward. In 12 patients with cancer and 12 healthy controls, resting-state functional connectivity (RSFC, resting brain activity observed through changes in blood flow in the brain which creates a blood oxygen level-dependent signal that can be measured using functional magnetic resonance imaging) was used to compare three brain regions hypothesized to play a role in C-WL: the hypothalamus (homeostatic), the nucleus accumbens (hedonic), and the habenula (an important regulator of reward). In addition, the brain reward response to juice was studied. Participants included 12 patients with histological diagnosis of incurable cancer (solid tumours), a European Cooperative Oncology Group performance status of 0-2, and a ≥5% involuntary body weight loss from pre-illness over the previous 6 months and 12 non-cancer controls matched for age, sex, and race. RSFC between the hypothalamus, nucleus accumbens, and habenula and brain striatum activity as measured by functional MRI during juice reward delivery events were the main outcome measures. After adjusting for BMI and compared with matched controls, patients with C-WL were found to have reduced RSFC between the habenula and hypothalamus (P = 0.04) and between the habenula and nucleus accumbens (P = 0.014). Patients with C-WL also had reduced juice reward responses in the striatum compared with controls. In patients with C-WL, reduced connectivity between both homeostatic and hedonic brain regions and the habenula and reduced juice reward were observed. Further research is needed to establish the relevance of the habenula and striatum in C-WL. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Qian, Cong; Jin, Jianxiang; Chen, Jingyin; Li, Jianru; Yu, Xiaobo; Mo, Hangbo; Chen, Gao
2017-12-01
Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post‑SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO‑1), occludin, claudin‑5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl‑associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting‑domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co‑treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO‑1, occludin and claudin‑5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post‑SAH through p53 deacetylation, and the analysis of p53 related downstream pro‑apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further.
Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J
2016-05-01
We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. © 2015 Society for the Study of Addiction.
Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-05-01
In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.
Structural and Functional Consequences of Increased Tubulin Glycosylation in Diabetes Mellitus
NASA Astrophysics Data System (ADS)
Williams, Stuart K.; Howarth, Nancy L.; Devenny, James J.; Bitensky, Mark W.
1982-11-01
The extent of in vitro nonenzymatic glycosylation of purified rat brain tubulin was dependent on time and glucose concentration. Tubulin glycosylation profoundly inhibited GTP-dependent tubulin polymerization. Electron microscopy and NaDodSO4/polyacrylamide gel electrophoresis showed that glycosylated tubulin forms high molecular weight amorphous aggregates that are not disrupted by detergents or reducing agents. The amount of covalently bound NaB3H4-reducible sugars in tubulin recovered from brain of streptozotocin-induced diabetic rats was dramatically increased as compared with tubulin recovered from normal rat brain. Moreover, tubulin recovered from diabetic rat brain exhibited less GTP-induced polymerization than tubulin from nondiabetic controls. The possible implications of these data for diabetic neuropathy are discussed.
Estrogen and insulin transport through the blood-brain barrier
May, Aaron A.; Bedel, Nicholas D.; Shen, Ling; Woods, Stephen C.; Liu, Min
2016-01-01
The metabolic syndrome is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin’s catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since both E2 and insulin receptors are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS. PMID:27182046
MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium
Cerutti, Camilla; Edwards, Laura J.; de Vries, Helga E.; Sharrack, Basil; Male, David K.; Romero, Ignacio A.
2017-01-01
Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation. PMID:28358058
Shi, Hong; Wang, Hai-Lian; Pu, Hong-Jian; Shi, Ye-Jie; Zhang, Jia; Zhang, Wen-Ting; Wang, Guo-Hua; Hu, Xiao-Ming; Leak, Rehana K; Chen, Jun; Gao, Yan-Qin
2015-04-01
Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity, and neuroinflammation were assessed. Ethyl pyruvate improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 day post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent antiinflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Ethyl pyruvate confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation, and long-lasting brain damage. © 2014 John Wiley & Sons Ltd.
Amelioration of ischemic brain damage by peritoneal dialysis
Godino, María del Carmen; Romera, Victor G.; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José
2013-01-01
Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426
Gelsolin as therapeutic target in Alzheimer's disease.
Carro, Eva
2010-06-01
Fibrillar amyloid beta-protein (Abeta) is a major component of amyloid plaques in the brains of individuals with Alzheimer's disease (AD). However, a comprehensive explanation of the mechanisms leading to brain amyloidosis is still pending. Previous studies have identified the anti-amyloidogenic role of gelsolin in AD. Gelsolin can reduce amyloid burden by acting as an inhibitor of Abeta fibrillization, and as an antioxidant and anti-apoptotic protein. Recent evidence indicates reduced brain gelsolin levels in AD. Therefore, a better understanding of the roles of gelsolin in AD pathology, particularly those related with cognition, is required. Most of the information reviewed here relates to experimental studies. However, gelsolin may progress from the present evidence to preclinical and clinical applications. In addition, a greater insight into the environmental factors contributing to abnormally reduced gelsolin function in AD brains may become crucial for the development of much needed disease-modifying strategies. Because, the efficacy of available medicines is still poor, there is an urgent need for novel AD treatments. In this sense, gelsolin could play an important role.
Ding-Zhou, Li; Marchand-Verrecchia, Catherine; Croci, Nicole; Plotkine, Michel; Margaill, Isabelle
2002-12-20
The role of nitric oxide (NO) in the development of post-ischemic cerebral infarction has been extensively examined, but fewer studies have investigated its role in other outcomes. In the present study, we first determined the temporal evolution of infarct volume, NO production, neurological deficit and blood-brain barrier disruption in a model of transient focal cerebral ischemia in mice. We then examined the effect of the nonselective NO-synthase inhibitor N(omega)-nitro-L-arginine-methylester (L-NAME). L-NAME given at 3 mg/kg 3 h after ischemia reduced by 20% the infarct volume and abolished the increase in brain NO production evaluated by its metabolites (nitrites/nitrates) 48 h after ischemia. L-NAME with this protocol also reduced the neurological deficit evaluated by the grip test and decreased by 65% the extravasation of Evans blue, an index of blood-brain barrier breakdown. These protective activities of L-NAME suggest that NO has multiple deleterious effects in cerebral ischemia.
Effect of environment on the long-term consequences of chronic pain
Bushnell, MC; Case, LK; Ceko, M; Cotton, VA; Gracely, JL; Low, LA; Pitcher, MH; Villemure, C
2014-01-01
Much evidence from pain patients and animal models shows that chronic pain does not exist in a vacuum, but has varied co-morbidities and far-reaching consequences. Patients with long-term pain often develop anxiety and depression and can manifest changes in cognitive functioning, particularly with working memory. Longitudinal studies in rodent models also show the development of anxiety-like behavior and cognitive changes weeks to months after an injury causing long-term pain. Brain imaging studies in pain patients and rodent models find that chronic pain is associated with anatomical and functional alterations in the brain. Nevertheless, studies in humans reveal that life-style choices, such as the practice of meditation or yoga, can reduce pain perception and have the opposite effect on the brain as does chronic pain. In rodent models, studies show that physical activity and a socially enriched environment reduce pain behavior and normalize brain function. Together, these studies suggest that the burden of chronic pain can be reduced by non-pharmacological interventions. PMID:25789436
Protective effects of some creatine derivatives in brain tissue anoxia.
Perasso, Luisa; Lunardi, Gian Luigi; Risso, Federica; Pohvozcheva, Anna V; Leko, Maria V; Gandolfo, Carlo; Florio, Tullio; Cupello, Aroldo; Burov, Sergey V; Balestrino, Maurizio
2008-05-01
Some derivatives more lipophylic than creatine, thus theoretically being capable to better cross the blood-brain barrier, were studied for their protective effect in mouse hippocampal slices. We found that N-amidino-piperidine is harmful to brain tissue, and that phosphocreatine is ineffective. Creatine, creatine-Mg-complex (acetate) and phosphocreatine-Mg-complex (acetate) increased the latency to population spike disappearance during anoxia. Creatine and creatine-Mg-complex (acetate) also increased the latency of anoxic depolarization, while the delay induced by phosphocreatine-Mg-complex (acetate) was of borderline significance (P = 0.056). Phosphocreatine-Mg-complex (acetate) significantly reduced neuronal hyperexcitability during anoxia, an effect that no other compound (including creatine itself) showed. For all parameters except reduced hyperexcitability the effects statistically correlated with tissue levels of creatine or phosphocreatine. Summing up, exogenous phosphocreatine and N-amidino piperidine are not useful for brain protection, while chelates of both creatine and phosphocreatine do replicate some of the known protective effects of creatine. In addition, phosphocreatine-Mg-complex (acetate) also reduced neuronal hyperexcitability during anoxia.
Sutoo, Den'etsu; Akiyama, Kayo
2004-08-06
The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.
27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation
Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina
2017-01-01
Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512
Reducing Brain Signal Noise in the Prediction of Economic Choices: A Case Study in Neuroeconomics
Sundararajan, Raanju R.; Palma, Marco A.; Pourahmadi, Mohsen
2017-01-01
In order to reduce the noise of brain signals, neuroeconomic experiments typically aggregate data from hundreds of trials collected from a few individuals. This contrasts with the principle of simple and controlled designs in experimental and behavioral economics. We use a frequency domain variant of the stationary subspace analysis (SSA) technique, denoted as DSSA, to filter out the noise (nonstationary sources) in EEG brain signals. The nonstationary sources in the brain signal are associated with variations in the mental state that are unrelated to the experimental task. DSSA is a powerful tool for reducing the number of trials needed from each participant in neuroeconomic experiments and also for improving the prediction performance of an economic choice task. For a single trial, when DSSA is used as a noise reduction technique, the prediction model in a food snack choice experiment has an increase in overall accuracy by around 10% and in sensitivity and specificity by around 20% and in AUC by around 30%, respectively. PMID:29311784
Reducing Brain Signal Noise in the Prediction of Economic Choices: A Case Study in Neuroeconomics.
Sundararajan, Raanju R; Palma, Marco A; Pourahmadi, Mohsen
2017-01-01
In order to reduce the noise of brain signals, neuroeconomic experiments typically aggregate data from hundreds of trials collected from a few individuals. This contrasts with the principle of simple and controlled designs in experimental and behavioral economics. We use a frequency domain variant of the stationary subspace analysis (SSA) technique, denoted as DSSA, to filter out the noise (nonstationary sources) in EEG brain signals. The nonstationary sources in the brain signal are associated with variations in the mental state that are unrelated to the experimental task. DSSA is a powerful tool for reducing the number of trials needed from each participant in neuroeconomic experiments and also for improving the prediction performance of an economic choice task. For a single trial, when DSSA is used as a noise reduction technique, the prediction model in a food snack choice experiment has an increase in overall accuracy by around 10% and in sensitivity and specificity by around 20% and in AUC by around 30%, respectively.
Severe neurological impairment: legal aspects of decisions to reduce care.
Beresford, H R
1984-05-01
Decisions to reduce care for patients with severe neurological impairment may raise legal questions. The laws of most states now authorize physicians to stop care for those who have suffered irreversible cessation of all functions of the brain ("brain death"). Where state law is not explicit, it is nevertheless probably lawful to regard brain death as death for legal purposes so long as currently accepted criteria are satisfied. Several courts have ruled that it is lawful to reduce care for patients in vegetative states, but have prescribed differing standards and procedures for implementing such decisions. The issue of whether parents can authorize physicians to reduce care for neurologically impaired children is the focus of current litigation. Implicit in this litigation is the question of how severe neurological impairment must be before parents and physicians may lawfully agree to reduce care. For severely impaired but not vegetative adults, there is some legal authority to justify certain decisions to reduce care. The issue of whether withholding feeding from a severely demented patient with life-threatening medical problems constitutes criminal behavior is now being considered by a state supreme court.
Bragin, Denis E; Kameneva, Marina V; Bragina, Olga A; Thomson, Susan; Statom, Gloria L; Lara, Devon A; Yang, Yirong; Nemoto, Edwin M
2017-03-01
Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood-brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved.
Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats
Òdena, Gemma; Miquel, Mireia; Serafín, Anna; Galan, Amparo; Morillas, Rosa; Planas, Ramon; Bartolí, Ramon
2012-01-01
AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion. METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed. RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis. CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy. PMID:22563196
Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis.
Perry, T L; Yong, V W; Kish, S J; Ito, M; Foulks, J G; Godolphin, W J; Sweeney, V P
1985-10-01
We examined autopsied brain from 10 patients with end-stage renal failure who had undergone repeated hemodialysis. Eight had classic symptoms, and two had suggestive symptoms of dialysis encephalopathy. Findings were compared with those in autopsied brain from control adults who had never been hemodialyzed. Mean gamma-aminobutyric acid (GABA) contents were significantly reduced in frontal and occipital cortex, cerebellar cortex, dentate nucleus, caudate nucleus, and medial-dorsal thalamus of the hemodialyzed patients, the reduction being greater than 40% in cerebral cortex and thalamus. Choline acetyltransferase activity was reduced by 25-35% in three cortical regions in the hemodialyzed patients. These two abnormalities were observed in the brain of each hemodialyzed patient, regardless of whether or not the patient died with unequivocal dialysis encephalopathy. Pyridoxal phosphate contents were substantially reduced in brains of the hemodialyzed patients, but metabolites of noradrenaline, 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) were present in normal amounts. Aluminum levels were abnormally high in frontal cortical gray matter in the hemodialyzed patients. Although this study does not clarify the role played by aluminum toxicity in the pathogenesis of dialysis encephalopathy, the abnormalities we found suggest the need for further neurochemical investigations in this disorder.
Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.
Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F
2015-08-01
There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may contribute to the pathogenesis of disorders associated with altered anxiety and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar
2017-03-01
Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG ® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51 Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.
Pharmacological aspects of metaldehyde poisoning in mice.
Homeida, A M; Cooke, R G
1982-03-01
Metaldehyde, when administered orally to mice at a dose of 1 g kg-1, produced convulsions and death within 2 h. Brain concentrations of noradrenaline (NA) 5-hydroxytryptamie (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were significantly reduced in these animals relative to controls. Treatment with either intraperitoneal clonidine or diazepam 20 min after administration of metaldehyde reduced the mortality rate and in mice surviving for 5 h, the decrease in brain NA and 5-HT concentrations were significantly reduced.
77 FR 45363 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... in laboratory animal models of Parkinson's disease and protects several types of neurons in the brain... novel peptides that was found to be reduced in human middle temporal gyrus of Alzheimer's disease brains... role in neuroprotective effects of GDNF in human brain. The NIDA inventors have also developed antibody...
NASA Astrophysics Data System (ADS)
Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.
2005-05-01
In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.
Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo
2003-06-01
Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Hueber, Dennis; Franceschini, Maria Angela; Gratton, Enrico; Rosenfeld, Warren; Stubblefield, Phillip G.; Maulik, Dev; Stankovic, Miljan R.
1999-06-01
We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 µM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured in the brain after the piglet had been sacrificed.
Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.
Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi
2012-04-01
Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.
Sun, Yulong; Chakrabartty, Avi
2016-12-01
Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.
Big-brained birds survive better in nature
Sol, Daniel; Székely, Tamás; Liker, András; Lefebvre, Louis
2007-01-01
Big brains are hypothesized to enhance survival of animals by facilitating flexible cognitive responses that buffer individuals against environmental stresses. Although this theory receives partial support from the finding that brain size limits the capacity of animals to behaviourally respond to environmental challenges, the hypothesis that large brains are associated with reduced mortality has never been empirically tested. Using extensive information on avian adult mortality from natural populations, we show here that species with larger brains, relative to their body size, experience lower mortality than species with smaller brains, supporting the general importance of the cognitive buffer hypothesis in the evolution of large brains. PMID:17251112
STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis.
Priego, Neibla; Zhu, Lucía; Monteiro, Cátia; Mulders, Manon; Wasilewski, David; Bindeman, Wendy; Doglio, Laura; Martínez, Liliana; Martínez-Saez, Elena; Cajal, Santiago Ramón Y; Megías, Diego; Hernández-Encinas, Elena; Blanco-Aparicio, Carmen; Martínez, Lola; Zarzuela, Eduardo; Muñoz, Javier; Fustero-Torres, Coral; Pineiro, Elena; Hernández-Laín, Aurelio; Bertero, Luca; Poli, Valeria; Sánchez-Martínez, Melchor; Menendez, Javier A; Soffietti, Riccardo; Bosch-Barrera, Joaquim; Valiente, Manuel
2018-06-11
The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.
2014-01-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089
Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa
2016-01-01
The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196
Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne
2015-08-01
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
Garelick, Michael G.; Kennedy, Brian K.
2012-01-01
Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to lifespan extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer s disease, Parkinson s disease, and polyglutamine expansion syndromes such as Huntington s disease. PMID:20849946
Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang
2015-01-05
Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A
2013-12-01
The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P < 0.0001), brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P < 0.001). Low brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P < 0.03) in addition to Glasgow Coma Scale scores (P = 0.029). Reduced brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.
Brain morphology in school-aged children with prenatal opioid exposure: A structural MRI study.
Sirnes, Eivind; Oltedal, Leif; Bartsch, Hauke; Eide, Geir Egil; Elgen, Irene B; Aukland, Stein Magnus
Both animal and human studies have suggested that prenatal opioid exposure may be detrimental to the developing fetal brain. However, results are somewhat conflicting. Structural brain changes in children with prenatal opioid exposure have been reported in a few studies, and such changes may contribute to neuropsychological impairments observed in exposed children. To investigate the association between prenatal opioid exposure and brain morphology in school-aged children. A cross-sectional magnetic resonance imaging (MRI) study of prenatally opioid-exposed children and matched controls. A hospital-based sample (n=16) of children aged 10-14years with prenatal exposure to opioids and 1:1 sex- and age-matched unexposed controls. Automated brain volume measures obtained from T1-weighted MRI scans using FreeSurfer. Volumes of the basal ganglia, thalamus, and cerebellar white matter were reduced in the opioid-exposed group, whereas there were no statistically significant differences in global brain measures (total brain, cerebral cortex, and cerebral white matter volumes). In line with the limited findings reported in the literature to date, our study showed an association between prenatal opioid exposure and reduced regional brain volumes. Adverse effects of opioids on the developing fetal brain may explain this association. However, further research is needed to explore the causal nature and functional consequences of these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of brain-wide connectivity architecture in awake rats.
Ma, Zilu; Ma, Yuncong; Zhang, Nanyin
2018-08-01
Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
Fingelkurts, Alexander A; Fingelkurts, Andrew A
2009-11-01
To figure out whether the main empirical question "Is our brain hardwired to believe in and produce God, or is our brain hardwired to perceive and experience God?" is answered, this paper presents systematic critical review of the positions, arguments and controversies of each side of the neuroscientific-theological debate and puts forward an integral view where the human is seen as a psycho-somatic entity consisting of the multiple levels and dimensions of human existence (physical, biological, psychological, and spiritual reality), allowing consciousness/mind/spirit and brain/body/matter to be seen as different sides of the same phenomenon, neither reducible to each other. The emergence of a form of causation distinctive from physics where mental/conscious agency (a) is neither identical with nor reducible to brain processes and (b) does exert "downward" causal influence on brain plasticity and the various levels of brain functioning is discussed. This manuscript also discusses the role of cognitive processes in religious experience and outlines what can neuroscience offer for study of religious experience and what is the significance of this study for neuroscience, clinicians, theology and philosophy. A methodological shift from "explanation" to "description" of religious experience is suggested. This paper contributes to the ongoing discussion between theologians, cognitive psychologists and neuroscientists.
Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua
2014-11-01
Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg methyllycaconitine (α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68(+) , M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of nuclear factor kappa b in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN(+) TUNEL(+) ), fewer CD68(+) and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of nuclear factor kappa b p65. Methyllycaconitine had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. Bone fracture at the acute stage of stroke exacerbates neuroinflammation, oxidative stress, and brain injury, and our study has shown that the α-7 nAchR agonist, PHA (PHA 568487), attenuates neuroinflammation, oxidative stress, and brain injury in mice with stroke and bone fracture. Hence, PHA could provide an opportunity to develop a new strategy to reduce brain injury in patients suffering from stroke and bone fracture. © 2014 International Society for Neurochemistry.
Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency
Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.
2013-01-01
Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713
Hata, J Steven; Shelsky, Constance R; Hindman, Bradley J; Smith, Thomas C; Simmons, Jonathan S; Todd, Michael M
2008-01-01
Fever after acute brain injury appears to be a detrimental factor, associated with impaired neurological outcomes. This study assessed physiological changes in systemic oxygen consumption (VO2) during cutaneous cooling after severe brain injury. This prospective, observational, clinical study evaluated ten, critically ill, brain-injured patients requiring mechanical ventilation with a core body temperature of greater or equal to 38 degrees C. Febrile patients failing to defervesce after acetaminophen underwent indirect calorimetry for a 1-hour baseline period followed by a 4 h cooling period. The Arctic Sun(R) Temperature Management System (Medivance) directed core temperature to a goal of 36 degrees C. The patients had a mean age of 32 years (95% CI 23, 40), Glasgow Coma Scale of 6 (95% CI 5,7), and APACHE 2 score of 19 (95% CI 15, 22), with 8 of 10 patients suffering traumatic brain injuries. The baseline 1-h core temperature was significantly reduced from 38.6 degrees +/- 0.9 to 36.3 degrees +/- 1.2 degrees C (P < 0.0001) over 4 h. Two cohorts were identified based upon the presence or absence of shivering. Within the non-shivering cohort, systemic VO2 was significantly reduced from 415 +/- 123 to 308 +/- 115 ml/min (-27 +/- 18%) (P < 0.05). In contrast, those with shivering showed no significant reduction in VO2, despite significantly decreasing core temperature. The overall percentage change of VCO2 correlated with VO2 (r (2) = 0.91). Fever reduction in acute brain injury appears to significantly reduce systemic VO2, but is highly dependent on shivering control.
Chouinard, Virginie-Anne; Kim, Sang-Young; Valeri, Linda; Yuksel, Cagri; Ryan, Kyle P; Chouinard, Guy; Cohen, Bruce M; Du, Fei; Öngür, Dost
2017-09-01
Brain bioenergetic anomalies and redox dysregulation have been implicated in the pathophysiology of psychotic disorders. The present study examined brain energy-related metabolites and the balance between nicotinamide adenine dinucleotide metabolites (oxidized NAD+ and reduced NADH) using 31 P-magnetic resonance spectroscopy ( 31 P-MRS) in unaffected siblings, compared to first episode psychosis (FEP) patients and healthy controls. 21 unaffected siblings, 32 FEP patients (including schizophrenia spectrum and affective psychoses), and 21 controls underwent 31 P-MRS in the frontal lobe (6×6×4cm 3 ) on a 4T MR scanner, using custom-designed dual-tuned surface coil with outer volume suppression. Brain parenchymal pH and steady-state metabolite ratios of high energy phosphate compounds were measured. NAD+ and NADH levels were determined using a 31 P-MRS fitting algorithm. 13 unaffected sibling-patient pairs were related; other patients and siblings were unrelated. ANCOVA analyses were used to examine 31 P-MRS measures, with age and gender as covariates. The phosphocreatine/adenosine triphosphate ratio was significantly reduced in both unaffected siblings and FEP patients, compared to controls. NAD+/NADH ratio was significantly reduced in patients compared to siblings and controls, with siblings showing a reduction in NAD+/NADH compared to controls that was not statistically significant. Compared to patients and controls, siblings showed significantly reduced levels of NAD+. Siblings did not differ from patients or controls on brain pH. Our results indicate that unaffected siblings show some, but not all the same abnormalities in brain energy metabolites and redox state as FEP patients. Thus, 31 P-MRS studies may identify factors related both to risk and expression of psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Akhter, Hasina; Huang, Wen-Tan; van Groen, Thomas; Kuo, Hui-Chien; Miyata, Toshio; Liu, Rui-Ming
2018-01-01
Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-β peptide (Aβ) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aβ load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aβ load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aβ out of the brain, as well as plasma Aβ42 are increased, whereas the expression and processing of full-length amyloid-β protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aβ40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aβ accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aβ in the brain.
Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert
2015-01-01
Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (p<0.05) better in xenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (p<0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p<0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (p<0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p<0.05) were observed in the xenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549
Campos-Pires, Rita; Armstrong, Scott P; Sebastiani, Anne; Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert
2015-01-01
To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Controlled animal study. University research laboratory. Male C57BL/6N mice (n = 196). Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.
Uncertainty and stress: Why it causes diseases and how it is mastered by the brain.
Peters, Achim; McEwen, Bruce S; Friston, Karl
2017-09-01
The term 'stress' - coined in 1936 - has many definitions, but until now has lacked a theoretical foundation. Here we present an information-theoretic approach - based on the 'free energy principle' - defining the essence of stress; namely, uncertainty. We address three questions: What is uncertainty? What does it do to us? What are our resources to master it? Mathematically speaking, uncertainty is entropy or 'expected surprise'. The 'free energy principle' rests upon the fact that self-organizing biological agents resist a tendency to disorder and must therefore minimize the entropy of their sensory states. Applied to our everyday life, this means that we feel uncertain, when we anticipate that outcomes will turn out to be something other than expected - and that we are unable to avoid surprise. As all cognitive systems strive to reduce their uncertainty about future outcomes, they face a critical constraint: Reducing uncertainty requires cerebral energy. The characteristic of the vertebrate brain to prioritize its own high energy is captured by the notion of the 'selfish brain'. Accordingly, in times of uncertainty, the selfish brain demands extra energy from the body. If, despite all this, the brain cannot reduce uncertainty, a persistent cerebral energy crisis may develop, burdening the individual by 'allostatic load' that contributes to systemic and brain malfunction (impaired memory, atherogenesis, diabetes and subsequent cardio- and cerebrovascular events). Based on the basic tenet that stress originates from uncertainty, we discuss the strategies our brain uses to avoid surprise and thereby resolve uncertainty. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
THE EFFECTS OF LOW DOSE PTU ON ENDPOINTS OF THYROID HORMONE ACTION IN THE DEVELOPING BRAIN.
Thyroid hormone (TH) is essential for normal brain development. Therefore, there is concern that any factor that reduces TH levels may permanently alter brain development. As part of an EPA Cooperative Agreement, the goal of this work was to characterize the degree to which cir...
What Neuroscience Has Taught Us about Autism: Implications for Early Intervention
ERIC Educational Resources Information Center
Williams, Diane L.
2008-01-01
Investigation of the brain and brain function in living children and adults with autism has led to new information on the neurobiology of autism. Autism is characterized by early brain overgrowth and alterations in gray and white matter. Functional imaging studies suggest that individuals with autism have reduced synchronization between key brain…
ERIC Educational Resources Information Center
Sowman, Paul F.; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W.
2012-01-01
While stuttering is known to be characterized by anomalous brain activations during speech, very little data is available describing brain activations during stuttering. To our knowledge there are no reports describing brain activations that precede blocking. In this case report we present magnetoencephalographic data from a person who stutters…
ERIC Educational Resources Information Center
Willerman, Lee; Schultz, Robert T.
1995-01-01
The relationship between mental retardation and brain size is discussed. Research suggests that a common path for many otherwise idiopathic mild retardation cases (genetic or environmental) could be small brain size, indicating reduced information processing capacity. Suggestions are made for further research on neuron number. (SLD)
ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY).
Koshoridze, N; Kuchukashvili, Z; Menabde, K; Lekiashvili, Sh; Koshoridze, M
2016-02-01
Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.
Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice.
Pachauri, Shakti D; Verma, Priya Ranjan P; Dwivedi, Anil K; Tota, Santoshkumar; Khandelwal, Kiran; Saxena, Jitendra K; Nath, Chandishwar
2013-08-01
This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.
2014-01-01
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891
Does MRI scan acceleration affect power to track brain change?
Ching, Christopher R K; Hua, Xue; Hibar, Derrek P; Ward, Chadwick P; Gunter, Jeffrey L; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M
2015-01-01
The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change. Using tensor-based morphometry, no significant difference was detected in numerical summaries of atrophy rates from accelerated and nonaccelerated scans in subgroups of patients with Alzheimer's disease, early or late mild cognitive impairment, or healthy controls over a 6- and 12-month scan interval. Whole-brain voxelwise mapping analyses revealed some apparent regional differences in 6-month atrophy rates when comparing all subjects irrespective of diagnosis (n = 345). No such whole-brain difference was detected for the 12-month scan interval (n = 156). Effect sizes for structural brain changes were not detectably different in accelerated versus nonaccelerated data. Scan acceleration may influence brain measures but has minimal effects on tensor-based morphometry-derived atrophy measures, at least over the 6- and 12-month intervals examined here. Copyright © 2015 Elsevier Inc. All rights reserved.
Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.
Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin
2018-04-16
Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.
Hanlon, L.A.; Raghupathi, R.; Huh, J.W.
2017-01-01
The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3 days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7 days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9 days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15 days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain. PMID:28038986
Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian
2018-04-01
In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.
Thompson, Deanne K.; Chen, Jian; Beare, Richard; Adamson, Christopher L.; Ellis, Rachel; Ahmadzai, Zohra M.; Kelly, Claire E.; Lee, Katherine J.; Zalesky, Andrew; Yang, Joseph Y.M.; Hunt, Rodney W.; Cheong, Jeanie L.Y.; Inder, Terrie E.; Doyle, Lex W.; Seal, Marc L.; Anderson, Peter J.
2016-01-01
Objective To use structural connectivity to (1) compare brain networks between typically and atypically developing (very preterm) children, (2) explore associations between potential perinatal developmental disturbances and brain networks, and (3) describe associations between brain networks and functional impairments in very preterm children. Methods 26 full-term and 107 very preterm 7-year-old children (born <30 weeks’ gestational age and/or <1250 g) underwent T1- and diffusion-weighted imaging. Global white matter fiber networks were produced using 80 cortical and subcortical nodes, and edges created using constrained spherical deconvolution-based tractography. Global graph theory metrics were analysed, and regional networks were identified using network-based statistics. Cognitive and motor function were assessed at 7 years of age. Results Compared with full-term children, very preterm children had reduced density, lower global efficiency and higher local efficiency. Those with lower gestational age at birth, infection or higher neonatal brain abnormality score had reduced connectivity. Reduced connectivity within a widespread network was predictive of impaired IQ, while reduced connectivity within the right parietal and temporal lobes was associated with motor impairment in very preterm children. Conclusions This study utilized an innovative structural connectivity pipeline to reveal that children born very preterm have less connected and less complex brain networks compared with typically developing term-born children. Adverse perinatal factors led to disturbances in white matter connectivity, which in turn are associated with impaired functional outcomes, highlighting novel structure-function relationships. PMID:27046108
Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand
2015-05-26
Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.
Mehus, Aaron A.; Picklo, Sr, Matthew J.
2017-01-01
Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n-3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3n-3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3) and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2) and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors. PMID:29048374
Mehus, Aaron A; Picklo, Matthew J
2017-10-19
Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n -3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n -3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3 n -3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs ( Mt1-3 ) and modulators of MT expression including glucocorticoid receptors ( Nr3c1 and Nr3c2 ) and several mediators of thyroid hormone regulation ( Dio1-3 , Mct8 , Oatp1c1 , Thra , and Thrb ) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n -3 PUFA reduced Mt1 , Mt2 , Nr3c1 , Mct8 , and Thrb . ER elevated Nr3c1 , Dio1 , and Thrb and reduced Thra in the liver. Given MT's role in cellular protection, further studies are needed to evaluate whether ER or n -3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.
Minocycline Reduces Spontaneous Hemorrhage in Mouse Models of Cerebral Amyloid Angiopathy
Liao, Fan; Xiao, Qingli; Kraft, Andrew; Gonzales, Ernie; Perez, Ron; Greenberg, Steven M.; Holtzman, David; Lee, Jin-Moo
2015-01-01
Background and Purpose Cerebral Amyloid Angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage (ICH) in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and -9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine if spontaneous ICH could be reduced. Methods Tg2576 (n=16) and 5×FAD/ApoE4 knock-in mice (n=16), aged to 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, i.p.) or saline every other day for two months. Brains were extracted and stained with X-34 (to quantify amyloid), Perl’s blue (to quantify hemorrhage), and immunostained to examined Aβ load, gliosis (GFAP, Iba-1), and vascular markers of blood-brain-barrier integrity (ZO-1 and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. Results Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5×FAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (MMP-9, Nox4, CD45, S-100b, Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. Conclusions Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in two different mouse models of CAA, supporting the importance of MMP-related and inflammatory pathways in ICH pathogenesis. As an FDA-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related ICH. PMID:25944329
McGowan, Patricia M; Simedrea, Carmen; Ribot, Emeline J; Foster, Paula J; Palmieri, Diane; Steeg, Patricia S; Allan, Alison L; Chambers, Ann F
2011-07-01
Brain metastasis from breast cancer is an increasingly important clinical problem. Here we assessed the role of CD44(hi)/CD24(lo) cells and pathways that regulate them, in an experimental model of brain metastasis. Notch signaling (mediated by γ-secretase) has been shown to contribute to maintenance of the cancer stem cell (CSC) phenotype. Cells sorted for a reduced stem-like phenotype had a reduced ability to form brain metastases compared with unsorted or CD44(hi)/CD24(lo) cells (P < 0.05; Kruskal-Wallis). To assess the effect of γ-secretase inhibition, cells were cultured with DAPT and the CD44/CD24 phenotypes quantified. 231-BR cells with a CD44(hi)/CD24(lo) phenotype was reduced by about 15% in cells treated with DAPT compared with DMSO-treated or untreated cells (P = 0.001, ANOVA). In vivo, mice treated with DAPT developed significantly fewer micro- and macrometastases compared with vehicle treated or untreated mice (P = 0.011, Kruskal-Wallis). Notch1 knockdown reduced the expression of CD44(hi)/CD24(lo) phenotype by about 20%. In vitro, Notch1 shRNA resulted in a reduction in cellular growth at 24, 48, and 72 hours time points (P = 0.033, P = 0.002, and P = 0.009, ANOVA) and about 60% reduction in Matrigel invasion was observed (P < 0.001, ANOVA). Cells transfected with shNotch1 formed significantly fewer macrometastases and micrometastases compared with scrambled shRNA or untransfected cells (P < 0.001; Kruskal-Wallis). These data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity. ©2011 AACR.
Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D
2005-01-01
I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.
Singh, Satish; Houng, Aiilyan K; Reed, Guy L
2018-04-15
During acute brain ischemia, α2-antiplasmin markedly enhances brain injury, blood-brain barrier breakdown and matrix metalloproteinase-9 (MMP-9) expression. Although α2-antiplasmin inhibits fibrin thrombus-degradation, and MMP-9 is a collagen-degrading enzyme altering blood-brain barrier, both have similar deleterious effects on the ischemic brain. We examined the hypothesis that MMP-9 is an essential downstream mediator of α2-antiplasmin's deleterious effects during brain ischemia. Middle cerebral artery thromboembolic stroke was induced in a randomized, blinded fashion in mice with increased blood levels of α2-antiplasmin. There was a robust increase in MMP-9 expression (immunofluorescence) in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ but not MMP-9 -/- mice, 24 h after stroke. Brain swelling and hemorrhage were significantly increased in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ mice. By comparison to MMP-9 +/+ mice, the ischemic hemispheres of MMP-9 -/- mice showed a ∼6-fold reduction in brain swelling (p < 0.001) and a ∼9-fold reduction in brain hemorrhage. Brain infarction (p < 0.0001) and TUNEL-positive cell death (p < 0.001) were significantly diminished in the ischemic hemisphere of MMP-9 -/- mice vs. MMP-9 +/+ mice. Ischemic breakdown of the blood-brain barrier and fibrin deposition were also significantly reduced in MMP-9 -/- mice vs. MMP-9 +/+ mice (p < 0.05), as measured by quantitative immunofluorescence. We conclude that MMP-9 deficiency ablates many of the deleterious effects of high α2-antiplasmin levels, significantly reducing blood-brain barrier breakdown, TUNEL-positive cell death, brain hemorrhage, swelling and infarction. This suggests that the two molecules may be in a shared pathway in which MMP-9 is essential downstream for the deleterious effects of α2-antiplasmin in ischemic stroke. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Lactoferrin and prematurity: a promising milk protein?
Ochoa, Theresa J; Sizonenko, Stéphane V
2017-02-01
Lactoferrin (Lf) is the major whey protein in milk, with multiple beneficial health effects including direct antimicrobial activities, anti-inflammatory effects, and iron homeostasis. Oral Lf supplementation in human preterm infants has been shown to reduce the incidence of sepsis and necrotizing enterocolitis. In preclinical models of antenatal stress and perinatal brain injury, bovine Lf protected the developing brain from neuronal loss, improved connectivity, increased neurotrophic factors, and decreased inflammation. It also supported brain development and cognition. Further, Lf can prevent preterm delivery by reducing proinflammatory factors and inhibiting premature cervix maturation. We review here the latest research on Lf in the field of neonatology.
Jin, Lu E
2011-12-01
Our brain is sensitive to stress. Both acute and chronic stress cause cognitive deficits and induce chronic disorders such as drug addiction. In a June 2011 conference at Yale entitled "The Science of Stress: Focus on the Brain, Breaking Bad Habits, and Chronic Disease," Drs. Amy Arnsten and Sherry Mckee discussed the roles of prefrontal cortex in the treatment of stress impairments and addiction. Medications to strengthen the prefrontal function, such as prazosin and guanfacine, may reduce the harm of stress and help overcome smoking and alcohol abuse.
Edwards, M J; Gray, C H; Beatson, J
1984-04-01
Guinea pigs were exposed to a temperature of 42.5-43.5 degrees C on three occasions between days 20 and 23 of pregnancy. In the first experiment, groups of mothers were exposed at intervals of 18-30 hr. Each exposure ended when the deep rectal temperature had been over 43 degrees C for 6 min and mean temperatures were 43.2-43.4 degrees C. Micrencephaly was found in 78% of heated newborn offspring, the mean brain weights of all groups being significantly less than controls. In the heated groups, the brain weights were reduced significantly as the interval between exposures decreased. Abnormalities other than micrencephaly were found in 10% of heated offspring and included exomphalos, clubfoot, and hypodactyly. In the second experiment, groups of mothers were exposed for 1 hour at intervals of 6-20 hr. The mean temperatures of heated groups were 42.6-42.9 degrees C. The mean brain weights of all groups of heated newborn were significantly reduced and micrencephaly was found in 61% of newborn. Brain weights were reduced significantly as mean maternal temperature increased. There was a significant interaction between the level of temperature elevation and the interval between exposures.(ABSTRACT TRUNCATED AT 250 WORDS)
de Rivero Vaccari, Juan Pablo; Lotocki, George; Alonso, Ofelia F; Bramlett, Helen M; Dietrich, W Dalton; Keane, Robert W
2009-07-01
Traumatic brain injury elicits acute inflammation that in turn exacerbates primary brain damage. A crucial part of innate immunity in the immune privileged central nervous system involves production of proinflammatory cytokines mediated by inflammasome signaling. Here, we show that the nucleotide-binding, leucine-rich repeat pyrin domain containing protein 1 (NLRP1) inflammasome consisting of NLRP1, caspase-1, caspase-11, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), the X-linked inhibitor of apoptosis protein, and pannexin 1 is expressed in neurons of the cerebral cortex. Moderate parasagittal fluid-percussion injury (FPI) induced processing of interleukin-1beta, activation of caspase-1, cleavage of X-linked inhibitor of apoptosis protein, and promoted assembly of the NLRP1 inflammasome complex. Anti-ASC neutralizing antibodies administered immediately after fluid-percussion injury to injured rats reduced caspase-1 activation, X-linked inhibitor of apoptosis protein cleavage, and processing of interleukin-1beta, resulting in a significant decrease in contusion volume. These studies show that the NLRP1 inflammasome constitutes an important component of the innate central nervous system inflammatory response after traumatic brain injury and may be a novel therapeutic target for reducing the damaging effects of posttraumatic brain inflammation.
Kameneva, Marina V; Bragina, Olga A; Thomson, Susan; Statom, Gloria L; Lara, Devon A; Yang, Yirong; Nemoto, Edwin M
2016-01-01
Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood–brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved. PMID:28155574
Control-display mapping in brain-computer interfaces.
Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter
2012-01-01
Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.
Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji
2016-01-01
Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours. Copyright © 2015. Published by Elsevier Ireland Ltd.
Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin
2018-05-11
Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.
Kelestemur, Taha; Yulug, Burak; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kilic, Ulkan; Caglayan, Berrak; Yalcin, Esra; Gundogdu, Reyhan Zeynep; Kilic, Ertugrul
2016-01-26
The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy
Meffert, Harma; Gazzola, Valeria; den Boer, Johan A.; Bartels, Arnold A. J.
2013-01-01
Psychopathy is a personality disorder associated with a profound lack of empathy. Neuroscientists have associated empathy and its interindividual variation with how strongly participants activate brain regions involved in their own actions, emotions and sensations while viewing those of others. Here we compared brain activity of 18 psychopathic offenders with 26 control subjects while viewing video clips of emotional hand interactions and while experiencing similar interactions. Brain regions involved in experiencing these interactions were not spontaneously activated as strongly in the patient group while viewing the video clips. However, this group difference was markedly reduced when we specifically instructed participants to feel with the actors in the videos. Our results suggest that psychopathy is not a simple incapacity for vicarious activations but rather reduced spontaneous vicarious activations co-existing with relatively normal deliberate counterparts. PMID:23884812
Chazalviel, Laurent; Haelewyn, Benoit; Degoulet, Mickael; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H
2016-01-01
Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) in vitro , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis in vitro and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis in vitro to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema in vivo . In line with the facilitating effect of NBO on cerebral blood flow, our findings suggest that 5-minute HBO could have provided neuroprotection by promoting thrombolysis. The lack of effect of HBO exposure of longer duration is discussed.
Sleep disorders of Whipple's disease of the brain.
Panegyres, P K; Goh, J
2015-02-01
To understand the effects of Whipple's disease (WD) of the brain on sleep function. Clinical and polysomnographic studies of two patients with severe disruption of sleep due to WD: a 48-year-old female with primary WD of the brain and a 41-year-old male with secondary WD of the brain. The patient with primary WD had hypersomnolence with severe obstructive sleep apnoea, reduced sleep efficiency, frequent waking and sleep fragmentation. The patient with secondary WD was also hypersomnolent with oculomastictory myorhythmia. He was shown to have severe sleep initiation insomnia with poor sleep efficiency, severe obstructive sleep apnoea/hypopnoea and oculomasticatory myorhythmia at sleep-wake transitions. WD of the brain may affect sleep biology in its primary and secondary forms leading to hypersomnolence from obstructive sleep apnoea, sleep fragmentation, reduced sleep efficiency, sleep initiation insomnia and intrusive oculomasticatory myorhythmia. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Huang, Hui-zhi; Wen, Xiao-hong; Liu, Hui; Huang, Jin-hua; Liu, Shang-quan; Ren, Wei-hua; Fang, Wen-xiang; Qian, Yin-feng; Hou, Wei-zhu; Yan, Ming-jie; Yao, You-heng; Li, Wei-Zu; Li, Qian-Jin
2013-06-01
To explore the effect of human umbilical cord blood mononuclear cells (UCBMC) promoting nerve behavior function and brain tissue recovery of neonatal SD rat with hypoxic ischemic brain injury (HIBI). A modified newborn rat model that had a combined hypoxic and ischemic brain injury as described by Rice-Vannucci was used, early nervous reflex, the Morris water maze and walking track analysis were used to evaluate nervous behavioral function, and brain MRI, HE staining to evaluate brain damage recovery. Newborn rat Rice-Vannucci model showed significant brain atrophy, obvious hemiplegia of contralateral limbs,e.g right step length [(7.67 ± 0.46) cm vs. (8.22 ± 0.50) cm, F = 1.494] and toe distance [(0.93 ± 0.06) cm vs. (1.12 ± 0.55) cm, F = 0.186] were significantly reduced compared with left side, learning and memory ability was significantly impaired compared with normal control group (P < 0.01); Cliff aversion [(8.44 ± 2.38) s vs.(14.22 ± 5.07) s, t = 4.618] and negative geotaxis reflex time [(7.26 ± 2.00) s vs. (11.76 ± 3.73) s, t = 4.755] on postnatal 14 days of HIBI+ transplantation group were significantly reduced compared with HIBI+NaCl group (P < 0.01) ; the Morris water maze experiment showed escape latency [ (23.11 ± 6.64) s vs. (34.04 ± 12.95) s, t = 3.356] and swimming distance [ (9.12 ± 1.21) cm vs.(12.70 ± 1.53) cm, t = 17.095] of HIBI+transplantation group were significantly reduced compared with those of HIBI+NaCl group (P < 0.01) ; the residual brain volume on postnatal 10 d [ (75.37 ± 4.53)% vs. (67.17 ± 4.08)%, t = -6.017] and 67 d [ (69.05 ± 3.58)% vs.(60.83 ± 3.69)%, t = -7.148]of HIBI+ transplantation group were significantly larger than those of HIBI+NaCl group (P < 0.01); After human UCBMC transplantation, left cortical edema significantly reduced and nerve cell necrosis of HIBI+ transplantation group is not obvious compared with HIBI+NaCl group. Human UCBMC intraperitoneal transplantation significantly promoted recovery of injured brain cells and neurobehavioral function development.
Hellmich, Helen L.; Eidson, Kristine; Cowart, Jeremy; Crookshanks, Jeanna; Boone, Deborah K.; Shah, Syed; Uchida, Tatsuo; DeWitt, Douglas S.; Prough, Donald S.
2008-01-01
Increases of synaptically released zinc and intracellular accumulation of zinc in hippocampal neurons after traumatic or ischemic brain injury is neurotoxic and chelation of zinc has been shown to reduce neurodegeneration. Although our previous studies showed that zinc chelation in traumatically brain-injured rats correlated with an increase in whole-brain expression of several neuroprotective genes and reduced numbers of apoptotic neurons, the effect on functional outcome has not been determined, and the question of whether this treatment may actually be clinically relevant has not been answered. In the present study, we show that treatment of TBI rats with the zinc chelator calcium EDTA reduces the numbers of injured, Fluoro-Jade- positive neurons in the rat hippocampus 24 hours after injury but does not improve neurobehavioral outcome (spatial memory deficits) two weeks post-injury. Our data suggest that zinc chelation, despite providing short-term histological neuroprotection, fails to improve long-term functional outcome, perhaps because long-term disruptions in homeostatic levels of zinc adversely influence hippocampus-dependent spatial memory. PMID:18556117
Proteomic changes in the crucian carp brain during exposure to anoxia.
Smith, Richard W; Cash, Phil; Ellefsen, Stian; Nilsson, Göran E
2009-04-01
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob
2016-02-01
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Kugelman, Tara; Zuloaga, Damian G.; Weber, Sydney; Raber, Jacob
2015-01-01
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24 hours after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24 hours later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840
A development architecture for serious games using BCI (brain computer interface) sensors.
Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun
2012-11-12
Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.
Potential of glyburide to reduce intracerebral edema in brain metastases.
Boggs, Drexell Hunter; Simard, J Marc; Steven, Andrew; Mehta, Minesh P
2014-04-01
Metastatic disease to the brain results in significant morbidity because of edema in the central nervous system. Current anti-edema therapies are either expensive or result in unwanted long-term side effects. Sulfonylurea receptor 1 (Sur1) is a transmembrane protein that, when activated in the central nervous system, allows for unregulated sodium influx into cells, a process that has been linked to cytotoxic edema formation in ischemic stroke, subarachnoid hemorrhage, spinal cord injury, traumatic brain injury, and, most recently, brain metastases. In this focused review, we explore preclinical data linking Sur1 channel formation to development of edema and reference evidence suggesting that the antidiabetic sulfonylurea drug glyburide (a Sur1 inhibitor) is an inexpensive and well-tolerated agent that can be clinically tested to reduce or prevent malignancy and/or treatment-associated edema.
Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease
de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.
2015-01-01
Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121
Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury
Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas
2017-01-01
Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777
Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.
2010-01-01
This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837
Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.
Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas
2017-01-18
Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.
A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia.
Li, Mei; Sun, Meiling; Cao, Lijuan; Gu, Jin-hua; Ge, Jianbin; Chen, Jieyu; Han, Rong; Qin, Yuan-Yuan; Zhou, Zhi-Peng; Ding, Yuqiang; Qin, Zheng-Hong
2014-05-28
TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and increases the flow of pentose phosphate pathway (PPP), which generates NADPH and pentose. We hypothesized that TIGAR plays a neuroprotective role in brain ischemia as neurons do not rely on glycolysis but are vulnerable to oxidative stress. We found that TIGAR was highly expressed in brain neurons and was rapidly upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. Overexpression of TIGAR in normal mice with lentivirus reduced ischemic neuronal injury, whereas lentivirus-mediated TIGAR knockdown aggravated it. In cultured primary neurons, increasing TIGAR expression reduced oxygen and glucose deprivation (OGD)/reoxygenation-induced injury, whereas decreasing its expression worsened the injury. The glucose 6-phosphate dehydrogenase was upregulated in mouse and cellular models of stroke, and its upregulation was further enhanced by overexpression of TIGAR. Supplementation of NADPH also reduced ischemia/reperfusion brain injury and alleviated TIGAR knockdown-induced aggravation of ischemic injury. In animal and cellular stroke models, ischemia/reperfusion increased mitochondrial localization of TIGAR. OGD/reoxygenation-induced elevation of ROS, reduction of GSH, dysfunction of mitochondria, and activation of caspase-3 were rescued by overexpression of TIGAR or supplementation of NADPH, while knockdown of TIGAR aggravated these changes. Together, our results show that TIGAR protects ischemic brain injury via enhancing PPP flux and preserving mitochondria function, and thus may be a valuable therapeutic target for ischemic brain injury. Copyright © 2014 the authors 0270-6474/14/347458-14$15.00/0.
Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness
Liu, Xiping; Pillay, Siveshigan
2015-01-01
Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200
Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition
Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.
2009-01-01
Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038
Li, Jianru; Chen, Jingsen; Mo, Hangbo; Chen, Jingyin; Qian, Cong; Yan, Feng; Gu, Chi; Hu, Qiang; Wang, Lin; Chen, Gao
2016-05-01
Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.
Endogenous opioidergic dysregulation of pain in fibromyalgia: a PET and fMRI study.
Schrepf, Andrew; Harper, Daniel E; Harte, Steven E; Wang, Heng; Ichesco, Eric; Hampson, Johnson P; Zubieta, Jon-Kar; Clauw, Daniel J; Harris, Richard E
2016-10-01
Endogenous opioid system dysfunction potentially contributes to chronic pain in fibromyalgia (FM), but it is unknown if this dysfunction is related to established neurobiological markers of hyperalgesia. We previously reported that µ-opioid receptor (MOR) availability was reduced in patients with FM as compared with healthy controls in several pain-processing brain regions. In the present study, we compared pain-evoked functional magnetic resonance imaging with endogenous MOR binding and clinical pain ratings in female opioid-naive patients with FM (n = 18) using whole-brain analyses and regions of interest from our previous research. Within antinociceptive brain regions, including the dorsolateral prefrontal cortex (r = 0.81, P < 0.001) and multiple regions of the anterior cingulate cortex (all r > 0.67; all P < 0.02), reduced MOR availability was associated with decreased pain-evoked neural activity. Additionally, reduced MOR availability was associated with lower brain activation in the nucleus accumbens (r = 0.47, P = 0.050). In many of these regions, pain-evoked activity and MOR binding potential were also associated with lower clinical affective pain ratings. These findings are the first to link endogenous opioid system tone to regional pain-evoked brain activity in a clinical pain population. Our data suggest that dysregulation of the endogenous opioid system in FM could lead to less excitation in antinociceptive brain regions by incoming noxious stimulation, resulting in the hyperalgesia and allodynia commonly observed in this population. We propose a conceptual model of affective pain dysregulation in FM.
ERIC Educational Resources Information Center
Miller, Geoffrey F.; Penke, Lars
2007-01-01
Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…
Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...
Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice
Moon, Minho; Huh, Eugene; Song, Eun Ji; Hwang, Deok-Sang; Lee, Tae Hee; Oh, Myung Sook
2017-01-01
Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology. PMID:28946610
Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin
2013-02-01
Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.
Hu, Yingying; Wang, Zhouguang; Liu, Yanlong; Pan, Shulin; Zhang, Hao; Fang, Mingchu; Jiang, Huai; Yin, Jiayu; Zou, Shuangshuang; Li, Zhenmao; Zhang, Hongyu; Lin, Zhenlang; Xiao, Jian
2017-07-13
Melatonin has neuroprotective effects in many diseases, including neonatal hypoxic-ischaemic (HI) brain injury. The purpose of this study was to evaluate the neuroprotective effects of melatonin both in vivo and in vitro and associated molecular mechanisms behind these effects. Postnatal day 7 male and female rat pups were subjected to unilateral HI, melatonin was injected intraperitoneally 1h before HI and an additional six doses were administered at 24h intervals. The pups were sacrificed at 24h and 7 d after HI. Pre-treatment with melatonin significantly reduced brain damage at 7 d after HI, with 15mg/kg melatonin achieving over 30% recovery in tissue loss compared to vehicle-treated animals. Autophagy and apoptotic cell death as indicated by autophagy associated proteins, cleaved caspase 3 and Tunel staining, was significantly inhibited after melatonin treatment in vivo as well as in PC12 cells. Melatonin treatment also significantly increased the GAP43 in the cortex. In conclusion, melatonin treatment reduced neonatal rat brain injury after HI, and this appeared to be related to inhibiting autophagy as well as reducing apoptotic cell death. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yuanyuan; Yan, Yi; Cao, Yi; Yang, Yongtao; Zhao, Qing; Jing, Rui; Hu, Jiayi; Bao, Juan
2017-08-15
The present study was carried out to understand the therapeutic effect of curcumin (CUR) against stroke in the experimental animal model. The study investigates the healing effect of CUR on mitochondrial dysfunction and inflammation. Male albino, Wistar strain rats were used for the induction of middle cerebral artery occlusion (MCAO), and reperfusion. Enzyme-linked immunosorbent assay (ELISA) was used for the determination of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the brain region. Western blot analysis was used to determine the protein expression levels of Bax, Bcl-2, p53, and Sirt1. The water level was determined in brain region by using standard method. Experimental results indicated that the use of CUR significantly reduced brain edema and water content. IL-6 and TNF-α were significantly reduced in the brain region following use of CUR. Mitochondrial membrane potential (MMP) also reduced significantly after CUR treatment. Protein expression of p53 and Bax were significantly reduced, whereas Bcl-2 and Sirt1 were increased following CUR treatment. Taking all these data together, it is suggested that the use of CUR may be a potential therapeutic agent for the treatment of stroke. Copyright © 2017 Elsevier Inc. All rights reserved.
Pan, Yijun; Short, Jennifer L; Newman, Stephanie A; Choy, Kwok H C; Tiwari, Durgesh; Yap, Christopher; Senyschyn, Danielle; Banks, William A; Nicolazzo, Joseph A
2018-05-01
Epidemiological evidence suggests that people with bipolar disorder prescribed lithium exhibit a lower risk of Alzheimer's disease (AD) relative to those prescribed other mood-stabilizing medicines. Lithium chloride (LiCl) reduces brain β-amyloid (Aβ) levels, and the brain clearance of Aβ is reduced in AD. Therefore, the purpose of this study was to assess whether the cognitive benefits of LiCl are associated with enhanced brain clearance of exogenously-administered Aβ. The brain clearance of intracerebroventricularly (icv) administered 125 I-Aβ 42 was assessed in male Swiss outbred mice administered daily oral NaCl or LiCl (300 mg/kg for 21 days). LiCl exhibited a 31% increase in the brain clearance of 125 I-Aβ 42 over 10 min, which was associated with a 1.6-fold increase in brain microvascular expression of the blood-brain barrier efflux transporter low density lipoprotein receptor-related protein 1 (LRP1) and increased cerebrospinal fluid (CSF) bulk-flow. 8-month-old female wild type (WT) and APP/PS1 mice were also administered daily NaCl or LiCl for 21 days, which was followed by cognitive assessment by novel object recognition and water maze, and measurement of soluble Aβ 42 , plaque-associated Aβ 42 , and brain efflux of 125 I-Aβ 42 . LiCl treatment restored the long-term spatial memory deficit observed in APP/PS1 mice as assessed by the water maze (back to similar levels of escape latency as WT mice), but the short-term memory deficit remained unaffected by LiCl treatment. While LiCl did not affect plaque-associated Aβ 42 , soluble Aβ 42 levels were reduced by 49.9% in APP/PS1 mice receiving LiCl. The brain clearance of 125 I-Aβ 42 decreased by 27.8% in APP/PS1 mice, relative to WT mice, however, LiCl treatment restored brain 125 I-Aβ 42 clearance in APP/PS1 mice to a rate similar to that observed in WT mice. These findings suggest that the cognitive benefits and brain Aβ 42 lowering effects of LiCl are associated with enhanced brain clearance of Aβ 42 , possibly via brain microvascular LRP1 upregulation and increased CSF bulk-flow, identifying a novel mechanism of protection by LiCl for the treatment of AD. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Towers, Albert E; Oelschlager, Maci L; Patel, Jay; Gainey, Stephen J; McCusker, Robert H; Freund, Gregory G
2017-06-01
Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β are regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24h or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. A 24h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Towers, Albert E; Oelschlager, Maci L.; Patel, Jay; Gainey, Stephen J.; McCusker, Robert; Freund, Gregory G.
2017-01-01
Background Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β is regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Methods Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24 hours or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. Results A 24 h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24 h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Conclusions Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. PMID:28521881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remler, M.P.
A method for focal stimulation of the brain by entirely extracranial means is presented. A focal x ray lesion of cortex was made that reduces the blood-brain barrier in that area. Then parenteral penicillin was administered. Penicillin is primarily confined to the vascular space by the blood-brain barrier in all parts of the brain except for some leakage into the brain at higher doses. An increased concentration of penicillin is created in the irradiated cortex. The penicillin creates a focal epileptic lesion in the irradiated area. This is an example of radiation-controlled focal pharmacology in the central nervous system. (auth)
2017-09-10
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services , Directorate for Information Operations and...covered in the conference: 1) Wearable Mobile Brain-Body Imaging (MoBI) technologies (both hardware and software developments); 2) Cognitive and Brain...the state of the art and challenges in cognitive and affective brain-computer interfaces, and their deployment in the service of the arts and the
Nounou, Mohamed Ismail; Adkins, Chris E; Rubinchik, Evelina; Terrell-Hall, Tori B; Afroz, Mohamed; Vitalis, Tim; Gabathuler, Reinhard; Tian, Mei Mei; Lockman, Paul R
2016-12-01
The ability of human melanotransferrin (hMTf) to carry a therapeutic concentration of trastuzumab (BTA) in the brain after conjugation (in the form of trastuzumab-melanotransferrin conjugate, BT2111 conjugate) was investigated by measuring the reduction of the number and size of metastatic human HER 2+ breast cancer tumors in a preclinical model of brain metastases of breast cancer. Human metastatic brain seeking breast cancer cells were injected in NuNu mice (n = 6-12 per group) which then developed experimental brain metastases. Drug uptake was analyzed in relation to metastasis size and blood-tumor barrier permeability. To investigate in-vivo activity against brain metastases, equimolar doses of the conjugate, and relevant controls (hMTf and BTA) in separate groups were administered biweekly after intracardiac injection of the metastatic cancer cells. The trastuzumab-melanotransferrin conjugate (BT2111) reduced the number of preclinical human HER 2+ breast cancer metastases in the brain by 68% compared to control groups. Tumors which remained after treatment were 46% smaller than the control groups. In contrast, BTA alone had no effect on reducing number of metastases, and was associated with only a minimal reduction in metastasis size. The results suggest the novel trastuzumab-melanotransferrin conjugate (BT2111) may have utility in treating brain metastasis and validate hMTf as a potential vector for antibody transport across the Blood Brain Barrier (BBB).
Komanapalli, Esther S; Sherchan, Prativa; Rolland, William; Khatibi, Nikan; Martin, Robert D; Applegate, Richard L; Tang, Jiping; Zhang, John H
2016-01-01
Neurosurgical procedures can damage viable brain tissue unintentionally by a wide range of mechanisms. This surgically induced brain injury (SBI) can be a result of direct incision, electrocauterization, or tissue retraction. Plasmin, a serine protease that dissolves fibrin blood clots, has been shown to enhance cerebral edema and hemorrhage accumulation in the brain through disruption of the blood brain barrier. Epsilon aminocaproic acid (EAA), a recognized antifibrinolytic lysine analogue, can reduce the levels of active plasmin and, in doing so, potentially can preserve the neurovascular unit of the brain. We investigated the role of EAA as a pretreatment neuroprotective modality in a SBI rat model, hypothesizing that EAA therapy would protect brain tissue integrity, translating into preserved neurobehavioral function. Male Sprague-Dawley rats were randomly assigned to one of four groups: sham (n = 7), SBI (n = 7), SBI with low-dose EAA, 150 mg/kg (n = 7), and SBI with high-dose EAA, 450 mg/kg (n = 7). SBI was induced by partial right frontal lobe resection through a frontal craniotomy. Postoperative assessment at 24 h included neurobehavioral testing and measurement of brain water content. Results at 24 h showed both low- and high-dose EAA reduced brain water content and improved neurobehavioral function compared with the SBI groups. This suggests that EAA may be a useful pretherapeutic modality for SBI. Further studies are needed to clarify optimal therapeutic dosing and to identify mechanisms of neuroprotection in rat SBI models.
Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W
2016-10-01
The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.
Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease
Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.
2013-01-01
Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120
T cells establish and maintain CNS viral infection in HIV-infected humanized mice.
Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C; Cleary, Rachel A; Thayer, William O; Birath, Shayla L; Swanson, Michael D; Sheridan, Patricia; Zakharova, Oksana; Prince, Francesca; Kuruc, JoAnn; Gay, Cynthia L; Evans, Chris; Eron, Joseph J; Wahl, Angela; Garcia, J Victor
2018-06-04
The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J
2014-08-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.
Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain
NASA Astrophysics Data System (ADS)
Rendon, Cesar A.; Lilge, Lothar
2004-10-01
In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.
Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R
2016-09-29
Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.
Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.
Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R
2017-11-01
Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.
Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis
Sellebjerg, Finn; Cadavid, Diego; Steiner, Deborah; Villar, Luisa Maria; Reynolds, Richard; Mikol, Daniel
2016-01-01
Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing–remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood–brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial. PMID:26788129
NASA Astrophysics Data System (ADS)
Slotboom, J.; Vogels, B. A. P. M.; Dehaan, J. G.; Creyghton, J. H. N.; Quack, G.; Chamuleau, R. A. F. M.; Bovee, W. M. M. J.
Using the SADLOVE ( single-shot adiabatic localized volume excitation) localization technique with reduced specific absorption rate phase-compensated 2π pulses for localization, in vivo rat brain spectra were obtained in order to study the possible beneficial effects of L-ornithine-L-aspartate (OA) on the development of encephalopathy induced by hyperammonemia in portacaval shunted rats, an experimental model for subacute hepatic encephalopathy. The in vivo1H spectra were quantified using a conjugate-gradient-based frequency-domain fitting procedure. OA treatment resulted in an about threefold lower increase in train lactate ( P < 0.0001) and a slower increase of brain glutamine ( P = 0.022) concentration. However, these changes in brain metabolism, including a significantly lower ammonia concentration during OA treatment, were not associated with a sig significant improvement in clinical symptoms of encephalopathy, suggesting either insufficient decrease in brain ammonia concentration or another effect of OA treatment counteracting the lowering effect on blood and brain ammonia and on brain glutamine and lactate. It is concluded that localized in vivo1H MRS of the brain in combination with other analytical techniques, such as in vivo microdialysis, is helpful in explaining pathophysiological changes during hyperammonemia-induced encephalopathy.
Chekroud, Adam M; Anand, Geetha; Yong, Jean; Pike, Michael; Bridge, Holly
2017-01-01
Opsoclonus-myoclonus syndrome (OMS) is a rare, poorly understood condition that can result in long-term cognitive, behavioural, and motor sequelae. Several studies have investigated structural brain changes associated with this condition, but little is known about changes in function. This study aimed to investigate changes in brain functional connectivity in patients with OMS. Seven patients with OMS and 10 age-matched comparison participants underwent 3T magnetic resonance imaging (MRI) to acquire resting-state functional MRI data (whole-brain echo-planar images; 2mm isotropic voxels; multiband factor ×2) for a cross-sectional study. A seed-based analysis identified brain regions in which signal changes over time correlated with the cerebellum. Model-free analysis was used to determine brain networks showing altered connectivity. In patients with OMS, the motor cortex showed significantly reduced connectivity, and the occipito-parietal region significantly increased connectivity with the cerebellum relative to the comparison group. A model-free analysis also showed extensive connectivity within a visual network, including the cerebellum and basal ganglia, not present in the comparison group. No other networks showed any differences between groups. Patients with OMS showed reduced connectivity between the cerebellum and motor cortex, but increased connectivity with occipito-parietal regions. This pattern of change supports widespread brain involvement in OMS. © 2016 Mac Keith Press.
CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier
Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.
2014-01-01
During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068
Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.
Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai
2017-01-01
Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Berrout, Jonathan; Jin, Min; O'Neil, Roger G
2012-02-03
The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement. Copyright © 2011. Published by Elsevier B.V.
Wang, Haitao; Huang, Sammen; Yan, Kuipo; Fang, Xiaoyan; Abussaud, Ahmed; Martinez, Ana; Sun, Hong-Shuo; Feng, Zhong-Ping
2016-10-01
Hypoxia-ischemia is an important cause of brain injury and neurological morbidity in the newborn infants. The activity of glycogen synthase kinase-3β (GSK-3β) is up-regulated following neonatal stroke. Tideglusib is a GSK-3β inhibitor which has neuroprotective effects against neurodegenerative diseases in clinical trials. However, the effect of tideglusib on hypoxic-ischemic (HI) brain injury in neonates is still unknown. Postnatal day 7 (P7) mouse pups subjected to unilateral common carotid artery ligation followed by 1h of hypoxia or sham surgery was performed. HI animals were administered tideglusib (5mg/kg) or vehicle intraperitoneally 20min prior to the onset of ischemia. The brain infarct volume and whole brain images, were used in conjunction with Nissl staining to evaluate the protective effects of tideglusib. Protein levels of glial fibrillary acidic protein (GFAP), Notch1, cleaved caspase-3/9, phosphorylated signal transducer and activator of transcription 3 (STAT3), GSK-3β and protein kinase B (Akt) were detected to identify potentially involved molecules. Tideglusib significantly reduced cerebral infarct volume at both 24h and 7days after HI injury. Tideglusib also increased phosphorylated GSK-3β(Ser9) and Akt(Ser473), and reduced the expression of GFAP and p-STAT3(Tyr705). In addition, pretreatment with tideglusib also enhanced the protein level of Notch1. Moreover, tideglusib reduced the cleavage of pro-apoptotic signal caspase proteins, including caspase 3 and caspase 9 following HI. These results indicate that tideglusib shows neuroprotection against hypoxic-ischemic brain injury in neonatal mice. Tideglusib is a potential compound for the prevention or treatment of hypoxic-ischemic brain injury in neonates. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dormer, J; Kassaee, A; Lin, H
2014-06-01
Purpose: To evaluate use of intensity modulated proton therapy (IMPT) and number of beams for sparing cochlea in treatment of whole brain for pediatric medulloblastoma patients. Methods: In our institution, craniospinal irradiation patients are treated in supine position on our proton gantries using pencil beam scanning with each beam uniformly covering the target volume (SFUD). Each treatment plan consists of two opposed lateral whole brain fields and one or two spinal fields. For sparing the cochlea for the whole brain treatment, we created three different plans using IMPT for five pediatric patients. The first plan consisted of two lateral fields,more » the second two lateral fields and a superior-inferior field, and the third two lateral fields and two superior oblique fields. Optimization was performed with heavy weights applied to the eye, lens and cochlea while maintaining a dose prescription of 36 Gy to the whole brain. Results: IMPT plans reduce the dose to the cochlea. Increasing the number of treatment fields was found to lower the average dose to the cochlea: 15.0, 14.5 and 12.5 Gy for the two-field, three-field, and four-field plans respectively. The D95 for the two-field plan was 98.2%, compared to 100.0% for both the three-field and four-field plan. Coverage in the mid-brain was noticeably better in the three- and four-field plans, with more dose conformality surrounding the cochlea. Conclusion: IMPT plans for CSI and the whole brain irradiations are capable of sparing cochlea and reduce the dose considerably without compromising treating brain tissues. The reduction in average dose increases with three and four field plans as compared to traditional two lateral beam plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack
During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less
Kakkis, E; McEntee, M; Vogler, C; Le, S; Levy, B; Belichenko, P; Mobley, W; Dickson, P; Hanson, S; Passage, M
2004-01-01
Enzyme replacement therapy (ERT) has been developed for several lysosomal storage disorders, including mucopolysaccharidosis I (MPS I), and is effective at reducing lysosomal storage in many tissues and in ameliorating clinical disease. However, intravenous ERT does not adequately treat storage disease in the central nervous system (CNS), presumably due to effects of the blood-brain barrier on enzyme distribution. To circumvent this barrier, we studied whether intrathecal (IT) recombinant human alpha-L-iduronidase (rhIDU) could penetrate and treat the brain and meninges. An initial dose-response study showed that doses of 0.46-4.14 mg of IT rhIDU successfully penetrated the brain of normal dogs and reached tissue levels 5.6 to 18.9-fold normal overall and 2.7 to 5.9-fold normal in deep brain sections lacking CSF contact. To assess the efficacy and safety in treating lysosomal storage disease, four weekly doses of approximately 1 mg of IT rhIDU were administered to MPS I-affected dogs resulting in a mean 23- and 300-fold normal levels of iduronidase in total brain and meninges, respectively. Quantitative glycosaminoglycan (GAG) analysis showed that the IT treatment reduced mean total brain GAG to normal levels and achieved a 57% reduction in meningeal GAG levels accompanied by histologic improvement in lysosomal storage in all cell types. The dogs did develop a dose-dependent immune response against the recombinant human protein and a meningeal lymphocytic/plasmacytic infiltrate. The IT route of ERT administration may be an effective way to treat the CNS disease in MPS I and could be applicable to other lysosomal storage disorders.
Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; ...
2015-02-18
During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less
Brain CT image similarity retrieval method based on uncertain location graph.
Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin
2014-03-01
A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.
Kelleher, Meredith A; Palliser, Hannah K; Walker, David W; Hirst, Jonathan J
2011-03-01
Progesterone and its neuroactive metabolite, allopregnanolone, are present in high concentrations during pregnancy, but drop significantly following birth. Allopregnanolone influences foetal arousal and enhances cognitive and behavioural recovery following traumatic brain injury. Inhibition of allopregnanolone synthesis increases cell death in foetal animal brains with experimental hypoxia. We hypothesised that complications during pregnancy, such as early or preterm loss of placental steroids and intrauterine growth restriction (IUGR), would disrupt the foetal neurosteroid system, contributing to poor neurodevelopmental outcomes. This study aimed to investigate the effects of chronic inhibition of allopregnanolone synthesis before term and IUGR on developmental processes in the foetal brain. Guinea pig foetuses were experimentally growth restricted at mid-gestation and treated with finasteride, an inhibitor of allopregnanolone synthesis. Finasteride treatment reduced foetal brain allopregnanolone concentrations by up to 75% and was associated with a reduction in myelin basic protein (MBP) (P = 0.001) and an increase in glial fibrillary acidic protein expression in the subcortical white matter brain region (P < 0.001). IUGR resulted in decreased MBP expression (P < 0.01) and was associated with a reduction in the expression of steroidogenic enzyme 5α-reductase (5αR) type 2 in the foetal brain (P = 0.061). Brain levels of 5αR1 were higher in male foetuses (P = 0.008). Both IUGR and reduced foetal brain concentrations of allopregnanolone were associated with altered expression of myelination and glial cell markers within the developing foetal brain. The potential role of neurosteroids in protecting and regulating neurodevelopmental processes in the foetal brain may provide new directions for treatment of neurodevelopmental disorders in infants who are exposed to perinatal insults and pathologies.
Harazin, András; Bocsik, Alexandra; Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos; Deli, Maria A; Vecsernyés, Miklós
2018-01-01
The blood-brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB.
Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos
2018-01-01
The blood–brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB. PMID:29780671
Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen
2015-01-01
Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Amat, Samat; Hendrick, Steve; Moshynskyy, Igor; Simko, Elemir
2017-01-01
Sulfur-induced polioencephalomalacia (PEM) is an important disease affecting cattle in certain geographical regions. However, the pathogenesis of brain damage is not completely understood. We previously observed that excess dietary sulfur may influence thiamine status and altered thiamine metabolism may be involved in the pathogenesis of sulfur-induced PEM in cattle. In this study, we evaluated the activities of thiamine-dependent enzymes [α-ketogluterate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH)] and cytochrome c oxidase (COX) in the cerebral cortex of sulfur-induced PEM-affected cattle (n = 9) and clinically normal cattle (n = 8, each group) exposed to low or high dietary sulfur [LS = 0.30% versus HS = 0.67% sulfur on a dry matter (DM) basis]. Enzyme activities in PEM brains were measured from the brain tissue regions and examined using ultraviolent (UV) light illumination to show fluorescence or non-fluorescence regions. No gross changes under regular or UV light, or histopathological changes indicative of PEM were detected in the brains of cattle exposed to LS or HS diets. The PDH, α-KGDH, and COX activities did not differ between LS and HS brains, but all enzymes showed significantly lower (P < 0.05) activities in UV-positive region of PEM brains compared with LS and HS brains. The UV-negative regions of PEM brain had similar PDH activities to LS and HS brains, but the activities of α-KGDH and COX were significantly lower than in LS and HS brains. The results of this study suggest that reduced enzyme activities of brain PHD, α-KGDH, and COX are associated with the pathogenesis of sulfur-induced PEM. PMID:29081580
Chan, Micaela Y; Na, Jinkyung; Agres, Phillip F; Savalia, Neil K; Park, Denise C; Wig, Gagan S
2018-05-14
An individual's environmental surroundings interact with the development and maturation of their brain. An important aspect of an individual's environment is his or her socioeconomic status (SES), which estimates access to material resources and social prestige. Previous characterizations of the relation between SES and the brain have primarily focused on earlier or later epochs of the lifespan (i.e., childhood, older age). We broaden this work to examine the relationship between SES and the brain across a wide range of human adulthood (20-89 years), including individuals from the less studied middle-age range. SES, defined by education attainment and occupational socioeconomic characteristics, moderates previously reported age-related differences in the brain's functional network organization and whole-brain cortical structure. Across middle age (35-64 years), lower SES is associated with reduced resting-state system segregation (a measure of effective functional network organization). A similar but less robust relationship exists between SES and age with respect to brain anatomy: Lower SES is associated with reduced cortical gray matter thickness in middle age. Conversely, younger and older adulthood do not exhibit consistent SES-related difference in the brain measures. The SES-brain relationships persist after controlling for measures of physical and mental health, cognitive ability, and participant demographics. Critically, an individual's childhood SES cannot account for the relationship between their current SES and functional network organization. These findings provide evidence that SES relates to the brain's functional network organization and anatomy across adult middle age, and that higher SES may be a protective factor against age-related brain decline. Copyright © 2018 the Author(s). Published by PNAS.
Hypertonic Lactate to Improve Cerebral Perfusion and Glucose Availability After Acute Brain Injury.
Carteron, Laurent; Solari, Daria; Patet, Camille; Quintard, Hervé; Miroz, John-Paul; Bloch, Jocelyne; Daniel, Roy T; Hirt, Lorenz; Eckert, Philippe; Magistretti, Pierre J; Oddo, Mauro
2018-06-19
Lactate promotes cerebral blood flow and is an efficient substrate for the brain, particularly at times of glucose shortage. Hypertonic lactate is neuroprotective after experimental brain injury; however, human data are limited. Prospective study (clinicaltrials.gov NCT01573507). Academic ICU. Twenty-three brain-injured subjects (13 traumatic brain injury/10 subarachnoid hemorrhage; median age, 59 yr [41-65 yr]; median Glasgow Coma Scale, 6 [3-7]). Three-hour IV infusion of hypertonic lactate (sodium lactate, 1,000 mmol/L; concentration, 30 µmol/kg/min) administered 39 hours (26-49 hr) from injury. We examined the effect of hypertonic lactate on cerebral perfusion (using transcranial Doppler) and brain energy metabolism (using cerebral microdialysis). The majority of subjects (13/23 = 57%) had reduced brain glucose availability (baseline pretreatment cerebral microdialysis glucose, < 1 mmol/L) despite normal baseline intracranial pressure (10 [7-15] mm Hg). Hypertonic lactate was associated with increased cerebral microdialysis lactate (+55% [31-80%]) that was paralleled by an increase in middle cerebral artery mean cerebral blood flow velocities (+36% [21-66%]) and a decrease in pulsatility index (-21% [13-26%]; all p < 0.001). Cerebral microdialysis glucose increased above normal range during hypertonic lactate (+42% [30-78%]; p < 0.05); reduced brain glucose availability correlated with a greater improvement of cerebral microdialysis glucose (Spearman r = -0.53; p = 0.009). No significant changes in cerebral perfusion pressure, mean arterial pressure, systemic carbon dioxide, and blood glucose were observed during hypertonic lactate (all p > 0.1). This is the first clinical demonstration that hypertonic lactate resuscitation improves both cerebral perfusion and brain glucose availability after brain injury. These cerebral vascular and metabolic effects appeared related to brain lactate supplementation rather than to systemic effects.
Aragao, M F V V; Brainer-Lima, A M; Holanda, A C; van der Linden, V; Vasco Aragão, L; Silva Júnior, M L M; Sarteschi, C; Petribu, N C L; Valença, M M
2017-05-01
Arthrogryposis is among the malformations of congenital Zika syndrome. Similar to the brain, there might exist a spectrum of spinal cord abnormalities. The purpose of this study was to explore and describe in detail the MR imaging features found in the spinal cords, nerve roots, and brains of children with congenital Zika syndrome with and without arthrogryposis. Twelve infants with congenital Zika syndrome (4 with arthrogryposis and 8 without) who had undergone brain and spinal cord MR imaging were retrospectively selected. Qualitative and quantitative analyses were performed and compared between groups. At visual inspection, both groups showed reduced thoracic spinal cord thickness: 75% (6/8) of the group without arthrogryposis and 100% (4/4) of the arthrogryposis group. However, the latter had the entire spinal cord reduced and more severely reduced conus medullaris anterior roots (respectively, P = .002 and .007). Quantitative differences were found for conus medullaris base and cervical and lumbar intumescences diameters (respectively, P = .008, .048, .008), with more prominent reduction in arthrogryposis. Periventricular calcifications were more frequent in infants with arthrogryposis ( P = .018). Most infants had some degree of spinal cord thickness reduction, predominant in the thoracic segment (without arthrogryposis) or in the entire spinal cord (with arthrogryposis). The conus medullaris anterior roots were reduced in both groups (thinner in arthrogryposis). A prominent anterior median fissure of the spinal cord was absent in infants without arthrogryposis. Brain stem hypoplasia was present in all infants with arthrogryposis, periventricular calcifications, in the majority, and polymicrogyria was absent. © 2017 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain
Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan
2016-01-01
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236
Loane, David J.; Washington, Patricia M.; Vardanian, Lilit; Pocivavsek, Ana; Hoe, Hyang-Sook; Duff, Karen E.; Cernak, Ibolja; Rebeck, G. William; Faden, Alan I.
2011-01-01
Abstract Traumatic brain injury (TBI) increases brain beta-amyloid (Aβ) in humans and animals. Although the role of Aβ in the injury cascade is unknown, multiple preclinical studies have demonstrated a correlation between reduced Aβ and improved outcome. Therefore, therapeutic strategies that enhance Aβ clearance may be beneficial after TBI. Increased levels of ATP-binding cassette A1 (ABCA1) transporters can enhance Aβ clearance through an apolipoprotein E (apoE)-mediated pathway. By measuring Aβ and ABCA1 after experimental TBI in C57BL/6J mice, we found that Aβ peaked early after injury (1–3 days), whereas ABCA1 had a delayed response (beginning at 3 days). As ABCA1 levels increased, Aβ levels returned to baseline levels—consistent with the known role of ABCA1 in Aβ clearance. To test if enhancing ABCA1 levels could block TBI-induced Aβ, we treated TBI mice with the liver X-receptor (LXR) agonist T0901317. Pre- and post-injury treatment increased ABCA1 levels at 24 h post-injury, and reduced the TBI-induced increase in Aβ. This reduction in Aβ was not due to decreased amyloid precursor protein processing, or a shift in the solubility of Aβ, indicating enhanced clearance. T0901317 also limited motor coordination deficits in injured mice and reduced brain lesion volume. These data indicate that activation of LXR can reduce Aβ accumulation after TBI, and is accompanied by improved functional recovery. PMID:21175399
Expression and function of orphan nuclear receptor TLX in adult neural stem cells.
Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M
2004-01-01
The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.
Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.
Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C
2016-05-05
High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Silveri, Marisa M.
2015-01-01
Alcohol use typically is initiated during adolescence, an age period that overlaps with critical structural and functional maturation of the brain. Brain maturation and associated improvements in decision-making continue into the second decade of life, reaching plateaus within the period referred to as “emerging adulthood” (18–24 years). Emerging adulthood is the typical age span of the traditionally aged college student, which includes the age (21 years) when alcohol consumption becomes legal in the United States. This review highlights neurobiological evidence indicating the vulnerabilities of the emerging adult brain to alcohol effects. This review also identifies that reduced sensitivity to alcohol sedation and increased sensitivity to alcohol-related disruptions in memory, positive family history of alcoholism effects on brain structure and function, and emerging co-morbid psychiatric conditions serve as unique vulnerabilities that increase the risks associated with underage alcohol use. These vulnerabilities likely contribute to excessive and unsupervised drinking in college students. Discouraging alcohol consumption until neurobiological adulthood is reached is important for minimizing alcohol-related disruptions in brain development and decision-making capacity, and reducing the negative behavioral consequences associated with underage alcohol use. PMID:22894728
Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis.
Jope, R S; Jenden, D J
1979-12-01
Specific methods utilizing combined gas chromatography mass spectrometry were used to measure the metabolism of [2H6] deanol and its effects on acetylcholine concentration in vitro and in vivo. In vitro [2H6]deanol was rapidly taken up by rat brain synaptosomes, but was neither methylated nor acetylated. [2H6]Deanol was a weak competitive inhibitor of the high affinity transport of [2H4]choline, thus reducing the synthesis of [2H4]acetylcholine. In vivo [2H6]deanol was present in the brain after i.p. or p.o. administration, but was not methylated or acetylated. Treatment of rats with [2H6]deanol significantly increased the concentration of choline in the plasma and brain but did not alter the concentration of acetylcholine in the brain. Treatment of rats with atropine (to stimulate acetylcholine turnover) or with hemicholinium-3 (to inhibit the high affinity transport of choline) did not reveal any effect of [2H6]deanol on acetylcholine synthesis in vivo. However, since [2H6]deanol did increase brain choline, it may prove therapeutically useful when the production of choline is reduced or when the utilization of choline for the synthesis of acetylcholine is impaired.
Human Brain Organoids on a Chip Reveal the Physics of Folding.
Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R; Hanna, Jacob H; Reiner, Orly
2018-05-01
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo , it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Human brain organoids on a chip reveal the physics of folding
NASA Astrophysics Data System (ADS)
Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly
2018-05-01
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Neuroprotective Role of a Brain-Enriched Tyrosine Phosphatase, STEP, in Focal Cerebral Ischemia
Deb, Ishani; Manhas, Namratta; Poddar, Ranjana; Rajagopal, Sathyanarayanan; Allan, Andrea M.; Lombroso, Paul J.; Rosenberg, Gary A.; Candelario-Jalil, Eduardo
2013-01-01
The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy. PMID:24198371
Linking brain, mind and behavior.
Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard
2009-08-01
Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.
Stitcher, D L; Harris, L W; Heyl, W C; Alter, S C
1978-01-01
Soman reduced blood and brain cholinesterase (ChE) activity to less than 15% and increased cerebral acetylcholine (ACh) levels to 137.4% of control. When pyridostigmine (P) was used as a prophylactic adjunct, it reduced blood ChE activity to 31.6% of control, failed to significantly alter brain ChE activity, and protected more than 70% of the blood (but not brain enzyme) from phosphonylation by soman. Benactyzine (B) was more effective than atropine (A) in reducing cerebral ACh concentrations, while a combination of the two was more effective than either alone. A prophylaxis of P + A + B was effective in controlling ACh levels in rats poisoned with one LD50 dose of Soman. Since P did not diminish the effects of the cholinolytics on cerebral ACh, this (together with the enzyme data) suggests that the two cholinolytics alone provided the central protection.
Zepf, F D; Dingerkus, V L S; Helmbold, K; Bubenzer-Busch, S; Biskup, C S; Herpertz-Dahlmann, B; Schaab, M; Kratzsch, J; Eisert, A; Rink, L; Hagenah, U; Gaber, T J
2015-03-01
Serotonin (5-HT) and the hormone leptin have been linked to the underlying neurobiology of appetite regulation with evidence coming from animal and cellular research, but direct evidence linking these two pathways in humans is lacking. We examined the effects of reduced brain 5-HT synthesis due to acute tryptophan depletion (ATD) on levels of soluble leptin receptor (sOb-R), the main high-affinity leptin binding protein, in healthy adults using an exploratory approach. Women, but not men, showed reduced sOb-R concentrations after ATD administration. With females showing reduced baseline levels of central 5-HT synthesis compared to males diminished brain 5-HT synthesis affected the leptin axis through the sOb-R in females, thereby potentially influencing their vulnerability to dysfunctional appetite regulation and co-morbid mood symptoms.
NASA Astrophysics Data System (ADS)
Hegazy, Maha Abdel Monem; Fayez, Yasmin Mohammed
2015-04-01
Two different methods manipulating spectrophotometric data have been developed, validated and compared. One is capable of removing the signal of any interfering components at the selected wavelength of the component of interest (univariate). The other includes more variables and extracts maximum information to determine the component of interest in the presence of other components (multivariate). The applied methods are smart, simple, accurate, sensitive, precise and capable of determination of spectrally overlapped antihypertensives; hydrochlorothiazide (HCT), irbesartan (IRB) and candesartan (CAN). Mean centering of ratio spectra (MCR) and concentration residual augmented classical least-squares method (CRACLS) were developed and their efficiency was compared. CRACLS is a simple method that is capable of extracting the pure spectral profiles of each component in a mixture. Correlation was calculated between the estimated and pure spectra and was found to be 0.9998, 0.9987 and 0.9992 for HCT, IRB and CAN, respectively. The methods were successfully determined the three components in bulk powder, laboratory-prepared mixtures, and combined dosage forms. The results obtained were compared statistically with each other and to those of the official methods.
Rahman, M; Morita, S; Fukui, T; Sakamoto, J
2004-01-01
To examine the physicians' preference between Web and fax-based remote data entry (RDE) system for an ongoing randomized controlled trial (RCT) in Japan. We conducted a survey among all the collaborating physicians (n = 512) of the CASE-J (Candesartan Antihypertensive Survival Evaluation in Japan) trial, who have been recruiting patients and sending follow-up data using the Web or a fax-based RDE system. The survey instrument assessed physicians' choice between Web and fax-based RDE systems, their practice pattern, and attitudes towards these two modalities. A total of 448 (87.5%) responses were received. The proportions of physicians who used Web, fax, and the combination of these two were 45.9%, 33.3% and 20.8%, respectively. Multivariate logistic regression analyses revealed that physicians 55 years or younger [odds ratio (OR) = 1.9, 95% confidence interval (CI) = 1.1-3.3] and regular users of computers (OR = 4.2, 95% CI = 2.1-8.2) were more likely to use the Web-based RDE system. This information would be useful in designing an RCT with a Web-based RDE system in Japan and abroad.
Azilsartan medoxomil in the treatment of hypertension: the definitive angiotensin receptor blocker?
Barrios, Vivencio; Escobar, Carlos
2013-11-01
Azilsartan medoxomil is the newest angiotensin receptor blocker marketed for the treatment of arterial hypertension. The aim of this article was to review the available evidence about this drug alone or combined with other antihypertensive agents in the treatment of hypertensive population. For this purpose, a search on MEDLINE and EMBASE databases was performed. The MEDLINE and EMBASE search included both medical subject headings (MeSHs) and keywords including azilsartan or azilsartan medoxomil or angiotensin receptor blockers or renin angiotensin system or chlorthalidone and hypertension. References of the retrieved articles were also screened for additional studies. There were no language restrictions. Azilsartan medoxomil has a potent and persistent ability to inhibit binding of angiotensin II to AT1 receptors, which may play a role in its superior blood pressure (BP) -lowering efficacy compared with other drugs, including ramipril, candesartan, valsartan or olmesartan, without an increase of side effects. Chlortalidone is a diuretic which significantly differs from other classic thiazides and has largely demonstrated clinical benefits in outcome trials. The fixed-dose combination of azilsartan and chlorthalidone has been shown to be more effective than other potent combinations of angiotensin receptor blockers plus hydrochlorothiazide, with a good tolerability profile.
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape. PMID:24778382
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture.
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape.
Cannabinoids and brain injury: therapeutic implications.
Mechoulam, Raphael; Panikashvili, David; Shohami, Esther
2002-02-01
Mounting in vitro and in vivo data suggest that the endocannabinoids anandamide and 2-arachidonoyl glycerol, as well as some plant and synthetic cannabinoids, have neuroprotective effects following brain injury. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission and reduce the production of tumour necrosis factor-alpha and reactive oxygen intermediates, which are factors in causing neuronal damage. The formation of the endocannabinoids anandamide and 2-arachidonoyl glycerol is strongly enhanced after brain injury, and there is evidence that these compounds reduce the secondary damage incurred. Some plant and synthetic cannabinoids, which do not bind to the cannabinoid receptors, have also been shown to be neuroprotective, possibly through their direct effect on the excitatory glutamate system and/or as antioxidants.
Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.
Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H
2008-01-01
Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Snyder, K; Liu, C
Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas weremore » the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.« less
Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys
Gonzales, Lauren A.; Benefit, Brenda R.; McCrossin, Monte L.; Spoor, Fred
2015-01-01
Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently. PMID:26138795
Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando
2012-01-01
To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534
Guo, Christine C.; Sturm, Virginia E.; Zhou, Juan; Gennatas, Efstathios D.; Trujillo, Andrew J.; Hua, Alice Y.; Crawford, Richard; Stables, Lara; Kramer, Joel H.; Rankin, Katherine; Levenson, Robert W.; Rosen, Howard J.; Miller, Bruce L.; Seeley, William W.
2016-01-01
The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic–sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow. PMID:27071080
Esler, Murray; Lambert, Elisabeth; Alvarenga, Marlies; Socratous, Florentia; Richards, Jeff; Barton, David; Pier, Ciaran; Brenchley, Celia; Dawood, Tye; Hastings, Jacqueline; Guo, Ling; Haikerwal, Deepak; Kaye, David; Jennings, Garry; Kalff, Victor; Kelly, Michael; Wiesner, Glen; Lambert, Gavin
2007-08-01
Since the brain neurotransmitter changes characterising panic disorder remain uncertain, we quantified brain noradrenaline and serotonin turnover in patients with panic disorder, in the absence of a panic attack. Thirty-four untreated patients with panic disorder and 24 matched healthy volunteers were studied. A novel method utilising internal jugular venous sampling, with thermodilution measurement of jugular blood flow, was used to directly quantify brain monoamine turnover, by measuring the overflow of noradrenaline and serotonin metabolites from the brain. Radiographic depiction of brain venous sinuses allowed differential venous sampling from cortical and subcortical regions. The relation of brain serotonin turnover to serotonin transporter genotype and panic disorder severity were evaluated, and the influence of an SSRI drug, citalopram, on serotonin turnover investigated. Brain noradrenaline turnover in panic disorder patients was similar to that in healthy subjects. In contrast, brain serotonin turnover, estimated from jugular venous overflow of the metabolite, 5-hydroxyindole acetic acid, was increased approximately 4-fold in subcortical brain regions and in the cerebral cortex (P < 0.01). Serotonin turnover was highest in patients with the most severe disease, was unrelated to serotonin transporter genotype, and was reduced by citalopram (P < 0.01). Normal brain noradrenaline turnover in panic disorder patients argues against primary importance of the locus coeruleus in this condition. The marked increase in serotonin turnover, in the absence of a panic attack, possibly represents an important underlying neurotransmitter substrate for the disorder, although this point remains uncertain. Support for this interpretation comes from the direct relationship which existed between serotonin turnover and illness severity, and the finding that SSRI administration reduced serotonin turnover. Serotonin transporter genotyping suggested that increased whole brain serotonin turnover most likely derived not from impaired serotonin reuptake, but from increased firing in serotonergic midbrain raphe neurons projecting to both subcortical brain regions and the cerebral cortex.
DNA Double-Strand Break Repair Genes and Oxidative Damage in Brain Metastasis of Breast Cancer
Evans, Lynda; Duchnowska, Renata; Reed, L. Tiffany; Palmieri, Diane; Qian, Yongzhen; Badve, Sunil; Sledge, George; Gril, Brunilde; Aladjem, Mirit I.; Fu, Haiqing; Flores, Natasha M.; Gökmen-Polar, Yesim; Biernat, Wojciech; Szutowicz-Zielińska, Ewa; Mandat, Tomasz; Trojanowski, Tomasz; Och, Waldemar; Czartoryska-Arlukowicz, Bogumiła; Jassem, Jacek; Mitchell, James B.
2014-01-01
Background Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Methods Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis–specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Results Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. Conclusions BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species–mediated genotoxic stress in the metastatic brain. PMID:24948741
DNA double-strand break repair genes and oxidative damage in brain metastasis of breast cancer.
Woditschka, Stephan; Evans, Lynda; Duchnowska, Renata; Reed, L Tiffany; Palmieri, Diane; Qian, Yongzhen; Badve, Sunil; Sledge, George; Gril, Brunilde; Aladjem, Mirit I; Fu, Haiqing; Flores, Natasha M; Gökmen-Polar, Yesim; Biernat, Wojciech; Szutowicz-Zielińska, Ewa; Mandat, Tomasz; Trojanowski, Tomasz; Och, Waldemar; Czartoryska-Arlukowicz, Bogumiła; Jassem, Jacek; Mitchell, James B; Steeg, Patricia S
2014-07-01
Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis-specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species-mediated genotoxic stress in the metastatic brain. Published by Oxford University Press 2014.
Reduced hippocampal functional connectivity in Alzheimer disease.
Allen, Greg; Barnard, Holly; McColl, Roderick; Hester, Andrea L; Fields, Julie A; Weiner, Myron F; Ringe, Wendy K; Lipton, Anne M; Brooker, Matthew; McDonald, Elizabeth; Rubin, Craig D; Cullum, C Munro
2007-10-01
To determine if functional connectivity of the hippocampus is reduced in patients with Alzheimer disease. Functional connectivity magnetic resonance imaging was used to investigate coherence in the magnetic resonance signal between the hippocampus and all other regions of the brain. Eight patients with probable Alzheimer disease and 8 healthy volunteers. Control subjects showed hippocampal functional connectivity with diffuse cortical, subcortical, and cerebellar sites, while patients demonstrated markedly reduced functional connectivity, including an absence of connectivity with the frontal lobes. These findings suggest a functional disconnection between the hippocampus and other brain regions in patients with Alzheimer disease.
Immediate and Longitudinal Alterations of Functional Networks after Thalamotomy in Essential Tremor
Jang, Changwon; Park, Hae-Jeong; Chang, Won Seok; Pae, Chongwon; Chang, Jin Woo
2016-01-01
Thalamotomy at the ventralis intermedius nucleus has been an effective treatment method for essential tremor, but how the brain network changes immediately responding to this deliberate lesion and then reorganizes afterwards are not clear. Taking advantage of a non-cranium-opening MRI-guided focused ultrasound ablation technique, we investigated functional network changes due to a focal lesion. To classify the diverse time courses of those network changes with respect to symptom-related long-lasting treatment effects and symptom-unrelated transient effects, we applied graph-theoretic analyses to longitudinal resting-state functional magnetic resonance imaging data before and 1 day, 7 days, and 3 months after thalamotomy with essential tremor. We found reduced average connections among the motor-related areas, reduced connectivity between substantia nigra and external globus pallidum and reduced total connection in the thalamus after thalamotomy, which are all associated with clinical rating scales. The average connectivity among whole brain regions and inter-hemispheric network asymmetry show symptom-unrelated transient increases, indicating temporary reconfiguration of the whole brain network. In summary, thalamotomy regulates interactions over the motor network via symptom-related connectivity changes but accompanies transient, symptom-unrelated diaschisis in the global brain network. This study suggests the significance of longitudinal network analysis, combined with minimal-invasive treatment techniques, in understanding time-dependent diaschisis in the brain network due to a focal lesion. PMID:27822200
Reduced posterior parietal cortex activation after training on a visual search task.
Bueichekú, Elisenda; Miró-Padilla, Anna; Palomar-García, María-Ángeles; Ventura-Campos, Noelia; Parcet, María-Antonia; Barrós-Loscertales, Alfonso; Ávila, César
2016-07-15
Gaining experience on a cognitive task improves behavioral performance and is thought to enhance brain efficiency. Despite the body of literature already published on the effects of training on brain activation, less research has been carried out on visual search attention processes under well controlled conditions. Thirty-six healthy adults divided into trained and control groups completed a pre-post letter-based visual search task fMRI study in one day. Twelve letters were used as targets and ten as distractors. The trained group completed a training session (840 trials) with half the targets between scans. The effects of training were studied at the behavioral and brain levels by controlling for repetition effects using both between-subjects (trained vs. control groups) and within-subject (trained vs. untrained targets) controls. The trained participants reduced their response speed by 31% as a result of training, maintaining their accuracy scores, whereas the control group hardly changed. Neural results revealed that brain changes associated with visual search training were circumscribed to reduced activation in the posterior parietal cortex (PPC) when controlling for group, and they included inferior occipital areas when controlling for targets. The observed behavioral and brain changes are discussed in relation to automatic behavior development. The observed training-related decreases could be associated with increased neural efficiency in specific key regions for task performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.
Kroemer, Nils B; Small, Dana M
2016-08-01
There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. Copyright © 2016 Elsevier Inc. All rights reserved.
Ganesan, Palanivel; Ko, Hyun-Myung; Kim, In-Su; Choi, Dong-Kug
2015-01-01
Oxidative stress plays a very critical role in neurodegenerative diseases, such as Parkinson's disease (PD), which is the second most common neurodegenerative disease among elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of PD. However, in vivo studies suggest that their concentrations are very low to cross blood-brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1-100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phytobioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nanobioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we discuss the most recent trends and applications in PD, including 1) the role of phytobioactive compounds in reducing oxidative stress and their bioavailability; 2) the role of nanotechnology in reducing oxidative stress during PD; 3) nanodelivery systems; and 4) various nanophytobioactive compounds and their role in PD.
Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias
2015-08-13
Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.
Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.
Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L
2017-03-01
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gui, Minzhi; Tamhane, Ashish A; Arfanakis, Konstantinos
2008-05-01
To assess the effects of cardiac-induced brain pulsation on the noise of the diffusion tensor in Turboprop (a form of periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER] imaging) diffusion tensor imaging (DTI). A total of six healthy human subjects were imaged with cardiac-gated as well as nongated Turboprop DTI. Gated and nongated Turboprop DTI datasets were also simulated using actual data acquired exclusively during the diastolic or systolic period of the cardiac cycle. The total variance of the diffusion tensor (TVDT) was measured and compared between acquisitions. The TVDT near the ventricles was significantly reduced in cardiac-gated compared to nongated Turboprop DTI acquisitions. Furthermore, the effects of brain pulsation were reduced, but not eliminated, when increasing the amount of data collected. Finally, data corrupted by cardiac-induced pulsation were not consistently detected by the step of the conventional Turboprop reconstruction algorithm that evaluates the quality of data in different blades. Thus, the inherent quality weighting of the conventional Turboprop reconstruction algorithm was unable to compensate for the increased noise in the diffusion tensor due to brain pulsation. Cardiac-induced brain pulsation increases the TVDT in Turboprop DTI. Use of cardiac gating to limit data acquisition to the diastolic period of the cardiac cycle reduces the TVDT at the expense of imaging time. (c) 2008 Wiley-Liss, Inc.
Stone, Eric A; Lehmann, Michael L; Lin, Yan; Quartermain, David
2007-08-15
A previous study showed that two mouse models of behavioral depression, immune system activation and depletion of brain monoamines, are accompanied by marked reductions in stimulated neural activity in brain regions involved in motivated behavior. The present study tested whether this effect is common to other depression models by examining the effects of repeated forced swimming, chronic subordination stress or acute intraventricular galanin injection - three additional models - on baseline or stimulated c-fos expression in several brain regions known to be involved in motor or motivational processes (secondary motor, M2, anterior piriform cortex, APIR, posterior cingulate gyrus, CG, nucleus accumbens, NAC). Each of the depression models was found to reduce the fos response stimulated by exposure to a novel cage or a swim stress in all four of these brain areas but not to affect the response of a stress-sensitive region (paraventricular hypothalamus, PVH) that was included for control purposes. Baseline fos expression in these structures was either unaffected or affected in an opposite direction to the stimulated response. Pretreatment with either desmethylimipramine (DMI) or tranylcypromine (tranyl) attenuated these changes. It is concluded that the pattern of a reduced neural function of CNS motor/motivational regions with an increased function of stress areas is common to 5 models of behavioral depression in the mouse and is a potential experimental analog of the neural activity changes occurring in the clinical condition.
Reducing the Disruptive Effects of Interruptions With Noninvasive Brain Stimulation.
Blumberg, Eric J; Foroughi, Cyrus K; Scheldrup, Melissa R; Peterson, Matthew S; Boehm-Davis, Debbie A; Parasuraman, Raja
2015-09-01
The authors determine whether transcranial direct current stimulation (tDCS) can reduce resumption time when an ongoing task is interrupted. Interruptions are common and disruptive. Working memory capacity has been shown to predict resumption lag (i.e., time to successfully resume a task after interruption). Given that tDCS applied to brain areas associated with working memory can enhance performance, tDCS has the potential to improve resumption lag when a task is interrupted. Participants were randomly assigned to one of four groups that received anodal (active) stimulation of 2 mA tDCS to one of two target brain regions, left and right dorsolateral prefrontal cortex (DLPFC), or to one of two control areas, active stimulation of the left primary motor cortex or sham stimulation of the right DLPFC, while completing a financial management task that was intermittently interrupted with math problem solving. Anodal stimulation to the right and left DLPFC significantly reduced resumption lags compared to the control conditions (sham and left motor cortex stimulation). Additionally, there was no speed-accuracy tradeoff (i.e., the improvement in resumption time was not accompanied by an increased error rate). Noninvasive brain stimulation can significantly decrease resumption lag (improve performance) after a task is interrupted. Noninvasive brain stimulation offers an easy-to-apply tool that can significantly improve interrupted task performance. © 2014, Human Factors and Ergonomics Society.
Statins Reduce the Risks of Relapse to Addiction in Rats
Chauvet, Claudia; Nicolas, Celine; Lafay-Chebassier, Claire; Jaber, Mohamed; Thiriet, Nathalie; Solinas, Marcello
2016-01-01
Statins are drugs that have been used for decades in humans for the treatment of hypercholesterolemia. More recently, several lines of evidence demonstrate that statins, in addition to their peripheral effects, produce a wide variety of effects in the brain and may be beneficial in neurological and psychiatric conditions. In this study, we allowed rats to self-administer cocaine for several weeks and, at the end of self-administration training, we treated them with low doses of statins daily for a 21-day period of abstinence. Chronic administration of brain-penetrating statins, simvastatin (1 mg/kg) and atorvastatin (1 mg/kg), reduced cocaine seeking compared with vehicle, whereas administration of pravastatin (2 mg/kg), a statin with low brain penetrability, did not. Importantly, the effects of brain-penetrating statins persisted even after discontinuation of the treatment and were specific for drug seeking because drug taking was not altered by simvastatin treatment. Finally, the effects of simvastatin were found to generalize to another drug of abuse such as nicotine, but not to food reward, and to reinstatement of cocaine seeking induced by stress. These results demonstrate that brain-penetrating statins can reduce risks of relapse to addiction. Given their well-known safety profile in humans, statins could be a novel effective treatment for relapse to cocaine and nicotine addiction and their use could be implemented in clinical settings without major health risks. PMID:26466819
Intracranial Volume and Whole Brain Volume in Infants With Unicoronal Craniosynostosis
Hill, Cheryl A.; Vaddi, S.; Moffitt, Amanda; Kane, A.A.; Marsh, Jeffrey L.; Panchal, Jayesh; Richtsmeier, Joan T.; Aldridge, Kristina
2011-01-01
Objective Craniosynostosis has been hypothesized to result in alterations of the brain and cerebral blood flow due to reduced intracranial volume, potentially leading to cognitive deficits. In this study we test the hypothesis that intracranial volume and whole brain volume in infants with unilateral coronal synostosis differs from those in unaffected infants. Design Our study sample consists of magnetic resonance images acquired from 7- to 72-week-old infants with right unilateral coronal synostosis prior to surgery (n = 10) and age-matched unaffected infants (n = 10). We used Analyze 9.0 software to collect three cranial volume measurements. We used nonparametric tests to determine whether the three measures differ between the two groups. Correlations were calculated between age and the three volume measures in each group to determine whether the growth trajectory of the measurements differ between children with right unicoronal synostosis and unaffected infants. Results Our results show that the three volume measurements are not reduced in infants with right unicoronal synostosis relative to unaffected children. Correlation analyses between age and various volume measures show similar correlations in infants with right unicoronal synostosis compared with unaffected children. Conclusions Our results show that the relationship between brain size and intracranial size in infants with right unicoronal synostosis is similar to that in unaffected children, suggesting that reduced intracranial volume is not responsible for alterations of the brain in craniosynostosis. PMID:20815706
Naora, K; Ichikawa, N; Hirano, H; Iwamoto, K
1999-05-01
Pharmacokinetic changes of various drugs have been reported in renal or hepatic failure. The present study employed ciprofloxacin, a quinolone antibiotic having neurotoxic side effects, to assess the influence of these diseases on distribution of ciprofloxacin into the central nervous system (CNS). After intravenous dosing of ciprofloxacin (10-30 mg kg(-1)), ciprofloxacin levels in plasma and brain were measured in normal rats (Wistar, male, 10-week-old) and those with acute renal and hepatic injuries which were induced by uranyl nitrate and carbon tetrachloride (CCl4), respectively. In the uranyl nitrate-treated rats, the plasma elimination half-life of ciprofloxacin was prolonged and the total body clearance was reduced when compared with those in the normal rats. Similar but smaller changes were observed in the CCl4-treated group. Brain levels of ciprofloxacin were significantly increased by both uranyl nitrate and CCl4 treatments. A proportional correlation between serum unbound levels and brain levels of ciprofloxacin was observed in the normal group. However, brain-to-serum unbound concentration ratios of ciprofloxacin were reduced in the rats with renal or hepatic failure. These results suggest that renal failure as well as hepatic failure retards elimination of ciprofloxacin from the blood, leading to elevation of the CNS level, and also that ciprofloxacin distribution in the brain is reduced in these disease states.
Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela
2017-01-01
Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595
Transcallosal transfer of information and functional asymmetry of the human brain.
Nowicka, Anna; Tacikowski, Pawel
2011-01-01
The corpus callosum is the largest commissure in the brain and acts as a "bridge" of nerve fibres connecting the two cerebral hemispheres. It plays a crucial role in interhemispheric integration and is responsible for normal communication and cooperation between the two hemispheres. Evolutionary pressures guiding brain size are accompanied by reduced interhemispheric and enhanced intrahemispheric connectivity. Some lines of evidence suggest that the speed of transcallosal conduction is limited in large brains (e.g., in humans), thus favouring intrahemispheric processing and brain lateralisation. Patterns of directional symmetry/asymmetry of transcallosal transfer time may be related to the degree of brain lateralisation. Neural network modelling and electrophysiological studies on interhemispheric transmission provide data supporting this supposition.
Hanlon, L A; Raghupathi, R; Huh, J W
2017-04-01
The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Nagata, Katsuhiro; Suto, Yujin; Cognetti, John; Browne, Kevin D; Kumasaka, Kenichiro; Johnson, Victoria E; Kaplan, Lewis; Marks, Joshua; Smith, Douglas H; Pascual, Jose L
2018-05-01
Unfractionated heparin administered immediately after traumatic brain injury (TBI) reduces brain leukocyte (LEU) accumulation, and enhances early cognitive recovery, but may increase bleeding after injury. It is unknown how non-anticoagulant heparins, such as 2,3-O desulfated heparin (ODSH), impact post-TBI cerebral inflammation and long-term recovery. We hypothesized that ODSH after TBI reduces LEU-mediated brain inflammation and improves long-term neurologic recovery. CD1 male mice (n = 66) underwent either TBI (controlled cortical impact [CCI]) or sham craniotomy. 2,3-O desulfated heparin (25 mg/kg [25ODSH] or 50 mg/kg [50ODSH]) or saline was administered for 48 hours after TBI in 46 animals. At 48 hours, intravital microscopy visualized rolling LEUs and fluorescent albumin leakage in the pial circulation, and the Garcia Neurologic Test assessed neurologic function. Brain edema (wet/dry ratio) was evaluated post mortem. In a separate group of animals (n = 20), learning/memory ability (% time swimming in the Probe platform quadrant) was assessed by the Morris Water Maze 17 days after TBI. Analysis of variance with Bonferroni correction determined significance (p < 0.05). Compared with CCI (LEU rolling: 32.3 ± 13.7 LEUs/100 μm per minute, cerebrovascular albumin leakage: 57.4 ± 5.6%), both ODSH doses reduced post-TBI pial LEU rolling (25ODSH: 18.5 ± 9.2 LEUs/100 μm per minute, p = 0.036; 50ODSH: 7.8 ± 3.9 LEUs/100 μm per minute, p < 0.001) and cerebrovascular albumin leakage (25ODSH: 37.9 ± 11.7%, p = 0.001, 50ODSH: 32.3 ± 8.7%, p < 0.001). 50ODSH also reduced injured cerebral hemisphere edema (77.7 ± 0.4%) vs. CCI (78.7 ± 0.4 %, p = 0.003). Compared with CCI, both ODSH doses improved Garcia Neurologic Test at 48 hours. Learning/memory ability (% time swimming in target quadrant) was lowest in CCI (5.9 ± 6.4%) and significantly improved in the 25ODSH group (27.5 ± 8.2%, p = 0.025). 2,3-O desulfated heparin after TBI reduces cerebral LEU recruitment, microvascular permeability and edema. 2,3-O desulfated heparin may also improve acute neurologic recovery leading to improved learning/memory ability weeks after injury.
Xia, Yang; Kong, Liang; Yao, Yingjia; Jiao, Yanan; Song, Jie; Tao, Zhenyu; You, Zhong; Yang, Jingxian
2015-09-04
Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury. A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3-21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival. Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.
Aho-Özhan, Helena E A; Keller, Jürgen; Heimrath, Johanna; Uttner, Ingo; Kassubek, Jan; Birbaumer, Niels; Ludolph, Albert C; Lulé, Dorothée
2016-01-01
Amyotrophic lateral sclerosis (ALS) primarily impairs motor abilities but also affects cognition and emotional processing. We hypothesise that subjective ratings of emotional stimuli depicting social interactions and facial expressions is changed in ALS. It was found that recognition of negative emotions and ability to mentalize other's intentions is reduced. Processing of emotions in faces was investigated. A behavioural test of Ekman faces expressing six basic emotions was presented to 30 ALS patients and 29 age-, gender and education matched healthy controls. Additionally, a subgroup of 15 ALS patients that were able to lie supine in the scanner and 14 matched healthy controls viewed the Ekman faces during functional magnetic resonance imaging (fMRI). Affective state and a number of daily social contacts were measured. ALS patients recognized disgust and fear less accurately than healthy controls. In fMRI, reduced brain activity was seen in areas involved in processing of negative emotions replicating our previous results. During processing of sad faces, increased brain activity was seen in areas associated with social emotions in right inferior frontal gyrus and reduced activity in hippocampus bilaterally. No differences in brain activity were seen for any of the other emotional expressions. Inferior frontal gyrus activity for sad faces was associated with increased amount of social contacts of ALS patients. ALS patients showed decreased brain and behavioural responses in processing of disgust and fear and an altered brain response pattern for sadness. The negative consequences of neurodegenerative processes in the course of ALS might be counteracted by positive emotional activity and positive social interactions.
Wu, Aiguo; Ying, Zhe; Schubert, David; Gomez-Pinilla, Fernando
2011-05-01
In addition to cognitive dysfunction, locomotor deficits are prevalent in traumatic brain injured (TBI) patients; however, it is unclear how a concussive injury can affect spinal cord centers. Moreover, there are no current efficient treatments that can counteract the broad pathology associated with TBI. The authors have investigated potential molecular basis for the disruptive effects of TBI on spinal cord and hippocampus and the neuroprotection of a curcumin derivative to reduce the effects of experimental TBI. The authors performed fluid percussion injury (FPI) and then rats were exposed to dietary supplementation of the curcumin derivative (CNB-001; 500 ppm). The curry spice curcumin has protective capacity in animal models of neurodegenerative diseases, and the curcumin derivative has enhanced brain absorption and biological activity. The results show that FPI in rats, in addition to reducing learning ability, reduced locomotor performance. Behavioral deficits were accompanied by reductions in molecular systems important for synaptic plasticity underlying behavioral plasticity in the brain and spinal cord. The post-TBI dietary supplementation of the curcumin derivative normalized levels of BDNF, and its downstream effectors on synaptic plasticity (CREB, synapsin I) and neuronal signaling (CaMKII), as well as levels of oxidative stress-related molecules (SOD, Sir2). These studies define a mechanism by which TBI can compromise centers related to cognitive processing and locomotion. The findings also show the influence of the curcumin derivative on synaptic plasticity events in the brain and spinal cord and emphasize the therapeutic potential of this noninvasive dietary intervention for TBI.
Norden, Diana M; Devine, Raymond; Bicer, Sabahattin; Jing, Runfeng; Reiser, Peter J; Wold, Loren E; Godbout, Jonathan P; McCarthy, Donna O
2015-03-01
Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K
2010-02-19
Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.
Wang, Zhou-Guang; Cheng, Yi; Yu, Xi-Chong; Ye, Li-Bing; Xia, Qing-Hai; Johnson, Noah R; Wei, Xiaojie; Chen, Da-Qing; Cao, Guodong; Fu, Xiao-Bing; Li, Xiao-Kun; Zhang, Hong-Yu; Xiao, Jian
2016-12-01
Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced blood-brain barrier (BBB) breakdown. Exogenous basic fibroblast growth factor (bFGF) has been shown to have neuroprotective function in brain injury. The present study therefore investigates the beneficial effects of bFGF on the BBB after TBI and the underlying mechanisms. In this study, we demonstrate that bFGF reduces neurofunctional deficits and preserves BBB integrity in a mouse model of TBI. bFGF suppresses RhoA and upregulates tight junction proteins, thereby mitigating BBB breakdown. In vitro, bFGF exerts a protective effect on BBB by upregulating tight junction proteins claudin-5, occludin, zonula occludens-1, p120-catenin, and β-catenin under oxygen glucose deprivation/reoxygenation (OGD) in human brain microvascular endothelial cells (HBMECs). Both the in vivo and in vitro effects are related to the activation of the downstream signaling pathway, PI3K/Akt/Rac-1. Inhibition of the PI3K/Akt or Rac-1 by specific inhibitors LY294002 or si-Rac-1, respectively, partially reduces the protective effect of bFGF on BBB integrity. Overall, our results indicate that the protective role of bFGF on BBB involves the regulation of tight junction proteins and RhoA in the TBI model and OGD-induced HBMECs injury, and that activation of the PI3K/Akt /Rac-1 signaling pathway underlies these effects.
Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain Networks.
Hashmi, Javeria A; Loggia, Marco L; Khan, Sheraz; Gao, Lei; Kim, Jieun; Napadow, Vitaly; Brown, Emery N; Akeju, Oluwaseun
2017-03-01
A clear understanding of the neural basis of consciousness is fundamental to research in clinical and basic neuroscience disciplines and anesthesia. Recently, decreased efficiency of information integration was suggested as a core network feature of propofol-induced unconsciousness. However, it is unclear whether this finding can be generalized to dexmedetomidine, which has a different molecular target. Dexmedetomidine was administered as a 1-μg/kg bolus over 10 min, followed by a 0.7-μg · kg · h infusion to healthy human volunteers (age range, 18 to 36 yr; n = 15). Resting-state functional magnetic resonance imaging data were acquired during baseline, dexmedetomidine-induced altered arousal, and recovery states. Zero-lag correlations between resting-state functional magnetic resonance imaging signals extracted from 131 brain parcellations were used to construct weighted brain networks. Network efficiency, degree distribution, and node strength were computed using graph analysis. Parcellated brain regions were also mapped to known resting-state networks to study functional connectivity changes. Dexmedetomidine significantly reduced the local and global efficiencies of graph theory-derived networks. Dexmedetomidine also reduced the average brain connectivity strength without impairing the degree distribution. Functional connectivity within and between all resting-state networks was modulated by dexmedetomidine. Dexmedetomidine is associated with a significant drop in the capacity for efficient information transmission at both the local and global levels. These changes result from reductions in the strength of connectivity and also manifest as reduced within and between resting-state network connectivity. These findings strengthen the hypothesis that conscious processing relies on an efficient system of information transfer in the brain.
Zhou, Ming-Sheng; Liu, Chang; Tian, Runxia; Nishiyama, Akira; Raij, Leopoldo
2015-05-01
We have previously shown that in hypertensive Dahl salt-sensitive (DS) rats, impaired endothelium-dependent relaxation to acetylcholine and to insulin is mechanistically linked to up-regulation of angiotensin (Ang) II actions and the production of reactive oxygen species (ROS) and to activation of the proinflammatory transcription factor (NF)κB. Here we investigated whether Ang II activation of NFκB contributed to insulin resistance in the skeletal muscle of this animal model. DS rats were fed either a normal (NS, 0.5% NaCl) or high (HS, 4% NaCl) salt diet for 6 weeks. In addition, 3 separate groups of HS rats were given angiotensin receptor 1 blocker candesartan (ARB, 10 mg/kg/day in drinking water), antioxidant tempol (1 mmol/L in drinking water) or NFκB inhibitor PDTC (150 mg/kg in drinking water). DS rats manifested an increase in soleus muscle Ang II content, ROS production and phosopho-IκBα/IκBα ratio, ARB or tempol reduced ROS and phospho-IκBα/IκBα ratio. Hypertensive DS rats also manifested a reduction in glucose infusion rate, impaired insulin-induced Akt phosphorylation and Glut-4 translocation in the soleus muscle, which were prevented with treatment of either ARB, tempol, or PDTC. Data from the rat diabetes signaling pathway PCR array showed that 8 genes among 84 target genes were altered in the muscle of hypertensive rats with the increase in gene expression of ACE1 and 5 proinflammatory genes, and decrease of 2 glucose metabolic genes. Incubation of the muscle with NFκB SN50 (a specific peptide inhibitor of NFκB) ex vivo reversed changes in hypertension-induced gene expression. The current findings strongly suggest that the activation of NFκB inflammatory pathway by Ang II play a critical role in skeletal muscle insulin resistance in salt-sensitive hypertension.
Haas, Michael J; Onstead-Haas, Luisa; Lee, Tracey; Torfah, Maisoon; Mooradian, Arshag D
2016-10-01
Renin-angiotensin-aldosterone system (RAAS) has been implicated in diabetes-related vascular complications partly through oxidative stress. To determine the role of angiotensin II receptor subtype one (AT1) in dextrose induced endoplasmic reticulum (ER) stress, another cellular stress implicated in vascular disease. Human coronary artery endothelial cells with or without AT1 receptor knock down were treated with 27.5mM dextrose for 24h in the presence of various pharmacologic blockers of RAAS and ER stress and superoxide (SO) production were measured. Transfection of cells with AT1 antisense RNA knocked down cellular AT1 by approximately 80%. The ER stress was measured using the placental alkaline phosphatase (ES-TRAP) assay and western blot analysis of glucose regulated protein 78 (GRP78), c-jun-N-terminal kinase 1 (JNK1), phospho-JNK1, eukaryotic translation initiation factor 2α (eIF2α) and phospho-eIF2α measurements. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. In cells with AT1 knock down, dextrose induced ER stress was significantly blunted and treatment with 27.5mM dextrose resulted in significantly smaller increase in SO production compared to 27.5mM dextrose treated and sham transfected cells. Dextrose induced ER stress was reduced with pharmacologic blockers of AT1 (losartan and candesartan) and mineralocorticoid receptor blocker (spironolactone) but not with angiotensin converting enzyme inhibitors (captopril and lisinopril). The dextrose induced SO generation was inhibited by all pharmacologic blockers of RAAS tested. The results indicate that dextrose induced ER stress and SO production in endothelial cells are mediated at least partly through AT1 receptor activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mohamed, Nadia R; Abdelhalim, Mervat M; Khadrawy, Yasser A; Elmegeed, Gamal A; Abdel-Salam, Omar M E
2012-11-01
Oxidative stress and inflammation have been implicated in several neurodegenerative and developmental brain disorders. The present work was devoted to the design and synthesis of novel steroid derivatives bearing promising heterocyclic moiety that would act to reduce neuro-inflammation and oxidative stress in brain. The novel heterocyclic steroids were synthesized and their chemical structures were confirmed by studying their analytical and spectral data. The tested compounds were assayed in the model of neuro-inflammation produced in rats by cerebral lipopolysaccharide injection. The intracerebral administration of bacterial endotoxin resulted in cerebral inflammatory state evidenced by increased malondialdehyde (MDA), decreased reduced glutathione (GSH) level, increased nitric oxide as well as increased acetylcholinesterase (AChE) activity in the brain. Compounds 6, 10, 8b and 13a markedly increased reduced glutathione. Malondialadehyde and nitric oxide levels were reduced to normal values after treatment with all tested compounds. AChE activity was normalized by compound 8b and reduced to below normal values by compounds 10 and 14a. These results are exciting in that these agents might be useful candidates in treatment of cerebral inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.
Feng, Jin-Zhou; Wang, Wen-Yuan; Zeng, Jun; Zhou, Zhi-Yuan; Peng, Jin; Yang, Hao; Deng, Peng-Chi; Li, Shi-Jun; Lu, Charles D; Jiang, Hua
2017-08-01
Therapeutic hypothermia is widely used to treat traumatic brain injuries (TBIs). However, determining the best hypothermia therapy strategy remains a challenge. We hypothesized that reducing the metabolic rate, rather than reaching a fixed body temperature, would be an appropriate target because optimizing metabolic conditions especially the brain metabolic environment may enhance neurologic protection. A pilot single-blind randomized controlled trial was designed to test this hypothesis, and a nested metabolomics study was conducted to explore the mechanics thereof. Severe TBI patients (Glasgow Coma Scale score, 3-8) were randomly divided into the metabolic-targeted hypothermia treatment (MTHT) group, 50% to 60% rest metabolic ratio as the hypothermia therapy target, and the body temperature-targeted hypothermia treatment (BTHT) control group, hypothermia therapy target of 32°C to 35°C body temperature. Brain and circulatory metabolic pool blood samples were collected at baseline and on days 1, 3, and 7 during the hypothermia treatment, which were selected randomly from a subgroup of MTHT and BTHT groups. The primary outcome was mortality. Using H nuclear magnetic resonance technology, we tracked and located the disturbances of metabolic networks. Eighty-eight severe TBI patients were recruited and analyzed from December 2013 to December 2014, 44 each were assigned in the MTHT and BTHT groups (median age, 42 years; 69.32% men; mean Glasgow Coma Scale score, 6.17 ± 1.02). The mortality was significantly lower in the MTHT than the BTHT group (15.91% vs. 34.09%; p = 0.049). From these, eight cases of MTHT and six cases from BTHT group were enrolled for metabolomics analysis, which showed a significant difference between the brain and circulatory metabolic patterns in MTHT group on day 7 based on the model parameters and scores plots. Finally, metabolites representing potential neuroprotective monitoring parameters for hypothermia treatment were identified through H nuclear magnetic resonance metabolomics. MTHT can significantly reduce the mortality of severe TBI patients. Metabolomics research showed that this strategy could effectively improve brain metabolism, suggesting that reducing the metabolic rate to 50% to 60% should be set as the hypothermia therapy target. Therapeutic study, Level I.
Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D
2014-03-01
Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.
Anti-Apoptotic Effects of 3,3',5-Triiodo-L-Thyronine in the Liver of Brain-Dead Rats.
Rebolledo, Rolando A; Van Erp, Anne C; Ottens, Petra J; Wiersema-Buist, Janneke; Leuvenink, Henri G D; Romanque, Pamela
2015-01-01
Thyroid hormone treatment in brain-dead organ donors has been extensively studied and applied in the clinical setting. However, its clinical applicability remains controversial due to a varying degree of success and a lack of mechanistic understanding about the therapeutic effects of 3,3',5-Triiodo-L-thyronine (T3). T3 pre-conditioning leads to anti-apoptotic and pro-mitotic effects in liver tissue following ischemia/reperfusion injury. Therefore, we aimed to study the effects of T3 pre-conditioning in the liver of brain-dead rats. Brain death (BD) was induced in mechanically ventilated rats by inflation of a Fogarty catheter in the epidural space. T3 (0.1 mg/kg) or vehicle was administered intraperitoneally 2 h prior to BD induction. After 4 h of BD, serum and liver tissue were collected. RT-qPCR, routine biochemistry, and immunohistochemistry were performed. Brain-dead animals treated with T3 had lower plasma levels of AST and ALT, reduced Bax gene expression, and less hepatic cleaved Caspase-3 activation compared to brain-dead animals treated with vehicle. Interestingly, no differences in the expression of inflammatory genes (IL-6, MCP-1, IL-1β) or the presence of pro-mitotic markers (Cyclin-D and Ki-67) were found in brain-dead animals treated with T3 compared to vehicle-treated animals. T3 pre-conditioning leads to beneficial effects in the liver of brain-dead rats as seen by lower cellular injury and reduced apoptosis, and supports the suggested role of T3 hormone therapy in the management of brain-dead donors.
Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.
2014-01-01
Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433
Çelik, Ömer; Kahya, Mehmet Cemal; Nazıroğlu, Mustafa
2016-09-01
An excessive production of reactive oxygen substances (ROS) and reduced antioxidant defence systems resulting from electromagnetic radiation (EMR) exposure may lead to oxidative brain and liver damage and degradation of membranes during pregnancy and development of rat pups. We aimed to investigate the effects of Wi-Fi-induced EMR on the brain and liver antioxidant redox systems in the rat during pregnancy and development. Sixteen pregnant rats and their 48 newborns were equally divided into control and EMR groups. The EMR groups were exposed to 2.45GHz EMR (1h/day for 5 days/week) from pregnancy to 3 weeks of age. Brain cortex and liver samples were taken from the newborns between the first and third weeks. In the EMR groups, lipid peroxidation levels in the brain and liver were increased following EMR exposure; however, the glutathione peroxidase (GSH-Px) activity, and vitamin A, vitamin E and β-carotene concentrations were decreased in the brain and liver. Glutathione (GSH) and vitamin C concentrations in the brain were also lower in the EMR groups than in the controls; however, their concentrations did not change in the liver. In conclusion, Wi-Fi-induced oxidative stress in the brain and liver of developing rats was the result of reduced GSH-Px, GSH and antioxidant vitamin concentrations. Moreover, the brain seemed to be more sensitive to oxidative injury compared to the liver in the development of newborns. Copyright © 2015 Elsevier B.V. All rights reserved.
Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain's Response to Fat.
Eldeghaidy, Sally; Marciani, Luca; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C; Gowland, Penny A; Francis, Susan T
2016-11-01
The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m 2 ) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual's plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level-dependent (BOLD) activation of brain regions. Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual's plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = -0.39; P < 0.05) and reward areas (ρ = -0.36; P < 0.05). Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain's response to high-fat counterparts and guide future interventions to reduce obesity.
Innate defense regulator peptide 1018 protects against perinatal brain injury.
Bolouri, Hayde; Sävman, Karin; Wang, Wei; Thomas, Anitha; Maurer, Norbert; Dullaghan, Edie; Fjell, Christopher D; Ek, C Joakim; Hagberg, Henrik; Hancock, Robert E W; Brown, Kelly L; Mallard, Carina
2014-03-01
There is currently no pharmacological treatment that provides protection against brain injury in neonates. It is known that activation of an innate immune response is a key, contributing factor in perinatal brain injury; therefore, the neuroprotective therapeutic potential of innate defense regulator peptides (IDRs) was investigated. The anti-inflammatory effects of 3 IDRs was measured in lipopolysaccharide (LPS)-activated murine microglia. IDRs were then assessed for their ability to confer neuroprotection in vivo when given 3 hours after neonatal brain injury in a clinically relevant model that combines an inflammatory challenge (LPS) with hypoxia-ischemia (HI). To gain insight into peptide-mediated effects on LPS-induced inflammation and neuroprotective mechanisms, global cerebral gene expression patterns were analyzed in pups that were treated with IDR-1018 either 4 hours before LPS or 3 hours after LPS+HI. IDR-1018 reduced inflammatory mediators produced by LPS-stimulated microglia cells in vitro and modulated LPS-induced neuroinflammation in vivo. When administered 3 hours after LPS+HI, IDR-1018 exerted effects on regulatory molecules of apoptotic (for, eg, Fadd and Tnfsf9) and inflammatory (for, eg, interleukin 1, tumor necrosis factor α, chemokines, and cell adhesion molecules) pathways and showed marked protection of both white and gray brain matter. IDR-1018 suppresses proinflammatory mediators and cell injurious mechanisms in the developing brain, and postinsult treatment is efficacious in reducing LPS-induced hypoxic-ischemic brain damage. IDR-1018 is effective in the brain when given systemically, confers neuroprotection of both gray and white matter, and lacks significant effects on the brain under normal conditions. Thus, this peptide provides the features of a promising neuroprotective agent in newborns with brain injury. © 2014 Child Neurology Society/American Neurological Association.
Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders
SAAVEDRA, Juan M.
2012-01-01
The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury. PMID:22827472
Mice overexpressing corticotropin-releasing factor show brain atrophy and motor dysfunctions.
Goebel, Miriam; Fleming, Sheila M; Million, Mulugeta; Stengel, Andreas; Taché, Yvette; Wang, Lixin
2010-03-31
Chronic stress and persistently high glucocorticoid levels can induce brain atrophy. Corticotropin-releasing factor (CRF)-overexpressing (OE) mice are a genetic model of chronic stress with elevated brain CRF and plasma corticosterone levels and Cushing's syndrome. The brain structural alterations in the CRF-OE mice, however, are not well known. We found that adult male and female CRF-OE mice had significantly lower whole brain and cerebellum weights than their wild type (WT) littermates (347.7+/-3.6mg vs. 460.1+/-4.3mg and 36.3+/-0.8mg vs. 50.0+/-1.3mg, respectively) without sex-related difference. The epididymal/parametrial fat mass was significantly higher in CRF-OE mice. The brain weight was inversely correlated to epididymal/parametrial fat weight, but not to body weight. Computerized image analysis system in Nissl-stained brain sections of female mice showed that the anterior cingulate and sensorimotor cortexes of CRF-OE mice were significantly thinner, and the volumes of the hippocampus, hypothalamic paraventricular nucleus and amygdala were significantly reduced compared to WT, while the locus coeruleus showed a non-significant increase. Motor functions determined by beam crossing and gait analysis showed that CRF-OE mice took longer time and more steps to traverse a beam with more errors, and displayed reduced stride length compared to their WT littermates. These data show that CRF-OE mice display brain size reduction associated with alterations of motor coordination and an increase in visceral fat mass providing a novel animal model to study mechanisms involved in brain atrophy under conditions of sustained elevation of brain CRF and circulating glucocorticoid levels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.
2013-01-01
Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816
Experimental missile wound to the brain.
Carey, M E; Sarna, G S; Farrell, J B; Happel, L T
1989-11-01
Among civilians in the United States, 33,000 gunshot wound deaths occur each year; probably half of these involve the head. In combat, head wounds account for approximately half of the immediate mortality when death can be attributed to a single wound. No significant reduction in the neurosurgical mortality associated with these wounds has occurred between World War II and the Vietnam conflict, and very little research into missile wounds of the brain has been undertaken. An experimental model has been developed in the anesthetized cat whereby a ballistic injury to the brain may be painlessly reproduced in order that the pathophysiological effects of brain wounding may be studied and better treatments may be designed to lower the mortality and morbidity rates associated with gunshot wounds. Prominent among physiological effects observed in this model was respiratory arrest even though the missile did not injure the brain stem directly. The incidence of prolonged respiratory arrest increased with increasing missile energy, but arrest was often reversible provided respiratory support was given. It is possible that humans who receive a brain wound die from missile-induced apnea instead of brain damage per se. The mortality rate in humans with brain wounding might be reduced by prompt respiratory support. Brain wounding was associated with persistently increased intracranial pressure and reduced cerebral perfusion pressure not entirely attributable to intracranial bleeding. The magnitude of these derangements appeared to be missile energy-dependent and approached dangerous levels in higher-energy wounds. All wounded cats exhibited postwounding increases in blood glucose concentrations consistent with a generalized stress reaction. A transient rise in hematocrit also occurred immediately after wounding. Both of these phenomena could prove deleterious to optimal brain function after injury.
Akyol, Onat; Sherchan, Prativa; Yilmaz, Gokce; Reis, Cesar; Ho, Wingi Man; Wang, Yuechun; Huang, Lei; Solaroglu, Ihsan; Zhang, John H
2018-06-05
Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5. Copyright © 2018 Elsevier Inc. All rights reserved.
Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong
2017-02-15
Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.
Alakbarzade, Vafa; Hameed, Abdul; Quek, Debra Q Y; Chioza, Barry A; Baple, Emma L; Cazenave-Gassiot, Amaury; Nguyen, Long N; Wenk, Markus R; Ahmad, Arshia Q; Sreekantan-Nair, Ajith; Weedon, Michael N; Rich, Phil; Patton, Michael A; Warner, Thomas T; Silver, David L; Crosby, Andrew H
2015-07-01
The major pathway by which the brain obtains essential omega-3 fatty acids from the circulation is through a sodium-dependent lysophosphatidylcholine (LPC) transporter (MFSD2A), expressed in the endothelium of the blood-brain barrier. Here we show that a homozygous mutation affecting a highly conserved MFSD2A residue (p.Ser339Leu) is associated with a progressive microcephaly syndrome characterized by intellectual disability, spasticity and absent speech. We show that the p.Ser339Leu alteration does not affect protein or cell surface expression but rather significantly reduces, although not completely abolishes, transporter activity. Notably, affected individuals displayed significantly increased plasma concentrations of LPCs containing mono- and polyunsaturated fatty acyl chains, indicative of reduced brain uptake, confirming the specificity of MFSD2A for LPCs having mono- and polyunsaturated fatty acyl chains. Together, these findings indicate an essential role for LPCs in human brain development and function and provide the first description of disease associated with aberrant brain LPC transport in humans.
Antecedent control in the treatment of brain-injured clients.
Zencius, A H; Wesolowski, M D; Burke, W H; McQuade, P
1989-01-01
Three brain-injured clients failed to respond significantly to consequence management programmes designed to increase attendance, use of a cane, and to reduce unauthorized breaks. When antecedent stimulus control procedures were applied, attendance and use of a cane increased and unauthorized breaks decreased. The study shows that antecedent control may be the treatment of choice when treating brain-injured clients with memory loss.
ERIC Educational Resources Information Center
Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.
2015-01-01
Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…
2014-11-01
GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast... traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected...mitigation strategies. 15. SUBJECT TERMS Traumatic Brain Injury (TBI), Kevlar Vests, Neuroprotection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen
Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin
2013-01-01
Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O2 tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca2+ activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology. PMID:23211964
Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya
2014-05-01
Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Low doses of alcohol substantially decrease glucose metabolism in the human brain.
Volkow, Nora D; Wang, Gene-Jack; Franceschi, Dinko; Fowler, Joanna S; Thanos, Panayotis Peter K; Maynard, Laurence; Gatley, S John; Wong, Christopher; Veech, Richard L; Kunos, George; Kai Li, Ting
2006-01-01
Moderate doses of alcohol decrease glucose metabolism in the human brain, which has been interpreted to reflect alcohol-induced decreases in brain activity. Here, we measure the effects of two relatively low doses of alcohol (0.25 g/kg and 0.5 g/kg, or 5 to 10 mM in total body H2O) on glucose metabolism in the human brain. Twenty healthy control subjects were tested using positron emission tomography (PET) and FDG after placebo and after acute oral administration of either 0.25 g/kg, or 0.5 g/kg of alcohol, administered over 40 min. Both doses of alcohol significantly decreased whole-brain glucose metabolism (10% and 23% respectively). The responses differed between doses; whereas the 0.25 g/kg dose predominantly reduced metabolism in cortical regions, the 0.5 g/kg dose reduced metabolism in cortical as well as subcortical regions (i.e. cerebellum, mesencephalon, basal ganglia and thalamus). These doses of alcohol did not significantly change the scores in cognitive performance, which contrasts with our previous results showing that a 13% reduction in brain metabolism by lorazepam was associated with significant impairment in performance on the same battery of cognitive tests. This seemingly paradoxical finding raises the possibility that the large brain metabolic decrements during alcohol intoxication could reflect a shift in the substrate for energy utilization, particularly in light of new evidence that blood-borne acetate, which is markedly increased during intoxication, is a substrate for energy production by the brain.
Associations between education and brain structure at age 73 years, adjusted for age 11 IQ
Dickie, David Alexander; Ritchie, Stuart J.; Karama, Sherif; Pattie, Alison; Royle, Natalie A.; Corley, Janie; Aribisala, Benjamin S.; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M.; Bastin, Mark E.; Evans, Alan C.; Wardlaw, Joanna M.; Deary, Ian J.
2016-01-01
Objective: To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. Methods: We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. Results: The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. Conclusions: The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. PMID:27664981
The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.
Miller, Suzanne L; Huppi, Petra S; Mallard, Carina
2016-02-15
Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Associations between education and brain structure at age 73 years, adjusted for age 11 IQ.
Cox, Simon R; Dickie, David Alexander; Ritchie, Stuart J; Karama, Sherif; Pattie, Alison; Royle, Natalie A; Corley, Janie; Aribisala, Benjamin S; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M; Bastin, Mark E; Evans, Alan C; Wardlaw, Joanna M; Deary, Ian J
2016-10-25
To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. © 2016 American Academy of Neurology.
Weinstein, Aviv; Livny, Abigail; Weizman, Abraham
2016-01-01
Cannabis is the most widely used illicit drug worldwide. Regular cannabis use has been associated with a range of acute and chronic mental health problems, such as anxiety, depression, psychotic symptoms and neurocognitive impairments and their neural mechanisms need to be examined. This review summarizes and critically evaluates brain-imaging studies of cannabis in recreational and regular cannabis users between January 2000 and January 2016. The search has yielded eligible 103 structural and functional studies. Regular use of cannabis results in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala. Regular use of cannabis affects cognitive processes such as attention, memory, inhibitory control, decision-making, emotional processing, social cognition and their associated brain areas. There is evidence that regular cannabis use leads to altered neural function during attention and working memory and that recruitment of activity in additional brain regions can compensate for it. Similar to other drugs of abuse, cannabis cues activated areas in the reward pathway. Pharmacological studies showed a modest increase in human striatal dopamine transmission after administration of THC in healthy volunteers. Regular cannabis use resulted in reduced dopamine transporter occupancy and reduced dopamine synthesis but not in reduced striatal D2/D3 receptor occupancy compared with healthy control participants. Studies also showed different effects of Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on emotion, cognition and associated brain regions in healthy volunteers, whereby CBD protects against the psychoactive effects of THC. Brain imaging studies using selective high-affinity radioligands for the imaging of cannabinoid CB1 receptor availability in Positron Emission Tomography (PET) showed downregulation of CB1 in regular users of cannabis. In conclusion, regular use of the cannabinoids exerts structural and functional changes in the human brain. These changes have profound implications for our understanding of the neuropharmacology of cannabis and its effects on cognition, mental health and the brain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Jin, Guang; DeMoya, Marc A; Duggan, Michael; Knightly, Thomas; Mejaddam, Ali Y; Hwabejire, John; Lu, Jennifer; Smith, William Michael; Kasotakis, Georgios; Velmahos, George C; Socrate, Simona; Alam, Hasan B
2012-07-01
Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related mortality and morbidity. Combination of TBI and HS (TBI + HS) is highly lethal, and the optimal resuscitation strategy for this combined insult remains unclear. A critical limitation is the lack of suitable large animal models to test different treatment strategies. We have developed a clinically relevant large animal model of TBI + HS, which was used to evaluate the impact of different treatments on brain lesion size and associated edema. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters and intracranial pressure. A computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4 m/s velocity, 100-ms dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 h of shock, animals were randomized to one of three resuscitation groups (n = 5/group): (a) normal saline (NS); (b) 6% hetastarch, Hextend (Hex); and (c) fresh frozen plasma (FFP). Volumes of Hex and FFP matched the shed blood, whereas NS was three times the volume. After 6 h of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with TTC (2,3,5-triphenyltetrazolium chloride) to quantify the lesion size and brain swelling. Combination of 40% blood loss with cortical impact and a period of shock (2 h) resulted in a highly reproducible brain injury. Total fluid requirements were lower in the Hex and FFP groups. Lesion size and brain swelling in the FFP group (2,160 ± 202.63 mm and 22% ± 1.0%, respectively) were significantly smaller than those in the NS group (3,285 ± 130.8 mm3 and 37% ± 1.6%, respectively) (P < 0.05). Hex treatment decreased the swelling (29% ± 1.6%) without reducing the lesion size. Early administration of FFP reduces the size of brain lesion and associated swelling in a large animal model of TBI + HS. In contrast, artificial colloid (Hex) decreases swelling without reducing the actual size of the brain lesion.
Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun
2013-08-15
From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.
Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction
Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun
2013-01-01
From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain. PMID:25206528
Adolescent drinking and brain morphometry: A co-twin control analysis.
Wilson, Sylia; Malone, Stephen M; Thomas, Kathleen M; Iacono, William G
2015-12-01
Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication) and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Miyata, Yoshinari; Li, Xiaokai; Lee, Hsiu-Fang; Jinwal, Umesh K; Srinivasan, Sharan R; Seguin, Sandlin P; Young, Zapporah T; Brodsky, Jeffrey L; Dickey, Chad A; Sun, Duxin; Gestwicki, Jason E
2013-06-19
The molecular chaperone, heat shock protein 70 (Hsp70), is an emerging drug target for treating neurodegenerative tauopathies. We recently found that one promising Hsp70 inhibitor, MKT-077, reduces tau levels in cellular models. However, MKT-077 does not penetrate the blood-brain barrier (BBB), limiting its use as either a clinical candidate or probe for exploring Hsp70 as a drug target in the central nervous system (CNS). We hypothesized that replacing the cationic pyridinium moiety in MKT-077 with a neutral pyridine might improve its clogP and enhance its BBB penetrance. To test this idea, we designed and synthesized YM-08, a neutral analogue of MKT-077. Like the parent compound, YM-08 bound to Hsp70 in vitro and reduced phosphorylated tau levels in cultured brain slices. Pharmacokinetic evaluation in CD1 mice showed that YM-08 crossed the BBB and maintained a brain/plasma (B/P) value of ∼0.25 for at least 18 h. Together, these studies suggest that YM-08 is a promising scaffold for the development of Hsp70 inhibitors suitable for use in the CNS.
Abnormal rich club organization and functional brain dynamics in schizophrenia.
van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S
2013-08-01
The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brain's integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. Our findings provide novel biological evidence that schizophrenia is characterized by a selective disruption of brain connectivity among central hub regions of the brain, potentially leading to reduced communication capacity and altered functional brain dynamics.
A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke
Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.
2015-01-01
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities. PMID:26089789
Mattson, Mark P; Wan, Ruiqian
2005-03-01
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.
Hemanth Kumar, Boyina; Arun Reddy, Ravula; Mahesh Kumar, Jerald; Dinesh Kumar, B; Diwan, Prakash V
2017-01-01
This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.
Guanidinylated Neomycin Conjugation Enhances Intranasal Enzyme Replacement in the Brain.
Tong, Wenyong; Dwyer, Chrissa A; Thacker, Bryan E; Glass, Charles A; Brown, Jillian R; Hamill, Kristina; Moremen, Kelley W; Sarrazin, Stéphane; Gordts, Philip L S M; Dozier, Lara E; Patrick, Gentry N; Tor, Yitzhak; Esko, Jeffrey D
2017-12-06
Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Sayer, R Drew; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W
2016-01-01
Objective The brain’s reward system influences ingestive behavior and subsequently, obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. We sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. Methods A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n=16) and men (n=12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the 2 testing days. Results Mean fasting-state brain responses on Day 2 were reduced compared to Day 1 in the left insula and right amygdala, but mean Day 1 and Day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. Conclusion fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility, but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. PMID:27542906
Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi
2018-06-01
The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.
Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...
Zhang, Jingnan; Yue, Xiangpei; Luo, Hongjun; Jiang, Wenjing; Mei, Yufei; Ai, Li; Gao, Ge; Wu, Yan; Yang, Hui; An, Jieran; Ding, Shumao; Yang, Xu; Sun, Bingui; Luo, Wenhong; He, Rongqiao; Jia, Jianping; Lyu, Jihui; Tong, Zhiqian
2018-06-05
Pharmacological treatments for Alzheimer's disease (AD) have not resulted in desirable clinical efficacy over 100 years. Hydrogen peroxide (H2O2), a reactive and the most stable compound of reactive oxygen species (ROS), contributes to oxidative stress in AD patients. Here, we designed a medical device to emit red light at 630±15 nm from a light-emitting diode (LED-RL) and investigated whether the LED-RL reduces brain H2O2 levels and improves memory in senescence-accelerated prone 8 mouse (SAMP8) model of age-related dementia. We found that age-associated H2O2 directly inhibited formaldehyde dehydrogenase (FDH). FDH inactivity and semicarbazide-sensitive amine oxidase (SSAO) disorder resulted in endogenous formaldehyde (FA) accumulation. Unexpectedly, excess FA, in turn, caused acetylcholine (Ach) deficiency by inhibiting choline acetyltransferase (ChAT) activity in vitro and in vivo. Interestingly, the 630-nm red light can penetrate the skull and abdomen with light penetration rates: ~49% and ~43%, respectively. Illumination with LED-RL markedly activated both catalase and FDH in the brains, cultured cells and purified protein solutions, all reduced brain H2O2 and FA levels and restored brain Ach contents. Consequently, LED-RL not only prevented early-stage memory decline but also rescued late-stage memory deficits in SAMP8 mice. We developed a phototherapeutic device with 630-nm red light, and this LED-RL reduced brain H2O2 levels and reversed age-related memory disorders. The phototherapy of LED-RL has low photo toxicity and high rate of tissue penetration, and non-invasively reverses aging-associated cognitive decline. This finding opens a promising opportunity to translate LED-RL into clinical treatment for patients with dementia.
Davis; Baldwin
1999-05-01
Optimal treatment of a brain abscess requires early clinical suspicion, and the diagnosis is usually made by identification of the abscess on contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI). The immediate first step is to reduce the potentially life-threatening brain mass (abscess and surrounding cerebral edema) and secure the diagnosis with culture specimens. This is usually accomplished by reducing the increased intracranial pressure (ICP) through surgical aspiration with or without drainage of the abscess pus. The surgical procedure chosen depends on several factors, including the location and type of abscess, multiplicity, and the medical condition of the patient. In addition, dexamethasone and hyperventilation may be required if brain herniation is imminent. The dexamethasone dose should be reduced as soon as the ICP is reduced because steroid administration may retard abscess capsule formation and decrease antibiotic concentrations within the abscess cavity. Antibiotic therapy should be started as soon as the diagnosis is made. Penicillin G or third-generation cephalosporins plus metronidazole are commonly given to treat both anaerobic and aerobic bacteria. The initial choice of antibiotic will vary on the basis of the suspected source of the brain organisms, which is most often either contiguous spread from a sinus or mastoid infection or hematogenous spread from a pulmonary, gastrointestinal, cardiac, or dental infection. Isolation and determination of the antibiotic sensitivities of the organism from abscess pus allow definitive antibiotic therapy. Patients should be managed in an intensive care unit. Phenytoin is often given to prevent seizures, which could further elevate the ICP. The duration of antimicrobial treatment is 4 to 8 weeks, during which time the patient should be monitored clinically and with repeated neuroimaging studies to ensure abscess resolution.
Parrella, Edoardo; Porrini, Vanessa; Iorio, Rosa; Benarese, Marina; Lanzillotta, Annamaria; Mota, Mariana; Fusco, Mariella; Tonin, Paolo; Spano, PierFranco; Pizzi, Marina
2016-10-01
The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD. Copyright © 2016 Elsevier B.V. All rights reserved.
Sato, João Ricardo; Balardin, Joana; Vidal, Maciel Calebe; Fujita, André
2016-01-01
Background Several neuroimaging studies support the model of abnormal development of brain connectivity in patients with autism-spectrum disorders (ASD). In this study, we aimed to test the hypothesis of reduced functional network segregation in autistic patients compared with controls. Methods Functional MRI data from children acquired under a resting-state protocol (Autism Brain Imaging Data Exchange [ABIDE]) were submitted to both fuzzy spectral clustering (FSC) with entropy analysis and graph modularity analysis. Results We included data from 814 children in our analysis. We identified 5 regions of interest comprising the motor, temporal and occipito-temporal cortices with increased entropy (p < 0.05) in the clustering structure (i.e., more segregation in the controls). Moreover, we noticed a statistically reduced modularity (p < 0.001) in the autistic patients compared with the controls. Significantly reduced eigenvector centrality values (p < 0.05) in the patients were observed in the same regions that were identified in the FSC analysis. Limitations There is considerable heterogeneity in the fMRI acquisition protocols among the sites that contributed to the ABIDE data set (e.g., scanner type, pulse sequence, duration of scan and resting-state protocol). Moreover, the sites differed in many variables related to sample characterization (e.g., age, IQ and ASD diagnostic criteria). Therefore, we cannot rule out the possibility that additional differences in functional network organization would be found in a more homogeneous data sample of individuals with ASD. Conclusion Our results suggest that the organization of the whole-brain functional network in patients with ASD is different from that observed in controls, which implies a reduced modularity of the brain functional networks involved in sensorimotor, social, affective and cognitive processing. PMID:26505141
Wang, Lei; de Kloet, Annette D.; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A.; Pioquinto, David J.; Ludin, Jacob A.; Oh, S. Paul; Katovich, Michael J.; Frazier, Charles J.; Raizada, Mohan K.; Krause, Eric G.
2016-01-01
Over-activation of brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme (ACE2) inhibits RAS activity by converting angiotensin II, the effector peptide of RAS, to angiotensin-(1-7), which activates Mas receptors (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ~62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA. PMID:26767952
Medicinal Effect of Nutraceutical Fruits for the Cognition and Brain Health
Keservani, Raj K.; Sharma, Anil K.; Kesharwani, Rajesh K.
2016-01-01
The recent era is witnessing evaluation of medicinal and nutritional value of fruits and fruit juices for the management and prevention of brain diseases like headache stress, anxiety, hypertension, and Alzheimer's and Parkinson's diseases by the scientists and researchers worldwide. Fruits possess various chemicals such as antioxidants and polyphenols, which reduce and balance the effect of hormone in brain responsible for brain disease. Natural remedy is cheap, easily available, nontoxic, and easy to prepare and provides good mental health as compared to other remedies. The main objective of this review is to acknowledge medicinal benefits of fruits for the cognition and management of brain disease. PMID:26966612
Atypical Brain Torque in Boys With Developmental Stuttering
Mock, Jeffrey Ryan; Zadina, Janet N.; Corey, David M.; Cohen, Jeremy D.; Lemen, Lisa C.; Foundas, Anne L.
2017-01-01
The counterclockwise brain torque, defined as a larger right prefrontal and left parietal-occipital lobe, is a consistent brain asymmetry. Reduced or reversed lobar asymmetries are markers of atypical cerebral laterality and have been found in adults who stutter. It was hypothesized that atypical brain torque would be more common in children who stutter. MRI-based morphology measures were completed in boys who stutter (n=14) and controls (n=14), ages 8–13. The controls had the expected brain torque configurations whereas the boys who stutter were atypical. These results support the hypothesis that developmental stuttering is associated with atypical prefrontal and parietal-occipital lobe asymmetries. PMID:22799762
A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.
Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun
2013-01-01
The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.
Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.
Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy
2008-11-01
Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.
Brain endothelial TAK1 and NEMO safeguard the neurovascular unit
Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith
2015-01-01
Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470
Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism.
Ferris, Heather A; Perry, Rachel J; Moreira, Gabriela V; Shulman, Gerald I; Horton, Jay D; Kahn, C Ronald
2017-01-31
Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.
Lee, Hsueh-Te; Xue, Jianfei; Chou, Ping-Chieh; Zhou, Aidong; Yang, Phillip; Conrad, Charles A; Aldape, Kenneth D; Priebe, Waldemar; Patterson, Cam; Sawaya, Raymond; Xie, Keping; Huang, Suyun
2015-04-30
Brain metastasis is a major cause of morbidity and mortality in patients with breast cancer. Our previous studies indicated that Stat3 plays an important role in brain metastasis. Here, we present evidence that Stat3 functions at the level of the microenvironment of brain metastases. Stat3 controlled constitutive and inducible VEGFR2 expression in tumor-associated brain endothelial cells. Furthermore, inhibition of Stat3 by WP1066 decreased the incidence of brain metastases and increased survival in a preclinical model of breast cancer brain metastasis. WP1066 inhibited Stat3 activation in tumor-associated endothelial cells, reducing their infiltration and angiogenesis. WP1066 also inhibited breast cancer cell invasion. Our results indicate that WP1066 can inhibit tumor angiogenesis and brain metastasis mediated by Stat3 in endothelial and tumor cells.
Emerging Trends in the Management of Brain Metastases from Non-small Cell Lung Cancer.
Churilla, Thomas M; Weiss, Stephanie E
2018-05-07
To summarize current approaches in the management of brain metastases from non-small cell lung cancer (NSCLC). Local treatment has evolved from whole-brain radiotherapy (WBRT) to increasing use of stereotactic radiosurgery (SRS) alone for patients with limited (1-4) brain metastases. Trials have established post-operative SRS as an alternative to adjuvant WBRT following resection of brain metastases. Second-generation TKIs for ALK rearranged NSCLC have demonstrated improved CNS penetration and activity. Current brain metastasis trials are focused on reducing cognitive toxicity: hippocampal sparing WBRT, SRS for 5-15 metastases, pre-operative SRS, and use of systemic targeted agents or immunotherapy. The role for radiotherapy in the management of brain metastases is becoming better defined with local treatment shifting from WBRT to SRS alone for limited brain metastases and post-operative SRS for resected metastases. Further trials are warranted to define the optimal integration of newer systemic agents with local therapies.
Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism
Ferris, Heather A.; Perry, Rachel J.; Moreira, Gabriela V.; Shulman, Gerald I.; Horton, Jay D.; Kahn, C. Ronald
2017-01-01
Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function. PMID:28096339
Berry, Alessandra; Aloe, Luigi; Rossi, Simona; Bonsignore, Luca T; Capone, Francesca; Alleva, Enrico; Cirulli, Francesca
2010-07-11
This study reports that peripheral administration of Nerve Growth Factor antibodies (ANA) affects behavior in aged female CD-1 mice. ANA increased the propensity of mice to stay and perform behaviors in the anxiogenic open arms of the maze, lowered pain sensitivity and reduced behavioral flexibility in a Morris water maze task, also reducing ChAT immunoreactivity in the basal forebrain. These findings support the hypothesis that topical eye application can represent an alternative route for delivering biologically active compounds into the brain allowing studying the role of NGF on brain cell function. Copyright 2010 Elsevier B.V. All rights reserved.