Science.gov

Sample records for candida albicans isolated

  1. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates.

    PubMed

    Chin, V K; Foong, K J; Maha, A; Rusliza, B; Norhafizah, M; Ng, K P; Chong, P P

    2013-12-01

    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.

  2. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates.

    PubMed

    Bruder-Nascimento, Ariane; Camargo, Carlos Henrique; Mondelli, Alessandro Lia; Sugizaki, Maria Fátima; Sadatsune, Terue; Bagagli, Eduardo

    2014-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo). C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources, in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants.

  3. Isolation and characterization of yeast monomorphic mutants of Candida albicans.

    PubMed Central

    Elorza, M V; Sentandreu, R; Ruiz-Herrera, J

    1994-01-01

    A method was devised for the isolation of yeast monomorphic (LEV) mutants of Candida albicans. By this procedure, about 20 stable yeast-like mutants were isolated after mutagenesis with ethyl methane sulfonate. The growth rate of the mutants in different carbon sources, both fermentable and not, was indistinguishable from that of the parental strain, but they were unable to grow as mycelial forms after application of any of the common effective inducers, i.e., heat shock, pH alterations, proline addition, or use of GlcNAc as the carbon source. Studies performed with one selected strain demonstrated that it had severe alterations in the chemical composition of the cell wall, mainly in the levels of chitin and glucans, and in specific mannoproteins, some of them recognizable by specific polyclonal and monoclonal antibodies. It is suggested that these structural alterations hinder the construction of a normal hyphal wall. Images PMID:8157600

  4. Virulence attributes and genetic variability of oral Candida albicans and Candida tropicalis isolates.

    PubMed

    da Costa, Karen Regina Carim; Ferreira, Joseane Cristina; Lavrador, Marco Aurélio Sicchiroli; Baruffi, Marcelo Dias; Candido, Regina Celia

    2012-05-01

    The wide spectrum of candidiasis and its clinical importance encourage the research with the purpose of clarifying the mechanisms of pathogenicity and identification of virulence factors of Candida sp. Therefore, the aim of this study was to verify the adhesion capacity, protease activity and genotypic diversity of oral C. albicans and C. tropicalis isolates. The adhesion ability to the extracellular matrix glycoproteins laminin and fibronectin was evaluated using the ELISA technique. The research of proteases was carried out in agar plate containing bovine albumin and through a quantitative method in buffer solution containing haemoglobin. Intra and interspecies polymorphisms was verified through random amplified polymorphic DNA (RAPD) technique. All C. albicans and C. tropicalis isolates binded to immobilised laminin and fibronectin. Ca33 and Ct13 isolates had relative adhesion index significantly higher than the other isolates for both glycoproteins (P < 0.001). Protease activity was observed in all isolates of C. albicans using either the semi-quantitative or quantitative assay. The protease activity of C. tropicalis was better detected through the quantitative assay. The genotypic diversity by RAPD revealed a heterogeneous population in both species. Nevertheless, C. tropicalis presented higher genetic variability than C. albicans strains.

  5. Comparison of virulence factors of oral Candida dubliniensis and Candida albicans isolates in healthy people and patients with chronic candidosis.

    PubMed

    Hannula, J; Saarela, M; Dogan, B; Paatsama, J; Koukila-Kähkölä, P; Pirinen, S; Alakomi, H L; Perheentupa, J; Asikainen, S

    2000-08-01

    We determined differences in the expression of certain virulence factors between oral Candida dubliniensis and Candida albicans species. In addition, clonal differences were sought among C. albicans isolates recovered from patients with and without compromised immune system. The material comprised 93 clinical yeast isolates originated in 40 subjects (1-5 isolates per subject). All 26 C. dubliniensis isolates and 46 C. albicans isolates originated from healthy routine dental clinic patients. Additionally, 21 C. albicans isolates were collected from patients with autoimmune polyendocrinopathy-candidosis-ectodermal dystrophy (APECED), who have chronic candidosis as one manifestation of their immunocompromising disease. Polymerase chain reaction amplification using the random sequence primer OPE-03 enabled grouping of the C. dubliniensis isolates in 2 genotypes (I and II) and C. albicans isolates in 15 genotypes (I-XV). No significant difference was found in the distribution of genotypes between the patients with APECED and the healthy subjects. C. dubliniensis isolates exhibited high-frequency phenotypic switching significantly more frequently than did C. albicans isolates, and vice versa regarding phospholipase and proteinase production. Proteinase production was significantly more frequent among C. albicans genotype V than genotype IX isolates. No significant difference was found in expression of virulence factors of C. albicans isolates between the patients with APECED and the healthy subjects.

  6. In vitro adherence of Candida albicans isolated from patients with chronic periodontitis

    PubMed Central

    MACHADO, Adriana Gadotti; KOMIYAMA, Edson Yukio; dos SANTOS, Silvana Soléo Ferreira; JORGE, Antonio Olavo Cardoso; BRIGHENTI, Fernanda Lourenção; KOGA-ITO, Cristiane Yumi

    2011-01-01

    Adherence is considered an extremely important virulence factor in yeast. Objective The aim of this study was to analyze the adherence to epithelial cells of C. albicans isolated from patients with chronic periodontitis in comparison to healthy patients. Material and methods Candida albicans cells isolated from individuals with chronic periodontitis (n=25) and healthy controls (n=25) were included in this study. Suspensions of C. albicans (106 cells/mL) and epithelial cells (105 cells/mL) were mixed and incubated at 37ºC for 1 h. The number of yeasts adhered to 25 epithelial cells was counted. Results The number of C. albicans cells adhered to epithelial cells was statistically higher in the chronic periodontitis group than in the control group (Student's t-test, p=0.000). Conclusion The results of the present study suggest a higher Candida adherence of samples isolated from patients with chronic periodontitis. PMID:21710096

  7. Virulence of Candida albicans isolated from HIV infected and non infected individuals.

    PubMed

    Wibawa, Tri; Praseno; Aman, Abu Tholib

    2015-01-01

    Candida sp contributes 33.1 % of fungal infections among HIV patients. Among the species of the genus Candida, Candida albicans is the most frequently isolated from HIV patients. This study aimed to analyze putative virulence factors of C. albicans isolated from oral cavities of HIV infected patients and healthy individuals. Twenty isolates from HIV infected patients and fourteen from healthy individuals were analyzed for phenotypic switching, cell growth rate, hyphae formation, hemolytic activity and biofilm formation characteristics. The frequency of phenotypic switching was low in both groups. The cell growth rate of C. albicans from HIV infected patients were significantly higher than those from healthy individuals (p < 0.001). After 48 h incubation, the concentration of C. albicans isolated from HIV infected patients was 8.6 × 10(6) cells/ml while the concentration of C. albicans isolated from healthy individuals was 7.8 × 10(6) cells/ml. After 72 h incubation, the concentration of C. albicans isolated from HIV infected patients was 9.5 × 10(6) cells/ml while the concentration of C. albicans isolated from healthy individuals was 8.2 × 10(6) cells/ml. In contrast, the hemolytic activity of C. albicans isolated from healthy individuals were significantly higher compared to those from HIV infected patients (p < 0.001) at both aerobic (6 vs. 3.5 mm) and anaerobic (3.8 vs. 1.3 mm) conditions. The percentages of hyphae forming cells were higher in C. albicans collected from HIV infected patients (27.5 %) compared to the healthy individual group (14.7 %). However, this trend was not statistically significant (p = 0.1). Candida albicans isolated from HIV infected patients have similar ability to develop biofilms compared to those from healthy individuals. (OR = 4.2; 95 % CI 0.724-26.559). The virulence factors of C. albicans isolated from HIV infected patients were not significantly different from those of healthy individuals. The results

  8. Antifungal susceptibility and molecular typing of 115 Candida albicans isolates obtained from vulvovaginal candidiasis patients in 3 Shanghai maternity hospitals.

    PubMed

    Ying, Chunmei; Zhang, Hongju; Tang, Zhenhua; Chen, Huifen; Gao, Jing; Yue, Chaoyan

    2016-05-01

    In our multicenter study, we studied the distribution of Candida species in vulvovaginal candidiasis patients and investigated antifungal susceptibility profile and genotype of Candida albicans in vaginal swab. A total of 115 Candida albicans strains were detected in 135 clinical isolates. Minimum inhibitory concentration determinations showed that 83% and 81% of the 115 Candida albicans strains were susceptible to fluconazole and voriconazole. Randomly amplified polymorphic DNA analysis (RAPD) was applied to identify clonally related isolates from different patients at the local level. All tested strains were classified into genotype A (77.4%), genotype B (18.3%), and genotype C (4.3%). Genotype A was further classified into five subtypes and genotype B into two subtypes.Candida albicans was the dominant pathogen of vulvovaginal candidiasis, the majority belonging to genotype A in this study. Exposure to azoles is a risk factor for the emergence of azole resistance among Candida albicans isolated from VVC patients.

  9. Comparison of the susceptibilities of clinical isolates of Candida albicans and Candida dubliniensis to essential oils.

    PubMed

    Pozzatti, Patrícia; Loreto, Erico Silva; Lopes, Paulo Guilherme Markus; Athayde, Margareth Linde; Santurio, Janio Morais; Alves, Sydney Hartz

    2010-01-01

    Here, a microdilution technique based on the M27-A2 protocol (NCCLS, 2002) was employed to compare the susceptibilities of Candida albicans and Candida dubliniensis to essential oils extracted from plants used as spices. The chemical compositions of the essential oils were defined based on the analysis of retention indices obtained by gas chromatography-mass spectroscopy. Taken together, the results showed that the activity of the compounds against the two species was similar.

  10. Association of KPC-producing Klebsiella pneumoniae colonization or infection with Candida isolation and selection of non-albicans species.

    PubMed

    Papadimitriou-Olivgeris, Matthaios; Spiliopoulou, Anastasia; Fligou, Fotini; Manolopoulou, Patroula; Spiliopoulou, Iris; Vrettos, Theofanis; Dodou, Vasiliki; Filos, Kriton S; Anastassiou, Evangelos D; Marangos, Markos; Christofidou, Myrto

    2014-11-01

    Clinical specimens from 565 patients hospitalized in 2 intensive care units (ICUs A and B) during a 28-month period were cultured on appropriate media for isolation of Candida. Forty-nine (9%) patients had at least a Candida spp.-positive sample. Candida albicans was the predominant species isolated from 26 (53%) patients. Seventeen patients (3%) developed candidemia. Multivariate analysis showed that obesity, female gender, hospitalization during summer months, admission at ICU B, parenteral nutrition, administration of metronidazole, transplantation, and KPC-producing Klebsiella pneumoniae (KPC-Kp) infection were independently associated with Candida spp. isolation. Candidemia was associated with cortisone administration, KPC-Kp infection, and presence of colostomy or abdominal catheter. Administration of fluconazole was a protective factor for both Candida spp. isolation and infection, leading to selection of Candida non-albicans species. Among several risk factors, KPC-Kp infection and colonization are identified as statistically significant factors associated with Candida isolation, especially of non-albicans species.

  11. Rapid and Accurate Identification of Candida albicans Isolates by Use of PNA FISHFlow▿

    PubMed Central

    Trnovsky, Jan; Merz, William; Della-Latta, Phyllis; Wu, Fann; Arendrup, Maiken Cavling; Stender, Henrik

    2008-01-01

    We developed the simple, rapid (1 h), and accurate PNA FISHFlow method for the identification of Candida albicans. The method exploits unique in solution in situ hybridization conditions under which the cells are simultaneously fixed and hybridized. This method facilitates the accurate identification of clinical yeast isolates using two scoring techniques: flow cytometry and fluorescence microscopy. PMID:18287325

  12. Isolation of Candida albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida.

    PubMed Central

    Buck, J D

    1990-01-01

    Halophilic vibrios were recovered from feces of six types of aquatic birds (gulls, pelicans, Canada geese, swans, egrets, cormorants) from Connecticut and/or Florida shorelines. Candida albicans was isolated from gulls and Canada geese in Connecticut and from gulls and cormorants in Florida. PMID:2180374

  13. [Detection of phospholipidolytic Candida albicans isolated from saliva of children with Down's syndrome].

    PubMed

    Ribeiro, Evandro L; Campos, C De Castro; Crespo, A M Costa; Castro, Jovirês S; Rocha, Frederico P; Alves, Marcella; Goulart, Mariella S; Cardoso, Cléver; Ferreira, Wesley; Naves, Plínio Lázaro; Soares, A José; Miranda, Simone R; Pimenta, Fabiana C

    2002-01-01

    The childhood is one of the most propitious period of the life to the occurrence of infection by yeasts of the genus Candida. In children with Down's syndrome, besides the predispose factors to bucal candidiasis; macroglossia, bucal muscular incompetence, frequent respiratory diseases, motor difficulty and immunologic deficit are mentioned as additional elements for this fungus disease. It was verified that the children attacked by this syndrome have much more strains of Candida than other children. The aim of this study was to detect the prevalence of phospholipase producer, Candida on the saliva of children with Down's syndrome. Candida albicans was the only identified specie of Candida. The phospholipase production was found in isolated strains from both of study and control. However, the isolated strains of the group of children with Down's syndrome have strongly present phospholipidolitic.

  14. Microsatellite-based genotyping of Candida albicans isolated from patients with superficial candidiasis.

    PubMed

    Shimizu, Kazue; Hattori, Hisao; Adachi, Hidesada; Oshima, Ryosuke; Horii, Toshinobu; Tanaka, Reiko; Yaguchi, Takashi; Tomita, Yasushi; Akiyama, Masashi; Kawamoto, Fumihiko; Kanbe, Toshio

    2011-01-01

    This study aimed to examine the genotype distribution of Candida albicans and the major genotypes involved in superficial candidiasis. The genotypes of C. albicans isolated from the infection sites of patients with superficial candidiasis (referred to as infection isolates) were analyzed by fragment analysis using 4 microsatellite markers (HIS3, CDC3, CAI and CAIII). Genotypes of the infection isolates were compared with those of C. albicans isolated from oral mucosa of non-candidiasis patients (referred to as oral isolates). Isolates of C. albicans showed 4 major genotypes for HIS3/CAI (" a " for 148 : 148 / 23 : 23," b " for 148 : 160 / 33 : 41," c " for 148 : 164 / 32 : 41 and " d " for 152 : 152 / 18 : 27). The genotypes " a "," b " and " d " were commonly found in oral (4.7, 8.8 and 7.6%, respectively) and infection (6.6, 9.2 and 15.4%, respectively) isolates. No isolates of genotype " c " were isolated from infection sites. The genotype " a " was found in the isolates from patients with genitalia candidiasis. Genotyping of multiple isolates from an individual patient showed that C. albicans from infection sites was genetically homogenous as compared with that of oral isolates, even in the same patient with candidiasis.

  15. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    PubMed Central

    2011-01-01

    Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. norvegensis, and C. dubliniensis. The systemic strains were isolated from patients with invasive candidiasis and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. lusitaniae, and C. kefyr. For each of the acquired strains, biofilm formation was evaluated on standardized samples of silicone pads and acrylic resin. We assessed the pathogenicity of the strains by infecting G. mellonella animals with Candida strains and observing survival. Results The biofilm formation and pathogenicity in Galleria was similar between oral and systemic isolates. The quantity of biofilm formed and the virulence in G. mellonella were different for each of the species studied. On silicone pads, C. albicans and C. dubliniensis produced more biofilm (1.12 to 6.61 mg) than the other species (0.25 to 3.66 mg). However, all Candida species produced a similar biofilm on acrylic resin, material used in dental prostheses. C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis were the most virulent species in G. mellonella with 100% of mortality, followed by C. lusitaniae (87%), C. novergensis (37%), C. krusei (25%), C. glabrata (20%), and C. kefyr (12%). Conclusions We found that on silicone pads as well as in the Galleria model, biofilm formation and virulence depends on the Candida species. Importantly, for C. albicans the pathogenicity of oral Candida isolates was similar to systemic Candida isolates, suggesting that Candida

  16. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    PubMed Central

    Lee, Seung-Bae

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates. PMID:27280049

  17. Biotypes of Candida albicans isolated from cardiovascular system and skin surveillance cultures of hospitalized patients.

    PubMed

    Vazić-Babić, Verica; Mlinarić-Missoni, Emilija; Kalenić, Smilja

    2006-01-01

    The aim of the study was to biotype 59 isolates of Candida (C.) albicans from cardiovascular system samples (blood and intravenous catheter) and 123 isolates of the same species from skin surveillance cultures (swabs of the armpit, groins and intravenous catheter insertion sites) of hospitalized patients using the Odds and Abbott biotyping method. Biotyping of 59 isolates of C. albicans taken from the cardiovascular system samples revealed the presence of 16 biotypes. Biotype 355 was the most common biotype, accounting for 35.6% of all biotype isolates from this system. Biotyping of 123 C. albicans isolates from skin surveillance cultures detected 21 biotypes. Biotype 355 was most common, accounting for 17.9% of all biotype isolates from these samples. The two systems had 10 biotypes in common: 355, 155, 257, 305, 105, 315, 300, 015, 157, and 345. These biotypes accounted for 88.3% and 81.4% of all C. albicans biotypes isolated from the cardiovascular system and skin surveillance cultures, respectively. Biotypes 355, 155, and 257 were the biotypes most frequently shared in isolates from the two systems. These biotypes accounted for 57.7% and 43.1% of all C. albicans biotypes isolated from the cardiovascular system and skin surveillance cultures, respectively.

  18. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    PubMed

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic.

  19. Synthetic Organotellurium Compounds Sensitize Drug-Resistant Candida albicans Clinical Isolates to Fluconazole.

    PubMed

    Reis de Sá, L F; Toledo, F T; Gonçalves, A C; Sousa, B A; Dos Santos, A A; Brasil, P F; Duarte da Silva, V A; Tessis, A C; Ramos, J A; Carvalho, M A; Lamping, E; Ferreira-Pereira, A

    2017-01-01

    Invasive Candida albicans infections are a serious health threat for immunocompromised individuals. Fluconazole is most commonly used to treat these infections, but resistance due to the overexpression of multidrug efflux pumps is of grave concern. This study evaluated the ability of five synthetic organotellurium compounds to reverse the fluconazole resistance of C. albicans clinical isolates. Compounds 1 to 4, at <10 μg/ml, ameliorated the fluconazole resistance of Saccharomyces cerevisiae strains overexpressing the major C. albicans multidrug efflux pumps Cdr1p and Mdr1p, whereas compound 5 only sensitized Mdr1p-overexpressing strains to fluconazole. Compounds 1 to 4 also inhibited efflux of the fluorescent substrate rhodamine 6G and the ATPase activity of Cdr1p, whereas all five of compounds 1 to 5 inhibited Nile red efflux by Mdr1p. Interestingly, all five compounds demonstrated synergy with fluconazole against efflux pump-overexpressing fluconazole-resistant C. albicans clinical isolates, isolate 95-142 overexpressing CDR1 and CDR2, isolate 96-25 overexpressing MDR1 and ERG11, and isolate 12-99 overexpressing CDR1, CDR2, MDR1, and ERG11 Overall, organotellurium compounds 1 and 2 were the most promising fluconazole chemosensitizers of fluconazole-resistant C. albicans isolates. Our data suggest that these novel organotellurium compounds inhibit pump efflux by two very important and distinct families of fungal multidrug efflux pumps: the ATP-binding cassette transporter Cdr1p and the major facilitator superfamily transporter Mdr1p.

  20. Pathogenicity of Candida albicans isolates from bloodstream and mucosal candidiasis assessed in mice and Galleria mellonella.

    PubMed

    Frenkel, M; Mandelblat, M; Alastruey-Izquierdo, A; Mendlovic, S; Semis, R; Segal, E

    2016-03-01

    The working hypothesis of this study was to elucidate a possible association between the pathogenic potential of Candida albicans strains with a clinical entity, systemic versus superficial candidiasis. Specifically, we assessed the pathogenicity of two groups of clinical C. albicans isolates: isolates from bloodstream infection (S) versus isolates from vaginitis patients (M), in two experimental in vivo systems - mice and Galleria melonella, in comparison to a control strain (CBS 562). Mice and G. mellonella larvae were inoculated with CBS 562 and the different S and M isolates, and followed up for survival rate and survival time during 30 and 7 days, respectively. Candida kidney colonization of mice was assessed by histopathology and colony-forming units' enumeration. The results revealed: (1) S and M isolates had different behavior patterns in the two models and varied in different parameters; (2) no statistically significant difference in pathogenicity between S and M isolates as whole groups was noted; (3) S14 was the most virulent isolate and close to the standard strain CBS 562 in both models. This study is distinctive in its outline combining two different groups of C. albicans clinical isolates originating from two different clinical entities that were assessed in vivo concurrently in two models.

  1. Isolation of a gene encoding a putative polyamine transporter from Candida albicans, GPT1.

    PubMed

    McNemar, M D; Gorman, J A; Buckley, H R

    2001-04-01

    A gene encoding a transport protein from the pathogenic yeast, Candida albicans, has been isolated during a complementation experiment utilizing an ornithine decarboxylase-negative (spe1 Delta) strain of Saccharomyces cerevisiae. This gene restores gamma-aminobutyric acid (GABA) transport to a GABA transport-negative mutant of S. cerevisiae and encodes a protein which putatively allows transport of one or more of the polyamines. We have assigned the name GPT1 (GABA/polyamine transporter) to this gene.

  2. Candida albicans and non-C. albicans Candida species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections.

    PubMed

    Ferreira, A V; Prado, C G; Carvalho, R R; Dias, K S T; Dias, A L T

    2013-04-01

    Candida albicans and, more recently, non-C. albicans Candida spp. are considered the most frequent fungi in hospitals. This study analyzed Candida spp. isolates and compared the frequency of different species, that is, C. albicans and non-C. albicans Candida spp., and the origins of isolates, that is, from hospital environments or infections. Yeast virulence factors were evaluated based on biofilm production and metabolic activity. Hemolysin production and the antifungal susceptibility profiles of isolates were also evaluated. Candida spp. were highly prevalent in samples collected from hospital environments, which may provide a reservoir for continuous infections with these yeasts. There were no differences in the biofilm productivity levels and metabolic activities of the environmental and clinical isolates, although the metabolic activities of non-C. albicans Candida spp. biofilms were greater than those of the C. albicans biofilms (p < 0.05). Clinical samples had higher hemolysin production (p < 0.05) and lower susceptibility to fluconazole (p < 0.05). Non-C. albicans Candida spp. predominated in samples collected from hospital environments and infections (p < 0.05). These species had a lower susceptibility to fluconazole and amphotericin B, and their biofilms had higher metabolic activities than those produced by C. albicans, which may explain the increased incidence of fungal infections with these yeasts during recent years.

  3. Genotypes of Candida albicans isolated from healthy individuals and their distribution in patients with oral candidiasis.

    PubMed

    Takagi, Yuki; Fukano, Hideo; Shimozato, Kazuo; Tanaka, Reiko; Horii, Toshinobu; Kawamoto, Fumihiko; Kanbe, Toshio

    2013-12-01

    For the study of Candida albicans genotypes involved in development of candidiasis, Candida albicans isolates were collected from healthy volunteers and patients with oral candidiasis and genotyped on the basis of 25S rDNA and microsatellite polymorphisms. In the microsatellite analysis using two microsatellite markers (CDC3 and CAI), 63 healthy volunteer isolates were classified into 35 genotypes (allelic relations to CDC3 alleles 1:2/CAI alleles 1:2), among which genotypes II (115:119/23:23), III (115:123/18:27), and V (123:127/32:41) were found at frequencies of 12.7%, 7.9%, and 7.9%, respectively. In 68 oral candidiasis isolates classified into 39 genotypes, genotypes II and III were identified in 4.4% and 20.6% of the isolates, respectively. The frequency of genotype III was higher in the candidiasis isolates than in the healthy isolates (p < 0.05). These results suggest that genotype III C. albicans assigned by CDC3/CAI is related to the development of oral candidiasis.

  4. Effects of antifungal agents in sap activity of Candida albicans isolates.

    PubMed

    Costa, Carolina Rodrigues; Jesuíno, Rosália Santos Amorim; de Aquino Lemos, Janine; de Fátima Lisboa Fernandes, Orionalda; Hasimoto e Souza, Lúcia Kioko; Passos, Xisto Sena; do Rosário Rodrigues Silva, Maria

    2010-02-01

    Some antifungal agents have shown to exert effects on expression of virulent factors of Candida as the production of secretory aspartyl proteinase (Sap). In this study, we sought to determine and to compare the influence of fluconazole and voriconazole in proteinase activity of this microorganism. Thirty-one isolates obtained from oral mucosa of human immunodeficiency virus positive (HIV) patients were used in this study. The minimal inhibitory concentrations (MIC) of fluconazole and voriconazole were determined using the broth microdilution method with RPMI 1640 medium and with yeast carbon base-bovine serum albumin (YCB-BSA) medium. The Sap activity following by digestion of BSA as substrate was determined for four Candida albicans strains arbitrarily chosen according to susceptibility (susceptible or resistant) to fluconazole or voriconazole. Besides, the SAP1 to SAP7 genes were screened by PCR for the same isolates that were determined by the Sap activity. In vitro susceptibility testing using the two media presented similar MIC values. Increased Sap activity was observed in resistant isolates on presence of drugs, but the Sap activity by susceptible isolates to azoles showed different behavior on the presence of drug. We detected the presence of SAP1 to SAP7 genes from all susceptible or resistant C. albicans isolates. The present study provides important data about the proteinase activity and the presence of genes of SAP family in fluconazole and voriconazole susceptible or resistant C. albicans isolates.

  5. Molecular typing of Candida albicans strains isolated from denture wearers by repetitive sequence-based PCR.

    PubMed

    Abaci, O; Haliki-Uztan, A; Ozturk, B; Toksavul, S; Ulusoy, M; Boyacioglu, H

    2011-02-01

    Long-term use of prosthesis is the most important risk factor for the colonization of Candida species on the mucosal surfaces, which can lead to the development of denture-related stomatitis (DRS). Some individuals wearing prosthesis develop DRS and others do not. C. albicans strains isolated from both groups were genotypically compared. The purpose of this study was to determine whether the strain causing prosthesis stomatitis was different from the other strains genotypically. The study included 90 individuals wearing different prostheses and 20 control individuals with natural teeth. In the study 109 C. albicans strains were used which were isolated from the saliva samples and the mucosal surfaces of the tongues and palates of 51 individuals and then defined phenotypically. Phenotypic diagnosis of the isolates was genotypically verified by using species-specific PCR. For molecular typing, repetitive extragenic palindromic sequence polymerase chain reaction (REP-PCR) was employed. The results of the study revealed that REP-PCR had the capability to separate 109 C. albicans strains and six reference strains into 44 genotypes. Whereas C. albicans strains showed heterogenic distribution, C. albicans strains isolated from the individuals suffering from prosthesis stomatitis showed no specific genotypes. REP-PCR is a simple, fast and low-cost method and helped work on a great number of samples.

  6. [Evaluation of a new chromogenic medium (Candida ID) for the isolation and presumptive identification of Candida albicans and other medically important yeasts].

    PubMed

    Quindós, G; Alonso-Vargas, R; Helou, S; Arechavala, A; Martín-Mazuelos, E; Negroni, R

    2001-03-01

    Candidiasis is a frequent human infection caused mainly by Candida albicans. However, other species are emerging as important pathogens, as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei or Candida guilliermondii. Rapid identification of clinical isolates could facilitate diagnosis and treatment. Candida ID (bioMerieux, Spain) is a new medium for the isolation and presumptive identification of yeasts: C. albicans grows as blue colonies, and C. tropicalis, C. guilliermondii, Candida kefyr and Candida lusitaniae as pink ones. The utility of Candida ID was evaluated with more than 700 clinical isolates and type culture collection strains from different genera including Candida, Cryptococcus, Saccharomyces, and Rhodotorula. Presumptive identification was confirmed by germ tube test, microscopic morphology and chlamydoconidia production on corn meal agar and carbohydrate assimilation on API-ATB ID 32C or Vitek (bioMerieux). Growth on Candida ID was rapid (18-24 h) for most of the yeast strains tested. Sensitivity and specificity of identification of C. albicans was significantly high (>98%), since a very low number of isolates were found to be false negative or false positive. A better result was obtained for species growing as pink colonies (>99.5%). Detection of different species of medical important yeasts was easy with Candida ID, as perfectly distinct colors and textures of colonies were observed on this medium. Candida ID allowed the discrimination between C. glabrata (creamy and smooth) and C. krusei (rough and white) colonies. Other species showed different colony textures and colours, white being the predominant colour. Candida ID was very useful for the presumptive identification C. albicans isolates.

  7. Azole resistance in Candida albicans.

    PubMed

    Smith, K J; Warnock, D W; Kennedy, C T; Johnson, E M; Hopwood, V; Van Cutsem, J; Vanden Bossche, H

    1986-04-01

    An isolate of Candida albicans from a patient with chronic mucocutaneous candidosis who relapsed during ketoconazole treatment was compared with a number of other azole-sensitive and azole-resistant isolates by tests in vitro and in three animal models of vaginal or disseminated infection. In-vitro tests indicated that the isolate was cross-resistant to all imidazole and triazole antifungals tested. In the animal models, treatment with miconazole, ketoconazole, itraconazole or fluconazole failed to influence the infection.

  8. Virulence factors of Candida albicans isolates from the oral cavities of HIV-1-positive patients.

    PubMed

    Menezes, Tatiany O A; Gillet, Luciana C S; Menezes, Sílvio A F; Feitosa, Rosimar N M; Ishak, Marluísa O G; Ishak, Ricardo; Marques-da-Silva, Sílvia H; Vallinoto, Antonio C R

    2013-06-01

    The present study assessed the phenotypic aspects of oral-cavity Candida albicans isolates from 300 HIV-1- positive patients, relating the most commonly investigated virulence factors (enzyme typing and germ-tube formation) to the most common morphotypes. The samples were seeded into specific media for isolation and subsequent identification using the automated Vitek 2 system. The following assays were performed for phenotypic characterization: morphotyping, germ-tube formation and enzyme typing. Out of 300 collected samples, 144 tested positive for yeasts of the Candida genus, 98 (32.7 %) of which were identified as C. albicans. The latter samples were attributed to seven different morphotypes; the three most common morphotypes were 7208 (49 %), 7308 (14.3 %) and 3208 (13.3 %). All of the C. albicans isolate samples formed germ tubes and produced the enzymes proteinase and phospholipase, with an activity classified as intermediate to high. Due to the identification of virulence factors among the analyzed samples, monitoring of HIV-1-positive patients colonized by different morphotypes must be established because these morphotypes are extremely pathogenic and can trigger severe fungal infections.

  9. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina.

    PubMed

    Theill, Laura; Dudiuk, Catiana; Morano, Susana; Gamarra, Soledad; Nardin, María Elena; Méndez, Emilce; Garcia-Effron, Guillermo

    2016-01-01

    Candida africana taxonomical status is controversial. It was proposed as a separate species within the Candida albicans species complex; however, phylogenetic analyses suggested that it is an unusual variety of C. albicans. The prevalence of C. albicans-related species (Candida dubliniensis and C. africana) as vulvovaginal pathogens is not known in Argentina. Moreover, data on antifungal susceptibility of isolates causing vulvovaginal candidiasis is scarce. The aims of this study were to establish the prevalence of C. dubliniensis and C. africana in vaginal samples and to evaluate the antifungal susceptibilities of vaginal C. albicans species complex strains. We used a molecular-based method coupled with a new pooled DNA extraction methodology to differentiate C. dubliniensis and C. africana in a collection of 287 strains originally identified as C. albicans isolated from an Argentinian hospital during 2013. Antifungal susceptibilities to fluconazole, clotrimazole, itraconazole, voriconazole, nystatin, amphotericin B and terbinafine were evaluated by using the CLSI M27-A3 and M27-S4 documents. Of the 287 isolates, 4 C. dubliniensis and one C. africana strains (1.39% and 0.35% prevalence, respectively) were identified. This is the first description of C. africana in Argentina and its identification was confirmed by sequencing the ITS2 region and the hwp1 gene. C. dubliniensis and C. africana strains showed very low MIC values for all the tested antifungals. Fluconazole-reduced-susceptibility and azole cross-resistance were observed in 3.55% and 1.41% of the C. albicans isolates, respectively. These results demonstrate that antifungal resistance is still a rare phenomenon in this kind of isolates.

  10. Evaluation of the New Chromogenic Medium Candida ID 2 for Isolation and Identification of Candida albicans and Other Medically Important Candida Species

    PubMed Central

    Eraso, Elena; Moragues, María D.; Villar-Vidal, María; Sahand, Ismail H.; González-Gómez, Nagore; Pontón, José; Quindós, Guillermo

    2006-01-01

    The usefulness of Candida ID 2 (CAID2) reformulated medium (bioMérieux, France) has been compared with that of the former Candida ID (CAID; bioMérieux), Albicans ID 2 (ALB2; bioMérieux), and CHROMagar Candida (CAC; Chromagar, France) chromogenic media for the isolation and presumptive identification of clinically relevant yeasts. Three hundred forty-five stock strains from culture collections, and 103 fresh isolates from different clinical specimens were evaluated. CAID2 permitted differentiation based on colony color between Candida albicans (cobalt blue; sensitivity, 91.7%; specificity, 97.2%) and Candida dubliniensis (turquoise blue; sensitivity, 97.9%; specificity, 96.6%). Candida tropicalis gave distinguishable pink-bluish colonies in 97.4% of the strains in CAID2 (sensitivity, 97.4%; specificity, 100%); the same proportion was reached in CAC, where colonies were blue-gray (sensitivity, 97.4%; specificity, 98.7%). CAC and CAID2 showed 100% sensitivity values for the identification of Candida krusei. However, with CAID2, experience is required to differentiate the downy aspect of the white colonies of C. krusei from other white-colony-forming species. The new CAID2 medium is a good candidate to replace CAID and ALB2, and it compares well to CAC for culture and presumptive identification of clinically relevant Candida species. CAID2 showed better results than CAC in some aspects, such as quicker growth and color development of colonies from clinical specimens, detection of mixed cultures, and presumptive differentiation between C. albicans and C. dubliniensis. PMID:16954270

  11. Evaluation of the new chromogenic medium Candida ID 2 for isolation and identification of Candida albicans and other medically important Candida species.

    PubMed

    Eraso, Elena; Moragues, María D; Villar-Vidal, María; Sahand, Ismail H; González-Gómez, Nagore; Pontón, José; Quindós, Guillermo

    2006-09-01

    The usefulness of Candida ID 2 (CAID2) reformulated medium (bioMérieux, France) has been compared with that of the former Candida ID (CAID; bioMérieux), Albicans ID 2 (ALB2; bioMérieux), and CHROMagar Candida (CAC; Chromagar, France) chromogenic media for the isolation and presumptive identification of clinically relevant yeasts. Three hundred forty-five stock strains from culture collections, and 103 fresh isolates from different clinical specimens were evaluated. CAID2 permitted differentiation based on colony color between Candida albicans (cobalt blue; sensitivity, 91.7%; specificity, 97.2%) and Candida dubliniensis (turquoise blue; sensitivity, 97.9%; specificity, 96.6%). Candida tropicalis gave distinguishable pink-bluish colonies in 97.4% of the strains in CAID2 (sensitivity, 97.4%; specificity, 100%); the same proportion was reached in CAC, where colonies were blue-gray (sensitivity, 97.4%; specificity, 98.7%). CAC and CAID2 showed 100% sensitivity values for the identification of Candida krusei. However, with CAID2, experience is required to differentiate the downy aspect of the white colonies of C. krusei from other white-colony-forming species. The new CAID2 medium is a good candidate to replace CAID and ALB2, and it compares well to CAC for culture and presumptive identification of clinically relevant Candida species. CAID2 showed better results than CAC in some aspects, such as quicker growth and color development of colonies from clinical specimens, detection of mixed cultures, and presumptive differentiation between C. albicans and C. dubliniensis.

  12. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries.

    PubMed

    Caroline de Abreu Brandi, Thayse; Portela, Maristela Barbosa; Lima, Paula Moraes; Castro, Gloria Fernanda Barbosa de Araújo; Maia, Lucianne Cople; Fonseca-Gonçalves, Andréa

    2016-11-01

    This study aimed to investigate the demineralizing potential of dental biofilm added of Candida albicans (CA) and Candida parapsilosis (CP), isolated from preschoolers with and without caries. Bovine enamel blocks (n = 48), with initial hardness = 341.50 ± 21,83 kg/mm(2) were fixed in 24 well plates containing culture media. A pool of children saliva (PHS) was the inoculum for biofilm formation in the presence or absence of isolated CA or CP in accordance with each group (G n = 8): G1 - PHS; G2 - PHS + CA isolated from children with caries; G3 - PHS + CP isolated from children with caries; G4 - PHS + CA isolated from children without caries; G5 - PHS + CP isolated from children without caries; and G6 - blank control. The plates were incubated at 37 °C for 5 days, with daily changes of culture media. The microhardness loss percentage (MHL%) of the blocks was calculated, taking in account the hardness values before and after the experiment. Dental biofilm became more cariogenic, independently of the isolated Candida species. The highest MHL% was observed in G4 (85.90 ± 8.72%) and G5 (86.13 ± 6.74%) compared to the others (p < 0.001): G1 (34.30 ± 14,30%) < G2 (59.40 ± 10.56%) and G3 (65.80 ± 6.36%) < G6 (13.68 ± 4.86%) (p < 0.001). C. albicans and C. parapsilosis isolates induced the demineralization of the dental enamel.

  13. Evaluation of virulence factors of Candida albicans isolated from HIV-positive individuals using HAART.

    PubMed

    de Paula Menezes, Ralciane; de Melo Riceto, Érika Bezerra; Borges, Aércio Sebastião; de Brito Röder, Denise Von Dolingër; dos Santos Pedroso, Reginaldo

    2016-06-01

    The colonization by Candida species is one of the most important factors related to the development of oral candidiasis in HIV-infected individuals. The aim of the study was to evaluate and discuss the phospholipase, proteinase, DNAse and haemolytic activities of Candida albicans isolated from the oral cavity of HIV individuals with high efficiency antiretroviral therapy. Seventy-five isolates of C. albicans obtained from saliva samples of patients with HIV and 41 isolates from HIV-negative individuals were studied. Haemolytic activity was determined in Sabouraud dextrose agar plates containing 3% glucose and 7% sheep red cells. Culture medium containing DNA base-agar, egg yolk, and bovine albumin were used to determine DNase, phospholipase and proteinase activities, respectively. All isolates from the HIV patients group had haemolytic activity, 98% showed phospholipase activity, 92% were positive for proteinase and 32% DNAse activity. Regarding the group of indivídios HIV negative, all 41 isolates presented hemolytic activity, 90.2% showed phospholipase and proteinase activity and 12.2% were positive for DNAse. The phospholipase activity was more intense for the group of HIV positive individuals. DNase production was more frequently observed in the group of HIV-positive individuals. The percentage of isolates having DNAse activity was also significantly different between the groups of patients not using any antiretroviral therapy, those using transcriptase inhibitors and those using transcriptase inhibitor and protease inhibitor in combination.

  14. Biotypes of oral Candida albicans isolates in a Tanzanian child population.

    PubMed

    Matee, M I; Samaranayake, L P; Scheutz, F; Simon, E; Lyamuya, E F; Mwinula, J

    1996-09-01

    Although biotypes of Candida albicans from adult populations, especially in the West, have been described, there are no data either from a child population, or from the African continent. Hence a total of 200 oral C. albicans isolates from Tanzanian children aged 6-24 months were biotyped using two commercially available API micromethod kit systems and a boric acid resistance test. The predominant biotypes, which comprised two thirds of the organisms isolated, were J1S (19.5%), A1S (16.0%), J1R (14.5%), A1R (9.5%) and P1R (7.5%). In total, 16 new biotypes comprising 44 (22%) isolates which have not hitherto been described were found in this Tanzanian population and, of these, the P1R biotype predominated with 15 (7.5%) isolates. There was no significant association between predominant biotypes (with clusters > or = 15 isolates) and age, gender, breast feeding and malnutrition. These data indicate that the biotype profile of C. albicans isolates may differ in paediatric and adult populations, and/or global distribution of various subtypes of this common opportunistic pathogen.

  15. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of Candida albicans

    PubMed Central

    Adwan, Ghaleb; Salameh, Yousef; Adwan, Kamel; Barakat, Ali

    2012-01-01

    Objective To detect the anticandidal activity of nine toothpastes containing sodium fluoride, sodium monofluorophosphate and herbal extracts as an active ingredients against 45 oral and non oral Candida albicans (C. albicans) isolates. Methods The antifungal activity of these toothpaste formulations was determined using a standard agar well diffusion method. Statistical analysis was performed using a statistical package, SPSS windows version 15, by applying mean values using one-way ANOVA with post-hoc least square differences (LSD) method. A P value of less than 0.05 was considered significant. Results All toothpastes studied in our experiments were effective in inhibiting the growth of all C. albicans isolates. The highest anticandidal activity was obtained from toothpaste that containing both herbal extracts and sodium fluoride as active ingredients, while the lowest activity was obtained from toothpaste containing sodium monofluorophosphate as an active ingredient. Antifungal activity of Parodontax toothpaste showed a significant difference (P< 0.001) against C. albicans isolates compared to toothpastes containing sodium fluoride or herbal products. Conclusions In the present study, it has been demonstrated that toothpaste containing both herbal extracts and sodium fluoride as active ingredients are more effective in control of C. albicans, while toothpaste that containing monofluorophosphate as an active ingredient is less effective against C. albicans. Some herbal toothpaste formulations studied in our experiments, appear to be equally effective as the fluoride dental formulations and it can be used as an alternative to conventional formulations for individuals who have an interest in naturally-based products. Our results may provide invaluable information for dental professionals. PMID:23569933

  16. Systemic neonatal candidosis: the karyotyping of Candida albicans strains isolated from neonates and health-workers.

    PubMed

    Ben Abdeljelil, J; Ben Saida, N; Saghrouni, F; Fathallah, A; Boukadida, J; Sboui, H; Ben Said, M

    2010-01-01

    Candida albicans has become an important cause of nosocomial infections in neonatal intensive care units (NICUs). The aim of the present study was to compare C. albicans strains isolated from neonates (NN) suffering from systemic candidosis and from nurses in order to determine the relatedness between NN and health workers' strains. Thirty-one C. albicans strains were isolated from 18 NN admitted to the NICU of the neonatology service of Farhat Hached Hospital of Sousse, Tunisia and suffering from systemic candidosis, together with five strains recovered from nurses suffering from C. albicans onychomycosis. Two additional strains were tested, one from an adult patient who developed a systemic candidosis and the second from an adult with inguinal intertrigo. All strains were karyotyped by pulsed-field gel electrophoresis (PFGE) with a CHEF-DR II system. Analysis of PFGE patterns yielded by the 38 strains tested led to the identification of three pulsotypes that were designated I, II and III, and consisted of six chromosomal bands with a size ranging from 700 to >2500 kbp. The most widespread was the pulsotype I, which was shared by 17 NN and the five nurses' strains. The identity between NN and nurses' strains is very suggestive of a nosocomial acquisition from health-workers.

  17. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    PubMed

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  18. The efficacy of disinfectants on abattoirs’ Candida albicans isolates in Niger Delta region

    PubMed Central

    Olorode, Oluwayemisi A

    2012-01-01

    This study was conducted to evaluate the antimicrobial activities of common disinfectants- these are (parachlorometaxylenol) dettol, savlon purit and jik (sodium hypochlorite) on  Candida albicans isolated from displaying and cutting tables in five different abattoirs in Port Harcourt (Niger Delta region); the abattoirs include Trans Amadi, Agip, Woji, Rumuokoro, and Rumuodara. This research was carried out between January 2005 and June 2006. Swab samples were collected from abattoirs cutting tables with sterile swab sticks and immediately transferred and cultured in the laboratory on a selective medium Sabouraud Dextrose Agar (SDA). The disinfectants’ concentrations were prepared at 10%, 20%, 40%, and 70%, in triplicates and the mean values calculated. 0.5 Mc Farland turbidity method of standardization and Agar diffusion method were used for disinfectants testing of the isolates. Statistical analysis of the data showed no significant difference in the effectiveness of these disinfectants at (p<0.05). In conclusion, this study has shown that savlon and dettol were the most potent antimicrobial agents at 10% concentration on  Candida albicans isolates when compared with purit and jik in this study, hence they are good sanitizing agents to be applied on the abattoirs cutting tables, before meat products can be displayed for sale. PMID:24358834

  19. Expression of SAP5 and SAP9 in Candida albicans biofilms: comparison of bloodstream isolates with isolates from other sources.

    PubMed

    Joo, Min Young; Shin, Jong Hee; Jang, Hee-Chang; Song, Eun Song; Kee, Seung Jung; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook

    2013-11-01

    Secreted aspartic proteases (Sap), encoded by a family of 10 SAP genes, are key virulence determinants in Candida albicans. Although biofilm-associated bloodstream infections (BSIs) are frequently caused by C. albicans, SAP gene expression in C. albicans biofilms formed by BSI isolates has not been evaluated. We compared the expression of two SAP genes, SAP5 and SAP9, in C. albicans biofilms formed by BSI isolates with those formed by isolates from other body sites. Sixty-three C. albicans isolates were analyzed, comprising 35 BSI isolates and 28 from other sites. A denture-strip biofilm model was used, and expression of the two SAP genes was quantified by real-time RT-PCR during planktonic or biofilm growth. Mean SAP5 expression levels of the BSI isolates were 3.59-fold and 3.86-fold higher in 24-h and 48-h biofilms, respectively, than in planktonic cells. These results did not differ from those for isolates from other sites (2.71-fold and 2.8-fold for 24-h and 48-h biofilms, respectively). By contrast, mean SAP9 expression during biofilm formation was higher in BSI isolates (2.89-fold and 3.29-fold at 24 and 48 h, respectively) than in isolates from other sites (1.27-fold and 1.32-fold at 24 and 48 h, respectively; both, P < 0.001). These results show, for the first time, that both SAP5 and SAP9 are upregulated in C. albicans biofilms formed by BSI isolates, and that BSI isolates may have a greater capacity to express SAP9 under biofilm conditions than isolates from other sites.

  20. Biotypes of oral Candida albicans isolated from AIDS patients and HIV-free subjects in Thailand.

    PubMed

    Teanpaisan, R; Nittayananta, W; Chongsuvivatwong, V

    2000-05-01

    This study was conducted to examine biotypes and antifungal susceptibility patterns of oral Candida albicans isolated from HIV-infected patients, HIV-free patients with candidiasis and healthy subjects. All isolates were biotyped using a typing system based on enzyme profiles, carbohydrate assimilation patterns and boric acid resistance. Thirty-eight biotypes were found amongst 218 oral C. albicans isolates. The major biotype found was A1S, which accounted for 32.6% of all isolates, and this biotype was the most common in all groups. There was a greater variety of biotypes of C. albicans in the HIV-infected group than in the other groups; however, there was no statistically significant difference between the groups. The minimum inhibitory concentrations (MICs) of a total of 118 isolates were determined for amphotericin B and for ketoconazole using the National Committee for Clinical Laboratory Standards (NCCLS) broth macrodilution method and the E-test. When the antifungal susceptibility patterns among the groups were compared, a statistically significant difference was found only with amphotericin B. The median MIC of amphotericin B in the HIV-infected group was higher than in the healthy group (P=0.013, NCCLS method; P=0.002, E-test). However, this difference in sensitivity was not restricted to any sub-type investigated. Our results showed that the biotype patterns of C. albicans isolates that colonize HIV-infected patients are similar to those of HIV-free subjects, and there is no relationship between antifungal susceptibility patterns and the biotypes.

  1. Candida albicans pathogenicity mechanisms

    PubMed Central

    Mayer, François L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen. PMID:23302789

  2. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    PubMed

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p < 0.001) than non-albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm.

  3. Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India.

    PubMed

    Mane, Arati; Vidhate, Pallavi; Kusro, Chanchal; Waman, Vaishali; Saxena, Vandana; Kulkarni-Kale, Urmila; Risbud, Arun

    2016-02-01

    Resistance to azole antifungals is a significant problem in Candida albicans. An understanding of resistance at molecular level is essential for the development of strategies to tackle resistance and rationale design of newer antifungals and target-based molecular approaches. This study presents the first evaluation of molecular mechanisms associated with fluconazole resistance in clinical C.albicans isolates from India. Target site (ERG11) alterations were determined by DNA sequencing, whereas real-time PCRs were performed to quantify target and efflux pump genes (CDR1, CDR2, MDR1) in 87 [Fluconazole susceptible (n = 30), susceptible-dose dependent (n = 30) and resistant (n = 27)] C.albicans isolates. Cross-resistance to fluconazole, ketoconazole and itraconazole was observed in 74.1% isolates. Six amino acid substitutions were identified, including 4 (E116D, F145L, E226D, I437V) previously reported ones and 2 (P406L, Q474H) new ones. CDR1 over-expression was seen in 77.7% resistant isolates. CDR2 was exclusively expressed with CDR1 and their concomitant over-expression was associated with azole cross-resistance. MDR1 and ERG11 over-expression did not seem to be associated with resistance. Our results show that drug efflux mediated by Adenosine-5'-triphosphate (ATP)-binding cassette transporters, especially CDR1 is the predominant mechanism of fluconazole resistance and azole cross-resistance in C. albicans and indicate the need for research directed towards developing strategies to tackle efflux mediated resistance to salvage azoles.

  4. Biotypes of oral Candida albicans isolates in human immunodeficiency virus-infected patients from diverse geographic locations.

    PubMed

    Tsang, P C; Samaranayake, L P; Philipsen, H P; McCulloug, M; Reichart, P A; Schmidt-Westhausen, A; Scully, C; Porter, S R

    1995-01-01

    Oral Candida albicans isolates from HIV-infected individuals in Hong Kong, Australia, Germany and England were characterised using a biotyping system based on enzyme profiles, carbohydrate assimilation patterns and boric acid resistance of the yeasts. A total of 44 biotypes were found amongst the 117 oral C. albicans isolates examined. The major biotype A1R accounted for 17.9% of all isolates while the second commonest biotype was A1S (11.1% of isolates). Whereas these two biotypes were isolated from all the regions studied, there were a number of other biotypes unique to individual countries. The data indicate that there are many different sub-strains of oral C. albicans in HIV-infected patients, some of which are globally prevalent. However, further work is required to ascertain the diversity of oral C. albicans biotypes, if any, in health and disease.

  5. Candida species distribution, genotyping and virulence factors of Candida albicans isolated from the oral cavity of kidney transplant recipients of two geographic regions of Brazil

    PubMed Central

    2014-01-01

    Background Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. This investigation aimed to study the prevalence of Candida spp. and to analyze the ABC genotypes of 76 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. Methods We typed 48 strains with ABC genotyping and Microsatelitte using primer M13 and tested three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils phagocytosis. Results C. albicans was the most prevalent species (86.4%), followed by C. tropicalis (4.5%). C. albicans genotype A was the most prevalent (58 isolates; 76.4%), followed by genotype C (15 isolates; 19.7%) and genotype B (3 isolates; 3.9%). When Microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. The majority of Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed also better ability to combat PMNs phagocytosis. Conclusions We found a high rate of C. albicans genotype C strains isolated from the oral cavity of this group of patients. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute to a better understanding of the pathogenesis of oral candidiasis. PMID:24628850

  6. Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients

    PubMed Central

    Moorhouse, Alexander J.; Rennison, Claire; Raza, Muhammad; Lilic, Desa; Gow, Neil A. R.

    2016-01-01

    Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST). Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs) that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH) events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC. PMID:26849050

  7. Decolorization of textile dye by Candida albicans isolated from industrial effluents.

    PubMed

    Vitor, Vivian; Corso, Carlos Renato

    2008-11-01

    The aim of the present work was to observe microbial decolorization and biodegradation of the Direct Violet 51 azo dye by Candida albicans isolated from industrial effluents and study the metabolites formed after degradation. C. albicans was used in the removal of the dye in order to further biosorption and biodegradation at different pH values in aqueous solutions. A comparative study of biodegradation analysis was carried out using UV-vis and FTIR spectroscopy, which revealed significant changes in peak positions when compared to the dye spectrum. Theses changes in dye structure appeared after 72 h at pH 2.50; after 240 h at pH 4.50; and after 280 h at pH 6.50, indicating the different by-products formed during the biodegradation process. Hence, the yeast C. albicans was able to remove the color substance, demonstrating a potential enzymatic capacity to modify the chemical structure of pigments found in industrial effluents.

  8. Effect of edible sesame oil on growth of clinical isolates of Candida albicans.

    PubMed

    Ogawa, Toshiko; Nishio, Junko; Okada, Shinobu

    2014-07-01

    Elderly individuals are at increased risk of oral thrush (oral candidiasis) due to decreased saliva secretion. Due to their antimicrobial properties, edible oils can be effective natural agents for oral care. The objective of the present study was to compare the effects of sesame oil, which is widely used for cooking in Asian countries, and two other edible oils on the growth of both mycelial and yeast forms of five clinical isolates of Candida albicans, a causative microorganism of oral thrush. We assessed the effect of each oil in concentrations of 0.078%, 0.156%, and 0.313% on growth of the mycelial forms of the clinical isolates over 24 hr using the crystal violet method. We also evaluated the effect of each oil on growth of the yeast forms by counting the number of viable yeast cells after culturing in the oils for 24 hr. Sesame oil inhibited the growth of both mycelial and yeast forms. Safflower and olive oil also inhibited the growth of both forms of C. albicans but to a lesser extent than sesame oil. The ability to inhibit the growth of the mycelial form correlated with sesame oil concentration. Roasting influenced growth inhibition ability and high-roasted sesame oil most effectively inhibited the yeast form. The growth inhibitory effect differed among the five isolates. We hypothesize that the sesamin and fatty acid components of sesame oil are involved in its antifungal activity.

  9. Susceptibilities of Candida albicans mouth isolates to antifungal agents, essentials oils and mouth rinses.

    PubMed

    Carvalhinho, Sara; Costa, Ana Margarida; Coelho, Ana Cláudia; Martins, Eugénio; Sampaio, Ana

    2012-07-01

    Forty Candida albicans strains isolated from patient's mouth with fixed orthodontic appliances were analyzed to their susceptibilities to antifungal agents, mouth rinses and essential oils. Susceptibility to fluconazole, econazole, miconazole and ketoconazole, amphotericin B and nystatin was assessed by the disk diffusion (DD) method based on the Clinical and Laboratory Standards Institute M44-A protocol, and by Etest (fluconazole and amphotericin B). The susceptibilities to mouth rinses and essential oils were also determined by the DD technique. All isolates tested were susceptible (S) to amphotericin B, nystatin and fluconazole. The overall concordance between the DD and the Etest was 100% for amphotericin and fluconazole. One isolate was resistant to econazole (2.5%) and the other to ketoconazole (2.5%). Econazole and ketoconazole had the highest percentages of susceptible dose dependent (SDD), 55 and 95%, respectively. Regarding to the susceptibility isolates profile, seven phenotypes were detected, and the 3 more represented (90% of the isolates) of them were SDD to one, two or three azoles. The study of mouth rinses showed a high variability of efficacy against C. albicans. The results showed that the isolates susceptibility to essential oils differed (P < 0.05). The profile activity was: cinnamon > laurel > mint > eucalyptus > rosemary > lemon > myrrh > tangerine. The main finding was that the susceptibility to cinnamon and laurel varied among the three more representative antifungal phenotypes (P < 0.05). The susceptibility of econazole-SDD isolates to cinnamon and lemon was higher than those of the econazole-S yeasts (P < 0.05). In contrast, econazole-SDD isolates were less affected by laurel than econazole-S counterparts (P < 0.05).

  10. Non-albicans Candida Infection: An Emerging Threat

    PubMed Central

    Deorukhkar, Sachin C.; Saini, Santosh

    2014-01-01

    The very nature of infectious diseases has undergone profound changes in the past few decades. Fungi once considered as nonpathogenic or less virulent are now recognized as a primary cause of morbidity and mortality in immunocompromised and severely ill patients. Candida spp. are among the most common fungal pathogens. Candida albicans was the predominant cause of candidiasis. However, a shift toward non-albicans Candida species has been recently observed. These non-albicans Candida species demonstrate reduced susceptibility to commonly used antifungal drugs. In the present study, we investigated the prevalence of non-albicans Candida spp. among Candida isolates from various clinical specimens and analysed their virulence factors and antifungal susceptibility profile. A total of 523 Candida spp. were isolated from various clinical specimens. Non-albicans Candida species were the predominant pathogens isolated. Non-albicans Candida species also demonstrated the production of virulence factors once attributed to Candida albicans. Non-albicans Candida demonstrated high resistance to azole group of antifungal agents. Therefore, it can be concluded that non-albicans Candida species have emerged as an important cause of infections. Their isolation from clinical specimen can no longer be ignored as a nonpathogenic isolate nor can it be dismissed as a contaminant. PMID:25404942

  11. [Comparative study of the Candida albicans genotypes isolated from immunocompromised patients and health carriers].

    PubMed

    Carnovale, S; Elias Costa, M R; Relloso, S; Negroni, R; Negroni, M B; Iovannitti, C

    2001-01-01

    The aim of this study is to compare Candida albicans strain genotype isolates from oral cavity of immunocompromised patients due to different immunologic impairments with apparently normal carriers. Four populations were studied: 1) HIV positive hospitalized patients, 2) HIV negative immunocompromised patients (leukemia, lymphoma, organ transplant recipients), 3) drug addicts prior to AIDS pandemia in Argentina, 4) apparently normal carriers. DNA extracted was digested with the enzyme Eco RI, electrophoresed, transferred to nitrocellulose membrane and hybridized with the 27A probe labelled with 32P. The comparison between the profiles obtained permitted the differentiation of 16 genotypes. The distribution of the strains led to the conclusion that: a) all the isolated strains from AIDS patients were closely related and distributed in only three genotypes (1, 3, 11); b) a major genetic relationship between the isolates from AIDS patients and HIV negative immunocompromised patients was observed; c) strains from carriers showed a minor genetic similarity with those obtained from AIDS patients; d) characteristic profiles belonging to any of the studied groups were not found; e) significant genomic changes have not been observed during the last twenty years.

  12. Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element

    SciTech Connect

    Gaur, Naseem Akhtar; Manoharlal, Raman; Saini, Preeti; Prasad, Tulika; Mukhopadhyay, Gauranga; Hoefer, Milan; Morschhaeuser, Joachim; Prasad, Rajendra . E-mail: rp47@hotmail.com

    2005-06-24

    Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.

  13. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.

    PubMed

    Shirazi, F; Kontoyiannis, D P

    2015-01-01

    Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS-non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0-16.0 μg/mL) than for MICA (1.0-8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains.

  14. Increased expression of Candida albicans secretory proteinase, a putative virulence factor, in isolates from human immunodeficiency virus-positive patients.

    PubMed Central

    Ollert, M W; Wende, C; Görlich, M; McMullan-Vogel, C G; Borg-von Zepelin, M; Vogel, C W; Korting, H C

    1995-01-01

    The increased prevalence and the severity of oropharyngeal candidiasis in human immunodeficiency virus (HIV)-positive patients are attributed exclusively to the virus-induced immune deficiency of the host. The present study was aimed at answering the question of whether Candida albicans secretory proteinase, a putative virulence factor of the opportunistic C. albicans yeast, has any potential influence on the clinical manifestation of oropharyngeal candidiasis in HIV-positive patients. We measured the secretory proteinase activities of clinical C. albicans isolates from the oropharynges of either HIV-positive individuals (n = 100) or a control group (n = 122). The mean secretory proteinase activity of C. albicans isolates from the HIV-positive group (4,255 +/- 2,372 U/liter) was significantly higher compared with that of isolates from the control group (2,324 +/- 1,487 U/liter) (P < 0.05). The higher level of secretory proteinase activity in the culture supernatants of individual C. albicans isolates correlated with the increased level of proteinase expression on the cell surface, as revealed by cytofluorometry, and with higher levels of secretion of the immunodetectable protein, as shown by Western blotting (immunoblotting). Proteinase activity within the population of C. albicans isolates from HIV-positive individuals was independent of the patient's clinical disease stage and the CD4+/CD8+ cell numbers. Furthermore, no correlation of the proteinase activities with the C. albicans serotype was found, although C. albicans serotype B was significantly more frequent in the HIV-positive group (40%) compared with that in the control group (12%). However, a positive correlation of proteinase activity to antifungal susceptibility was evident.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8567880

  15. Prevalence and exoenzyme secretion by Candida albicans isolates from oral and vaginal mucosas of HIV-infected women.

    PubMed

    Ribeiro, Mariceli Araujo; Miranda, Angelica Espinosa; Gambale, Walderez; Paula, Claudete Rodrigues

    2004-04-01

    A cross-sectional study was performed to evaluate the prevalence and the aetiology of forms of mucosal fungal infections of HIV-negative and HIV-positive women. Candida albicans was the predominate specie isolated from both groups of patients, with remarkable proportion of isolation from symptomatic women. All 239 C. albicans isolates, regardless of their source, showed activity of proteinase and phospholipase. It was verified that isolates with particularly higher levels of exoenzymes production were significantly more common in HIV-positive patients. However, isolates obtained from the HIV-positive patients in use of HAART, with protease inhibitor, presented lower levels of these exoenzymes, similar to the levels observed in the isolates from HIV-negative patients.

  16. [Prevalence of Candida albicans and Candida non-albicans in clinical samples during 1999-2001].

    PubMed

    Mujica, M T; Finquelievich, J L; Jewtuchowicz, V; Iovannitti, C A

    2004-01-01

    The importance of epidemiological monitoring of yeasts involved in pathologic processes is unquestionable due to the increase of these infections over the last decade, the changes observed in species causing candidiasis, and empirical antifungal treatment. At the Mycology Center, 1006 isolates from a wide range of clinical samples were studied during 1999-2001. Candida albicans (40.3%) was the most isolated species, although, the Candida no albicans species with 54.9% showed the major prevalence. In blood cultures Candida parapsilosis (34.9%), C. albicans (30.2%) and C. tropicalis (25.6%) were recovered most frequently while C. glabrata represented only 2.3%. C. albicans with 60%-80% was the predominant specie in mucosal surface. We also detected Candida mediastinistis, which alert us over the importance at this location. Urinary tract infections caused by yeasts were more frequent in hospitalized patients, being C. albicans (47.7%), the most commonly isolated, followed by C. glabrata (24.8%) and C. tropicalis (20.0%). In the candidal onychomycoses, C. parapsilosis (37.7%) outplaced C. albicans (22.0%). Fluconazole susceptibility studies of Candida species allowed us to conclude that the majority of C. albicans islolates are susceptible, and that the highest resistance averages were observed in C. glabrata (21.41%) and C. krusei (69.23%).

  17. Cluster of oral atypical Candida albicans isolates in a group of human immunodeficiency virus-positive drug users.

    PubMed Central

    Boerlin, P; Boerlin-Petzold, F; Durussel, C; Addo, M; Pagani, J L; Chave, J P; Bille, J

    1995-01-01

    Twenty-one chlamydospore-forming and germ tube-positive Candida albicans clinical isolates from 15 human immunodeficiency virus (HIV)-positive and 3 HIV-negative patients were examined by two different genetic methods. Multilocus enzyme electrophoresis and hybridization with the C. albicans-specific Ca3 probe showed that such isolates can be split into two genetically distinct groups that can be clearly distinguished. One group mainly contained strains with atypical sugar assimilation patterns and could be distinguished from the other group by the absence of intracellular beta-glucosidase activity. All 13 strains belonging to this group were isolated from the oral cavities of asymptomatic HIV-positive drug users and may be less pathogenic than the eight strains from the other group isolated either from HIV-positive patients with oropharyngeal candidiasis or from HIV-negative patients with invasive candidiasis. PMID:7615716

  18. Comparison of multilocus sequence typing and Ca3 fingerprinting for molecular subtyping epidemiologically-related clinical isolates of Candida albicans.

    PubMed

    Chowdhary, Anuradha; Lee-Yang, Wendy; Lasker, Brent A; Brandt, Mary E; Warnock, David W; Arthington-Skaggs, Beth A

    2006-08-01

    Southern hybridization with the complex probe Ca3 is a well established tool for molecular subtyping of Candida albicans. Multilocus sequence typing (MLST) is a DNA sequence-based subtyping method recently applied to C. albicans and shown to have a high degree of intraspecies discriminatory power. However, its utility for studying the molecular epidemiology of sequential isolates from recurrent disease has not been established. We compared Ca3 Southern hybridization and MLST using seven housekeeping genes (CaAAT1a, CaACC1, CaADP1, CaPMI, CaSYA1, CaVPS13, CaZWF1b) for their ability to discriminate among 37 C. albicans isolates from recurrent cases of oropharyngeal candidiasis (OPC) in ten HIV-positive patients from India and the US. Among the 37 isolates, MLST identified 23 distinct genotypes (index of diversity = 97%); Ca3 Southern hybridization identified 21 distinct genotypes (index of diversity = 95%). Both methods clustered isolates into seven genetically-related groups and, with one exception, isolates that were indistinguishable by MLST were indistinguishable or highly related by Ca3 Southern hybridization. These results demonstrate that MLST performs equally well or better compared to Ca3 Southern hybridization for defining genetic-relatedness of sequential C. albicans isolates from recurrent cases of OPC in HIV-positive patients.

  19. Susceptibility profile of vaginal isolates of Candida albicans prior to and following fluconazole introduction - impact of two decades.

    PubMed

    Bulik, C C; Sobel, J D; Nailor, M D

    2011-01-01

    Current treatment options for vulvovaginal candidiasis due to Candida albicans include over-the-counter and prescription antifungal agents. Fluconazole has been used extensively with an unknown impact on susceptibility. To investigate antifungal susceptibility trends in clinical vaginal isolates of C. albicans from 1986 to 2008, microdilution susceptibility was performed on randomly selected single isolates. Minimum inhibitory concentrations (MICs) were determined for: fluconazole, clotrimazole, miconazole, ketoconazole, itraconazole, voriconazole, flucytosine and amphotericin B. The MIC(90) for each drug was then calculated for the time periods: 1986-1989, 1992-1996 and 2005-2007. A total of 250 C. albicans vaginal isolates were included. The MIC(90) (mcg ml(-1) ) for fluconazole was 0.25, 0.5 and 0.5 mcg ml(-1) for each grouping, respectively. The corresponding MIC(90) for flucytosine was 1, 2 and 8 mcg ml(-1) , respectively. The MIC(90) for the remaining agents remained unchanged across time periods mentioned. Of note, the percentage of isolates with MIC ≥1 and ≥2 mcg ml(-1) for fluconazole increased from 3% to 9% over the study period. Although the C. albicans MIC(90) to fluconazole in vaginal isolates has not shown a clinically significant increase since 1986, there is an increasing number of isolates with elevated MICs. The implications of this increase are unknown, but given the achievable vaginal concentrations of fluconazole, reduced susceptibility may have clinical relevance.

  20. Oral Candida albicans isolates from nonhospitalized normal carriers, immunocompetent hospitalized patients, and immunocompromised patients with or without acquired immunodeficiency syndrome.

    PubMed Central

    Brawner, D L; Cutler, J E

    1989-01-01

    A total of 128 human oral isolates of Candida albicans were collected from asymptomatic healthy carriers (64 isolates); asymptomatic, nonimmunosuppressed, hospitalized patients (25 isolates); immunosuppressed transplant patients (19 isolates); and human immunodeficiency virus-infected patients with symptoms of acquired immunodeficiency syndrome and oral candidiasis (20 isolates). Isolates were serotyped as A or B and tested for reactivity with an agglutinating immunoglobulin M monoclonal antibody (H9). Immunocompetent individuals colonized by oral C. albicans were almost equally likely to carry serotype A as serotype B cells, while immunocompromised individuals were at least twice as likely to be infected by serotype B than serotype A strains. The reactivity of isolates with H9 antibody followed a similar but more distinctive pattern. Approximately half of the strains from immunocompetent individuals reacted strongly with H9, and the remainder reacted weakly. However, up to 75% of the isolates from immunocompromised patients reacted weakly with H9, while the remainder reacted strongly. A correlation between H9 reactivity and the serotypes of these isolates existed (P = 0.16). The correlation between H9 reactivity and immune status was even stronger (P = 0.025). The monoclonal antibody activities described above were determined by agglutination tests during defined phases of C. albicans growth. Expression of antigen at various times during growth of several isolates was confirmed at the cellular level by analysis using fluorescence-activated cell sorting. Despite the correlation between serotype A and H9 reactivity, H9 antigen was not identical to the serotype A antigen because four serotype A strains reacted only weakly with H9 antibody, and one strain reacted strongly with H9 but was serotype B. These data indicate that oral strains of C. albicans from immunocompetent individuals differ as a group from C. albicans isolated from those who are immunosuppressed. PMID

  1. Mutations in transcription factor Mrr2p contribute to fluconazole resistance in clinical isolates of Candida albicans.

    PubMed

    Wang, Ying; Liu, Jin-Yan; Shi, Ce; Li, Wen-Jing; Zhao, Yue; Yan, Lan; Xiang, Ming-Jie

    2015-11-01

    The Candida albicans zinc cluster proteins are a family of transcription factors (TFs) that play essential roles in the development of antifungal drug resistance. Gain-of-function mutations in several TFs, such as Tac1p, Mrr1p and Upc2p, have been previously well documented in azole-resistant clinical C. albicans isolates. Mrr2p (multidrug resistance regulator 2) is a novel TF controlling expression of the ABC transporter gene CDR1 and mediating fluconazole resistance. In this study, the relationship between naturally occurring mutations in MRR2 and fluconazole resistance in clinical C. albicans isolates was investigated. Among a group of 20 fluconazole-resistant clinical C. albicans and 10 fluconazole-susceptible C. albicans, 12 fluconazole-resistant isolates overexpressed CDR1 by at least two-fold compared with the fluconazole-susceptible isolates. Of these 12 resistant isolates, three (C7, C9, C15) contained 11 identical missense mutations, 6 of which occurred only in the azole-resistant isolates. The contribution of these mutations to CDR1 overexpression and therefore to fluconazole resistance was further verified by generating recombinant strains containing the mutated MRR2 gene. The mutated MRR2 alleles from isolate C9 contributed to an almost six-fold increase in CDR1 expression and an eight-fold increase in fluconazole resistance; the missense mutations S466L and T470N resulted in an increase in CDR1 expression of more than two-fold and a four-fold increase in fluconazole resistance. In contrast, the other four missense mutations conferred only two- to four-fold increases in fluconazole resistance, with no significant increase in CDR1 expression. These findings provide some insight into the mechanism by which MRR2 regulates C. albicans multidrug resistance.

  2. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms.

    PubMed

    Rukayadi, Yaya; Hwang, Jae-Kwan

    2013-07-01

    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.

  3. Candida albicans bloodstream isolates in a German university hospital are genetically heterogenous and susceptible to commonly used antifungals.

    PubMed

    Huyke, Johanna; Martin, Ronny; Walther, Grit; Weber, Michael; Kaerger, Kerstin; Bougnoux, Marie-Elisabeth; Elias, Johannes; Kurzai, Oliver

    2015-10-01

    From an eight-year-span, 99 Candida bloodstream isolates were collected at the University Hospital Wuerzburg, Germany. In this study, all strains were analyzed using molecular and phenotypic typing methods. Confirmatory species identification revealed three isolates that were initially diagnosed as C. albicans to be actually C. dubliniensis. Two isolates contained a mixed culture of C. albicans and C. glabrata, in one of the specimens both species could be separated while it was not possible to recover C. albicans in the other sample. The remaining 95 C. albicans isolates were profiled by multilocus sequence typing (MLST). Phylogenetic analyses showed a highly heterogenous collection of strains, associated with many different clades and constituting a set of new diploid sequence types (DST). For all strains with identical DST, patient data were reviewed for potential nosocomial transmission. In addition, all isolates were tested for their susceptibility to amphotericin B, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole. No clinically relevant resistance could be detected. Furthermore, these data underline that correlation between minimal inhibitory concentrations for caspofungin and anidulafungin is low.

  4. Biotypes and randomly amplified polymorphic DNA (RAPD) profiles of subgingival Candida albicans isolates in HIV infection.

    PubMed

    Pizzo, Giuseppe; Giammanco, Giovanni M; Pecorella, Sonia; Campisi, Giuseppina; Mammina, Caterina; D'Angelo, Matteo

    2005-01-01

    A group of subgingival isolates of C. albicans recovered from Italian HIV-positive (HIV+) subjects were characterized both phenotypically and genotypically. Phenotyping of the isolates was carried out by a biotyping method based on the enzyme profiles, carbohydrate assimilation patterns and boric acid resistance of the yeasts. Genotyping was performed through randomly amplified polymorphic DNA (RAPD) analysis. Five biotypes were found among the 29 subgingival C. albicans strains examined. The predominant biotypes were A1R (55.17%), A1S (24.14%), and A2R (13.79%), while the biotypes A11R and A13R were represented by a single isolate each. RAPD profiles identified 15 genotypes among the 29 isolates. Almost every individual harboured his/her own specific isolate and in three out of the six subjects with multiple isolates (two to six each) more than one genotype (two to six) was found. The biotype distribution we found is consistent with previous reports on C. albicans isolates from other oral sources, whereas the resistance to boric acid was highly frequent in subgingival strains. RAPD analysis showed high genetic heterogeneity within subgingival isolates, also when isolates were phenotypically identical. These findings, obtained from HIV+ subjects living in Southern Italy, may be useful as baseline information on subgingival C. albicans colonization in the Mediterranean area.

  5. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

    PubMed Central

    Whaley, Sarah G.; Berkow, Elizabeth L.; Rybak, Jeffrey M.; Nishimoto, Andrew T.; Barker, Katherine S.; Rogers, P. David

    2017-01-01

    Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species. PMID:28127295

  6. Proteolytic activity and cytokine up-regulation by non-albicans Candida albicans.

    PubMed

    Nawaz, Ali; Pärnänen, Pirjo; Kari, Kirsti; Meurman, Jukka H

    2015-05-01

    Mouth is an important source of infections and oral infections such as Candida infections increase the risk of mortality. Our purpose was to investigate differences in proteolytic activity of non-albicans Candida albicans (non-albicans Candida) between clinical isolates and laboratory samples. The second aim was to assess the concentration of pro- and anti-inflammatory cytokine levels IL-1β, IL-10, and TNF-α in saliva of patients with the non-albicans Candida and Candida-negative saliva samples. Clinical yeast samples from our laboratory were used for analyses. Candida strains were grown in YPG at 37 °C for 24 h in water bath with shaking. The activity of Candida proteinases of cell and cell-free fractions were analyzed by MDPF-gelatin zymography. The levels of IL-1β, IL-10, and TNF-α were measured from saliva with ELISA. The study showed differences in the proteolytic activity among the non-albicans Candida strains. C. tropicalis had higher proteolytic activity when compared to the other strains. Significant difference was found in salivary IL-1β levels between the non-albicans Candida and control strains (P < 0.002). The present findings showed differences in proteolytic activity among the non-albicans Candida strains. The increased IL-1β concentration may be one of the host response components associated with non-albicans Candida infection.

  7. White-opaque Switching in Different Mating Type-like Locus Gene Types of Clinical Candida albicans Isolates

    PubMed Central

    Li, Hou-Min; Shimizu-Imanishi, Yumi; Tanaka, Reiko; Li, Ruo-Yu; Yaguchi, Takashi

    2016-01-01

    Background: Candida albicans (C. albicans) can become a pathogen causing superficial as well as life-threatening systemic infections, especially in immunocompromised patients. Many phenotypic attributes contribute to its capacity to colonize human organs. In our study, 93 C. albicans isolates from patients of various candidiasis in a hospital of China were surveyed. We aimed to investigate the white-opaque (WO) switching competence, drug sensitivity, and virulence of mating type-like (MTL) a/α isolates. Methods: Internal transcribed spacer (ITS) gene and the MTL configuration were detected in all the isolates by reverse transcription-polymerase chain reaction. White/opaque phenotype and doubling time of cell growth were determined. The minimum inhibitory concentrations of antifungal agent were measured using broth microdilution method. Results: Sixty-four isolates (69.6%) were classified to serotype A, 19 (20.6%) to serotype B, and 9 (9.8%) to serotype C. Moreover, phylogenetic analysis showed that these isolates were divided into four different subgroups of ITS genotypes. Most of our clinical isolates were MTLa/α type, while 6.8% remained MTLa or MTLα type. The frequency of opaque phenotype was 71.0% (66 isolates). Following the guidelines of Clinical and Laboratory Standards Institute M27-A3, all isolates were susceptible to caspofungin and a few (0.6–3.2%) of them showed resistance against amphotericin B, flucytosine, fluconazole, itraconazole, and voriconazole. Conclusions: From these analyses, there were comparatively more C. albicans strains classified into serotype B, and the frequency of opaque phase strains was significant in the clinical isolates from China. Genetic, phenotypic, or drug susceptibility patterns were not significantly different from previous studies. MTLa/α isolates could also undergo WO switching which facilitates their survival. PMID:27824006

  8. Increased expression of virulence attributes in oral Candida albicans isolates from human immunodeficiency virus-positive individuals.

    PubMed

    Mane, Arati; Gaikwad, Shraddha; Bembalkar, Shilpa; Risbud, Arun

    2012-02-01

    Oral candidiasis caused by Candida albicans is recognized as one of the most frequent opportunistic infections in human immunodeficiency virus (HIV)-infected individuals. The overall severity and chronicity of oral candidiasis has been attributed exclusively to the HIV-induced immune deficiency of the affected individuals but not to the virulence factors of the pathogen, i.e. C. albicans. However, genotypic and phenotypic studies have suggested that HIV infection might be associated with preferential selection of C. albicans strains with altered virulence determinants, leading to colonization with Candida populations that are better able to cause disease in these immunologically compromised hosts. If this process of selection is indeed related to pathogenicity, it may be possible to measure alterations in different virulence factors produced by C. albicans in HIV-infected patients. To evaluate this hypothesis, the present work was undertaken to determine simultaneously the expression of five virulence factors in oral C. albicans isolates colonizing and infecting HIV-positive and -negative individuals. The significance of genotypes in the pathogenesis of oral candidiasis was also elucidated. Oral swabs were collected from 335 consecutive individuals (210 HIV-positive and 125 HIV-negative). Virulence factors and genotypes were determined for all the C. albicans strains isolated. The results showed significantly increased expression of proteinase, phospholipase and haemolytic activities, as well as a greater ability to adhere, in isolates from HIV-positive compared with HIV-negative individuals (P<0.05). However, no significant differences in virulence factor expression in isolates colonizing or infecting HIV-positive individuals were seen. Genotype A was the predominant type (71.3 %); however, a relationship could not be established between the genotypes and the virulence factors, or with clinical infection. These data support the concept of preferential C. albicans

  9. Effect of lectins on hepatic clearance and killing of Candida albicans by the isolated perfused mouse liver.

    PubMed Central

    Sawyer, R T; Garner, R E; Hudson, J A

    1992-01-01

    The isolated perfused mouse liver model was used to study the effects of various lectins on hepatic trapping and killing of Candida albicans. After mouse livers were washed with 20 to 30 ml of perfusion buffer, 10(6) C. albicans CFU were infused into the livers. At the time of recovery, 63% +/- 2% (mean +/- standard error of the mean) of the infused C. albicans CFU were recovered from the liver and 14% +/- 1% were recovered from the effluent for a total recovery of 77% +/- 2%. This indicated that 86% +/- 9% of the original inoculum was trapped by the liver and that 23% +/- 2% was killed within the liver. When included in both preperfusion and postperfusion buffers (0.2 mg of lectin per ml), Ulex europeaus lectin (binding specificity for fucose) decreased hepatic trapping of C. albicans by 37% and eluted trapped C. albicans from the liver only when included in postperfusion buffer. By comparison, treatment of C. albicans with U. europeaus lectin before infusion had no effect on the trapping or killing of yeast cells. When Lens culinaris lectin (binding specificity for mannose) was included in the perfusion buffers, hepatic killing of C. albicans increased by 16% with no significant effect on hepatic killing when yeast cells were treated with L. culinaris lectin before infusion. Forty to 55% of the infused C. albicans were killed when concanavalin A (binding specificities for mannose and glucose), Glycine max (binding specificity for N-acetylgalactosamine), or Arachis hypogea (binding specificity for galactose) lectin was included in the perfusion buffer or when yeast cells were treated with these lectins before their infusion. When C. albicans was treated with concanavalin A at a concentration of less than 0.02 mg/ml, hepatic killing of yeast cells was not significantly increased. The data suggest that a fucose-containing receptor on the surface of either sinusoidal endothelial cells or Kupffer cells is involved in the trapping of C. albicans by the perfused mouse

  10. Candida albicans: adapting to succeed.

    PubMed

    Kadosh, David; Lopez-Ribot, Jose L

    2013-11-13

    In this issue of Cell Host & Microbe, Lu et al. (2013) report on the redundancy of signaling pathways controlling Candida albicans filamentation and pathogenicity. In the process, they provide important insight into how this normal commensal of humans adapts to different host microenvironments to become a highly successful opportunistic pathogen.

  11. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    PubMed Central

    Alshami, Issam; Alharbi, Ahmed E

    2014-01-01

    Objective To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. Methods In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent. PMID:25182280

  12. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    PubMed Central

    K PATHAK, Apurva; SHARMA, Sanjay; SHRIVASTVA, Pallavi

    2012-01-01

    Objective In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. Material and Methods The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB). Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. Results In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans) and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination) were reported. Conclusions The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC) than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species. PMID:22437681

  13. Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 delta strain of Saccharomyces cerevisiae.

    PubMed

    McNemar, M D; Gorman, J A; Buckley, H R

    1997-11-01

    The gene encoding ornithine decarboxylase, SPE1, from the pathogenic yeast Candida albicans has been isolated by complementation of an ornithine decarboxylase-negative (spe1 delta) strain of Saccharomyces cerevisiae. Four transformants, three of which contain plasmids with the SPE1 gene, were isolated by selection on polyamine-free medium. The C. albicans ornithine decarboxylase (ODC) showed high homology with other eukaryotic ODCs at both the amino acid and nucleic acid levels.

  14. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    SciTech Connect

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms.

  15. Isolation and partial characterisation of a new antiproliferative substance from human leucocytes inhibiting growth of Candida albicans

    PubMed Central

    Naess-Andresen, C F; Ekeberg, D; Fagerhol, M K; Sandvik, K; Staahl, L

    2003-01-01

    Aim: To purify and partially characterise a fraction from human leucocytes containing a substance cytotoxic to Candida albicans. Methods: Leucocytes were isolated from the buffy coats of healthy blood donors. The cytotoxic factor (CF) was isolated from the soluble fraction of the cells. A cell lysate was passed through a filter with a cut off value of 3 kDa, and the filtrate was processed by anionic exchange chromatography and gel filtration. The purified CF was analysed for its chemical and biological properties. The cytotoxicity of CF was tested on C albicans grown on agar plates. Results: Mass spectrometry showed a molecular mass of 2.148 kDa. CF was found in polymorphonuclear neutrophilic cells only. No amino acids were detected, and a low ultraviolet absorbance at 260 nm and resistance to nuclease indicate the absence of nucleic acids. An anthrone test was positive for carbohydrate. The substance was soluble in water. CF showed a dose related cytotoxicity in the range of 0.1–1 mg/ml. The cytotoxic effect was abrogated by zinc ions. Preliminary testing indicated that CF also had cytotoxic effects against some bacteria. Conclusions: This report describes a factor from isolated human leucocytes that is cytotoxic to C albicans. The substance contains a carbohydrate moiety, whereas no amino acids were detected. The cytotoxicity can be abrogated by zinc ions in vitro. This substance is probably part of the repertoire by which leucocytes prevent infections. PMID:12890745

  16. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans.

    PubMed

    Vieira, Maria Eliza Brambila; Vasconcelos, Ilka Maria; Machado, Olga Lima Tavares; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2015-09-01

    Antimicrobial peptides (AMPs) are produced by a range of organisms as a first line of defense against invaders or competitors. Owing to their broad antimicrobial activity, AMPs have attracted attention as a potential source of chemotherapeutic drugs. The increasing prevalence of infections caused by Candida species as opportunistic pathogens in immunocompromised patients requires new drugs. Lecythis pisonis is a Lecythydaceae tree that grows in Brazil. The AMPs produced by this tree have not been described previously. We describe the isolation of 12 fractions enriched in peptides from L. pisonis seeds. Of the 12 fractions, at 10 μg/ml, the F4 fraction had the strongest growth inhibitory effect (53.7%) in Candida albicans, in addition to a loss of viability of 94.9%. The F4 fraction was separated into seven sub-fractions by reversed-phase chromatography. The F4.7' fraction had the strongest activity at 10 μg/ml, inhibiting C. albicans growth by 38.5% and a 69.3% loss of viability. The peptide in F4.7' was sequenced and was found to be similar to plant defensins. For this reason, the peptide was named L. pisonis defensin 1 (Lp-Def1). The mechanism of action that is responsible for C. albicans inhibition by Lp-Def1 includes a slight increase of reactive oxygen species induction and a significant loss of mitochondrial function. The results described here support the future development of plant defensins, specifically Lp-Def1, as new therapeutic substances against fungi, especially C. albicans.

  17. Biotype stability of Candida albicans isolates after culture storage determined by randomly amplified polymorphic DNA and phenotypical methods.

    PubMed

    Bacelo, Katia Leston; da Costa, Karen Regina Carim; Ferreira, Joseane Cristina; Candido, Regina Celia

    2010-11-01

    Typing methods to evaluate isolates in relation to their phenotypical and molecular characteristics are essential in epidemiological studies. In this study, Candida albicans biotypes were determined before and after storage in order to verify their stability. Twenty C. albicans isolates were typed by Randomly Amplified Polymorphic DNA (RAPD), production of phospholipase and proteinase exoenzymes (enzymotyping) and morphotyping before and after 180 days of storage in Sabouraud dextrose agar (SDA) and sterilised distilled water. Before the storage, 19 RAPD patterns, two enzymotypes and eight morphotypes were identified. The fragment patterns obtained by RAPD, on the one hand, were not significantly altered after storage. On the other hand, the majority of the isolates changed their enzymotype and morphotype after storage. RAPD typing provided the better discriminatory index (DI) among isolates (DI = 0.995) and maintained the profile identified, thereby confirming its utility in epidemiological surveys. Based on the low reproducibility observed after storage in SDA and distilled water by morphotyping (DI = 0.853) and enzymotyping (DI = 0.521), the use of these techniques is not recommended on stored isolates.

  18. Candida albicans and non-Candida albicans fungemia in an institutional hospital during a decade.

    PubMed

    Parmeland, Laurence; Gazon, Mathieu; Guerin, Claude; Argaud, Laurent; Lehot, Jean-Jacques; Bastien, Olivier; Allaouchiche, Bernard; Michallet, Mauricette; Picot, Stephane; Bienvenu, Anne-Lise

    2013-01-01

    Since the outcomes of patients with candidemia is poor and Candida spp. with increased resistance to antifungal therapy may be associated with these results, the emergence of these blood infections caused by non-C. albicans Candida spp. was explored prospectively over a two-year period (2009-2010). Candidemia was defined as the recovery of Candida spp. in culture from a patient's blood sample. The in vitro susceptibility of each isolate to amphotericin B, caspofungin, fluconazole and voriconazole was determined. In addition, characteristics of patients and outcomes were investigated in real-time. The Candida distribution was compared to that observed in a similar study 10 years earlier in the same hospital. A total of 182 patients with candidemia were included in the study. While C. albicans was the most frequently isolated species (n = 102), non-C. albicans Candida spp. included; C. glabrata (n = 32), C. parapsilosis (n = 21), C. tropicalis (n = 13), C. krusei (n = 8), C. kefyr (n = 3), C. lusitaniae (n = 2), C. lipolytica (n = 2), C. famata (n = 1), C. guilliermondii (n = 1), C. inconspicua (n = 1), C. dubliniensis (n = 1), C. sake (n = 1) and C. nivariensis (n = 1). In seven patients, C. albicans was associated with another Candida spp. Surprisingly, this prospective study demonstrated that regardless of the department (intensive care unit or hematological department), Candida spp. distribution was no different from that found in the 1998-2001 survey, except for C. krusei. A reduction in the proportion of C. krusei isolates was observed from 2000-2010 (P = 0.028) as a result of its decreased recovery in the hematological department.

  19. Fluconazole susceptibility and strain variation of Candida albicans isolates from HIV-infected patients with oropharyngeal candidosis.

    PubMed

    Barchiesi, F; Arzeni, D; Del Prete, M S; Sinicco, A; Falconi Di Francesco, L; Pasticci, M B; Lamura, L; Nuzzo, M M; Burzacchini, F; Coppola, S; Chiodo, F; Scalise, G

    1998-05-01

    Over a 16 month period we conducted a prospective study in a cohort of 45 HIV-positive patients to detect the development of resistance to fluconazole and to analyse the epidemiology of oropharyngeal candidosis (OPC). Each episode was treated with fluconazole 100 mg/day po for 10 days. All yeast isolates were tested for their in-vitro susceptibility to fluconazole. Multiple strains of Candida albicans simultaneously isolated from a given patient were typed by electrophoretic karyotyping. Overall, 106 episodes of OPC were diagnosed among the 45 patients: 18/45 patients (40%) had only one episode, 11/45 (24%) had two episodes, and the remaining 16/45 (36%) had three or more episodes (range 3-7). Cure (complete resolution of signs and symptoms and negative post-treatment cultures) and improvement (complete resolution of signs and symptoms but positive post-treatment cultures) were observed in 30/106 (28%) and 69/106 (65%) episodes of OPC, respectively. Failure (absence of improvement or exacerbation of signs and symptoms) was observed in seven episodes (7%) from four patients. In two of these four patients a significant and progressive increase in fluconazole MICs was observed: from 0.25 to 16 mg/L in one patient, and from < or = 0.125 to 32 mg/L in the second one. Tests on multiple colonies from individual isolation plates showed that it was not unusual to obtain different fluconazole MICs, indicating that, in order to avoid misleading results, one should perform in-vitro susceptibility testing by using a multiple colony inoculum rather than an inoculum made from a single colony. A total of 213 strains of C. albicans isolated from seven patients who suffered from four or more episodes of OPC through the course of the study were typed by electrophoretic karyotyping. Five individuals (71%) were infected with yeasts with only one DNA type, while the other two patients showed the presence of two or three different DNA types. The simultaneous presence of multiple types

  20. Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole.

    PubMed

    Wu, T; Wright, K; Hurst, S F; Morrison, C J

    2000-05-01

    We examined the production of secreted aspartyl proteinase (Sap), a putative virulence factor of Candida albicans, by a series of 17 isolates representing a single strain obtained from the oral cavity of an AIDS patient before and after the development of clinical and in vitro resistance to fluconazole. Isolates were grown in Sap-inducing yeast carbon base-bovine serum albumin medium containing 0, 0.25, 0.5, or 1 MIC of fluconazole, and cultures were sampled daily for 14 days to determine extracellular Sap activity by enzymatic degradation of bovine serum albumin. Extracellular Sap activity was significantly decreased in a dose-dependent manner for the most fluconazole-susceptible isolate (MIC, 1.0 microg/ml) and significantly increased in a dose-dependent manner for the most fluconazole-resistant isolate (MIC, >64 microg/ml). Enhanced extracellular Sap production could not be attributed to cell death or nonspecific release of Sap, because there was no reduction in the number of CFU and no significant release of enolase, a constitutive enzyme of the glycolytic pathway. Conversely, intracellular Sap concentrations were significantly increased in a dose-dependent manner in the most fluconazole-susceptible isolate and decreased in the most fluconazole-resistant isolate. Enhanced Sap production correlated with the overexpression of a gene encoding a multidrug resistance (MDR1) efflux pump occurring in these isolates. These data indicate that exposure to subinhibitory concentrations of fluconazole can result in enhanced extracellular production of Sap by isolates with the capacity to overexpress MDR1 and imply that patients infected with these isolates and subsequently treated with suboptimal doses of fluconazole may experience enhanced C. albicans virulence in vivo.

  1. Killer system: a simple method for differentiating Candida albicans strains.

    PubMed Central

    Polonelli, L; Archibusacci, C; Sestito, M; Morace, G

    1983-01-01

    The killer effect of 37 species of Candida, Cryptococcus, Hansenula, Pichia, Rhodotorula, Saccharomyces, and Trichosporon on 100 Candida albicans isolates of human and animal origin was studied. All of the C. albicans cultures were sensitive to one or more killer yeasts. The factors affecting the killer phenomenon on C. albicans were investigated for realizing a simple system for the differentiation of the 100 C. albicans isolates. By using this system, it was possible to differentiate up to 512 isolates of C. albicans according to their susceptibility to the killer effect of nine selected killer yeasts. The use of this method as an epidemiological marker in the case of presumptive nosocomial infections due to C. albicans is also reported. Images PMID:6345575

  2. Phenotypic identification of Candida albicans by growth on chocolate agar.

    PubMed

    Sheth, Chirag C; Johnson, Elizabeth; Baker, Mark E; Haynes, Ken; Mühlschlegel, Fritz A

    2005-12-01

    In this study, we describe a simple method for the identification of Candida albicans in clinical samples. A total of 383 clinical isolates of Candida species were streaked onto chocolate agar and incubated for 48 h at 37 degrees C in the presence of an atmosphere of 6% CO2. All 208 of the C. albicans isolates tested, developed an easy to identify filamentous colony morphology. Of 175 other Candida species tested, 172 (98.3%) were distinguishable from C. albicans by their smooth colony morphology. Three isolates (1.7%) exhibited weak filamentation after prolonged incubation. Although not a routine medium in medical mycology a significant advantage of using chocolate agar lies in its use in clinical bacteriology laboratories for the isolation of fastidious bacteria. Implementation of the proposed method is applicable across a range of specimen types, thus allowing the direct identification of C. albicans in clinical samples. This simple method may allow a quicker entry into directed treatment.

  3. Candida albicans commensalism in the gastrointestinal tract.

    PubMed

    Neville, B Anne; d'Enfert, Christophe; Bougnoux, Marie-Elisabeth

    2015-11-01

    Candida albicans is a polymorphic yeast species that often forms part of the commensal gastrointestinal mycobiota of healthy humans. It is also an important opportunistic pathogen. A tripartite interaction involving C. albicans, the resident microbiota and host immunity maintains C. albicans in its commensal form. The influence of each of these factors on C. albicans carriage is considered herein, with particular focus on the mycobiota and the approaches used to study it, models of gastrointestinal colonization by C. albicans, the C. albicans genes and phenotypes that are necessary for commensalism and the host factors that influence C. albicans carriage.

  4. Molecular Phylogenetic Analysis of a Geographically and Temporally Matched Set of Candida albicans Isolates from Humans and Nonmigratory Wildlife in Central Illinois ▿

    PubMed Central

    Wrobel, Lauren; Whittington, Julia K.; Pujol, Claude; Oh, Soon-Hwan; Ruiz, Marilyn O.; Pfaller, Michael A.; Diekema, Daniel J.; Soll, David R.; Hoyer, Lois L.

    2008-01-01

    This study explored whether wildlife species serve as the reservoir for human Candida albicans strains in a given geographic area. C. albicans isolates were collected from nonmigratory wildlife admitted to the University of Illinois Wildlife Medical Clinic. A geographically and temporally matched set of C. albicans oral isolates was collected from healthy human volunteers. Multilocus sequence typing was used to assign strains to genetic clades. Clade 1 isolates, particularly diploid sequence type 69 (DST 69), were most common in humans. Clade 1 strains were less frequently recovered from wildlife, while clade 8 strains, particularly DST 90, were overrepresented in the wildlife collection. All instances where a wildlife and human isolate shared the same DST occurred within clade 1. Clade distributions between human and wildlife isolates were significantly different, demonstrating population isolation between the groups. These differences may indicate limited strain transfer between groups or differential selection of C. albicans isolates in humans and wildlife. Wildlife strains had an amphotericin B MIC significantly lower than that of human isolates; strains with increased susceptibility were from several clades. C. albicans isolates were collected from domestic animals to provide comparisons with human and wildlife data sets. C. albicans isolation from canine and feline oral and anal swabs was infrequent; companion animal isolates were closely related to clade 1 human isolates. Collectively, the data suggest a greater likelihood of C. albicans transfer from humans to animals than from animals to humans. The nontransient human population may maintain the connection between geography and the C. albicans genetic groups recovered from humans. PMID:18621922

  5. Paradoxical antifungal activity and structural observations in biofilms formed by echinocandin-resistant Candida albicans clinical isolates.

    PubMed

    Walraven, Carla J; Bernardo, Stella M; Wiederhold, Nathan P; Lee, Samuel A

    2014-02-01

    Echinocandin-resistant clinical isolates of Candida albicans have been reported, and key-hot spot mutations in the FKS1 gene, which encodes a major glucan synthase subunit, have been identified in these (caspofungin-resistant [CAS-R]) strains. Although these mutations result in phenotypic resistance to echinocandins in planktonic cells, there is little data on antifungal susceptibilities of CAS-R C. albicans strains within biofilms. Thus, we analyzed biofilms formed by 12 C. albicans CAS-R clinical strains in which we previously identified FKS1 hot-spot mutations and compared the sessile antifungal and paradoxical activity of anidulafungin (ANID), caspofungin (CAS), and micafungin (MICA). Biofilms were formed in a 96-well static microplate model and assayed using both tetrazolium-salt reduction and crystal violet assays, as well as examination by scanning electron microscopy. We first sought to assess biofilm formation and structure in these fks1 mutants and found that the biofilm mass and metabolic activities were reduced in most of the fks1 mutants as compared with reference strain SC5314. Structural analyses revealed that the fks1 mutant biofilms were generally less dense and had a clear predominance of yeast and pseudohyphae, with unusual "pit"-like cell surface structures. We also noted that sessile minimum inhibitory concentrations (MICs) to ANID, CAS, and MICA were higher than planktonic MICs of all but one strain. The majority of strains demonstrated a paradoxical effect (PE) to particular echinocandins, in either planktonic or sessile forms. Overall, biofilms formed by echinocandin-resistant clinical isolates demonstrated varied PEs to echinocandins and were structurally characterized by a preponderance of yeast, pseudohyphae, and pit-like structures.

  6. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans

    PubMed Central

    Bruzual, Igor

    2013-01-01

    In the opportunistic fungal pathogen Candida albicans, up-regulation of MDR1, encoding an efflux transporter, leads to increased resistance to the antifungal drug fluconazole. Antifungal resistance has been linked to several types of genetic change in C. albicans, including changes in genome structure, genetic alteration of the drug target, and overexpression of transporters. High-level over-expression of MDR1 is commonly mediated by mutation in a trans-acting factor, Mrr1p. This report describes a second mechanism that contributes to up-regulation of MDR1 expression. By analyzing the sequence of the MDR1 promoter region in fluconazole-resistant and fluconazole-susceptible strains, we identified sequence polymorphisms that defined two linkage groups, corresponding to the two alleles in the diploid genome. One of the alleles conferred higher MDR1 expression compared with the other allele. Strains in which both alleles were of the higher activity type were common in collections of clinically isolated strains while strains carrying only the less active allele were rare. As increased expression of MDR1 confers higher resistance to drugs, strains with the more active MDR1 promoter allele may grow or survive longer when exposed to drugs or other selective pressures, providing greater opportunity for mutations that confer high-level drug resistance to arise. Through this mechanism, higher activity alleles of the MDR1 promoter could promote the development of drug resistance. PMID:21972105

  7. Urinary tract infections and Candida albicans

    PubMed Central

    Behzadi, Payam; Behzadi, Elham

    2015-01-01

    Introduction Urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide. Candida albicans is the most common cause of nosocomial fungal urinary tract infections; however, a rapid change in the distribution of Candida species is undergoing. Simultaneously, the increase of urinary tract candidiasis has led to the appearance of antifungal resistant Candida species. In this review, we have an in depth look into Candida albicans uropathogenesis and distribution of the three most frequent Candida species contributing to urinary tract candidiasis in different countries around the world. Material and methods For writing this review, Google Scholar –a scholarly search engine– (http://scholar.google.com/) and PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) were used. The most recently published original articles and reviews of literature relating to the first three Candida species causing urinary tract infections in different countries and the pathogenicity of Candida albicans were selected and studied. Results Although some studies show rapid changes in the uropathogenesis of Candida species causing urinary tract infections in some countries, Candida albicans is still the most important cause of candidal urinary tract infections. Conclusions Despite the ranking of Candida albicans as the dominant species for urinary tract candidiasis, specific changes have occurred in some countries. At this time, it is important to continue the surveillance related to Candida species causing urinary tract infections to prevent, control and treat urinary tract candidiasis in future. PMID:25914847

  8. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity

    PubMed Central

    2014-01-01

    Background Candida albicans infections have become increasingly recognised as being biofilm related. Recent studies have shown that there is a relationship between biofilm formation and poor clinical outcomes in patients infected with biofilm proficient strains. Here we have investigated a panel of clinical isolates in an attempt to evaluate their phenotypic and transcriptional properties in an attempt to differentiate and define levels of biofilm formation. Results Biofilm formation was shown to be heterogeneous; with isolates being defined as either high or low biofilm formers (LBF and HBF) based on different biomass quantification. These categories could also be differentiated using a cell surface hydrophobicity assay with 24 h biofilms. HBF isolates were more resistance to amphotericin B (AMB) treatment than LBF, but not voriconazole (VRZ). In a Galleria mellonella model of infection HBF mortality was significantly increased in comparison to LBF. Histological analysis of the HBF showed hyphal elements intertwined indicative of the biofilm phenotype. Transcriptional analysis of 23 genes implicated in biofilm formation showed no significant differential expression profiles between LBF and HBF, except for Cdr1 at 4 and 24 h. Cluster analysis showed similar patterns of expression for different functional classes of genes, though correlation analysis of the 4 h biofilms with overall biomass at 24 h showed that 7 genes were correlated with high levels of biofilm, including Als3, Eap1, Cph1, Sap5, Plb1, Cdr1 and Zap1. Conclusions Our findings show that biofilm formation is variable amongst C. albicans isolates, and categorising isolates depending on this can be used to predict how pathogenic the isolate will behave clinically. We have shown that looking at individual genes in less informative than looking at multiple genes when trying to categorise isolates at LBF or HBF. These findings are important when developing biofilm-specific diagnostics as these could be

  9. A Combination Fluorescence Assay Demonstrates Increased Efflux Pump Activity as a Resistance Mechanism in Azole-Resistant Vaginal Candida albicans Isolates

    PubMed Central

    Bhattacharya, Somanon; Sobel, Jack D.

    2016-01-01

    Candida albicans is a pathogenic fungus causing vulvovaginal candidiasis (VVC). Azole drugs, such as fluconazole, are the most common treatment for these infections. Recently, azole-resistant vaginal C. albicans isolates have been detected in patients with recurring and refractory vaginal infections. However, the mechanisms of resistance in vaginal C. albicans isolates have not been studied in detail. In oral and systemic resistant isolates, overexpression of the ABC transporters Cdr1p and Cdr2p and the major facilitator transporter Mdr1p is associated with resistance. Sixteen fluconazole-susceptible and 22 fluconazole-resistant vaginal C. albicans isolates were obtained, including six matched sets containing a susceptible and a resistant isolate, from individual patients. Using quantitative real-time reverse transcriptase PCR (qRT-PCR), 16 of 22 resistant isolates showed overexpression of at least one efflux pump gene, while only 1 of 16 susceptible isolates showed such overexpression. To evaluate the pump activity associated with overexpression, an assay that combined data from two separate fluorescent assays using rhodamine 6G and alanine β-naphthylamide was developed. The qRT-PCR results and activity assay results were in good agreement. This combination of two fluorescent assays can be used to study efflux pumps as resistance mechanisms in clinical isolates. These results demonstrate that efflux pumps are a significant resistance mechanism in vaginal C. albicans isolates. PMID:27431223

  10. In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans.

    PubMed

    Mahboubi, M; Ghazian Bidgoli, F

    2010-08-01

    In this study, we evaluated the antifungal activity of the essential oil from Myrtus communis (myrtle) leaves against Candida albicans (eight clinical isolates and one ATCC type strains) and different species of Aspergillus sp (A. niger, A. parasiticus, six isolates of Aspergillus flavus) using broth micro dilution assay. In addition, we evaluated the synergistic effect between the essential oil and the antifungal compound amphotericin B by checkboard micro titer assay. The essential oil was obtained from myrtle leaves by hydrodistillation method and the oil was analyzed by GC and GC-MS methods. Chemical analysis of oil revealed the presence of 70 components, representing 99.23% of the total oil. 1,8-cineole (36.1%), alpha-pinene (22.5%), linalool (8.4%), bornyl acetate (5.2%), alpha-terpineol (4.4%), linalyl acetate (4.2%) and limonene (3.8%) were found to be the major components of the oil. The antifungal evaluating showed that myrtle oil exhibited good antifungal activity against fungi. Myrtle oil showed significant antifungal activity when combined with amphotericin B.

  11. Genotyping Candida albicans from Candida leukoplakia and non-Candida leukoplakia shows no enrichment of multilocus sequence typing clades but enrichment of ABC genotype C in Candida leukoplakia.

    PubMed

    Abdulrahim, Mohammed H; McManus, Brenda A; Flint, Stephen R; Coleman, David C

    2013-01-01

    Oral leukoplakias are histopathologically-diagnosed as Candida leukoplakia or non-Candida leukoplakia by the presence or absence of hyphae in the superficial epithelium. Candida leukoplakia lesions have significantly increased malignant potential. Candida albicans is the most prevalent fungal species associated with oral leukoplakia and may contribute to malignant transformation of Candida leukoplakia. To date, no detailed population analysis of C. albicans isolates from oral leukoplakia patients has been undertaken. This study investigated whether specific C. albicans genotypes were associated with Candida leukoplakia and non-Candida leukoplakia in a cohort of Irish patients. Patients with histopathologically-defined Candida leukoplakia (n = 31) or non-Candida leukoplakia (n = 47) were screened for Candida species by culture of oral rinse and lesional swab samples. Selected C. albicans isolates from Candida leukoplakia patients (n = 25), non-Candida leukoplakia patients (n = 19) and oral carriage isolates from age and sex matched healthy subjects without leukoplakia (n = 34) were subjected to multilocus sequence typing (MLST) and ABC genotyping. MLST revealed that the clade distribution of C. albicans from both Candida leukoplakia and non-Candida leukoplakia lesions overlapped with the corresponding clade distributions of oral carriage isolates and global reference isolates from the MLST database indicating no enrichment of leukoplakia-associated clones. Oral leukoplakia isolates were significantly enriched with ABC genotype C (12/44, 27.3%), particularly Candida leukoplakia isolates (9/25, 36%), relative to oral carriage isolates (3/34, 8.8%). Genotype C oral leukoplakia isolates were distributed in MLST clades 1,3,4,5,8,9 and 15, whereas genotype C oral carriage isolates were distributed in MLST clades 4 and 11.

  12. Overexpression and mutation as a genetic mechanism of fluconazole resistance in Candida albicans isolated from human immunodeficiency virus patients in Indonesia.

    PubMed

    Rosana, Yeva; Yasmon, Andi; Lestari, Delly Chipta

    2015-09-01

    Fluconazole is the standard treatment for oropharyngeal candidiasis, which is the third most common opportunistic infection in human immunodeficiency virus (HIV)/AIDS patients in Indonesia. Overuse of this drug could lead to the emergence of resistance. The objective of this study was to analyse the role of ERG11, CDR1, CDR2 and MDR1 gene overexpression and mutations in the ERG11 gene as a genetic mechanism of fluconazole resistance in Candida albicans isolated from HIV patients in Indonesia. Overexpression of ERG11, CDR1, CDR2 and MDR1 was analysed by real-time reverse transcription PCR, while ERG11 gene mutation analysis was performed using sequencing methods. Seventeen isolates out of 92 strains of C. albicans isolated from 108 HIV patients were found to be resistant to azole antifungals. The highest gene overexpression of ERG11 was found in C. albicans resistant to single fluconazole, while the highest gene overexpression of CDR2 was detected in all isolates of C. albicans resistant to multiple azoles. Amino acid substitutions were observed at six positions, i.e. D116E, D153E, I261V, E266D, V437I and V488I. The amino acid substitution I261V was identified in this study and was probably associated with fluconazole resistance. The combination of overexpression of CDR2 and ERG11 and mutation in the ERG11 gene was found to be a genetic mechanism of fluconazole resistance in C. albicans isolated from HIV patients in Indonesia.

  13. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species.

    PubMed

    Whibley, Natasha; Gaffen, Sarah L

    2015-11-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.

  14. Reliability of the agar based method to assess the production of degradative enzymes in clinical isolates of Candida albicans.

    PubMed

    Arantes, Paula Tamião; Sanitá, Paula Volpato; Santezi, Carolina; Barbeiro, Camila de Oliveira; Reina, Bárbara Donadon; Vergani, Carlos Eduardo; Dovigo, Lívia Nordi

    2016-03-01

    The aim of this study was to establish a reproducible protocol using the methodology of hyaline zones around the colonies on specific agar plates for phospholipase and proteinase production. This was an in vitro double-blind experiment, in which the dependent variables were the enzymatic activity measurements (Pz) for the production of phospholipase (Pz-ph) and the production of secreted aspartyl proteinases (Pz-sap). Three independent variables give rise to different measurement protocols. All measurements were carried out at two different moments by four examiners (E1, E2, E3, and E4). The minimum sample size was 30 Candida albicans clinical isolates. Specific agar plates for phospholipase and SAPs production were prepared according the literature. The intra-and inter-examiner reproducibility for each protocol was estimated using the Intraclass Correlation Coefficient (ICC) and its confidence interval (95% CI). Based on the results obtained for both phospholipase and SAPs, there appears to be no consensus on the protocol chosen for each particular examiner. Measuring the colonies in triplicate may be the main factor associated with the increase in measurement accuracy and should therefore take precedence over measuring only one colony. When only one examiner is responsible for taking measurements, a standard protocol should be put in place and the statistical calibration of this researcher should be done prior to data collection. However, if two or more researchers are involved in the assessment of agar plates, our results suggest that the protocols using software to undertake plate reading is preferred.

  15. Evaluation of Bichro-Dubli Fumouze to distinguish Candida dubliniensis from Candida albicans.

    PubMed

    Sahand, Ismail H; Moragues, María D; Robert, Raymond; Quindós, Guillermo; Pontón, José

    2006-06-01

    We have evaluated the ability of the Bichro-Dubli Fumouze (Fumouze Diagnostics, Levallois-Perret, France) latex agglutination test to identify colonies of Candida dubliniensis grown on different media. The test was positive for 103 of 106 isolates of C. dubliniensis and negative for Candida albicans and other Candida species studied. The sensitivity and specificity of the test were 97.1% and 100%, respectively. The test is very rapid, simple, and reliable giving the same results independently of whether the colonies are grown previously on Sabouraud dextrose agar, CHROMagar Candida medium, Candida ID2 medium, or CHROMagar-Pal's medium.

  16. Evaluation of Candida Colonization and Specific Humoral Responses against Candida albicans in Patients with Atopic Dermatitis

    PubMed Central

    Javad, Ghaffari; Taheri Sarvtin, Mehdi; Hedayati, Mohammad Taghi; Hajheydari, Zohreh; Yazdani, Jamshid; Shokohi, Tahereh

    2015-01-01

    The aim of this study was to assess the candidal colonization and specific humoral responses against Candida albicans in patients with atopic dermatitis. One hundred patients with atopic dermatitis and 50 healthy individuals were enrolled in the study. Skin and oral specimens from all participants were cultured on CHROMagar Candida medium. Isolated yeasts were identified by using the sequence of the D1/D2 domain of the 26S rRNA gene. ELISA was used for detection of IgM, IgA, and IgG antibodies against C. albicans in sera of participants. Candida species were isolated from the skin and oral cavity of 31% of the patients and 12% of the controls. There was no significant difference between Candida colonization in patients and controls (P>0.05). Candida albicans was isolated from the skin and oral cavity of 23% of the patients and 6% of the controls (P< 0.05). There were no significant differences between serum levels of IgM and IgA in patients and controls (P>0.05). Serum level of IgG was significantly lower in patients than in controls (P<0.05). Type of Candida colonization can change in patients with atopic dermatitis. In addition, these patients have abnormalities in the production of antibodies against Candida albicans that may have a role in the pathogenesis of atopic dermatitis. PMID:25945349

  17. Comparison of four molecular typing methods for evaluating genetic diversity among Candida albicans isolates from human immunodeficiency virus-positive patients with oral candidiasis.

    PubMed Central

    Díaz-Guerra, T M; Martínez-Suárez, J V; Laguna, F; Rodríguez-Tudela, J L

    1997-01-01

    Candida albicans strain delineation by karyotyping. NotI restriction pattern analysis, hybridization with specific probe 27A, and PCR fingerprinting with the phage M13 core sequence were performed with 30 isolates from the oral cavities of 30 human immunodeficiency virus (HIV)-infected patients and 8 reference strains. Within the panel of clinical isolates, 20 were geographically related, although 10 isolates were susceptible to fluconazole and 10 isolates were resistant to fluconazole. The remaining isolates used in this study were fluconazole resistant and geographically unrelated. A composite DNA type was defined for each of the strains as the combination of types obtained by the four molecular methods. By this procedure, a great diversity of DNA types was found among isolates from the oropharynges of HIV-infected individuals with oral candidiasis. This diversity was not reduced when isolates were evaluated on the basis of whether they came from the same geographical locale and whether they were fluconazole resistant. These data refute the idea of a clonal origin for fluconazole-resistant strains among HIV-positive patients. Karyotyping was the least discriminatory method, yielding 19 DNA types among the 38 strains analyzed. Conversely, hybridization with the 27A probe showed a unique DNA pattern for each of the strains examined in this study. Our results demonstrate that at least two different molecular methods are needed for Candida albicans typing and that there is a great deal of strain variation within the species, irrespective of place of origin or antifungal resistance patterns. PMID:9157142

  18. Sensitization of Candida albicans to terbinafine by berberine and berberrubine

    PubMed Central

    LAM, PIKLING; KOK, STANTON HON LUNG; LEE, KENNETH KA HO; LAM, KIM HUNG; HAU, DESMOND KWOK PO; WONG, WAI YEUNG; BIAN, ZHAOXIANG; GAMBARI, ROBERTO; CHUI, CHUNG HIN

    2016-01-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50–70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency. PMID:27073630

  19. Candida albicans Isolates from the Gut of Critically Ill Patients Respond to Phosphate Limitation by Expressing Filaments and a Lethal Phenotype

    PubMed Central

    Valuckaite, Vesta; Rolfes, Ronda J.; Babrowski, Trissa; Bethel, Cindy; Olivas, Andrea; Zaborina, Olga; Alverdy, John C.

    2012-01-01

    Candida albicans is an opportunistic pathogen that proliferates in the intestinal tract of critically ill patients where it continues to be a major cause of infectious-related mortality. The precise cues that shift intestinal C. albicans from its ubiquitous indolent colonizing yeast form to an invasive and lethal filamentous form remain unknown. We have previously shown that severe phosphate depletion develops in the intestinal tract during extreme physiologic stress and plays a major role in shifting intestinal Pseudomonas aeruginosa to express a lethal phenotype via conserved phosphosensory-phosphoregulatory systems. Here we studied whether phosphate dependent virulence expression could be similarly demonstrated for C. albicans. C. albicans isolates from the stool of critically ill patients and laboratory prototype strains (SC5314, BWP17, SN152) were evaluated for morphotype transformation and lethality against C. elegans and mice during exposure to phosphate limitation. Isolates ICU1 and ICU12 were able to filament and kill C. elegans in a phosphate dependent manner. In a mouse model of intestinal phosphate depletion (30% hepatectomy), direct intestinal inoculation of C. albicans caused mortality that was prevented by oral phosphate supplementation. Prototype strains displayed limited responses to phosphate limitation; however, the pho4Δ mutant displayed extensive filamentation during low phosphate conditions compared to its isogenic parent strain SN152, suggesting that mutation in the transcriptional factor Pho4p may sensitize C. albicans to phosphate limitation. Extensive filamentation was also observed in strain ICU12 suggesting that this strain is also sensitized to phosphate limitation. Analysis of the sequence of PHO4 in strain ICU12, its transcriptional response to phosphate limitation, and phosphatase assays confirmed that ICU12 demonstrates a profound response to phosphate limitation. The emergence of strains of C. albicans with marked responsiveness

  20. Genetic-relatedness of peri-implants and buccal Candida albicans isolates determined by RAPD-PCR.

    PubMed

    Bertone, Adriana M; Rosa, Alcira C; Nastri, Natalia; Santillán, Hector D; Ariza, Yamila; Iovannitti, Cristina A; Jewtuchowicz, Virginia M

    2016-12-01

    Molecular techniques have been used in recent studies to identify a wide range of potential bacterial pathogens in periimplant pockets of the oral cavity. However, the prevalence and molecular epidemiology of yeasts and species distribution related to periimplantitis are as yet unknown. The aim of this study was to determine the prevalence and distribution of yeasts in periimplant biofilm and to study genetic relatedness of Candida albicans. Yeasts recovered from periimplant biofilm samples (n=89) and buccal samples (n=120) were studied in 40 immunocompetent nonsmoking patients who visited the dental clinic of the Asociación Implantodontológica Argentina, Buenos Aires, Argentina, and had received oral rehabilitation with implants for more than five years. Yeasts recovered from samples were studied by typing assays using RAPDPCR. The prevalence of yeasts in the periimplant sulcus was 73% (n=29). C. albicans was the most prevalent species identified in this study population. The RAPD analysis showed identical genotypes in most C. albicans spp. from the two different sampling sites: buccal and periimplant. These findings suggest that periimplant biofilm is an ecological niche that favors the growth of yeast species. Most C. albicans found in periimplant biofilm originate from the endogenous infection caused by commensal strains.

  1. Adaptive immune responses to Candida albicans infection

    PubMed Central

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections. PMID:25607781

  2. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis

    PubMed Central

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G.; Cormack, Brendan; Edgerton, Mira

    2016-01-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata. PMID:27029023

  3. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.

    PubMed

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G; Cormack, Brendan; Edgerton, Mira

    2016-03-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.

  4. Development of DNA probes for Candida albicans

    SciTech Connect

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  5. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    PubMed Central

    2011-01-01

    Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs. PMID

  6. Rapid characterisation of Candida albicans by pyrolysis mass spectrometry.

    PubMed

    White, G C; Sisson, P R; Freeman, R; Cookson, B D

    1994-08-01

    Clinical isolates (41) of Candida spp. from three possible outbreaks of nosocomially-acquired infection were compared by pyrolysis mass spectrometry (PMS) and by a combined morphotyping and resistotyping (M-R typing) method. Both systems characterised all the isolates and distinguished one isolate of C. tropicalis and another of C. glabrata from the 39 isolates of C. albicans. Results from both systems suggested that cross-infection with a single strain contributed to two of the outbreaks. In several instances, more than one strain of C. albicans was found amongst multiple isolates from the same patient. PMS is a simple, rapid and objective technique capable of characterising C. albicans isolates; discrimination was similar to M-R typing.

  7. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    SciTech Connect

    Gil, C.; Pomes, R.; Nombela, C. )

    1990-05-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.

  8. A Case Report of Penile Infection Caused by Fluconazole- and Terbinafine-Resistant Candida albicans.

    PubMed

    Hu, Yongxuan; Hu, Yanqing; Lu, Yan; Huang, Shiyun; Liu, Kangxing; Han, Xue; Mao, Zuhao; Wu, Zhong; Zhou, Xianyi

    2017-04-01

    Candida albicans is the most common pathogen that causes balanoposthitis. It often causes recurrence of symptoms probably due to its antifungal resistance. A significant number of balanitis Candida albicans isolates are resistant to azole and terbinafine antifungal agents in vitro. However, balanoposthitis caused by fluconazole- and terbinafine-resistant Candida albicans has rarely been reported. Here, we describe a case of a recurrent penile infection caused by fluconazole- and terbinafine-resistant Candida albicans, as well as the treatments administered to this patient. The isolate from the patient was tested for drug susceptibility in vitro. It was sensitive to itraconazole, voriconazole, clotrimazole and amphotericin B, but not to terbinafine and fluconazole. Thus, oral itraconazole was administrated to this patient with resistant Candida albicans penile infection. The symptoms were improved, and mycological examination result was negative. Follow-up treatment of this patient for 3 months showed no recurrence.

  9. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species.

    PubMed

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2013-01-01

    The ability to produce enzymes, such as hemolysins, is an important virulence factor for the genus Candida.The objective of this study was to compare the hemolytic activity between C. albicansand non-albicans Candida species. Fifty strains of Candida species, isolated from the oral cavity of patients infected with HIV were studied. The isolates included the following species: C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. norvegensis, C. lusitaniae, and C. guilliermondii. Hemolysin production was evaluated on Sabouraud dextrose agar containing chloramphenicol, blood, and glucose. A loop-full of pure Candidaculture was spot-inoculated onto plates and incubated at 37 ºC for 24 h in a 5% CO2 atmosphere. Hemolytic activity was defined as the formation of a translucent halo around the colonies. All C. albicansstrains that were studied produced hemolysins. Among the non-albicans Candidaspecies, 86% exhibited hemolytic activity. Only C. guilliermondiiand some C. parapsilosis isolates were negative for this enzyme. In conclusion, most non-albicans Candidaspecies had a similar ability to produce hemolysins when compared to C. albicans.

  10. Mucosal biofilms of Candida albicans.

    PubMed

    Ganguly, Shantanu; Mitchell, Aaron P

    2011-08-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties.

  11. Comparison of Antimicrobial Activity of Chlorhexidine, Coconut Oil, Probiotics, and Ketoconazole on Candida albicans Isolated in Children with Early Childhood Caries: An In Vitro Study

    PubMed Central

    Ahmed Bijapur, Gufran; Kottayi, Soni; Jose, Deepak

    2016-01-01

    Background. Early childhood caries (ECC) is associated with early colonisation and high levels of cariogenic microorganisms. With C. albicans being one of those, there is a need to determine the effectiveness of various chemotherapeutic agents against it. The study is aimed at isolating Candida species in children with ECC and at studying the antifungal effect of coconut oil, probiotics, Lactobacillus, and 0.2% chlorhexidine on C. albicans in comparison with ketoconazole. Materials and Methods. Samples were collected using sterile cotton swabs, swabbed on the tooth surfaces from children with ECC of 3 to 6 yrs and streaked on Sabouraud dextrose agar (HI Media) plates and incubated in a 5% CO2 enriched atmosphere at 37°C for 24 hours. Candida was isolated and its susceptibility to probiotics, chlorhexidine, ketoconazole, and coconut oil was determined using Disc Diffusion method. Results. The mean zone of inhibition for chlorhexidine was 21.8 mm, whereas for coconut oil it was 16.8 mm, for probiotics it was 13.5 mm, and for ketoconazole it was 22.3 mm. The difference between the groups was not statistically significant (Chi-square value 7.42, P value 0.06). Conclusion. Chlorhexidine and coconut oil have shown significant antifungal activity which is comparable with ketoconazole. PMID:27051559

  12. Comparison of Antimicrobial Activity of Chlorhexidine, Coconut Oil, Probiotics, and Ketoconazole on Candida albicans Isolated in Children with Early Childhood Caries: An In Vitro Study.

    PubMed

    Shino, Beena; Peedikayil, Faizal C; Jaiprakash, Shyamala R; Ahmed Bijapur, Gufran; Kottayi, Soni; Jose, Deepak

    2016-01-01

    Background. Early childhood caries (ECC) is associated with early colonisation and high levels of cariogenic microorganisms. With C. albicans being one of those, there is a need to determine the effectiveness of various chemotherapeutic agents against it. The study is aimed at isolating Candida species in children with ECC and at studying the antifungal effect of coconut oil, probiotics, Lactobacillus, and 0.2% chlorhexidine on C. albicans in comparison with ketoconazole. Materials and Methods. Samples were collected using sterile cotton swabs, swabbed on the tooth surfaces from children with ECC of 3 to 6 yrs and streaked on Sabouraud dextrose agar (HI Media) plates and incubated in a 5% CO2 enriched atmosphere at 37°C for 24 hours. Candida was isolated and its susceptibility to probiotics, chlorhexidine, ketoconazole, and coconut oil was determined using Disc Diffusion method. Results. The mean zone of inhibition for chlorhexidine was 21.8 mm, whereas for coconut oil it was 16.8 mm, for probiotics it was 13.5 mm, and for ketoconazole it was 22.3 mm. The difference between the groups was not statistically significant (Chi-square value 7.42, P value 0.06). Conclusion. Chlorhexidine and coconut oil have shown significant antifungal activity which is comparable with ketoconazole.

  13. Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans

    PubMed Central

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  14. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    PubMed

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine.

  15. Pathogenicity and virulence of Candida dubliniensis: comparison with C. albicans.

    PubMed

    Vilela, M M S; Kamei, K; Sano, A; Tanaka, R; Uno, J; Takahashi, I; Ito, J; Yarita, K; Miyaji, M

    2002-06-01

    Candida dubliniensis is a newly described fungus that is frequently isolated from the oral cavities of HIV-positive patients. Although extensive studies have been performed on the phylogeny of C. dubliniensis, little is known about the pathogenic ecology of this yeast. Here we examined aspects related to C. dubliniensis in comparison with those of C. albicans. When injected intravenously into mice, C. dubliniensis had a higher survival rate than C. albicans. Histopathological analysis disclosed that C. dubliniensis remained mostly in the yeast form in the infected organs, whereas C. albicans changed into the mycelial form. The host inflammatory reaction was aggressive with C. dubliniensis infection and mild with C. albicans infection. Co-culture of the yeasts with human polymorphonuclear leukocytes disclosed that C. dubliniensis is more vulnerable to the fungicidal activity of leukocytes than C. albicans. C. dubliniensis was also more susceptible to the toxic effect of hydrogen peroxide. When cultured in vitro, C. dubliniensis grew more slowly than C. albicans, but the formation of germ tubes was faster. When the fungi were cultured in RPMI 1640, a fetal bovine serum supplement suppressed the growth of C. dubliniensis but enhanced that of C. albicans. These results clearly indicated that C. dubliniensis is less virulence than C. albicans.

  16. Murine model of concurrent oral and vaginal Candida albicans colonisation.

    PubMed

    Rahman, Durdana; Mistry, Mukesh; Thavaraj, Selvam; Naglik, Julian R; Challacombe, Stephen J

    2012-01-01

    Investigations into the complex interaction between the fungal pathogen Candida albicans and its human host require the use of animals as in vivo models. A major advance is the creation of a low-oestrogen murine model of concurrent oral and vaginal C. albicans colonisation that resembles human candidal carriage at both mucosal sites. Weekly intramuscular (5 μg) and subcutaneous (5 μg) oestrogen administration was determined as optimal, enhancing oral colonisation but essential for vaginal colonisation. Using a clinical C. albicans oral isolate, persistent colonisation for up to 6 weeks can be achieved at both sites in two strains of mice (BALB/c and C57BL/6). This concurrent model of mucosal colonisation reduces the numbers of experimental mice by half, and opens up new avenues of research in assessing potential mucosal vaccine candidates and in studying delicate host-pathogen interactions during the most natural state of C. albicans epithelial colonisation.

  17. Molecular Epidemiology of Candida albicans and Its Closely Related Yeasts Candida dubliniensis and Candida africana▿

    PubMed Central

    Romeo, Orazio; Criseo, Giuseppe

    2009-01-01

    We performed a molecular study to determine the occurrence of Candida albicans, Candida africana, and Candida dubliniensis in different clinical samples. The study provides new insights into the epidemiology of candidiasis in hospitalized patients in three hospitals in southern Italy. It also reports the first detailed epidemiological data concerning the occurrence of C. africana in clinical samples. PMID:18987171

  18. Typing Candida albicans oral isolates from healthy brazilian schoolchildren using multilocus enzyme electrophoresis reveals two highly polymorphic taxa

    PubMed Central

    Boriollo, Marcelo Fabiano Gomes; Spolidorio, Denise Madalena Palomari; Barros, Letizia Monteiro; Bassi, Rodrigo Carlos; Garcia, José Antonio Dias; Costa, Ana Maria Duarte Dias; Rosa, Edvaldo Antonio Ribeiro; Höfling, José Francisco

    2011-01-01

    The genetic diversity of C. albicans oral isolates from 75 healthy schoolchildren from eight schools located in different geographic areas of Piracicaba city, São Paulo state, Brazil, was established using isoenzymes marker (Multilocus Enzyme Electrophoresis – MLEE) and cluster analysis. Patterns of monoclonal and polyclonal oral colonization by C. albicans within and between groups of schoolchildren were identified. However, significant divergence between the observed and the expected genotypic frequencies (Hardy-Weinberg equilibrium test) was not detected in the geographically adjacent groups, suggesting the hypothesis that populations of healthy schoolchildren do not correspond to the selection factor (differential survival) of strains. Two highly polymorphic and distantly genetically related taxa (A and B) were identified within the total population of yeasts, each contained subgroups (A1, A2, A3, A4, B1 and B2) and clusters of moderately related strains (from I to X), suggesting the existence of strains restricted or not to certain groups of geographically limited, healthy students. However, the coexistence of identical strains in healthy schoolchildren from the same school (geographically related) reinforces the hypothesis of oral transmission, where the sources of propagation could be explored. Furthermore, this could also be used in current and retrospective analyses of C. albicans isolated from immunocompetent and immunocompromised people, in order to detect commensal or potentially pathogenic yeast groups, predominantly in candidiasis, and in the development of strategies to prevent transmission or human propagation. PMID:24031720

  19. The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model.

    PubMed

    Bozó, Aliz; Domán, Marianna; Majoros, László; Kardos, Gábor; Varga, István; Kovács, Renátó

    2016-11-01

    Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.

  20. Candida albicans Biofilms and Human Disease

    PubMed Central

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  1. Characterization of Mucosal Candida albicans Biofilms

    PubMed Central

    Dongari-Bagtzoglou, Anna; Kashleva, Helena; Dwivedi, Prabhat; Diaz, Patricia; Vasilakos, John

    2009-01-01

    C. albicans triggers recurrent infections of the alimentary tract mucosa that result from biofilm growth. Although the ability of C. albicans to form a biofilm on abiotic surfaces has been well documented in recent years, no information exists on biofilms that form directly on mucosal surfaces. The objectives of this study were to characterize the structure and composition of Candida biofilms forming on the oral mucosa. We found that oral Candida biofilms consist of yeast, hyphae, and commensal bacteria, with keratin dispersed in the intercellular spaces. Neutrophils migrate through the oral mucosa and form nests within the biofilm mass. The cell wall polysaccharide β-glucan is exposed during mucosal biofilm growth and is more uniformly present on the surface of biofilm organisms invading the oral mucosa. We conclude that C. albicans forms complex mucosal biofilms consisting of both commensal bacterial flora and host components. These discoveries are important since they can prompt a shift of focus for current research in investigating the role of Candida-bacterial interactions in the pathogenesis of mucosal infections as well as the role of β-glucan mediated signaling in the host response. PMID:19956771

  2. Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures

    PubMed Central

    AL-Waili, Noori; Al-Ghamdi, Ahmad; Ansari, Mohammad Javed; Al-Attal, Y.; Salom, Khelod

    2012-01-01

    Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested. Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation. Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE. Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or

  3. Caspofungin-induced in-vitro post-antifungal effect and its impact on adhesion related traits of oral Candida dubliniensis and Candida albicans isolates.

    PubMed

    Ellepola, Arjuna Nishantha Bandara; Chandy, Rachel; Khan, Zia Uddin; Samaranayake, Lakshman Perera

    2016-03-01

    Adhesion to buccal epithelial cells (BEC) and denture acrylic surfaces (DAS), germ tube (GT) formation and cell surface hydrophobicity (CSH) are all virulence traits involved in the pathogenicity of Candida. Post-antifungal effect (PAFE) also have a bearing on pathogenicity and virulence of Candida. Candida dubliniensis is associated with oral and systemic candidosis, which can be managed with caspofungin. There is no published information on caspofungin-induced PAFE and its impact on adhesion traits of C. dubliniensis isolates. Thus, the purpose of this investigation was to determine the in vitro duration of PAFE on 20 C. dubliniensis isolates following transient exposure to caspofungin. Furthermore the impacts of caspofungin-induced PAFE on adhesion to BEC and DAS, GT formation and CSH of these isolates were also determined. After establishing the minimum inhibitory concentration (MIC) of caspofungin, C. dubliniensis isolates were exposed to sub-lethal concentrations (×3 MIC) of caspofungin for 1 hr. Thereafter the duration of PAFE, adhesion to BEC and DAS, GT formation and CSH were determined by previously described in-vitro assays. MIC (μg/mL) of C. dubliniensis isolates to caspofungin ranged from 0.004 to 0.19. Caspofungin-induced mean PAFE on C. dubliniensis isolates was 2.17 hr. Exposure to caspofungin suppressed the ability of C. dubliniensis isolates to adhere to BEC and DAS, form GT and CSH by 69.97%, 71.95%, 90.06% and 32.29% (P < 0.001 for all), respectively. Thus, transient exposure of C. dubliniensis isolates to caspofungin produces an antifungal effect not only by suppressing its growth but also by altering its adhesion traits.

  4. Adherence and receptor relationships of Candida albicans.

    PubMed Central

    Calderone, R A; Braun, P C

    1991-01-01

    The cell surface of Candida albicans is composed of a variety of polysaccharides such as glucan, chitin, and mannan. The first two components primarily provide structure, while the mannan, often covalently linked to protein, constitutes the major antigen of the organism. Mannoproteins also have enzymatic activity (acid protease) and ligand-receptor functions. The complement receptors of C. albicans appear to be mannoproteins that are required for the adherence of the organism to endothelial cells. This is certainly true of the CR3-like protein of C. albicans. Proof that the CR3 is the Candida receptor for endothelial cells is derived from two observations. First, mutants lacking CR3 activity are less adherent in vitro and, in fact, less virulent. Second, the ligand recognized by the CR3 receptor (C3bi) as well as anti-CR3 antibodies blocks adherence of the organism to endothelial cells. The CR2 of C. albicans appears to promote the adherence of the organism to plastic substrates. Unlike the CR2 of mammalian cells, the Candida CR2 recognizes ligands containing the RGD sequence of amino acids in addition to the C3d ligand, which does not contain the RGD sequence. There is uncertainty as to whether the Candida CR2 and CR3 are, in fact, different proteins. A mannoprotein has also been described as the adhesin for epithelial cells. In this case, the receptor has a lectinlike activity and recognizes fucose- or glucosamine-containing glycoproteins of epithelial cells, depending on the strain of C. albicans. The oligosaccharide component of the receptor is probably not involved in ligand recognition and may serve to stabilize the receptor. However, the oligosaccharide factor 6 epitope of mannan may also provide adhesin activity in the recognition of epithelial cells. Mannoproteins can be extracted from cells by a number of reagents. Zymolyase, for instance, tends to remove structural mannoproteins, which contain relatively little protein and are linked to glucan. Reagents

  5. Resveratrol lacks antifungal activity against Candida albicans.

    PubMed

    Collado-González, Mar; Guirao-Abad, José P; Sánchez-Fresneda, Ruth; Belchí-Navarro, Sarai; Argüelles, Juan-Carlos

    2012-06-01

    The putative candicidal activity of resveratrol is currently a matter of controversy. Here, the antifungal activity as well as the antioxidant response of resveratrol against Candida albicans, have been tested in a set of strains with a well-established genetic background At the doses usually employed in antifungal tests (10-40 μg/ml), resveratrol has no effect on the exponential growth of the C. albicans CAI.4 strain, a tenfold increase (400 μg/ml) was required in order to record a certain degree of cell killing, which was negligible in comparison with the strong antifungal effect caused by the addition of amphotericin B (5 μg/ml). An identical pattern was recorded in the prototrophic strains of C. albicans SC5314 and RM-100, whereas the oxidative sensitive trehalose-deficient mutant (tps1/tps1 strain) was totally refractory to the presence of resveratrol. In turn, the serum-induced yeast-to-hypha transition remained unaffected upon addition of different concentrations of resveratrol. Determination of endogenous trehalose and catalase activity, two antioxidant markers in C. albicans; revealed no significant changes in their basal contents induced by resveratrol. Collectively, our results seem to dismiss a main antifungal role as well as the therapeutic application of resveratrol against the infections caused by C. albicans.

  6. Activity of 2,4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi.

    PubMed

    Belghit, S; Driche, E H; Bijani, C; Zitouni, A; Sabaou, N; Badji, B; Mathieu, F

    2016-06-01

    In a search for new antifungal antibiotics active against Candida albicans and others pathogenic fungi, a strain of actinobacteria, designated G61, was isolated from a Saharan soil and tested for its activity against these microorganisms. The analysis of its 16S rDNA sequence showed a similarity level of 100% with Streptomyces mutabilis NBRC 12800(T). The highest anticandidal activities produced by the strain G61 were obtained on Bennett medium in the fourth day of incubation. The active product, extracted by n-butanol, contained one bioactive spot detected on thin layer chromatography plates. It was purified by HPLC and its chemical structure was determined by spectroscopic analyses as 2,4-Di-tert-butylphenol. The minimum inhibitory concentrations (MIC) of this product against several strains of pathogenic microorganisms are interesting.

  7. Effectiveness of magnetic fluid hyperthermia against Candida albicans cells.

    PubMed

    Chudzik, Barbara; Miaskowski, Arkadiusz; Surowiec, Zbigniew; Czernel, Grzegorz; Duluk, Tomasz; Marczuk, Andrzej; Gagoś, Mariusz

    2016-12-01

    Candida albicans is one of the most frequently isolated fungal pathogens causing opportunistic infections in humans. Targeted magnetic fluid hyperthermia (MFH) is a promising method in thermal therapy facilitating selective heating of pathogen cells like C. albicans. In the paper, we used meso-2,3-dimercaptosuccinic acid (DMSA)-coated magnetic nanoparticles (MNPs) and functionalised anti-C. albicans immunomagnetic nanoparticles (IMNPs) to investigate the potential of MFH in combating C. albicans cells in vitro. Using Mössbauer spectroscopy it was found that synthesised MNPs exhibited superparamagnetic phenomena. On the basis of calorimetric experiments, the maximum SAR (specific absorption rate) was found and a proper concentration of MNPs was established to control the temperature. MFH based on both DMSA-coated MNPs and functionalised anti-C. albicans IMNPs was more effective in combating C. albicans cells in vitro than thermostat hyperthermia. Especially promising results were obtained using functionalised IMNPs, which eradicated most of the pathogen colonies at the temperature of 43 °C.

  8. Epithelial Cell Innate Response to Candida albicans

    PubMed Central

    Naglik, J.R.; Moyes, D.

    2011-01-01

    With the advent of treatments and diseases such as AIDS resulting in increasing numbers of patients with suppressed immune systems, fungal diseases are an escalating problem. Candida albicans is the most common of these fungal pathogens, causing infections in many of these patients. It is therefore important to understand how immunity to this fungus is regulated and how it might be manipulated. Although work has been done to identify the receptors, fungal moieties, and responses involved in anti-Candida immunity, most studies have investigated interactions with myeloid or lymphoid cells. Given that the first site of contact of C. albicans with its host is the mucosal epithelial surface, recent studies have begun to focus on interactions of C. albicans with this site. The results are startling yet in retrospect obvious, indicating that epithelial cells play an important role in these interactions, initiating responses and even providing a level of protection. These findings have obvious implications, not just for fungal pathogens, but also for identifying how host organisms can distinguish between commensal and pathogenic microbes. This review highlights some of these recent findings and discusses their importance in the wider context of infection and immunity. PMID:21441481

  9. Ocimum sanctum essential oil inhibits virulence attributes in Candida albicans.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

    2014-03-15

    Candida albicans is an opportunistic human fungal pathogen which causes disease mainly in immunocompromised patients. Activity of hydrolytic enzymes is essential for virulence of C. albicans and so is the capacity of these cells to undergo transition from yeast to mycelial form of growth. Ocimum sanctum is cultivated worldwide for its essential oil which exhibits medicinal properties. This work evaluates the anti-virulence activity of O. sanctum essential oil (OSEO) on 22 strains of C. albicans (including a standard strain ATCC 90028) isolated from both HIV positive and HIV negative patients. Candida isolates were exposed to sub-MICs of OSEO. In vitro secretion of proteinases and phospholipases was evaluated by plate assay containing BSA and egg yolk respectively. Morphological transition from yeast to filamentous form was monitored microscopically in LSM. For genetic analysis, respective genes associated with morphological transition (HWP1), proteinase (SAP1) and phospholipase (PLB2) were also investigated by Real Time PCR (qRT-PCR). Results were analyzed using Student's t-test. OSEO inhibits morphological transition in C. albicans and had a significant inhibitory effect on extracellular secretion of proteinases and phospholipases. Expression profile of respective selected genes associated with C. albicans virulence by qRT-PCR showed a reduced expression of HWP1, SAP1 and PLB2 genes in cells treated with sub-inhibitory concentrations of OSEO. This work suggests that OSEO inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as down regulates the associated genes. Further studies will assess the clinical application of OSEO and its constituents in the treatment of fungal infections.

  10. Synthesis of melanin pigment by Candida albicans in vitro and during infection.

    PubMed

    Morris-Jones, Rachael; Gomez, Beatriz L; Diez, Soraya; Uran, Martha; Morris-Jones, Stephen D; Casadevall, Arturo; Nosanchuk, Joshua D; Hamilton, Andrew J

    2005-09-01

    Melanins are implicated in the pathogenesis of several important human diseases. This study confirmed the presence of melanin particles in Candida albicans in vitro and during infection. Dark particles were isolated from the digestion of C. albicans cultures and from infected tissue, as established by electron microscopy and immunofluorescence techniques.

  11. Synthesis of Melanin Pigment by Candida albicans In Vitro and during Infection

    PubMed Central

    Morris-Jones, Rachael; Gomez, Beatriz L.; Diez, Soraya; Uran, Martha; Morris-Jones, Stephen D.; Casadevall, Arturo; Nosanchuk, Joshua D.; Hamilton, Andrew J.

    2005-01-01

    Melanins are implicated in the pathogenesis of several important human diseases. This study confirmed the presence of melanin particles in Candida albicans in vitro and during infection. Dark particles were isolated from the digestion of C. albicans cultures and from infected tissue, as established by electron microscopy and immunofluorescence techniques. PMID:16113337

  12. Candida albicans in oral biofilms could prevent caries.

    PubMed

    Willems, Hubertine Marjoleine; Kos, Kevin; Jabra-Rizk, Mary Ann; Krom, Bastiaan P

    2016-07-01

    Streptococcus mutans is a Gram-positive bacterium involved in development to caries, the most common infectious disease of our time. Streptococcus mutans interacts with other microbes, like the fungus Candida albicans and both are commonly isolated from patients with caries. Since the role of C. albicans in caries remains unknown, our aim was to unravel this using an in vitro dual-species cariogenic oral biofilm model. Biofilms were grown for 24-72 h on glass cover slips or hydroxyapatite (HA) disks to mimic the surface of teeth. Medium pH, lactic acid production capacity and calcium release from HA disks were determined. All 24-h biofilms had external pH values below the critical pH of 5.5 where enamel dissolves. In contrast, 72-h dual-species biofilms had significantly higher pH (above the critical pH) and consequently decreased calcium release compared to single-species S. mutans biofilms. Counter intuitively, lactic acid production and growth of S. mutans were increased in 72-h dual-species biofilms. Candida albicans modulates the pH in dual-species biofilms to values above the critical pH where enamel dissolves. Our results suggest that C. albicans is not by definition a cariogenic microorganism; it could prevent caries by actively increasing pH preventing mineral loss.

  13. Effect of Tetrandrine against Candida albicans Biofilms

    PubMed Central

    Zhao, Lan-Xue; Li, De-Dong; Hu, Dan-Dan; Hu, Gan-Hai; Yan, Lan; Wang, Yan; Jiang, Yuan-Ying

    2013-01-01

    Candida albicans is the most common human fungal pathogen and has a high propensity to develop biofilms that are resistant to traditional antifungal agents. In this study, we investigated the effect of tetrandrine (TET) on growth, biofilm formation and yeast-to-hypha transition of C. albicans. We characterized the inhibitory effect of TET on hyphal growth and addressed its possible mechanism of action. Treatment of TET at a low concentration without affecting fungal growth inhibited hyphal growth in both liquid and solid Spider media. Real-time RT-PCR revealed that TET down-regulated the expression of hypha-specific genes ECE1, ALS3 and HWP1, and abrogated the induction of EFG1 and RAS1, regulators of hyphal growth. Addition of cAMP restored the normal phenotype of the SC5314 strain. These results indicate that TET may inhibit hyphal growth through the Ras1p-cAMP-PKA pathway. In vivo, at a range of concentrations from 4 mg/L to 32 mg/L, TET prolonged the survival of C. albicans-infected Caenorhabditis elegans significantly. This study provides useful information for the development of new strategies to reduce the incidence of C. albicans biofilm-associated infections. PMID:24260276

  14. Mucosal Immunity and Candida albicans Infection

    PubMed Central

    Moyes, David L.; Naglik, Julian R.

    2011-01-01

    Interactions between mucosal surfaces and microbial microbiota are key to host defense, health, and disease. These surfaces are exposed to high numbers of microbes and must be capable of distinguishing between those that are beneficial or avirulent and those that will invade and cause disease. Our understanding of the mechanisms involved in these discriminatory processes has recently begun to expand as new studies bring to light the importance of epithelial cells and novel immune cell subsets such as Th17 T cells in these processes. Elucidating how these mechanisms function will improve our understanding of many diverse diseases and improve our ability to treat patients suffering from these conditions. In our voyage to discover these mechanisms, mucosal interactions with opportunistic commensal organisms such as the fungus Candida albicans provide insights that are invaluable. Here, we review current knowledge of the interactions between C. albicans and epithelial surfaces and how this may shape our understanding of microbial-mucosal interactions. PMID:21776285

  15. Otite externe maligne à Candida Albicans

    PubMed Central

    Elayoubi, Fahd; Lachkar, Azeddine; Aabach, Ahmed; Chouai, Mohamed; Ghailan, Mohamed Rachid

    2016-01-01

    L’otite externe maligne est une ostéomyélite de la base du crane. Le Pseudomonas aeruginosa est le germe le plus incriminé. Cependant l’origine fongique n’est pas rare. Patiente âgée de 80 ans avait présenté une otalgie gauche persistante depuis deux mois malgré un traitement bien conduit. L’examen otologique mettait en évidence des signes inflammatoires au niveau du pavillon, une sténose du conduit avec des granulomes, et otorrhée d’allure purulente. Le scanner montrait un comblement otomastoïdien, un processus inflammatoire extensif des tissus pré et rétro-auriculaire et une lyse du tympanal. Vu l’absence d’amélioration un examen mycologique a été réalisé et qui a révélé la présence de Candida Albicans. Les cas d’otite externe maligne à Candida Albicans sont rarement rapportés. L’origine fongique doit être suspecté devant la négativité des prélèvements bactériologiques et la non amélioration malgré un traitement antibiotique bien conduit, et confirmée par des prélèvements mycologiques parfois multiples. L’otite externe maligne à Candida Albicans est une infection rare potentiellement mortelle. PMID:28154677

  16. Melittin induces apoptotic features in Candida albicans

    SciTech Connect

    Park, Cana; Lee, Dong Gun

    2010-03-26

    Melittin is a well-known antimicrobial peptide with membrane-active mechanisms. In this study, it was found that Melittin exerted its antifungal effect via apoptosis. Candida albicans exposed to Melittin showed the increased reactive oxygen species (ROS) production, measured by DHR-123 staining. Fluorescence microscopy staining with FITC-annexin V, TUNEL and DAPI further confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, and DNA and nuclear fragmentation. The current study suggests that Melittin possesses an antifungal effect with another mechanism promoting apoptosis.

  17. Electron Microscopy of Young Candida albicans Chlamydospores

    PubMed Central

    Miller, Sara E.; Spurlock, Ben O.; Michaels, G. E.

    1974-01-01

    One- to three-day-old cultures of Candida albicans bearing chlamydospores were grown and harvested by a special technique, free of agar, and prepared for ultramicrotomy and electron microscopy. These young chlamydospores exhibited a subcellular structure similar to that of the yeast phase, e.g., cytoplasmic membrane, ribosomes, and mitochondria. Other structural characteristics unique to chlamydospores were a very thick, layered cell wall, the outer layer of which was continuous with the outer layer of the suspensor cell wall and was covered by hair-like projections; membrane bound organelles; and large lipoid inclusions. Only young chlamydospores less than 3 to 4 days old exhibited these ultrastructural characteristics. Images PMID:4368664

  18. Lipidomics and in Vitro Azole Resistance in Candida albicans

    PubMed Central

    Singh, Ashutosh; Mahto, Kaushal Kumar

    2013-01-01

    Abstract We have shown earlier that fluconazole (FLC) stress induces global changes in the lipidome of Candida albicans in clinically adapted isolates. However, several laboratories have developed adapted in vitro FLC resistant strains of C. albicans to study azole resistance mechanisms. This study aimed to identify the lipid changes associated with FLC resistance in these in vitro adapted isolates. Using comparative lipidomics and principal component and discriminant analyses, we observed gradual changes in several lipid classes and molecular species upon FLC exposure of in vitro resistant C. albicans strains. Although the lipid imprint of FLC in vitro resistant isolates was very distinct from that of clinical isolates of C. albicans, the overall changes in lipid class compositions were similar in both cases. For example, an increased sterol content and depleted sphingolipid levels were the salient features of FLC resistance in both conditions. Taken together, it appears that the overall cellular lipid homeostasis is a critical factor in the observed FLC resistance and in handling FLC stress in both clinical and laboratory situations. The new observations reported herein have implications for more efficacious antifungal drug development as well as understanding host–infectious agent interactions in postgenomics microbiology practice. PMID:23374108

  19. Phospholipase and proteinase activities of Candida isolates from denture wearers.

    PubMed

    Marcos-Arias, Cristina; Eraso, Elena; Madariaga, Lucila; Aguirre, Jose Manuel; Quindós, Guillermo

    2011-07-01

    The aim of the present study was to characterise phospholipase and proteinase activities of oral Candida isolates from 100 denture wearers and to study the relationship of these activities with denture stomatitis. Of 100 patients studied, 44 suffered from denture stomatitis. Specimens were collected by swabbing the denture and underlying mucosa. Isolates were previously identified by conventional mycological and genotypic methods. The phospholipase and proteinase activities were evaluated by agar plate methods. A total of 152 isolates were recovered from denture and underlying mucosa, including 101 Candida albicans, 18 Candida tropicalis, 14 Candida glabrata, 11 Candida guilliermondii, four Candida parapsilosis, two Saccharomyces cerevisiae and one isolate each of Candida dubliniensis and Candida krusei. Most C. albicans (97%) showed phospholipase activity; furthermore, the unique C. dubliniensis isolate showed a moderate phospholipase activity. The isolation of C. albicans (chi-square test, P = 0.0016) and phospholipase production by Candida spp. (chi-square test, P = 0.0213) was found to be significantly associated with denture stomatitis. Proteinase production was observed in <30% of isolates, and it was not related to the presence of denture stomatitis (P = 0.7675). Candida albicans isolates may produce both virulence factors, although the proteinase production was only observed in <30% of the isolates. Phospholipase production was exclusive of C. albicans and C. dubliniensis.

  20. Differentiation of Candida dubliniensis from Candida albicans on rosemary extract agar and oregano extract agar.

    PubMed

    de Loreto, Erico Silva; Pozzatti, Patrícia; Alves Scheid, Liliane; Santurio, Deise; Morais Santurio, Janio; Alves, Sydney Hartz

    2008-01-01

    Candida dubliniensis is a recently described pathogenic species which shares many phenotypic features with Candida albicans and therefore, may be misidentified in microbiological laboratories. Because molecular methods can be onerous and unfeasible in routine mycological laboratories with restricted budgets such as those in developing countries, phenotypic techniques have been encouraged in the development of differential media for the presumptive identification of these species. We examined the colony morphology and chlamydospore production of 30 C. dubliniensis isolates and 100 C. albicans isolates on two new proposed media: rosemary (Rosmarinus officinalis) extract agar (REA) and oregano (Origanum vulgare) extract agar (OEA). These substrates are traditionally used as spices and medicinal herbs. In both of these media, all C. dubliniensis isolates (100%) showed rough colonies with peripheral hyphal fringes and abundant chlamydospores after 24 to 48 hr of incubation at 25 degrees C. In contrast, under the same conditions, all isolates of C. albicans (100%) showed smooth colonies without hyphal fringes or chlamydospores. In conclusion, REA and OEA offer a simple, rapid, and inexpensive screening media for the differentiation of C. albicans and C. dubliniensis.

  1. Inhibition of Candida albicans by methanethiol produced by Brevibacterium linens.

    PubMed

    Lewis, B A

    1985-10-01

    Brevibacterium linens was screened for antifungal activity against Candida albicans using several antibiotic assay methods. The growth of C. albicans was inhibited only when the dual culture assay method was employed and using methionine-supplemented media. Results suggest that methanethiol which is produced by B. linens' utilization of methionine is the agent inhibitory to C. albicans' growth.

  2. Comparison of the in vitro activity of echinocandins against Candida albicans, Candida dubliniensis, and Candida africana by time-kill curves.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Cantón, Emilia; Eraso, Elena; Quindós, Guillermo

    2015-05-01

    Candida albicans remains the most common fungal pathogen. This species is closely related to 2 phenotypically similar cryptic species, Candida dubliniensis and Candida africana. This study aims to compare the antifungal activities of echinocandins against 7 C. albicans, 5 C. dubliniensis, and 2 C. africana strains by time-kill methodology. MIC values were similar for the 3 species; however, differences in killing activity were observed among species, isolates, and echinocandins. Echinocandins produced weak killing activity against the 3 species. In all drugs, the fungicidal endpoint (99.9% mortality) was reached at ≤31 h with ≥0.5 μg/mL for anidulafungin in 4 C. albicans and 1 C. dubliniensis, for caspofungin in 1 C. albicans and 2 C. dubliniensis, and for micafungin in 4 C. albicans and 1 C. dubliniensis. None of echinocandins showed lethality against C. africana. Identification of these new cryptic species and time-kill studies would be recommendable when echinocandin treatment fails.

  3. Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaoundé (Cameroon) HIV-infected patients.

    PubMed

    Ngouana, Thierry K; Krasteva, Donika; Drakulovski, Pascal; Toghueo, Rufin K; Kouanfack, Charles; Ambe, Akaba; Reynes, Jacques; Delaporte, Eric; Boyom, Fabrice F; Mallié, Michèle; Bertout, Sébastien

    2015-01-01

    Minor species of the Candida albicans complex may cause overestimation of the epidemiology of C. albicans, and misidentifications could mask their implication in human pathology. Authors determined the occurrence of minor species of the C. albicans complex (C. africana, C. dubliniensis and C. stellatoidea) among Yaoundé HIV-infected patients, Cameroon. Stool, vaginal discharge, urine and oropharyngeal samples were analysed by mycological diagnosis. Isolates were identified by conventional methods and mass spectrometry (MS; carried out by the matrix-assisted laser desorption-ionisation time-of-flight MS protocol). Candida albicans isolates were thereafter submitted to the PCR amplification of the Hwp1 gene. The susceptibility of isolates to antifungal drugs was tested using the Clinical and Laboratory Standards Institute M27-A3 protocol. From 115 C. albicans obtained isolates, neither C. dubliniensis nor C. stellatoidea was observed; two strains of C. africana (422PV and 448PV) were identified by PCR electrophoretic profiles at 700 bp. These two C. africana strains were vaginal isolates. The isolate 448PV was resistant to ketoconazole at the minimal inhibitory concentration of 2 μg ml(-1), and showed reduced susceptibility to amphotericin B at 1 μg ml(-1). This first report on C. africana occurrence in Cameroon brings clues for the understanding of the global epidemiology of this yeast as well as that of minor species of the C. albicans complex.

  4. Molecular cloning and characterization of the Candida albicans enolase gene.

    PubMed Central

    Mason, A B; Buckley, H R; Gorman, J A

    1993-01-01

    A DNA clone containing the putative Candida albicans enolase gene (ENO1) was isolated from a genomic DNA library. The sequenced insert contained a continuous open reading frame of 1,320 bp. The predicted 440-amino-acid protein is 78 and 76% identical, respectively, to Saccharomyces cerevisiae enolase proteins 1 and 2. Only one enolase gene could be detected in C. albicans genomic DNA by Southern analysis with a homologous probe. Northern (RNA) analysis detected a single, abundant C. albicans ENO1 transcript of approximately 1,600 nucleotides. When cells were grown on glucose, levels of ENO1 mRNA were markedly increased by comparison with ENO1 mRNA levels in cells grown on ethanol, a gluconeogenic carbon source. In contrast to this glucose-mediated transcriptional induction, the carbon source had no dramatic effect on the levels of enolase protein or enzyme activity in the C. albicans strains tested. These results suggest that posttranscriptional mechanisms are responsible for modulating expression of the C. albicans enolase gene. Images PMID:8478328

  5. Discrimination between Candida albicans and Other Pathogenic Species of the Genus Candida by Their Differential Sensitivities to Toxins of a Panel of Killer Yeasts

    PubMed Central

    Buzzini, P.; Martini, A.

    2001-01-01

    The differential sensitivities to toxins produced by a short panel of four killer yeasts allowed discrimination between 91 strains of the yeast Candida albicans and 223 non-C. albicans Candida strains. One hundred percent of C. albicans isolates exhibited negative results to the toxin panel, while 100% of non-C. albicans cultures gave well-defined and reproducible positive results to at least one of the four killer toxins. Among C. albicans strains only 96 and 87% gave germ tube (GT)- and chlamydospore-positive results, respectively. In addition a few GT-false-positive strains were detected among non-C. albicans isolates. Susceptibility to the toxin panel is apparently expressed more consistently than either GT or chlamydospore production and may constitute a promising basis for a new simple and easy-to-use procedure for routine discrimination between the species C. albicans and other species of the genus Candida. PMID:11526179

  6. Polyketide Glycosides from Bionectria ochroleuca Inhibit Candida albicans Biofilm Formation

    PubMed Central

    2015-01-01

    One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens’ susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C–F (1–4)] and three new [bionectriols B–D (5–7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites. PMID:25302529

  7. In vitro efficacy of liposomal amphotericin B, micafungin and fluconazole against non-albicans Candida species biofilms.

    PubMed

    Kawai, Akira; Yamagishi, Yuka; Mikamo, Hiroshige

    2015-09-01

    Non-albicans Candida species are being isolated with increasing frequency. In this study, biofilm formation by Candida tropicalis, Candida parapsilosis and Candida glabrata was evaluated and the activities of liposomal amphotericin B (LAB), micafungin (MFG) and fluconazole (FLC) against these biofilms were assessed using a clinically relevant in vitro model system. LAB exhibited strong activities against the three non-albicans Candida species and showed dose-dependent efficacy. MFG displayed a paradoxical growth effect against the C. tropicalis biofilm. FLC was ineffective for non-albicans biofilms. This study shows that Candida biofilms have unique susceptibility to LAB. The dose-dependent effects of LAB indicate that this drug may be a useful treatment for biofilm formation by non-albicans Candida species in cases in which the catheter cannot be removed for clinical reasons.

  8. Looking into Candida albicans infection, host response, and antifungal strategies

    PubMed Central

    Wang, Yan

    2015-01-01

    Candida albicans, a commonly encountered fungal pathogen, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders. Among the virulence traits of C. albicans, yeast-to-hypha transition is most widely acknowledged. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs), and defence against C. albicans infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system. PMID:25590793

  9. Looking into Candida albicans infection, host response, and antifungal strategies.

    PubMed

    Wang, Yan

    2015-01-01

    Candida albicans, a commonly encountered fungal pathogen, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders. Among the virulence traits of C. albicans, yeast-to-hypha transition is most widely acknowledged. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs), and defence against C. albicans infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system.

  10. Direct electrochemical determination of Candida albicans activity.

    PubMed

    Hassan, Rabeay Y A; Bilitewski, Ursula

    2013-11-15

    Despite advances made in the field, rapid detection methods for the human pathogen Candida albicans are still missing. In this regard, bio-electrochemical systems including electrochemical sensors and biosensors satisfy the increasing demand for rapid, reliable, and direct microbial analyses. In this study, the bioelectrochemical characteristics of C. albicans were investigated for use in an analytical system that determines the viability of the organisms. The electrochemical responses of viable and non-viable cells of C. albicans and Saccharomyces cerevisiae were monitored. Cyclic voltammograms (CV) showed an irreversible oxidation peak at about 750 mV that accounts for viable cells. The peak current increased at viable cell numbers ranging from 3 × 10(5) to 1.6 × 10(7)cells/ml, indicating that the amount of viable cells can be accurately quantified. To elucidate the underlying electron transfer processes, the influence of electron transfer chain (ETC) - inhibitors on the electrochemical behavior of the two organisms were investigated. Inhibition of the function of classical respiratory chain (CRC) led to a decrease in the electrochemical response, whereas the oxidation current increased when the alternative oxidase (AOX) pathway was blocked by salicylhydroxamic acid (SHA). Blocking the AOX pathway improved the electrochemical performance, suggesting an involvement in the CRC, with cytochrome c oxidase (COX) as a relevant protein complex. Mutants, in which components of COX were deleted, showed a lower electro-activity than the wild-type strain. Particularly, deletion of subunit COX5a almost completely abolished the electrochemical signal. We believe that this work can be utilized for the development of early detection assays and opens the door for new technological developments in the field of C. albicans.

  11. Candidal urinary tract infections caused by non-albicans Candida species.

    PubMed

    Dorko, E; Pilipcinec, E; Tkáciková, L

    2002-01-01

    The incidence of non-albicans Candida and non-Candida species isolated from the urine of patients admitted to various departments of the Faculty Hospital of the Medical Faculty of Safárik University in Kosice was examined. From a total of 94 samples of analyzed urine 58 strains of C. albicans and 36 strains of yeasts belonging to 6 species of non-albicans Candida and non-Candida spp. were detected: C. parapsilosis (n = 23), C. tropicalis (6), C. krusei (3), C. robusta (2), C. catenulata (1) and Cryptococcus neoformans (1). In relation to the diagnosis, the yeasts were isolated from patients suffering from a kidneys disease, epididymitis, diabetes, neoplastic diseases, urogenital anomalies, obstructive uropathy, cystitis, prostatitis, hemolytic-uremic syndrome, and others.

  12. Rapid flow cytometric susceptibility testing of Candida albicans.

    PubMed Central

    Ramani, R; Ramani, A; Wong, S J

    1997-01-01

    A rapid flow cytometric assay for in vitro antifungal drug susceptibility testing was developed by adapting the proposed reference method for broth macrodilution testing of yeasts. Membrane permeability changes caused by the antifungal agent were measured by flow cytometry using propidium iodide, a nucleic acid-binding fluorochrome largely excluded by the intact cell membrane. We determined the in vitro susceptibility of 31 Candida albicans isolates and two quality control strains (Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258) to amphotericin B and fluconazole. Amphotericin B MICs ranged from 0.03 to 2.0 microg/ml, while fluconazole MICs ranged from 0.125 to 128 microg/ml. This method results in clear-cut endpoints that were reproducible. Four-hour incubation was required for fluconazole, whereas a 2-h incubation was sufficient for amphotericin B to provide MICs comparable to the reference macrodilution method developed by the National Committee for Clinical Laboratory Standards Subcommittee on Antifungal Susceptibility Tests. Results of these studies show that flow cytometry provides a rapid and sensitive in vitro method for antifungal susceptibility testing of C. albicans. PMID:9276410

  13. Genetic and phenotypic intra-species variation in Candida albicans.

    PubMed

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity.

  14. Genetic and phenotypic intra-species variation in Candida albicans

    PubMed Central

    Hirakawa, Matthew P.; Martinez, Diego A.; Sakthikumar, Sharadha; Anderson, Matthew Z.; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M.; Greenberg, Joshua M.; Berman, Judith

    2015-01-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. PMID:25504520

  15. Comparison of the clinical risk factors between Candida albicans and Candida non-albicans species for bloodstream infection.

    PubMed

    Shigemura, Katsumi; Osawa, Kayo; Jikimoto, Takumi; Yoshida, Hiroyuki; Hayama, Brian; Ohji, Goh; Iwata, Kentaro; Fujisawa, Masato; Arakawa, Soichi

    2014-04-01

    The purpose of this study is to investigate the risk factors and susceptibilities to antifungal agents of Candida albicans and Candida non-albicans species (spp.) in candidemia cases in Kobe University Hospital. We investigated all consecutive patients with candida bloodstream infection (BSI) from 2008-2013 for whose full data were available for analyses, examining clinical factors such as gender, general complications, postoperative status or susceptibilities to antifungal agents. These factors were also compared between Candida albicans spp. and Candida non-albicans by univariate and multivariate analyses. Univariate analyses showed a significantly higher rate of Candida non-albicans species BSI patients cancer (odds ratio (OR) (95% confidence interval (CI))=2.29 (1.04-5.06) and P=0.040), chemotherapy (OR=4.35 (1.11-17.1) and P=0.035), fluconazole (FLCZ) resistance (OR=77.3 (4.51-1324) and P=0.003), and itraconazole (ITCZ) resistance (OR=15.6 (5.39-45.1) and P<0.001) and lower rate of underlying cardiovascular diseases (OR=0.27 (0.09-0.80) and P=0.018) and postoperative status (OR=0.35 (0.16-0.77) and P=0.035) in than Candida albicans. Multivariate analyses demonstrated that Candida non-albicans spp. had significantly higher rate of chemotherapy (OR=4.44 (1.04-19.0) and P=0.045), FLCZ resistance (OR=5.87 (2.01-17.1) and P=0.001), and ITCZ resistance (OR=18.7(5.77-60.4) and P<0.001) and lower rate of underlying cardiovascular diseases (OR=0.25 (0.08-0.82) and P=0.022) than Candida albicans. In conclusion, this study revealed several risk factors for BSI with Candida albicans (underlying cardiovascular diseases and postoperative status) and Candida non-albicans spp. (cancer and chemotherapy), and demonstrated that Candida non-albicans spp. were more resistant to FLCZ and ITCZ than Candida albicans.

  16. Acid production by oral strains of Candida albicans and lactobacilli.

    PubMed

    Klinke, T; Kneist, S; de Soet, J J; Kuhlisch, E; Mauersberger, S; Forster, A; Klimm, W

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed, pure resting-cell suspensions were obtained by culturing a total of 28 oral isolates comprising the species C. albicans, Lactobacillus rhamnosus, Lactobacillus paracasei paracasei, Lactobacillus paracasei tolerans and Lactobacillus delbrueckii lactis. Acid production from glucose was determined at a constant pH of 7.0, 5.5, 5.0 and 4.0 by repeated titrations with NaOH in an automated pH-stat system. Acid formation rates of yeast and lactobacilli proved to be similar at both neutral and low pH, while in a moderately acidic environment C. albicans produced less acid than the lactobacilli. Ion chromatographic analysis of the cell-free medium after titration revealed pyruvate to be the predominant organic acid anion secreted by C. albicans. The proportion of organic acids to overall acid production by the yeast was below 10% at neutral conditions, in contrast to 42-66% at pH 4.0. Compared to lactobacilli, yeast required a concentration of glucose that was about 50 times higher to allow acid production at half the maximum speed. Considering the clinical data in the literature about the frequency and proportions of microorganisms present in early childhood caries lesions, the contribution of oral lactobacilli as well as C. albicans to overall microbial acid formation appears to be important.

  17. Budding off: bringing functional genomics to Candida albicans.

    PubMed

    Anderson, Matthew Z; Bennett, Richard J

    2016-03-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.

  18. Influence of Bacterial Presence on Biofilm Formation of Candida albicans

    PubMed Central

    Park, Su Jung; Han, Kyoung-Hee; Park, Joo Young; Choi, Sun Ju

    2014-01-01

    Purpose Candida albicans is an opportunistic pathogen that is commonly found in human microflora. Biofilm formation (BF) is known as a major virulence factor of C. albicans. The aim of this study was to examine the influence of bacterial presence on biofilm formation of C. albicans. Materials and Methods The BF of Candida was investigated when it was co-cultured with C. albicans (C. albicans 53, a yeast with a low BF ability, and C. albicans 163, a yeast with high BF ability) and bacteria. BF was assessed with XTT reduction assay. A scanning electron microscope was used to determine the structure of the biofilm, and real-time reverse transcriptase polymerase chain reaction was used to amplify and quantify hyphae-associated genes. Results Co-culturing with two different types of bacteria increased the BF value. Co-culturing with C. albicans 53 and 163 also increased the BF value compared to the value that was obtained when the C. albicans was cultured individually. However, co-culturing with bacteria decreased the BF value of C. albicans, and the BF of C. albicans 163 was markedly inhibited. The expression of adherence and morphology transition related genes were significantly inhibited by co-culturing with live bacteria. Conclusion Bacteria have a negative effect on the formation of biofilm by C. albicans. This mechanism is the result of the suppression of genes associated with the hyphae transition of C. albicans, and bacteria particles physically affected the biofilm architecture and biofilm formation. PMID:24532517

  19. Effect of Low-Level Laser therapy on the fungal proliferation of Candida albicans

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Araújo, Natália C.; Menezes, Rebeca F. d.; Moreno, Lara M.; Santos-Neto, Alexandrino d. P.; Gerbi, Marleny Elizabeth M.

    2016-03-01

    Candida albicans plays an important role in triggering infections in HIV+ patients. The indiscriminate use of antifungals has led to resistance to Candida albicans, which requires new treatment alternatives for oral candidiasis. Low-level laser therapy promotes a considerable improvement in the healing of wounds and in curing illnesses caused by microorganisms. The aim of the present study was to assess the effect of laser radiation on the cell proliferation of Candida albicans in immunosuppressed patients. Six Candida albicans strains that had been isolated from immunosuppressed patients were divided into a control group and experimental groups, which received eight sessions of laser therapy (InGaAlP, λ685nm, P = 30mW, CW, Φ~6 mm and GaAlAs, λ830nm, P = 40mW, CW, Φ~6 mm) using dosimetries of 6J/cm2, 8J/cm2, 10J/cm2 and 12J/cm2 for each wavelength and power. The results were not statistically significant (Kruskal Wallis, p > 0.05), although the proliferation of Candida albicans was lower in some of the experimental groups. The dosimetry of 6J/cm2 (GaAlAs, λ830nm, P = 40mW) provided lower mean scores than the other groups for the growth of Candida. Further studies are required to confirm whetehr laser therapy is a viable option in the treatment of fungal infections.

  20. Postantifungal effect of caspofungin against the Candida albicans and Candida parapsilosis clades.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2016-10-01

    Killing and postantifungal effects could be relevant for the selection of optimal dosing schedules. This study aims to compare time-kill and postantifungal effects with caspofungin on Candida albicans (C. albicans, Candida dubliniensis, Candida africana) and Candida parapsilosis (C. parapsilosis, Candida metapsilosis, Candida orthopsilosis) clades. In the postantifungal effect experiments, strains were exposed to caspofungin for 1 h at concentrations 0.12-8 μg/mL. Time-kill experiments were conducted at the same concentrations. Caspofungin exhibited a significant and prolonged postantifungal effect (>37 h) with 2 μg/mL against the most strains of C. albicans clade. Against the C. parapsilosis clade, the postantifungal effect was <12 h at 8 μg/mL, except for two strains. Caspofungin was fungicidal against C. albicans, C. dubliniensis and C. metapsilosis.

  1. Distribution of Candida albicans genotypes among family members

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Stevens, D. A.; Mishra, S. K.; Feroze, F.; Pierson, D. L.

    1999-01-01

    Thirty-three families (71 subjects) were screened for the presence of Candida albicans in mouthwash or stool specimens; 12 families (28 subjects) were culture-positive for this yeast. An enrichment procedure provided a twofold increase in the recovery of C. albicans from mouthwash specimens. Nine of the twelve culture-positive families had two positive members each, two families had three positive members each, and one family had four positive members. Genetic profiles were obtained by three methods: pulsed-field gel electrophoresis; restriction endonuclease analysis, and random amplification of polymorphic DNA analysis. DNA fingerprinting of C. albicans isolated from one body site three consecutive times revealed that each of the 12 families carried a distinct genotype. No two families shared the same strain, and two or more members of a family commonly shared the same strain. Intrafamily genotypic identity (i.e., each member within the family harbored the same strain) was demonstrated in six families. Genotypes of isolates from husband and wife differed from one another in five families. All three methods were satisfactory in determining genotypes; however, we concluded that restriction endonuclease analysis provided adequate resolving power.

  2. [High molecular weight chitosan and sodium alginate effect on secretory acid proteinase of Candida albicans].

    PubMed

    Calamari, Silvia; Bojanich, Alejandra; Barembaum, Silvina; Azcurra, Ana; Virga, Carolina; Dorronsoro, Susana

    2004-12-01

    The effect of high molecular weight chitosan (HMWCh) and sodium alginate (NaAL) on acid proteinase secretion of Candida albicans (one of culture collection and five isolates) was evaluated. The secretion of acid proteinase was induced in the presence and the absence of these polymers in different concentrations and their enzymatic activity was determined. HMWCh and NaAL significantly diminished the enzymatic activity (>76% for the collection strains and > 89% for the isolates, p < 0.05). HMWCh did not modify protein concentrations, but NaAL did. It can be concluded that both polymers can inhibit the proteinase activity of Candida albicans.

  3. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata.

    PubMed Central

    Pfaller, M A; Houston, A; Coffmann, S

    1996-01-01

    CHROMagar Candida is a new differential culture medium that allows selective isolation of yeasts and simultaneously identifies colonies of Candida albicans, C. tropicalis, and C. krusei. We evaluated the use of this medium with 316 yeast isolates including 247 isolated directly on CHROMagar from clinical material. Over 95% of stock and clinical isolates of C. albicans, C. tropicalis, and C. krusei were correctly identified on the basis of colony morphology and pigmentation on CHROMagar. Additionally, CHROMagar also allowed the identification of C. (Torulopsis) glabrata at a similar level of accuracy. The overall agreement between two observers in reading the CHROMagar plates was 95%. Growth of Candida sp. isolates on CHROMagar had no adverse effect on antifungal MICs or Vitek identification results. In parallel, cultures of 548 stool and rectal swab specimens set up on CHROMagar and Sabouraud glucose agar (SGA) were positive in 234 instances. CHROMagar was positive and SGA was negative for 11 specimens, and CHROMagar was negative and SGA was positive for 18 specimens. A single yeast species was isolated on both media from 162 specimens, and in 146 (90%) of these specimens the same species was detected on both CHROMagar and SGA. A total of 43 of the 234 positive cultures contained mixtures of yeast species. Twenty (47%) of these mixed cultures were detected only on CHROMagar. CHROMagar is extremely useful in making a rapid presumptive identification of common yeast species. This capability plus the ability to detect mixed cultures of Candida spp. promises to improve and streamline the work flow in the mycology and clinical microbiology laboratory. PMID:8748273

  4. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species.

    PubMed

    Zhao, Liang; de Hoog, G Sybren; Cornelissen, Akke; Lyu, Qian; Mou, Lili; Liu, Taohua; Cao, Yu; Vatanshenassan, Mansoureh; Kang, Yingqian

    2016-02-01

    Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine recognition of Candida albicans and presumptive identification of Candida tropicalis, Candida glabrata, and Candida krusei. We evaluated an extension of this method with 46 non-Candida albicans Candida (NCAC) and 7 Malassezia species. The medium supported growth of all species tested and a wide diversity of cultural types were observed. Colony colours were in violet, turquoise (including green and blue), or white tinges. Eight NCAC species produced violet pigmentation similar to that of C. albicans. Most NCAC species, including C. glabrata and C. tropicalis were distributed in the turquoise group. Malassezia species were invariably blue.

  5. Fluconazole Susceptibility and Genotypic Heterogeneity of Oral Candida albicans Colonies from the Patients with Cancer Receiving Chemotherapy in China

    PubMed Central

    Sun, Jing; Qi, Cheng; Lafleur, Micheal D; Qi, Qing-guo

    2009-01-01

    Aim To identify heterogeneity of Candida albicans (C. albicans) isolated from the population with cancer in China by using identification medium, subculture molecular typing, and antifungal susceptibility test. Methodology Oral cheek mucosal specimens from 52 cancer patients receiving chemotherapy were cultured on CHROMagar CandidaTM plates for Candida identification. All the C. albicans colonies on the plates were subcultured and reconfirmed by API20C, then submitted to the antifungal drug susceptibility test with fluconazole and molecular typing using randomly amplified polymorphic DNA-PCR (RAPD) with primers RSD6 and RSD12. Results 54% (28/52) patients were oral yeast carriage in which C. albicans predominated. More than 7 C. albicans colonies were isolated from each of 12 patients (Group A), while less than 5 colonies were isolated from each of 16 patients (Group B). RSD6 and RSD12 were successful in eliciting 17 (A1-A17) and 2 (B1-B2) genotypes, respectively from among the 205 isolates. The two primers were combined to generate 21 genotypes. The C. albicans isolates obtained from the same patient and episode showed a diversity for fluconazole revealed by MIC50 and MIC90. Conclusion The heterogeneity of the C. albicans colonies isolated from the same patients can be detected. C. albicans with varied fluconazole susceptibility and genotypic characteristics may coexist in the same oral Candida population. PMID:20695081

  6. High-frequency switching in Candida albicans.

    PubMed Central

    Soll, D R

    1992-01-01

    Most strains of Candida albicans are capable of switching frequently and reversibly between a number of phenotypes distinguishable by colony morphology. A number of different switching systems have been defined according to the limited set of phenotypes in each switching repertoire, and each strain appears to possess a single system. Switching can affect many aspects of cellular physiology and morphology and appears to be a second level of phenotypic variability superimposed upon the bud-hypha transition. The most dramatic switching system so far identified is the "white-opaque transition." This system dramatizes the extraordinary effects switching can have on the budding cell phenotype, including the synthesis of opaque-specific antigens, the expression of white-specific and opaque-specific genes, and the genesis of unique cell wall structures. Switching has been demonstrated to occur at sites of infection and between episodes of recurrent vaginitis, and it may function to generate variability in commensal and infecting populations for adaptive reasons. Although the molecular mechanisms involved in the switch event are not understood, recent approaches to its elucidation are discussed and an epigenetic mechanism is proposed. Images PMID:1576587

  7. Molecular epidemiology, phylogeny and evolution of Candida albicans.

    PubMed

    McManus, Brenda A; Coleman, David C

    2014-01-01

    A small number of Candida species form part of the normal microbial flora of mucosal surfaces in humans and may give rise to opportunistic infections when host defences are impaired. Candida albicans is by far the most prevalent commensal and pathogenic Candida species. Several different molecular typing approaches including multilocus sequence typing, multilocus microsatellite typing and DNA fingerprinting using C. albicans-specific repetitive sequence-containing DNA probes have yielded a wealth of information regarding the epidemiology and population structure of this species. Such studies revealed that the C. albicans population structure consists of multiple major and minor clades, some of which exhibit geographical or phenotypic enrichment and that C. albicans reproduction is predominantly clonal. Despite this, losses of heterozygosity by recombination, the existence of a parasexual cycle, toleration of a wide range of aneuploidies and the recent description of viable haploid strains have all demonstrated the extensive plasticity of the C. albicans genome. Recombination and gross chromosomal rearrangements are more common under stressful environmental conditions, and have played a significant role in the evolution of this opportunistic pathogen. Surprisingly, Candida dubliniensis, the closest relative of C. albicans exhibits more karyotype variability than C. albicans, but is significantly less adaptable to unfavourable environments. This disparity most likely reflects the evolutionary processes that occurred during or soon after the divergence of both species from their common ancestor. Whilst C. dubliniensis underwent significant gene loss and pseudogenisation, C. albicans expanded gene families considered to be important in virulence. It is likely that technological developments in whole genome sequencing and data analysis in coming years will facilitate its routine use for population structure, epidemiological investigations, and phylogenetic analyses of

  8. Person-to-person transfer of Candida albicans in the spacecraft environment

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Magee, B. B.; Mishra, S. K.

    1995-01-01

    We assessed the exchange of Candida albicans among crew members during 10 Space Shuttle missions. Throat, nasal, urine and faecal specimens were collected from 61 crew members twice before and once after space flights ranging from 7 to 10 days in duration; crews consisted of groups of five, six or seven men and women. Candida albicans was isolated at least once from 20 of the 61 subjects (33%). Candida strains were identified by restriction-fragment length polymorphism (RFLP) after digestion by the endonucleases EcoRI and HinfI; further discrimination was gained by Southern blot hybridization with the C. albicans repeat fragment 27A. Eighteen of the 20 Candida-positive crew members carried different strains of C. albicans in the specimens collected. Possible transfer of C. albicans between members of the same crew was demonstrated only once in the 10 missions studied. We conclude that the transfer of C. albicans among crew members during Space Shuttle flights is less frequent than had been predicted from earlier reports.

  9. Antiarthritic effect of lonicerin on Candida albicans arthritis in mice.

    PubMed

    Lee, Jue-Hee; Han, Yongmoon

    2011-05-01

    Fungal arthritis is a potentially serious disease resulting in rapid destruction of the joint. Among the various Candida species, Candida albicans is the most commonly associated with fungal arthritis. In the present study, we examined the effect of lonicerin, a flavonoid isolated from Lonicerae Flos, on an arthritis caused by C. albicans cell wall (CACW) in mice. To examine the effect, an emulsified mixture of CACW and complete Freund's adjuvant (CACW/CFA) was injected into BALB/c mice via hind footpad route on days -3, -2, and -1. On Day 0, mice with the swollen footpad received lonicerin at 1 or 2 mg/dose/time intraperitoneally 3 times every other day. The footpad-swelling was measured for 20 days. Results showed that the lonicerin treatment reduced the edema at all dose levels, and, furthermore, there was app. 54% edema reduction in animals given the 2 mg-dose at the peak (day 10) of septic arthritis (p < 0.05). Since the peak, the edema was reduced in similar rates. This antiarthritic activity appeared to be mediated by lonicerin's ability to suppress T cell proliferation, nitric oxide production from macrophages, and shift of cellular immunity from Th1- toward Th2-type responses, all of which are beneficial to treat arthritis. In addition, the flavonoid had anticandidal activity (p < 0.01). These data suggest that lonicerin alone, which has both anti-arthritic and antifungal activities, can result in a combination therapy for the treatment of fungal arthritis due to C. albicans infection.

  10. Dose-dependent effect of lysozyme upon Candida albicans biofilm

    PubMed Central

    Sebaa, Sarra; Hizette, Nicolas; Boucherit-Otmani, Zahia; Courtois, Philippe

    2017-01-01

    The present study investigated the in vitro effect of lysozyme (0–1,000 µg/ml) on Candida albicans (C. albicans) biofilm development. Investigations were conducted on C. albicans ATCC 10231 and on 10 clinical isolates from dentures. Strains were cultured aerobically at 37°C in Sabouraud broth. Yeast growth was evaluated by turbidimetry. Biofilm biomass was quantified on a polystyrene support by crystal violet staining and on acrylic surfaces by counts of colony forming units. Lysozyme affected biofilm formation to a greater extent than it affected growth. For the ATCC 10231 reference strain, lysozyme acted as a biofilm promotor on polystyrene at the highest concentration tested (1,000 µg/ml, non-physiological). When the reference strain was investigated on acrylic resin support, lysozyme acted as a significant biofilm promotor on rough resin, but less on smooth resin. The attached biomass in the presence of physiological concentrations of lysozyme (10–30 µg/ml) was significantly decreased compared with the hypothetical value of 100% using a one-sample t-test, but a comparison between the different lysozyme conditions using analysis of variance and post hoc tests did not reveal significant differences. In 10 wild strains, different patterns of biofilm formation on polystyrene were observed in the presence of lysozyme. Some strains, characterized by large amounts of biofilm formation in the presence of 1,000 µg/ml lysozyme, were poor biofilm producers at low concentrations of lysozyme. In contrast, some strains that were poor biofilm producers with a high lysozyme concentration were more inhibited by low concentrations of lysozyme. The present study emphasizes the need to develop strategies for biofilm control based on in vitro experiments, and to implement these in clinical trials prior to approval of hygiene products enriched with exocrine proteins, such as lysozyme. Further studies will extend these investigations to other Candida species, and to fungi

  11. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    PubMed

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  12. Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans

    PubMed Central

    Xie, Fei; Chang, Wenqiang; Zhang, Ming; Li, Ying; Li, Wei; Shi, Hongzhuo; Zheng, Sha; Lou, Hongxiang

    2016-01-01

    One of the main azole-resistance mechanisms in Candida pathogens is the upregulation of drug efflux pumps, which compromises the efficacy of azoles and results in treatment failure. The combination of azole-antifungal agents with efflux pump inhibitors represents a promising strategy to combat fungal infection. High-throughput screening of 150 extracts obtained from endolichenic fungal cultures led to the discovery that the extract of Phialocephala fortinii exhibits potent activity for the reversal of azole resistance. From P. fortinii cultures, a total of 15 quinone derivatives, comprising 11 new derivatives and 4 known compounds, were obtained. Among these compounds, palmarumycin P3 (3) and phialocephalarin B (8) specifically modulate the expression of MDR1 to inhibit the activity of drug efflux pumps and therefore reverse azole resistance. The present study revealed Mdr1 targeting as an alternative mechanism for the discovery of new agents to fight antifungal drug resistance. PMID:27650180

  13. In vitro activities of terbinafine in combination with fluconazole and itraconazole against isolates of Candida albicans with reduced susceptibility to azoles.

    PubMed Central

    Barchiesi, F; Falconi Di Francesco, L; Scalise, G

    1997-01-01

    A checkerboard microdilution method was applied to study the in vitro interaction of terbinafine with either fluconazole and itraconazole against 30 strains of Candida albicans. Synergy was observed in 40% of the terbinafine-fluconazole interactions and in 43% of the terbinafine-itraconazole interactions, while antagonism was not observed. Even when only additivity was achieved, the combinations still showed beneficial effects since at least twofold reductions in the MICs of both drugs were found in 100% of the terbinafine-fluconazole interactions and in 76% of the terbinafine-itraconazole interactions. PMID:9257768

  14. Rapid identification of Candida albicans by using Albicans ID and fluoroplate agar plates.

    PubMed Central

    Rousselle, P; Freydiere, A M; Couillerot, P J; de Montclos, H; Gille, Y

    1994-01-01

    Two commercially available agar media, Albicans ID and Fluoroplate, that use a chromogenic or a fluorogenic substrate for the detection and identification of Candida albicans were evaluated. From 1,006 clinical samples containing 723 yeast strains, 352 C. albicans strains were detected with either of the two media. The sensitivity of each of the two media was 93.8% and the specificity was 98.6%, with five false-positive reactions for Candida tropicalis and no false-negative reactions. PMID:7883894

  15. Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis

    PubMed Central

    Naglik, Julian R.; Challacombe, Stephen J.; Hube, Bernhard

    2003-01-01

    Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis. PMID:12966142

  16. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    PubMed Central

    Hospenthal, Duane R; Beckius, Miriam L; Floyd, Karon L; Horvath, Lynn L; Murray, Clinton K

    2006-01-01

    Background CHROMagar Candida (CaC) is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC) species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium. PMID:16390552

  17. Liposomal thymoquinone effectively combats fluconazole-resistant Candida albicans in a murine model.

    PubMed

    Khan, Masood Alam; Aljarbou, Ahmad N; Khan, Arif; Younus, Hina

    2015-05-01

    The aim of the present study was to develop a novel liposomal formulation of thymoquinone (TQ) to treat fluconazole-susceptible and -resistant Candida albicans (C. albicans) infections. The liposomal preparation of TQ (Lip-TQ) was used against a fluconazole-susceptible or -resistant isolate of C. albicans. Various doses of fluconazole (0, 5, 10, 20 and 40 mg/kg) or free TQ or Lip-TQ (0, 1, 2 and 5mg/kg) were used to treat C. albicans infected mice. Mice were observed for 40 days post C. albicans infection, and their kidneys were assessed for the fungal load. Fluconazole showed anti-fungal activity against the drug-susceptible, but not against the -resistant isolate of C. albicans. Free TQ showed its activity against both fluconazole-susceptible or -resistant C. albicans, however, Lip-TQ was found to be the most effective and imparted ∼ 100% and ∼ 90% survival of mice infected with fluconazole-susceptible and -resistant isolates of C. albicans, respectively. Mice treated with Lip-TQ showed highly reduced severity of infection in their tissue homogenates. Therefore, Lip-TQ may effectively be used in the treatment of C. albicans infections, including those which are not responding to fluconazole.

  18. Global Identification of Biofilm-Specific Proteolysis in Candida albicans

    PubMed Central

    Winter, Michael B.; Salcedo, Eugenia C.; Lohse, Matthew B.; Hartooni, Nairi; Gulati, Megha; Sanchez, Hiram; Takagi, Julie; Hube, Bernhard; Andes, David R.

    2016-01-01

    ABSTRACT Candida albicans is a fungal species that is part of the normal human microbiota and also an opportunistic pathogen capable of causing mucosal and systemic infections. C. albicans cells proliferate in a planktonic (suspension) state, but they also form biofilms, organized and tightly packed communities of cells attached to a solid surface. Biofilms colonize many niches of the human body and persist on implanted medical devices, where they are a major source of new C. albicans infections. Here, we used an unbiased and global substrate-profiling approach to discover proteolytic activities produced specifically by C. albicans biofilms, compared to planktonic cells, with the goal of identifying potential biofilm-specific diagnostic markers and targets for therapeutic intervention. This activity-based profiling approach, coupled with proteomics, identified Sap5 (Candidapepsin-5) and Sap6 (Candidapepsin-6) as major biofilm-specific proteases secreted by C. albicans. Fluorogenic peptide substrates with selectivity for Sap5 or Sap6 confirmed that their activities are highly upregulated in C. albicans biofilms; we also show that these activities are upregulated in other Candida clade pathogens. Deletion of the SAP5 and SAP6 genes in C. albicans compromised biofilm development in vitro in standard biofilm assays and in vivo in a rat central venous catheter biofilm model. This work establishes secreted proteolysis as a promising enzymatic marker and potential therapeutic target for Candida biofilm formation. PMID:27624133

  19. Innate immune cell response upon Candida albicans infection.

    PubMed

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-03

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.

  20. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition.

    PubMed

    Silva, Sónia; Henriques, Mariana; Martins, António; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2009-11-01

    Most cases of candidiasis have been attributed to C. albicans, but recently, non- Candida albicans Candida (NCAC) species have been identified as common pathogens. The ability of Candida species to form biofilms has important clinical repercussions due to their increased resistance to antifungal therapy and the ability of yeast cells within the biofilms to withstand host immune defenses. Given this clinical importance of the biofilm growth form, the aim of this study was to characterize biofilms produced by three NCAC species, namely C. parapsilosis, C. tropicalis and C. glabrata. The biofilm forming ability of clinical isolates of C. parapsilosis, C. tropicalis and C. glabrata recovered from different sources, was evaluated by crystal violet staining. The structure and morphological characteristics of the biofilms were also assessed by scanning electron microscopy and the biofilm matrix composition analyzed for protein and carbohydrate content. All NCAC species were able to form biofilms although these were less extensive for C. glabrata compared with C. parapsilosis and C. tropicalis. It was evident that C. parapsilosis biofilm production was highly strain dependent, a feature not evident with C. glabrata and C. tropicalis. Scanning electron microscopy revealed structural differences for biofilms with respect to cell morphology and spatial arrangement. Candida parapsilosis biofilm matrices had large amounts of carbohydrate with less protein. Conversely, matrices extracted from C. tropicalis biofilms had low amounts of carbohydrate and protein. Interestingly, C. glabrata biofilm matrix was high in both protein and carbohydrate content. The present work demonstrates that biofilm forming ability, structure and matrix composition are highly species dependent with additional strain variability occurring with C. parapsilosis.

  1. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue

    PubMed Central

    Schlecht, Lisa Marie; Peters, Brian M.; Krom, Bastiaan P.; Freiberg, Jeffrey A.; Hänsch, Gertrud M.; Filler, Scott G.

    2015-01-01

    Candida albicans and Staphylococcus aureus are often co-isolated in cases of biofilm-associated infections. C. albicans can cause systemic disease through morphological switch from the rounded yeast to the invasive hyphal form. Alternatively, systemic S. aureus infections arise from seeding through breaks in host epithelial layers although many patients have no documented portal of entry. We describe a novel strategy by which S. aureus is able to invade host tissue and disseminate via adherence to the invasive hyphal elements of Candida albicans. In vitro and ex vivo findings demonstrate a specific binding of the staphylococci to the candida hyphal elements. The C. albicans cell wall adhesin Als3p binds to multiple staphylococcal adhesins. Furthermore, Als3p is required for C. albicans to transport S. aureus into the tissue and cause a disseminated infection in an oral co-colonization model. These findings suggest that C. albicans can facilitate the invasion of S. aureus across mucosal barriers, leading to systemic infection in co-colonized patients. PMID:25332378

  2. Candida biotypes isolated from clinical specimens in Malaysia.

    PubMed

    Ng, K P; Madasamy, M; Saw, T L; Baki, A; He, J; Soo-Hoo, T S

    The distribution of Candida species was examined using 1114 yeasts isolated from various clinical specimens. The isolates were identified by germ tube test, hyphal/pseudohyphae and chlamydoconidia production and carbohydrate assimilation test using ten carbohydrates (glucose, sucrose, trehalose, cellobiose, arabinose, galactose, mannitol, raffinose, lactose and maltose). Among the 1114 isolates studied, 9 species of Candida were identified and the relative frequency of isolation was C. albicans (44.2%), C. parapsilosis (26.0%), C. tropicalis (17.7%), C. glabrata (9.6%), C. krusei (1.2%), C. rugosa (0.6%), C. guilliermondii (0.2%), C. lusitaniae (0.08%) and C. kefyr (0.08%). Non-C. albicans was the most common Candida species isolated from blood, respiratory system, urine and skin. The isolate from vaginal swabs was predominantly C. albicans. 82.2% of C. glabrata and 64.2% of C. krusei isolated in this study were from vaginal swabs.

  3. Direct Isolation of Candida spp. from Blood Cultures on the Chromogenic Medium CHROMagar Candida

    PubMed Central

    Horvath, Lynn L.; Hospenthal, Duane R.; Murray, Clinton K.; Dooley, David P.

    2003-01-01

    CHROMagar Candida is a selective and differential chromogenic medium that has been shown to be useful for identification of Candida albicans, Candida krusei, Candida tropicalis, and perhaps Candida glabrata. Colony morphology and color have been well defined when CHROMagar Candida has been used to isolate yeast directly from clinical specimens, including stool, urine, respiratory, vaginal, oropharyngeal, and esophageal sources. Direct isolation of yeast on CHROMagar Candida from blood cultures has not been evaluated. We evaluated whether the color and colony characteristics produced by Candida spp. on CHROMagar Candida were altered when yeasts were isolated directly from blood cultures. Fifty clinical isolates of Candida were inoculated into aerobic and anaerobic blood culture bottles and incubated at 35°C in an automated blood culture system. When growth was detected, an aliquot was removed and plated onto CHROMagar Candida. As a control, CHROMagar Candida plates were inoculated with the same isolate of yeast grown on Sabouraud dextrose agar simultaneously. No significant difference was detected in color or colony morphology between the blood and control isolates in any of the tested organisms. All C. albicans (n = 12), C. tropicalis (n = 12), C. glabrata (n = 9), and C. krusei (n = 5) isolates exhibited the expected species-specific colony characteristics and color, whether isolated directly from blood or from control cultures. CHROMagar Candida can be reliably used for direct isolation of yeast from blood cultures. Direct isolation could allow mycology laboratories to more rapidly identify Candida spp., enable clinicians to more quickly make antifungal agent selections, and potentially decrease patient morbidity and mortality. PMID:12791890

  4. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    PubMed

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections.

  5. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.

    PubMed

    Uwamahoro, Nathalie; Verma-Gaur, Jiyoti; Shen, Hsin-Hui; Qu, Yue; Lewis, Rowena; Lu, Jingxiong; Bambery, Keith; Masters, Seth L; Vince, James E; Naderer, Thomas; Traven, Ana

    2014-03-25

    The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. IMPORTANCE Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent

  6. Differentiation between Atypical Isolates of Candida lusitaniae and Candida pulcherrima by Determination of Mating Type

    PubMed Central

    Noël, Thierry; Favel, Anne; Michel-Nguyen, Annie; Goumar, Abdelhak; Fallague, Karim; Chastin, Christiane; Leclerc, Florence; Villard, Jean

    2005-01-01

    We report on five clinical isolates routinely identified as Candida lusitaniae that the ID 32C system was unable to discriminate from the closely related species Candida pulcherrima. When additional tests did not allow accurate identification, the less usual mating type test identified all of them as Clavispora lusitaniae. Mating type testing appears to be a valuable tool for assessing the true incidence of this emerging non-albicans Candida species. PMID:15750124

  7. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins.

    PubMed

    Jordan, Rachael P C; Williams, David W; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2014-04-01

    Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P < 0.001). However, when the yeast cells were grown at 37°C, no significant difference between the adhesion of C. dubliniensis genotype 1 and C. albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P < 0.001). Using surface plasmon resonance analysis, C. dubliniensis isolates were found to adhere in significantly greater numbers than C. albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.

  8. Interspecies Interactions between Clostridium difficile and Candida albicans

    PubMed Central

    van Leeuwen, Pim T.; van der Peet, Jasper M.; Bikker, Floris J.; Hoogenkamp, Michel A.; Oliveira Paiva, Ana M.; Kostidis, Sarantos; Mayboroda, Oleg A.

    2016-01-01

    ABSTRACT The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens. IMPORTANCE Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C

  9. The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages

    PubMed Central

    Uwamahoro, Nathalie; Verma-Gaur, Jiyoti; Shen, Hsin-Hui; Qu, Yue; Lewis, Rowena; Lu, Jingxiong; Bambery, Keith; Masters, Seth L.; Vince, James E.; Naderer, Thomas; Traven, Ana

    2014-01-01

    ABSTRACT The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. PMID:24667705

  10. The correlation of virulence, pathogenicity, and itraconazole resistance with SAP activity in Candida albicans strains.

    PubMed

    Feng, Wenli; Yang, Jing; Pan, Yanwei; Xi, Zhiqin; Qiao, Zusha; Ma, Yan

    2016-02-01

    The relationship between SAP2 activity and drug resistance in Candida albicans was investigated by using itraconazole-resistant and itraconazole-sensitive C. albicans isolates. The precipitation zones were measured to analyze SAP2 activity. Mice were classified into itraconazole-resistant and -sensitive C. albicans isolate groups, and a control group, with their survival and mortality rate being observed over 30 days. The relative expression levels of CDR1, CDR2, MDR1, and SAP2 were measured using RT-PCR. It was found that the secreted aspartyl proteinase activity of itraconazole-resistant C. albicans strains was significantly higher than that of itraconazole-sensitive C. albicans strains (P < 0.001). A significantly higher mortality rate was recorded for mice treated with itraconazole-resistant C. albicans than for mice treated with itraconazole-sensitive C. albicans. In regards to the CDR1, CDR2, and MDR1 genes, there was no significant difference between the 2 groups of mice. Positive correlations between SAP2 and MDR1 and between CDR1 and CDR2 were found. The high expression level of SAP2 may relate to the virulence, pathogenicity, and resistance of C. albicans.

  11. [Suppression of activity of Candida albicans proteinases by cobalt chloride].

    PubMed

    Kutyreva, M P; Mukhametzianova, A R; Ulakhovich, N A

    2012-01-01

    Influence of cobalt (II) chloride on the system of Candida albicans proteinase (SAP C. alb.) (both in solution and immobilized on a surface of nitrocellulose membranes) has been investigated. In solution cobalt chloride inactivated inducible but not constitute enzyme. In the heterogenous sytem proteolitical effect of the cobalt ion on inductible proteinase was also observed.

  12. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans – Staphyloccoccus aureus Biofilms

    PubMed Central

    Lown, Livia; Peters, Brian M.; Walraven, Carla J.; Noverr, Mairi C.; Lee, Samuel A.

    2016-01-01

    Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies. PMID:27428310

  13. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  14. Two unlike cousins: Candida albicans and C. glabrata infection strategies

    PubMed Central

    Brunke, Sascha; Hube, Bernhard

    2013-01-01

    Candida albicans and C. glabrata are the two most common pathogenic yeasts of humans, yet they are phylogenetically, genetically and phenotypically very different. In this review, we compare and contrast the strategies of C. albicans and C. glabrata to attach to and invade into the host, obtain nutrients and evade the host immune response. Although their strategies share some basic concepts, they differ greatly in their outcome. While C. albicans follows an aggressive strategy to subvert the host response and to obtain nutrients for its survival, C. glabrata seems to have evolved a strategy which is based on stealth, evasion and persistence, without causing severe damage in murine models. However, both fungi are successful as commensals and as pathogens of humans. Understanding these strategies will help in finding novel ways to fight Candida, and fungal infections in general. PMID:23253282

  15. Prevalence of candida albicans in dental plaque and caries lesion of early childhood caries (ECC) according to sampling site

    PubMed Central

    Ghasempour, Maryam; Sefidgar, Seyed Ali Asghar; Eyzadian, Haniyeh; Gharakhani, Samaneh

    2011-01-01

    Background: Candida albicans may have cariogenic potential but its role in caries etiology has not been established. The aim of this study was to determine candida albicans in supragingival dental plaque and infected dentine of cervical and proximal in early childhood caries (ECC). Methods: This cross-sectional study was carried out on 6o children aged 2-5 years, which were divided into 3 groups: children with at least one cervical caries; children with at least one proximal caries and caries-free. The infected dentine was collected from cervical and proximal caries lesions and plaque samples were collected from the three groups in order to compare the frequency of candida albicans in the collected sites. All samples were cultured in Sabouraud and CHROMagar medium and the cases that were positive for candida albicans were cultured in germ tube. Data were collected and analyzed. Results: The mean age of the children was 3.9 years. From 100 samples, candida albicans samples were isolated in 55%, mold fungi were found in 29% cases and there was no fungal growth in 16% of the samples. In plaque samples, candida albicans were found in 15% of caries-free samples, 20% of the proximal and 80% of the cervical caries. In samples extracted from the caries, candida albicans were found in 60% of the proximal and 100% of the cervical caries. Mothers with university educational level had children with more cervical decays, caries free and proximal caries, respectively. Conclusion: The results showed that prevalence of Candida albicans in dental plaque and caries lesions of children with early childhood caries were relatively high and the prevalence was higher in cervical caries group. PMID:24551436

  16. Host response to Candida albicans bloodstream infection and sepsis

    PubMed Central

    Duggan, Seána; Leonhardt, Ines; Hünniger, Kerstin; Kurzai, Oliver

    2015-01-01

    Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management. PMID:25785541

  17. Identification and characterization of nine atypical Candida dubliniensis clinical isolates.

    PubMed

    Albaina, Olatz; Sahand, Ismail H; Brusca, María I; Sullivan, Derek J; Fernández de Larrinoa, Iñigo; Moragues, María D

    2015-02-01

    Candida dubliniensis is a pathogenic yeast of the genus Candida closely related to Candida albicans. The phenotypic similarity of these two species often leads to misidentification of C. dubliniensis isolates in clinical samples. DNA-based methods continue to be the most effective means of discriminating accurately between the two species. Here, we report on the identification of nine unusual Candida isolates that showed ambiguous identification patterns on the basis of their phenotypic and immunological traits. The isolates were categorized into two groups. Group I isolates were unable to produce germ tubes and chlamydospores, and to agglutinate commercial latex particles coated with a mAb highly specific for C. dubliniensis. Group II isolates grew as pink and white colonies on CHROMagar Candida and ChromID Candida, respectively. Carbohydrate assimilation profiles obtained with API/ID32C together with PCR amplification with specific primers and DNA sequencing allowed reliable identification of the nine unusual clinical isolates as C. dubliniensis.

  18. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    SciTech Connect

    Yang, Shulong; Fu, Yingyuan Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  19. Postantifungal Effect of Micafungin against the Species Complexes of Candida albicans and Candida parapsilosis.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2015-01-01

    Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 μg/ml) was fungicidal (≥ 3 log10 reduction) in TK against 5 out of 14 (36%) strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against C. parapsilosis, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 ± 2.18 h) differed from C. parapsilosis complex (8.07 ± 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex.

  20. Postantifungal Effect of Micafungin against the Species Complexes of Candida albicans and Candida parapsilosis

    PubMed Central

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2015-01-01

    Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 μg/ml) was fungicidal (≥ 3 log10 reduction) in TK against 5 out of 14 (36%) strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against C. parapsilosis, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 ± 2.18 h) differed from C. parapsilosis complex (8.07 ± 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex. PMID:26168269

  1. FK520 interacts with the discrete intrahelical amino acids of multidrug transporter Cdr1 protein and acts as antagonist to selectively chemosensitize azole-resistant clinical isolates of Candida albicans.

    PubMed

    Nim, Shweta; Rawal, Manpreet K; Prasad, Rajendra

    2014-06-01

    FK520, a homolog of antifungal FK506, displays fungicidal synergism with azoles in Candida albicans and inhibits drug efflux mediated by ABC multidrug transporter. This study establishes the molecular basis of interaction of FK520 with Cdr1 protein, which is one of the major ABC multidrug transporters of C. albicans. For this, we have exploited an in-house library of Cdr1 protein consisting of 252 mutant variants where the entire primary structure of the two transmembrane domains comprising of 12 transmembrane helices was subjected to alanine scanning. With these mutant variants of Cdr1 protein, we could identify the critical amino acids of the transporter protein, which if replaced with alanine, not only abrogated FK520-dependent competitive inhibition of drug efflux but simultaneously decreased susceptibility to azoles. Notably, the replacement of most of the residues with alanine was inconsequential; however, there were close to 13% mutant variants, which showed abrogation of drug efflux and reversal of fungicidal synergy with azoles. Of note, all the intrahelical residues of Cdr1 protein, which abrogated inhibitor's ability to block the efflux and reversed fungicidal synergy, were common. Taken together, our results provide evidence of cross-talk of FK520 with Cdr1 by interacting with the select intrahelical residues of the protein to chemosensitize isolates of Candida.

  2. Candida isolates in tertiary hospitals in northeastern Brazil

    PubMed Central

    Hinrichsen, Sylvia Lemos; Falcão, érica; Vilella, Tatiana Aguiar Santos; Rêgo, Leandro; Lira, Conceição; Almeida, Luciano; Martins, Mízia; Araújo, Carmem; Duarte, Marcelo; Lopes, Geraldo

    2009-01-01

    Candida is an opportunistic pathogen that affects high–risk patients who are either immunocompromised or critically ill and is associated with almost 80% of all nosocomial fungal infections, representing the major cause of fungemia with high mortality rates (40%). Candida albicans is the main cause of candidemia and among the non-albicans species C. parapsilosis, C. glabrata and C. tropicalis are the most frequent agents. The aim of this study was to evaluate the distribution of Candida species in two tertiary hospitals in Recife, Northeastern Brazil. It began by surveying all positive Candida cultures processed by the microbiology laboratory from September 2003 to September 2006. The cultures, originated from various types of biological material (blood, urine, tracheal, catheter and others), were processed by Vitec® system (Biomerieux SA, France). A total of 1.279 (hospital A: 837; hospital B: 442) sample isolates were positive for Candida. The most frequent species in both hospitals were: C. albicans (367), C. tropicalis (363), C. parapsilosis (147), C. glabrata (81), C. krusei (30) and C. guillermondii (14). The isolates were obtained from 746 hospitalized patients. A total of 221 positive hemocultures were detected in 166 different patients in both hospitals, and 113 (68.1%) of these patients with positive hemocultures presented Candida in other body sites. This study shows that Candida non-albicans was the main isolated agent and evidences the importante of C. tropicalis in nosocomial fungal infections. PMID:24031366

  3. Short peptides allowing preferential detection of Candida albicans hyphae.

    PubMed

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  4. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives.

    PubMed

    Shafreen, Raja Mohamed Beema; Raja Mohamed, Beema Shafreen; Muthamil, Subramanian; Subramanian, Muthamil; Pandian, Shunmugiah Karutha; Shunmugiah, Karutha Pandian

    2014-08-01

    Candida albicans is an important opportunistic fungal pathogen, responsible for biofilm associated infections in immunocompromised patients. The aim of the present study was to investigate the antibiofilm properties of novel levofloxacin derivatives on C. albicans biofilms. The levofloxacin derivatives at their Biofilm Inhibitory Concentrations (BIC) were able to inhibit the biofilms of C. albicans, the yeast-to-hyphal transition and were also able to disrupt their mature biofilms. Furthermore, Real-time PCR analysis showed that the expression of ergosterol biosynthesis pathway gene (ERG11) and the efflux pump-encoding genes (CDR1 and MDR1) was decreased upon treatment with the levofloxacin derivatives. The total ergosterol content quantified using UV spectrophotomer showed decrease in ergosterol in the presence of levofloxacin derivatives. Overall, levofloxacin derivatives (6a, 6c and 7d) are capable of inhibiting C. albicans virulence factors. Therefore, these compounds with potential therapeutic implications can be used as new strategy to treat biofilm-related candidal infections.

  5. Rat Indwelling Urinary Catheter Model of Candida albicans Biofilm Infection

    PubMed Central

    Nett, Jeniel E.; Brooks, Erin G.; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen

    2014-01-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract. PMID:25183731

  6. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species.

    PubMed

    Lin, Ching-Hsuan; Choi, Anthony; Bennett, Richard J

    2011-12-01

    Candida albicans is an important human fungal pathogen in which sexual reproduction is under the control of the novel white-opaque switch. Opaque cells are the mating-competent form, whereas white cells do not mate but can still respond to pheromones, resulting in biofilm formation. In this study, we first define the domains of the α-pheromone receptor Ste2 that are necessary for signaling in both white and opaque forms. Both cell states require the IC loop 3 (IC3) and the C-terminal tail of Ste2 for the cellular response, whereas the first IC loop (IC1) of Ste2 is dispensable for signaling. To also address pheromone-receptor interactions in related species, including apparently asexual Candida species, Ste2 orthologues were heterologously expressed in Candida albicans. Ste2 receptors from multiple Candida clade species were functional when expressed in C. albicans, whereas the Ste2 receptor of Candida lusitaniae was nonfunctional. Significantly, however, expression of a chimeric C. lusitaniae Ste2 receptor containing the C-terminal tail of Ste2 from C. albicans generated a productive response to C. lusitaniae pheromone. This system has allowed us to characterize pheromones from multiple Candida species and indicates that functional pheromone-receptor couples exist in fungal species that have yet to be shown to undergo sexual mating.

  7. Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host–Pathogen Interaction: A Review

    PubMed Central

    Chin, Voon Kin; Lee, Tze Yan; Rusliza, Basir; Chong, Pei Pei

    2016-01-01

    Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future. PMID:27763544

  8. Photoinactivation of single and mixed biofilms of Candida albicans and non-albicans Candida species using Phorodithazine(®).

    PubMed

    Carmello, Juliana Cabrini; Alves, Fernanda; Mima, Ewerton Garcia de Oliveira; Jorge, Janaina Habib; Bagnato, Vanderlei Salvador; Pavarina, Ana Cláudia

    2017-03-01

    This study evaluated the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Photodithazine(®) (PDZ) formulated in hydrogel, in the inactivation of mono and duo-species biofilms of Candida albicans, Candida glabrata and Candida tropicalis. Standardized suspensions of each strain were prepared and after biofilm formation, mono-species were treated with 150 and 175mg/L of PDZ for 20min (pre-irradiation time), and exposed to LED light at a dose of 37.5J/cm(2) (660nm). The duo-species biofilms (C. albicans+C. glabrata and C. albicans+C. tropicalis) were treated with 150mg/L of PDZ and light. Additional samples were treated with PDZ or light only, and the control did not receive any treatment. Next, microbiological evaluation was performed by spreading the cells on Sabouraud Dextrose Agar and CHROMagar Candida for colony forming units (CFU/mL). Moreover, the total biomass of biofilm was verified using the crystal violet staining assay (CV). The data were submitted to ANOVA and Tukey post-hoc (α=0.05). The use of PDZ 150mg/L promoted a reduction of 1.0, 1.2, 1.5 log10 in the viability of C. glabrata, C. albicans and C. tropicalis, respectively. The same concentration reduced in 1.0 log10 the viability of each species grown as duo-species biofilms. The crystal violet assay showed that the use of 150mg/L reduced 24.4%, 39.2% and 43.7% of the total biomass of C. albicans, C. tropicalis and C. glabrata, respectively. aPDT did not reduce the total biomass to the duo-species biofilms. Thus, PDZ-mediated aPDT was more effective in the inactivation of mono-species biofilms of Candida spp. compared with duo-species biofilm.

  9. Use of CHROMagar Candida medium for isolation of yeasts from dental samples.

    PubMed Central

    Beighton, D; Ludford, R; Clark, D T; Brailsford, S R; Pankhurst, C L; Tinsley, G F; Fiske, J; Lewis, D; Daly, B; Khalifa, N

    1995-01-01

    A new differential medium, CHROMagar Candida, for the isolation of clinically important yeasts was investigated to determine its usefulness in facilitating the study of oral yeasts. The recovery of yeasts on the medium was not significantly different from the recovery on Sabouraud dextrose agar. The identities of 450 green colonies on CHROMagar Candida, presumptively identified as Candida albicans on the basis of the manufacturer's instructions, were confirmed by testing for beta-N-acetylgalactosaminidase. Candida tropicalis also formed distinctive colonies, and other yeasts including Candida (Torulopsis) glabrata, Candida Parapsilosis, Candida Magnoliae, Candida lusitaniae, Candida Famata, Candida kefir, and Saccharomyces cerevisiae were readily distinguished from C. albicans and C. tropicalis isolates. CHROMagar Candida is a very useful medium, and its use will facilitate the study of yeasts associated with dental diseases. PMID:8576366

  10. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation.

    PubMed

    Bachtiar, Endang W; Bachtiar, Boy M; Jarosz, Lucja M; Amir, Lisa R; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M; Krom, Bastiaan P

    2014-01-01

    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  11. Survival of Candida albicans in tropical marine and fresh waters.

    PubMed Central

    Valdes-Collazo, L; Schultz, A J; Hazen, T C

    1987-01-01

    A survey of Candida albicans indicated that the organism was present at all sites sampled in a rain forest stream and in near-shore coastal waters of Puerto Rico. In the rain forest watershed no relationship existed between densities of fecal coliforms and densities of C. albicans. At two pristine sites in the rain forest watershed both C. albicans and Escherichia coli survived in diffusion chambers for extended periods of time. In near-shore coastal waters C. albicans and E. coli survival times in diffusion chambers were enhanced by effluent from a rum distillery. The rum distillery effluent had a greater effect on E. coli than on C. albicans survival in the diffusion chambers. These studies show that neither E. coli nor C. albicans organisms are good indicators of recent fecal contamination in tropical waters. It further demonstrates that pristine freshwater environments and marine waters receiving organic loading in the tropics can support densities of C. albicans which may be a health hazard. Images PMID:3310885

  12. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children

    PubMed Central

    Shenoy, Neetha

    2016-01-01

    Introduction C.albicans is the most commonly isolated fungal pathogen in the oral cavity, but isolation of non-albicans Candida is increasing in recent years. We wish to demonstrate the virulence factors of Candida spp. isolated from the dental caries lesion of the children as presence of virulence factors determines the pathogenic potential of any microorganism. Aim To compare biofilm production, phospholipase and haemolytic activity of C.albicans with that of non-albicans species of Candida isolated from dental caries lesions of children to evaluate the role of non- albicans species of Candida in formation of dental caries. Materials and Methods Oral swabs were collected from caries lesion of 100 school children of age 5-10 years with dental caries. Candida isolates were tested for biofilm production, phospholipase and haemolytic activity. Statistical analysis was done by Chi-Square test and Mann-Whitney U test wherever applicable using SPSS version 11.5. Results Out of the 100 children with dental caries 37 were positive for Candida by smear or culture and 31 by culture. C.albicans was the most prevalent isolate followed by C.krusei, C.tropicalis and C.albicans. Out of 21 C.albicans isolates, 10 (47.6%) showed phospholipase activity and 18 (85.71%) produced biofilm. Of the 10 non-albicans strains, 5 (50%) showed phospholipase activity and 6 (60%) produced biofilm. All isolates of Candida produced haemolysin (100%). Conclusion There was no statistically relevant difference between the virulence factor production by C.albicans and non-albicans species of Candida. In other words, our study shows that both C.albicans and non-albicans species of Candida isolated from caries lesions of the children, produce these virulence factors. So we can say that non-albicans species of Candida also are involved in caries formation. PMID:27190803

  13. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping

    PubMed Central

    Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon

    2016-01-01

    Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections. PMID:27765942

  14. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping

    NASA Astrophysics Data System (ADS)

    Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon

    2016-10-01

    Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.

  15. Candida parapsilosis Protects Premature Intestinal Epithelial Cells from Invasion and Damage by Candida albicans

    PubMed Central

    Gonia, Sara; Archambault, Linda; Shevik, Margaret; Altendahl, Marie; Fellows, Emily; Bliss, Joseph M.; Wheeler, Robert T.; Gale, Cheryl A.

    2017-01-01

    Candida is a leading cause of late-onset sepsis in premature infants and is thought to invade the host via immature or damaged epithelial barriers. We previously showed that the hyphal form of Candida albicans invades and causes damage to premature intestinal epithelial cells (pIECs), whereas the non-hyphal Candida parapsilosis, also a fungal pathogen of neonates, has less invasion and damage abilities. In this study, we investigated the potential for C. parapsilosis to modulate pathogenic interactions of C. albicans with the premature intestine. While a mixed infection with two fungal pathogens may be expected to result in additive or synergistic damage to pIECs, we instead found that C. parapsilosis was able to protect pIECs from invasion and damage by C. albicans. C. albicans-induced pIEC damage was reduced to a similar extent by multiple different C. parapsilosis strains, but strains differed in their ability to inhibit C. albicans invasion of pIECs, with the inhibitory activity correlating with their adhesiveness for C. albicans and epithelial cells. C. parapsilosis cell-free culture fractions were also able to significantly reduce C. albicans adhesion and damage to pIECs. Furthermore, coadministration of C. parapsilosis cell-free fractions with C. albicans was associated with decreased infection and mortality in zebrafish. These results indicate that C. parapsilosis is able to reduce invasion, damage, and virulence functions of C. albicans. Additionally, the results with cellular and cell-free fractions of yeast cultures suggest that inhibition of pathogenic interactions between C. albicans and host cells by C. parapsilosis occurs via secreted molecules as well as by physical contact with the C. parapsilosis cell surface. We propose that non-invasive commensals can be used to inhibit virulence features of pathogens and deserve further study as a non-pharmacological strategy to protect the fragile epithelial barriers of premature infants. PMID:28382297

  16. Candida albicans-induced inflammatory response in human keratinocytes.

    PubMed

    Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C

    2004-06-01

    Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.

  17. Candida albicans and Candida tropicalis in oral candidosis: quantitative analysis, exoenzyme activity, and antifungal drug sensitivity.

    PubMed

    da Costa, Karen Regina Carim; Ferreira, Joseane Cristina; Komesu, Marilena Chinali; Candido, Regina Celia

    2009-02-01

    Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both C. albicans and C. tropicalis, but phospholipase activity was noted only in C. albicans. In vitro resistance to antifungals was verified in both species, but C. tropicalis appears to be more resistant to the tested antifungals than C. albicans.

  18. Candida albicans specializations for iron homeostasis: from commensalism to virulence.

    PubMed

    Noble, Suzanne M

    2013-12-01

    Candida albicans is a fungal commensal-pathogen that persistently associates with its mammalian hosts. Between the commensal and pathogenic lifestyles, this microorganism inhabits host niches that differ markedly in the levels of bioavailable iron. A number of recent studies have exposed C. albicans specializations for acquiring iron from specific host molecules in regions where iron is scarce, while also defending against iron-related toxicity in regions where iron occurs in surfeit. Together, these results point to a central role for iron homeostasis in the evolution of this important human pathogen.

  19. Evaluation of Mueller-Hinton-agar as a simple medium for the germ tube production of Candida albicans and Candida dubliniensis.

    PubMed

    Rimek, Dagmar; Fehse, Brigitte; Göpel, Petra

    2008-05-01

    Candida albicans is the most frequently isolated yeast species from clinical specimens. A classical rapid presumptive differentiation from non-albicans species is based on its ability to produce germ tubes after incubation in human serum. The only non-albicans Candida species producing germ tubes is Candida dubliniensis. In this study, we evaluated Mueller-Hinton-agar (MH-agar) as a medium for germ tube formation of C. albicans and C. dubliniensis. A total of 859 yeast isolates from stool samples, including 632 strains of C. albicans, 10 C. dubliniensis and 217 other yeast strains from 20 different species, were grown on Sabouraud glucose (2%) agar at 37 degrees C for 24-72 h. Species were identified by standard methods. For the germ tube test (GTT), an inoculum from a single colony was streaked onto a MH-agar plate and covered by a sterile coverslip. After incubation at 37 degrees C for 2 h, the MH plates were examined using a light microscope at x200. The GTT was positive in 578 of 632 C. albicans strains (sensitivity 91.5%), in six of 10 C. dubliniensis strains (sensitivity 60.0%), and in none of the other yeast strains. MH-agar is a suitable medium for the GTT and the presumptive identification of C. albicans. It is safer to use than human serum and is widely available in microbiology laboratories.

  20. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families.

    PubMed

    Vyas, Valmik K; Barrasa, M Inmaculada; Fink, Gerald R

    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.

  1. Growing Candida albicans Biofilms on Paper Support and Dynamic Conditions.

    PubMed

    Selow, Marcela Lima Cardoso; Rymovicz, Alinne Ulbrich Mores; Ribas, Cristina Rauen; Saad, Renata Simão; Rosa, Rosimeire Takaki; Rosa, Edvaldo Antonio Ribeiro

    2015-08-01

    A stainless steel paper-embedded biofilm reactor (PEBR) was developed for Candida spp. growth, permitting confluent distribution of nutrients by capillary diffusion through ordinary laboratory filter paper. Antibiogram disks were distributed along the filter paper rim, and the PEBR received 0.1 or 0.01 % crystal violet (CV) at 200 μL min(-1) and at 37 °C, for 48 h. CV was recovered from the disks and measured at 540 nm. Candida albicans SC5314 cells were applied onto antibiogram disks. The bioreactor was assembled, and YEPD broth was admitted (200 μL min(-1)) at 37 °C, for 72 h. Biofilm growth was estimated via the MTT reduction test. Controls were disks that received the same treatments, except for the fungus. The PEBR was considered high-throughput table, low-cost, and feasible to grow C. albicans biofilms.

  2. Starvation survival of Candida albicans in various water microcosms.

    PubMed

    Chaieb, Kamel; Kouidhi, Bochra; Zmantar, Tarek; Mahdouani, Kacem; Bakhrouf, Amina

    2011-08-01

    Candida is a major Human pathogen causing a variety of infections and can survive for extended period of time in aquatic environment including marine and fresh water. In this study we compared a colorimetric XTT assay to colony forming units (CFU) count to evaluate the survival potential of Candida albicans incubated in water microcosms. Our results showed that cells maintain cultivability within a long period followed by a decline in cultivability and a drop of plate counts to less than 20 cell ml(-1) after 150 days in tap water, 190 days in rain water and 200 days in seawater. In addition we noted that 10% of cells viability was reached after 150 days in seawater, 180 days in rain water and 210 days in tap water. Molecular method confirms the persistence of C. albicans cells in water during long time starvation period.

  3. Mechanism underlying renal failure caused by pathogenic Candida albicans infection.

    PubMed

    Jae-Chen, Shin; Young-Joo, Jeon; Seon-Min, Park; Kang Seok, Seo; Jung-Hyun, Shim; Jung-Il, Chae

    2015-03-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen that commonly causes nosocomial infections. Systemic candidiasis is encountered with increasing frequency in immunocompromised hosts, leading to renal failure that results in severe morbidity and mortality. The present study investigated the mechanisms underlying kidney susceptibility following infection with several C. albicans strains, such as B311 and SC5314. Fungal growth of the highly virulent SC5314 strain was 10(3)-fold higher compared to the nonpathogenic B311 strain in the kidneys. An intravenous challenge of SC5314 in mice, elevated blood urea nitrogen (BUN) and creatine levels, which resulted in mortality at 8 or 35 days after infection in a dose- and time-dependent manner, whereas all the B311-infected mice had BUN and creatinine levels in the normal range and survived. Whether virulent C. albicans may escape clearance by activating signaling pathways that lead to the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was investigated. B311 infections significantly elevated TNF-α and IL-1β mRNA expression in the kidneys, whereas the expression in SC5314-infected mice remained unchanged. Furthermore, B311 infection significantly elevated the plasma levels of TNF-α and IL-1β. These results indicated that the less virulent strains of C. albicans induced pro-inflammatory cytokines in mice. These results determined that an impairment of the protective mechanisms occurred in the kidneys with virulent C. albicans infection.

  4. In vitro damage of Candida albicans biofilms by chitosan

    PubMed Central

    PU, YU; LIU, AIBO; ZHENG, YUQIANG; YE, BIN

    2014-01-01

    With the increasing usage of indwelling medical devices in clinical practice, the frequency of fungal infections has increased, such as that of Candida albicans (C. albicans). Biofilms, a protected niche for microorganisms, are resistant to a range of current antifungal agents. Chitosan is a polyatomic biopolymer with advantageous biocompatibility, biodegradation, nontoxicity and antibacterial properties. To investigate the inhibitory effect of chitosan on biofilms formed by C. albicans, cell viability, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-caboxanilide reduction, and morphological assays, including fluorescence microscopy and scanning electron microscopy (SEM), were employed. As assessed by cell viability assay, chitosan showed significant inhibitory effects on the planktonic cells and the biofilm of C. albicans in a dose-dependent manner. Fluorescence microscopy and SEM assays confirmed that the chitosan-treated group showed delayed C. albicans biofilm formation with defect morphological features, due to the inhibitory effects of the vast majority of fungal cell growth. In conclusion, C. albicans biofilms were compromised by the treatment with chitosan, providing an alternative therapeutic strategy against the fungal biofilms in the medical devices. PMID:25120626

  5. Anti-biofilm Properties of Peganum harmala against Candida albicans

    PubMed Central

    Aboualigalehdari, Elham; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Zargoush, Zaynab; Tahmasebi, Zahra; Badakhsh, Behzad; Rostamzad, Arman; Ghafourian, Sobhan; Pakzad, Iraj

    2016-01-01

    Objectives Vaginitis still remains as a health issue in women. It is notable that Candida albicans producing biofilm is considered a microorganism responsible for vaginitis with hard to treat. Also, Peganum harmala was applied as an anti fungal in treatment for many infections in Iran. Therefore, this study goal to investigate the role of P. harmala in inhibition of biofilm formation in C. albicans. Methods So, 27 C. albicans collected from women with Vaginitis, then subjected for biofilm formation assay. P. harmala was applied as antibiofilm formation in C. albicans. Results Our results demonstrated that P. harmala in concentration of 12 μg/ml easily inhibited strong biofilm formation; while the concentrations of 10 and 6 μg/ml inhibited biofilm formation in moderate and weak biofilm formation C. albicans strains, respectively. Conclusion Hence, the current study presented P. harmala as antibiofilm herbal medicine for C. albicans; but in vivo study suggested to be performed to confirm its effectiveness. PMID:27169010

  6. Caspofungin MIC Distribution amongst Commonly Isolated Candida Species in a Tertiary Care Centre - An Indian Experience

    PubMed Central

    Gupta, Rajarshi; Mehta, Preeti

    2016-01-01

    Introduction Emergence of Candida species resistant to Amphotericin B and triazole has led to use of echinocandins, mostly caspofungin in the management of invasive candidiasis. There are some published reports of caspofungin resistance in Candida species yet no studies on caspofungin susceptibility pattern of Candida species exist in Indian setup. Aim To carry out the antifungal susceptibility of Candida isolates against caspofungin. Materials and Methods In a retrospective study at a tertiary care teaching hospital, 60 preserved Candida isolates from inpatients of invasive candidiasis obtained over a period of 6 months from January 2015 to June 2015 were subjected to antifungal susceptibility to caspofungin and the Minimum Inhibitory Concentrations (MICs) of Candida species to caspofungin were determined by Epsilometer test (E-test). Results Thirty Candida albicans and 30 Non albicans Candida mainly Candida glabrata, Candida parapsilosis and Candida tropicalis were tested for caspofungin susceptibitity by E-test. Caspofungin resistance was detected in 6.67% Candida albicans isolates. Caspofungin resistance was not observed in Candida parapsilosis, Candida glabrata and Candida tropicalis. This shows that caspofungin resistance is still rare. Further elaborate studies with clinical correlation data are needed to detect prevalence of caspofungin resistance. Conclusion Emergence of resistance in our study warrants need of elaborate studies with clinical correlation data to detect prevalence of resistance to caspofungin. E-test method proved to be an easy and simple technique for testing susceptibility of Candida to caspofungin. PMID:28050365

  7. Genome-wide functional analysis in Candida albicans.

    PubMed

    Motaung, Thabiso E; Ells, Ruan; Pohl, Carolina H; Albertyn, Jacobus; Tsilo, Toi J

    2017-02-08

    Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties.

  8. Candida albicans and Enterococcus faecalis in the gut

    PubMed Central

    Garsin, Danielle A; Lorenz, Michael C

    2013-01-01

    The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one. PMID:23941906

  9. Interaction of Candida albicans with Human Leukocytes and Serum1

    PubMed Central

    Lehrer, Robert I.; Cline, Martin J.

    1969-01-01

    A quantitative assay of candidacidal activity based on differential staining of non-viable Candida albicans by methylene blue was developed and applied to studies of leukocytes from normal individuals and patients with fungal and other infections. Serum factors were necessary for optimal phagocytosis of C. albicans but lacked direct candidacidal activity. Normal human neutrophils (38 studies) killed 29.0 ± 7.4% of ingested C. albicans in 1 hr. Eosinophils and monocytes killed a smaller percentage. Neutrophil candidacidal activity did not require protein or ribonucleic acid synthesis by the leukocyte but was inhibited by anaerobic conditions, potassium cyanide, and colchicine. Leukocytes of a patient with hereditary myeloperoxidase deficiency and of three children with chronic granulomatous disease phagocytized C. albicans normally, yet failed to kill them. Our data suggest that the neutrophil can play an important role in resistance to Candida infection and that the lysosomal enzyme myeloperoxidase and its oxidant substrate hydrogen peroxide are the major participants in neutrophil candidacidal activity. Images PMID:4182532

  10. Characterization of Candida isolates from pediatric burn patients.

    PubMed Central

    Neely, A N; Odds, F C; Basatia, B K; Holder, I A

    1988-01-01

    To provide more detailed information about Candida epidemiology and pathogenesis in pediatric burn patients, Candida isolates from 113 patients collected over 3 years were identified at the species level and the serotypes and biotypes of the C. albicans isolates were determined. A total of 85% of the patients were colonized or infected by C. albicans, 18% by C. tropicalis, and 11% by C. parapsilosis. Although colonization or infection often was found at multiple sites and times, 87% of the patients were colonized or infected by only one Candida species or strain; the other 13% showed multiple colonizations or infections, some of which occurred simultaneously at the same site. C. albicans biotyping determined the tolerance of the isolates to pH (pH 1.4) and salt; flucytosine, borate, and safranine resistance; and ability to produce proteinase and assimilate urea, sorbose, and citrate; results are expressed as three-digit numbers. For isolates from three different anatomical sites, the distribution of the nine biotype characteristics was similar in all cases but one. Significantly more fecal than wound or throat isolates were resistant to safranine. Sixty-four different serotype-biotype combinations were found in the 96 patients with C. albicans infections or colonizations. Twenty-nine percent of all C. albicans isolates had the partial biotype -57, while 20 of the 96 patients had specifically serotype B, biotype 557 colonizations or infections. Eleven patients had the B557 infection when admitted; nine patients acquired the yeast in-house. Thirty percent of the C. albicans isolated from 23 adult patients at a nearby hospital also showed the -57 biotype pattern, suggesting that C. albicans isolates expressing this biotype are either extremely prevalent in nature or are more virulent than other C. albicans isolates. PMID:3053771

  11. Candida albicans susceptibility to lactoperoxidase-generated hypoiodite

    PubMed Central

    Ahariz, Mohamed; Courtois, Philippe

    2010-01-01

    In vivo, lactoperoxidase produces hypothiocyanite (OSCN−) from thiocyanate (SCN−) in the presence of hydrogen peroxide (H2O2); in vitro, iodide (I−) can be oxidized into hypoiodite (OI−) by this enzyme. The aim of this study was to compare in vitro the anti-Candida effect of iodide versus thiocyanate used as lactoperoxidase substrate to prevent Candida biofilms development. Candida albicans ATCC 10231 susceptibility upon both peroxidase systems was tested in three different experimental designs: (i) in a liquid culture medium, (ii) in an interface model between solid culture medium and gel containing the enzymic systems, (iii) in a biofilm model onto titanium and acrylic resin. Yeast growth in liquid medium was monitored by turbidimetry at 600 nm. Material-adherent yeast biomass was evaluated by the tetrazolium salt MTT method. The iodide-peroxidase system has been shown to inhibit Candida biofilm formation at lower substrate concentrations (~200 fold less H2O2 donor) and for longer incubation periods than the thiocyanate-peroxidase system. In conclusion, efficiency of lactoperoxidase-generated OI− to prevent C. albicans biofilm development allows refining iodine antifungal use in ex vivo conditions. PMID:23662084

  12. The effect of thyme and tea tree oils on morphology and metabolism of Candida albicans.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta; Dąbrowska, Mariola

    2014-01-01

    Members of Candida species cause significant problems in medicine and in many industrial branches also. In order to prevent from Candida sp. development, essential oils are more and more frequently applied as natural, non-toxic, non-pollutive and biodegradable agents with a broad spectrum of antimicrobial activity. The aim of the research was to determine changes in morphology and metabolic properties of Candida albicans in the presence of thyme and tea tree oils. Changes of enzymatic activity of isolates were observed in the presence of both tested essential oils, and they were primarily associated with loss or decrease of activity of all enzymes detected for control. Furthermore, only for 3 out of 11 isolates additional activity of N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase and trypsin was detected. Vivid changes in biochemical profiles were found after treatment with tea tree oil and they were related to loss of ability to assimilate D-xylose, D-sorbitol and D-trehalose. The main differences in morphology of isolates compared to the control strain concerned formation of pseudohyphae structures. Both examined essential oils caused changes in cell and colony morphology, as well as in the metabolism of Candida albicans. However, the extent of differences depends on the type and concentration of an essential oil. The most important finding is the broad spectrum of changes in yeast enzymatic profiles induced by thyme and tea tree oils. It can be supposed that these changes, together with loss of ability to assimilate saccharides could significantly impact Candida albicans pathogenicity.

  13. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    PubMed

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  14. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans

    PubMed Central

    Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers. PMID:28280743

  15. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans.

    PubMed

    Cai, Zhongyu; Kwak, Daniel H; Punihaole, David; Hong, Zhenmin; Velankar, Sachin S; Liu, Xinyu; Asher, Sanford A

    2015-10-26

    We report two-dimensional (2D) photonic crystal (PC) sensing materials that selectively detect Candida albicans (C. albicans). These sensors utilize Concanavalin A (Con A) protein hydrogels with a 2D PC embedded on the Con A protein hydrogel surface, that multivalently and selectively bind to mannan on the C. albicans cell surface to form crosslinks. The resulting crosslinks shrink the Con A protein hydrogel, reduce the 2D PC particle spacing, and blue-shift the light diffracted from the PC. The diffraction shifts can be visually monitored, measured with a spectrometer, or determined from the Debye diffraction ring diameter. Our unoptimized hydrogel sensor has a detection limit of around 32 CFU/mL for C. albicans. This sensor distinguishes between C. albicans and those microbes devoid of cell-surface mannan such as the gram-negative bacterium E. coli. This sensor provides a proof-of-concept for utilizing recognition between lectins and microbial cell surface carbohydrates to detect microorganisms in aqueous environments.

  16. Candida albicans Is Resistant to Polyglutamine Aggregation and Toxicity

    PubMed Central

    Leach, Michelle D.; Kim, TaeHyung; DiGregorio, Sonja E.; Collins, Cathy; Zhang, Zhaolei; Duennwald, Martin L.; Cowen, Leah E.

    2016-01-01

    Disruption of protein quality control can be detrimental, having toxic effects on single cell organisms and contributing to neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s in humans. Here, we examined the effects of polyglutamine (polyQ) aggregation in a major fungal pathogen of humans, Candida albicans, with the goal of identifying new approaches to disable this fungus. However, we discovered that expression of polyQ stretches up to 230Q had no effect on C. albicans ability to grow and withstand proteotoxic stress. Bioinformatics analysis demonstrates that C. albicans has a similarly glutamine-rich proteome to the unicellular fungus Saccharomyces cerevisiae, which exhibits polyQ toxicity with as few as 72Q. Surprisingly, global transcriptional profiles indicated no significant change upon induction of up to 230Q. Proteomic analysis highlighted two key interactors of 230Q, Sis1 and Sgt2; however, loss of either protein had no additional effect on C. albicans toxicity. Our data suggest that C. albicans has evolved powerful mechanisms to overcome the toxicity associated with aggregation-prone proteins, providing a unique model for studying polyQ-associated diseases. PMID:27807047

  17. Septin Function in Candida albicans MorphogenesisD⃞

    PubMed Central

    Warenda, Amy J.; Konopka, James B.

    2002-01-01

    The septin proteins function in the formation of septa, mating projections, and spores in Saccharomyces cerevisiae, as well as in cell division and other processes in animal cells. Candida albicans septins were examined in this study for their roles in morphogenesis of this multimorphic, opportunistically pathogenic fungus, which can range from round budding yeast to elongated hyphae. C. albicans green fluorescent protein labeled septin proteins localized to a tight ring at the bud and pseudohyphae necks and as a more diffuse array in emerging germ tubes of hyphae. Deletion analysis demonstrated that the C. albicans homologs of the S. cerevisiae CDC3 and CDC12 septins are essential for viability. In contrast, the C. albicans cdc10Δ and cdc11Δ mutants were viable but displayed conditional defects in cytokinesis, localization of cell wall chitin, and bud morphology. The mutant phenotypes were not identical, however, indicating that these septins carry out distinct functions. The viable septin mutants could be stimulated to undergo hyphal morphogenesis but formed hyphae with abnormal curvature, and they differed from wild type in the selection of sites for subsequent rounds of hyphal formation. The cdc11Δ mutants were also defective for invasive growth when embedded in agar. These results further extend the known roles of the septins by demonstrating that they are essential for the proper morphogenesis of C. albicans during both budding and filamentous growth. PMID:12181342

  18. In vitro activity of Caspofungin combined with Fluconazole on mixed Candida albicans and Candida glabrata biofilm.

    PubMed

    Pesee, Siripen; Angkananuwat, Chayanit; Tancharoensukjit, Sudarat; Muanmai, Somporn; Sirivan, Pattaraporn; Bubphawas, Manita; Tanarerkchai, Nissara

    2016-05-01

    The objective of this study was to evaluate the antifungal effect of caspofungin (CAS) combined with fluconazole (FLU) on the biofilm biomass and cultivable viability and microstructure of Candida albicans and Candida glabrata mixed biofilm in vitro.Biofilms were formed in a 96-well microtiter plate for crystal violet assay and colony forming unit (CFU) method and grown on plastic coverslip disks for scanning electron microscopy. MIC50 of CAS and FLU against single Candida spp.and mixed Candida spp.biofilms were evaluated using crystal violet assay. Additional,C. albicans and C. glabrata mixed biofilms were incubated with subinhibitory CAS concentration plus FLU and their percentages of Candida biofilm reduction were calculated. We found that percentages of biofilm reduction were significantly decreased when CAS at 0.25MIC and FLU (0.25 or 0.5MIC) were combined (P< .05) but not different when CAS at 0.5 MIC combined with FLU at 0.25 or 0.5MIC, compared to CAS treatment alone. Structural analyses revealed that CAS/FLU combination-treated biofilms showed less hyphae and blastospores with some aberrant cells compared to control group. Although it was evident that a greater CFU of Candida glabrata were demonstrated in every group, the total viable cells derived from CAS/FLU combination-treated biofilms at any ratio were not significantly different from positive control. Overall, CAS/FLU combinations appeared to affect the quantity and cell architecture, but number of viable cell, of Candida albicans and Candida glabrata mixed biofilm. This antifungal effect was CAS concentration dependent.

  19. Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14α-Demethylase (CYP51A1) from Azole-Resistant Candida albicans Clinical Isolates Contribute to Resistance to Azole Antifungal Agents

    PubMed Central

    Sanglard, Dominique; Ischer, Françoise; Koymans, Luc; Bille, Jacques

    1998-01-01

    The cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) of yeasts is involved in an important step in the biosynthesis of ergosterol. Since CYP51A1 is the target of azole antifungal agents, this enzyme is potentially prone to alterations leading to resistance to these agents. Among them, a decrease in the affinity of CYP51A1 for these agents is possible. We showed in a group of Candida albicans isolates from AIDS patients that multidrug efflux transporters were playing an important role in the resistance of C. albicans to azole antifungal agents, but without excluding the involvement of other factors (D. Sanglard, K. Kuchler, F. Ischer, J.-L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378–2386, 1995). We therefore analyzed in closer detail changes in the affinity of CYP51A1 for azole antifungal agents. A strategy consisting of functional expression in Saccharomyces cerevisiae of the C. albicans CYP51A1 genes of sequential clinical isolates from patients was designed. This selection, which was coupled with a test of susceptibility to the azole derivatives fluconazole, ketoconazole, and itraconazole, enabled the detection of mutations in different cloned CYP51A1 genes, whose products are potentially affected in their affinity for azole derivatives. This selection enabled the detection of five different mutations in the cloned CYP51A1 genes which correlated with the occurrence of azole resistance in clinical C. albicans isolates. These mutations were as follows: replacement of the glycine at position 129 with alanine (G129A), Y132H, S405F, G464S, and R467K. While the S405F mutation was found as a single amino acid substitution in a CYP51A1 gene from an azole-resistant yeast, other mutations were found simultaneously in individual CYP51A1 genes, i.e., R467K with G464S, S405F with Y132H, G129A with G464S, and R467K with G464S and Y132H. Site-directed mutagenesis of a wild-type CYP51A1 gene was performed to estimate the effect of each of these

  20. Spaceflight enhances cell aggregation and random budding in Candida albicans.

    PubMed

    Crabbé, Aurélie; Nielsen-Preiss, Sheila M; Woolley, Christine M; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O; Searles, Stephen C; Nelman-Gonzalez, Mayra A; Ott, C Mark; Wilson, James W; Pierson, Duane L; Stefanyshyn-Piper, Heidemarie M; Hyman, Linda E; Nickerson, Cheryl A

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans-induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  1. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum

    PubMed Central

    Wu, T.; Cen, L.; Kaplan, C.; Zhou, X.; Lux, R.; Shi, W.; He, X.

    2015-01-01

    Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens. PMID:26152186

  2. Population Structure of Candida albicans from Three Teaching Hospitals in Ghana.

    PubMed

    Adjapong, Gloria; Hale, Marie; Garrill, Ashley

    2016-02-01

    Previous studies on Candida species in a clinical setting in Ghana have shown a prevalence of Candida albicans. Despite this, very little is known about the various strain types and their population genetic structure. In this study three microsatellite loci, CAI, CAIII and CAVI, were used to investigate the population genetic structure of C. albicans from clinical isolates in Ghana. In all, 240 clinically unrelated C. albicans isolates were recovered from patients reporting at three teaching hospitals. All the isolates were heterozygous for at least one of the three loci, except for one isolate, which was homozygous for all three loci. Sixty-seven unique alleles and 240 different genotypes were generated by the three polymorphic microsatellite loci, resulting in a very high discriminatory potential of approximately 0.98. There was no significant difference in allele frequencies from the small number of anatomical sites sampled, regardless of the host conditions although high genotypic diversities were observed among the isolates. There was evidence for clonal reproduction, including over-expression of observed heterozygotes across the populations. The populations deviated significantly from Hardy-Weinberg equilibrium and pair-wise genotypic linkage disequilibria comparisons across the three loci were significant, also suggesting a clonal population. The overall Wright FIS for the three loci was negative, and the overall FST value was not significantly different from zero for the three loci analyzed, indicating a clonal and homogeneous population across the three sampling locations from Ghana.

  3. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans.

    PubMed

    Wiederhold, Nathan P; Najvar, Laura K; Bocanegra, Rosie A; Kirkpatrick, William R; Patterson, Thomas F

    2011-07-01

    Previous in vivo studies have reported caspofungin dose escalation to be effective against Candida glabrata with reduced susceptibility. We hypothesized that higher doses of caspofungin would be effective against invasive candidiasis caused by the more virulent species Candida albicans, including isolates resistant to this echinocandin. Immunocompetent mice were inoculated with one of three C. albicans isolates, including one susceptible and two resistant isolates with different FKS1 hot spot 1 point mutations. Mice received daily caspofungin treatment for 7 days and were then followed off therapy for 2 weeks to assess survival. Kidney tissue and blood were collected, and fungal burden and serum (1 → 3)-β-D-glucan were measured. Significant differences in virulence were observed among the three C. albicans isolates, which translated into differences in responses to caspofungin. The most virulent of the resistant isolates studied (isolate 43001; Fks1p F641S) did not respond to caspofungin doses of up to 10 mg/kg of body weight, as there were no differences in survival (survival range, 0 to 12% with treatment), tissue burden, or (1 → 3)-β-D-glucan concentration compared to those for untreated controls. Higher doses of caspofungin did improve survival against the second resistant isolate (53264; Fks1p S645P) that demonstrated reduced virulence (5 and 10 mg/kg; 80% survival). In contrast, caspofungin doses as low as 1 mg/kg improved survival (85 to 95%) and reduced tissue burden and (1 → 3)-β-D-glucan concentration against the susceptible isolate (ATCC 90028). These data suggest that caspofungin dose escalation for invasive candidiasis may not be consistently effective against resistant C. albicans isolates, and this may be associated with the virulence of the strain.

  4. Decontamination efficacy of erbium:yttrium-aluminium-garnet and diode laser light on oral Candida albicans isolates of a 5-day in vitro biofilm model.

    PubMed

    Sennhenn-Kirchner, Sabine; Schwarz, Peter; Schliephake, Henning; Konietschke, Frank; Brunner, Edgar; Borg-von Zepelin, Margarete

    2009-05-01

    The different forms of superficial and systemic candidiasis are often associated with biofilm formation on surfaces of host tissues or medical devices. The biofilm formation of Candida spp., in general, necessitates significantly increased amounts of antifungal agents for therapy. Often the therapeutic effect is doubtful. A 5-day biofilm model with oral Candida isolates was established according to Chandra et al. (J Dent Res 80:903-908, 2001) on glass and titanium surfaces and was modified by Sennhenn-Kirchner et al. (Z Zahnärztl Implantol 3:45-51, 2007) to investigate different aspects unanswered in the field of dentistry. In this model, the efficacy of erbium:yttrium-aluminium-garnet (Er:YAG) light (2940 nm, 100 mJ, 10 Hz, 300 micros pulsed mode applied for 80 s) and diode laser light (810 nm, 1 W, continuous wave mode applied for 20 s with four repetitions after 30 s pauses each) was evaluated and compared to untreated controls. The photometric evaluation of the samples was completed by observations on morphological changes of yeast cells grown in the biofilm. Compared to the untreated controls Candida cells grown in mature in vitro biofilms were significantly reduced by both wavelengths investigated. Comparison between the different methods of laser treatment additionally revealed a significantly greater effect of the Er:YAG over the diode laser. Scanning electron microscopy findings proved that the diode laser light was effective in direct contact mode. In contrast, in the areas without direct contact, the fungal cells were left almost unchanged. The Er:YAG laser damaged the fungal cells to a great extent wherever it was applied.

  5. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    PubMed

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.

  6. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells.

    PubMed

    Sowa-Jasiłek, Aneta; Zdybicka-Barabas, Agnieszka; Stączek, Sylwia; Wydrych, Jerzy; Skrzypiec, Krzysztof; Mak, Paweł; Deryło, Kamil; Tchórzewski, Marek; Cytryńska, Małgorzata

    2016-12-01

    The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and β-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.

  7. Germ tube-specific antigens of Candida albicans cell walls

    SciTech Connect

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.

  8. Nanocapsules with glycerol monolaurate: Effects on Candida albicans biofilms.

    PubMed

    Lopes, Leonardo Quintana Soares; Santos, Cayane Genro; Vaucher, Rodrigo de Almeida; Raffin, Renata Platcheck; Santos, Roberto Christ Vianna

    2016-08-01

    Candida albicans does not only occur in the free living planktonic form but also grows in surface-attached biofilm communities. Moreover, these biofilms appear to be the most common lifestyle and are involved in the majority of human Candida infections. Nanoparticles can be used as an alternative to conventional antimicrobial agents and can also act as carriers for antibiotics and other drugs. In view of this, the aim of the study was develop, characterize and verify the anti-biofilm potential of GML Nanocapsules against C. albicans. The GML Nanocapsules showed mean diameter of 193.2 nm, polydispersion index of 0.044, zeta potential of -23.3 mV and pH 6.32. The microdilution assay showed MIC of 15.5 μg mL(-1) to GML Nanocapsules and 31.25 μg mL(-1) to GML. The anti-biofilm assay showed the significantly reduction of biomass of C. albicans biofilm treated with GML Nanocapsules while the GML does not exhibit effect. The kinetic assay demonstrated that at 48 h, the GML Nanocapsules reduce 94% of formed biofilm. The positive results suggest the promisor alternative for this public health problem that is biofilm infections.

  9. Candida albicans biofilm on titanium: effect of peroxidase precoating

    PubMed Central

    Ahariz, Mohamed; Courtois, Philippe

    2010-01-01

    The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil) was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30) and 0.50 ± 0.04 × 106 blastoconidia per cm2 of titanium foil (n = 12). The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate), Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated) and liquid environment (containing peroxidase substrates) to limit C. albicans biofilm formation. PMID:22915919

  10. DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1

    SciTech Connect

    Diener, A.C.; Fink, G.R.

    1996-06-01

    DMC1/LIM15 homologue 1 (DLH1), a gene related to meiosis-specific genes, has been isolated from Candida albicans, a fungus thought not to undergo meiosis. The deduced protein sequence of DLH1 contains 74% amino acid identity with Dmc1p from Saccharomyces cerevisiae and 63% with Lim15p from the plant Lilium longiflorum, meiosis-specific homologous of Escherichia coli RecA. Candida DLH1 complements a dmc1/dmc1 null mutant in S. cerevisiae. High copy expression of DLH1 restores both sporulation and meiotic recombination to a Saccharomyces dmc1/{Delta}/dmc1{Delta} strain. Unlike the DMC1 gene, which is transcribed only in meiotic cells, the heterologous Candida DLH1 gene is transcribed in both vegetative and meiotic cells of S. cerevisiae. Transcription of DLH1 is not detected or induced in C. albicans under conditions that induce DMC1 and meiosis in S. cerevisiae. The presence of an intact homologue of a meiosis-specific gene in C. albicans raises the possibility that this organism has a cryptic meiotic pathway. 25 refs., 6 figs., 3 tabs.

  11. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development

    PubMed Central

    Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P

    2016-01-01

    As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories. PMID:27706381

  12. Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms.

    PubMed

    Yu, Haining; Liu, Xuelian; Wang, Chen; Qiao, Xue; Wu, Sijin; Wang, Hui; Feng, Lan; Wang, Yipeng

    2016-02-01

    As the most common fungal pathogen of humans, severe drug resistance has emerged in the clinically isolated Candida albicans, which lead to the urgency to develop novel antifungal agents. Here, four our previously characterized cathelicidins (cathelicidin-BF, Pc-CATH1, Cc-CATH2, Cc-CATH3) were selected and their antifungal activities against C. albicans were evaluated in vitro and in vivo using amphotericin B and LL-37 as control. Results showed that all four cathelicidins could eradicate standard and clinically isolated C. albicans strains with most MIC values ranging from 1 to 16 μg/ml, in less than 0.5 h revealed by time-kill kinetic assay. Four peptides only exhibited slight hemolytic activity with most HC50 > 200 μg/ml, and retained potent anti-C. albicans activity at salt concentrations below and beyond physiological level. In animal experiment, 50 mg/kg administration of the four cathelicidins could significantly reduce the fungal counts in a murine oral candidiasis model induced by clinically isolated C. albicans. The antibiofilm activity of cathelicidin-BF, the most potent among the five peptides was evaluated, and result showed that cathelicidin-BF strongly inhibited C. albicans biofilm formation at 20 μg/ml. Furthermore, cathelicidin-BF also exhibited potent anti-C. albicans activity in established biofilms as measured by metabolic and fluorescent viability assays. Structure-function analyses suggest that they mainly adopt an α-helical conformations, which enable them to act as a membrane-active molecule. Altogether, the four cathelicidins display great potential for antifungal agent development against candidiasis.

  13. Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene.

    PubMed

    Bennett, Richard J; Miller, Mathew G; Chua, Penelope R; Maxon, Mary E; Johnson, Alexander D

    2005-02-01

    It is now well established that mating can occur between diploid a and alpha cells of Candida albicans. There is, however, controversy over when, and with what efficiency, nuclear fusion follows cell fusion to create stable tetraploid a/alpha cells. In this study, we have analysed the mating process between C. albicans strains using both cytological and genetic approaches. Using strains derived from SC5314, we used a number of techniques, including time-lapse microscopy, to demonstrate that efficient nuclear fusion occurs in the zygote before formation of the first daughter cell. Consistent with these observations, zygotes micromanipulated from mating mixes gave rise to mononuclear tetraploid cells, even when no selection for successful mating was applied to them. Mating between different clinical isolates of C. albicans revealed that while all isolates could undergo nuclear fusion, the efficiency of nuclear fusion varied in different crosses. We also show that nuclear fusion in C. albicans requires the Kar3 microtubule motor protein. Deletion of the CaKAR3 gene from both mating partners had little or no effect on zygote formation but reduced the formation of stable tetraploids more than 600-fold, as determined by quantitative mating assays. These findings demonstrate that nuclear fusion is an active process that can occur in C. albicans at high frequency to produce stable, mononucleate mating products.

  14. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment

    PubMed Central

    Lin, Jia; Wester, Michael J.; Graus, Matthew S.; Lidke, Keith A.; Neumann, Aaron K.

    2016-01-01

    The cell wall of Candida albicans is composed largely of polysaccharides. Here we focus on β-glucan, an immunogenic cell-wall polysaccharide whose surface exposure is often restricted, or “masked,” from immune recognition by Dectin-1 on dendritic cells (DCs) and other innate immune cells. Previous research suggested that the physical presentation geometry of β-glucan might determine whether it can be recognized by Dectin-1. We used direct stochastic optical reconstruction microscopy to explore the fine structure of β-glucan exposed on C. albicans cell walls before and after treatment with the antimycotic drug caspofungin, which alters glucan exposure. Most surface-accessible glucan on C. albicans yeast and hyphae is limited to isolated Dectin-1–binding sites. Caspofungin-induced unmasking caused approximately fourfold to sevenfold increase in total glucan exposure, accompanied by increased phagocytosis efficiency of DCs for unmasked yeasts. Nanoscopic imaging of caspofungin-unmasked C. albicans cell walls revealed that the increase in glucan exposure is due to increased density of glucan exposures and increased multiglucan exposure sizes. These findings reveal that glucan exhibits significant nanostructure, which is a previously unknown physical component of the host–Candida interaction that might change during antifungal chemotherapy and affect innate immune activation. PMID:26792838

  15. Conserved and Divergent Roles of Bcr1 and CFEM Proteins in Candida parapsilosis and Candida albicans

    PubMed Central

    Maguire, Sarah L.; Guida, Alessandro; Synnott, John M.; Andes, David R.; Butler, Geraldine

    2011-01-01

    Candida parapsilosis is a pathogenic fungus that is major cause of hospital-acquired infection, predominantly due to growth as biofilms on indwelling medical devices. It is related to Candida albicans, which remains the most common cause of candidiasis disease in humans. The transcription factor Bcr1 is an important regulator of biofilm formation in vitro in both C. parapsilosis and C. albicans. We show here that C. parapsilosis Bcr1 is required for in vivo biofilm development in a rat catheter model, like C. albicans. By comparing the transcription profiles of a bcr1 deletion in both species we found that regulation of expression of the CFEM family is conserved. In C. albicans, three of the five CFEM cell wall proteins (Rbt5, Pga7 and Csa1) are associated with both biofilm formation and acquisition of iron from heme, which is an important virulence characteristic. In C. parapsilosis, the CFEM family has undergone an expansion to 7 members. Expression of three genes (CFEM2, CFEM3, and CFEM6) is dependent on Bcr1, and is induced in low iron conditions. All three are involved in the acquisition of iron from heme. However, deletion of the three CFEM genes has no effect on biofilm formation in C. parapsilosis. Our data suggest that the role of the CFEM family in iron acquisition is conserved between C. albicans and C. parapsilosis, but their role in biofilm formation is not. PMID:22145027

  16. Oral Candida albicans biotypes in Chinese patients with and without oral candidosis.

    PubMed

    Xu, Y Y; Samaranayake, L P

    1995-06-01

    A total of 53 oral Candida albicans isolates from Chinese patients with clinically diagnosed oral candidosis (27 patients) or without overt signs and mycological manifestations of infection (26) were biotyped using two commercially available API micromethod kits and a boric acid-resistance test. There were no significant differences in the biotypes in health and disease, although the biotype A1R was present only in diseased individuals. The biotype A1S accounted for 21% of the total isolates, as in a number of other previous studies from the West. However, 14 of the 27 biotypes characterized were new biotypes that have not been described before. These preliminary data indicate that biotypic profile of C. albicans may bear no relation to the virulence of the isolates, and that diverse subtypes of the fungus are globally prevalent.

  17. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    PubMed

    Tafesse, Fikadu G; Rashidfarrokhi, Ali; Schmidt, Florian I; Freinkman, Elizaveta; Dougan, Stephanie; Dougan, Michael; Esteban, Alexandre; Maruyama, Takeshi; Strijbis, Karin; Ploegh, Hidde L

    2015-10-01

    The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  18. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae

    SciTech Connect

    Yannai, S.; Berdicevsky, I.; Duek, L. )

    1991-01-01

    Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans was the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.

  19. Effects of ambroxol on Candida albicans growth and biofilm formation.

    PubMed

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis.

  20. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans

    PubMed Central

    Schmidt, Florian I.; Freinkman, Elizaveta; Dougan, Stephanie; Dougan, Michael; Esteban, Alexandre; Maruyama, Takeshi; Strijbis, Karin; Ploegh, Hidde L.

    2015-01-01

    The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans. PMID:26431038

  1. Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans.

    PubMed Central

    Smith, H A; Shenbagamurthi, P; Naider, F; Kundu, B; Becker, J M

    1986-01-01

    Two novel polyoxins, N-epsilon-(octanoyl)-lysyl-uracil polyoxin C (Oct-Lys-UPOC) and N-gamma-(octyl)-glutaminyluracil polyoxin C (Oct-Gln-UPOC), were synthesized by reacting uracil polyoxin C with the appropriate amino acid p-nitrophenyl ester. Oct-Lys-UPOC and Oct-Gln-UPOC were strong inhibitors (Kis = 1.7 X 10(-6)M) of chitin synthetase from Candida albicans membrane preparations. In a permeabilized-cell assay, Oct-Gln-UPOC had a 10-fold-lower inhibitory activity toward chitin synthetase than did the Oct-Lys-UPOC analog. Both compounds were resistant to hydrolysis by a cell extract of C. albicans H317; however, Oct-Gln-UPOC was hydrolyzed with a half-life of 23 min by a permeabilized-cell preparation. Oct-Lys-UPOC was resistant to hydrolysis by permeabilized cells. Oct-Gln-UPOC and Oct-Lys-UPOC did not compete with the transport of peptides or uridine into the cell. At concentrations up to 2 mM these two new polyoxins were ineffective in the inhibition of cell growth or reduction of cell viability, but they induced aberrant morphologies in C. albicans at a concentration of 0.25 mM. These data suggest that polyoxins containing hydrophobic amino acids retain strong chitin synthetase inhibitory activity and are resistant to cellular hydrolysis. They provide the first example of effective synthetic chitin synthetase inhibitors which are stable inside C. albicans. PMID:3524423

  2. Molecular methods for strain typing of Candida albicans: a review.

    PubMed

    Saghrouni, F; Ben Abdeljelil, J; Boukadida, J; Ben Said, M

    2013-06-01

    Candida albicans is one of the most medically important fungi because of its high frequency as a commensal and pathogenic microorganism causing superficial as well as invasive infections. Strain typing and delineation of the species are essential for understanding its biology, epidemiology and population structure. A wide range of molecular techniques have been used for this purpose including non-DNA-based methods (multi-locus enzyme electrophoresis), conventional DNA-based methods (electrophoretic karyotyping, random amplified polymorphic DNA, amplified fragment length polymorphism, restriction enzyme analysis with and without hybridization, rep-PCR) and DNA-based methods called exact typing methods because they generate unambiguous and highly reproducible typing data (including microsatellite length polymorphism and multi-locus sequence typing). In this review, the main molecular methods used for C. albicans strain typing are summarized, and their advantages and limitations are discussed with regard to their discriminatory power, reproducibility, cost and ease of performance.

  3. Adaptation of Candida albicans to commensalism in the gut.

    PubMed

    Prieto, Daniel; Correia, Inês; Pla, Jesús; Román, Elvira

    2016-01-01

    Candida albicans is a common resident of the oral cavity, GI tract and vagina in healthy humans where it establishes a commensal relationship with the host. Colonization of the gut, which is an important niche for the microbe, may lead to systemic dissemination and disease upon alteration of host defences. Understanding the mechanisms responsible for the adaptation of C. albicans to the gut is therefore important for the design of new ways of combating fungal diseases. In this review we discuss the available models to study commensalism of this yeast, the main mechanisms controlling the establishment of the fungus, such as microbiota, mucus layer and antimicrobial peptides, and the gene regulatory circuits that ensure its survival in this niche.

  4. An immunological link between Candida albicans colonization and Crohn's disease.

    PubMed

    Gerard, Romain; Sendid, Boualem; Colombel, Jean-Frederic; Poulain, Daniel; Jouault, Thierry

    2015-06-01

    The etiology of Crohn's disease (CD), an autoimmune, inflammatory bowel disease (IBD) which affects approximately one million people in Europe, is still unclear. Nevertheless, it is widely accepted that CD could result from an inappropriate inflammatory response to intestinal microorganisms in a genetically susceptible host. Most studies to date have concerned the involvement of bacteria in disease progression. In addition to bacteria, there appears to be a possible link between the commensal yeast Candida albicans and disease development. In this review, in an attempt to link the gut colonization process and the development of CD, we describe the different pathways that are involved in the progression of CD and in the host response to C. albicans, making the yeast a possible initiator of the inflammatory process observed in this IBD.

  5. Recent advances on Candida albicans biology and virulence

    PubMed Central

    Sellam, Adnane; Whiteway, Malcolm

    2016-01-01

    Candida albicans is an important human fungal pathogen, in terms of both its clinical significance and its use as an experimental model for scientific investigation. Although this opportunistic pathogen is a natural component of the human flora, it can cause life-threatening infections in immunosuppressed patients. There are currently a limited number of antifungal molecules and drug targets, and increasing resistance to the front-line therapeutics, demonstrating a clear need for new antifungal drugs. Understanding the biology of this pathogen is an important prerequisite for identifying new drug targets for antifungal therapeutics. In this review, we highlight some recent developments that help us to understand how virulence traits are regulated at the molecular level, in addition to technical advances that improve the ability of genome editing in C. albicans. PMID:27853524

  6. Quantitative relationships of Candida albicans infections and dressing patterns in Nigerian women.

    PubMed Central

    Elegbe, I A; Elegbe, I

    1983-01-01

    Candida albicans colony counts were far higher in patients with vaginitis wearing tight fitting clothing than in patients wearing loose fitting clothing. In Ile-Ife, Nigeria, tight fitting dresses, woolen and corduroy jeans, coupled with nylon underwear, appear to create an environment favorable to Candida albicans colonization. PMID:6338749

  7. Quantitative relationships of Candida albicans infections and dressing patterns in Nigerian women.

    PubMed

    Elegbe, I A; Elegbe, I

    1983-04-01

    Candida albicans colony counts were far higher in patients with vaginitis wearing tight fitting clothing than in patients wearing loose fitting clothing. In Ile-Ife, Nigeria, tight fitting dresses, woolen and corduroy jeans, coupled with nylon underwear, appear to create an environment favorable to Candida albicans colonization.

  8. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment.

    PubMed

    Bonhomme, Julie; d'Enfert, Christophe

    2013-08-01

    Fungi are able to form biofilms on medical implants, causing serious infections. A better understanding of fungal biofilm formation is necessary to develop tools for detection or prevention and to identify new antifungal strategies. This review explores recent advances in the characterization at the molecular level of fungal biofilms, especially those formed by the yeast Candida albicans: the identification of complex transcriptional networks that control their formation; the pivotal role of the extracellular matrix in biofilm antifungal tolerance; and the knowledge gained on the physiology of biofilm cells and heterogeneity within these communities. These findings may help develop new, targeted therapeutic strategies.

  9. Characterization of DNA topoisomerase I from Candida albicans as a target for drug discovery.

    PubMed Central

    Fostel, J M; Montgomery, D A; Shen, L L

    1992-01-01

    Candida albicans is an opportunistic pathogen responsible for life-threatening infections in persons with impaired immune systems. Topoisomerase I is a potential target for novel antifungal agents; however, in order for this enzyme to be a therapeutically useful target, it needs to be demonstrated that the fungal and human topoisomerases differ sufficiently as to allow the fungal topoisomerase to be selectively targeted. To address this question, we isolated the topoisomerase I from C. albicans and compared its biochemical properties with those of the mammalian enzyme. Similar to other eukaryotic type I topoisomerases, the C. albicans type I topoisomerase has an apparent molecular mass of 102 kDa and covalently links to the 3' end of DNA, as shown after the reaction is interrupted by sodium dodecyl sulfate. Topoisomerase poisons such as camptothecin act by stabilizing the cleavage complex formed by the topoisomerase I and DNA. We observed that the C. albicans and mammalian type I topoisomerases differ in that the C. albicans cleavage complex is approximately 10-fold less sensitive to camptothecin than the mammalian cleavage complex is. In addition, we found that the antifungal agent eupolauridine can stabilize the cleavage complex formed by both the C. albicans and human topoisomerases and that the response of the C. albicans topoisomerase I to this drug is greater than that of the human enzyme. Thus, the topoisomerase I from C. albicans is sufficiently distinct from the human enzyme as to allow differential chemical targeting and will therefore make a good target for antifungal drug discovery. Images PMID:1332588

  10. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans.

    PubMed

    Holland, Linda M; Schröder, Markus S; Turner, Siobhán A; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G; Butler, Geraldine

    2014-09-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis.

  11. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    PubMed Central

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  12. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans

    PubMed Central

    Li, Xiuyun; Yu, Cuixiang; Huang, Xin; Sun, Shujuan

    2016-01-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases in the clinic. The emergence of drug resistance in Candida albicans has become a noteworthy phenomenon due to the extensive use of antifungal agents and the development of biofilms. This study showed that budesonide potentiates the antifungal effect of fluconazole against fluconazole-resistant Candida albicans strains both in vitro and in vivo. In addition, our results demonstrated, for the first time, that the combination of fluconazole and budesonide can reverse the resistance of Candida albicans by inhibiting the function of drug transporters, reducing the formation of biofilms, promoting apoptosis and inhibiting the activity of extracellular phospholipases. This is the first study implicating the effects and mechanisms of budesonide against Candida albicans alone or in combination with fluconazole, which may ultimately lead to the identification of new potential antifungal targets. PMID:28006028

  13. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong

    PubMed Central

    Seneviratne, Chaminda J.; Rajan, Suhasini; Wong, Sarah S. W.; Tsang, Dominic N. C.; Lai, Christopher K. C.; Samaranayake, Lakshman P.; Jin, Lijian

    2016-01-01

    Candida bloodstream infections (CBI) are one of the most common nosocomial infections globally, and they account for a high mortality rate. The increasing global prevalence of drug-resistant Candida strains has also been posing a challenge to clinicians. In this study, we comprehensively evaluated the biofilm formation and production of hemolysin and proteinase of 63 CBI isolates derived from a hospital setting in Hong Kong as well as their antifungal susceptibility both in the presence and in the absence of human serum, using standard methodology. Candida albicans was the predominant species among the 63 CBI isolates collected, and non-albicans Candida species accounted for approximately one third of the isolates (36.5%). Of them, Candida tropicalis was the most common non-albicans Candida species. A high proportion (31.7%) of the CBI isolates (40% of C. albicans isolates, 10% of C. tropicalis isolates, 11% of C. parapsilosis isolates, and 100% of C. glabrata isolates) were found to be resistant to fluconazole. One of the isolates (C. tropicalis) was resistant to amphotericin B. A rising prevalence of drug-resistance CBI isolates in Hong Kong was observed with reference to a previous study. Notably, all non-albicans Candida species, showed increased hemolytic activity relative to C. albicans, whilst C. albicans, C. tropicalis, and C. parapsilosis exhibited proteinase activities. Majority of the isolates were capable of forming mature biofilms. Interestingly, the presence of serum distorted the yeast sensitivity to fluconazole, but not amphotericin B. Taken together, our findings demonstrate that CBI isolates of Candida have the potential to express to varying extent their virulence attributes (e.g., biofilm formation, hemolysin production, and proteinase activity) and these, together with perturbations in their antifungal sensitivity in the presence of serum, may contribute to treatment complication in candidemia. The effect of serum on antifungal activity

  14. Molecular Fingerprinting Studies Do Not Support Intrahospital Transmission of Candida albicans among Candidemia Patients in Kuwait

    PubMed Central

    Asadzadeh, Mohammad; Ahmad, Suhail; Al-Sweih, Noura; Khan, Ziauddin

    2017-01-01

    Candida albicans, a constituent of normal microbial flora of human mucosal surfaces, is a major cause of candidemia in immunocompromised individuals and hospitalized patients with other debilitating diseases. Molecular fingerprinting studies have suggested nosocomial transmission of C. albicans based on the presence of clusters or endemic genotypes in some hospitals. However, intrahospital strain transmission or a common source of infection has not been firmly established. We performed multilocus sequence typing (MLST) on 102 C. albicans bloodstream isolates (representing 92% of all culture-confirmed candidemia patients over a 31-month period at seven major hospitals) to identify patient-to-patient transmission or infection from a common source in Kuwait, a small country in the Middle East where consanguineous marriages are common. Repeat bloodstream isolates from six patients and nine surveillance cultures from other anatomic sites from six patients were also analyzed. Fifty-five isolates belonged to unique genotypes. Forty-seven isolates from 47 patients formed 16 clusters, with each cluster containing 2–9 isolates. Multiple isolates from the same patient from bloodstream or other anatomical sites yielded identical genotypes. We identified four cases of potential patient-to-patient transmission or infection from a common source based on association analysis between patients' clinical/epidemiological data and the corresponding MLST genotypes of eight C. albicans isolates. However, further fingerprinting by whole genome-based amplified fragment length polymorphism (AFLP) analysis yielded 8 different genotypes, ruling out intrahospital transmission of infection. The findings suggest that related strains of C. albicans exist in the community and fingerprinting by MLST alone may complicate hospital infection control measures during outbreak investigations. PMID:28270801

  15. Molecular Fingerprinting Studies Do Not Support Intrahospital Transmission of Candida albicans among Candidemia Patients in Kuwait.

    PubMed

    Asadzadeh, Mohammad; Ahmad, Suhail; Al-Sweih, Noura; Khan, Ziauddin

    2017-01-01

    Candida albicans, a constituent of normal microbial flora of human mucosal surfaces, is a major cause of candidemia in immunocompromised individuals and hospitalized patients with other debilitating diseases. Molecular fingerprinting studies have suggested nosocomial transmission of C. albicans based on the presence of clusters or endemic genotypes in some hospitals. However, intrahospital strain transmission or a common source of infection has not been firmly established. We performed multilocus sequence typing (MLST) on 102 C. albicans bloodstream isolates (representing 92% of all culture-confirmed candidemia patients over a 31-month period at seven major hospitals) to identify patient-to-patient transmission or infection from a common source in Kuwait, a small country in the Middle East where consanguineous marriages are common. Repeat bloodstream isolates from six patients and nine surveillance cultures from other anatomic sites from six patients were also analyzed. Fifty-five isolates belonged to unique genotypes. Forty-seven isolates from 47 patients formed 16 clusters, with each cluster containing 2-9 isolates. Multiple isolates from the same patient from bloodstream or other anatomical sites yielded identical genotypes. We identified four cases of potential patient-to-patient transmission or infection from a common source based on association analysis between patients' clinical/epidemiological data and the corresponding MLST genotypes of eight C. albicans isolates. However, further fingerprinting by whole genome-based amplified fragment length polymorphism (AFLP) analysis yielded 8 different genotypes, ruling out intrahospital transmission of infection. The findings suggest that related strains of C. albicans exist in the community and fingerprinting by MLST alone may complicate hospital infection control measures during outbreak investigations.

  16. Glucose modulates antimicrobial photodynamic inactivation of Candida albicans in biofilms.

    PubMed

    Suzuki, Luis Cláudio; Kato, Ilka Tiemy; Prates, Renato Araujo; Sabino, Caetano Padial; Yoshimura, Tania Mateus; Silva, Tamires Oliveira; Ribeiro, Martha Simões

    2017-03-01

    Candida albicans biofilm is a main cause of infections associated with medical devices such as catheters, contact lens and artificial joint prosthesis. The current treatment comprises antifungal chemotherapy that presents low success rates. Photodynamic inactivation (PDI) involves the combination of a photosensitizing compound (PS) and light to generate oxidative stress that has demonstrated effective antimicrobial activity against a broad-spectrum of pathogens, including C. albicans. This fungus senses glucose inducing an upregulation of membrane transporters that can facilitate PS uptake into the cell. The aim of this study was to evaluate the effects of glucose on methylene blue (MB) uptake and its influence on PDI efficiency when combined to a red LED with central wavelength at λ=660nm. C. albicans biofilms were grown on hydrogel disks. Prior to PDI assays, MB uptake tests were performed with and without glucose-sensitization. In this system, the optimum PS administration was determined as 500μM of MB in contact with the biofilm during 30min before irradiation. Irradiation was performed during 3, 6, 9, 12, 15 and 18min with irradiance of 127.3mW/cm(2). Our results showed that glucose was able to increase MB uptake in C. albicans cells. In addition, PDI without glucose showed a higher viability reduction until 6min; after 9min, glucose group demonstrated a significant decrease in cell viability when compared to glucose-free group. Taken together, our data suggest that glucose is capable to enhance MB uptake and modulate photodynamic inactivation of C. albicans biofilm.

  17. Reverse Genetics in Candida albicans Predicts ARF Cycling Is Essential for Drug Resistance and Virulence

    PubMed Central

    Epp, Elias; Vanier, Ghyslaine; Harcus, Doreen; Lee, Anna Y.; Jansen, Gregor; Hallett, Michael; Sheppard, Don C.; Thomas, David Y.; Munro, Carol A.; Mullick, Alaka; Whiteway, Malcolm

    2010-01-01

    Candida albicans, the major fungal pathogen of humans, causes life-threatening infections in immunocompromised individuals. Due to limited available therapy options, this can frequently lead to therapy failure and emergence of drug resistance. To improve current treatment strategies, we have combined comprehensive chemical-genomic screening in Saccharomyces cerevisiae and validation in C. albicans with the goal of identifying compounds that can couple with the fungistatic drug fluconazole to make it fungicidal. Among the genes identified in the yeast screen, we found that only AGE3, which codes for an ADP-ribosylation factor GTPase activating effector protein, abrogates fluconazole tolerance in C. albicans. The age3 mutant was more sensitive to other sterols and cell wall inhibitors, including caspofungin. The deletion of AGE3 in drug resistant clinical isolates and in constitutively active calcineurin signaling mutants restored fluconazole sensitivity. We confirmed chemically the AGE3-dependent drug sensitivity by showing a potent fungicidal synergy between fluconazole and brefeldin A (an inhibitor of the guanine nucleotide exchange factor for ADP ribosylation factors) in wild type C. albicans as well as in drug resistant clinical isolates. Addition of calcineurin inhibitors to the fluconazole/brefeldin A combination only initially improved pathogen killing. Brefeldin A synergized with different drugs in non-albicans Candida species as well as Aspergillus fumigatus. Microarray studies showed that core transcriptional responses to two different drug classes are not significantly altered in age3 mutants. The therapeutic potential of inhibiting ARF activities was demonstrated by in vivo studies that showed age3 mutants are avirulent in wild type mice, attenuated in virulence in immunocompromised mice and that fluconazole treatment was significantly more efficacious when ARF signaling was genetically compromised. This work describes a new, widely conserved, broad

  18. Susceptibility of Candida albicans and Candida dubliniensis to Photodynamic Therapy Using Four Dyes as the Photosensitizer

    PubMed Central

    Hosseini, Nasim; Yazdanpanah, Samira; Saki, Maryam; Rezazadeh, Fahimeh; Ghapanchi, Janan; Zomorodian, Kamiar

    2016-01-01

    Statement of the Problem: Oral candidiasis is the most common opportunistic infection affecting the human oral cavity. Photodynamic therapy, as one of its proposed treatment modalities, needs a distinct dye for achieving the best effect. Purpose: The purpose of this study was to evaluate photosensitization effects of four distinct dyes on standard suspension of Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) and biofilm of C. albicans considering the obtained optimum dye concentration and duration of laser irradiation. Materials and Method: In this in vitro study, colony forming units (CFU) of two sets of four groups of Laser plus Dye (L+D+), Dye (L-D+), Laser (L+D-) and No Laser, No Dye (L-D-) were assessed individually with different methylene blue concentrations and laser irradiation period. The photodynamic therapy effect on standard suspension of Candida species (using methylene blue, aniline blue, malachite green and crystal violet) were studied based on the obtained results. Similar investigation was performed on biofilm of C. albicans using the spectral absorbance. Data were imported to SPSS and assessed by statistical tests of analysis of variance (ANOVA) and Tukey test (α= 0.05). Results: CFU among the different dye concentration and irradiation time decrease in dose- and time-dependent manner (p> 0.05), all of which were significantly lower than the control groups (p< 0.05). Among the examined photosensitizers, there was no statistically significant difference, (p> 0.05) though all of them were significantly decrease CFU compared with the control groups (p< 0.05). In L+D- and L+D+ groups, biofilm was significantly destroyed more than that of L-D- (p< 0.05). Conclusion: Photodynamic therapy might be used as an effective procedure to treat Candida associated mucocutaneous diseases and killing biofilm in the infected surfaces such as dentures. PMID:27942552

  19. Persistence of Pigment Production by Yeast Isolates Grown on CHROMagar Candida Medium

    PubMed Central

    Hospenthal, Duane R.; Murray, Clinton K.; Beckius, Miriam L.; Green, Judith A.; Dooley, David P.

    2002-01-01

    We evaluated the persistence of pigmentation in yeast isolates grown on the chromogenic medium CHROMagar Candida over 7 days. Candida, Cryptococcus, and Trichosporon isolates were inoculated alone or mixed onto duplicate sets of plates and incubated at 30 and 35°C. Candida albicans and Candida krusei were readily identified throughout the reading period, but Candida glabrata was difficult to differentiate from other species until the 3- or 4-day time point. Candida tropicalis produced colonies similar to those of rare Cryptococcus and Trichosporon species, and mixed cultures were often difficult to identify as such. PMID:12454192

  20. Single-strand conformation polymorphism of microsatellite for rapid strain typing of Candida albicans.

    PubMed

    Li, Juan; Bai, Feng-Yan

    2007-11-01

    Single-strand conformation polymorphisms (SSCP) of Candida albicans' microsatellite CAI were characterized. Among the 76 clinical isolates recovered from different patients (independent strains), 60 distinct CAI SSCP patterns were recognized, resulting in a discriminatory power of 0.993. The multiple isolates recovered sequentially from the same or different body locations of the same patient showed exactly the same CAI SSCP pattern. The reliability of the SSCP analysis was confirmed by GeneScan and sequence analyses. From the same set of independent strains, 59 distinct CAI genotypes were identified by GeneScan analysis. Sequence comparison showed the advantage of SSCP over GeneSan analysis in the detection of point mutations in the microsatellite. The results indicated that PCR SSCP analysis of CAI microsatellite is a powerful and economical approach for rapid strain typing of C. albicans in clinical laboratories, especially in the detection of microevolutionary changes in microsatellites and in large-scale epidemiological investigation.

  1. Use of multilocus sequence typing for the investigation of colonisation by Candida albicans in intensive care unit patients.

    PubMed

    Cliff, P R; Sandoe, J A T; Heritage, J; Barton, R C

    2008-05-01

    A prospective study was performed to determine the prevalence of candidal colonisation on the general intensive care unit at a large teaching hospital. Colonisation with Candida spp. was found to be common, occurring in 79% of patients on the unit. C. albicans was the commonest species, colonising 64% of patients, followed by C. glabrata (18%) and C. parapsilosis (14%). Most of the members of staff tested carried Candida spp. at some point, although carriage appeared to be transient. C. parapsilosis was the most commonly isolated species from staff hands, whereas C. albicans was the most commonly isolated species from the mouth. The molecular epidemiology of C. albicans was investigated using Ca3 typing and multilocus sequence typing (MLST). MLST proved to be a reproducible typing method and a useful tool for the investigation of the molecular epidemiology of C. albicans. The results of the molecular typing provided evidence for the presence of an endemic strain on the unit, which was isolated repeatedly from patients and staff. This finding suggests horizontal transmission of C. albicans on the unit though it may also reflect the relative frequency of C. albicans strain types colonising patients on admission. This study has important implications for the epidemiology of systemic candidal infections.

  2. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    PubMed

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  3. Unusually large telomeric repeats in the yeast Candida albicans.

    PubMed Central

    McEachern, M J; Hicks, J B

    1993-01-01

    We have identified sequences at the telomeres of the yeast Candida albicans and have found that they are composed of tandem copies of a 23-bp sequence. Through the cloning of native telomeric ends and the characterization and cloning of a "healed" end, we demonstrate that these repeated sequences are sufficient to function as a telomere. All copies of the 23-bp repeat that have been sequenced from a number of C. albicans strains are identical. In contrast, adjacent subtelomeric sequences are variable both between strains and within the WO-1 strain. In the WO-1 strain, the lengths of the telomeres are dependent upon growth temperature and are substantially longer at higher temperatures. Telomere growth is accompanied by increases in the number of the 23-bp repeats present on the telomeric fragments. These results suggest that either telomerase-maintained telomeres can be more complex in structure than was previously imagined or that Candida telomeres are maintained via a telomerase-independent mechanism. Images PMID:8417351

  4. SOME CYTOLOGICAL AND PATHOGENIC PROPERTIES OF SPHEROPLASTS OF CANDIDA ALBICANS

    PubMed Central

    Kobayashi, George S.; Friedman, Lorraine; Kofroth, Judith F.

    1964-01-01

    Kobayashi, George S. (Tulane University, New Orleans, La.), Lorraine Friedman, and Judith F. Kofroth. Some cytological and pathogenic properties of spheroplasts of Candida albicans. J. Bacteriol. 88:795–801. 1964.—Spheroplasts of Candida albicans were prepared by use of an enzymatic mixture from the digestive tract of the snail Helix pomatia. Untreated cells exhibited well-defined cell walls, whereas such structures were absent from spheroplasts. The intravenous inoculation of either spheroplasts or intact cells into rabbits produced a fever which was apparent within 30 min, the “immediate” fever response characteristic of microbial endotoxin. Cell-wall fragments of enzyme-treated cells did not induce a convincing pyrogenic response. When the inoculum was viable, body temperatures did not return to normal but remained elevated until death of the animal 1 or more days later, exhibiting the “delayed” fever of infection. The gross pathological picture in animals succumbing to infection by viable spheroplasts was similar to that obtained with untreated yeast cells. Images PMID:14208520

  5. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles.

    PubMed

    Vazquez-Muñoz, Roberto; Avalos-Borja, Miguel; Castro-Longoria, Ernestina

    2014-01-01

    Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm.

  6. Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles

    PubMed Central

    Vazquez-Muñoz, Roberto; Avalos-Borja, Miguel; Castro-Longoria, Ernestina

    2014-01-01

    Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm. PMID:25290909

  7. Antimicrobial effects of liquid anesthetic isoflurane on Candida albicans

    PubMed Central

    Barodka, Viachaslau M; Acheampong, Edward; Powell, Garry; Lobach, Ludmila; Logan, David A; Parveen, Zahida; Armstead, Valerie; Mukhtar, Muhammad

    2006-01-01

    Candida albicans is a dimorphic fungus that can grow in yeast morphology or hyphal form depending on the surrounding environment. This ubiquitous fungus is present in skin and mucus membranes as a potential pathogen that under opportunistic conditions causes a series of systemic and superficial infections known as candidiasis, moniliasis or simply candidiasis. There has been a steady increase in the prevalence of candidiasis that is expressed in more virulent forms of infection. Although candidiasis is commonly manifested as mucocutaneous disease, life-threatening systemic invasion by this fungus can occur in every part of the body. The severity of candidal infections is associated with its morphological shift such that the hyphal morphology of the fungus is most invasive. Of importance, aberrant multiplication of Candida yeast is also associated with the pathogenesis of certain mucosal diseases. In this study, we assessed the anti-candidal activity of the volatile anesthetic isoflurane in liquid form in comparison with the anti-fungal agent amphotericin B in an in vitro culture system. Exposure of C. albicans to isoflurane (0.3% volume/volume and above) inhibited multiplication of yeast as well as formation of hyphae. These data suggest development of potential topical application of isoflurane for controlling a series of cutaneous and genital infections associated with this fungus. Elucidiation of the mechanism by which isoflurane effects fungal growth could offer therapeutic potential for certain systemic fungal infections. PMID:17094810

  8. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles.

    PubMed

    Shinde, Ravikumar Bapurao; Raut, Jayant Shankar; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2013-01-01

    Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p<0.05) in presence of 250μg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  9. Candida albicans Ultrastructure: Colonization and Invasion of Oral Epithelium

    PubMed Central

    Howlett, Julie A.; Squier, Christopher A.

    1980-01-01

    The colonization and invasion of various animal oral mucosae by Candida albicans were examined in an organ culture model. Scanning and transmission electron microscopy of the oral epithelium between 12 and 30 h after inoculation with the fungus revealed the morphological relationships between host and parasite. Examination of the fungi in thin sections showed five distinct layers in the cell wall of C. albicans within the epithelium, but changes were evident in the organization and definition of the outer cell wall layers in budding hyphae and in hyphae participating in colonization and invasion of the epithelial cells. Adherence of the fungus to the superficial cells of the oral mucosa appeared to involve intimate contact between the epithelial cell surface and the deeper layers of the fungal cell wall. During invasion a close seal was maintained between the invading hyphae and the surrounding epithelial cell envelope, there being no other evidence of damage to the host cell surface except at the site of entry. Within the epithelial cells there was only occasional loss of cytoplasmic components in the vicinity of the invading hyphae. These findings would suggest that enzymatic lysis associated with the invasive process is localized and that the mechanical support provided by surface adherence and the intimate association between the fungus and the epithelial cell envelope may permit growth of Candida on through the epithelium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:6995338

  10. Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity.

    PubMed

    O'Donnell, Lindsay E; Alalwan, Hasanain K A; Kean, Ryan; Calvert, Gareth; Nile, Christopher J; Lappin, David F; Robertson, Douglas; Williams, Craig; Ramage, Gordon; Sherry, Leighann

    2017-01-01

    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome.

  11. Candida albicans repetitive elements display epigenetic diversity and plasticity

    PubMed Central

    Freire-Benéitez, Verónica; Price, R. Jordan; Tarrant, Daniel; Berman, Judith; Buscaino, Alessia

    2016-01-01

    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30 °C, while robust heterochromatin is assembled over these regions at 39 °C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation. PMID:26971880

  12. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans.

    PubMed

    Premachandra, Ilandari Dewage Udara Anulal; Scott, Kevin A; Shen, Chengtian; Wang, Fuqiang; Lane, Shelley; Liu, Haoping; Van Vranken, David L

    2015-10-01

    A spiroindolinone, (1S,3R,3aR,6aS)-1-benzyl-6'-chloro-5-(4-fluorophenyl)-7'-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3'-1H-indole]-2',4,6-trione, was previously reported to enhance the antifungal effect of fluconazole against Candida albicans. A diastereomer of this compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, was found to enhance the effect of fluconazole with an EC50 value of 300 pM against a susceptible strain of C. albicans and going as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole, with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for antifungal synergy.

  13. Hypoxia and Temperature Regulated Morphogenesis in Candida albicans

    PubMed Central

    Kurtz, Dagmar; Juchimiuk, Mateusz; Ernst, Joachim F.

    2015-01-01

    Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host. PMID:26274602

  14. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans.

    PubMed

    Lam, Minh; Jou, Paul C; Lattif, Ali A; Lee, Yoojin; Malbasa, Christi L; Mukherjee, Pranab K; Oleinick, Nancy L; Ghannoum, Mahmoud A; Cooper, Kevin D; Baron, Elma D

    2011-01-01

    The high prevalence of drug resistance necessitates the development of novel antifungal agents against infections caused by opportunistic fungal pathogens, such as Candida albicans. Elucidation of apoptosis in yeast-like fungi may provide a basis for future therapies. In mammalian cells, photodynamic therapy (PDT) has been demonstrated to generate reactive oxygen species, leading to immediate oxidative modifications of biological molecules and resulting in apoptotic cell death. In this report, we assess the in vitro cytotoxicity and mechanism of PDT, using the photosensitizer Pc 4, in planktonic C. albicans. Confocal image analysis confirmed that Pc 4 localizes to cytosolic organelles, including mitochondria. A colony formation assay showed that 1.0 μM Pc 4 followed by light at 2.0 J cm(-2) reduced cell survival by 4 logs. XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide) assay revealed that Pc 4-PDT impaired fungal metabolic activity, which was confirmed using the FUN-1 (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide) fluorescence probe. Furthermore, we observed changes in nuclear morphology characteristic of apoptosis, which were substantiated by increased externalization of phosphatidylserine and DNA fragmentation following Pc 4-PDT. These data indicate that Pc 4-PDT can induce apoptosis in C. albicans. Therefore, a better understanding of the process will be helpful, as PDT may become a useful treatment option for candidiasis.

  15. Gastrointestinal Colonization by Candida albicans Mutant Strains in Antibiotic-Treated Mice

    PubMed Central

    Wiesner, Stephen M.; Jechorek, Robert P.; Garni, Robb M.; Bendel, Catherine M.; Wells, Carol L.

    2001-01-01

    Antibiotic-treated mice orally inoculated with one of three Candida albicans strains (including two mutant strains) or indigenous Candida pelliculosa showed levels of candidal gastrointestinal colonization that were strain specific. However, regardless of strain, the numbers of viable candida were intermediate to high in the stomach, were consistently lowest in the upper small intestine, and increased progressively down the intestinal tract. PMID:11139219

  16. Candida albicans Carriage in Children with Severe Early Childhood Caries (S-ECC) and Maternal Relatedness

    PubMed Central

    Xiao, Jin; Moon, Yonghwi; Li, Lihua; Rustchenko, Elena; Wakabayashi, Hironao; Zhao, Xiaoyi; Feng, Changyong; Gill, Steven R.; McLaren, Sean; Malmstrom, Hans; Ren, Yanfang; Quivey, Robert

    2016-01-01

    Introduction Candida albicans has been detected together with Streptococcus mutans in high numbers in plaque-biofilm from children with early childhood caries (ECC). The goal of this study was to examine the C. albicans carriage in children with severe early childhood caries (S-ECC) and the maternal relatedness. Methods Subjects in this pilot cross-sectional study were recruited based on a convenient sample. DMFT(S)/dmft(s) caries and plaque scores were assessed during a comprehensive oral exam. Social-demographic and related background information was collected through a questionnaire. Saliva and plaque sample from all children and mother subjects were collected. C. albicans were isolated by BBL™ CHROMagar™ and also identified using germ tube test. S. mutans was isolated using Mitis Salivarius with Bacitracin selective medium and identified by colony morphology. Genetic relatedness was examined using restriction endonuclease analysis of the C. albicans genome using BssHII (REAG-B). Multilocus sequence typing was used to examine the clustering information of isolated C. albicans. Spot assay was performed to examine the C. albicans Caspofungin susceptibility between S-ECC children and their mothers. All statistical analyses (power analysis for sample size, Spearman’s correlation coefficient and multiple regression analyses) were implemented with SAS 9.4 Results A total of 18 S-ECC child-mother pairs and 17 caries free child-mother pairs were enrolled in the study. Results indicated high C. albicans carriage rate in the oral cavity (saliva and plaque) of both S-ECC children and their mothers (>80%). Spearman’s correlation coefficient also indicated a significant correlation between salivary and plaque C. albicans and S. mutans carriage (p<0.01) and caries severity (p<0.05). The levels of C. albicans in the prepared saliva and plaque sample (1ml resuspension) of S-ECC children were 1.3 ± 4.5 x104 cfu/ml and 1.2 ± 3.5 x104 cfu/ml (~3-log higher vs. caries

  17. Investigating Biofilm Production, Coagulase and Hemolytic Activity in Candida Species Isolated From Denture Stomatitis Patients

    PubMed Central

    Yigit, Nimet; Aktas, Esin; Dagistan, Saadettin; Ayyildiz, Ahmet

    2011-01-01

    Objective: Oral candidiasis, in the form of Candida-associated denture stomatitis, represents a common disease in a large percentage of denture wearers, and Candida albicans remains the most commonly isolated species. In this study, we aimed to evaluate biofilm production, coagulase and hemolytic activity of Candida species isolated from denture stomatitis patients. Materials and Methods: This study included 70 patients (31 female, 39 male). Forty-eight of the patients were found to have a positive culture. A total of 48 Candida isolates representing five species, C. albicans (n=17), C. glabrata (n=10), C. krusei (n=9), C. kefyr (n=7) and C. parapsilosis (n=5), were tested. Their coagulase activities were evaluated by a classical tube coagulase test with rabbit plasma. A blood plate assay on 3% enriched sheep blood Sabouraud-dextrose agar (SDA) was used to determine their in vitro hemolytic activities. Biofilm production was determined by a visual tube method. Results: Twenty-one Candida isolates exhibited coagulase activity, and the coagulase activities of the C. albicans (64.7%) isolates were higher than other species. C. albicans, C. glabrata, C. kefyr and C. krusei species demonstrated beta hemolysis. C. parapsilosis strains failed to demonstrate any hemolytic activities. Fifteen (88.0%) of the C. albicans strains were biofilm positive. Six (35.2%) of these strains were strongly positive, 8 (47.0%) C. albicans strains were moderately positive and 1 (5.8%) C. albicans strain was weakly positive. Sixteen (51.6%) of the non-albicans Candida strains were biofilm positive while 15 (48.3%) did not produce biofilms. Conclusion: The results of this present study indicate coagulase, hemolytic activity and biofilm production by Candida spp. isolated from patients with denture stomatitis. Investigations of these virulence factors might be helpful in gaining information about the possible virulence of oral Candida species related to denture stomatitis. PMID:25610156

  18. Susceptibility testing of Candida albicans isolated from oropharyngeal mucosa of HIV+ patients to fluconazole, amphotericin B and Caspofungin. killing kinetics of caspofungin and amphotericin B against fluconazole resistant and susceptible isolates

    PubMed Central

    de Aquino Lemos, Janine; Costa, Carolina Rodrigues; de Araújo, Crystiane Rodrigues; Souza, Lúcia Kioko Hasimoto e; Silva, Maria do Rosário Rodrigues

    2009-01-01

    A clear understanding of the pharmacodynamic properties of antifungal agents is important for the adequate treatment of fungal infections like candidiasis. For certain antifungal agents, the determination of Minimal Fungicidal Concentration (MFC) and time kill curve could be clinically more relevant than the determination of the Minimal Inhibitory Concentration (MIC). In this study, MIC and MFC to fluconazole, amphotericin B and caspofungin against C. albicans isolates and the killing patterns obtained with caspofungin and amphotericin B against susceptible and resistant strains to fluconazole were determined. The results of MICs showed that all C. albicans isolates were highly susceptible to amphotericin B, but two isolates were fluconazole resistant. The comparative analysis between MIC and MFC showed that MFC of fluconazole was fourfold higher than MIC in 41.9% of the C. albicans isolates. Same values of MFC and MIC of amphotericin B and caspofungin were found for 71% of the isolates. Correlation between time kill curves and MFC of amphotericin B and caspofungin against all 4 isolates tested was observed. The caspofungin killing effect was more evident at MFC in 6 hours of incubation than at MIC in this time, suggesting dependence of concentration. The similarity of results of time-kill curve and MFC values indicate that determination of MFC is an alternative for the detection of the fungicidal activity of these drugs. PMID:24031337

  19. Anticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida albicans

    PubMed Central

    Ansari, Moiz A.; Fatima, Zeeshan; Hameed, Saif

    2016-01-01

    This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The transcriptome data revealed a link between calcineurin signaling and PA as among the several categories of PA responsive genes the down regulation of calcineurin signaling gene CNB1 was noteworthy which was also confirmed by both molecular docking and susceptibility assays. We observed that PA treated Candida phenocopied compromised calcineurin pathway stress responses and turned sensitive to alkaline pH, ionic, membrane, salinity, endoplasmic reticulum and serum stresses. Indispensability of functional calcineurin was further confirmed as calcineurin mutant was hypersensitive to PA while constitutively expressed calcineurin strain remained resistant. We explored that PA leads to perturbed membrane integrity as depicted through depleted ergosterol levels and disrupted pH homeostasis. Moreover, PA caused cell wall damage which was evident from hypersensitivity against cell wall perturbing agents (congo red, calcoflour white), SEM and enhanced rate of cell sedimentation. Furthermore, PA inhibited potential virulence traits including morphological transition, biofilm formation and displayed diminished capacity to adhere both to the polystyrene surface and buccal epithelial cells. The study also revealed that PA leads to cell cycle arrest and mitochondrial dysfunction in C. albicans. Together, the present study provides enough evidence for further work on PA so that better strategies could be employed to treat Candida infections. PMID:27627759

  20. Production of virulence factors in Candida strains isolated from patients with denture stomatitis and control individuals.

    PubMed

    Pereira, Cristiane Aparecida; Domingues, Nádia; Araújo, Maria Izabel Daniel Santos Alves; Junqueira, Juliana Campos; Back-Brito, Graziella Nuernberg; Jorge, Antonio Olavo Cardoso

    2016-05-01

    The aim of this study was to evaluate the production of virulence factors in Candida isolates from the oral cavities of 50 patients with different degrees of denture stomatitis (DS, type I, II and III) and 50 individuals without signs of DS. We evaluated the enzymatic and hemolytic activities, the biofilm formation, and the cell surface hydrophobicity (CSH) in all isolates. Germ tube (GT) production was also evaluated in Candida albicans and Candida dubliniensis isolates. In C. albicans and C. dubliniensis the secretion of hemolysin and GT production was significantly different between isolates from patients with DS and individuals without DS. No significant difference was observed in the production of virulence factors by Candida glabrata isolates. Candida isolates expressed a wide range of virulence factors. However, in the majority of isolates from the type III lesions, the production of the virulence factors was higher than for the other groups.

  1. [In vitro antifungal resistance in Candida albicans from HIV-infected patients with and without oral candidosis.].

    PubMed

    Ceballos Salobreña, A; Gaitán Cepeda, L A; Orihuela Cañada, F; Olea Barrionuevo, D; Ceballos García, L; Quindós, G

    1999-12-01

    The main purpose of this study has been to determine the in vitro antifungal susceptibility of clinical isolates from HIV-infected or AIDS patients, depending on the presence of oral candidosis. The oral cavity of 307 HIV-infected or AIDS patients was examined and an oral swab was cultured on Sabouraud glucose agar and studied by conventional mycological methods. In vitro antifungal susceptibility to amphotericin B, nystatin, fluconazole, itraconazole and ketoconazole was tested by disk diffusion with Neo-Sensitabs tablets (Rosco Diagnostica, Dinamarca). One hundred and thirty five Candida albicans isolates (91 serotype A, 38 serotype B, three C. albicans variety stellatoidea and three untyped isolates), three Candida krusei and two Candida glabrata were obtained. All the isolates were susceptible to nystatin and amphotericin B. However, 7.9% isolates were resistant to fluconazole and 2.9% isolates were resistant to ketoconazole or itraconazole. Nearly all C. krusei and C. glabrata isolates, 31% patients with candidosis and 20% Candida-colonized patients showed decreased susceptibility to azoles. This study shows that polyenes had a great in vitro efficacy against clinical isolates from HIV-infected patients and that in vitro resistance to azoles is not as high as observed in other countries.

  2. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.

    PubMed

    Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C

    2010-09-30

    Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.

  3. Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants.

    PubMed

    Doyle, Timothy C; Nawotka, Kevin A; Purchio, Anthony F; Akin, Ali R; Francis, Kevin P; Contag, Pamela R

    2006-02-01

    The infectious yeast Candida albicans is a model organism for understanding the mechanisms of fungal pathogenicity. We describe the functional expression of the firefly luciferase gene, a reporter commonly used to tag genes in many other cellular systems. Due to a non-standard codon usage by this yeast, the CUG codons were first mutated to UUG to allow functional expression. When integrated into the chromosome of C. albicans with a strong constitutive promoter, cells bioluminesce when provided with luciferin substrate in their media. When fused to the inducible promoter from the HWP1 gene, expression and bioluminescence was only detected in cultures conditioning hyphal growth. We further used the luciferase gene as a selection to isolate transformed cell lines from clinical isolates of C. albicans, using a high-density screening strategy that purifies transformed colonies by virtue of light emission. This strategy requires no drug or auxotrophic selectable marker, and we were thus able to generate stable transformants of clinical isolates that are identical to the parental strain in all aspects tested, other than their bioluminescence. The firefly luciferase gene can, therefore, be used as a sensitive reporter to analyze gene function both in laboratory and clinical isolates of this medically important yeast.

  4. The emergence of non-albicans Candida species as causes of invasive candidiasis and candidemia.

    PubMed

    Sobel, Jack D

    2006-11-01

    The last three decades have seen an expanding pool of high-risk patients susceptible to the opportunistic pathogen Candida. Accordingly, a dramatic increase in nosocomial blood stream infections (BSIs) due to Candida spp has been reported throughout the world, starting in tertiary care centers and spreading to community hospitals. This absolute increase in Candida BSIs was accompanied by both an absolute and then a proportional increase in invasive infection caused by reduced fluconazole-susceptible non-albicans Candida spp. Currently, the incidence trend of BSI has stabilized, and Candida albicans remains the most common species causing fungal BSI. Clinicians must be aware of the importance and implications of non-albicans Candida spp when selecting antifungal drugs, although most studies have not shown significant outcome differences with use of the various antifungal classes.

  5. Evaluation of latex reagents for rapid identification of Candida albicans and C. krusei colonies.

    PubMed Central

    Freydiere, A M; Buchaille, L; Guinet, R; Gille, Y

    1997-01-01

    A total of 322 yeast strains and yeastlike organisms belonging to the genera Candida, Cryptococcus, Geotrichum, Saccharomyces, and Trichosporon were tested with the new monoclonal antibody-based Bichro-latex albicans and Krusei color latex tests. Comparison of results with those obtained by conventional identification methods showed 100% sensitivity for both latex tests and 100% and 95% specificity for the Bichro-latex albicans and Krusei color tests, respectively. Because the test is easy to read and quick to perform, the Bichro-latex albicans test may be useful for rapid identification of Candida albicans colonies in the clinical laboratory. PMID:9157146

  6. Genetic dissimilarity of two fluconazole-resistant Candida albicans strains causing meningitis and oral candidiasis in the same AIDS patient.

    PubMed Central

    Berenguer, J; Diaz-Guerra, T M; Ruiz-Diez, B; Bernaldo de Quiros, J C; Rodriguez-Tudela, J L; Martinez-Suarez, J V

    1996-01-01

    We describe a patient with AIDS who simultaneously developed Candida meningitis with three positive cerebrospinal fluid cultures and oral candidiasis. This patient also had a history or recurrent episodes of oral candidiasis treated with fluconazole. The patient did not respond to this therapy but was cured with amphotericin B and flucytosine. In vitro susceptibility tests revealed that each infection was caused by fluconazole-resistant Candida albicans isolates. Strain delineation by karyotyping, NotI restriction pattern analysis, hybridization with the specific probe 27A, and PCR fingerprinting with the phage M13 core sequence clearly demonstrated that meningitis and oral thrush were caused by two genetically different isolates. PMID:8735114

  7. Experimental hematogenous candidiasis caused by Candida krusei and Candida albicans: species differences in pathogenicity.

    PubMed Central

    Anaissie, E; Hachem, R; K-Tin-U, C; Stephens, L C; Bodey, G P

    1993-01-01

    Hematogenous infections caused by Candida krusei have been noted with increasing frequency, particularly in cancer patients receiving prophylaxis with antifungal triazoles. Progress in understanding the pathogenesis of this emerging infection has been limited by the lack of an animal model. We developed a CF1 mouse intravenous inoculation model of candidiasis to evaluate the pathogenicity of C. krusei in normal and immunosuppressed mice and to compare it with that of Candida albicans. Several inocula (10(6) to 10(8) CFU per animal) of two clinical strains of C. krusei and three American Type Culture Collection strains of C. albicans were tested. Groups of 20 mice each were injected with a single intravenous dose of one inoculum. Animals randomized to receive C. krusei were immunosuppressed by intraperitoneal injection of cyclophosphamide or the combination of cyclophosphamide plus cortisone acetate or they did not receive immunosuppressive agents (normal mice). One hundred percent mortality was observed in normal mice injected with 10(6) CFU of C. albicans per mouse compared with no mortality in normal mice that received 10(8) CFU of C. krusei per mouse (P < 0.01). Resistance to C. krusei infection was markedly lowered by immunosuppression, particularly by the combination of cyclophosphamide plus cortisone acetate, with a significantly shorter survival and a higher organ fungal burden in immunosuppressed than in normal animals (P < 0.01). Tissue infection was documented by culture and histopathologic findings in all examined organs. Images PMID:8454330

  8. Antifungal effect of lavender honey against Candida albicans , Candida krusei and Cryptococcus neoformans.

    PubMed

    Estevinho, Maria Leticia; Afonso, Sílvia Esteves; Feás, Xesús

    2011-10-01

    Monofloral lavender honey samples (n = 30), were analyzed to test antifungal effect against Candida albicans, Candida krusei, and Cryptococcus neoformans. The specific growth rates (μ) showed that all the yeast growths were reduced in the presence of honey. The honey concentration (% w/v) that inhibited 10% of the yeasts growth (X min) ranged from 31.0% (C. albicans), 16.8% (C. krusei) and 23.0% (C. neoformans). A synthetic honey solution was also tested to determine antifungal activity attributable to sugars. The presence of synthetic honey in the C. krusei culture medium at concentrations above 58.0% (w/v) was established as X min, while C. albicans and C. neoformans were more resistant, since X min values were not reached over the ranged tested (10-60%, w/v). What the data suggests is that the component in the lavender honey responsible for the observed antifungal in vitro properties is not sugar based. Honey might be tapped as a natural resource to look for new medicines for the treatment of mycotic infections. This could be very useful, onsidering the increasing resistance of antifungals. It should be noticed that this is the first study concerning the effect of lavender honey on the growth of pathogenic yeasts.

  9. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates.

    PubMed

    Lima-Neto, Reginaldo G; Beltrão, Eduardo I C; Oliveira, Patrícia C; Neves, Rejane P

    2011-01-01

    Many studies have described the adherence of Candida albicans to epithelial cells but little is known about Candida parapsilosis adhesion and its role in host cell surface recognition. This study was designed to evaluate the correlation between the adherence of 20 C. albicans and 12 C. parapsilosis strains to human buccal epithelial cells and the expression of fungal cell surface carbohydrates using lectin histochemistry. Adherence assays were carried out by incubating epithelial cells in yeast suspensions (10(7) cells ml(-1) ) and peroxidase conjugated lectins (Con A, WGA, UEA I and PNA at 25 μg ml(-1) ) were used for lectin histochemistry. The results showed that adherence was overall greater for C. albicans than for C. parapsilosis (P < 0.01) and that the individual strain differences correlated with a high content of cell surface α-l-fucose residues as indicated by the UEA I staining pattern. Based on the saccharide specificity of the lectins used, these results suggest that l-fucose residues on cell surface glycoconjugates may represent recognition molecules for interactions between the yeast strain studied and the host (r = 0.6985, P = 0.0045). In addition, our results indicated the presence of α-d-glucose/α-d-mannose, N-acetyl-D-glucosamine/N-acetylneuraminic acid and D-galactose/N-acetyl-D-galactosamine in fungal cell wall.

  10. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections.

  11. Gastrointestinal granuloma due to Candida albicans in an immunocompetent cat

    PubMed Central

    Duchaussoy, Anne-Claire; Rose, Annie; Talbot, Jessica J.; Barrs, Vanessa R.

    2015-01-01

    A 3.5 year-old cat was admitted to the University of Melbourne Veterinary Teaching Hospital for chronic vomiting. Abdominal ultrasonography revealed a focal, circumferential thickening of the wall of the duodenum extending from the pylorus aborally for 3 cm, and an enlarged gastric lymph node. Cytology of fine-needle aspirates of the intestinal mass and lymph node revealed an eosinophilic inflammatory infiltrate and numerous extracellular septate acute angle branching fungal-type hyphae. Occasional hyphae had globose terminal ends, as well as round to oval blastospores and germ tubes. Candida albicans was cultured from a surgical biopsy of the duodenal mass. No underlying host immunodeficiencies were identified. Passage of an abrasive intestinal foreign body was suspected to have caused intestinal mucosal damage resulting in focal intestinal candidiasis. The cat was treated with a short course of oral itraconazole and all clinical signs resolved. PMID:26862475

  12. Inhibition of Nucleic Acid Biosynthesis Makes Little Difference to Formation of Amphotericin B-Tolerant Persisters in Candida albicans Biofilm

    PubMed Central

    Sun, Jing; Liu, Xiaohua

    2014-01-01

    Candida albicans persisters constitute a small subpopulation of biofilm cells and play a major role in recalcitrant chronic candidiasis; however, the mechanism underlying persister formation remains unclear. Persisters are often described as dormant, multidrug-tolerant, nongrowing cells. Persister cells are difficult to isolate and study not only due to their low levels in C. albicans biofilms but also due to their transient, reversible phenotype. In this study, we tried to induce persister formation by inducing C. albicans cells into a dormant state. C. albicans cells were pretreated with 5-fluorocytosine (planktonic cells, 0.8 μg ml−1; biofilm cells, 1 μg ml−1) for 6 h at 37°C, which inhibits nucleic acid and protein synthesis. Biofilms and planktonic cultures of eight C. albicans strains were surveyed for persisters after amphotericin B treatment (100 μg ml−1 for 24 h) and CFU assay. None of the planktonic cultures, with or without 5-fluorocytosine pretreatment, contained persisters. Persister cells were found in biofilms of all tested C. albicans strains, representing approximately 0.01 to 1.93% of the total population. However, the persister levels were not significantly increased in C. albicans biofilms pretreated with 5-fluorocytosine. These results suggest that inhibition of nucleic acid synthesis did not seem to increase the formation of amphotericin B-tolerant persisters in C. albicans biofilms. PMID:25547355

  13. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans.

    PubMed

    Choi, Hyemin; Lee, Dong Gun

    2014-10-01

    In a previous report, a novel antibacterial peptide astacidin 1 (FKVQNQHGQVVKIFHH) was isolated from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. In this study, the antifungal activity and mechanism of astacidin 1 were evaluated. Astacidin 1 exhibited antifungal activity against Candida albicans, Trichosporon beigelii, Malassezia furfur, and Trichophyton rubrum. Also, astacidin 1 had fungal cell selectivity in human erythrocytes without causing hemolysis. To understand the antifungal mechanism, membrane studies were done against C. albicans and T. beigelii. Flow cytometric analysis and K(+) measurement showed membrane damage, resulting in membrane permeabilization and K(+) release-induced membrane depolarization. Furthermore, the calcein leakage from liposomes mimicking C. albicans membrane demonstrated that the membrane-active action was driven by pore-forming mechanism. Live cell imaging using fluorescein isothiocyanate-labeled dextrans of various sizes suggested that the radii of pores formed in the C. albicans membrane were 1.4-2.3 nm. Therefore, the present study suggests that astacidin 1 exerts its antifungal effect by damaging the fungal membrane via pore formation.

  14. Essential Role for Vacuolar Acidification in Candida albicans Virulence*

    PubMed Central

    Patenaude, Cassandra; Zhang, Yongqiang; Cormack, Brendan; Köhler, Julia; Rao, Rajini

    2013-01-01

    Fungal infections are on the rise, with mortality above 30% in patients with septic Candida infections. Mutants lacking V-ATPase activity are avirulent and fail to acidify endomembrane compartments, exhibiting pleiotropic defects in secretory, endosomal, and vacuolar pathways. However, the individual contribution of organellar acidification to virulence and its associated traits is not known. To dissect their separate roles in Candida albicans pathogenicity we generated knock-out strains for the V0 subunit a genes VPH1 and STV1, which target the vacuole and secretory pathway, respectively. While the two subunits were redundant in many vma phenotypes, such as alkaline pH sensitivity, calcium homeostasis, respiratory defects, and cell wall integrity, we observed a unique contribution of VPH1. Specifically, vph1Δ was defective in acidification of the vacuole and its dependent functions, such as metal ion sequestration as evidenced by hypersensitivity to Zn2+ toxicity, whereas stv1Δ resembled wild type. In growth conditions that elicit morphogenic switching, vph1Δ was defective in forming hyphae whereas stv1Δ was normal or only modestly impaired. Host cell interactions were evaluated in vitro using the Caco-2 model of intestinal epithelial cells, and murine macrophages. Like wild type, stv1Δ was able to inflict cellular damage in Caco-2 and macrophage cells, as assayed by LDH release, and escape by filamentation. In contrast, vph1Δ resembled a vma7Δ mutant, with significant attenuation in host cell damage. Finally, we show that VPH1 is required for fungal virulence in a murine model of systemic infection. Our results suggest that vacuolar acidification has an essential function in the ability of C. albicans to form hyphae and establish infection. PMID:23884420

  15. Multicenter surveillance of species distribution and antifungal susceptibilities of Candida bloodstream isolates in South Korea.

    PubMed

    Jung, Sook-In; Shin, Jong Hee; Song, Jae-Hoon; Peck, Kyong Ran; Lee, Kyungwon; Kim, Mi-Na; Chang, Hyun Ha; Moon, Chi Sook

    2010-06-01

    Multicenter data on in vitro susceptibility of Candida bloodstream isolates to echinocandin antifungal agents is still lacking in South Korea. We performed a prospective multicenter study to determine the species distribution of Candida bloodstream isolates and their susceptibility to five antifungal agents, including caspofungin and micafungin. A total of 639 isolates were collected from 20 tertiary hospitals between September 2006 and August 2007. Antifungal susceptibilities were determined through the use of the CLSI broth microdilution method M27-A3. The overall species distribution was as follows; Candida albicans (38%), Candida parapsilosis (26%), Candia tropicalis (20%), Candida glabrata (11%), and miscellaneous Candida species (5%). Although C. parapsilosis and miscellaneous Candida species were less susceptible to both echinocandins, all 639 isolates were susceptible to both caspofungin and micafungin (MIC, isolates (99.7%) had a MIC Candida isolates, with C. glabrata and C. krusei isolates displaying the greatest level of resistance. This is the largest multicenter candidemia study conducted in South Korea and shows that non-C. albicans Candida species, including C. parapsilosis, constitutes over 60% of all Candida species isolates recovered from the bloodstream. In addition, the rates of resistance to all five antifungals, including two echinocandins, are still low among bloodstream isolates in South Korea.

  16. An Expanded Regulatory Network Temporally Controls Candida albicans Biofilm Formation

    PubMed Central

    Fox, Emily P.; Bui, Catherine K.; Nett, Jeniel E.; Hartooni, Nairi; Mui, Michael M.; Andes, David R.; Nobile, Clarissa J.; Johnson, Alexander D.

    2015-01-01

    Summary Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant, and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all timepoints, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points. PMID:25784162

  17. Phytosphingosine kills Candida albicans by disrupting its cell membrane.

    PubMed

    Veerman, Enno C I; Valentijn-Benz, Marianne; van't Hof, Wim; Nazmi, Kamran; van Marle, Jan; Amerongen, Arie V Nieuw

    2010-01-01

    The mechanism of action of phytosphingosine (PHS), a member of the sphingosine family which has candidacidal activity when added externally, was investigated. Previously, it has been reported that the fungicidal activity of PHS is based on the induction of caspase-independent apoptosis. In contrast, we found that addition of PHS causes a direct permeabilization of the plasma membrane of yeast, highlighted by the influx of the membrane probe propidium iodide, and the efflux of small molecules (i.e., adenine nucleotides) as well as large cellular constituents such as proteins. Freeze-fracture electron microscopy revealed that PHS treatment causes severe damage of the plasma membrane of the cell, which seems to have lost its integrity completely. We also found that PHS reverts the azide-induced insensitivity to histatin 5 (Hst5) of Candida albicans. In a previous study, we had found that the decreased sensitivity to Hst5 of energy-depleted cells is due to rigidification of the plasma membrane, which could be reverted by the membrane fluidizer benzyl alcohol. In line with the increased membrane permeabilization and ultrastructural damage, this reversal of the azide-induced insensitivity by PHS also points to a direct interaction between PHS and the cytoplasmic membrane of C. albicans.

  18. Candida albicans spondylodiscitis following an abdominal stab wound: forensic considerations.

    PubMed

    Savall, Frederic; Dedouit, Fabrice; Telmon, Norbert; Rougé, Daniel

    2014-03-01

    Candida albicans spondylodiscitis is a fungal infection of the spine which is still unusual in spite of the increasing frequency of predisposing factors. A 22-year-old man received an abdominal stab wound during a physical assault. Initial medical care included surgery, prolonged use of indwelling vascular catheters with administration of broad-spectrum antibiotics, and hospitalization in intensive care. Two months after the event, the victim experienced back pain in the right lumbar region and septic spondylodiscitis secondary to C. albicans was diagnosed three weeks later. This case is noteworthy because of its clinical forensic context. In France, the public prosecutor orders a medico-legal assessment after an assault for all living victims in order to establish a causal relationship between the assault and its complications. In our case, the patient presented numerous risk factors for candidemia and the forensic specialist reasonably accepted that the causal relationship was certain but indirect. We have only found one published case of spondylodiscitis after an abdominal penetrating injury and the pathogenic agent was not mentioned. We have found no case reported in a forensic context. This unusual observation shows that it may be genuinely difficult to prove the causal relationship between an abdominal penetrating injury and an unusual infectious complication such as fungal spondylodiscitis.

  19. Biofilm Matrix Regulation by Candida albicans Zap1

    PubMed Central

    Nobile, Clarissa J.; Nett, Jeniel E.; Hernday, Aaron D.; Homann, Oliver R.; Deneault, Jean-Sebastien; Nantel, Andre; Andes, David R.; Johnson, Alexander D.; Mitchell, Aaron P.

    2009-01-01

    A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble β-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble β-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. PMID:19529758

  20. Candida albicans mannoprotein influences the biological function of dendritic cells.

    PubMed

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  1. Development of a high-throughput Candida albicans biofilm chip.

    PubMed

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  2. Molecular tracking of Candida albicans in a neonatal intensive care unit: long-term colonizations versus catheter-related infections.

    PubMed Central

    Ruiz-Diez, B; Martinez, V; Alvarez, M; Rodriguez-Tudela, J L; Martinez-Suarez, J V

    1997-01-01

    Nosocomial neonatal candidiasis is a major problem in infants requiring intensive therapy. The subjects of this retrospective study were nine preterm infants admitted to the neonatal intensive care unit of the Hospital Central de Asturias between March 1993 and August 1994. The infants were infected with or colonized by Candida albicans. Five patients developed C. albicans bloodstream infections. A total of 36 isolates (including isolates from catheters and parenteral nutrition) were examined for molecular relatedness by PCR fingerprinting and restriction fragment length polymorphism (RFLP) analysis. The core sequence of phage M13 was used as a single primer in the PCR-based fingerprinting procedure, and RFLP analysis was performed with C. albicans-specific DNA probe 27A. Both techniques were evaluated with a panel of eight C. albicans reference strains, and each technique showed eight different patterns. With the 36 isolates from neonates, each technique enabled us to identify by PCR and RFLP analysis seven and six different patterns, respectively. The combination of these two methods (composite DNA type) identified eight different profiles. A strain with one of these profiles was present in three patients and in their respective catheters. Patients infected with or colonized by this isolate profile were clustered in time. Among the other patients, each patient was infected over time and at multiple anatomic sites with a C. albicans strain with a distinct DNA type. We conclude that C. albicans was most commonly producing long-term colonizations, although horizontal transmission probably due to catheters also occurred. PMID:9399489

  3. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene.

    PubMed

    Wysong, D R; Christin, L; Sugar, A M; Robbins, P W; Diamond, R D

    1998-05-01

    Catalase plays a key role as an antioxidant, protecting aerobic organisms from the toxic effects of hydrogen peroxide, and in some cases has been postulated to be a virulence factor. To help elucidate the function of catalase in Candida albicans, a single C. albicans-derived catalase gene, designated CAT1, was isolated and cloned. Degenerate PCR primers based on highly conserved areas of other fungal catalase genes were used to amplify a 411-bp product from genomic DNA of C. albicans ATCC 10261. By using this product as a probe, catalase clones were isolated from genomic libraries of C. albicans. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 487 amino acid residues. Construction of a CAT1-deficient mutant was achieved by using the Ura-blaster technique for sequential disruption of multiple alleles by integrative transformation using URA3 as a selectable marker. Resulting mutants exhibited normal morphology and comparable growth rates of both yeast and mycelial forms. Enzymatic analysis revealed an abundance of catalase in the wild-type strain but decreasing catalase activity in heterozygous mutants and no detectable catalase in a homozygous null mutant. In vitro assays showed the mutant strains to be more sensitive to damage by both neutrophils and concentrations of exogenous peroxide that were sublethal for the parental strain. Compared to the parental strain, the homozygous null mutant strain was far less virulent for mice in an intravenous infection model of disseminated candidiasis. Definitive linkage of CAT1 with virulence would require restoration of activity by reintroduction of the gene into mutants. However, initial results in mice, taken together with the enhanced susceptibility of catalase-deficient hyphae to damage by human neutrophils, suggest that catalase may enhance the pathogenicity of C. albicans.

  4. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors.

    PubMed Central

    Sanglard, D; Ischer, F; Monod, M; Bille, J

    1996-01-01

    Some Candida albicans isolates from AIDS patients with oropharyngeal candidiasis are becoming resistant to the azole antifungal agent fluconazole after prolonged treatment with this compound. Most of the C. albicans isolates resistant to fluconazole fail to accumulate this antifungal agent, and this has been considered a cause of resistance. This phenomenon was shown to be linked to an increase in the amounts of mRNA of a C. albicans ABC (ATP-binding cassette) transporter gene called CDR1 and of a gene conferring benomyl resistance (BENr), the product of which belongs to the class of major facilitator multidrug efflux transporters (D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378-2386, 1995). To analyze the roles of these multidrug transporters in the efflux of azole antifungal agents, we constructed C. albicans mutants with single and double deletion mutations of the corresponding genes. The mutants were tested for their susceptibilities to these antifungal agents. Our results indicated that the delta cdr1 C. albicans mutant was hypersusceptible to the azole derivatives fluconazole, itraconazole, and ketoconazole, thus showing that the ABC transporter Cdr1 can use these compounds as substrates. The delta cdr1 mutant was also hypersusceptible to other antifungal agents (terbinafine and amorolfine) and to different metabolic inhibitors (cycloheximide, brefeldin A, and fluphenazine). The same mutant was slightly more susceptible than the wild type to nocodazole, cerulenin, and crystal violet but not to amphotericin B, nikkomycin Z, flucytosine, or pradimicin. In contrast, the delta ben mutant was rendered more susceptible only to the mutagen 4-nitroquinoline-N-oxide. However, this mutation increased the susceptibilities of the cells to cycloheximide and cerulenin when the mutation was constructed in a delta cdr1 background. The assay used in the present study could be implemented with new antifungal

  5. Ultrastructural and biochemical studies of two dynamically expressed cell surface determinants on Candida albicans.

    PubMed Central

    Brawner, D L; Cutler, J E

    1986-01-01

    Variability in the expression of two different cell surface carbohydrate determinants was examined with two agglutinating immunoglobulin M monoclonal antibodies (H9 and C6) and immunoelectron microscopy during growth of three strains of Candida albicans. A single strain of Candida parapsilosis did not express either antigen at any time during growth. Antigens were detected on the surface of C. albicans by agglutination tests with either H9 or C6 over a 48-h growth period. The difference in specificities of the monoclonal antibodies was demonstrated by Ouchterlony double-diffusion tests with solubilized antigens and by variabilities in the reactivity of the agglutinins among yeast strains. The antigenic determinants were isolated by specific immunoprecipitation and protease digestion and characterized by methods including high-pressure liquid chromatography, gas-liquid chromatography, and mass spectroscopy with both chemical and electron ionization. These determinants both contain mannose and glucose. In the case of antigen H9, an additional carbohydrate was detected with gas chromatography and mass spectroscopy. The location of antigens on individual cells was determined by indirect labeling of the determinants, first reacting cells with H9 or C6 followed by goat anti-mouse antibody conjugated with 20-nm colloidal gold particles. Transmission electron microscopy was used to examine cells. The antigens that were reactive with the monoclonal antibodies were associated with a flocculent surface layer. Expression of this layer and expression of the antigens is a dynamic process which is growth phase and strain dependent. The antigens were not expressed on very young cells and disappeared from the cell surface of most C. albicans strains with age. The use of monoclonal antibody to cell surface determinants may allow characterization of cell surface antigens of C. albicans and be helpful in establishing receptors which mediate adherence. Images PMID:3510174

  6. Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms

    PubMed Central

    LaFleur, Michael D.; Lucumi, Edinson; Napper, Andrew D.; Diamond, Scott L.; Lewis, Kim

    2011-01-01

    Objectives Microbial adhesion and biofilms have important implications for human health and disease. Candida albicans is an opportunistic pathogen which forms drug-resistant biofilms that contribute to the recalcitrance of disease. We have developed a high-throughput screen for potentiators of clotrimazole, a common therapy for Candida infections, including vaginitis and thrush. The screen was performed against C. albicans biofilms grown in microtitre plates in order to target the most resilient forms of the pathogen. Methods Biofilm growth, in individual wells of 384-well plates, was measured using the metabolic indicator alamarBlue® and found to be very consistent and reproducible. This assay was used to test the effect of more than 120 000 small molecule compounds from the NIH Molecular Libraries Small Molecule Repository, and compounds that enhanced the activity of clotrimazole or acted on the biofilms alone were identified as hits. Results Nineteen compounds (0.016% hit rate) were identified and found to cause more than 30% metabolic inhibition of biofilms compared with clotrimazole alone, which had a modest effect on biofilm viability at the concentration tested. Hits were confirmed for activity against biofilms with dose–response measurements. Several compounds had increased activity in combination with clotrimazole, including a 1,3-benzothiazole scaffold that exhibited a >100-fold improvement against biofilms of three separate C. albicans isolates. Cytotoxicity experiments using human fibroblasts confirmed the presence of lead molecules with favourable antifungal activity relative to cytotoxicity. Conclusions We have validated a novel approach to identify antifungal potentiators and completed a high-throughput screen to identify small molecules with activity against C. albicans biofilms. These small molecules may specifically target the biofilm and make currently available antifungals more effective. PMID:21393183

  7. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms

    PubMed Central

    Rane, Hallie S.; Bernardo, Stella M.; Howell, Amy B.; Lee, Samuel A.

    2014-01-01

    Objectives Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine. Methods C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models. Results Cranberry PAC concentrations of ≥16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms. Conclusions These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation. PMID:24114570

  8. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms.

    PubMed

    Harrison, Joe J; Ceri, Howard; Yerly, Jerome; Rabiei, Maryam; Hu, Yaoping; Martinuzzi, Robert; Turner, Raymond J

    2007-08-01

    Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO(4)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), AsO(2)(-), and SeO(3)(2-)) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated "domed," "layer cake," "flat," and "mycelial." This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.

  9. Comparison of MALDI-TOF mass spectra with microsatellite length polymorphisms in Candida albicans.

    PubMed

    Dhieb, C; Normand, A C; L'Ollivier, C; Gautier, M; Vranckx, K; El Euch, D; Chaker, E; Hendrickx, M; Dalle, F; Sadfi, N; Piarroux, R; Ranque, S

    2015-02-01

    Candida albicans is the most frequent yeast involved in human infections. Its population structure can be divided into several genetic clades, some of which have been associated with antifungal susceptibility. Therefore, detecting and monitoring fungal clones in a routine laboratory setting would be a major epidemiological advance. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra results are now widely used as bar codes to identify microorganisms in clinical microbiology laboratories. This study aimed at testing MALDI-TOF mass spectra bar codes to identify clades among a set of C. albicans isolates. Accordingly, 102 clinical strains were genotyped using 10 microsatellite markers and analyzed via MALDI-TOF mass spectrometry. The mass spectra were compared with a reference spectral library including 33 well-characterized collection strains, using a Microflex(TM) system and Biotyper(TM) software, to test the capacity of the spectrum of a given isolate to match with the reference mass spectrum of an isolate from the same genetic clade. Despite high confidence species identification, the spectra failed to significantly match with the corresponding clade (p = 0.74). This was confirmed with the MALDI-TOF spectra similarity dendrogram, in which the strains were dispersed irrespective of their genetic clade. Various attempts to improve intra-clade spectra recognition were unsuccessful. In conclusion, MALDI-TOF mass spectra bar code analysis failed to reliably recognize genetically related C. albicans isolates. Further studies are warranted to develop alternative MALDI-TOF mass spectra analytical approaches to identify and monitor C. albicans clades in the routine clinical laboratory.

  10. [Effect of Mexican propolis extracts from Apis mellifera on Candida albicans in vitro growth].

    PubMed

    Quintero-Mora, María Leonor; Londoño-Orozco, Amparo; Hernández-Hernández, Francisca; Manzano-Gayosso, Patricia; López-Martínez, Rubén; Soto-Zárate, Carlos Ignacio; Carrillo-Miranda, Liborio; Penieres-Carrillo, Guillermo; García-Tovar, Carlos Gerardo; Cruz-Sánchez, Tonatiuh A

    2008-03-01

    Propolis is a resinous substance collected by bees (Apis mellifera) from different trees and bushes. Due to its antifungal, antibacterial, antiviral and antiparasitic properties, it has continued to be very popular throughout the time showing variable activity depending on its geographical origin. In Mexico, information about this product is very limited. The aim of this work was to evaluate the antifungal activity of four propolis ethanolic extracts from three different Mexican states, and four commercial extracts on Candida albicans growth. A reference strain (ATCC 10231) and 36 clinical isolates of C. albicans were used. The Minimal Inhibitory Concentration (MIC) was determined by the dilution on agar method. Growth curves on Sabouraud Dextrose broth with and without different propolis ethanolic extracts concentrations were performed. In addition, whether the effect was fungistatic or fungicide was determined. The propolis ethanolic extract obtained from Cuautitlán Izcalli, State of Mexico, showed the best biological activity, inhibiting 94.4% from the clinical isolates at 0.8 mg/ml; the reference strain was inhibited at 0.6 mg/ml. The propolis effect was fungistatic in low concentrations and fungicide in concentrations higher to MIC. The Mexican propolis ethanolic extract could be further investigated for its alternative use for the treatment of some C. albicans infections.

  11. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  12. In vitro biofilm production of Candida bloodstream isolates: any association with clinical characteristics?

    PubMed

    Pongrácz, Júlia; Benedek, Kálmán; Juhász, Emese; Iván, Miklós; Kristóf, Katalin

    2016-04-01

    Candida spp. are a leading cause of bloodstream infection (BSI) and are associated with high mortality rates. Biofilm production is a virulence factor of Candida spp., and has been linked with poor clinical outcome. The aim of our study was to assess biofilm production of Candida bloodstream isolates at our institute, and to determine whether in vitro biofilm production is associated with any clinical characteristics of infection. During the four-year study period, 93 cases of Candida BSI were analysed. The most frequently isolated species was C. albicans (66.7 %), followed by C. glabrata (9.7 %), C. parapsilosis (9.7 %), C. tropicalis (9.7 %) and C. krusei (4.3 %). Biofilm production was more prevalent among non-albicans Candida spp. (77.4 %) than C. albicans (30.6 %) (P = 0.02). Abdominal surgery was identified as a risk factor of BSI caused by biofilm producing non-albicans Candida isolates. No risk factors predisposing to bloodstream infection caused by a biofilm producing C. albicans isolate were identified. Biofilm production was not verified as a risk factor of mortality.

  13. A piglet model for studying Candida albicans colonization of the human oro-gastrointestinal tract.

    PubMed

    Hoeflinger, Jennifer L; Coleman, David A; Oh, Soon-Hwan; Miller, Michael J; Hoyer, Lois L

    2014-08-01

    Pigs from a variety of sources were surveyed for oro-gastrointestinal (oro-GIT) carriage of Candida albicans. Candida albicans-positive animals were readily located, but we also identified C. albicans-free pigs. We hypothesized that pigs could be stably colonized with a C. albicans strain of choice, simply by feeding yeast cells. Piglets were farrowed routinely and remained with the sow for 4 days to acquire a normal microbiota. Piglets were then placed in an artificial rearing environment and fed sow milk replacer. Piglets were inoculated orally with one of three different C. albicans strains. Piglets were weighed daily, and culture swabs were collected to detect C. albicans orally, rectally and in the piglet's environment. Stable C. albicans colonization over the course of the study did not affect piglet growth. Necropsy revealed mucosally associated C. albicans throughout the oro-GIT with the highest abundance in the esophagus. Uninoculated control piglets remained C. albicans-negative. These data establish the piglet as a model to study C. albicans colonization of the human oro-GIT. Similarities between oro-GIT colonization in humans and pigs, as well as the ease of working with the piglet model, suggest its adaptability for use among investigators interested in understanding C. albicans-host commensal interactions.

  14. Identification of an amphotericin B resistant strain of Candida albicans using a rapid 3H-glucose incorporation microassay.

    PubMed

    Sweeney, J F; Greene, J N; Hiemenz, J W; Wei, S; Rosemurgy, A S; Djeu, J Y

    1996-11-01

    Using a 3H-glucose incorporation assay, antifungal sensitivity testing undertaken on an isolate of Candida albicans cultured from the blood of a bone marrow transplant patient documented resistance to amphotericin B but sensitivity to fluconazole and itraconazole. Information obtained from in vitro antifungal sensitivity testing can be used to direct in vivo antifungal therapy. Widespread application of standardized in vitro antifungal sensitivity testing is needed.

  15. Identification of a cell death pathway in Candida albicans during the response to pheromone.

    PubMed

    Alby, Kevin; Schaefer, Dana; Sherwood, Racquel Kim; Jones, Stephen K; Bennett, Richard J

    2010-11-01

    Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; both cell types respond to pheromone, but only opaque cells undergo the morphological transition and cell conjugation. We show that approximately 20% of opaque cells, but not white cells, of laboratory strain SC5314 experience pheromone-induced death. Furthermore, analysis of mutant strains revealed that PID was significantly reduced in strains lacking Fig1 or Fus1 transmembrane proteins that are induced during the mating process and, we now show, are necessary for efficient mating in C. albicans. The level of PID was also Ca(2+) dependent, as chelation of Ca(2+) ions increased cell death to almost 50% of the population. However, in contrast to S. cerevisiae PID, pheromone-induced killing of C. albicans cells was largely independent of signaling via the Ca(2+)-dependent protein phosphatase calcineurin, even when combined with the loss of Cmk1 and Cmk2 proteins. Finally, we demonstrate that levels of PID vary widely between clinical isolates of C. albicans, with some strains experiencing close to 70% cell death. We discuss these findings in light of the role of prodeath and prosurvival pathways operating in yeast cells undergoing the morphological response to pheromone.

  16. Species distribution and virulence factors of Candida spp. isolated from the oral cavity of kidney transplant recipients in Brazil.

    PubMed

    Chaves, Guilherme Maranhão; Diniz, Mariana Guimarães; da Silva-Rocha, Walicyranison Plinio; de Souza, Luanda Bárbara Ferreira Canário; Gondim, Libia Augusta Maciel; Ferreira, Maria Angela Fernandes; Svidzinski, Terezinha Inez Estivalet; Milan, Eveline Pipolo

    2013-04-01

    Although yeasts belonging to the genus Candida are frequently seen as commensals in the oral cavity, they possess virulence attributes that contribute for pathogenicity. The aims of the present study were to study the prevalence of Candida spp. isolated from the oral cavity of renal transplant recipients and to analyze strains virulence factors. We isolated a total of 70 Candida strains from 111 transplant recipients, and Candida albicans was the most prevalent species (82.86 %). Oral candidiasis was diagnosed in 14.4 % kidney transplant patients, while 11 isolates (15.7 %) corresponded to non-Candida albicans Candida (NCAC) species. C. albicans adhered to a higher extension than NCAC strains. Some isolates of Candida tropicalis were markedly adherent to human buccal epithelial cells and highly biofilm-forming strains. Regarding proteinase activity, Candida orthopsilosis was more proteolytic than Candida metapsilosis. Candida glabrata and Candida dubliniensis showed very low ability to form biofilm on polystyrene microtiter plates. We have demonstrated here diverse peculiarities of different Candida species regarding the ability to express virulence factors. This study will contribute for the understanding of the natural history and pathogenesis of yeasts belonging to the genus Candida in the oral cavity of patients who were submitted to kidney transplant and are under immunosuppressive therapies.

  17. Role of specific determinants in mannan of Candida albicans serotype A in adherence to human buccal epithelial cells.

    PubMed Central

    Miyakawa, Y; Kuribayashi, T; Kagaya, K; Suzuki, M; Nakase, T; Fukazawa, Y

    1992-01-01

    Candida albicans serotype A (C. albicans A) possesses a specific antigen, designated antigen 6, which resides in mannans on the cell surface. To determine the role of the mannan moiety of the C. albicans cell wall in adherence to buccal epithelial cells, we used antigen 6-deficient mutants which had been isolated by screening with an agglutinating monoclonal antibody against antigen 6 (MAb-6). 1H nuclear magnetic resonance spectral analysis of the purified mannans from the mutants showed a loss of the signals related to that beta-linkage of the side chains. Moreover, acetolyzed fragments of the mutant mannans showed a decreased amount of mannohexaose and mannopentaose. The mutant yeast cells exhibited significantly reduced ability to adhere both to exfoliated buccal epithelial cells and to a human buccal cell line. A number of strains of C. albicans A, C. tropicalis, and C. glabrata, all of which bear antigen 6, showed significantly higher adherence to the cell line than did those of C. albicans serotype B, which lack antigen 6. The whole mannan from the C. albicans A parent inhibited the adherence of C. albicans A to epithelial cells dose dependently, whereas mannan from a mutant strains did not. Moreover, C. albicans A treated with MAb-6 or polyclonal factor 6 serum showed reduced adherence. A close correlation was found between adhesive ability and agglutinability with MAb-6 in the C. albicans A parent, the antigenic mutants, and their spontaneous revertants. These results suggest that so far as mannan adhesion is concerned, serotype A-specific determinants are largely involved in the mechanisms of adherence of C. albicans A to human buccal epithelial cells. PMID:1375200

  18. Evaluation of CHROM-Pal medium for the isolation and direct identification of Candida dubliniensis in primary cultures from the oral cavity.

    PubMed

    Sahand, Ismail H; Maza, José L; Eraso, Elena; Montejo, Miguel; Moragues, María D; Aguirre, José M; Quindós, Guillermo; Pontón, José

    2009-11-01

    Candida albicans is the species most frequently isolated from oral specimens, but the recovery of other Candida species such as Candida dubliniensis is increasing. Differentiation of C. dubliniensis from C. albicans requires special tests and both species are misidentified in some studies. CHROM-Pal (CH-P) is a novel chromogenic medium used in our laboratory for differentiation between C. albicans and C. dubliniensis on the basis of colony colour and morphology, and chlamydospore production. The performance of CH-P and CHROMagar Candida (CAC) was compared for primary isolation and presumptive identification of yeasts from oral specimens from human immunodeficiency virus (HIV)-infected and uninfected individuals. The identification of Candida species on both media was compared with two reference identification methods (API ID 32 C and multiplex PCR). A total of 137/205 oral swabs (66.8 %) plated onto CH-P and CAC media were positive by culture and resulted in the growth of 171 isolates of Candida species on CH-P, whilst only 159 isolates grew on CAC. C. albicans was the most frequently isolated species in both groups of patients, followed by Candida parapsilosis in the HIV-negative group, and by C. dubliniensis in the HIV-infected group. The other Candida species isolated were Candida guilliermondii, Candida glabrata, Candida krusei, Candida tropicalis, Candida famata, Candida rugosa, Candida kefyr, Candida pelliculosa and Candida pulcherrima. The sensitivity and specificity for identifying C. albicans, C. krusei, C. tropicalis and C. dubliniensis on CH-P were over 98.5 %, always equal to or higher than those obtained when CAC was used. CH-P is a simple reliable medium for primary isolation and presumptive identification of yeast isolates from oral samples. The ability of CH-P to discriminate between C. dubliniensis and C. albicans was significantly higher (P <0.05) than that of CAC.

  19. RNA sequencing revealed novel actors of the acquisition of drug resistance in Candida albicans

    PubMed Central

    2012-01-01

    Background Drug susceptible clinical isolates of Candida albicans frequently become highly tolerant to drugs during chemotherapy, with dreadful consequences to patient health. We used RNA sequencing (RNA-seq) to analyze the transcriptomes of a CDR (Candida Drug Resistance) strain and its isogenic drug sensitive counterpart. Results RNA-seq unveiled differential expression of 228 genes including a) genes previously identified as involved in CDR, b) genes not previously associated to the CDR phenotype, and c) novel transcripts whose function as a gene is uncharacterized. In particular, we show for the first time that CDR acquisition is correlated with an overexpression of the transcription factor encoding gene CZF1. CZF1 null mutants were susceptible to many drugs, independently of known multidrug resistance mechanisms. We show that CZF1 acts as a repressor of β-glucan synthesis, thus negatively regulating cell wall integrity. Finally, our RNA-seq data allowed us to identify a new transcribed region, upstream of the TAC1 gene, which encodes the major CDR transcriptional regulator. Conclusion Our results open new perspectives of the role of Czf1 and of our understanding of the transcriptional and post-transcriptional mechanisms that lead to the acquisition of drug resistance in C. albicans, with potential for future improvements of therapeutic strategies. PMID:22897889

  20. Function and Regulation of Cph2 in Candida albicans

    PubMed Central

    Lane, Shelley; Di Lena, Pietro; Tormanen, Kati; Baldi, Pierre

    2015-01-01

    Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to that of mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis but is important for colonization in the murine gastrointestinal (GI) tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs, but its cleavage is not regulated by cellular levels of ergosterol or oxygen. Chromatin immunoprecipitation sequencing (ChIP-seq) shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. Transcriptome sequencing (RNA-seq) shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia. PMID:26342020

  1. Susceptibility of Candida albicans to new synthetic sulfone derivatives.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Ochal, Zbigniew

    2015-02-01

    The influence of halogenated methyl sulfones, i.e. bromodichloromethyl-4-chloro-3-nitrophenyl sulfone (named halogenated methyl sulfone 1), dichloromethyl-4-chloro-3-nitrophenyl sulfone (halogenated methyl sulfone 2), and chlorodibromomethyl-4-hydrazino-3-nitrophenyl sulfone (halogenated methyl sulfone 3), on cell growth inhibition, aspartic protease gene (SAP4-6) expression, adhesion to epithelium, and filamentation was investigated. Antifungal susceptibility of the halogenated methyl sulfones was determined with the M27-A3 protocol in the range of 16-0.0313 µg/mL. Adherence to Caco-2 cells was performed in 24-well plates; relative quantification was normalized against ACT1 in cells after 18 h of growth in YEPD and on Caco-2 cells. SAP4-6 expression was analyzed using RT-PCR. Structure-activity relationship studies suggested that halogenated methyl sulfone 1 containing bromodichloromethyl or dichloromethyl function at C-4 (halogenated methyl sulfone 2) of the phenyl ring showed the best activity (100% cell inhibition at 0.5 µg/mL), while hydrazine at C-1 (halogenated methyl sulfone 3) reduced the sulfone potential (100% = 4 µg/mL). SAP4-6 were up- or down-regulated depending on the strains' genetic background and the substitutions on the phenyl ring. Halogenated methyl sulfone 2 repressed germination and affected adherence to epithelium (P ≤ 0.05). The tested halogenated methyl sulfones interfered with the adhesion of Candida albicans cells to the epithelial tissues, without affecting their viability after 90 min of incubation. The mode of action of the halogenated methyl sulfones was attributed to the reduced virulence of C. albicans. SAP5 and SAP6 contribute to halogenated methyl sulfones resistance. Thus, halogenated methyl sulfones can inhibit biofilm formation due to their interference with adherence and with the yeast-to-hyphae transition.

  2. A Phenotypic Profile of the Candida albicans Regulatory Network

    PubMed Central

    Homann, Oliver R.; Dea, Jeanselle; Noble, Suzanne M.; Johnson, Alexander D.

    2009-01-01

    Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but

  3. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons

    PubMed Central

    Simões, João; Bezerra, Ana R.; Moura, Gabriela R.; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  4. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces.

  5. Minocycline inhibits the Candida albicans budded-to-hyphal-form transition and biofilm formation.

    PubMed

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-03-28

    Candida albicans frequently causes bloodstream infections; the budded-to-hyphal-form transition (BHT) and biofilm formation are major contributors to virulence. In a survey of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline downregulates expression of the hypha-specific genes HWP1 and ECE1, and the adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreases cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy in efforts to prevent bacterial infection; the compound might also be prophylactically effective against Candida infection.

  6. Multi-drug resistant oral Candida species isolated from HIV-positive patients in South Africa and Cameroon.

    PubMed

    Dos Santos Abrantes, Pedro Miguel; McArthur, Carole P; Africa, Charlene Wilma Joyce

    2014-06-01

    Candida species are a common cause of infection in immune-compromised HIV-positive individuals, who are usually treated with the antifungal drug, fluconazole, in public hospitals in Africa. However, information about the prevalence of drug resistance to fluconazole and other antifungal agents on Candida species is very limited. This study examined 128 Candida isolates from South Africa and 126 Cameroonian Candida isolates for determination of species prevalence and antifungal drug susceptibility. The isolates were characterized by growth on chromogenic and selective media and by their susceptibility to 9 antifungal drugs tested using the TREK™ YeastOne9 drug panel (Thermo Scientific, USA). Eighty-three percent (82.8%) of South African isolates were Candida albicans (106 isolates), 9.4% were Candida glabrata (12 isolates), and 7.8% were Candida dubliniensis (10 isolates). Of the Cameroonian isolates, 73.02% were C. albicans (92 isolates); 19.05% C. glabrata (24 isolates); 3.2% Candida tropicalis (4 isolates); 2.4% Candida krusei (3 isolates); 1.59% either Candida kefyr, Candida parapsilopsis, or Candida lusitaneae (2 isolates); and 0.79% C. dubliniensis (1 isolate). Widespread C. albicans resistance to azoles was detected phenotypically in both populations. Differences in drug resistance were seen within C. glabrata found in both populations. Echinocandin drugs were more effective on isolates obtained from the Cameroon than in South Africa. A multiple-drug resistant C. dubliniensis strain isolated from the South African samples was inhibited only by 5-flucytosine in vitro on the YO9 panel. Drug resistance among oral Candida species is common among African HIV patients in these 2 countries. Regional surveillance of Candida species drug susceptibility should be undertaken to ensure effective treatment for HIV-positive patients.

  7. Differential Gene Expression of Heat Shock Protein 90 (Hsp90) of Candida albicans obtained from Malaysian and Iranian Patients

    PubMed Central

    Khalili, Vajihe; Shokri, Hojjatollah; Md Akim, Abdah; Khosravi, Ali Reza

    2016-01-01

    Background Candida albicans (C. albicans) has several virulence factors, in particular heat shock protein 90 (Hsp90), which is expressed by Hsp90 gene. The purposes of this study were to assess the expression of Hsp90 gene in clinical and control isolates of C. albicans obtained from different geographical regions (Malaysia and Iran), different temperatures (25°C, 37°C and 42°C) and mice with candidiasis. Methods C. albicans isolates were cultured onto sabouraud dextrose agar (SDA). The assessment of the expression of Hsp90 gene was performed using real time-polymerase chain reaction (RT-PCR). Results The results showed a significant increase in the expression of C. albicans Hsp90 gene under high thermal shock (42°C) when compared to other temperatures tested (P-value = 0.001). The mean differences in the expression of Hsp90 gene at 37°C were 0.20 (95% confidence interval (CI) 0.13–0.29) between Malaysian and Iranian controls (P-value = 0.040) and 0.47 (95% CI 0.27–0.60) between Malaysian and Iranian patients (P-value = 0.040). Conclusion The results demonstrated that the expression of C. albicans Hsp90 gene varied between Malaysian and Iranian subjects, representing the efficacy of geographical and thermal conditions on virulence gene expression. PMID:27418871

  8. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans.

    PubMed

    Ahmad, Aijaz; Wani, Mohmmad Younus; Khan, Amber; Manzoor, Nikhat; Molepo, Julitha

    2015-01-01

    We previously reported the antifungal properties of a monoterpene phenol "Eugenol" against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1-62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2-9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.

  9. A 5′ UTR-mediated Translational Efficiency Mechanism Inhibits the Candida albicans Morphological Transition

    PubMed Central

    Childers, Delma S.; Mundodi, Vasanthakrishna; Banerjee, Mohua; Kadosh, David

    2014-01-01

    SUMMARY While virulence properties of Candida albicans, the most commonly isolated human fungal pathogen, are controlled by transcriptional and post-translational mechanisms, considerably little is known about the role of post-transcriptional, and particularly translational, mechanisms. We demonstrate that UME6, a key filament-specific transcriptional regulator whose expression level is sufficient to determine C. albicans morphology and promote virulence, has one of the longest 5′ untranslated regions (UTRs) identified in fungi to date, which is predicted to form a complex and extremely stable secondary structure. The 5′ UTR inhibits the ability of UME6, when expressed at constitutive high levels, to drive complete hyphal growth, but does not cause a reduction in UME6 transcript. Deletion of the 5′ UTR increases C. albicans filamentation under a variety of conditions but does not affect UME6 transcript level or induction kinetics. We show that the 5′ UTR functions to inhibit Ume6 protein expression under several filament-inducing conditions and specifically reduces association of the UME6 transcript with polysomes. Overall, our findings suggest that translational efficiency mechanisms, known to regulate diverse biological processes in bacterial and viral pathogens as well as higher eukaryotes, have evolved to inhibit and fine-tune morphogenesis, a key virulence trait of many human fungal pathogens. PMID:24601998

  10. Synergic effect of combination of glycyrol and fluconazole against experimental cutaneous candidiasis due to Candida albicans.

    PubMed

    Rhew, Zheong-Imm; Han, Yongmoon

    2016-10-01

    In this study, we investigated the anti-fungal activity of glycyrol, a coumarine isolated from licorice (Glycyrrhizae Radix), in a murine model of cutaneous candidiasis caused by Candida albicans. Compared to the infected sites, located on the mice's back, of the untreated control mice, the infected sites treated with glycyrol had reduced CFU (colony forming unit) values up to 60 and 85.5 % at 20 and 40 μg/mouse of glycyrol, respectively (P < 0.01). The antifungal activity of glycyrol was synergistically increased when glycyrol (10 μg/mouse) was combined with fluconazole (10 μg/mouse), demonstrating that the combination therapy is approximately 4 times more effective than fluconazole alone at 20 μg/mouse (P < 0.01). Additionally, the combination activity was 1.65 times greater than the antifungal activity of fluconazole alone at 40 μg/mouse (P < 0.05). In seeking glycyrol's antifungal mechanism, we determined that glycyrol inhibited hyphal induction and cell wall adherence of C. albicans. Thus, it is very likely that, by damaging the cell wall, glycyrol helps fluconazole invade C. albicans more readily and attack fluconazole's target in the fungus membrane. In summary, our data indicate that glycyrol may contribute to the development of a novel agent that possesses antifungal activity against cutaneous candidiasis.

  11. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis.

    PubMed Central

    Saporito-Irwin, S M; Birse, C E; Sypherd, P S; Fonzi, W A

    1995-01-01

    Candida albicans, like many fungi, exhibits morphological plasticity, a property which may be related to its biological capacity as an opportunistic pathogen of humans. Morphogenesis and alterations in cell shape require integration of many cellular functions and occur in response to environmental signals, most notably pH and temperature in the case of C. albicans. In the course of our studies of differential gene expression associated with dimorphism of C. albicans, we have isolated a gene, designated PHR1, which is regulated in response to the pH of the culture medium. PHR1 expression was repressed at pH values below 5.5 and induced at more alkaline pH. The predicted amino acid sequence of the PHR1 protein was 56% identical to that of the Saccharomyces cerevisiae Ggp1/Gas1 protein, a highly glycosylated cell surface protein attached to the membrane via glycosylphosphatidylinositol. A homozygous null mutant of PHR1 was constructed and found to exhibit a pH-conditional morphological defect. At alkaline pH, the mutant, unlike the parental type, was unable to conduct apical growth of either yeast or hyphal growth forms. This morphological aberration was not associated with defective cytoskeletal polarization or secretion. The results suggest that PHR1 defines a novel function required for apical cell growth and morphogenesis. PMID:7823929

  12. Efficacy of micafungin in invasive candidiasis caused by common Candida species with special emphasis on non-albicans Candida species.

    PubMed

    Cornely, Oliver A; Vazquez, Jose; De Waele, Jan; Betts, Robert; Rotstein, Coleman; Nucci, Marcio; Pappas, Peter G; Ullmann, Andrew J

    2014-02-01

    The incidence of invasive candidiasis caused by non-albicans Candida (NAC) spp. is increasing. The aim of this analysis was to evaluate the efficacy of micafungin, caspofungin and liposomal amphotericin B in patients with invasive candidiasis and candidaemia caused by different Candida spp. This post hoc analysis used data obtained from two randomised phase III trials was conducted to evaluate the efficacy and safety of micafungin vs. caspofungin and micafungin vs. liposomal amphotericin B. Treatment success, clinical response, mycological response and mortality were evaluated in patients infected with C. albicans and NAC spp. Treatment success rates in patients with either C. albicans or NAC infections were similar. Outcomes were similar for micafungin, caspofungin and liposomal amphotericin B. Candida albicans was the most prevalent pathogen recovered (41.0%), followed by C. tropicalis (17.9%), C. parapsilosis (14.4%), C. glabrata (10.4%), multiple Candida spp. (7.3%) and C. krusei (3.2%). Age, primary diagnosis (i.e. candidaemia or invasive candidiasis), previous corticosteroid therapy and Acute Physiology and Chronic Health Evaluation II score were identified as potential predictors of treatment success and mortality. Micafungin, caspofungin and liposomal amphotericin B exhibit favourable treatment response rates that are comparable for patients infected with different Candida spp.

  13. Effect of trace iron levels and iron withdrawal by chelation on the growth of Candida albicans and Candida vini.

    PubMed

    Holbein, Bruce E; Mira de Orduña, Ramón

    2010-06-01

    The iron requirements of the opportunistic pathogenic yeast, Candida albicans, and the related nonpathogenic spoilage yeast Candida vini were investigated along with their responses to various exogenous iron chelators. The influence of iron as well as the exogenous chelating agents lactoferrin, EDTA, deferiprone, desferrioxamine, bathophenanthroline sulphonate and a novel carried chelator with a hydroxypyridinone-like Fe-ligand functionality, DIBI, on fungal growth was studied in a chemically defined medium deferrated to trace iron levels (<1.2 microg L(-1) or 0.02 microM of Fe). Candida albicans competed better at low iron levels compared with C. vini, which was also more susceptible to most added chelators. Candida albicans was resistant to lactoferrin at physiologically relevant concentrations, but was inhibited by low concentrations of DIBI. Candida vini was sensitive to lactoferrin as well as to DIBI, whose inhibitory activity was shown to be Fe reversible. The pathogenic potential of C. albicans and the nonpathogenic nature of C. vini were consistent with their differing abilities to grow under iron-limiting conditions and in the presence of exogenous iron chelators. Both yeasts could be controlled by appropriately strong chelators. This work provides the first evidence of the iron requirements of the spoilage organism C. vini and its response to exogenous chelators. Efficient iron withdrawal has the potential to provide the basis for new fungal growth control strategies.

  14. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    PubMed Central

    Monroy-Pérez, Eric; Paniagua-Contreras, Gloria Luz; Rodríguez-Purata, Pamela; Vaca-Paniagua, Felipe; Vázquez-Villaseñor, Marco; Díaz-Velásquez, Clara; Uribe-García, Alina

    2016-01-01

    Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC). The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes and azole resistance genes MDR1 and CDR1 were performed using PCR and RT-PCR, respectively. All strains were sensitive to nystatin and 38 (97.4%) and 37 (94.9%) were resistant to ketoconazole and fluconazole, respectively. ALS1, SAP4–SAP6, LIP1, LIP2, LIP4, LIP6, LIP7, LIP9, LIP10, and PLB1-PLB2 were present in all strains; SAP1 was identified in 37 (94.8%) isolates, HWP1 in 35 (89.7%), ALS3 in 14 (35.8%), and CDR1 in 26 (66.6%). In nearly all of the strains, ALS1, HWP1, SAP4–SAP6, LIP1–LIP10, PLB1, and PLB2 were expressed, whereas CDR1 was expressed in 20 (51.3%) and ALS3 in 14 (35.8%). In our in vitro model of infection with C. albicans, the clinical strains showed different expression profiles of virulence genes in association with the azole resistance gene CDR1. The results indicate that the strains that infect Mexican patients suffering from VVC are highly virulent and virtually all are insensitive to azoles. PMID:28058052

  15. Echinocandin Resistance in Candida Species Isolates from Liver Transplant Recipients

    PubMed Central

    Prigent, Gwénolé; Aït-Ammar, Nawel; Levesque, Eric; Fekkar, Arnaud; Costa, Jean-Marc; El Anbassi, Sarra; Foulet, Françoise; Duvoux, Christophe; Merle, Jean-Claude

    2016-01-01

    ABSTRACT Liver transplant recipients are at risk of invasive fungal infections, especially candidiasis. Echinocandin is recommended as prophylactic treatment but is increasingly associated with resistance. Our aim was to assess echinocandin drug resistance in Candida spp. isolated from liver transplant recipients treated with this antifungal class. For this, all liver-transplanted patients in a University Hospital (Créteil, France) between January and June of 2013 and 2015 were included. Susceptibilities of Candida isolates to echinocandins were tested by Etest and the EUCAST reference method. Isolates were analyzed by FKS sequencing and genotyped based on microsatellites or multilocus sequence typing (MLST) profiles. Ninety-four patients were included, and 39 patients were colonized or infected and treated with echinocandin. Echinocandin resistance appeared in 3 (8%) of the treated patients within 1 month of treatment. One patient was colonized by resistant Candida glabrata, one by resistant Candida dubliniensis, and one by resistant Candida albicans. Molecular analysis found three mutations in FKS2 HS1 (F659S, S663A, and D666E) for C. glabrata and one mutation in FKS1 HS1 (S645P) for C. dubliniensis and C. albicans. Susceptible and resistant isolates belonged to the same genotype. To our knowledge, this is the first study on echinocandin resistance in Candida spp. in a liver transplant population. Most resistant isolates were found around/in digestive sites, perhaps due to lower diffusion of echinocandin in these sites. This work documents the risk of emergence of resistance to echinocandin, even after short-term treatment. PMID:27855078

  16. [Galleria mellonella larva model in evaluating the effects of biofilm in Candida albicans].

    PubMed

    Karaman, Meral; Alvandian, Ali; Bahar, I Hakkı

    2017-01-01

    Biofilm-related infections are chronic infections that cause serious increase in morbidity and mortality as well as significant economic loss. Galleria mellonella larva is shown as a reliable animal model for in vivo toxicology and pathogenicity tests due to its large size, ease of practice, ability to survive at 15-37°C and its similarity to mammals' natural immune system. The aim of this study was to evaluate the effects biofilm activity of Candida albicans in a G.mellonella larva model. Two C.albicans strains isolated as a disease agent were used for the model, where one was positive (BP), and the other one was negative (BN) for biofilm production. Eighty healthy G.mellonella larvae, all in the last larval stage and 2-2.5 cm long, were divided into 4 groups of equal size. Group 1 was set as the control group. Group 2 was injected with sterile phosphate buffer (PBS) group. Group 3 was injected with BP C.albicans strain and group 4 with BN C.albicans strain. A 5 μL volume of C.albicans prepared at 5 × 10(5) cfu/ml concentration with PBS was injected into the last left rear-legs of the larvae. The larvae were kept in sterile petri dishes at 37°C. They were observed for a total of 96 hours, for 4 hours in the first 24 hours, then in 12 hours intervals. Melanization, survival, total hemocyte count and fungal burden were evaluated as infection indicators. Melanization and death were not observed throughout the study period in group 1. One larva died in group 2. Small melanization spots (dark spots) and subsequent progressive melanization were observed from 3rd hour in the larvae infected with C.albicans. When compared with the BN C.albicans infected group, survival rate was 20% for BP C.albicans infected larvae at the end of 24 hours. Total hemocyte count was very low in the infected groups compared to groups 1 and 2, also significantly lower in group 3 than in group 4. In quantitative cultures, growth of C.albicans was detected in groups 3 and 4 while not in

  17. Association of Oral Candida albicans with Severe Early Childhood Caries - A Pilot Study

    PubMed Central

    Thomas, Ann; Mhambrey, Sanjana; Chokshi, Achala; Jana, Sinjana; Thakur, Sneha; Jose, Deepak; Bajpai, Garima

    2016-01-01

    Introduction In early childhood, children are more susceptible to opportunistic microbial colonization in the oral cavity due to immature immune system and not fully established micro flora. The current literature proposes a probable role of Candida albicans, a fungus in the etiopathogenesis of dental caries. Aim This study was conducted to compare the Candida albicans count in children with severe early childhood caries and caries free children. Materials and Methods A cross-sectional study was conducted in 40 randomly selected healthy children between 12 to 71 months of age, who were divided into two groups based on the caries experience as Severe Early Childhood Caries (SECC) (dmfs ≥4) and caries free (dmfs = 0). The caries experiences (dmfs index) of the 40 children were recorded using visible light and diagnostic instruments. A 2ml sample of unstimulated whole saliva collected from the children was transported to the microbiology laboratory in universal containers and evaluated for Candida albicans count using the selective media. The data was statistically analyzed using SPSS software 17.0. Results Candida albicans was found in both the SECC group and caries free group. Median Candida albicans of the SECC group was numerically greater than the caries free group and this difference was highly statistically significant (p=0.012). Conclusion In this present cross-sectional study, we found a 100% prevalence of Candida albicans in the saliva of the study children. There was a highly significant increase in Candida albicans count in SECC children compared to the caries free children. PMID:27656551

  18. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species.

    PubMed Central

    Odds, F C; Bernaerts, R

    1994-01-01

    CHROMagar Candida is a novel, differential culture medium that is claimed to facilitate the isolation and presumptive identification of some clinically important yeast species. We evaluated the use of this medium with 726 yeast isolates, including 82 isolated directly on the medium from clinical material. After 2 days of incubation at 37 degrees C, 285 C. albicans isolates gave distinctive green colonies that were not seen with any of 441 other yeast isolates representing 21 different species. A total of 54 C. tropicalis isolates also developed distinctive dark blue-gray colonies with a halo of dark brownish purple in the surrounding agar. C. krusei isolates (n = 43) also formed highly characteristic rough, spreading colonies with pale pink centers and a white edge that was otherwise encountered only rarely with isolates of C. norvegensis. Trichosporon spp. (n = 34) formed small, pale colonies that became larger and characteristically rough with prolonged incubation. Most of the other 310 yeasts studied formed colonies with a color that ranged from white to pink to purple with a brownish tint. The only exceptions were found among isolates identified as Geotrichum sp. or Pichia sp., some of which formed colonies with a gray to blue color and which in two instances formed a green pigment or a dark halo in the agar. The specificity and sensitivity of the new medium for the presumptive identification of C. albicans, C. krusei, and C. tropicalis exceeded 99% for all three species. A blinded reading test involving four personnel and 57 yeast isolates representing nine clinically important species confirmed that colonial appearance after 48 h of incubation on CHROMagar Candida afforded the correct presumptive recognition of C. albicans, C. tropicalis, C, krusei, and Trichosporon spp. None of nine bacterial isolates grew on CHROMagar Candida within 72 h, and bacteria (Escherichia coli) grew from only 4 of 104 vaginal, 100 oral, and 99 anorectal swabs. The new medium

  19. Comparison of molecular typing methods for Candida albicans.

    PubMed Central

    Magee, P T; Bowdin, L; Staudinger, J

    1992-01-01

    Four molecular approaches to determining the types of Candida albicans strains were compared. The strains used were those whose repeated DNA (ribosomal and mitochondrial) EcoRI restriction fragment length polymorphisms (RFLP) were determined by Stevens et al. (D. A. Stevens, F. C. Odds, and S. Scherer, Rev. Infect. Dis. 12:258-266, 1990). Scherer and Stevens (S. Scherer and D. A. Stevens, Proc. Natl. Acad. Sci. USA 85:1452-1456, 1988) used the same strains to examine the Southern blots of genomic EcoRI digests probed with the repeated sequence 27A. The results of these investigators were compared with determinations of RFLPs generated from repeated DNA by the enzyme HinfI and examination of the karyotypes of strains under two sets of conditions, one for the smaller chromosomes and one for the larger ones. Analysis of RFLPs of repeated DNA is most convenient but shows the lowest degree of resolution. Use of the repeated sequence and use of karyotype have very high resolution, but the former method is more convenient than the latter. HinfI digestion is more sensitive than EcoRI digestion but equally convenient. By using all four methods, separate types were identified for 18 of the 20 strains examined. Images PMID:1356999

  20. Effects of histatin 5 and derived peptides on Candida albicans.

    PubMed Central

    Ruissen, A L; Groenink, J; Helmerhorst, E J; Walgreen-Weterings, E; Van't Hof, W; Veerman, E C; Nieuw Amerongen, A V

    2001-01-01

    Three anti-microbial peptides were compared with respect to their killing activity against Candida albicans and their ability to disturb its cellular and internal membranes. Histatin 5 is an anti-fungal peptide occurring naturally in human saliva, while dhvar4 and dhvar5 are variants of its active domain, with increased anti-microbial activity. dhvar4 has increased amphipathicity compared with histatin 5, whereas dhvar5 has amphipathicity comparable with that of histatin 5. All three peptides caused depolarization of the cytoplasmic and/or mitochondrial membrane, indicating membranolytic activity. For the variant peptides both depolarization and killing occurred at a faster rate. With FITC-labelled peptides, no association with the cytoplasmic membrane was observed, contradicting the formation of permanent transmembrane multimeric peptide pores. Instead, the peptides were internalized and act on internal membranes, as demonstrated with mitochondrion- and vacuole-specific markers. In comparison with histatin 5, the variant peptides showed a more destructive effect on mitochondria. Entry of the peptides and subsequent killing were dependent on the metabolic state of the cells. Blocking of the mitochondrial activity led to complete protection against histatin 5 activity, whereas that of dhvar4 was hardly affected and that of dhvar5 was affected only intermediately. PMID:11368762

  1. Candida albicans survival, growth and biofilm formation are differently affected by mouthwashes: an in vitro study.

    PubMed

    Paulone, Simona; Malavasi, Giulia; Ardizzoni, Andrea; Orsi, Carlotta Francesca; Peppoloni, Samuele; Neglia, Rachele Giovanna; Blasi, Elisabetta

    2017-01-01

    Candida albicans is the most common cause of oral mycoses. The aim of the present study was to investigate in vitro the susceptibility of C. albicans to mouthwashes, in terms of growth, survival and biofilm formation. Candida albicans, laboratory strain SC5314, and 7 commercial mouthwashes were employed: 3 with 0.2% chlorhexidine digluconate; 1 with 0.06% chlorhexidine digluconate and 250 ppm F- sodium fluoride; 3 with fluorine-containing molecules. None of the mouthwashes contained ethanol in their formulations. The anti-Candida effects of the mouthwashes were assessed by disk diffusion, crystal violet and XTT assays. By using five protocols combining different dilutions and contact times the mouthwashes were tested against: 1) C. albicans growth; 2) biofilm formation; 3) survival of fungal cells in early, developing and mature Candida biofilm. Chlorhexidine digluconate-containing mouthwashes consistently exhibited the highest anti-Candida activity, irrespective of the protocols employed. Fungal growth, biofilm formation and survival of Candida cells within biofilm were impaired, the effects strictly depending on both the dilution employed and the time of contact. These in vitro studies provide evidence that mouthwashes exert anti-Candida activity against both planktonic and biofilm fungal structures, but to a different extent depending on their composition. This suggests special caution in the choice of mouthwashes for oral hygiene, whether aimed at prevention or treatment of oral candidiasis.

  2. Antifungal Efficacy of Green Tea Extract against Candida Albicans Biofilm on Tooth Substrate

    PubMed Central

    Farhad Mollashahi, Narges; Bokaeian, Mohammad; Afrougheh, Arezoo

    2015-01-01

    Objectives: Biomechanical preparation and irrigation with antimicrobial solutions are necessary to disinfect the root canal space. This in vitro study aimed to examine the antifungal effect of green tea extract on Candida albicans biofilm formed on tooth substrate. Materials and Methods: Minimum fungicidal concentration (MFC) and minimum inhibitory concentration at which 90% of the isolates were inhibited (MIC90) were studied using green tea extract and sodium hypochlorite with the broth macro-dilution method. Then, anti-candida effects of this extract were tested on tooth substrates of 45 extracted single-canal premolar teeth. After biomechanical cleaning of the root canals, the teeth were sectioned vertically and randomly divided into three groups of 30. All the samples were infected with C. albicans (PTCC 5027) and exposed to the test solutions (sodium hypochlorite, green tea, normal saline) for five, 10 and 15 minutes. Data analyses of the samples were performed using two-way ANOVA. Results: The average number of microorganisms showed a significant decrease after five, 10 and 15 minutes of exposure to green tea extract and sodium hypochlorite. The average number of C. albicans in green tea extract and sodium hypochlorite groups decreased to 1/3 and 1/2 of the initial values, respectively. Conclusion: Antifungal activity of green tea extract was time-dependent and its inhibitory action did not decrease significantly over time. It is recommended to consider other properties of green tea such as tissue solubility, impact on dentin structure and use as an intracanal medicament or for smear layer removal in the clinical setting. PMID:27123019

  3. Study of the prevalence and association of ocular chlamydial conjunctivitis in women with genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans attending outpatient clinic

    PubMed Central

    Khattab, Rania Abdelmonem; Abdelfattah, Maha Mohssen

    2016-01-01

    AIM To determine the association between chlamydial conjunctivitis and genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans, in addition to the possible relationship between cultured bacterial pathogens and oculogenital chlamydial infection. METHODS This study was performed on 100 (50 symptomatic and 50 asymptomatic) women attending the Gynecological and Obstetric outpatient clinic of Alzahra hospital, Alazhar University. Simultaneously a conjunctival swab was taken from these patients. Polymerase chain reaction (PCR) was done on DNA extracted from both vaginal and conjunctival swab samples. Culture for both vaginal and conjunctival swabs was also done. RESULTS Candida albicans was the predominant organism isolated by culture in 20% and 40% of conjunctival and vaginal swabs respectively. By the PCR method, ocular Chlamydia trachomatis was present in 60% of symptomatic women, while genital Chlamydia trachomatis infection was present in 30% of symptomatic women. The results of this method also indicated that 25/50 (50%) vaginal swabs were positive with PCR for Candida albicans versus 15/50 (30%) were PCR positive in conjunctival swab. Mycoplasma genitalium was present in only 10% of vaginal swabs. Concomitant oculogenital PCR positive results for Chlamydia trachomatis and Candida albicans were 30% and 28% respectively. CONCLUSION Ocular Chlamydia trachomatis was associated with genital Chlamydia trachomatis in a high percentage of women followed by Candida albicans. Cultured bacterial organisms do not play a role in enhancement of Chlamydia trachomatis infection. PMID:27588273

  4. The role of pattern recognition receptors in the innate recognition of Candida albicans

    PubMed Central

    Zheng, Nan-Xin; Wang, Yan; Hu, Dan-Dan; Yan, Lan; Jiang, Yuan-Ying

    2015-01-01

    Candida albicans is both a commensal microorganism in healthy individuals and a major fungal pathogen causing high mortality in immunocompromised patients. Yeast-hypha morphological transition is a well known virulence trait of C. albicans. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs). In this review, we summarize the PRRs involved in the recognition of C. albicans in epithelial cells, endothelial cells, and phagocytic cells separately. We figure out the differential recognition of yeasts and hyphae, the findings on PRR-deficient mice, and the discoveries on human PRR-related single nucleotide polymorphisms (SNPs). PMID:25714264

  5. Genotypes of Candida albicans involved in development of candidiasis and their distribution in oral cavity of non-candidiasis individuals.

    PubMed

    Takagi, Yuki; Hattori, Hisao; Adachi, Hidesada; Takakura, Shunji; Horii, Toshinobu; Chindamporn, Ariya; Kitai, Hiroki; Tanaka, Reiko; Yaguchi, Takashi; Fukano, Hideo; Kawamoto, Fumihiko; Shimozato, Kazuo; Kanbe, Toshio

    2011-01-01

    Genotype characteristics and distribution of commensal Candida albicans should be studied to predict the development of candidiasis, however, extensive genotype analysis of commensal C. albicans has not been made. In this study, 508 C. albicans isolates were collected from patients with/without candidiasis and divided into 4 isolate groups (SG-1, oral cavity of non-candidiasis patients; SG-2, patients with cutaneous candidiasis; SG-3, patients with vaginal candidiasis; SG-4, patients with candidemia). These isolates were characterized to study the relationship between genotypes and pathogenicity using microsatellite analysis. Using CDC3 and CAI, 5 genotypes (I, 111: 115/33: 41; II, 115: 119/23: 23; III, 115: 123/18: 27; IV, 115: 123/33: 40; and V, 123: 127/32: 41) were found in 4.2%, 8.9%, 7.1%, 2.2% and 3.1% of the isolates, respectively. Genotypes II and III were commonly found in all isolate groups. These genotypes were further divided into 28 types by additional HIS3 and CAIII microsatellite markers. In this analysis, C. albicans with type 6 and type 23 was widely distributed as a commensal species in the oral cavity of non-candidiasis patients and found to be related with candidiasis development. Additionally, genotypes I and IV were found in SG-2 and/or SG-4, suggesting that the fungus with those genotypes is also involved in this development. In contrast, genotype V was not identified in any infective isolates.

  6. The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice

    SciTech Connect

    Denkins, Y.M.

    1991-01-01

    This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections.

  7. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    PubMed Central

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  8. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans

    PubMed Central

    Thevissen, Karin; de Mello Tavares, Patricia; Xu, Deming; Blankenship, Jill; Vandenbosch, Davy; Idkowiak-Baldys, Jolanta; Govaert, Gilmer; Bink, Anna; Rozental, Sonia; de Groot, Piet W.J.; Davis, Talya R.; Kumamoto, Carol A.; Vargas, Gabriele; Nimrichter, Leonardo; Coenye, Tom; Mitchell, Aaron; Roemer, Terry; Hannun, Yusuf A.; Cammue, Bruno P.A.

    2012-01-01

    Summary The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2,868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analyzed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation. PMID:22384976

  9. Non-Candida albicans Candida mediastinitis of odontogenic origin in a diabetic patient.

    PubMed

    Kofteridis, Diamantis P; Mantadakis, Elpis; Karatzanis, Alexander D; Bourolias, Constantinos A; Papazoglou, Georgios; Velegrakis, George A; Samonis, George

    2008-06-01

    Descending mediastinitis occurs as a complication of oropharyngeal or cervical infections and its delayed diagnosis and treatment are associated with high mortality. A rare case of an odontogenic infection in a diabetic patient, complicated by Candida parapsilosis and Candida krusei parapharyngeal space infection, descending mediastinitis and aspiration pneumonia is described. Isolate identification was based on colonial and microscopic morphological characteristics and carbohydrate assimilation test results. The patient was successfully treated with surgical drainage and debridement, broad spectrum antibacterials and liposomal amphotericin B followed by prolonged oral voriconazole therapy.

  10. Effects of carbapenems and their combination with amikacin on murine gut colonisation by Candida albicans.

    PubMed

    Samonis, George; Galanakis, Emmanouil; Ntaoukakis, Markos; Sarchianaki, Emmanouela; Spathopoulou, Thomai; Dimopoulou, Dimitra; Kofteridis, Diamantis P; Maraki, Sofia

    2013-03-01

    Carbapenems are broad-spectrum antibiotics increasingly used for the treatment of severe infections. We evaluated the effects of four carbapenems given as monotherapies or in combination with amikacin on the level of gastrointestinal colonisation by Candida albicans in a previously established mouse model. Adult male Crl : CD1 (ICR) BR mice were fed chow containing C. albicans or regular chow. The mice fed with Candida chow had their gut colonised by the yeast. Both groups were subsequently given imipenem, meropenem, ertapenem, doripenem or their combination with amikacin or normal saline subcutaneously for 10 days. Stool cultures were performed immediately before, at the end and 1 week after discontinuation of treatment. Candida-colonised mice treated with the antibiotics had higher counts of the yeast in their stools than control C. albicans-colonised animals treated with saline. All four carbapenems and their combination with amikacin caused a significant increase in C. albicans concentration. Mice fed regular chow and treated with the study antibiotics or saline did not have any Candida in their stools. Dissemination of Candida was not detected in any animal. These data suggest that carbapenems and carbapenem plus amikacin induce substantial increases in the murine intestinal concentration of C. albicans.

  11. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection.

    PubMed

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol Dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis.

  12. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    PubMed Central

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  13. Comparison of a randomly amplified polymorphic DNA (RAPD) analysis and ATB ID 32C system for identification of clinical isolates of different Candida species.

    PubMed

    Baires-Varguez, Laura; Cruz-García, Alejandro; Villa-Tanaka, Lourdes; Sánchez-García, Sergio; Gaitán-Cepeda, Luis Alberto; Sánchez-Vargas, Luis Octavio; Quindós, Guillermo; Hernández-Rodríguez, César

    2007-06-01

    The objective of this work was to compare the usefulness of a randomly amplified polymorphic DNA (RAPD) assay to that of the ATB ID32C kit (bioMérieux, France) for identification of different species of Candida isolated from clinical specimens. The RAPD-PCR patterns obtained with OPE-18 primer for identification of clinical isolates were consistent, and the different independent assays revealed reproduction of the band patterns. RAPD with the OPE-18 primer is a very specific and sensitive method for identification of Candida glabrata, Candida guilliermondii, Candida tropicalis, Candida pelliculosa, Candida albicans, Candida krusei, and Candida lusitaniae.

  14. In Vitro Antifungal Susceptibility of Oral Candida Isolates from Patients Suffering from Caries and Chronic Periodontitis.

    PubMed

    De-la-Torre, Janire; Ortiz-Samperio, María Esther; Marcos-Arias, Cristina; Marichalar-Mendia, Xabier; Eraso, Elena; Echebarria-Goicouria, María Ángeles; Aguirre-Urizar, José Manuel; Quindós, Guillermo

    2017-01-25

    Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.

  15. Phenotypic diversity and correlation between white-opaque switching and the CAI microsatellite locus in Candida albicans.

    PubMed

    Hu, Jian; Guan, Guobo; Dai, Yu; Tao, Li; Zhang, Jianzhong; Li, Houmin; Huang, Guanghua

    2016-08-01

    Candida albicans is a commensal fungal pathogen that is often found as part of the human microbial flora. The aim of the present study was to establish a relationship between diverse genotypes and phenotypes of clinical isolates of C. albicans. Totally 231 clinical isolates were collected and used for genotyping and phenotypic switching analysis. Based on the microsatellite locus (CAI) genotyping assay, 65 different genotypes were identified, and some dominant types were found in certain human niches. For example, the genotypes of 30-44 and 30-45 were enriched in vaginal infection samples. C. albicans has a number of morphological forms including the single-celled yeasts, multicellular filaments, white, and opaque cell types. The relationship between the CAI genotype and the ability to undergo phenotypic switching was examined in the clinical isolates. We found that the strains with longer CAA/G repeats in both alleles of the CAI locus were more opaque competent. We also discovered that some MTL heterozygous (a/alpha) isolates could undergo white-opaque switching when grown on regular culture medium (containing glucose as the sole carbon source). Our study establishes a link between phenotypic switching and genotypes of the CAI microsatellite locus in clinical isolates of C. albicans.

  16. Nylon-3 polymers active against drug-resistant Candida albicans biofilms.

    PubMed

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Masters, Kristyn S; Weisblum, Bernard; Gellman, Samuel H

    2015-02-18

    Candida albicans is the most common fungal pathogen in humans, and most diseases produced by C. albicans are associated with biofilms. We previously developed nylon-3 polymers with potent activity against planktonic C. albicans and excellent C. albicans versus mammalian cell selectivity. Here we show that these nylon-3 polymers have strong and selective activity against drug-resistant C. albicans in biofilms, as manifested by inhibition of biofilm formation and by killing of C. albicans in mature biofilms. The best nylon-3 polymer (poly-βNM) is superior to the antifungal drug fluconazole for all three strains examined. This polymer is slightly less effective than amphotericin B (AmpB) for two strains, but the polymer is superior against an AmpB-resistant strain.

  17. Imaging morphogenesis of Candida albicans during infection in a live animal

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Dolan, Kristy; Foster, Thomas H.; Wellington, Melanie

    2010-01-01

    Candida albicans is an opportunistic human fungal pathogen that requires an intact host immune response to prevent disease. Thus, studying host-pathogen interactions is critical to understanding and preventing this disease. We report a new model infection system in which ongoing C. albicans infections can be imaged at high spatial resolution in the ears of living mice. Intradermal inoculation into mouse ears with a C. albicans strain expressing green fluorescent protein results in systemic C. albicans infection that can be imaged in vivo using confocal microscopy. We observed filamentous growth of the organism in vivo as well as formation of microabscesses. This model system will allow us to gain significant new information about C. albicans pathogenesis through studies of host-C. albicans interactions in the native environment.

  18. Antifungal potential of eugenyl acetate against clinical isolates of Candida species.

    PubMed

    Musthafa, Khadar Syed; Hmoteh, Jutharat; Thamjarungwong, Benjamas; Voravuthikunchai, Supayang Piyawan

    2016-10-01

    The study evaluated the efficiency of eugenyl acetate (EA), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Minimum inhibitory concentrations (MIC) of EA against Candida isolates were in the range between 0.1% and 0.4% (v/v). Spot assay further confirmed the susceptibility of Candida isolates to the compound upon treatment with respective 1 × MIC. Growth profile measured in time kill study evidence that the compound at 1 × MIC and 1/2 × MIC retarded the growth of Candida cells, divulging the fungicidal activity. Light microscopic observation demonstrated that upon treated with EA, rough cell morphology, cell damage, and fragmented patterns were observed in C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata. Furthermore, unusual morphological changes of the organism were observed in scanning electron microscopic study. Therefore, it is validated that the compound could cause cell damage resulting in the cell death of Candida clinical isolates. Eventually, the compound at sub-MIC (0.0125% v/v) significantly inhibited serum-induced germ tube formation by C. albicans. Eugenyl acetate inhibited biofilm forming ability of the organisms as well as reduced the adherence of Candida cells to HaCaT keratinocytes cells. In addition, upon treatment with EA, the phagocytic activity of macrophages was increased significantly against C. albicans (P < 0.05). The results demonstrated the potential of EA as a valuable phytochemical to fight against emerging Candida infections.

  19. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    SciTech Connect

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-03-05

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.

  20. Phenotypic characterization of mononuclear cells and class II antigen expression in angular cheilitis infected by Candida albicans or Staphylococcus aureus.

    PubMed

    Ohman, S C; Jontell, M; Jonsson, R

    1989-04-01

    In the present study we characterized the phenotypes of infiltrating mononuclear cells in angular cheilitis lesions to further explore the pathogenesis of this disorder. Frozen sections from lesions infected by Candida albicans and/or Staphylococcus aureus were subjected to immunohistochemical analysis utilizing monoclonal antibodies directed to subsets of T-lymphocytes, B-lymphocytes, and macrophages. In addition, the expression of Class II antigens (HLA-DP, -DQ, -DR), the interleukin 2- and transferrin-receptors was studied on resident and infiltrating cells. An intense infiltration of T-lymphocytes was accompanied by expression of Class II antigens on the epidermal keratinocytes in lesion infected by Candida albicans. The Staphylococcus aureus infected lesions displayed a diffuse infiltration of T-lymphocytes but virtually no expression of Class II antigen by epidermal keratinocytes. These observations suggest that the cell-mediated arm of the immune system is involved in the inflammatory reaction of lesions infected by Candida albicans. In addition, the present study confirms that epidermal expression of Class II antigens is closely related to the type and magnitude of the infiltrating T-lymphocyte. Finally, these findings indicate that the type of inflammatory reaction in angular cheilitis is primarily dependent on the isolated microorganism, although the clinical pictures of the disorder are virtually identical.

  1. Effect of aqueous extract of miswak on the in vitro growth of Candida albicans.

    PubMed

    al-Bagieh, N H; Idowu, A; Salako, N O

    1994-01-01

    Chewing sticks (miswak) which are the roots of Salvadora persica plant have been used for centuries as oral hygiene tools in many parts of the world particularly in Saudi Arabia. Many studies have demonstrated the antiplaque, antiperiopathic, anticaries and antibacterial effect of these sticks. This study was designed to investigate the antimycotic effect, if any, of the aqueous extract of the plant roots. Various concentrations of aqueous extract of miswak prepared with Sabouraud medium were inoculated with Candida albicans (oral isolate). These were incubated at 37 degrees C and the turbidity was determined by OD at 600 nm wavelength measured at specific intervals over a period of 48 h. Data show that the extract at a concentration of 15% and above, has a fungistatic effect for up to 48 h. This antimycotic effect was probably due to one or more of the root contents which included chlorine, trimethylamine, and alkaloid resin, and sulphur compounds.

  2. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    PubMed Central

    ELLEPOLA, Arjuna Nishantha; KHAJAH, Rana; JAYATILAKE, Sumedha; SAMARANAYAKE, Lakshman; SHARMA, Prem; KHAN, Zia

    2015-01-01

    Post-antifungal effect (PAFE) of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candida may undergo a brief exposure to antifungal drugs. Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated. Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively. Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours) of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively. Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans. PMID:26398514

  3. Endocarditis due to a co-infection of Candida albicans and Candida tropicalis in a drug abuser.

    PubMed

    Fesharaki, Shirinsadat Hashemi; Haghani, Iman; Mousavi, Bita; Kargar, Melika Laal; Boroumand, Mohammadali; Anvari, Maryam Sotoudeh; Abbasi, Kyomars; Meis, Jacques F; Badali, Hamid

    2013-11-01

    In recent decades the incidence of Candida endocarditis has increased dramatically. Despite the application of surgery and antifungal therapy, Candida endocarditis remains a life-threatening infection with significant morbidity and mortality. We report a 37-year-old male drug abuser presenting with high fever, chest pain, loss of appetite and cardiac failure. His echocardiography revealed mobile large tricuspid valve vegetations. Fungal endocarditis was confirmed by culturing of the resected vegetation showing mixed growth of Candida albicans and Candida tropicalis, although three consecutive blood cultures were negative for Candida species. Phenotypic identification was reconfirmed by sequencing of the internal transcribed spacer (ITS rDNA) region. The patient was initially treated with intravenous fluconazole (6 mg kg(-1) per day), followed by 2 weeks of intravenous amphotericin B deoxycholate (1 mg kg(-1) per day). Although MICs were low for both drugs, the patient's antifungal therapy combined with valve replacement failed, and he died due to respiratory failure.

  4. The isolation of Candida rugosa and Candida mesorugosa from clinical samples in Ghana.

    PubMed

    Adjapong, Gloria; Bartlett, Michael; Hale, Marie; Garrill, Ashley

    2016-03-01

    Members of the Candida rugosa species complex have been described as emerging fungal pathogens and are responsible for a growing number of Candida infections. In this communication we report the isolation of Candida rugosa and Candida mesorugosa in Ghana. To the best of our knowledge this is the first description of this species complex from a clinical setting in Africa.The isolates were identified on the basis of their rRNA gene internal transcribed spacer (ITS) sequences. For one isolate, obtained from sputum, the sequence grouped well with that of C. rugosa. Two other isolates from urine had sequences that grouped with Candida mesorugosa. Morphologically, C. rugosa formed white, wrinkled, and flat colonies on Sabouraud Dextrose Agar (SDA), whereas C. mesorugosa formed white, smooth colonies. On chromogenic medium, the isolates formed small, dry greenish-blue colonies with a pale or white border, similar to C. albicans. The C. rugosa isolate produced pseudohyphae in human serum and on CMA-Tween 80 agar. In contrast, the C. mesorugosa isolates did not generate pseudohyphae in human serum, but generated a few pseudohyphae with abundant blastoconidia on CMA-Tween 80 agar. Growth was observed at 37 °C and 42 °C but not at 45 °C.The two C. mesorugosa isolates had Minimum Inhibitory Concentrations (MICs) of 6 and 48 μg ml(-1) for fluconazole and are thus resistant. The C. rugosa isolate had an MIC of 24 μg ml(-1), indicative of resistance. All three isolates were susceptible to itraconazole and voriconazole (with respective MICs of < 0.125 μg ml(-1)).

  5. Oral Candida Isolates Colonizing or Infecting Human Immunodeficiency Virus-Infected and Healthy Persons in Mexico

    PubMed Central

    Sánchez-Vargas, Luis Octavio; Ortiz-López, Natalia Guadalupe; Villar, María; Moragues, María Dolores; Aguirre, José Manuel; Cashat-Cruz, Miguel; Lopez-Ribot, Jose Luis; Gaitán-Cepeda, Luis Alberto; Quindós, Guillermo

    2005-01-01

    Oral yeast carriage was studied in 312 Mexican subjects. Candida albicans was the most frequent species, but other Candida spp. were isolated from 16.5 to 38.5% of patients. Colonization did not correlate with CD4+ number or viral load, but highly active antiretroviral therapy reduced the frequency of candidiasis. Most isolates were susceptible to fluconazole, but 10.8% were resistant to one or more azoles. PMID:16081965

  6. Oral Candida isolates colonizing or infecting human immunodeficiency virus-infected and healthy persons in Mexico.

    PubMed

    Sánchez-Vargas, Luis Octavio; Ortiz-López, Natalia Guadalupe; Villar, María; Moragues, María Dolores; Aguirre, José Manuel; Cashat-Cruz, Miguel; Lopez-Ribot, Jose Luis; Gaitán-Cepeda, Luis Alberto; Quindós, Guillermo

    2005-08-01

    Oral yeast carriage was studied in 312 Mexican subjects. Candida albicans was the most frequent species, but other Candida spp. were isolated from 16.5 to 38.5% of patients. Colonization did not correlate with CD4+ number or viral load, but highly active antiretroviral therapy reduced the frequency of candidiasis. Most isolates were susceptible to fluconazole, but 10.8% were resistant to one or more azoles.

  7. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids.

    PubMed

    Guisbiers, Grégory; Lara, Humberto H; Mendoza-Cruz, Ruben; Naranjo, Guillermo; Vincent, Brandy A; Peralta, Xomalin G; Nash, Kelly L

    2016-10-25

    Selenoproteins play an important role in the human body by accomplishing essential biological functions like oxido-reductions, antioxidant defense, thyroid hormone metabolism and immune response; therefore, the possibility to synthesize selenium nanoparticles free of any contaminants is exciting for future nano-medical applications. This paper reports the first synthesis of selenium nanoparticles by femtosecond pulsed laser ablation in de-ionized water. Those pure nanoparticles have been successfully used to inhibit the formation of Candida albicans biofilms. Advanced electron microscopy images showed that selenium nanoparticles easily adhere on the biofilm, then penetrate into the pathogen, and consequently damage the cell structure by substituting with sulfur. 50% inhibition of Candida albicans biofilm was obtained at only 25 ppm. Finally, the two physical parameters proved to affect strongly the viability of Candida albicans are the crystallinity and particle size.

  8. Relationship between Antifungal Activity against Candida albicans and Electron Parameters of Selected N-Heterocyclic Thioamides.

    PubMed

    Stachowicz, Jadwiga; Krajewska-Kułak, Elżbieta; Lukaszuk, Cecylia; Niewiadomy, A

    2014-07-01

    Due to the increasing demand for new pharmaceuticals showing biological activity against pathogenic microorganisms, there is increasing search for new compounds with predicted biological activity. Variously substituted thioamide derivatives with 1.3 and 1.2 ring of thiazole and 1,3,4-thiadiazole, as well as pyrazole were assessed for their activity against Candida albicans. Activity of majority of tested thioamides was larger as compared with that of the reference drugs. The electron parameters of obtained N-heterocyclic thioamides were determined and dependencies on their biological activity against Candida albicans were studied. The best electron compliance of produced bindings with the activity against Candida albicans was observed for the derivatives containing 1,3,4-thiadiazole ring.

  9. Comparison of in vitro and vivo efficacy of caspofungin against Candida parapsilosis, C. orthopsilosis, C. metapsilosis and C. albicans.

    PubMed

    Földi, Richárd; Kovács, Renátó; Gesztelyi, Rudolf; Kardos, Gábor; Berényi, Réka; Juhász, Béla; Szilágyi, Judit; Mózes, Julianna; Majoros, László

    2012-10-01

    Caspofungin activity was determined in vitro and in vivo against three Candida orthopsilosis, three C. metapsilosis, two C. parapsilosis sensu stricto and two C. albicans isolates. MIC values and killing activity were determined in RPMI-1640 plus 50 % human serum. Neutropenic (cyclophosphamide-treated) mice were infected intravenously. Five-day intraperitoneal treatment with caspofungin was started after 24 h postinfection. Kidney burden was analyzed using the Kruskal-Wallis test with Dunn's post-test. In killing studies, caspofungin was fungistatic and fungicidal against C. albicans at ≥0.25 and ≥2 μg/ml concentrations, respectively. Caspofungin was fungistatic at ≥8-16, ≥2-8 and at ≥2-8 μg/ml against C. parapsilosis, C. orthopsilosis and C. metapsilosis, respectively. In the murine model, C. albicans was inhibited by 1, 2 and 5 mg/kg of caspofungin (P < 0.001 compared to the controls). Against C. parapsilosis, only 5 mg/kg caspofungin was effective against both isolates (P < 0.05). Two and five mg/kg of caspofungin was effective against all C. orthopsilosis and C. metapsilosis isolates (P < 0.05 to <0.001). Serum-based killing tests proved to be useful in predicting in vivo efficacy of caspofungin against four Candida species. Caspofungin at clinically attainable concentrations proved to be effective against all four species.

  10. Epidemiology, Antifungal Susceptibility, and Pathogenicity of Candida africana Isolates from the United Kingdom

    PubMed Central

    Szekely, Adrien; Linton, Chistopher J.; Palmer, Michael D.; Brown, Phillipa; Johnson, Elizabeth M.

    2013-01-01

    Candida africana was previously proposed as a new species within the Candida albicans species complex, together with C. albicans and C. dubliniensis, although further phylogenetic analyses better support its status as an unusual variant within C. albicans. Here we show that C. africana can be distinguished from C. albicans and C. dubliniensis by pyrosequencing of a short region of ITS2, and we have evaluated its occurrence in clinical samples by pyrosequencing all presumptive isolates of C. albicans submitted to the Mycology Reference Laboratory over a 9-month period. The C. albicans complex constituted 826/1,839 (44.9%) of yeast isolates received over the study period and included 783 isolates of C. albicans, 28 isolates of C. dubliniensis, and 15 isolates of C. africana. In agreement with previous reports, C. africana was isolated exclusively from genital specimens, in women in the 18-to-35-year age group. Indeed, C. africana constituted 15/251 (6%) of “C. albicans” isolates from female genital specimens during the study period. C. africana isolates were germ tube positive, grew significantly more slowly than C. albicans and C. dubliniensis on conventional mycological media, could be distinguished from the other members of the C. albicans complex by appearance on chromogenic agar, and were incapable of forming chlamydospores. Here we present the detailed evaluation of epidemiological, phenotypic, and clinical features and antifungal susceptibility profiles of United Kingdom isolates of C. africana. Furthermore, we demonstrate that C. africana is significantly less pathogenic than C. albicans and C. dubliniensis in the Galleria mellonella insect systemic infection model. PMID:23303503

  11. The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains

    PubMed Central

    Forche, Anja; Alby, Kevin; Schaefer, Dana; Johnson, Alexander D; Berman, Judith; Bennett, Richard J

    2008-01-01

    Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle. PMID:18462019

  12. Denture Stomatitis and Candida Albicans in Iranian Population: A Systematic Review and Meta-Analysis

    PubMed Central

    Moosazadeh, Mahmood; Akbari, Maryam; Tabrizi, Reza; Ghorbani, Anahita; Golkari, Ali; Banakar, Morteza; Sekhavati, Eghbal; Kavari, Seyed Habibollah; Bagheri Lankarani, Kamran

    2016-01-01

    Statement of the Problem: Denture stomatitis is the common form of oral candidiasis, which is seen in the form of diffused inflammation in the areas covered by dentures. Many primary studies report the prevalence of denture stomatitis and candida albicans among patients in the Iranian population; therefore, using meta-analysis is valuable for health policy makers. Purpose: The purpose of the present study is to determine the prevalence of denture stomatitis and candida albicans in Iran. Materials and Method: Using relevant keywords, national and international databases were searched. After limiting the search strategy and deleting the duplicates, the remaining papers were screened by examining the title and abstract. In order to increase the sensitivity of search reference lists of papers were examined. Finally the index of heterogeneity between studies was defined using Cochran test (Q) and I-squared (I2). According to heterogeneity, the random effects model was used to estimate the prevalence of denture stomatitis and candida albicans in Iran. Result: The prevalence of denture stomatitis in 12 studies, and the prevalence of candida albicans in patients with denture stomatitis have been reported in 6 studies. The number of sample under investigated and its age range among primary studies included meta- analysis was 2271 individuals and 32.7 till 87.5 years respectively. The prevalence of denture stomatitis in preliminary studies imported to a meta-analysis varied from 1.9% to 54.6%, and its rate in Iran using the meta-analysis was estimated 28.9 % (CI 95%: 18.2-39.6). Also the overall prevalence of candida albicans in patients with denture stomatitis in Iran was estimated 60.6% (CI 95%:50.1-71.2). Conclusion: This study showed that the prevalence of denture stomatitis and candida albicans among patient infected denture stomatitis is relatively significant in Iran. PMID:27840842

  13. Candida albicans and non-albicans species as etiological agent of vaginitis in pregnant and non-pregnant women.

    PubMed

    Babic, Mirela; Hukic, Mirsada

    2010-02-01

    Pregnancy represents a risk factor in the occurrence of vaginal candidosis. The objectives of our study were: to make determination of the microscopic findings of vaginal swab, frequency of Candida species in the culture of pregnant women and patients who are not pregnant, determine the Candida species in all cultures, and to determine the frequency and differences in the frequency of C. albicans and other non-albicans species. In one year study performed during 2006 year, we tested patients of Gynaecology and Obstetrics clinic of the Clinical Centre in Sarajevo and Gynaecology department of the General hospital in Sarajevo. 447 woman included in the study were separated in two groups: 203 pregnant (in the last trimester of pregnancy), and 244 non-pregnant woman in period of fertility. Each vaginal swab was examined microscopically. The yeast, number of colonies, and the species of Candida were determined on Sabouraud dextrose agar with presence of antibiotics. For determination of Candida species, we used germ tube test for detection of C. albicans, and cultivation on the selective medium and assimilation tests for detection of non-albicans species. The results indicated positive microscopic findings in the test group (40,9%), as well as greater number of positive cultures (46,8%). The most commonly detected species for both groups was C. albicans ( test group 40.9% and control group 23,0%). The most commonly detected non-albicans species for the test group were C. glabrata (4,2 %) and C. krusei (3,2%), and for the control group were C. glabrata (3,2%) and C. parapsilosis (3,2%). The microscopic findings correlated with the number of colonies in positive cultures. In the test group, we found an increased number of yeasts (64,3%), and the pseudopyphae and blastopores by microscopic examination as an indication of infection. In the control group, we found a small number of yeasts (64,6%) , in the form of blastopores, as an indication of the candida colonisation. Our

  14. A Monoclonal Antibody Directed against a Candida albicans Cell Wall Mannoprotein Exerts Three Anti-C. albicans Activities

    PubMed Central

    Moragues, María D.; Omaetxebarria, Miren J.; Elguezabal, Natalia; Sevilla, María J.; Conti, Stefania; Polonelli, Luciano; Pontón, José

    2003-01-01

    Antibodies are believed to play a role in the protection against Candida albicans infections by a number of mechanisms, including the inhibition of adhesion or germ tube formation, opsonization, neutralization of virulence-related enzymes, and direct candidacidal activity. Although some of these biological activities have been demonstrated individually in monoclonal antibodies (MAbs), it is not clear if all these anti-C. albicans activities can be displayed by a single antibody. In this report, we characterized a monoclonal antibody raised against the main target of salivary secretory immunoglobulin A in the cell wall of C. albicans, which exerts three anti-C. albicans activities: (i) inhibition of adherence to HEp-2 cells, (ii) inhibition of germination, and (iii) direct candidacidal activity. MAb C7 reacted with a proteinic epitope from a mannoprotein with a molecular mass of >200 kDa predominantly expressed on the C. albicans germ tube cell wall surface as well as with a number of antigens from Candida lusitaniae, Cryptococcus neoformans, Aspergillus fumigatus, and Scedosporium prolificans. MAb C7 caused a 31.1% inhibition in the adhesion of C. albicans to HEp-2 monolayers and a 55.3% inhibition in the adhesion of C. albicans to buccal epithelial cells, produced a 38.5% decrease in the filamentation of C. albicans, and exhibited a potent fungicidal effect against C. albicans, C. lusitaniae, Cryptococcus neoformans, A. fumigatus, and S. prolificans, showing reductions in fungal growth ranging from 34.2 to 88.7%. The fungicidal activity showed by MAb C7 seems to be related to that reported by antibodies mimicking the activity of a killer toxin produced by the yeast Pichia anomala, since one of these MAbs also reacted with the C. albicans mannoprotein with a molecular mass of >200 kDa. Results presented in this study support the concept of a family of microbicidal antibodies that could be useful in the treatment of a wide range of microbial infections when used

  15. Comparison of the effect of honey and miconazole against Candida albicans in vitro

    PubMed Central

    Banaeian-Borujeni, Shayeste; Mobini, Gholam R.; Pourgheysari, Batoul; Validi, Majid

    2013-01-01

    Background: One of the most common causes of vaginitis is candidiasis. The aim of this study is to compare the effect of honey and miconazole against Candida albicans, in vitro. Materials and Methods: The different W/V concentrations of honey were prepared at 20, 40, 60, 80, and 95% and different dilutions of miconazole were prepared in 0.05, 5, and 50 μg/ml. A microdilution of 100/000 cells per ml of a two-day old culture of Candida albicans was prepared in normal saline, after culturing the strain of PTCC 5027 in RPMI 1640 medium. Ten microliters of this dilution was added to 1 ml of the RPMI 1640 medium containing different concentrations of honey and to 1 ml of the RPMI 1640 medium containing different dilutions of miconazole. The cultures were incubated at 35°C for 12, 24, and 48 hours. Results: The growth rate of Candida albicans was determined in the cultures. The results indicated that the honey prevented the growth of C. albicans greatly only at an 80% concentration, whereas, miconazole inhibited it completely. Conclusions: As Candida albicans is a normal vaginal flora, the inhibitory effect of honey without the fungicide effect is a very good trend in the treatment of vaginal candidiasis. PMID:24223372

  16. A Trypsin Inhibitor from Tecoma stans Leaves Inhibits Growth and Promotes ATP Depletion and Lipid Peroxidation in Candida albicans and Candida krusei

    PubMed Central

    Patriota, Leydianne L. S.; Procópio, Thamara F.; de Souza, Maria F. D.; de Oliveira, Ana Patrícia S.; Carvalho, Lidiane V. N.; Pitta, Maira G. R.; Rego, Moacyr J. B. M.; Paiva, Patrícia M. G.; Pontual, Emmanuel V.; Napoleão, Thiago H.

    2016-01-01

    Tecoma stans (yellow elder) has shown medicinal properties and antimicrobial activity. Previous reports on antifungal activity of T. stans preparations and presence of trypsin inhibitor activity from T. stans leaves stimulated the investigation reported here. In this work, we proceeded to the purification and characterization of a trypsin inhibitor (TesTI), which was investigated for anti-Candida activity. Finally, in order to determine the potential of TesTI as a new natural chemotherapeutic product, its cytotoxicity to human peripheral blood mononuclear cells (PBMCs) was evaluated. TesTI was isolated from saline extract by ammonium sulfate fractionation followed by ion exchange and gel filtration chromatographies. Antifungal activity was evaluated by determining the minimal inhibitory (MIC) and fungicide (MFC) concentrations using fungal cultures containing only yeast form or both yeast and hyphal forms. Candida cells treated with TesTI were evaluated for intracellular ATP levels and lipid peroxidation. Cytotoxicity of TesTI to PBMCs was evaluated by MTT assay. TesTI (39.8 kDa, pI 3.41, Ki 43 nM) inhibited similarly the growth of both C. albicans and C. krusei culture types at MIC of 100 μg/mL. The MFCs were 200 μg/mL for C. albicans and C. krusei. Time-response curves revealed that TesTI (at MIC) was more effective at inhibiting the replication of C. albicans cells. At MIC, TesTI promoted reduction of ATP levels and lipid peroxidation in the Candida cells, being not cytotoxic to PBMCs. In conclusion, TesTI is an antifungal agent against C. albicans and C. krusei, without toxicity to human cells. PMID:27199940

  17. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis.

    PubMed Central

    Kondoh, O; Tachibana, Y; Ohya, Y; Arisawa, M; Watanabe, T

    1997-01-01

    The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the opportunistic pathogenic fungus Candida albicans, we cloned the RHO1 gene by the PCR and cross-hybridization methods. Sequence analysis revealed that the Candida RHO1 gene has a 597-nucleotide region which encodes a putative 22.0-kDa peptide. The deduced amino acid sequence predicts that Candida albicans Rho1p is 82.9% identical to Saccharomyces Rho1p and contains all the domains conserved among Rho-type GTPases from other organisms. The Candida albicans RHO1 gene could rescue a S. cerevisiae strain containing a rho1 deletion. Furthermore, recombinant Candida albicans Rho1p could reactivate the beta-1,3-glucan synthesis activities of both C. albicans and S. cerevisiae membranes in which endogenous Rho1p had been depleted by Tergitol NP-40-NaCl treatment. Candida albicans Rho1p was copurified with the beta-1,3-glucan synthase putative catalytic subunit, Candida albicans Gsc1p, by product entrapment. Candida albicans Rho1p was shown to interact directly with Candida albicans Gsc1p in a ligand overlay assay and a cross-linking study. These results indicate that Candida albicans Rho1p acts in the same manner as Saccharomyces cerevisiae Rho1p to regulate beta-1,3-glucan synthesis. PMID:9401032

  18. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  19. Comparative Evaluation of Oral Candida albicans Carriage in Children with and without Dental Caries: A Microbiological in vivo Study

    PubMed Central

    Srivastava, Binita; Bhatia, Hind Pal; Aggarwal, Archana; Kumar Singh, Ashish; Gupta, Nidhi

    2012-01-01

    ABSTRACT Aim: The aim of this study was to examine the presence of Candida albicans in extensive carious lesions before and after treatment of the carious lesions and to evaluate the carriage of Candida albicans in children with and without caries. Materials and methods: The study was conducted on 60 childrens who were divided into two groups: Experimental group (group 1) and controlled group (group 2). Each group was further divided into 3 subgroups according to the dentition as: Group A (Deciduous), group B (Mixed) and group C (Permanent). Swab samples for mycological studies were collected from the dorsum of the tongue, vestibular sulcus and peak of the palatal vault. All samples were cultured directly on SDA plate (Sabouraud's dextrose agar). Number of Candida colonies was determined by counting colony forming unit on SDA plates. Further identification of Candida albicans was done by germ-tube test and corn-meal agar. Result: Overall prevalence of Candida albicans carriage was significantly higher and mean value of Candida albicans CFU (colony forming unit) was remarkably higher in group 1 (experimental group) as compare to group 2 (control group). Significant reduction in the frequency and mean value of Candida albicans CFU/plate was seen in children after treatment of carious lesions. Conclusion: This study supports the active role of Candida species in dental caries. Hence, Candida albicans may play an important role as a risk factor for dental caries. It was also seen that the oral environment stabilization procedures were able to reduce Candida albicans counts. Thus, these procedures can be considered efficient in the reduction of caries risk. How to cite this article: Srivastava B, Bhatia HP, Chaudhary V, Aggarwal A, Singh AK, Gupta N. Comparative Evaluation of Oral Candida albicans Carriage in Children with and without Dental Caries: A Microbiological in vivo Study. Int J Clin Pediatr Dent 2012;5(2):108-112. PMID:25206148

  20. Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections

    PubMed Central

    Rohilla, Hina; Singh, Gajender; Punia, Parul

    2016-01-01

    Introduction Recently non-albicans Candida has emerged as a major cause of morbidity and mortality in blood stream infections. Some species of the Candida are becoming increasingly resistant to first line and second line antifungals such as echinocandins and fluconazole. In view of increasing global antifungal resistance, role of alternative and better antifungals like natural plant products need to be explored. Essential oils are known to exhibit antimicrobial activity against various fungi. Hence, we evaluated the efficacy of cinnamon oil and olive oil against Candida spp. Aim To evaluate the invitro antifungal activity of olive oil and cinnamon oil against blood stream Candida isolates. Materials and Methods The present prospective observational study was conducted in the Department of Microbiology at a tertiary care teaching hospital during one year June 2011-July 2012. Blood samples were collected from 1376 patients clinically suspected to have fungal septicaemia, out of which 100 (7.2%) Candida isolates obtained, were speciated by conventional methods. Antifungal susceptibility testing of all the isolates was done against fluconazole, voriconazole as per NCCL (M27-A2) and against olive oil and cinnamon oil by agar well diffusion method. Results Prevalence of Candidemia was 7.26%. C. albicans (85.3%) and C. parapsilosis (85.7%) were most sensitive to fluconazole followed by C. tropicalis (67.4%). All isolates were 100% sensitive to voriconazole. Both oils were found to be effective against nearly 50% of the Candida isolates. About 55.5% of fluconazole resistant C. krusei strains were sensitive to olive and cinnamon oil. Conclusion Fluconazole resistant non-albicans Candida has emerged as major cause of Candidemia. Cinnamon and olive oil show marked sensitivity against albicans and non-albicans spp. PMID:27656437

  1. Virulence factors of Candida species isolated from patients with urinary tract infection and obstructive uropathy

    PubMed Central

    Alenzi, Faris Q.B.

    2016-01-01

    Objective: Fungal urinary tract infections due to Candida have increased significantly in recent years. Our research objective was to study Candida species in urine samples of patients with urinary tract infections (UTIs) associated with obstructive uropathy and to investigate the virulence factors of the isolated Candida. Methods: Patients were divided into two groups: Group I (cases): 50 patients with UTIs and obstructive uropathy. Group II (control): 50 patients with UTIs but with no functional or anatomical obstruction of their urinary tract. Clinical histories and physical examinations, together with laboratory investigations of urine samples were carried out in all patients in this study. Mid stream urine samples were examined microscopically and by fungal cell culture. The isolated Candida species were identified by analytical profile index (API). Candida Virulence factors were determined for the isolated Candida. The susceptibility to fluconazole was evaluated. Results: This study revealed an overall isolation rate of 27% of Candida species among all patient groups. The rate was 36% in cases, and 18% in controls, a difference found to be statistically significant (P<0.05). By API, C.albicans was detected in 44% of Candida species in cases, and in 33% in controls. While C.glabrata was detected in 28% of Candida species in cases, and in 22% in controls. C.tropicalis was detected in 17% of Candida species in cases, and in 22% in controls. Both C.krusei and C.kyfr were detected in 5.5% of Candida species in cases, and in 11% in controls. In terms of virulence factors the study showed that 11 out of 27 (40.5%) of Candida isolates were biofilm positive by tube adherence. Phospholipase activity was demonstrated in 12 out of 27 (44.5%) of Candida isolates. Secretory aspartic proteinase activity was demonstrated in 13 out of 27 (48%) of the Candida isolates. Conclusion: Candida is an important cause of UTIs and obstructive uropathy is a major predisposing factor

  2. Candida albicans Mycofilms Support Staphylococcus aureus Colonization and Enhances Miconazole Resistance in Dual-Species Interactions

    PubMed Central

    Kean, Ryan; Rajendran, Ranjith; Haggarty, Jennifer; Townsend, Eleanor M.; Short, Bryn; Burgess, Karl E.; Lang, Sue; Millington, Owain; Mackay, William G.; Williams, Craig; Ramage, Gordon

    2017-01-01

    Polymicrobial inter-kingdom biofilm infections represent a clinical management conundrum. The presence of co-isolation of bacteria and fungi complicates the ability to routinely administer single antimicrobial regimens, and synergy between the microorganisms influences infection severity. We therefore investigated the nosocomial pathogens Staphylococcus aureus and Candida albicans with respect to antimicrobial intervention. We characterized the interaction using biofilm assays and evaluated the effect of miconazole treatment using in vitro and in vivo assays. Finally, we assessed the impact of biofilm extracellular matrix (ECM) on these interactions. Data indicated that the C. albicans mycofilms supported adhesion and colonization by S. aureus through close interactions with hyphal elements, significantly increasing S. aureus biofilm formation throughout biofilm maturation. Miconazole sensitivity was shown to be reduced in both mono- and dual-species biofilms compared to planktonic cells. Within a three-dimensional biofilm model sensitivity was also hindered. Galleria mellonella survival analysis showed both enhanced pathogenicity of the dual-species infection, which was concomitantly desensitized to miconazole treatment. Analysis of the ECM revealed the importance of extracellular DNA, which supported the adhesion of S. aureus and the development of the dual-species biofilm structures. Collectively, these data highlight the clinical importance of dual-species inter-kingdom biofilm infections, though also provides translational opportunities to manage them more effectively. PMID:28280487

  3. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

    PubMed Central

    Sepulveda, P; Lopez-Ribot, J L; Gozalbo, D; Cervera, A; Martinez, J P; Chaffin, W L

    1996-01-01

    We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures. PMID:8926122

  4. Control of Candida albicans vaginitis in mice by short-duration butoconazole treatment in situ.

    PubMed

    Valentin, A; Bernard, C; Mallié, M; Huerre, M; Bastide, J M

    1993-01-01

    A short-duration treatment for candidal vaginitis applying butoconazole in situ was tested in an experimental mouse model. One week after artificial induction of an oestrus state (by oestradiol benzoate injection), mice were inoculated intravaginally with 1.5 x 10(7) blastospores of Candida albicans (strain ATCC 44858). Treatment consisted of butoconazole solutions (1%, 2.5% and 5%) administered intravaginally. The development of the infection was monitored daily for 12 days and then three times a week by local samples plated on BiGGY agar. In parallel, twice a week, the vaginas of three mice in each group (control and treated groups) were isolated in order to estimate organ invasion by C. albicans. This was assessed by anatomopathological studies on a fixed and stained part of the organ and by serial dilutions of a homogenate of the remaining part plated on Sabouraud glucose chloramphenicol agar. After a 48-h incubation period the number of colony forming units per gram of tissue was counted. For each treatment, a remission of 10-15 days was observed, but was followed by a recurrence for the lower dose of butoconazole; only the higher butoconazole concentrations tested (2.5% and 5%) gave an apparent full cure for most of the mice tested. The use of the mouse model of candidal vaginitis confirms that short-duration treatment is possible when elevated doses of butoconazole are used.

  5. Identification of Candida albicans antigens reactive with immunoglobulin E antibody of human sera.

    PubMed Central

    Ishiguro, A; Homma, M; Torii, S; Tanaka, K

    1992-01-01

    Candida albicans antigens which reacted with immunoglobulin E (IgE) antibodies of 57 allergic patients were detected by immunoblotting. Of the various antigens, the 175-, 125-, 46-, 43-, and 37-kDa antigenic components reacted most frequently with the patient sera. To purify the major antigens, C. albicans cells were fractionated. The 46-, 43-, and 37-kDa antigens were recovered in cytoplasmic fractions, but the 175- and 125-kDa antigens were not recovered in any fraction. The 46-, 43-, and 37-kDa antigens were purified from cytoplasmic fractions by DEAE and P11 ion-exchange chromatography. Antigens were isolated by cutting bands out of sodium dodecyl sulfate-polyacrylamide gels. The purified components confirmed by immunoblotting were next processed for amino acid sequencing. Parts of the sequences of the 46-, 43-, and 37-kDa antigens had significant levels of homology with Saccharomyces cerevisiae glycolytic enzyme enolase, phosphoglycerate kinase, and aldolase, respectively. Rabbit IgG antibodies prepared against the 46- and 43-kDa antigens strongly cross-reacted with the homologous proteins of S. cerevisiae. However, S. cerevisiae enolase and phosphoglycerate kinase did not cross-react with IgE of patient sera. This result suggests that IgE antibodies against only small parts of their epitopes are elevated in the allergic patients. Since enolase is reported to be a major antigen for systemic candidiasis, this enzyme may be the immunodominant protein in both allergies and fungal infections. Images PMID:1548078

  6. Emergence of fluconazole-resistant strains of Candida albicans in patients with recurrent oropharyngeal candidosis and human immunodeficiency virus infection.

    PubMed Central

    Ruhnke, M; Eigler, A; Tennagen, I; Geiseler, B; Engelmann, E; Trautmann, M

    1994-01-01

    After repeated use of fluconazole for therapy of oropharyngeal candidosis, the emergence of in vitro fluconazole-resistant Candida albicans isolates (MIC, > or = 25 micrograms/ml) together with oral candidosis unresponsive to oral dosages of up to 400 mg of fluconazole were observed in patients with human immunodeficiency virus (HIV) infection. Antifungal susceptibility testing was done by broth microdilution and agar dilution techniques on C. albicans isolates recovered from a cohort of patients with symptomatic HIV infection who were treated repeatedly with fluconazole for oropharyngeal candidosis. In vitro findings did show a gradual increase in the MICs for C. albicans isolates recovered from selected patients with repeated episodes of oropharyngeal candidosis. Primary resistance of C. albicans to fluconazole was not seen. Cross-resistance in vitro occurred between fluconazole and other azoles (ketoconazole, itraconazole), but to a lesser extent. The results of the study suggest that the development of clinical resistance to fluconazole could be clearly correlated to in vitro resistance to fluconazole. Itraconazole may still serve as an effective antifungal agent in patients with HIV infection and oropharyngeal candidosis nonresponsive to fluconazole. PMID:7814530

  7. The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains.

    PubMed

    Mertas, Anna; Garbusińska, Aleksandra; Szliszka, Ewelina; Jureczko, Andrzej; Kowalska, Magdalena; Król, Wojciech

    2015-01-01

    The aim of this study was to evaluate the activity of fluconazole against 32 clinical strains of fluconazole-resistant Candida albicans, and C. albicans ATCC 10231 reference strain, after their exposure to sublethal concentrations of tea tree oil (TTO) or its main bioactive component terpinen-4-ol. For all tested fluconazole-resistant C. albicans strains TTO and terpinen-4-ol minimal inhibitory concentrations (MICs) were low, ranging from 0.06% to 0.5%. The 24-hour exposure of fluconazole-resistant C. albicans strains to fluconazole with sublethal dose of TTO enhanced fluconazole activity against these strains. Overall, 62.5% of isolates were classified as susceptible, 25.0% exhibited intermediate susceptibility, and 12.5% were resistant. For all of the tested clinical strains the fluconazole MIC decreased from an average of 244.0 μg/mL to an average of 38.46 μg/mL, and the fluconazole minimal fungicidal concentrations (MFC) decreased from an average of 254.67 μg/mL to an average of 66.62 μg/mL. Terpinen-4-ol was found to be more active than TTO, and strongly enhanced fluconazole activity against fluconazole-resistant C. albicans strains. The results of this study demonstrate that combining natural substances such as TTO and conventional drug such as fluconazole, may help treat difficult yeast infections.

  8. External ecological niche for Candida albicans within reducing, oxygen-limited zones of wetlands.

    PubMed

    Stone, Wendy; Jones, Barbara-Lee; Wilsenach, Jac; Botha, Alfred

    2012-04-01

    Candida albicans within the human host is well studied; however, identifying environmental reservoirs of pathogens is epidemiologically valuable for disease management. Oxygen-limited, carbohydrate-rich zones of wetlands, to which sewage-borne C. albicans is often exposed, are characteristically similar to the gastrointestinal reservoir. Consequently, using quantitative real-time PCR (qRT-PCR) and gas chromatography-mass spectrometry (GC-MS), we demonstrated that oxygen-limited zones in polluted wetlands may act as potential reservoirs of C. albicans.

  9. Influence of radiation therapy on oral Candida albicans colonization: a quantitative assessment

    SciTech Connect

    Rossie, K.M.; Taylor, J.; Beck, F.M.; Hodgson, S.E.; Blozis, G.G.

    1987-12-01

    An increase in quantity of oral Candida albicans was documented in patients receiving head and neck radiation therapy during and after therapy, as assessed by an oral-rinse culturing technique. The amount of the increase was greater in denture wearers and directly related to increasing radiation dose and increasing volume of parotid gland included in the radiation portal. A significant number of patients who did not carry C. albicans prior to radiation therapy developed positive cultures by 1 month after radiation therapy. The percentage of patients receiving head and neck radiation therapy who carried C. albicans prior to radiation therapy did not differ significantly from matched dental patient controls.

  10. Phospholipid biosynthesis in Candida albicans: Regulation by the precursors inositol and choline

    SciTech Connect

    Klig, L.S.; Friedli, L.; Schmid, E. )

    1990-08-01

    Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway. The same pathway in C. albicans responds to the exogenous provision of choline. Possible explanations for the observed differences in regulation are discussed.

  11. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans.

    PubMed

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan; Sun, Shujuan

    2015-10-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs.

  12. Clinical significance of the isolation of Candida species from hospitalized patients.

    PubMed

    Magalhães, Yankee C; Bomfim, Maria Rosa Q; Melônio, Luciane C; Ribeiro, Patrícia C S; Cosme, Lécia M; Rhoden, Cristianne R; Marques, Sirlei G

    2015-03-01

    In this study, we isolated and phenotypically identified 108 yeast strains from various clinical specimens collected from 100 hospitalized patients at three tertiary hospitals in São Luís-Maranhão, Brazil, from July to December 2010. The isolates were analyzed for their susceptibility to four of the most widely used antifungal agents in the surveyed hospitals, amphotericin B, fluconazole, 5-flucytosine and voriconazole. The species identified were Candida albicans (41.4%), Candida tropicalis (30.1%), C. glabrata (7.4%), Candida parapsilosis (5.5%), Candida krusei (4.6%), Cryptococcus neoformans (4.6%), Trichosporon spp . (3.7%), Candida norvegensis (0.9%), Rhodotorula glutinis (0.9%) and Pichia farinosa (0.9%). A higher isolation rate was observed in the following clinical specimens: urine (54 isolates; 50%), respiratory tract samples (21 isolates; 19.4%) and blood (20 isolates; 18.6%). Candida albicans isolates were 100% sensitive to all antifungal agents tested, whereas Candida krusei and Crytococcus neoformans displayed intermediate resistance to 5-flucytosine, with Minimal Inhibitory Concentration (MIC) values of 8 mg/mL and 16 mg/mL, respectively. Both strains were also S-DD to fluconazole with an MIC of 16 mg/mL. C. tropicalis was resistant to 5-flucytosine with an MIC of 32 μg/mL. This study demonstrates the importance of identifying the yeast species involved in community and nosocomial infections.

  13. The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicans on acrylic.

    PubMed

    Silva, Sónia; Pires, Priscila; Monteiro, Douglas R; Negri, Melyssa; Gorup, Luiz F; Camargo, Emerson R; Barbosa, Débora B; Oliveira, Rosário; Williams, David W; Henriques, Mariana; Azeredo, Joana

    2013-02-01

    The aim of this study was to compare biofilm formation by Candida glabrata and Candida albicans on acrylic, either individually or when combined (single and dual species) and then examine the antimicrobial effects of silver nanoparticles and nystatin on these biofilms. Candidal adhesion and biofilm assays were performed on acrylic surface in the presence of artificial saliva (AS) for 2 h and 48 h, respectively. Candida glabrata and C. albicans adherence was determined by the number of colony forming units (CFUs) recovered from the biofilms on CHROMagar(®) Candida. In addition, crystal violet (CV) staining was used as an indicator of biofilm biomass and to quantify biofilm formation ability. Pre-formed biofilms were treated either with silver nanoparticles or nystatin and the effect of these agents on the biofilms was evaluated after 24 h. Results showed that both species adhered to and formed biofilms on acrylic surfaces. A significantly (P < 0.05) higher number of CFUs was evident in C. glabrata biofilms compared with those formed by C. albicans. Comparing single and dual species biofilms, equivalent CFU numbers were evident for the individual species. Both silver nanoparticles and nystatin reduced biofilm biomass and the CFUs of single and dual species biofilms (P < 0.05). Silver nanoparticles had a significantly (P < 0.05) greater effect on reducing C. glabrata biofilm biomass compared with C. albicans. Similarly, nystatin was more effective in reducing the number of CFUs of dual species biofilms compared with those of single species (P < 0.05). In summary, C. glabrata and C. albicans can co-exist in biofilms without apparent antagonism, and both silver nanoparticles and nystatin exhibit inhibitory effects on biofilms of these species.

  14. Whole Saliva has a Dual Role on the Adherence of Candida albicans to Polymethylmetacrylate.

    PubMed

    Elguezabal, N; Maza, J L; Dorronsoro, S; Pontón, J

    2008-01-01

    Adhesion of Candida albicans to acrylic of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In previous studies our group has shown that adhesion of C. albicans germ tubes to polystyrene is decreased by saliva whereas C. albicans yeast cells adhesion to the same material is enhanced. The results presented in this study confirm this dual role played by whole saliva, since it decreased the adhesion of germ tubes but increased the adhesion of yeast cells to polymethylmetacrylate (PMMA). These effects mediated by whole saliva do not seem to be related to an inhibition of the germination of C. albicans, since similar levels of filamentation were observed in presence and absence of saliva. These results may give new insights into the conflicting role of saliva in the adhesion of C. albicans to acrylic resins of dental prostheses.

  15. A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol.

    PubMed

    Hassan, Rabeay Y A; Bilitewski, Ursula

    2011-12-01

    Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S.cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.

  16. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans.

    PubMed

    Chen, Yuxin; Zeng, Hong; Tian, Jun; Ban, Xiaoquan; Ma, Bingxin; Wang, Youwei

    2013-08-01

    This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO.

  17. Growth of Candida albicans in human saliva is supported by low-molecular-mass compounds.

    PubMed

    Valentijn-Benz, Marianne; Nazmi, Kamran; Brand, Henk S; van't Hof, Wim; Veerman, Enno C I

    2015-12-01

    Saliva plays a key role in the maintenance of a stable oral microflora. It contains antimicrobial compounds but also functions as a substrate for growth of bacteria under conditions of low external nutrient supply. Besides bacteria, yeasts, in particular Candida albicans, commonly inhabit the oral cavity. Under immunocompromised conditions, instantaneous outgrowth of this yeast occurs in oral carriers of C. albicans, suggesting that this yeast is able to survive in the oral cavity with saliva as sole source of growth substrate. The aim of the present study was to identify the salivary constituents that are used by C. albicans for growth and survival in saliva. In addition, we have explored the effect of growth in saliva on the susceptibility of C. albicans to histatin 5, a salivary antifungal peptide. It was found that C. albicans was able to grow in human saliva without addition of glucose, and in the stationary phase could survive for more than 400 h. Candida albicans grown in saliva was more than 10 times less susceptible for salivary histatin 5 than C. albicans cultured in Sabouraud medium.

  18. Differentiation of Candida albicans and Candida dubliniensis by Fluorescent In Situ Hybridization with Peptide Nucleic Acid Probes

    PubMed Central

    Oliveira, Kenneth; Haase, Gerhard; Kurtzman, Cletus; Hyldig-Nielsen, Jens Jo/rgen; Stender, Henrik

    2001-01-01

    The recent discovery of Candida dubliniensis as a separate species that traditionally has been identified as Candida albicans has led to the development of a variety of biochemical and molecular methods for the differentiation of these two pathogenic yeasts. rRNA sequences are well-established phylogenetic markers, and probes targeting species-specific rRNA sequences have been used in diagnostic assays for the detection and identification of microorganisms. Peptide nucleic acid (PNA) is a DNA mimic with improved hybridization characteristics, and the neutral backbone of PNA probes offers significant advantages in whole-cell in situ hybridization assays. In this study, we developed PNA probes targeting the rRNAs of C. albicans and C. dubliniensis and applied them to a fluorescence in situ hybridization method (PNA FISH) for differentiation between C. albicans and C. dubliniensis. Liquid cultures were smeared onto microscope slides, heat fixed, and then hybridized for 30 min. Unhybridized PNA probe was removed by washing, and smears were examined by fluorescence microscopy. Evaluation of the PNA FISH method using smears of 79 C. dubliniensis and 70 C. albicans strains showed 100% sensitivity and 100% specificity for both PNA probes. We concluded that PNA FISH is a powerful tool for the differentiation of C. albicans and C. dubliniensis. PMID:11682542

  19. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin.

    PubMed

    Kucharíková, Sona; Tournu, Hélène; Lagrou, Katrien; Van Dijck, Patrick; Bujdáková, Helena

    2011-09-01

    Candida biofilm development can be influenced by diverse factors such as substrate, culture medium, carbohydrate source and pH. We have analysed biofilm formation of Candida albicans SC5314 and Candida glabrata ATCC 2001 wild-type strains in the presence of different media (RPMI 1640 versus YNB) and using different pH values (pH 5.6 or 7.0). We determined adhesion and biofilm formation on polystyrene, changes in the expression of adhesin genes during these processes and the susceptibility of mature biofilms to echinocandins. Biofilms formed on polystyrene by both Candida species proved to be influenced strongly by the composition of the medium rather than pH. C. albicans and C. glabrata formed thicker biofilms in RPMI 1640 medium, whereas in YNB medium, both species manifested adhesion rather than characteristic multilayer biofilm architecture. The stimulated biofilm formation in RPMI 1640 medium at pH 7.0 corroborated positively with increased expression of adhesin genes, essential to biofilm formation in vitro, including ALS3 and EAP1 in C. albicans and EPA6 in C. glabrata. The thicker biofilms grown in RPMI 1640 medium were more tolerant to caspofungin and anidulafungin than YNB-grown biofilms. We also observed that mature C. glabrata biofilms were less susceptible in RPMI 1640 medium to echinocandins than C. albicans biofilms. Environmental conditions, i.e. medium and pH, can significantly affect not only biofilm architecture, but also the expression profile of several genes involved during the different stages of biofilm development. In addition, growth conditions may also influence the antifungal-susceptibility profile of fungal populations within biofilm structures. Therefore, before designing any experimental biofilm set-up, it is important to consider the potential influence of external environmental factors on Candida biofilm development.

  20. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization.

    PubMed

    Fan, Di; Coughlin, Laura A; Neubauer, Megan M; Kim, Jiwoong; Kim, Min Soo; Zhan, Xiaowei; Simms-Waldrip, Tiffany R; Xie, Yang; Hooper, Lora V; Koh, Andrew Y

    2015-07-01

    Candida albicans colonization is required for invasive disease. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization, but the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria-specifically clostridial Firmicutes (clusters IV and XIVa) and Bacteroidetes-are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that hypoxia-inducible factor-1α (HIF-1α), a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL-37 (CRAMP in mice) are key determinants of C. albicans colonization resistance. Although antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Camp (which encodes CRAMP) are required for B. thetaiotamicron-induced protection against C. albicans colonization of the gut. Thus, modulating C. albicans GI colonization by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.

  1. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  2. Temporal similarity between Candida albicans genotypes in a Tunisian neonatal intensive care unit suggests several nosocomial cross-contamination episodes.

    PubMed

    Ben Abdeljelil, Jihene; Saghrouni, Fatma; Cabaret, Odile; Boukadida, Jalel; Bretagne, Stéphane; Ben Saïd, Moncef

    2012-07-01

    The nosocomial transmission of Candida albicans in neonatal intensive care units (NICUs) is an increasing concern and understanding the route of this transmission is critical for adequate infection control measures. The aim of our study was to assess the likeliness of nosocomial acquisition of C. albicans in the NICU of Farhat Hached hospital in Sousse (Tunisia). We genotyped 82 isolates from 40 neonates and 7 isolates from 5 health care workers (HCWs) with onychomycosis, by using CDC3 microsatellite length polymorphism (MLP) and the high-resolution melting (HRM) analysis. Combined MLP and HRM CD3 analysis led to the delineation of 12 genotypes. Five temporal clustering caused by five genotypes occurred during the study period. Three of these genotypes were isolated in both neonates and HCWs. The first clustering included 28 isolates obtained between January 2003 and May 2004 from 16 neonates and 2 HCWs. The second clustering included three isolates collected in 2004 from three neonates and two HCWs. The third clustering included 11 isolates obtained from 6 neonates and 1 HCW in 2006. The two remaining clustering could not be associated with any HCW's contamination. These results argue for the nosocomial transmission of C. albicans in our NICU. The combined MLP and HRM analysis is a rapid first approach for tracking cross-contamination.

  3. Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies.

    PubMed Central

    Han, Y; Kanbe, T; Cherniak, R; Cutler, J E

    1997-01-01

    We previously reported that the immunoglobulin M (IgM) monoclonal antibody (MAb) B6.1 protects mice against disseminated candidiasis, whereas the IgM MAb B6 does not. Both MAbs are specific for an adhesin fraction isolated from the cell surface of Candida albicans, but their epitope specificities differ. In the present study, we examined the surface locations of both epitopes and obtained structural information regarding the B6.1 epitope. Immunofluorescence confocal microscopic analysis of C. albicans yeast forms showed that epitope B6.1 is displayed rather homogeneously over the entire cell surface, whereas epitope B6 appears to have a patchy distribution. Both antibodies were essentially nonreactive with the surfaces of mycelial forms of the fungus, indicating that neither epitope is expressed on the surfaces of these forms. For isolation of the B6.1 epitope, the adhesin fraction consisting of cell surface phosphomannan was subjected to mildly acidic (10 mM HCl) hydrolysis and was fractionated into acid-labile and acid-stable portions by size exclusion chromatography. Antibody blocking experiments showed that the B6.1 epitope is an acid-labile moiety of the phosphomannan and that the B6 epitope is located in the acid-stable fraction. The B6 epitope appeared to be mannan because it was stable to heat (boiling) and protease treatments but was destroyed by alpha-mannosidase digestion. The B6.1 epitope eluted from the size exclusion column in two fractions. Mass spectroscopic analyses showed that one fraction contained material with the size of a mannotriose and that the other was a mixture of mannotriose- and mannotetraose-size substances. Dose response inhibition tests of the fractions indicated that the B6.1 epitope is associated with the mannotriose. Nuclear magnetic resonance (NMR) spectroscopic analysis of the epitope yielded data consistent with a beta-(1-->2)-linked mannotriose. The fine structure of the B6 epitope is under investigation. Information derived

  4. Studying the Prevalence, Species Distribution, and Detection of In vitro Production of Phospholipase from Candida Isolated from Cases of Invasive Candidiasis

    PubMed Central

    Sharma, Yukti; Chumber, Susheel Kumar; Kaur, Mandeep

    2017-01-01

    Background and Aim: Candida spp. have emerged as successful pathogens both in invasive and mucosal infections. C. albicans is the sixth cause of most common nosocomial infections according to studies by the Centers for Disease Control and Prevention. A shift toward non-albicans species has been reported. There is a dearth of knowledge regarding the virulence factors of Candida, especially from this part of India. The aim was to study the prevalence of Candida, speciate, and determine antifungal sensitivity along with the detection of in vitro production of phospholipases in 100 Candida isolates. Materials and Methods: A total of 100 Candida isolates from various clinical specimens were studied (February 1, 2015–May 31, 2015; 4 months). Speciation was done by conventional methods and antifungal drugs fluconazole and voriconazole tested. Phospholipase activity (Pz value) was determined. Results: Of the 100 Candida spp., 35% were C. albicans and 65% were nonalbicans Candida (NAC). Species spectrum was of the 100 isolates as follows: 35 were C. albicans, 17 Candida tropicalis, 6 Candida glabrata, 8 Candida guilliermondi, 1 Candida kefyr, 6 Candida krusei, 14 Candida parapsilosis, 2 Candida lusitaniae, and 1 Trichosporon and 10 Candida spp. (not speciated). Phospholipase production was seen in 81 (81%) of the total isolates. The majority (63%) of phospholipase producers were NAC. Among NAC spp., the maximum phospholipase activity was seen in C. tropicalis (30%) and C. parapsilosis (24%). Of these, 60% of Candida was from patients admitted to the hospital. Sensitivity rates of C. albicans for fluconazole and voriconazole were 89.5% and 90.5%, respectively. Conclusion: Increasing usage of devices, total parenteral nutrition, broad-spectrum antibiotics, chemotherapies, and transplantation are factors contributing to the increase of candidal infections. Recent studies underline the increasing frequency of infections by NAC. The present study showcases the increased

  5. Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole.

    PubMed

    Vasicek, Erin M; Berkow, Elizabeth L; Bruno, Vincent M; Mitchell, Aaron P; Wiederhold, Nathan P; Barker, Katherine S; Rogers, P David

    2014-11-01

    Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 μg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 μg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals.

  6. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans

    PubMed Central

    Khan, Amber; Manzoor, Nikhat; Molepo, Julitha

    2015-01-01